Sample records for acid acc oxidase

  1. Steady-state kinetics of substrate binding and iron release in tomato ACC oxidase.

    PubMed

    Thrower, J S; Blalock, R; Klinman, J P

    2001-08-14

    1-Aminocyclopropane-1-carboxylate oxidase (ACC oxidase) catalyzes the last step in the biosynthetic pathway of the plant hormone, ethylene. This unusual reaction results in the oxidative ring cleavage of 1-aminocyclopropane carboxylate (ACC) into ethylene, cyanide, and CO2 and requires ferrous ion, ascorbate, and molecular oxygen for catalysis. A new purification procedure and assay method have been developed for tomato ACC oxidase that result in greatly increased enzymatic activity. This method allowed us to determine the rate of iron release from the enzyme and the effect of the activator, CO2, on this rate. Initial velocity studies support an ordered kinetic mechanism where ACC binds first followed by O2; ascorbate can bind after O2 or possibly before ACC. This kinetic mechanism differs from one recently proposed for the ACC oxidase from avocado.

  2. 1-Aminocyclopropane-1-carboxylic acid oxidase reaction mechanism and putative post-translational activities of the ACCO protein

    PubMed Central

    Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe

    2013-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837

  3. Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide.

    PubMed

    Ghattas, Wadih; Giorgi, Michel; Mekmouche, Yasmina; Tanaka, Tsunehiro; Rockenbauer, Antal; Réglier, Marius; Hitomi, Yutaka; Simaan, A Jalila

    2008-06-02

    Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.

  4. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    PubMed

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  5. Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches.

    PubMed

    El Bakkali-Tahéri, Nadia; Tachon, Sybille; Orio, Maylis; Bertaina, Sylvain; Martinho, Marlène; Robert, Viviane; Réglier, Marius; Tron, Thierry; Dorlet, Pierre; Simaan, A Jalila

    2017-06-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Sallmann, Madleen; Oldenburg, Fabio; Braun, Beatrice; Réglier, Marius; Simaan, A Jalila; Limberg, Christian

    2015-10-12

    The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.

    PubMed

    Blume, B; Grierson, D

    1997-10-01

    The enzyme ACC oxidase, catalysing the last step in the biosynthesis of the plant hormone ethylene, is encoded by a small multigene family in tomato, comprising three members, LEACO1, LEACO2 and LEACO3. LEACO1 is the major gene expressed during ripening, leaf senescence, and wounding (Barry et al., 1996). To investigate the transcriptional regulation of ACC oxidase gene expression, chimeric fusions between the beta-glucuronidase reporter gene and 97 bp of 5' UTR plus 124, 396 and 1825 bp, respectively, of 5' untranscribed LEACO1 sequence were constructed and introduced into Lycopersicon esculentum (Mill cv. Ailsa Craig) and Nicotiana plumbaginifolia. Analysis of transgenic tomatoes indicated that the region containing nucleotides -124 to +97 of the LEACO1 gene is sufficient to confer a marked increase in GUS activity during fruit ripening, albeit at very low levels. Fusion of 396 and 1825 bp of LEACO1 upstream sequence resulted in strong and specific induction of GUS expression in situations known to be accompanied by enhanced ethylene production. Reporter gene expression was similar to that of the endogenous LEACO1 gene, with major increases especially during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers. Analysis of transgenic N. plumbaginifolia plants confirmed the pattern of LEACO1 promoter activity detected in tomato leaves and flowers. Reporter gene expression was also induced following wounding, treatment with ethylene, and pathogen infection. Histochemical analysis illustrated localized GUS activity in the pericarp of ripening fruit, abscission zones of senescent petioles and unfertilized flowers, and at wound sites. These results demonstrate that ACC oxidase is regulated at the transcriptional level in a wide range of cell types at different developmental stages and in response to several external stimuli.

  8. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    PubMed

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  9. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase.

    PubMed

    Huang, P L; Do, Y Y; Huang, F C; Thay, T S; Chang, T W

    1997-04-01

    A cDNA encoding the banana 1-aminocyclopropane-1-carboxylate (ACC) oxidase has previously been isolated from a cDNA library that was constructed by extracting poly(A)+ RNA from peels of ripening banana. This cDNA, designated as pMAO2, has 1,199 bp and contains an open reading frame of 318 amino acids. In order to identify ripening-related promoters of the banana ACC oxidase gene, pMAO2 was used as a probe to screen a banana genomic library constructed in the lambda EMBL3 vector. The banana ACC oxidase MAO2 gene has four exons and three introns, with all of the boundaries between these introns and exons sharing a consensus dinucleotide sequence of GT-AG. The expression of MAO2 gene in banana begins after the onset of ripening (stage 2) and continuous into later stages of the ripening process. The accumulation of MAO2 mRNA can be induced by 1 microliter/l exogenous ethylene, and it reached steady state level when 100 microliters/l exogenous ethylene was present.

  10. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise.

    PubMed

    O'Neill, Hayley M; Lally, James S; Galic, Sandra; Pulinilkunnil, Thomas; Ford, Rebecca J; Dyck, Jason R B; van Denderen, Bryce J; Kemp, Bruce E; Steinberg, Gregory R

    2015-07-01

    During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    PubMed Central

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  12. Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).

    PubMed

    Lin, L S; Varner, J E

    1991-05-01

    The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."

  13. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  14. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    PubMed

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  15. Ethylene Synthesis Regulated by Biphasic Induction of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Genes Is Required for Hydrogen Peroxide Accumulation and Cell Death in Ozone-Exposed Tomato1

    PubMed Central

    Moeder, Wolfgang; Barry, Cornelius S.; Tauriainen, Airi A.; Betz, Christian; Tuomainen, Jaana; Utriainen, Merja; Grierson, Donald; Sandermann, Heinrich; Langebartels, Christian; Kangasjärvi, Jaakko

    2002-01-01

    We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-β-glucuronidase fusion construct, β-glucuronidase activity increased rapidly at the beginning of the O3 exposure and had a spatial distribution resembling the pattern of extracellular H2O2 production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H2O2 production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H2O2 production, in regulating the spread of cell death. PMID:12481074

  16. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  17. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    PubMed

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  18. Nucleic Acid Homologies Among Oxidase-Negative Moraxella Species

    PubMed Central

    Johnson, John L.; Anderson, Robert S.; Ordal, Erling J.

    1970-01-01

    The deoxyribonucleic acid (DNA) base composition and DNA homologies of more than 40 strains of oxidase-negative Moraxella species were determined. These bacteria have also been identified as belonging to the Mima-Herellea-Acinetobacter group and the Bacterium anitratum group, as well as to several other genera including Achromobacter and Alcaligenes. The DNA base content of these strains ranged from 40 to 46% guanine plus cytosine. DNA–DNA competition experiments distinguished five groups whose members were determined by showing 50% or more homology to one of the reference strains: B. anitratum type B5W, Achromobacter haemolyticus var. haemolyticus, Alcaligenes haemolysans, Achromobacter metalcaligenes, and Moraxella lwoffi. A sixth group comprised those strains showing less than 50% homology to any of the reference strains. Negligible homology was found between strains of oxidase-negative and oxidase-positive Moraxella species in DNA–DNA competition experiments. However, evidence of a distant relationship between the two groups was obtained in competition experiments by using ribosomal ribonucleic acid. PMID:5413826

  19. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry

    PubMed Central

    Izidoro, Luiz Fernando M.; Sobrinho, Juliana C.; Mendes, Mirian M.; Costa, Tássia R.; Grabner, Amy N.; Rodrigues, Veridiana M.; da Silva, Saulo L.; Zanchi, Fernando B.; Zuliani, Juliana P.; Fernandes, Carla F. C.; Calderon, Leonardo A.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2014-01-01

    L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far. PMID:24738050

  20. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    PubMed

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  2. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    PubMed

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  3. Genotype-specific enrichment of ACC deaminase-positive bacteria in winter wheat rhizospheres

    USDA-ARS?s Scientific Manuscript database

    Bacteria that produce ACC deaminase promote plant growth and development by lowering levels of the stress hormone ethylene through deamination of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. Therefore, it is hypothesized that ACC deaminase positive (ACC+) bacteri...

  4. THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE

    PubMed Central

    Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.

    1944-01-01

    1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382

  5. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents.

    PubMed

    Zhang, Guozhuang; Sun, Yonglin; Sheng, Hao; Li, Haichao; Liu, Xiping

    2018-04-01

    Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    PubMed Central

    Ibupoto, Zafar Hussain; Ali Shah, Syed Muhammad Usman; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks. PMID:22736960

  7. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  8. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Pilot, T.F.; Meany, J.E.

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing inmore » solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.« less

  9. Purification, characterization and amino acid content of cholesterol oxidase produced by Streptomyces aegyptia NEAE 102.

    PubMed

    El-Naggar, Noura El-Ahmady; Deraz, Sahar F; Soliman, Hoda M; El-Deeb, Nehal M; El-Shweihy, Nancy M

    2017-03-29

    There is an increasing demand on cholesterol oxidase for its various industrial and clinical applications. The current research was focused on extracellular cholesterol oxidase production under submerged fermentation by a local isolate previously identified as Streptomyces aegyptia NEAE 102. The crude enzyme extract was purified by two purification steps, protein precipitation using ammonium sulfate followed by ion exchange chromatography using DEAE Sepharose CL-6B. The kinetic parameters of purified cholesterol oxidase from Streptomyces aegyptia NEAE 102 were studied. The best conditions for maximum cholesterol oxidase activity were found to be 105 min of incubation time, an initial pH of 7 and temperature of 37 °C. The optimum substrate concentration was found to be 0.4 mM. The higher thermal stability behavior of cholesterol oxidase was at 50 °C. Around 63.86% of the initial activity was retained by the enzyme after 20 min of incubation at 50 °C. The apparent molecular weight of the purified enzyme as sized by sodium dodecyl sulphate-polyacryalamide gel electrophoresis was approximately 46 KDa. On DEAE Sepharose CL-6B column cholesterol oxidase was purified to homogeneity with final specific activity of 16.08 U/mg protein and 3.14-fold enhancement. The amino acid analysis of the purified enzyme produced by Streptomyces aegyptia NEAE 102 illustrated that, cholesterol oxidase is composed of 361 residues with glutamic acid as the most represented amino acid with concentration of 11.49 μg/mL. Taking into account the extracellular production, wide pH tolerance, thermal stability and shelf life, cholesterol oxidase produced by Streptomyces aegyptia NEAE 102 suggested that the enzyme could be industrially useful.

  10. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venommore » LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.« less

  11. Molecular Characterization of Lactobacillus plantarum Genes for β-Ketoacyl-Acyl Carrier Protein Synthase III (fabH) and Acetyl Coenzyme A Carboxylase (accBCDA), Which Are Essential for Fatty Acid Biosynthesis

    PubMed Central

    Kiatpapan, Pornpimon; Kobayashi, Hajime; Sakaguchi, Maki; Ono, Hisayo; Yamashita, Mitsuo; Kaneko, Yoshinobu; Murooka, Yoshikatsu

    2001-01-01

    Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon. PMID:11133475

  12. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).

    PubMed

    Agostinelli, Enzo; Vianello, Fabio; Magliulo, Giuseppe; Thomas, Thresia; Thomas, T J

    2015-01-01

    Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other

  13. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  14. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    PubMed

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  15. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    PubMed

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  16. OPHIDIAN L-AMINO ACID OXIDASE. THE NATURE OF THE ENZYME-SUBSTRATE COMPLEXES.

    PubMed

    ZELLER, E A; RAMACHANDER, G; FLEISHER, G A; ISHIMARU, T; ZELLER, V

    1965-04-01

    1. To investigate the kinetics of ophidian l-amino acid oxidase, V and K(m) were determined for phenylalanines that were substituted in every ring position with groups of various size and reactivity, and for a few ring-substituted tryptophans and histidines. The venom of one representative from each of three major classes of poisonous snakes, Naja melanoleuca, Vipera russelli and Crotalus adamanteus, served as a source of the ophidian l-amino acid oxidase. Both crude and crystalline enzyme from the venom of C. adamanteus were tested. 2. The introduction of a benzene ring into glycine and alanine caused some increase of V and a very marked depression of K(m). 3. With the exception of fluorine, residues in the ortho position of phenylalanine led to a decrease of V. The rates induced by various substitutions follow the pattern: meta >/= para >/= ortho. Within the halogen series, the effects become more pronounced with increasing atomic number. 4. Ring substitution in heterocyclic amino acids also affected the V values markedly. For methyl-substituted tryptophans the pattern was: 5-methyl >/= 6-methyl >/= 4-methyl. In a few instances ring substitution accounts for a considerable elevation of V, as shown for beta-quinol-4-ylalanine and its 6-methoxy derivative. 5. The kinetic constants appear to be unaffected by relatively high concentrations of the corresponding d-amino acids. 6. A general principle that permits a uniform interpretation of a vast body of information is suggested. It is based on the assumption that most substrates form not only eutopic but also dystopic complexes with the enzyme. The latter, in contrast with the former, do not permit the formation of reaction products. K values for eutopic and dystopic complexes are computed. Similar concepts have been presented to elucidate the action of alpha-chymotrypsin (Hein & Niemann, 1962) and of monoamine oxidase.

  17. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    PubMed

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  19. Genetic Profiling Reveals Cross-Contamination and Misidentification of 6 Adenoid Cystic Carcinoma Cell Lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2

    PubMed Central

    Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu

    2009-01-01

    Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180

  20. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  1. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.

    PubMed Central

    Rhoads, DM; McIntosh, L

    1992-01-01

    Alternative respiratory pathway capacity increases during the development of the thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative oxidase proteins increased dramatically between D-4 (4 days prior to the day of anthesis) and D-3 and continued to increase until the day of anthesis (D-day). The level of salicylic acid (SA) in the appendix is very low early on D-1, but increases to a high level in the evening of D-1. Thermogenesis occurs after a few hours of light on D-day. Therefore, the initial accumulation of the alternative oxidase proteins precedes the increase in SA by 3 days, indicating that other regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase precursor protein accumulated to a high level in the appendix tissue by D-1. Application of SA to immature appendix tissue caused an increase in alternative pathway capacity and a dramatic accumulation of the alternative oxidase proteins and the 1.6-kb transcript. Time course experiments showed that the increase in capacity, protein levels, and transcript level corresponded precisely. The response to SA was blocked by cycloheximide or actinomycin D, indicating that de novo transcription and translation are required. However, nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb transcript did not result from a simple increase in the rate of transcription of aox1. PMID:12297672

  2. Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates.

    PubMed

    Selinski, Jennifer; Hartmann, Andreas; Deckers-Hebestreit, Gabriele; Day, David A; Whelan, James; Scheibe, Renate

    2018-02-01

    The cyanide-insensitive alternative oxidase (AOX) is a non-proton-pumping ubiquinol oxidase that catalyzes the reduction of oxygen to water and is posttranslationally regulated by redox mechanisms and 2-oxo acids. Arabidopsis ( Arabidopsis thaliana ) possesses five AOX isoforms (AOX1A-AOX1D and AOX2). AOX1D expression is increased in aox1a knockout mutants from Arabidopsis (especially after restriction of the cytochrome c pathway) but cannot compensate for the lack of AOX1A, suggesting a difference in the regulation of these isoforms. Therefore, we analyzed the different AOX isoenzymes with the aim to identify differences in their posttranslational regulation. Seven tricarboxylic acid cycle intermediates (citrate, isocitrate, 2-oxoglutarate, succinate, fumarate, malate, and oxaloacetate) were tested for their influence on AOX1A, AOX1C, and AOX1D wild-type protein activity using a refined in vitro system. AOX1C is insensitive to all seven organic acids, AOX1A and AOX1D are both activated by 2-oxoglutarate, but only AOX1A is additionally activated by oxaloacetate. Furthermore, AOX isoforms cannot be transformed to mimic one another by substituting the variable cysteine residues at position III in the protein. In summary, we show that AOX isoforms from Arabidopsis are differentially fine-regulated by tricarboxylic acid cycle metabolites (most likely depending on the amino-terminal region around the highly conserved cysteine residues known to be involved in regulation by the 2-oxo acids pyruvate and glyoxylate) and propose that this is the main reason why they cannot functionally compensate for each other. © 2018 American Society of Plant Biologists. All Rights Reserved.

  3. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.

    PubMed

    Kerkhoff, Claus; Nacken, Wolfgang; Benedyk, Malgorzata; Dagher, Marie Claire; Sopalla, Claudia; Doussiere, Jacques

    2005-03-01

    The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.

  4. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    PubMed

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  5. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  6. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    PubMed

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  8. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase.

    PubMed

    Li, Z; Chang, S; Lin, L; Li, Y; An, Q

    2011-08-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is an efficient marker for bacteria to promote plant growth by lowering ethylene levels in plants. We aim to develop a method for rapidly screening bacteria containing ACC deaminase, based on a colorimetric ninhydrin assay of ACC. A reliable colorimetric ninhydrin assay was developed to quantify ACC using heat-resistant polypropylene chimney-top 96-well PCR plates, having the wells evenly heated in boiling water, preventing accidental contamination from boiling water and limiting evaporation. With this method to measure bacterial consumption of ACC, 44 ACC-utilizing bacterial isolates were rapidly screened out from 311 bacterial isolates that were able to grow on minimal media containing ACC as the sole nitrogen source. The 44 ACC-utilizing bacterial isolates showed ACC deaminase activities and belonged to the genus Burkholderia, Pseudomonas or Herbaspirillum. Determination of bacterial ACC consumption by the PCR-plate ninhydrin-ACC assay is a rapid and efficient method for screening bacteria containing ACC deaminase from a large number of bacterial isolates. The PCR-plate ninhydrin-ACC assay extends the utility of the ninhydrin reaction and enables a rapid screening of bacteria containing ACC deaminase from large numbers of bacterial isolates. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  10. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A new pyruvate oxidase biosensor based on 3-mercaptopropionic acid/6-aminocaproic acid modified gold electrode.

    PubMed

    Bayram, Ezgi; Akyilmaz, Erol

    2014-12-01

    In the biosensor construction, 3-mercaptopropionic acid (3-MPA) and 6-aminocaproic acid (6-ACA) were used for forming self-assembled monolayer (SAM) on a gold disc electrode and pyruvate oxidase was immobilized on the modified electrode surface by using glutaraldehyde. Biosensor response is linearly related to pyruvate concentration at 2.5-50 μM, detection limit is 1.87 μM and response time of the biosensor is 6 s for differential pulse voltammograms. From the repeatability studies (n = 6) for 30.0 μM pyruvate revealed that the average value ([Formula: see text]), standard deviation (S.D) and coefficient of variation (CV %) were calculated to be 31.02 μM, ± 0.1914 μM and 0.62%, respectively.

  12. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.

    PubMed

    Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E

    2017-05-01

    A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix - (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix - (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its

  13. ACC Effectiveness Review, 1999-2002.

    ERIC Educational Resources Information Center

    Wallace, Roslyn, Ed.

    2002-01-01

    These newsletters on Institutional Effectiveness (IE) at Austin Community College (ACC) in Texas include the following articles: (1) "The 'Fast Track'...Students Say It Works!" (2) "Are Students Successfully Completing Distance Learning Courses at ACC?" (3) "Tracking Transfers"; (4) "Math Pilot: Study Skills…

  14. Catalase deficiency may complicate urate oxidase (rasburicase) therapy.

    PubMed

    Góth, László; Bigler, N William

    2007-09-01

    Patients with low (inherited and acquired) catalase activities who are treated with infusion of uric acid oxidase because they are at risk of tumour lysis syndrome may experience very high concentrations of hydrogen peroxide. They may suffer from methemoglobinaemia and haemolytic anaemia which may be attributed either to deficiency of glucose-6-phosphate dehydrogenase or to other unknown circumstances. Data have not been reported from catalase deficient patients who were treated with uric acid oxidase. It may be hypothesized that their decreased blood catalase could lead to the increased concentration of hydrogen peroxide which may cause haemolysis and formation of methemoglobin. Blood catalase activity should be measured for patients at risk of tumour lysis syndrome prior to uric acid oxidase treatment.

  15. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  16. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  17. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. © 2016 Society for Endocrinology.

  18. Stereochemical analysis of the elimination reaction catalyzed by D-amino-acid oxidase.

    PubMed

    Cheung, Y F; Walsh, C

    1976-06-01

    The stereochemistry of the intramolecular proton transfer catalyzed by the flavoenzyme, D-amino-acid oxidase, during the elimination reaction of beta-chloro-alpha-amino acid substrates (Walsh et al. (1973), J. Biol. Chem. 248, 1964) has been established. Both D-erythro- and D-threo-2-amino-3-chloro(2-3H) butyrate have been shown to yield (3R)-2-keto (3-3H)-2- butyrate predominantly. Tritium kinetic isotope effects on the rate of the reaction (4.7 for the D-erythro, and 3.8 for the D-threo compound) and percentages of intramolecular triton transfer (7.2% for the D-erythro- and 2.6% for the D-threo compound) have been measured. Their implications on the mechanism of this unusual elimination reaction are discussed.

  19. Mouse d-Amino-Acid Oxidase: Distribution and Physiological Substrates

    PubMed Central

    Koga, Reiko; Miyoshi, Yurika; Sakaue, Hiroaki; Hamase, Kenji; Konno, Ryuichi

    2017-01-01

    d-Amino-acid oxidase (DAO) catalyzes the oxidative deamination of d-amino acids. DAO is present in a wide variety of organisms and has important roles. Here, we review the distribution and physiological substrates of mouse DAO. Mouse DAO is present in the kidney, brain, and spinal cord, like DAOs in other mammals. However, in contrast to other animals, it is not present in the mouse liver. Recently, DAO has been detected in the neutrophils, retina, and small intestine in mice. To determine the physiological substrates of mouse DAO, mutant mice lacking DAO activity are helpful. As DAO has wide substrate specificity and degrades various d-amino acids, many d-amino acids accumulate in the tissues and body fluids of the mutant mice. These amino acids are d-methionine, d-alanine, d-serine, d-leucine, d-proline, d-phenylalanine, d-tyrosine, and d-citrulline. Even in wild-type mice, administration of DAO inhibitors elevates D-serine levels in the plasma and brain. Among the above d-amino acids, the main physiological substrates of mouse DAO are d-alanine and d-serine. These two d-amino acids are most abundant in the tissues and body fluids of mice. d-Alanine derives from bacteria and produces bactericidal reactive oxygen species by the action of DAO. d-Serine is synthesized by serine racemase and is present especially in the central nervous system, where it serves as a neuromodulator. DAO is responsible for the metabolism of d-serine. Since DAO has been implicated in the etiology of neuropsychiatric diseases, mouse DAO has been used as a representative model. Recent reports, however, suggest that mouse DAO is different from human DAO with respect to important properties. PMID:29255714

  20. 24 CFR 982.154 - ACC reserve account.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false ACC reserve account. 982.154... and PHA Administration of Program § 982.154 ACC reserve account. (a) HUD may establish and maintain an unfunded reserve account for the PHA program from available budget authority under the consolidated ACC...

  1. 24 CFR 982.154 - ACC reserve account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false ACC reserve account. 982.154... and PHA Administration of Program § 982.154 ACC reserve account. (a) HUD may establish and maintain an unfunded reserve account for the PHA program from available budget authority under the consolidated ACC...

  2. Effect of high pressure on peanut allergens in the presence of polyphenol oxidase and caffeic acid

    USDA-ARS?s Scientific Manuscript database

    High pressure (HP) enhances enzymatic reactions. Because polyphenol oxidase (PPO) is an enzyme, and reduces IgE binding of peanut allergens in presence of caffeic acid (CA), we postulated that a further reduction in IgE binding can be achieved, using HP together with PPO and CA. Peanut extracts cont...

  3. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

    PubMed

    Im, Dohyun; Matsui, Daisuke; Arakawa, Takatoshi; Isobe, Kimiyasu; Asano, Yasuhisa; Fushinobu, Shinya

    2018-03-01

    l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).

  4. In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase.

    PubMed

    Rashidi, Mohammad-Reza; Beedham, Christine; Smith, John S; Davaran, Soodabeh

    2007-08-01

    In spite of over 40 years of clinical use of 6-mercaptopurine, many aspects of complex pharmacology and metabolism of this drug remain unclear. It is thought that 6-mercaptopurine is oxidized to 6-thiouric acid through 6-thioxanthine or 8-oxo-6-mercaptopurine by one of two molybdenum hydroxylases, xanthine oxidase (XO), however, the role of other molybdenum hydroxylase, aldehyde oxidase (AO), in the oxidation of 6-mercaptopurine and possible interactions of AO substrates and inhibitors has not been investigated in more details. In the present study, the role of AO and XO in the oxidation of 6- mercaptopurine has been investigated. 6-mercaptopurine was incubated with bovine milk xanthine oxidase or partially purified guinea pig liver molybdenum hydroxylase fractions in the absence and presence of XO and AO inhibitor/substrates, and the reactions were monitored by spectrophotometric and HPLC methods. According to the results obtained from the inhibition studies, it is more likely that 6- mercaptopurine is oxidized to 6-thiouric acid via 6-thioxanthine rather than 8-oxo-6-mercaptopurine. The first step which is the rate limiting step is catalyzed solely by XO, whereas both XO and AO are involved in the oxidation of 6-thioxanthine to 6-thiouric acid.

  5. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  6. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  7. Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase.

    PubMed Central

    Agwu, D E; McPhail, L C; Sozzani, S; Bass, D A; McCall, C E

    1991-01-01

    Receptor-mediated agonists, such as FMLP, induce an early, phospholipase D (PLD)-mediated accumulation of phosphatidic acid (PA) which may play a role in the activation of NADPH oxidase in human PMN. We have determined the effect of changes in PA production on O2 consumption in intact PMN and the level of NADPH oxidase activity measured in a cell-free assay. Pretreatment of cells with various concentrations of propranolol enhanced (less than or equal to 200 microM) or inhibited (greater than 300 microM) PLD-induced production of PA (mass and radiolabel) in a manner that correlated with enhancement or inhibition of O2 consumption in PMN stimulated with 1 microM FMLP in the absence of cytochalasin B. The concentration-dependent effects of propranolol on FMLP-induced NADPH oxidase activation was confirmed by direct assay of the enzyme in subcellular fractions. In PA extracted from cells pretreated with 200 microM propranolol before stimulation with 1 microM FMLP, phospholipase A1 (PLA1)-digestion for 90 min, followed by quantitation of residual PA, showed that a minimum of 44% of PA in control (undigested) sample was diacyl-PA; alkylacyl-PA remained undigested by PLA1. Propranolol was also observed to have a concentration-dependent enhancement of mass of 1,2-DG formed in PMN stimulated with FMLP. DG levels reached a maximum at 300 microM propranolol and remained unchanged up to 500 microM propranolol. However, in contrast to PA levels, the level of DG produced did not correlate with NADPH oxidase activation. Exogenously added didecanoyl-PA activated NADPH oxidase in a concentration-dependent manner (1-300 microM) in a reconstitution assay using membrane and cytosolic fractions from unstimulated PMN. In addition, PA synergized with SDS for oxidase activation. Taken together, these results indicate that PA plays a second messenger role in the activation of NADPH oxidase in human PMN and that regulation of phospholipase D is a key step in the activation pathway. Images

  8. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani.

    PubMed

    Yang, Chia-Ann; Cheng, Chi-Hua; Lo, Chaur-Tsuen; Liu, Shu-Ying; Lee, Jeng-Woei; Peng, Kou-Cheng

    2011-05-11

    Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are poorly understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16-24%) to other LAAO members, a highly conserved FAD-binding motif was identified in the N-terminus. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that Th-LAAO had an antagonistic effect against Rhizoctonia solani and a stimulatory one on hyphal density and sporulation in T. harzianum ETS 323. These findings further our understanding of T. harzianum as a biocontrol agent and provide insight into the biological function of l-amino acid oxidase.

  9. Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation.

    PubMed

    Dai, Yao; Cao, Yongxiang; Zhang, Zhigao; Vallurupalli, Srikanth; Mehta, Jawahar L

    2017-02-01

    Xanthine oxidase catalyzes the oxidation of xanthine to uric acid. This process generates excessive reactive oxygen species (ROS) that play an important role in atherogenesis. Recent studies show that LRR and PYD domains-containing protein 3 (NLRP3), a component of the inflammasome, may be involved in the formation of foam cells, a hallmark of atherosclerosis. This study was designed to study the role of various scavenger receptors and NLRP3 inflammasome in xanthine oxidase and uric acid-induced foam cell formation. Human vascular smooth muscle cells (VSMCs) and THP-1 macrophages were treated with xanthine oxidase or uric acid. Xanthine oxidase treatment (of both VSMCs and THP-1 cells) resulted in foam cell formation in concert with generation of ROS and expression of cluster of differentiation 36 (CD36) and oxidized low density lipoprotein (lectin-like) receptor 1 (LOX-1), but not of scavenger receptor A (SRA). Uric acid treatment resulted in foam cell formation, ROS generation and expression of CD36, but not of LOX-1 or SRA. Further, treatment of cells with xanthine oxidase, but not uric acid, activated NLRP3 and its downstream pro-inflammatory signals- caspase-1, interleukin (IL)-1β and IL-18. Blockade of LOX-1 or NLRP3 inflammasome with specific siRNAs reduced xanthine oxidase-induced foam cell formation, ROS generation and activation of NLRP3 and downstream signals. Xanthine oxidase induces foam cell formation in large part through activation of LOX-1 - NLRP3 pathway in both VSMCs and THP-1 cells, but uric acid-induced foam cell formation is exclusively through CD36 pathway. Further, LOX-1 activation is upstream of NLRP3 activation. Graphical Abstract Steps in the formation of foam cells in response to xanthine oxidase and uric acid. Xanthine oxidase stimulates LOX-1 expression on the cell membrane of macrophages and vascular smooth muscle cells (VSMCs) and increases generation of ROS, which activate NLRP3 inflammasome and downstream pro

  10. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice

    PubMed Central

    Essop, M. Faadiel; Camp, Heidi S.; Choi, Cheol Soo; Sharma, Saumya; Fryer, Ryan M.; Reinhart, Glenn A.; Guthrie, Patrick H.; Bentebibel, Assia; Gu, Zeiwei; Shulman, Gerald I.; Taegtmeyer, Heinrich; Wakil, Salih J.; Abu-Elheiga, Lutfi

    2008-01-01

    The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced (∼25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased ∼22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by ∼83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARα and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size. PMID:18487439

  11. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  12. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  13. PROLINE OXIDASES IN HANSENULA SUBPELLICULOSA

    PubMed Central

    Ling, Chung-Mei; Hedrick, L. R.

    1964-01-01

    Ling, Chung-Mei (Illinois Institute of Technology, Chicago), and L. R. Hedrick. Proline oxidases in Hansenula subpelliculosa. J. Bacteriol. 87:1462–1470. 1964—Cells of Hansenula subpelliculosa can use l-proline as a carbon and a nitrogen source after a 6- to 8-hr induction period. However, they cannot use l-glutamate as both nitrogen and carbon sources unless the induction period is of several days' duration. Two l-proline oxidases were demonstrated in the mitochondrial preparation of this yeast. One forms the product Δ′-pyrroline-2-carboxylic acid (P2C), which is in equilibrium with α-keto-δ-amino-valeric acid; the other forms the product Δ′-pyrroline-5-carboxylic acid (P5C), which is in equilibrium with glutamic-γ-semialdehyde. The first-mentioned enzyme is induced when l-proline is the carbon source; the second appears to be constitutive, and is probably associated with the use of l-proline as a nitrogen source. The P2C-forming enzyme is specific for the l isomer of proline, and is inactive against l-hydroxyproline. The enzyme activity is at its peak when the mitochondria are prepared from logarithmically grown cells, and is rapidly reduced after cells reach the stationary phase of growth. Kinetic studies with varying concentrations of substrate indicate a Michaelis-Menten constant of 2.45 × 10−2m. Paper chromatographic studies, chemical tests with H2O2, sensitivity to freezing, and spectral measurements indicate that proline oxidase from H. subpelliculosa mitochondria forms a product from l-proline which is like, if not identical to, P2C formed by the action of sheep kidney d-proline oxidase upon dl-proline. The soluble portion of the cell extract contains NAD+ enzymes which use either P2C (α-keto-δ-amino-valeric acid) or P5C (glutamic-γ-semialdehyde) as substrates. No glutamic dehydrogenase activity could be detected when l-glutamic acid and the nicotinamide adenine dinucleotide (NAD+) cofactor were added to the supernatant solution with the

  14. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress.

    PubMed

    Sarkar, Anumita; Ghosh, Pallab Kumar; Pramanik, Krishnendu; Mitra, Soumik; Soren, Tithi; Pandey, Sanjeev; Mondal, Monohar Hossain; Maiti, Tushar Kanti

    2018-01-01

    Agricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production. Several salt-tolerant bacterial strains displaying ACC deaminase activity were isolated from rice fields, and their plant growth-promoting (PGP) properties were determined. Among them, strain P23, identified as an Enterobacter sp. based on phenotypic characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry data and the 16S rDNA sequence, was selected as the best-performing isolate for several PGP traits, including phosphate solubilization, IAA production, siderophore production, HCN production, etc. Enterobacter sp. P23 was shown to promote rice seedling growth under salt stress, and this effect was correlated with a decrease in antioxidant enzymes and stress-induced ethylene. Isolation of an acdS mutant strain enabled concluding that the reduction in stress-induced ethylene content after inoculation of strain P23 was linked to ACC deaminase activity. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  16. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    PubMed

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  17. MipLAAO, a new L-amino acid oxidase from the redtail coral snake Micrurus mipartitus

    PubMed Central

    2018-01-01

    L-amino acid oxidases (LAAOs) are ubiquitous enzymes in nature. Bioactivities described for these enzymes include apoptosis induction, edema formation, induction or inhibition of platelet aggregation, as well as antiviral, antiparasite, and antibacterial actions. With over 80 species, Micrurus snakes are the representatives of the Elapidae family in the New World. Although LAAOs in Micrurus venoms have been predicted by venom gland transcriptomic studies and detected in proteomic studies, no enzymes of this kind have been previously purified from their venoms. Earlier proteomic studies revealed that the venom of M. mipartitus from Colombia contains ∼4% of LAAO. This enzyme, here named MipLAAO, was isolated and biochemically and functionally characterized. The enzyme is found in monomeric form, with an isotope-averaged molecular mass of 59,100.6 Da, as determined by MALDI-TOF. Its oxidase activity shows substrate preference for hydrophobic amino acids, being optimal at pH 8.0. By nucleotide sequencing of venom gland cDNA of mRNA transcripts obtained from a single snake, six isoforms of MipLAAO with minor variations among them were retrieved. The deduced sequences present a mature chain of 483 amino acids, with a predicted pI of 8.9, and theoretical masses between 55,010.9 and 55,121.0 Da. The difference with experimentally observed mass is likely due to glycosylation, in agreement with the finding of three putative N-glycosylation sites in its amino acid sequence. A phylogenetic analysis of MmipLAAO placed this new enzyme within the clade of homologous proteins from elapid snakes, characterized by the conserved Serine at position 223, in contrast to LAAOs from viperids. MmipLAAO showed a potent bactericidal effect on S. aureus (MIC: 2 µg/mL), but not on E. coli. The former activity could be of interest to future studies assessing its potential as antimicrobial agent. PMID:29900074

  18. MipLAAO, a new L-amino acid oxidase from the redtail coral snake Micrurus mipartitus.

    PubMed

    Rey-Suárez, Paola; Acosta, Cristian; Torres, Uday; Saldarriaga-Córdoba, Mónica; Lomonte, Bruno; Núñez, Vitelbina

    2018-01-01

    L-amino acid oxidases (LAAOs) are ubiquitous enzymes in nature. Bioactivities described for these enzymes include apoptosis induction, edema formation, induction or inhibition of platelet aggregation, as well as antiviral, antiparasite, and antibacterial actions. With over 80 species, Micrurus snakes are the representatives of the Elapidae family in the New World. Although LAAOs in Micrurus venoms have been predicted by venom gland transcriptomic studies and detected in proteomic studies, no enzymes of this kind have been previously purified from their venoms. Earlier proteomic studies revealed that the venom of M. mipartitus from Colombia contains ∼4% of LAAO. This enzyme, here named MipLAAO, was isolated and biochemically and functionally characterized. The enzyme is found in monomeric form, with an isotope-averaged molecular mass of 59,100.6 Da, as determined by MALDI-TOF. Its oxidase activity shows substrate preference for hydrophobic amino acids, being optimal at pH 8.0. By nucleotide sequencing of venom gland cDNA of mRNA transcripts obtained from a single snake, six isoforms of MipLAAO with minor variations among them were retrieved. The deduced sequences present a mature chain of 483 amino acids, with a predicted pI of 8.9, and theoretical masses between 55,010.9 and 55,121.0 Da. The difference with experimentally observed mass is likely due to glycosylation, in agreement with the finding of three putative N-glycosylation sites in its amino acid sequence. A phylogenetic analysis of MmipLAAO placed this new enzyme within the clade of homologous proteins from elapid snakes, characterized by the conserved Serine at position 223, in contrast to LAAOs from viperids. MmipLAAO showed a potent bactericidal effect on S. aureus (MIC: 2 µg/mL), but not on E. coli . The former activity could be of interest to future studies assessing its potential as antimicrobial agent.

  19. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid) and Cholesterol Oxidase.

    PubMed

    Nien, Po-Chin; Chen, Po-Yen; Ho, Kuo-Chuan

    2009-01-01

    In this study, use of the covalent enzyme immobilization method was proposed to attach cholesterol oxidase (ChO) on a conducting polymer, poly(3-thiopheneacetic acid), [poly(3-TPAA)]. Three red-orange poly(3-TPAA) films, named electrodes A, B and C, were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropyl)carbodiimide hydrochloride (EDC · HCl) and N-hydroxysuccinimide (NHS) were used to activate the free carboxylic groups of the conducting polymer. Afterwards, the amino groups of the cholesterol oxidase were linked on the activated groups to form peptide bonds. The best sensitivity obtained for electrode B is 4.49 mA M(-1) cm(-2), with a linear concentration ranging from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response time (t(95)) is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid increased to 5.2 and 10.3% of the original current response, respectively, based on the current response of cholesterol (100%). With respect to the long-term stability, the sensing response retains 88% of the original current after 13 days.

  20. The xanthine oxidase inhibitor Febuxostat reduces tissue uric acid content and inhibits injury-induced inflammation in the liver and lung

    PubMed Central

    Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.

    2014-01-01

    Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036

  1. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    PubMed

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-07-09

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors.

  2. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro.

    PubMed

    Shishikura, Miho; Hakariya, Hitomi; Iwasa, Sumiko; Yoshio, Takashi; Ichiba, Hideaki; Yorita, Kazuko; Fukui, Kiyoshi; Fukushima, Takeshi

    2014-06-01

    It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.

  3. Biochemical Conservation and Evolution of Germacrene A Oxidase in Asteraceae*

    PubMed Central

    Nguyen, Don Trinh; Göpfert, Jens Christian; Ikezawa, Nobuhiro; MacNevin, Gillian; Kathiresan, Meena; Conrad, Jürgen; Spring, Otmar; Ro, Dae-Kyun

    2010-01-01

    Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature. PMID:20351109

  4. ETHY. A theory of fruit climacteric ethylene emission.

    PubMed

    Génard, Michel; Gouble, Barbara

    2005-09-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O(2) and CO(2) internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature.

  5. ETHY. A Theory of Fruit Climacteric Ethylene Emission1

    PubMed Central

    Génard, Michel; Gouble, Barbara

    2005-01-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O2 and CO2 internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature. PMID:16143642

  6. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1.

    PubMed

    Endo, Yusuke; Asou, Hikari K; Matsugae, Nao; Hirahara, Kiyoshi; Shinoda, Kenta; Tumes, Damon J; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori

    2015-08-11

    Chronic inflammation due to obesity contributes to the development of metabolic diseases, autoimmune diseases, and cancer. Reciprocal interactions between metabolic systems and immune cells have pivotal roles in the pathogenesis of obesity-associated diseases, although the mechanisms regulating obesity-associated inflammatory diseases are still unclear. In the present study, we performed transcriptional profiling of memory phenotype CD4 T cells in high-fat-fed mice and identified acetyl-CoA carboxylase 1 (ACC1, the gene product of Acaca) as an essential regulator of Th17 cell differentiation in vitro and of the pathogenicity of Th17 cells in vivo. ACC1 modulates the DNA binding of RORγt to target genes in differentiating Th17 cells. In addition, we found a strong correlation between IL-17A-producing CD45RO(+)CD4 T cells and the expression of ACACA in obese subjects. Thus, ACC1 confers the appropriate function of RORγt through fatty acid synthesis and regulates the obesity-related pathology of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Design, synthesis, and molecular docking studies of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives as xanthine oxidase inhibitors.

    PubMed

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Zhang, Yi; Meng, Fan-Hao

    2018-04-01

    A series of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives (1a-j) was designed and synthesized as novel xanthine oxidase inhibitors. Among them, the L/D-phenylalanine derivatives (1d and 1i) and the L/D-tryptophan derivatives (1e and 1j) were effective with micromolar level potency. In particular, the L-phenylalanine derivative 1d (IC 50  = 3.0 μm) and the D-phenylalanine derivative 1i (IC 50  = 2.9 μm) presented the highest potency and were both more potent than the positive control allopurinol (IC 50  = 8.1 μm). Preliminary SAR analysis pointed that an aromatic amino acid fragment, for example, phenylalanine or tryptophan, was essential for the inhibition; the D-amino acid derivative presented equal or greater potency compared to its L-enantiomer; and the 9,10-anthraquinone moiety was welcome for the inhibition. Molecular simulations provided rational binding models for compounds 1d and 1i in the xanthine oxidase active pocket. As a result, compounds 1d and 1i could be promising lead compounds for further investigation. © 2017 John Wiley & Sons A/S.

  8. Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode.

    PubMed

    Liu, Xiaoying; Zeng, Xiandong; Mai, Nannan; Liu, Yong; Kong, Bo; Li, Yonghong; Wei, Wanzhi; Luo, Shenglian

    2010-08-15

    A colloidal gold-modified carbon ionic liquid electrode was constructed by mixing colloidal gold-modified graphite powder with a solid room temperature ionic liquid n-octyl-pyridinium hexafluorophosphate (OPPF(6)). Glucose oxidase (GOD) was entrapped in this composite matrix and maintained its bioactivity well and displayed excellent stability. The effect conditions of pH, applied potential and GOD loading were examined. Especially, the glucose oxidase entrapped in this carbon ionic liquid electrode fully retained its activity upon stressing in strongly acidic conditions (pH 2.0) for over one hour. The proposed biosensor responds to glucose linearly over concentration range of 5.0x10(-6) to 1.2x10(-3) and 2.6x10(-3) to 1.3x10(-2) M, and the detection limit is 3.5x10(-6) M. The response time of the biosensor is fast (within 10s), and the life time is over two months. The effects of electroactive interferents, such as ascorbic acid, uric acid, can be significantly reduced by a Nafion film casting on the surface of resulting biosensor. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria.

    PubMed

    Misra, Sankalp; Dixit, Vijay Kant; Khan, Mohammad Haneef; Kumar Mishra, Shashank; Dviwedi, Gyanendra; Yadav, Sumit; Lehri, Alok; Singh Chauhan, Puneet

    2017-12-01

    A comprehensive survey for 09 agro-climatic zones of Uttar Pradesh, India was conducted to isolate and characterize salt tolerant 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase possessing plant growth promoting (PGP) rhizobacteria for salt stress amelioration in rice. Here, we have isolated 1125 bacteria having the ability to tolerate 1M NaCl and out of those, 560 were screened for utilizing ACC as sole nitrogen source. 560 isolates were subjected for bacteria coated seed germination assay under 100mM salt (NaCl) stress resulting to 77 isolates which were further evaluated for seed germination assay, PGP and abiotic stress tolerance ability in vitro. This evaluation revealed 15 potent rhizobacteria representing each agro-climatic zone and salt stress mitigation in vitro. In particular, the biomass obtained for bacteria coated rice seedlings were corroborated with the performance of isolates exhibiting maximum average indole acetic acid (IAA) production respective to the agro-climatic zone. Surprisingly based on 16S rRNA, much of the propitious isolates belonged to same specific epithet exhibited variedly in their characteristics. Overall, Bacillus spp. was explored as dominant genera in toto with highest distribution in Western Plain zone followed by Central zone. Therefore, this study provides a counter-intuitive perspective of selection of native microflora for their multifarious PGP and abiotic stress tolerance abilities based on the agro-climatic zones to empower the establishment and development of more suitable inoculants for their application in agriculture under local stress environments. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Elevated Monoamine Oxidase-A Distribution Volume in Borderline Personality Disorder Is Associated With Severity Across Mood Symptoms, Suicidality, and Cognition.

    PubMed

    Kolla, Nathan J; Chiuccariello, Lina; Wilson, Alan A; Houle, Sylvain; Links, Paul; Bagby, R Michael; McMain, Shelley; Kellow, Charis; Patel, Jalpa; Rekkas, Paraskevi V; Pasricha, Suvercha; Meyer, Jeffrey H

    2016-01-15

    Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude. [(11)C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female. Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = -.44, p = .023). These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Cytochrome c oxidase rather than cytochrome c is a major determinant of mitochondrial respiratory capacity in skeletal muscle of aged rats: role of carnitine and lipoic acid.

    PubMed

    Tamilselvan, Jayavelu; Sivarajan, Kumarasamy; Anusuyadevi, Muthuswamy; Panneerselvam, Chinnakkannu

    2007-09-01

    The release of mitochondrial cytochrome c followed by activation of caspase cascade has been reported with aging in various tissues, whereas little is known about the caspase-independent pathway involved in mitochondrial dysfunction. To determine the functional impact of cytochrome c loss on mitochondrial respiratory capacity, we monitored NADH redox transitions and oxygen consumption in isolated skeletal muscle mitochondria of 4- and 24-month-old rats in the presence and absence of exogenous cytochrome c; and assessed the efficacy of cosupplementation of carnitine and lipoic acid on age-related alteration in mitochondrial respiration. The loss of mitochondrial cytochrome c with age was accompanied with alteration in respiratory transition, which in turn was not rescued by exogenous addition of cytochrome c to isolated mitochondria. The analysis of mitochondrial and nuclear-encoded cytochrome c oxidase subunits suggests that the decreased levels of cytochrome c oxidase may be attributed for the irresponsiveness to exogenously added cytochrome c on mitochondrial respiratory transitions, possibly through reduction of upstream electron carriers. Oral supplementation of carnitine and lipoic acid to aged rats help to maintaining the mitochondrial oxidative capacity by regulating the release of cytochrome c and improves cytochrome c oxidase transcript levels. Thus, carnitine and lipoic acid supplementation prevents the loss of cytochrome c and their associated decline in cytochrome c oxidase activity; thereby, effectively attenuating any putative decrease in cellular energy and redox status with age.

  12. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.

    PubMed

    Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd

    2016-11-01

    Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    PubMed

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to

  14. A biohybrid hydrogel for the urate-responsive release of urate oxidase.

    PubMed

    Geraths, Christian; Daoud-El Baba, Marie; Charpin-El Hamri, Ghislaine; Weber, Wilfried

    2013-10-10

    Functional biomaterials that detect and correct pathological parameters hold high promises for biomedical application. In this study we describe a biohybrid hydrogel that detects elevated concentrations of uric acid and responds by dissolution and the release of uric acid-degrading urate oxidase. This material was synthesized by incorporating PEG-stabilized urate oxidase into a polyacrylamide hydrogel that was crosslinked by the uric acid-sensitive interaction between the uric acid transcription factor HucR and its operator hucO. We characterize the uric acid responsiveness of the material and demonstrate that it can effectively be applied to counteract flares of uric acid in a mouse model. This approach might be a first step towards a biomedical device autonomously managing uric acid burst associated to gouty arthritis and the tumor lysis syndrome. © 2013.

  15. Reward salience and risk aversion underlie differential ACC activity in substance dependence

    PubMed Central

    Alexander, William H.; Fukunaga, Rena; Finn, Peter; Brown, Joshua W.

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed. PMID:26106528

  16. Reward salience and risk aversion underlie differential ACC activity in substance dependence.

    PubMed

    Alexander, William H; Fukunaga, Rena; Finn, Peter; Brown, Joshua W

    2015-01-01

    The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.

  17. Genetic profile of adenoid cystic carcinomas (ACC) with high-grade transformation versus solid type.

    PubMed

    Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario

    2010-01-01

    ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features and to compare results to solid ACC. genome-wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, 4 with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), 5 solid ACC. In addition, Ki-67 index and p53 immunopositivity was assessed. ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC.

  18. Genetic profile of adenoid cystic carcinomas (ACC) with high-grade transformation versus solid type.

    PubMed

    Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario

    2011-08-01

    ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features, and to compare results to solid ACC. Genome wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, four with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), and five solid ACC. In addition, Ki67 index and p53 immunopositivity was assessed. ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC.

  19. Amino acid N-malonyltransferases from mung beans. Action on 1-aminocyclopropane-1-carboxylic acid and D-phenylalanine.

    PubMed

    Guo, L; Phillips, A T; Arteca, R N

    1993-12-05

    1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase from etiolated mung bean hypocotyls was examined for its relationship to D-phenylalanine N-malonyltransferase and other enzymes which transfer malonyl groups from malonyl-CoA to D-amino acids. Throughout a 3600-fold purification the ratio of D-phenylalanine N-malonyltransferase activity to ACC N-malonyltransferase activity was unchanged. Antibodies raised against purified ACC N-malonyltransferase 55-kDa protein were also able to precipitate all D-phenylalanine-directed activity from partially purified mung bean extracts. The irreversible inhibitors phenylglyoxal and tetranitromethane reduced malonyltransferase activity towards D-phenylalanine to the same extent as that for ACC. In addition, several other D-amino acids, particularly D-tryptophan and D-tyrosine, were able to inhibit action towards both ACC and D-phenylalanine. These lines of evidence suggest that a single enzyme is capable of promoting malonylation of both ACC and D-phenylalanine. Km values for D-phenylalanine and malonyl-CoA were found to be 48 and 43 microM, respectively; these values are 10-fold lower than the corresponding values when ACC was substrate. Coenzyme A was a noncompetitive (mixed type) product inhibitor towards malonyl-CoA at both unsaturated and saturated ACC concentrations. The enzyme was also inhibited uncompetitively at high concentrations of malonyl-CoA. We propose that the enzyme follows an Ordered Bi-Bi reaction pathway, with the amino acid substrate being bound initially.

  20. Genetic Profile of Adenoid Cystic Carcinomas (ACC) with High-Grade Transformation versus Solid Type

    PubMed Central

    Costa, Ana Flávia; Altemani, Albina; Vékony, Hedy; Bloemena, Elisabeth; Fresno, Florentino; Suárez, Carlos; Llorente, José Luis; Hermsen, Mario

    2010-01-01

    Background: ACC can occasionally undergo dedifferentiation also referred to as high-grade transformation (ACC-HGT). However, ACC-HGT can also undergo transformation to adenocarcinomas which are not poorly differentiated. ACC-HGT is generally considered to be an aggressive variant of ACC, even more than solid ACC. This study was aimed to describe the genetic changes of ACC-HGT in relation to clinico-pathological features and to compare results to solid ACC. Methods: Genome-wide DNA copy number changes were analyzed by microarray CGH in ACC-HGT, 4 with transformation into moderately differentiated adenocarcinoma (MDA) and two into poorly differentiated carcinoma (PDC), 5 solid ACC. In addition, Ki-67 index and p53 immunopositivity was assessed. Results: ACC-HGT carried fewer copy number changes compared to solid ACC. Two ACC-HGT cases harboured a breakpoint at 6q23, near the cMYB oncogene. The complexity of the genomic profile concurred with the clinical course of the patient. Among the ACC-HGT, p53 positivity significantly increased from the conventional to the transformed (both MDA and PDC) component. Conclusion: ACC-HGT may not necessarily reflect a more advanced stage of tumor progression, but rather a transformation to another histological form in which the poorly differentiated forms (PDC) presents a genetic complexity similar to the solid ACC. PMID:20978318

  1. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction.

    PubMed

    Gaudin, Zachary; Cerveau, Delphine; Marnet, Nathalie; Bouchereau, Alain; Delavault, Philippe; Simier, Philippe; Pouvreau, Jean-Bernard

    2014-01-21

    An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa.

  2. Asian Care Certificate (ACC): a care quality assurance framework.

    PubMed

    Talaie, Tony

    2018-04-16

    Purpose Quality assuring elderly care through a viable and feasible standard framework is a major challenge for Asian governments. Although several attempts have been made to tackle foreign care worker (FCW) shortage, assuring the quality of the care they provide has been overlooked. The original framework allowed a better control over service quality to assure the elderly about their care according to the agreed standards. The paper aims to discuss these issues. Design/methodology/approach Through several Japanese Governmental meetings, a new Asian Care Certificate (ACC) program is discussed based on the Japanese Care Certificate (JCC). The governments' representatives adopted the JCC to form the ACC, which enables the ACC board to evaluate care workers and to intervene whenever the desired quality level is not achieved. Findings The author describes a new program. The findings of this paper will be confirmed when the ACC is implemented. Practical implications Using the ACC framework, the challenge in providing a high-quality care service using FCWs across Asia would be partly resolved. FCWs' quality of life might also gradually improve especially regarding to their human rights. Originality/value The ACC provides a new framework. Its value is recognized if one considers that many Asian populations are rapidly aging and many governments compromise quality by employing overseas workers to solve care worker shortages.

  3. 24 CFR 985.109 - Default under the Annual Contributions Contract (ACC).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Contributions Contract (ACC). 985.109 Section 985.109 Housing and Urban Development REGULATIONS RELATING TO... § 985.109 Default under the Annual Contributions Contract (ACC). HUD may determine that an PHA's failure... required by HUD constitutes a default under the ACC. ...

  4. 24 CFR 985.109 - Default under the Annual Contributions Contract (ACC).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Contributions Contract (ACC). 985.109 Section 985.109 Housing and Urban Development Regulations Relating to... § 985.109 Default under the Annual Contributions Contract (ACC). HUD may determine that an PHA's failure... required by HUD constitutes a default under the ACC. ...

  5. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  6. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  7. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.

    PubMed

    Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu

    2013-06-01

    Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.

  8. 24 CFR 969.105 - Extension of ACC upon payment of operating subsidy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Extension of ACC upon payment of... COMPLETION OF DEBT SERVICE § 969.105 Extension of ACC upon payment of operating subsidy. (a) ACC amendment... projects under a particular ACC for a PHA fiscal year beginning after the effective date of this part, the...

  9. 24 CFR 969.105 - Extension of ACC upon payment of operating subsidy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Extension of ACC upon payment of... COMPLETION OF DEBT SERVICE § 969.105 Extension of ACC upon payment of operating subsidy. (a) ACC amendment... projects under a particular ACC for a PHA fiscal year beginning after the effective date of this part, the...

  10. Development of 2-(Substituted Benzylamino)-4-Methyl-1, 3-Thiazole-5-Carboxylic Acid Derivatives as Xanthine Oxidase Inhibitors and Free Radical Scavengers.

    PubMed

    Ali, Md Rahmat; Kumar, Suresh; Afzal, Obaid; Shalmali, Nishtha; Sharma, Manju; Bawa, Sandhya

    2016-04-01

    A series of 2-(substituted benzylamino)-4-methylthiazole-5-carboxylic acid was designed and synthesized as structural analogue of febuxostat. A methylene amine spacer was incorporated between the phenyl ring and thiazole ring in contrast to febuxostat in which the phenyl ring was directly linked with the thiazole moiety. The purpose of incorporating methylene amine was to provide a heteroatom which is expected to favour hydrogen bonding within the active site residues of the enzyme xanthine oxidase. The structure of all the compounds was established by the combined use of FT-IR, NMR and MS spectral data. All the compounds were screened in vitro for their ability to inhibit the enzyme xanthine oxidase as per the reported procedure along with DPPH free radical scavenging assay. Compounds 5j, 5k and 5l demonstrated satisfactory potent xanthine oxidase inhibitory activities with IC50 values, 3.6, 8.1 and 9.9 μm, respectively, whereas compounds 5k, 5n and 5p demonstrated moderate antioxidant activities having IC50 15.3, 17.6 and 19.6 μm, respectively, along with xanthine oxidase inhibitory activity. Compound 5k showed moderate xanthine oxidase inhibitory activity as compared with febuxostat along with antioxidant activity. All the compounds were also studied for their binding affinity in active site of enzyme (PDB ID-1N5X). © 2015 John Wiley & Sons A/S.

  11. 24 CFR 882.403 - ACC, housing assistance payments contract, and lease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false ACC, housing assistance payments... Procedures for Moderate Rehabilitation-Basic Policies § 882.403 ACC, housing assistance payments contract, and lease. (a) Maximum Total ACC Commitments. The maximum total annual contribution that may be...

  12. [Oxygen and the superoxide anion. Modulation of NADPH oxidase?].

    PubMed

    Delbosc, S; Cristol, J P; Descomps, B; Chénard, J; Sirois, P

    2001-01-01

    Oxidative stress which results from an imbalance between oxidant production and antioxidant defense mechanisms can promote modifications of lipids, proteins and nucleic acids. This review focuses on the different pathways leading to Reactive Oxygen Species (ROS) production in particular on NADPH oxidase activation. This enzyme is localized in numerous cells including phagocytes and vascular cells and composed of membrane and cytosolic sub-units. The activation of the NADPH oxidase is largely involved in inflammation associated diseases such as asthma, Systemic Inflammatory Response Syndrome and aging associated diseases such as atherosclerosis and neurodeneratives diseases. The modulation of NADPH oxidase could be a way to limit or prevent the development of these diseases.

  13. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus.

    PubMed

    Wilmowicz, Emilia; Frankowski, Kamil; Kućko, Agata; Świdziński, Michał; de Dios Alché, Juan; Nowakowska, Anna; Kopcewicz, Jan

    2016-11-01

    Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Mutation of the NADH Oxidase Gene (nox) Reveals an Overlap of the Oxygen- and Acid-Mediated Stress Responses in Streptococcus mutans

    PubMed Central

    Derr, Adam M.; Faustoferri, Roberta C.; Betzenhauser, Matthew J.; Gonzalez, Kaisha; Marquis, Robert E.

    2012-01-01

    NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929–936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites. PMID:22179247

  15. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  16. Functional analysis of fructosyl-amino acid oxidases of Aspergillus oryzae.

    PubMed

    Akazawa, Shin-Ichi; Karino, Tetsuya; Yoshida, Nobuyuki; Katsuragi, Tohoru; Tani, Yoshiki

    2004-10-01

    Three active fractions of fructosyl-amino acid oxidase (FAOD-Ao1, -Ao2a, and -Ao2b) were isolated from Aspergillus oryzae strain RIB40. N-terminal and internal amino acid sequences of FAOD-Ao2a corresponded to those of FAOD-Ao2b, suggesting that these two isozymes were derived from the same protein. FAOD-Ao1 and -Ao2 were different in substrate specificity and subunit assembly; FAOD-Ao2 was active toward N(epsilon)-fructosyl N(alpha)-Z-lysine and fructosyl valine (Fru-Val), whereas FAOD-Ao1 was not active toward Fru-Val. The genes encoding the FAOD isozymes (i.e., FAOAo1 and FAOAo2) were cloned by PCR with an FAOD-specific primer set. The deduced amino acid sequences revealed that FAOD-Ao1 was 50% identical to FAOD-Ao2, and each isozyme had a peroxisome-targeting signal-1, indicating their localization in peroxisomes. The genes was expressed in Escherichia coli and rFaoAo2 showed the same characteristics as FAOD-Ao2, whereas rFaoAo1 was not active. FAOAo2 disruptant was obtained by using ptrA as a selective marker. Wild-type strain grew on the medium containing Fru-Val as the sole carbon and nitrogen sources, but strain Delta faoAo2 did not grow. Addition of glucose or (NH(4))(2)SO(4) to the Fru-Val medium did not affect the assimilation of Fru-Val by wild-type, indicating glucose and ammonium repressions did not occur in the expression of the FAOAo2 gene. Furthermore, conidia of the wild-type strain did not germinate on the medium containing Fru-Val and NaNO(2) as the sole carbon and nitrogen sources, respectively, suggesting that Fru-Val may also repress gene expression of nitrite reductase. These results indicated that FAOD is needed for utilization of fructosyl-amino acids as nitrogen sources in A. oryzae.

  17. Portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele

    2018-03-01

    Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.

  18. Genetics Home Reference: isolated sulfite oxidase deficiency

    MedlinePlus

    ... Metabolic Disorders (CLIMB) March of Dimes: Amino Acid Metabolism Disorders The Compassionate Friends GeneReviews (1 link) Isolated Sulfite Oxidase Deficiency ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) ...

  19. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    PubMed

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Three-dimensional organization of three-domain copper oxidases: A review

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Zhukova, Yu. N.; Lyashenko, A. V.; Zaĭtsev, V. N.; Mikhaĭlov, A. M.

    2008-01-01

    “Blue” copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

  1. ACC Study Guide Series.

    ERIC Educational Resources Information Center

    Austin Community Coll., TX. Rio Grande Campus.

    Ten one-page instructional guides designed to assist Austin Community College (ACC) students in using the library and in writing research papers are presented in this series. The titles of the guides are: (1) "The Media Collection (We have more than books in the LRC)"; (2) "Encyclopedias"; (3) "Finding Books"; (4)…

  2. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  3. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5.

    PubMed

    Liu, Taibo; Wook Kim, Dong; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2014-01-01

    POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins localize to the cytosol. A loss-of-function Arabidopsis mutant, Atpao5-2, was hypersensitive to low doses of exogenous thermospermine but this phenotype could be rescued by introduction of the wild-type AtPAO5 gene. Introduction of OsPAO1, under the control of a constitutive promoter, into Atpao5-2 mutants also restored normal thermospermine sensitivity, allowing growth in the presence of low levels of thermospermine, along with a concomitant decrease in thermospermine content in plants. By contrast, introduction of OsPAO3, which encodes a peroxisome-localized polyamine oxidase, into Atpao5-2 plants could not rescue any of the mutant phenotypes in the presence of thermospermine. These results suggest that OsPAO1 is the functional ortholog of AtPAO5.

  4. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression.

    PubMed

    Pietropaoli, Stefano; Leonetti, Alessia; Cervetto, Chiara; Venturini, Arianna; Mastrantonio, Roberta; Baroli, Giulia; Persichini, Tiziana; Colasanti, Marco; Maura, Guido; Marcoli, Manuela; Mariottini, Paolo; Cervelli, Manuela

    2018-02-03

    Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system x c - transporter, a Nrf-2 target, was observed. Sulfasalazine, a system x c - transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.

  5. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Glick, Bernard R.

    2018-01-01

    Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection. PMID:29520283

  6. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    PubMed

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARα.

    PubMed

    Kanemitsu, Takumi; Tsurudome, Yuya; Kusunose, Naoki; Oda, Masayuki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2017-12-29

    Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development Regulations Relating... before ACC expiration. This part is not intended to preclude or restrict the demolition or disposition of... before the ACC Expiration Date. ...

  9. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jinhai; Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Research Institute of Stomatology, Nanjing 210029; Gao Jun

    2007-04-20

    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na{sup +} current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells.more » Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells.« less

  10. Genomic sequencing of uric acid metabolizing and clearing genes in relationship to xanthine oxidase inhibitor dose.

    PubMed

    Carroll, Matthew B; Smith, Derek M; Shaak, Thomas L

    2017-03-01

    It remains unclear why the dose of xanthine oxidase inhibitors (XOI) allopurinol or febuxostat varies among patients though they reach similar serum uric acid (SUA) goal. We pursued genomic sequencing of XOI metabolism and clearance genes to identify single-nucleotide polymorphisms (SNPs) relate to differences in XOI dose. Subjects with a diagnosis of Gout based on the 1977 American College of Rheumatology Classification Criteria for the disorder, who were on stable doses of a XOI, and who were at their goal SUA level, were enrolled. The primary outcome was relationship between SNPs in any of these genes to XOI dose. The secondary outcome was relationship between SNPs and change in pre- and post-treatment SUA. We enrolled 100 subjects. The average patient age was 68.6 ± 10.6 years old. Over 80% were men and 77% were Caucasian. One SNP was associated with a higher XOI dose: rs75995567 (p = 0.031). Two SNPs were associated with 300 mg daily of allopurinol: rs11678615 (p = 0.022) and rs3731722 on Aldehyde Oxidase (AO) (His1297Arg) (p = 0.001). Two SNPs were associated with a lower dose of allopurinol: rs1884725 (p = 0.033) and rs34650714 (p = 0.006). For the secondary outcome, rs13415401 was the only SNP related to a smaller mean SUA change. Ten SNPs were identified with a larger change in SUA. Though multiple SNPs were identified in the primary and secondary outcomes of this study, rs3731722 is known to alter catalytic function for some aldehyde oxidase substrates.

  11. Tone-Evoked Acoustic Change Complex (ACC) Recorded in a Sedated Animal Model.

    PubMed

    Presacco, Alessandro; Middlebrooks, John C

    2018-05-10

    The acoustic change complex (ACC) is a scalp-recorded cortical evoked potential complex generated in response to changes (e.g., frequency, amplitude) in an auditory stimulus. The ACC has been well studied in humans, but to our knowledge, no animal model has been evaluated. In particular, it was not known whether the ACC could be recorded under the conditions of sedation that likely would be necessary for recordings from animals. For that reason, we tested the feasibility of recording ACC from sedated cats in response to changes of frequency and amplitude of pure-tone stimuli. Cats were sedated with ketamine and acepromazine, and subdermal needle electrodes were used to record electroencephalographic (EEG) activity. Tones were presented from a small loudspeaker located near the right ear. Continuous tones alternated at 500-ms intervals between two frequencies or two levels. Neurometric functions were created by recording neural response amplitudes while systematically varying the magnitude of steps in frequency centered in octave frequency around 2, 4, 8, and 16 kHz, all at 75 dB SPL, or in decibel level around 75 dB SPL tested at 4 and 8 kHz. The ACC could be recorded readily under this ketamine/azepromazine sedation. In contrast, ACC could not be recorded reliably under any level of isoflurane anesthesia that was tested. The minimum frequency (expressed as Weber fractions (df/f)) or level steps (expressed in dB) needed to elicit ACC fell in the range of previous thresholds reported in animal psychophysical tests of discrimination. The success in recording ACC in sedated animals suggests that the ACC will be a useful tool for evaluation of other aspects of auditory acuity in normal hearing and, presumably, in electrical cochlear stimulation, especially for novel stimulation modes that are not yet feasible in humans.

  12. 24 CFR 969.106 - ACC extension in absence of current operating subsidy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false ACC extension in absence of current... COMPLETION OF DEBT SERVICE § 969.106 ACC extension in absence of current operating subsidy. Where Operating Subsidy under an ACC is not approved for payment during a time period which results in extension of the...

  13. 24 CFR 969.106 - ACC extension in absence of current operating subsidy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false ACC extension in absence of current... COMPLETION OF DEBT SERVICE § 969.106 ACC extension in absence of current operating subsidy. Where Operating Subsidy under an ACC is not approved for payment during a time period which results in extension of the...

  14. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing andmore » implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.« less

  15. Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm.

    PubMed

    Lange, T

    1994-01-01

    Gibberellin (GA) 20-oxidase was purified to apparent homogeneity from Cucurbita maxima endosperm by fractionated ammonium-sulphate precipitation, gel-filtration chromatography and anion-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Average purification after the last step was 55-fold with 3.9% of the activity recovered. The purest single fraction was enriched 101-fold with 0.2% overall recovery. Apparent relative molecular mass of the enzyme was 45 kDa, as determined by gel-filtration HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, indicating that GA 20-oxidase is probably a monomeric enzyme. The purified enzyme degraded on two-dimensional gel electrophoresis, giving two protein spots: a major one corresponding to a molecular mass of 30 kDa and a minor one at 45 kDa. The isoelectric point for both was 5.4. The amino-acid sequences of the amino-terminus of the purified enzyme and of two peptides from a tryptic digest were determined. The purified enzyme catalysed the sequential conversion of [14C]GA12 to [14C]GA15, [14C]GA24 and [14C]GA25, showing that carbon atom 20 was oxidised to the corresponding alcohol, aldehyde and carboxylic acid in three consecutive reactions. [14C]Gibberellin A53 was similarly converted to [14C]GA44, [14C]GA19, [14C]GA17 and small amounts of a fourth product, which was preliminarily identified as [14C]GA20, a C19-gibberellin. All GAs except [14C]GA20 were identified by combined gas chromatography-mass spectrometry. The cofactor requirements in the absence of dithiothreitol were essentially as in its presence (Lange et al., Planta 195, 98-107, 1994), except that ascorbate was essential for enzyme activity and the optimal concentration of catalase was lower.

  16. Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo.

    PubMed

    Han, Xiaomin; Li, Guojing; Zhang, Shuqun

    2017-01-01

    Ethylene, a gaseous phytohormone, has profound effects on plant growth, development, and adaptation to the environment. Ethylene-regulated processes begin with the induction of ethylene biosynthesis. There are two key steps in ethylene biosynthesis. The first is the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl-Methionine (SAM), a common precursor in many metabolic pathways, which is catalyzed by ACC synthase (ACS). The second is the oxidative cleavage of ACC to form ethylene under the action of ACC oxidase (ACO). ACC biosynthesis is the committing and generally the rate-limiting step in ethylene biosynthesis. As a result, characterizing the cellular ACS activity and understanding its regulation are important. In this chapter, we detail the methods used to measure, (1) the enzymatic activity of both recombinant and native ACS proteins, and (2) the phosphorylation of ACS protein by mitogen-activated protein kinases (MAPKs) in vivo and in vitro.

  17. Mapping the primary structure of copper/topaquinone-containing methylamine oxidase from Aspergillus niger.

    PubMed

    Lenobel, R; Sebela, M; Frébort, I

    2005-01-01

    The amino acid sequence of methylamine oxidase (MeAO) from the fungus Aspergillus niger was analyzed using mass spectrometry (MS). First, MeAO was characterized by an accurate molar mass of 72.4 kDa of the monomer measured using MALDI-TOF-MS and by a pI value of 5.8 determined by isoelectric focusing. MALDI-TOF-MS revealed a clear peptide mass fingerprint after tryptic digestion, which did not provide any relevant hit when searched against a nonredundant protein database and was different from that of A. niger amine oxidase AO-I. Tandem mass spectrometry with electrospray ionization coupled to liquid chromatography allowed unambiguous reading of six peptide sequences (11-19 amino acids) and seven sequence tags (4-15 amino acids), which were used for MS BLAST homology searching. MeAO was found to be largely homologous to a hypothetical protein AN7641.2 (EMBL/GenBank protein-accession code EAA61827) from Aspergillus nidulans FGSC A4 with a theoretical molar mass of 76.46 kDa and pI 6.14, which belongs to the superfamily of copper amine oxidases. The protein AN7641.2 is only little homologous to the amine oxidase AO-I (32% identity, 49 % similarity).

  18. Structure-function relationships in the evolutionary framework of spermine oxidase.

    PubMed

    Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo

    2013-06-01

    Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.

  19. Three-dimensional organization of three-domain copper oxidases: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhlistova, N. E., E-mail: amm@ns.crys.ras.ru; Zhukova, Yu. N.; Lyashenko, A. V.

    2008-01-15

    'Blue' copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrenamore » maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.« less

  20. Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    USDA-ARS?s Scientific Manuscript database

    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a...

  1. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    PubMed

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp.

    PubMed

    Chen, Wen Ming; Sheu, Fu Sian; Sheu, Shih Yi

    2011-09-10

    A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as L-amino acid oxidase with broad substrate specificity. The enzyme is most active with L-leucine, L-isoleucine, L-methionine and L-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of L-amino acid oxidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum

    PubMed Central

    Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-01-01

    ABSTRACT For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI. Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA. These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum. IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty

  4. 24 CFR 882.805 - HA application process, ACC execution, and pre-rehabilitation activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false HA application process, ACC... § 882.805 HA application process, ACC execution, and pre-rehabilitation activities. (a) Review. When... applications in accordance with the guidelines, rating criteria, and procedures published in the NOFA. (b) ACC...

  5. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  6. 24 CFR 969.107 - HUD approval of demolition or disposition before ACC expiration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... disposition before ACC expiration. 969.107 Section 969.107 Housing and Urban Development REGULATIONS RELATING... HOUSING AFTER COMPLETION OF DEBT SERVICE § 969.107 HUD approval of demolition or disposition before ACC..., HUD may authorize a PHA to demolish or dispose of public housing at any time before the ACC Expiration...

  7. The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes

    PubMed Central

    Li, Jia; Su, Yingjuan; Wang, Ting

    2018-01-01

    The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates. PMID:29731764

  8. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica).

    PubMed

    Munyaka, Ann Wambui; Makule, Edna Edward; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-05-01

    The thermal stability of vitamin C (including l-ascorbic acid [l-AA] and dehydroascorbic acid [DHAA]) in crushed broccoli was evaluated in the temperature range of 30 to 90 degrees C whereas that of ascorbic acid oxidase (AAO) was evaluated in the temperature range of 20 to 95 degrees C. Thermal treatments (for 15 min) of crushed broccoli at 30 to 60 degrees C resulted in conversion of l-AA to DHAA whereas treatments at 70 to 90 degrees C retained vitamin C as l-AA. These observations indicated that enzymes (for example, AAO) could play a major role in the initial phase (that is, oxidation of l-AA to DHAA) of vitamin C degradation in broccoli. Consequently, a study to evaluate the temperature-time conditions that could result in AAO inactivation in broccoli was carried out. In this study, higher AAO activity was observed in broccoli florets than stalks. During thermal treatments for 10 min, AAO in broccoli florets and stalks was stable until around 50 degrees C. A 10-min thermal treatment at 80 degrees C almost completely inactivated AAO in broccoli. AAO inactivation followed 1st order kinetics in the temperature range of 55 to 65 degrees C. Based on this study, a thermal treatment above 70 degrees C is recommended for crushed vegetable products to prevent oxidation of l-AA to DHAA, the onset of vitamin C degradation. The results reported in this study are applicable for both domestic and industrial processing of vegetables into products such as juices, soups, and purees. In this report, we have demonstrated that processing crushed broccoli in a temperature range of 30 to 60 degrees C could result in the conversion of l-ascorbic acid to dehydroascorbic (DHAA), a very important reaction in regard to vitamin C degradation because DHAA could be easily converted to other compounds that do not have the biological activity of vitamin C.

  9. Heterologous expression and characterization of mouse spermine oxidase.

    PubMed

    Cervelli, Manuela; Polticelli, Fabio; Federico, Rodolfo; Mariottini, Paolo

    2003-02-14

    Polyamine oxidases are key enzymes responsible of the polyamine interconversion metabolism in animal cells. Recently, a novel enzyme belonging to this class of enzymes has been characterized for its capability to oxidize preferentially spermine and designated as spermine oxidase. This is a flavin adenine dinucleotide-containing enzyme, and it has been expressed both in vitro and in vivo systems. The primary structure of mouse spermine oxidase (mSMO) was deduced from a cDNA clone (Image Clone 264769) recovered by a data base search utilizing the human counterpart of polyamine oxidases, PAOh1. The open reading frame predicts a 555-amino acid protein with a calculated M(r) of 61,852.30, which shows a 95.1% identity with PAOh1. To understand the biochemical properties of mSMO and its structure/function relationship, the mSMO cDNA has been subcloned and expressed in secreted and secreted-tagged forms into Escherichia coli BL21 DE3 cells. The recombinant enzyme shows an optimal pH value of 8.0 and is able to oxidize rapidly spermine to spermidine and 3-aminopropanal and fails to act upon spermidine and N(1)-acetylpolyamines. The purified recombinant-tagged form enzyme (M(r) approximately 68,000) has K(m) and k(cat) values of 90 microm and 4.5 s(-1), respectively, using spermine as substrate at pH 8.0. Molecular modeling of mSMO protein based on maize polyamine oxidase three-dimensional structure suggests that the general features of maize polyamine oxidase active site are conserved in mSMO.

  10. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids.

    PubMed

    Gawlik-Dziki, Urszula; Dziki, Dariusz; Świeca, Michał; Nowak, Renata

    2017-06-15

    The aim of this study was to estimate the phenolic composition and xanthine oxidase (XO) inhibitory activity of green coffee beans (GCB) and wholemeal wheat flour (WF). Additionally, the type and strength of interaction (expressed as the combination index, CI) and mode of XO inhibition were analyzed. The major phenolic in GCB was 5-caffeoylquinic acid (39.92mg/g dw). The main phenolic acids in WF were trans- and cis-ferulic acids (257 and 165.57mg/100g dw, respectively). Both ferulic and chlorogenic acids individually inhibited XO, and for their combination moderate synergism was found. Buffer extractable compounds from GCB and WF demonstrated slight synergism (CI=0.92), while potentially bioaccessible and bioavailable compounds acted synergistically (CI=0.43 and 0.54, respectively). Buffer-extractable and potentially bioavailable phytochemicals from GCB acted uncompetitively, whereas potentially bioaccessible compounds acted as noncompetitive XO inhibitors. The addition of 3-5% of GCB to wheat bread significantly increased XO-inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recalibration of the ACC/AHA Risk Score in Two Population-Based German Cohorts

    PubMed Central

    de las Heras Gala, Tonia; Geisel, Marie Henrike; Peters, Annette; Thorand, Barbara; Baumert, Jens; Lehmann, Nils; Jöckel, Karl-Heinz; Moebus, Susanne; Erbel, Raimund; Meisinger, Christine

    2016-01-01

    Background The 2013 ACC/AHA guidelines introduced an algorithm for risk assessment of atherosclerotic cardiovascular disease (ASCVD) within 10 years. In Germany, risk assessment with the ESC SCORE is limited to cardiovascular mortality. Applicability of the novel ACC/AHA risk score to the German population has not yet been assessed. We therefore sought to recalibrate and evaluate the ACC/AHA risk score in two German cohorts and to compare it to the ESC SCORE. Methods We studied 5,238 participants from the KORA surveys S3 (1994–1995) and S4 (1999–2001) and 4,208 subjects from the Heinz Nixdorf Recall (HNR) Study (2000–2003). There were 383 (7.3%) and 271 (6.4%) first non-fatal or fatal ASCVD events within 10 years in KORA and in HNR, respectively. Risk scores were evaluated in terms of calibration and discrimination performance. Results The original ACC/AHA risk score overestimated 10-year ASCVD rates by 37% in KORA and 66% in HNR. After recalibration, miscalibration diminished to 8% underestimation in KORA and 12% overestimation in HNR. Discrimination performance of the ACC/AHA risk score was not affected by the recalibration (KORA: C = 0.78, HNR: C = 0.74). The ESC SCORE overestimated by 5% in KORA and by 85% in HNR. The corresponding C-statistic was 0.82 in KORA and 0.76 in HNR. Conclusions The recalibrated ACC/AHA risk score showed strongly improved calibration compared to the original ACC/AHA risk score. Predicting only cardiovascular mortality, discrimination performance of the commonly used ESC SCORE remained somewhat superior to the ACC/AHA risk score. Nevertheless, the recalibrated ACC/AHA risk score may provide a meaningful tool for estimating 10-year risk of fatal and non-fatal cardiovascular disease in Germany. PMID:27732641

  12. Recalibration of the ACC/AHA Risk Score in Two Population-Based German Cohorts.

    PubMed

    de Las Heras Gala, Tonia; Geisel, Marie Henrike; Peters, Annette; Thorand, Barbara; Baumert, Jens; Lehmann, Nils; Jöckel, Karl-Heinz; Moebus, Susanne; Erbel, Raimund; Meisinger, Christine; Mahabadi, Amir Abbas; Koenig, Wolfgang

    2016-01-01

    The 2013 ACC/AHA guidelines introduced an algorithm for risk assessment of atherosclerotic cardiovascular disease (ASCVD) within 10 years. In Germany, risk assessment with the ESC SCORE is limited to cardiovascular mortality. Applicability of the novel ACC/AHA risk score to the German population has not yet been assessed. We therefore sought to recalibrate and evaluate the ACC/AHA risk score in two German cohorts and to compare it to the ESC SCORE. We studied 5,238 participants from the KORA surveys S3 (1994-1995) and S4 (1999-2001) and 4,208 subjects from the Heinz Nixdorf Recall (HNR) Study (2000-2003). There were 383 (7.3%) and 271 (6.4%) first non-fatal or fatal ASCVD events within 10 years in KORA and in HNR, respectively. Risk scores were evaluated in terms of calibration and discrimination performance. The original ACC/AHA risk score overestimated 10-year ASCVD rates by 37% in KORA and 66% in HNR. After recalibration, miscalibration diminished to 8% underestimation in KORA and 12% overestimation in HNR. Discrimination performance of the ACC/AHA risk score was not affected by the recalibration (KORA: C = 0.78, HNR: C = 0.74). The ESC SCORE overestimated by 5% in KORA and by 85% in HNR. The corresponding C-statistic was 0.82 in KORA and 0.76 in HNR. The recalibrated ACC/AHA risk score showed strongly improved calibration compared to the original ACC/AHA risk score. Predicting only cardiovascular mortality, discrimination performance of the commonly used ESC SCORE remained somewhat superior to the ACC/AHA risk score. Nevertheless, the recalibrated ACC/AHA risk score may provide a meaningful tool for estimating 10-year risk of fatal and non-fatal cardiovascular disease in Germany.

  13. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    PubMed

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A thermostable L-aspartate oxidase: a new tool for biotechnological applications.

    PubMed

    Bifulco, Davide; Pollegioni, Loredano; Tessaro, Davide; Servi, Stefano; Molla, Gianluca

    2013-08-01

    L-Amino acid oxidases (LAAOs) are homodimeric flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia, and hydrogen peroxide. Unlike the D-selective counterpart, the biotechnological application of LAAOs has not been thoroughly advanced because of the difficulties in their expression as recombinant protein in prokaryotic hosts. In this work, L-aspartate oxidase from the thermophilic archea Sulfolobus tokodaii (StLASPO, specific for L-aspartate and L-asparagine only) was efficiently produced as recombinant protein in E. coli in the active form as holoenzyme. This recombinant flavoenzyme shows the classical properties of FAD-containing oxidases. Indeed, StLASPO shows distinctive features that makes it attractive for biotechnological applications: high thermal stability (it is fully stable up to 80 °C) and high temperature optimum, stable activity in a broad range of pH (7.0-10.0), weak inhibition by the product oxaloacetate and by D-aspartate, and tight binding of the FAD cofactor. This latter property significantly distinguishes StLASPO from the E. coli counterpart. StLASPO represents an appropriate novel biocatalyst for the production of D-aspartate and a well-suited protein scaffold to evolve a LAAO activity by protein engineering.

  15. Synthesis and evaluation of quinazoline amino acid derivatives as mono amine oxidase (MAO) inhibitors.

    PubMed

    Khattab, Sherine Nabil; Haiba, Nesreen Saied; Asal, Ahmed Mosaad; Bekhit, Adnan A; Amer, Adel; Abdel-Rahman, Hamdy M; El-Faham, Ayman

    2015-07-01

    A series of quinazolinone amino acid ester and quinazolinone amino acid hydrazides were prepared under microwave irradiation as well as conventional condition. The microwave irradiation afforded the product in less reaction time, higher yield and purity. The structures of the synthesized compounds were confirmed by IR, NMR, and elemental analysis. The new synthesized compounds were studied for their monoamine oxidase inhibitory activity. They showed more selective inhibitory activity toward MAO-A than MAO-B. Compounds 7, 10, and 15 showed MAO-A inhibition activity (IC50=3.6×10(-9), 2.8×10(-9), 2.1×10(-9) M, respectively) comparable to that of the standard clorgyline (IC50=2.9×10(-9)M). 2-(2-(Benzo[d][1,3]dioxol-5-yl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)acetohydrazide 15 showed selective MAO-A inhibition activity (SI=39524) superior to that of the standard clorgyline (SI=33793). The acute toxicity of the synthesized compounds was determined. In addition, computer-assisted simulated docking experiments were performed to rationalize the biological activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation

  17. Increased xanthine oxidase during labour--implications for oxidative stress.

    PubMed

    Many, A; Roberts, J M

    1997-11-01

    Xanthine dehydrogenase/oxidase (XDH/XO) produces uric acid. When in the oxidase form, this production is coupled with the generation of free radicals. Hypoxia-reperfusion enhances conversion of XDH to XO. Since the placenta is exposed to short periods of hypoxia reperfusion during labour, 17 placentae of pregnancy terminated by elective caesarean section and five placentae of pregnancies terminated by caesarean section during labour were examined for XDH/XO activity. It was found that XO activity was higher in the placentae of labouring women (P = 0.003), which suggests that labour enhances conversion of XDH to XO, facilitating free radical production.

  18. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    NASA Astrophysics Data System (ADS)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  19. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    PubMed

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  20. Urate oxidase is imported into peroxisomes recognizing the C-terminal SKL motif of proteins.

    PubMed

    Miura, S; Oda, T; Funai, T; Ito, M; Okada, Y; Ichiyama, A

    1994-07-01

    Rat liver urate oxidase synthesized from cDNA through coupled transcription and translation was incubated at 26 degrees C for 60 min with purified peroxisomes from rat liver. Urate oxidase was efficiently imported into the peroxisomes, as determined by resistance to externally added proteinase K. The amount of imported urate oxidase increased with time and the import was temperature dependent. A synthetic peptide composed of the C-terminal 10 amino acid residues of acyl-CoA oxidase (the C-terminal tripeptide is Ser-Lys-Leu) inhibited the import of urate oxidase, whereas other peptides, in which the C-terminal Ser-Lys-Leu (SKL) sequence was deleted or mutated, were not effective. Two mutant urate oxidase proteins in which the C-terminal Ser-Arg-Leu (SRL) sequence was deleted or mutated to Ser-Glu-Leu (SEL) were not imported into peroxisomes. With substitution of a lysine residue for arginine in the SRL tripeptide at the C-terminus the import activity was retained. These results show that urate oxidase is important into peroxisomes via a common pathway with acyl-CoA oxidase, and that the C-terminal SRL sequence functions as a peroxisomal-targeting signal.

  1. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    PubMed Central

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2012-01-01

    Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056

  2. R1, a novel repressor of the human monoamine oxidase A.

    PubMed

    Chen, Kevin; Ou, Xiao-Ming; Chen, Gao; Choi, Si Ho; Shih, Jean C

    2005-03-25

    Monoamine oxidase catalyzes the oxidative deamination of a number of neurotransmitters. A deficiency in monoamine oxidase A results in aggressive behavior in both humans and mice. Studies on the regulation of monoamine oxidase A gene expression have shown that the Sp1 family is important for monoamine oxidase A expression. To search for novel transcription factors, the sequences of three Sp1 sites in the monoamine oxidase A core promoter were used in the yeast one-hybrid system to screen a human cDNA library. A novel repressor, R1 (RAM2), has been cloned. The R1 cDNA encodes a protein with 454 amino acids and an open reading frame at the 5'-end. The transfection of R1 in a human neuroblastoma cell line, SK-N-BE (2)-C, inhibited the monoamine oxidase A promoter and enzymatic activity. The degree of inhibition of monoamine oxidase A by R1 correlated with the level of R1 protein expression. R1 was also found to repress monoamine oxidase A promoter activity within a natural chromatin environment. A gel-shift assay indicated that the endogenous R1 protein in SK-N-BE (2)-C cells interacted with the R1 binding sequence. R1 also bound directly to the natural monoamine oxidase A promoter in vivo as shown by chromatin immunoprecipitation assay. Immunocytochemical analysis showed that R1 was expressed in both cytosol and nucleus, which suggested a role for R1 in transcriptional regulation. Northern blot analysis revealed the presence of endogenous R1 mRNA in human brain and peripheral tissues. Taken together, this study shows that R1 is a novel repressor that inhibits monoamine oxidase A gene expression.

  3. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    PubMed

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  4. Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, Koh; E-mail: idakoh@sci.kitasato-u.ac.jp; Moriguchi, Tomotaka

    2005-07-29

    Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The {alpha} subunit is composed of two domains, contains NAD{sup +}, and binds folinic acid. The {beta} subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10 A apart. The {gamma} subunit is in contact with two domains of {alpha} subunit and has possibly a folate-binding structure. The {delta} subunit contains a single atom of zinc and has a Cys{sub 3}His zinc finger structure. Based on the structures determined and on themore » previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.« less

  5. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity.

    PubMed

    Campillo-Brocal, Jonatan Cristian; Lucas-Elio, Patricia; Sanchez-Amat, Antonio

    2013-08-01

    A novel enzyme with lysine-epsilon oxidase activity was previously described in the marine bacterium Marinomonas mediterranea. This enzyme differs from other l-amino acid oxidases in not being a flavoprotein but containing a quinone cofactor. It is encoded by an operon with two genes lodA and lodB. The first one codes for the oxidase, while the second one encodes a protein required for the expression of the former. Genome sequencing of M. mediterranea has revealed that it contains two additional operons encoding proteins with sequence similarity to LodA. In this study, it is shown that the product of one of such genes, Marme_1655, encodes a protein with glycine oxidase activity. This activity shows important differences in terms of substrate range and sensitivity to inhibitors to other glycine oxidases previously described which are flavoproteins synthesized by Bacillus. The results presented in this study indicate that the products of the genes with different degrees of similarity to lodA detected in bacterial genomes could constitute a reservoir of different oxidases. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  6. Antioxidative properties of the essential oil from Pinus mugo.

    PubMed

    Grassmann, Johanna; Hippeli, Susanne; Vollmann, Renate; Elstner, Erich F

    2003-12-17

    The essential oil from Pinus mugo (PMEO) was tested on its antioxidative capacity. For this purpose, several biochemical test systems were chosen (e.g., the Fenton System, the xanthine oxidase assay, or the copper-induced oxidation of low-density lipoprotein (LDL)). The results show that there is moderate or weak antioxidative activity when tested in aqueous environments, like in the Fenton system, xanthine oxidase induced superoxide radical formation, or in the HOCl driven fragmentation of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, when tested in more lipophilic environments (e.g., the ACC-cleavage by activated neutrophils in whole blood) the PMEO exhibits good antioxidative activity. PMEO does also show good antioxidative capacity in another lipophilic test system (i.e., the copper induced oxidation of LDL). Some components of PMEO (i.e., Delta(3)-carene, camphene, alpha-pinene, (+)-limonene and terpinolene) were also tested. As the PMEO, they showed weak or no antioxidant activity in aqueous environments, but some of them were effective antioxidants regarding ACC-cleavage by activated neutrophils in whole blood or copper-induced LDL-oxidation. Terpinolene, a minor component of PMEO, exhibited remarkable protection against LDL-oxidation.

  7. Expression of Mitochondrial Cytochrome C Oxidase Chaperone Gene (COX20) Improves Tolerance to Weak Acid and Oxidative Stress during Yeast Fermentation

    PubMed Central

    Kumar, Vinod; Hart, Andrew J.; Keerthiraju, Ethiraju R.; Waldron, Paul R.; Tucker, Gregory A.; Greetham, Darren

    2015-01-01

    Introduction Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acetic acid. Results A Δcox20 strain was sensitive to the presence of acetic acid compared with the background strain. Overexpressing COX20 using a tetracycline-regulatable expression vector system in a Δcox20 strain, resulted in tolerance to the presence of acetic acid and tolerance could be ablated with addition of tetracycline. Assays also revealed that overexpression improved tolerance to the presence of hydrogen peroxide-induced oxidative stress. Conclusion This is a study which has utilised tetracycline-regulated protein expression in a fermentation system, which was characterised by improved (or enhanced) tolerance to acetic acid and oxidative stress. PMID:26427054

  8. In-Gel Determination of L-Amino Acid Oxidase Activity Based on the Visualization of Prussian Blue-Forming Reaction

    PubMed Central

    Zhou, Ning; Zhao, Chuntian

    2013-01-01

    L-amino acid oxidase (LAAO) is attracting increasing attention due to its important functions. Diverse detection methods with their own properties have been developed for characterization of LAAO. In the present study, a simple, rapid, sensitive, cost-effective and reproducible method for quantitative in-gel determination of LAAO activity based on the visualization of Prussian blue-forming reaction is described. Coupled with SDS-PAGE, this Prussian blue agar assay can be directly used to determine the numbers and approximate molecular weights of LAAO in one step, allowing straightforward application for purification and sequence identification of LAAO from diverse samples. PMID:23383337

  9. Immobilization of xanthine oxidase on a polyaniline silicone support.

    PubMed

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  10. Subchronic glucocorticoids, glutathione depletion and a postpartum model elevate monoamine oxidase a activity in the prefrontal cortex of rats.

    PubMed

    Raitsin, Sofia; Tong, Junchao; Kish, Stephen; Xu, Xin; Magomedova, Lilia; Cummins, Carolyn; Andreazza, Ana C; Scola, Gustavo; Baker, Glen; Meyer, Jeffrey H

    2017-07-01

    Recent human brain imaging studies implicate dysregulation of monoamine oxidase-A (MAO-A), in particular in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC), in the development of major depressive disorder (MDD). This study investigates the influence of four alterations underlying important pathologies of MDD, namely, chronic elevation of glucocorticoid levels, glutathione depletion, changes in female gonadal sex hormones and serotonin concentration fluctuation, on MAO-A and MAO-B activities in rats. Young adult rats exposed chronically to the synthetic glucocorticoid dexamethasone at 0, 0.05, 0.5, and 2.0mg/kg/day (osmotic minipumps) for eight days showed significant dose-dependent increases in activities of MAO-A in PFC (+17%, p<0.001) and ACC (+9%, p<0.01) and MAO-B in PFC (+14%, p<0.001) and increased serotonin turnover in the PFC (+31%, p<0.01), not accounted for by dexamethasone-induced changes in serotonin levels, since neither serotonin depletion nor supplementation affected MAO-A activity. Sub-acute depletion of the major antioxidant glutathione by diethyl maleate (5mmol/kg, i.p.) for three days, which resulted in a 36% loss of glutathione in PFC (p=0.0005), modestly, but significantly, elevated activities of MAO-A in PFC and MAO-B in PFC, ACC and hippocampus (+6-9%, p<0.05). Changes in estrogen and progesterone representing pseudopregnancy were associated with significantly elevated MAO-A activity in the ACC day 4-7 postpartum (10-18%, p<0.05 to p<0.0001) but not the PFC or hippocampus. Hence, our study provides data in support of strategies targeting glucocorticoid and glutathione systems, as well as changes in female sex hormones for normalization of MAO-A activities and thus treatment of mood disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat: the PRIZE study.

    PubMed

    Oyama, Jun-Ichi; Tanaka, Atsushi; Sato, Yasunori; Tomiyama, Hirofumi; Sata, Masataka; Ishizu, Tomoko; Taguchi, Isao; Kuroyanagi, Takanori; Teragawa, Hiroki; Ishizaka, Nobukazu; Kanzaki, Yumiko; Ohishi, Mitsuru; Eguchi, Kazuo; Higashi, Yukihito; Yamada, Hirotsugu; Maemura, Koji; Ako, Junya; Bando, Yasuko K; Ueda, Shinichiro; Inoue, Teruo; Murohara, Toyoaki; Node, Koichi

    2016-06-18

    Xanthine oxidase inhibitors are anti-hyperuricemic drugs that decrease serum uric acid levels by inhibiting its synthesis. Xanthine oxidase is also recognized as a pivotal enzyme in the production of oxidative stress. Excess oxidative stress induces endothelial dysfunction and inflammatory reactions in vascular systems, leading to atherosclerosis. Many experimental studies have suggested that xanthine oxidase inhibitors have anti-atherosclerotic effects by decreasing in vitro and in vivo oxidative stress. However, there is only limited evidence on the clinical implications of xanthine oxidase inhibitors on atherosclerotic cardiovascular disease in patients with hyperuricemia. We designed the PRIZE study to evaluate the effects of febuxostat on a surrogate marker of cardiovascular disease risk, ultrasonography-based intima-media thickness of the carotid artery in patients with hyperuricemia. The study is a multicenter, prospective, randomized, open-label and blinded-endpoint evaluation (PROBE) design. A total of 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL) and carotid intima-media thickness ≥1.1 mm will be randomized centrally to receive either febuxostat (10-60 mg/day) or non-pharmacological treatment. Randomization is carried out using the dynamic allocation method stratified according to age (<65, ≥65 year), gender, presence or absence of diabetes mellitus, serum uric acid (<8.0, ≥8.0 mg/dL), and carotid intima-media thickness (<1.3, ≥1.3 mm). In addition to administering the study drug, we will also direct lifestyle modification in all participants, including advice on control of body weight, sleep, exercise and healthy diet. Carotid intima-media thickness will be evaluated using ultrasonography performed by skilled technicians at a central laboratory. Follow-up will be continued for 24 months. The primary endpoint is percentage change in mean intima-media thickness of the common carotid artery 24 months after baseline, measured by

  12. The ACC strategy in biomineralization: the case of earthworm's amorphous spherulites

    NASA Astrophysics Data System (ADS)

    Briones, Maria J. I.; Alvarez-Otero, Rosa; Méndez, Jesús; Gago Duport, Luis

    2010-05-01

    The occurrence of amorphous calcium carbonate (ACC), an hydrated and highly soluble form of solid CaCO3, seems to be a common feature in all carbonate forming organisms such as mollusks, corals, echinoderms and crustaceans. The ubiquity of ACC in these Ca-carbonate biomineralizing systems, as a precursor of further crystalline phases, has recently open the interesting question about if the formation of an amorphous phase is a necessary step in the calcification process of all organisms and consequently, whether it would be possible to define the "amorphous precursor estategy" as a general mechanism in biomineralization. Neverthelees, although ACC appears to be widespread in these organisms very little is known about its particular role in the biomineralization scheme of the different phyla. The formation of CaCO3 spherulites in the calciferous glands of earthworms is a particular case of calcareous biomineralization involving the presence of ACC as a transient precursor phase [2]. Interestingly, the formation of crystalline carbonates via ACC in these organisms is not connected with skeleton building so it must play another functional role. In addition, the transient transformation stages can be followed by in situ spectrometric techniques and therefore, earthworms provide and adequate model to analyse the mutual interactions between ACC-solvent-and crystalline phases. In this study, we have analysed the morphological and structural transformations from the initial ACC spherulites until the formation of the crystalline phases: vaterite (and/or aragonite) and finally calcite, is accomplished. The characterization of ACC was done by performing in situ FT-IR, together with and HREM and Debye scherrer -XRD. The structural results were interpreted in the light of the histological study of the gland. The geometry of the secretory epithelium of the calciferous gland, as evidenced by TEM [2], shows the presence of irregulary shaped cells with their apical surface

  13. A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family

    PubMed Central

    Mollerup, Filip; Parikka, Kirsti; Koutaniemi, Sanna; Boer, Harry; Juvonen, Minna; Master, Emma; Tenkanen, Maija; Kruus, Kristiina

    2017-01-01

    ABSTRACT We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.−) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family. IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola. As discussed in the present study, the bioinformatics approach using the modular structure of

  14. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system.

    PubMed

    Zhu, Zhu; Chen, Yanli; Shi, Guoqing; Zhang, Xueji

    2017-03-15

    The antioxidant activity of selenium (Se) detoxifies reactive oxygen species (ROS) in plants and animals. In the present study, we elucidated the mechanism underlying Se induced fruit development and ripening. Our study showed that foliar pretreatment with 1mgL -1 sodium selenate effectively delayed fruit ripening and maintained fruit quality. Gene expression studies revealed that the repression of ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase decreased ethylene production and respiration rate. Moreover, Se treatment probably boosted the antioxidant defense system to reduce ROS generation and membrane damage. The enhanced antioxidative effect was attributed to higher glutathione content and increased activity of enzymes such as glutathione peroxidase and glutathione reductase. The upregulation of respiratory burst oxidase homologue genes in tomato fruit may also contribute to the enhanced antioxidative effect. Selenium treatment represents a promising strategy for delaying ripening and extending the shelf life of tomato fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  16. Planarian D-amino acid oxidase is involved in ovarian development during sexual induction.

    PubMed

    Maezawa, Takanobu; Tanaka, Hiroyuki; Nakagawa, Haruka; Ono, Mizuki; Aoki, Manabu; Matsumoto, Midori; Ishida, Tetsuo; Horiike, Kihachiro; Kobayashi, Kazuya

    2014-05-01

    To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees.

    PubMed

    Haruta, M; Murata, M; Kadokura, H; Homma, S

    1999-03-01

    An antibody raised against apple polyphenol oxidase (PPO) cross-reacted with PPOs from Japanese pear (Pyrus pyrifolia), pear (Pyrus communis), peach (Prunus persica), Chinese quince (Pseudocydonia sinensis) and Japanese loquat (Eriobotrya japonica). Core fragments (681 bp) of the corresponding PPO genes were amplified and characterized. The deduced protein sequences showed identities of 85.3 to 97.5%. Chlorogenic acid oxidase activity of these PPOs showed higher activities when assayed at pH 4 than at pH 6. These results indicate that PPOs in Rosaceae plants are structurally and enzymatically similar.

  18. ACC Study Guide Series (Revised Edition).

    ERIC Educational Resources Information Center

    Staples, Katherine; And Others

    Designed for the beginning college student who needs to search for information, prepare written assignments, or take tests, the ACC (Austin Community College) Study Guide Series comprises 17 one-page study guides. Printed on card stock with colored headings, the guides are highlighted with cartoon illustrations and are intended to provide…

  19. 24 CFR 884.105 - Maximum total ACC commitment and project account (private-owner/PHA projects).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maximum total ACC commitment and..., Scope and Basic Policies § 884.105 Maximum total ACC commitment and project account (private-owner/PHA projects). (a) Maximum total ACC commitment. The maximum total annual contribution that may be contracted...

  20. 24 CFR 884.105 - Maximum total ACC commitment and project account (private-owner/PHA projects).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Maximum total ACC commitment and..., Scope and Basic Policies § 884.105 Maximum total ACC commitment and project account (private-owner/PHA projects). (a) Maximum total ACC commitment. The maximum total annual contribution that may be contracted...

  1. Extradural Spinal Metastasis of Adenoid Cystic Carcinoma (ACC): A Case Report

    PubMed Central

    Nair, Rajesh; Upadhyaya, Sunil; Nayal, Bhavna; Shetty, Arjun

    2015-01-01

    Adenoid cystic carcinoma (ACC) is a rare malignant tumour of the major salivary glands. It accounts for 10-15% of all salivary gland tumours and 1% of all head and neck tumours. Surgical resection followed by radiation is the choice of treatment for ACC. However, late loco-regional recurrence and metastasis is often seen emphasizing the importance of long-term follow-up. We report an unusual case of extradural metastasis of ACC in the dorsal spine. The primary submandibular gland tumour was resected 11 y back. A recurrence had been detected two years prior to the occurrence of spinal metastasis. Surgical decompression was done which was followed by palliative radiotherapy. Patient is symptomatically better, ambulant and on regular follow-up. PMID:25738073

  2. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis.

    PubMed Central

    Lange, T; Hedden, P; Graebe, J E

    1994-01-01

    In the biosynthetic pathway to the gibberellins (GAs), carbon-20 is removed by oxidation to give the C19-GAs, which include the biologically active plant hormones. We report the isolation of a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing) EC 1.14.11.-] by screening a cDNA library from developing cotyledons of pumpkin (Cucurbita maxima L.) for expression of this enzyme. When mRNA from either the cotyledons or the endosperm was translated in vitro using rabbit reticulocyte lysates, the products contained GA12 20-oxidase activity. A polyclonal antiserum was raised against the amino acid sequence of a peptide released by tryptic digestion of purified GA 20-oxidase from the endosperm. A cDNA expression library in lambda gt11 was prepared from cotyledon mRNA and screened with the antiserum. The identity of positive clones was confirmed by the demonstration of GA12 20-oxidase activity in single bacteriophage plaques. Recombinant protein from a selected clone catalyzed the three-step conversions of GA12 to GA25 and of GA53 to GA17, as well as the formation of the C19-GAs, GA1, GA9, and GA20, from their respective aldehyde precursors, GA23, GA24, and GA19. The nucleotide sequence of the cDNA insert contains an open reading frame of 1158 nt encoding a protein of 386 amino acid residues. The predicted M(r) (43,321) and pI (5.3) are similar to those determined experimentally for the native GA 20-oxidase. Furthermore, the derived amino acid sequence includes sequences obtained from the N terminus and two tryptic peptides from the native enzyme. It also contains regions that are highly conserved in a group of non-heme Fe-containing dioxygenases. Images PMID:8078921

  3. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor.

    PubMed

    Lane, Hsien-Yuan; Lin, Ching-Hua; Green, Michael F; Hellemann, Gerhard; Huang, Chih-Chia; Chen, Po-Wei; Tun, Rene; Chang, Yue-Cung; Tsai, Guochuan E

    2013-12-01

    In addition to dopaminergic hyperactivity, hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has an important role in the pathophysiology of schizophrenia. Enhancing NMDAR-mediated neurotransmission is considered a novel treatment approach. To date, several trials on adjuvant NMDA-enhancing agents have revealed beneficial, but limited, efficacy for positive and negative symptoms and cognition. Another method to enhance NMDA function is to raise the levels of d-amino acids by blocking their metabolism. Sodium benzoate is a d-amino acid oxidase inhibitor. To examine the clinical and cognitive efficacy and safety of add-on treatment of sodium benzoate for schizophrenia. A randomized, double-blind, placebo-controlled trial in 2 major medical centers in Taiwan composed of 52 patients with chronic schizophrenia who had been stabilized with antipsychotic medications for 3 months or longer. Six weeks of add-on treatment of 1 g/d of sodium benzoate or placebo. The primary outcome measure was the Positive and Negative Syndrome Scale (PANSS) total score. Clinical efficacy and adverse effects were assessed biweekly. Cognitive functions were measured before and after the add-on treatment. Benzoate produced a 21% improvement in PANSS total score and large effect sizes (range, 1.16-1.69) in the PANSS total and subscales, Scales for the Assessment of Negative Symptoms-20 items, Global Assessment of Function, Quality of Life Scale and Clinical Global Impression and improvement in the neurocognition subtests as recommended by the National Institute of Mental Health's Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative, including the domains of processing speed and visual learning. Benzoate was well tolerated without significant adverse effects. Benzoate adjunctive therapy significantly improved a variety of symptom domains and neurocognition in patients with chronic schizophrenia. The preliminary results show promise for d-amino acid oxidase

  4. Effect of detergents, trypsin and unsaturated fatty acids on latent loquat fruit polyphenol oxidase: basis for the enzyme's activity regulation.

    PubMed

    Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque

    2007-08-15

    The effects of detergents, trypsin and fatty acids on structural and functional properties of a pure loquat fruit latent polyphenol oxidase have been studied in relation to its regulation. Anionic detergents activated PPO at pH 6.0 below critical micelle concentration (cmc), but inhibited at pH 4.5 well above cmc. This behavior is due to a detergent-induced pH profile alkaline shift, accompanied by changes of intrinsic fluorescence of the protein. Gel filtration experiments demonstrate the formation of PPO-SDS mixed micelles. Partial PPO proteolysis suggest that latent PPO losses an SDS micelle-interacting region but conserves an SDS monomer-interacting site. Unsaturated fatty acids inhibit PPO at pH 4.5, the strongest being linolenic acid while the weakest was gamma-linolenic acid for both, the native and the trypsin-treated PPO. Down-regulation of PPO activity by anionic amphiphiles is discussed based on both, the pH profile shift induced upon anionic amphiphile binding and the PPO interaction with negatively charged membranes.

  5. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage

    PubMed Central

    Hovasse, Agnès; Bruneel, Odile; Casiot, Corinne; Desoeuvre, Angélique; Farasin, Julien; Hery, Marina; Van Dorsselaer, Alain; Carapito, Christine; Arsène-Ploetze, Florence

    2016-01-01

    The acid mine drainage (AMD) impacted creek of the Carnoulès mine (Southern France) is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron) attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM)-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with FISH and pyrosequencing-based 16S rRNA gene sequence analysis, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ. PMID:26870729

  6. A mitochondrial DNA variant, identified in Leber hereditary optic neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit I.

    PubMed Central

    Brown, M D; Yang, C C; Trounce, I; Torroni, A; Lott, M T; Wallace, D C

    1992-01-01

    A G-to-A transition at nucleotide pair (np) 7444 in the mtDNA was found to correlate with Leber hereditary optic neuropathy (LHON). The mutation eliminates the termination codon of the cytochrome c oxidase subunit I (COI) gene, extending the COI polypeptide by three amino acids. The mutation was discovered as an XbaI restriction-endonuclease-site loss present in 2 (9.1%) of 22 LHON patients who lacked the np 11778 LHON mutation and in 6 (1.1%) of 545 unaffected controls. The mutant polypeptide has an altered mobility on SDS-PAGE, suggesting a structural alteration, and the cytochrome c oxidase enzyme activity of patient lymphocytes is reduced approximately 40% relative to that in controls. These data suggest that the np 7444 mutation results in partial respiratory deficiency and thus contributes to the onset of LHON. Images Figure 1 Figure 3 PMID:1322638

  7. A Biochemical Approach to Study the Role of the Terminal Oxidases in Aerobic Respiration in Shewanella oneidensis MR-1

    PubMed Central

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed. PMID:24466040

  8. Urate Oxidase Purification by Salting-in Crystallization: Towards an Alternative to Chromatography

    PubMed Central

    Giffard, Marion; Ferté, Natalie; Ragot, François; El Hajji, Mohamed; Castro, Bertrand; Bonneté, Françoise

    2011-01-01

    Background Rasburicase (Fasturtec® or Elitek®, Sanofi-Aventis), the recombinant form of urate oxidase from Aspergillus flavus, is a therapeutic enzyme used to prevent or decrease the high levels of uric acid in blood that can occur as a result of chemotherapy. It is produced by Sanofi-Aventis and currently purified via several standard steps of chromatography. This work explores the feasibility of replacing one or more chromatography steps in the downstream process by a crystallization step. It compares the efficacy of two crystallization techniques that have proven successful on pure urate oxidase, testing them on impure urate oxidase solutions. Methodology/Principal Findings Here we investigate the possibility of purifying urate oxidase directly by crystallization from the fermentation broth. Based on attractive interaction potentials which are known to drive urate oxidase crystallization, two crystallization routes are compared: a) by increased polymer concentration, which induces a depletion attraction and b) by decreased salt concentration, which induces attractive interactions via a salting-in effect. We observe that adding polymer, a very efficient way to crystallize pure urate oxidase through the depletion effect, is not an efficient way to grow crystals from impure solution. On the other hand, we show that dialysis, which decreases salt concentration through its strong salting-in effect, makes purification of urate oxidase from the fermentation broth possible. Conclusions The aim of this study is to compare purification efficacy of two crystallization methods. Our findings show that crystallization of urate oxidase from the fermentation broth provides purity comparable to what can be achieved with one chromatography step. This suggests that, in the case of urate oxidase, crystallization could be implemented not only for polishing or concentration during the last steps of purification, but also as an initial capture step, with minimal changes to the

  9. Determination of 1-aminocyclopropane-1-carboxylic acid in apple extracts by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Liu, Xin; Li, Dian-Fan; Wang, Yun; Lu, Ying-Tang

    2004-12-17

    A rapid and sensitive method for the determination of 1-aminocyclopropane-1-carboxylic acid (ACC) in apple tissues has been described. This method is based on the derivatization of ACC with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), and separation and quantification of the resulting FQ-ACC derivative by capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF). Our results indicated that ACC derivatized with FQ could be well separated from other interfering amino acids using 20 mM borate buffer (pH 9.35) containing 40 mM sodium dodecyl sulfate and 10 mM Brij 35. The linearity of ACC was determined in the range from 0.05 to 5 microM with a correlation of 0.9967. The concentration detection limit for ACC was 10 nM (signal-to-noise = 3). The sensitivity and selectivity of this described method allows the analysis of ACC in crude apple extracts without extra purification and enrichment procedure.

  10. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  11. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    PubMed

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  12. Use of bacterial acc deaminase to increase oil (especially poly aromatic hydrocarbons) phytoremediation efficiency for maize (zea mays) seedlings.

    PubMed

    Rezvani Borujeni, Samira; Khavazi, Kazem; Asgharzadeh, Ahmad; Rezvani Borujeni, Iraj

    2018-04-16

    Oil presence in soil, as a stressor, reduces phytoremediation efficiency through an increase in the plant stress ethylene. Bacterial 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, as a plant stress ethylene reducer, was employed to increase oil phytoremediation efficiency. For this purpose, the ability of ACC deaminase-producing Pseudomonas strains to grow in oil-polluted culture media and withstand various concentrations of oil and also their ability to reduce plant stress ethylene and enhance some growth characteristics of maize and finally their effects on increasing phytoremediation efficiency of poly aromatic hydrocarbons (PAHs) in soil were investigated. Based on the results, of tested strains just P9 and P12 were able to perform oil degradation. Increasing oil concentration from 0 to 10% augmented these two strains population, 15.7% and 12.9%, respectively. The maximum increase in maize growth was observed in presence of P12 strain. Results of high-performance liquid chromatography (HPLC) revealed that PAHs phytoremediation efficiency was higher for inoculated seeds than uninoculated. The highest plant growth and PAHs removal percentage (74.9%) from oil-polluted soil was observed in maize inoculated with P12. These results indicate the significance of ACC deaminase producing bacteria in alleviation of plant stress ethylene in oil-polluted soils and increasing phytoremediation efficiency of such soils.

  13. OpenACC performance for simulating 2D radial dambreak using FVM HLLE flux

    NASA Astrophysics Data System (ADS)

    Gunawan, P. H.; Pahlevi, M. R.

    2018-03-01

    The aim of this paper is to investigate the performances of openACC platform for computing 2D radial dambreak. Here, the shallow water equation will be used to describe and simulate 2D radial dambreak with finite volume method (FVM) using HLLE flux. OpenACC is a parallel computing platform based on GPU cores. Indeed, from this research this platform is used to minimize computational time on the numerical scheme performance. The results show the using OpenACC, the computational time is reduced. For the dry and wet radial dambreak simulations using 2048 grids, the computational time of parallel is obtained 575.984 s and 584.830 s respectively for both simulations. These results show the successful of OpenACC when they are compared with the serial time of dry and wet radial dambreak simulations which are collected 28047.500 s and 29269.40 s respectively.

  14. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors.

    PubMed

    Song, Jeong Uk; Choi, Sung Pil; Kim, Tae Hun; Jung, Cheol-Kyu; Lee, Joo-Youn; Jung, Sang-Hun; Kim, Geun Tae

    2015-03-15

    Xanthine oxidase (XO) inhibitors have been widely used for the treatment of gout. Indole rings are frequently used as active scaffold in designing inhibitors for enzymes. Herein, we describe the structure-activity relationship for novel xanthine oxidase inhibitors based on indole scaffold. A series of novel tri-substituted 2-(indol-5-yl)thiazole derivatives were synthesized, and their in vitro inhibitory activities against xanthine oxidase and in vivo efficacy lowering uric acid level in blood were measured. Among them, 2-(3-cyano-2-isopropylindol-5-yl)-4-methylthiazole-5-carboxylic acid exhibits the most potent XO inhibitory activity (IC50 value: 3.5nM) and the excellent plasma uric acid lowering activity. Study of structure activity relationship indicated that hydrophobic moiety (e.g., isopropyl) at 1-position and electron withdrawing group (e.g., CN) at 3-position of indole ring and small hydrophobic group (CH3) at 4-position of the thiazole ring enhanced the XO inhibitory activity. Hydrophobic substitution such as isopropyl at 1-position of the indole moiety without any substitution at 2-position has an essential role for enhancing bioavailability and therefore for high in vivo efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine

    PubMed Central

    Betts, Jill F.; Schweimer, Judith V.; Burnham, Katherine E.; Burnet, Philip W. J.; Sharp, Trevor; Harrison, Paul J.

    2014-01-01

    D-amino acid oxidase (DAO, DAAO) degrades the NMDA receptor co-agonist D-serine, modulating D-serine levels and thence NMDA receptor function. DAO inhibitors are under development as a therapy for schizophrenia, a disorder involving both NMDA receptor and dopaminergic dysfunction. However, a direct role for DAO in dopamine regulation has not been demonstrated. Here, we address this question in two ways. First, using in situ hybridization and immunohistochemistry, we show that DAO mRNA and immunoreactivity are present in the ventral tegmental area (VTA) of the rat, in tyrosine hydroxylase (TH)-positive and -negative neurons, and in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Second, we show that injection into the VTA of sodium benzoate, a DAO inhibitor, increases frontal cortex extracellular dopamine, as measured by in vivo microdialysis and high performance liquid chromatography. Combining sodium benzoate and D-serine did not enhance this effect, and injection of D-serine alone affected dopamine metabolites but not dopamine. These data show that DAO is expressed in the VTA, and suggest that it impacts on the mesocortical dopamine system. The mechanism by which the observed effects occur, and the implications of these findings for schizophrenia therapy, require further study. PMID:24822045

  16. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    PubMed Central

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  17. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  18. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC

    PubMed Central

    Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus; Yamada, Kazuhiro; Lesniak, Nicholas A.; Kräutler, Bernhard; Brunold, Thomas C.; Koutmos, Markos; Banerjee, Ruma

    2017-01-01

    The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2. The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and β-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC. PMID:28442570

  20. Effect of 1-methylcyclopropene on shelf life, visual quality and nutritional quality of netted melon.

    PubMed

    Shi, Y; Wang, B L; Shui, D J; Cao, L L; Wang, C; Yang, T; Wang, X Y; Ye, H X

    2015-04-01

    The effects of 1-methylcyclopropene (1-MCP) on shelf life, fruit visual quality and nutritional quality were investigated. Netted melons were treated with air (control) and 0.6 µl l(-1) 1-MCP at 25 ℃ for 24 h, and then stored at 25 ℃ or 10 ℃ for 10 days. 1-MCP significantly extended the shelf life, inhibited weight loss and delayed firmness decline of melon fruits. Ethylene production was also inhibited and respiration rate was declined. 1-MCP retarded 1-aminocyclopropane-1-carboxylic acid (ACC) increases and inhibited ACC synthase and ACC oxidase activity. Moreover, 1-MCP treatment reduced the decrease in total soluble solids and titratable acidity, as well as the decrease of the content of sugars (sucrose, fructose and glucose). These results indicated that 1-MCP treatment is a good method to extend melon shelf life and maintain fruit quality, and the combination of 1-MCP and low temperature storage resulted in more acceptable fruit quality. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Preliminary results from DIMES: Dispersion in the ACC

    NASA Astrophysics Data System (ADS)

    Balwada, D.; Speer, K.; LaCasce, J. H.; Owens, B.

    2012-04-01

    The Diapycnal and Isopynal Mixing Experiment in the Southern Ocean (DIMES) is a CLIVAR process study designed to study mixing in the Antarctic Circumpolar Current. The experiment includes tracer release, float, and small-scale turbulence components. This presentation will report on some results of the float component, from floats deployed across the ACC in the Southeast Pacific Ocean. These are the first subsurface Lagrangian trajectories from the ACC. Floats were deployed to follow approximately a constant density surface for a period of 1-3 years. To help aid the experimental results virtual floats were advected using AVISO data and basic statistics were derived from both deployed and virtual float trajectories. Experimental design, initial results, comparison to virtual floats and single particle and relative dispersion calculations will be presented.

  2. Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2.

    PubMed

    Klisic, Aleksandra; Kocic, Gordana; Kavaric, Nebojsa; Jovanovic, Milovan; Stanisic, Verica; Ninic, Ana

    2018-05-01

    Xanthine oxidase (XO) is an important enzyme responsible for conversion of purine bases to uric acid and represents the major source of reactive oxygen species (ROS) production in circulation. Since pathophysiological mechanism of the relationship between XO activity and urinary albumin excretion (UAE) rate is not well elucidated, we aimed to investigate this association in patients with diabetes mellitus type 2 (DM2). In addition, we wanted to examine whether uric acid itself plays an independent role in albuminuria onset and progression, or it is only mediated through XO activity. A total of 83 patients with DM2 (of them 56.6% females) were included in this cross-sectional study. Anthropometric, biochemical parameters and blood pressure were obtained. Multivariate logistic regression analysis showed that uric acid and XO were the independent predictors for albuminuria onset in patients with DM2 [odds ratio (OR) 1.015, 95% CI (1.008-1.028), p = 0.026 and OR 1.015, 95% CI (1.006-1.026), p = 0.040, respectively]. Rise in uric acid for 1 µmol/L enhanced the probability for albuminuria by 1.5%. Also, elevation in XO activity for 1 U/L increased the probability for albuminuria for 1.5%. A total of 66.7% of variation in UAE could be explained with this Model. Both XO and uric acid are independently associated with albuminuria in diabetes. Better understanding of pathophysiological relationship between oxidative stress and albuminuria could lead to discoveries of best pharmacological treatment of XO- and/or uric acid-induced ROS, in order to prevent albuminuria onset and progression.

  3. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015).

    PubMed

    Ojha, Ritu; Singh, Jagjeet; Ojha, Anu; Singh, Harbinder; Sharma, Sahil; Nepali, Kunal

    2017-03-01

    Xanthine oxidase (XO) is a versatile molybdoflavoprotein, widely distributed, occurring in milk, kidney, lung, heart, and vascular endothelium. Catalysis by XO to produce uric acid and reactive oxygen species leads to many diseases. Anti hyperuricemic therapy by xanthine oxidase inhibitors has been mainly employed for the treatment of gout. Area covered: This review covers the patent literature (2011-2015) and also presents the interesting strategies/rational approaches employed for the design of xanthine oxidase inhibitors reported recently. Expert opinion: Recent literature indicates that various non purine scaffolds have been extensively investigated for xanthine oxidase inhibition. The significant potential endowed by heteroaryl based compounds, in particularly fused heterocycles clearly highlights their clinical promise and the need for detailed investigation. Studies by various research groups have also revealed that the flavone framework is open for isosteric replacements and structural modifications for yielding potent non purine xanthine oxidase inhibitors. In addition, various plant extracts recently reported to possess significant xanthine oxidase inhibitory potential presents enough promise to initiate a screening program for the identification of other plant extracts and phytoconstituents possessing inhibitory potential towards the enzyme.

  4. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    PubMed

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  5. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  6. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  7. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  8. Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize.

    PubMed

    Xue, Beibei; Zhang, Aying; Jiang, Mingyi

    2009-03-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  9. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design.

    PubMed

    Ning, Xiaoyan; Zhang, Yanli; Yuan, Tiantian; Li, Qingbin; Tian, Jian; Guan, Weishi; Liu, Bo; Zhang, Wei; Xu, Xinxin; Zhang, Yuhong

    2018-01-31

    Glucose oxidase (GOD, EC.1.1.3.4) specifically catalyzes the reaction of β-d-glucose to gluconic acid and hydrogen peroxide in the presence of oxygen, which has become widely used in the food industry, gluconic acid production and the feed industry. However, the poor thermostability of the current commercial GOD is a key limiting factor preventing its widespread application. In the present study, amino acids closely related to the thermostability of glucose oxidase from Penicillium notatum were predicted with a computer-aided molecular simulation analysis, and mutant libraries were established following a saturation mutagenesis strategy. Two mutants with significantly improved thermostabilities, S100A and D408W, were subsequently obtained. Their protein denaturing temperatures were enhanced by about 4.4 °C and 1.2 °C, respectively, compared with the wild-type enzyme. Treated at 55 °C for 3 h, the residual activities of the mutants were greater than 72%, while that of the wild-type enzyme was only 20%. The half-lives of S100A and D408W were 5.13- and 4.41-fold greater, respectively, than that of the wild-type enzyme at the same temperature. This work provides novel and efficient approaches for enhancing the thermostability of GOD by reducing the protein free unfolding energy or increasing the interaction of amino acids with the coenzyme.

  11. Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design

    PubMed Central

    Ning, Xiaoyan; Zhang, Yanli; Yuan, Tiantian; Li, Qingbin; Tian, Jian; Guan, Weishi; Liu, Bo; Zhang, Wei; Xu, Xinxin

    2018-01-01

    Glucose oxidase (GOD, EC.1.1.3.4) specifically catalyzes the reaction of β-d-glucose to gluconic acid and hydrogen peroxide in the presence of oxygen, which has become widely used in the food industry, gluconic acid production and the feed industry. However, the poor thermostability of the current commercial GOD is a key limiting factor preventing its widespread application. In the present study, amino acids closely related to the thermostability of glucose oxidase from Penicillium notatum were predicted with a computer-aided molecular simulation analysis, and mutant libraries were established following a saturation mutagenesis strategy. Two mutants with significantly improved thermostabilities, S100A and D408W, were subsequently obtained. Their protein denaturing temperatures were enhanced by about 4.4 °C and 1.2 °C, respectively, compared with the wild-type enzyme. Treated at 55 °C for 3 h, the residual activities of the mutants were greater than 72%, while that of the wild-type enzyme was only 20%. The half-lives of S100A and D408W were 5.13- and 4.41-fold greater, respectively, than that of the wild-type enzyme at the same temperature. This work provides novel and efficient approaches for enhancing the thermostability of GOD by reducing the protein free unfolding energy or increasing the interaction of amino acids with the coenzyme. PMID:29385094

  12. Optimatization of transient transformation methods to study gene expression in Musa acuminata (AAA group) cultivar Ambon Lumut

    NASA Astrophysics Data System (ADS)

    Prayuni, Kinasih; Dwivany, Fenny M.

    2015-09-01

    Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.

  13. Distal truncation of KCC3 in non-French Canadian HMSN/ACC families.

    PubMed

    Salin-Cantegrel, A; Rivière, J-B; Dupré, N; Charron, F M; Shekarabi, M; Karéméra, L; Gaspar, C; Horst, J; Tekin, M; Deda, G; Krause, A; Lippert, M M; Willemsen, M A A P; Jarrar, R; Lapointe, J-Y; Rouleau, G A

    2007-09-25

    Hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) is a severe and progressive autosomal recessive polyneuropathy. Mutations in the potassium-chloride cotransporter 3 gene (KCC3) were identified as responsible for HMSN/ACC in the French Canadian (FC) population. In the present study, the authors were interested in finding new mutations in non-FC populations, assessing the activity of mutant proteins and refining genotype-phenotype correlations. The authors screened KCC3 for mutations using direct sequencing in six non-FC HMSN/ACC families. They then assessed the functionality of the most common mutant protein using a flux assay in Xenopus laevis oocytes. The authors identified mutations in exon 22 of KCC3: a novel mutation (del + 2994-3003; E1015X) in one family, as well as a known mutation (3031C-->T; R1011X) found in five unrelated families and associated with two different haplotypes. The function of the cotransporter was abolished, although a limited amount of mutant proteins were correctly localized at the membrane. KCC3 mutations in exon 22 constitute a recurrent mutation site for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), regardless of ethnic origin, and are the most common cause of HMSN/ACC in the non-French Canadian (FC) families analyzed so far. Therefore, for genetic analysis, exon 22 screening should be prioritized in non-FC populations. Finally, the R1011X mutation leads to the abrogation of KCC3's function in Xenopus laevis oocytes, likely due to impaired transit of the cotransporter.

  14. Les grands accélérateurs de particules

    NASA Astrophysics Data System (ADS)

    Patoux, A.; Perot, J.

    1991-02-01

    The different types of accelerators are recalled with emphasis on the most powerful : the synchrotron particle colliders. The use of superconductors in accelerator magnets as well as in RF cavities is discussed. The characteristics of the large accelerators, existing and planned, are given together with the level of industry involvement in their construction. Details concerning superconducting magnets and cryogenic plants are investigated. Finally, detectors, the most important tool for physics, are mentionned. Après avoir rappelé les différents types d'accélérateurs utilisés, l'accent est mis sur les plus puissants, c'est-à-dire les synchrotrons fonctionnant en anneaux de collision. Le rôle des supraconducteurs est analysé aussi bien pour les aimants que pour les cavités accélératrices. Les caractéristiques des principaux accélérateurs existants ou en projet sont données ainsi que l'implication de l'industrie dans leur fabrication. On insiste plus particulièrement sur les aimants supraconducteurs et les installations cryogéniques. Enfin les détecteurs, éléments indispensables à la physique, sont également évoqués.

  15. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    PubMed

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  16. Precipitation of ACC in liposomes-a model for biomineralization in confined volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tester, Chantel C; Wu, Ching-Hsuan; Weigand, Steven

    2013-01-10

    Biomineralizing organisms frequently precipitate minerals in small phospholipid bilayer-delineated compartments. We have established an in vitro model system to investigate the effect of confinement in attoliter to femtoliter volumes on the precipitation of calcium carbonate. In particular, we analyze the growth and stabilization of liposome-encapsulated amorphous calcium carbonate (ACC) nanoparticles using a combination of in situ techniques, cryo-transmission electron microscopy (Cryo-TEM), and small angle X-ray scattering (SAXS). Herein, we discuss ACC nanoparticle growth rate as a function of liposome size, carbon dioxide flux across the liposome membrane, pH, and osmotic pressure. Based on these experiments, we argue that the stabilizationmore » of ACC nanoparticles in liposomes is a consequence of a low nucleation rate (high activation barrier) of crystalline polymorphs of calcium carbonate.« less

  17. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress.

    PubMed

    Tang, Yanping; Sun, Xin; Wen, Tao; Liu, Mingjie; Yang, Mingyan; Chen, Xuefei

    2017-03-01

    The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress. Copyright © 2016

  18. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    PubMed

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Impaired Voluntary Control in PTSD: Probing Self-Regulation of the ACC With Real-Time fMRI

    PubMed Central

    Zweerings, Jana; Pflieger, Eliza M.; Mathiak, Krystyna A.; Zvyagintsev, Mikhail; Kacela, Anastasia; Flatten, Guido; Mathiak, Klaus

    2018-01-01

    Background: Post-traumatic stress disorder (PTSD) is characterized by deficits in the self-regulation of cognitions and emotions. Neural networks of emotion regulation may exhibit reduced control mediated by the anterior cingulate cortex (ACC), contributing to aberrant limbic responses in PTSD. Methods: Real-time fMRI neurofeedback (rt-fMRI NF) assessed self-regulation of the ACC in nine patients with PTSD after single trauma exposure and nine matched healthy controls. All participants were instructed to train ACC upregulation on three training days. Results: Both groups achieved regulation, which was associated with wide-spread brain activation encompassing the ACC. Compared to the controls, regulation amplitude and learning rate was lower in patients, correlating with symptom severity. In addition, a frontopolar activation cluster was associated with self-regulation efforts in patients. Conclusions: For the first time, we tested self-regulation of the ACC in patients with PTSD. The observed impairment supports models of ACC-mediated regulation deficits that may contribute to the psychopathology of PTSD. Controlled trials in a larger sample are needed to confirm our findings and to directly investigate whether training of central regulation mechanisms improves emotion regulation in PTSD. PMID:29899712

  20. Impaired Voluntary Control in PTSD: Probing Self-Regulation of the ACC With Real-Time fMRI.

    PubMed

    Zweerings, Jana; Pflieger, Eliza M; Mathiak, Krystyna A; Zvyagintsev, Mikhail; Kacela, Anastasia; Flatten, Guido; Mathiak, Klaus

    2018-01-01

    Background: Post-traumatic stress disorder (PTSD) is characterized by deficits in the self-regulation of cognitions and emotions. Neural networks of emotion regulation may exhibit reduced control mediated by the anterior cingulate cortex (ACC), contributing to aberrant limbic responses in PTSD. Methods: Real-time fMRI neurofeedback (rt-fMRI NF) assessed self-regulation of the ACC in nine patients with PTSD after single trauma exposure and nine matched healthy controls. All participants were instructed to train ACC upregulation on three training days. Results: Both groups achieved regulation, which was associated with wide-spread brain activation encompassing the ACC. Compared to the controls, regulation amplitude and learning rate was lower in patients, correlating with symptom severity. In addition, a frontopolar activation cluster was associated with self-regulation efforts in patients. Conclusions: For the first time, we tested self-regulation of the ACC in patients with PTSD. The observed impairment supports models of ACC-mediated regulation deficits that may contribute to the psychopathology of PTSD. Controlled trials in a larger sample are needed to confirm our findings and to directly investigate whether training of central regulation mechanisms improves emotion regulation in PTSD.

  1. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa): molecular characterization of the 1-aminocyclopropane-1-carboxylate oxidase BrACO1 throughout zygotic embryogenesis and germination of heterogeneous seeds.

    PubMed

    Del Carmen Rodríguez-Gacio, María; Nicolás, Carlos; Matilla, Angel Jesús

    2004-05-01

    In a previous report from the present authors, it was shown that the 1-aminocyclopropane-1-carboxylate (ACC) oxidation may play a crucial role during zygotic embryogenesis of turnip tops seeds. The present study was performed to elucidate the contribution of the silique-wall and seeds in ethylene production during this developmental process. ACC content in the silique wall is only higher than in seeds during the middle phases of zygotic embryogenesis. The ACC-oxidase (ACO) activity peaks in the silique-wall and seeds during the onset of embryogenesis, declining gradually afterwards, being undetectable during desiccation period. Using reverse transcriptase-polymerase chain reaction, one cDNA clone coding for an ACO and called BrACO1, was isolated. The deduced protein for BrACO1 has a molecular weight of 36.8 kDa and a high homology with other crucifer ACOs. The heterologous expression of this cDNA confirmed that BrACO1 is an ACO. The expression of this gene was high during the first phases of silique-wall development, low during the middle phases and undetectable during desiccation. By contrast, BrACO1 transcript was accumulated only in the earliest phases of seed embryogenesis and may participate in the highest ACO activity and ethylene production by seeds at the beginning of embryogenesis. Finally, in this work a correlation between the heterogeneity of Brassica rapa L. cv. Rapa seeds and the ability to oxidize the ACC to ethylene has been demonstrated.

  2. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation.

    PubMed

    Kaneko, Chihiro; Ogura, Jiro; Sasaki, Shunichi; Okamoto, Keisuke; Kobayashi, Masaki; Kuwayama, Kaori; Narumi, Katsuya; Iseki, Ken

    2017-03-01

    A high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified. We used male Wistar rats, which were orally administered fructose (5g/kg). Those rats were used in each experiment at 12h after administration. Single administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose. Single administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  4. An ACC Design Method for Achieving Both String Stability and Ride Comfort

    NASA Astrophysics Data System (ADS)

    Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi

    An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.

  5. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions.

    PubMed

    Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M

    2008-05-01

    A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the

  6. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  7. Structures and Mechanism of the Monoamine Oxidase Family

    PubMed Central

    Gaweska, Helena; Fitzpatrick, Paul F.

    2011-01-01

    Members of the monoamine oxidase family of flavoproteins catalyze the oxidation of primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins. The enzymes have similar overall structures, with conserved FAD-binding domains and varied substrate-binding sites. Multiple mechanisms have been proposed for the catalytic reactions of these enzymes. The present review compares the structures of different members of the family and the various mechanistic proposals. PMID:22022344

  8. NADPH oxidase inhibitors: a patent review.

    PubMed

    Kim, Jung-Ae; Neupane, Ganesh Prasad; Lee, Eung Seok; Jeong, Byeong-Seon; Park, Byung Chul; Thapa, Pritam

    2011-08-01

    NADPH oxidases, a family of multi-subunit enzyme complexes, catalyze the production of reactive oxygen species (ROS), which may contribute to the pathogenesis of a variety of diseases. In addition to the first NADPH oxidase found in phagocytes, four non-phagocytic NADPH oxidase isoforms have been identified, which all differ in their catalytic subunit (Nox1-5) and tissue distribution. This paper provides a comprehensive review of the patent literature on NADPH oxidase inhibitors, small molecule Nox inhibitors, peptides and siRNAs. Since each member of the NADPH oxidase family has great potential as a therapeutic target, several different compounds have been registered as NADPH oxidase inhibitors in the patent literature. As yet, none have gone through clinical trials, and some have not completed preclinical trials, including safety and specificity evaluation. Recently, small molecule pyrazolopyridine and triazolopyrimidine derivatives have been submitted as potent NADPH oxidase inhibitors and reported as first-in-class inhibitors for idiopathic pulmonary fibrosis and acute stroke, respectively. Further clinical efficacy and safety data are warranted to prove their actual clinical utility.

  9. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6

  10. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; ...

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  11. Urate oxidase for the prevention and treatment of tumour lysis syndrome in children with cancer.

    PubMed

    Cheuk, Daniel K L; Chiang, Alan K S; Chan, Godfrey C F; Ha, Shau Yin

    2014-08-14

    Tumour lysis syndrome (TLS) is a serious complication of malignancies and can result in renal failure or death. Preliminary reports suggest that urate oxidase is effective in reducing serum uric acid, the build-up of which causes TLS. It is uncertain whether high-quality evidence exists to support its routine use in children with malignancies. To assess the effects and safety of urate oxidase for the prevention and treatment of TLS in children with malignancies. This is an update of the original review. We performed a comprehensive search of the Cochrane Central Register of Controlled Trials (CENTRAL) (in The Cochrane Library issue 1, 2013), MEDLINE (1966 to February 2013), Embase (1980 to February 2013), and CINAHL (1982 to February 2013). In addition, we searched the reference lists of all identified relevant papers. We also explored other internet sources (updated search on 26 February 2013): the NHS' National Research Register, the US National Institutes of Health Ongoing Trials Register, the metaRegister of Controlled Trials, and ProQuest Dissertations & Theses Database. We also screened conference proceedings of the American Society of Clinical Oncology, the European Society for Medical Oncology, and the International Society of Paediatric Oncology meetings from 1993 to 2012. Finally, we contacted experts in the field and the manufacturer of rasburicase, Sanofi-aventis. Randomised controlled trials (RCT) and controlled clinical trials (CCT) of urate oxidase for the prevention or treatment of TLS in children under 18 years with any malignancy. Two review authors independently extracted trial data and assessed individual trial quality. We used risk ratios (RR) for dichotomous data and mean difference (MD) for continuous data. We included seven trials, involving 471 participants in the treatment groups and 603 participants in the control groups. One RCT and five CCTs compared urate oxidase and allopurinol. Three trials tested Uricozyme, and three trials tested

  12. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.

    PubMed

    Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I

    2005-01-01

    oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding protein; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; mRNA, messenger ribonucleic acid; NADH, nicotinamid adenine dinucleotide, reduced; NDII, NADH dehydrogenase subunit 2 mRNA; NRF, nuclear respiratory factor.

  13. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo.

  14. Cloning and characterization of the gene for L-amino acid oxidase in hybrid tilapia.

    PubMed

    Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua

    2015-12-01

    Tilapia is the common name for a group of cichlid fishes. Identification of DNA markers significantly associated with important traits in candidate genes may speed up genetic improvement. L-Amino acid oxidase (LAO) plays a crucial role in the innate immune defences of animals. Previously, whether LAO variants were associated with economic traits had not been studied in fish. We characterized the cDNA sequence of the LAO gene of hybrid tilapia (Oreochromis spp.). Its ORF was 1536 bp, encoding a flavoenzyme of 511 amino acids. This gene consisted of seven exons and six introns. Its expression was detected in the intestine, blood, kidney, skin, liver. It was highly expressed in the intestine. After a challenge with a bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the liver, intestine and spleen (P < 0.05). We identified one SNP in the genomic sequence of the gene and found that this SNP was associated significantly with body length (P < 0.05), but not with resistance to S. agalactiae. The results of this study suggest that the LAO gene plays an important role in innate immune responses to the bacterial pathogen in tilapia. The investigation of relationship between polymorphism of LAO gene and disease resistance and growth in tilapia showed that one SNP was associated significantly with body length. Further experiments on whether SNPs in the LAO gene are associated with growth in tilapia and other populations could be useful in understanding more functions of the LAO gene.

  15. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  16. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  17. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Lin, Chieh-Hsin; Lin, Ching-Hua; Chang, Yue-Cune; Huang, Yu-Jhen; Chen, Po-Wei; Yang, Hui-Ting; Lane, Hsien-Yuan

    2017-12-26

    Clozapine is the last-line antipsychotic agent for refractory schizophrenia. To date, there is no convincing evidence for augmentation on clozapine. Activation of N-methyl-D-aspartate receptors, including inhibition of D-amino acid oxidase that may metabolize D-amino acids, has been reported to be beneficial for patients receiving antipsychotics other than clozapine. This study aimed to examine the efficacy and safety of a D-amino acid oxidase inhibitor, sodium benzoate, for schizophrenia patients who had poor response to clozapine. We conducted a randomized, double-blind, placebo-controlled trial. Sixty schizophrenia inpatients that had been stabilized with clozapine were allocated into three groups for 6 weeks' add-on treatment of 1 g/day sodium benzoate, 2 g/day sodium benzoate, or placebo. The primary outcome measures were Positive and Negative Syndrome Scale (PANSS) total score, Scale for the Assessment of Negative Symptoms, Quality of Life Scale, and Global Assessment of Functioning. Side effects and cognitive functions were also measured. Both doses of sodium benzoate produced better improvement than placebo in the Scale for the Assessment of Negative Symptoms. The 2 g/day sodium benzoate also produced better improvement than placebo in PANSS-total score, PANSS-positive score, and Quality of Life Scale. Sodium benzoate was well tolerated without evident side effects. The changes of catalase, an antioxidant, were different among the three groups and correlated with the improvement of PANSS-total score and PANSS-positive score in the sodium benzoate group. Sodium benzoate adjuvant therapy improved symptomatology of patients with clozapine-resistant schizophrenia. Further studies are warranted to elucidate the optimal dose and treatment duration as well as the mechanisms of sodium benzoate for clozapine-resistant schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells.

    PubMed

    Zhao, Li; Jiang, Shu-Jun; Lu, Fu-Er; Xu, Li-Jun; Zou, Xin; Wang, Kai-Fu; Dong, Hui

    2016-07-01

    To investigate the effects of berberine (BBR) and cinnamic acid (CA), the main active components in Jiaotai Pill (, JTP), on palmitic acid (PA)-induced intracellular triglyceride (TG) accumulation in NIT-1 pancreatic β cells. Cells were incubated in culture medium containing PA (0.25 mmol/L) for 24 h. Then treatments with BBR (10 μmol/L), CA (100 μmol/L) and the combination of BBR and CA (BBR+CA) were performed respectively. Intracellular lipid accumulation was assessed by Oil Red O staining and TG content was measured by colorimetric assay. The expression of adenosine monophosphate-activated protein kinase (AMPK) protein and its downstream lipogenic and fatty acid oxidation genes, including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), phosphorylation acetyl-coA carboxylase (pACC), carnitine acyl transferase 1 (CPT-1) and sterol regulating element binding protein 1c (SREBP-1c) were determined by Western blot or real time polymerase chain reaction. PA induced an obvious lipid accumulation and a significant increase in intracellular TG content in NIT-1 cells. PA also induced a remarkable decrease in AMPK protein expression and its downstream targets such as pACC and CPT-1. Meanwhile, AMPK downstream lipogenic genes including SREBP-1c mRNA, FAS and ACC protein expressions were increased. Treatments with BBR and BBR+CA, superior to CA, significantly reversed the above genes changes in NIT-1 pancreatic β cells. However, the synergistic effect of BBR and CA on intracellular TG content was not observed in the present study. It can be concluded that in vitro, BBR and BBR+CA could inhibit PA-induced lipid accumulation by decreasing lipogenesis and increasing lipid oxidation in NIT-1 pancreatic β cells.

  19. The transformation of amorphous calcium carbonate, ACC, to crystalline phases as function of time and temperature.

    NASA Astrophysics Data System (ADS)

    Gies, Hermann; Happel, Marian; Niedermayr, Andrea; Immenhauser, Adrian

    2017-04-01

    We present results from a structural study of the transformation of freeze dried amorphous calcium carbonate, ACC, in crystalline material using pair distribution function analysis, PDF analysis, of X-ray powder diffraction data, XPD data. PDF analysis allows for the analysis of local order of structural subunit in the range between molecular unit (1. and 2. coordination sphere) and long range periodicity as in crystalline materials. ACC was precipitated from aqueous solutions at 298 K and 278 K using different amounts of Mg cations as stabilizer. The samples were immediately separated from the solution and freeze dried. For the transformation study, the samples were heated and analysed using XPD until they were crystallized. The radial distribution obtained from the XPD data were compared to simulated radial distributions of the calcium carbonate polymorphs and their hydrated phases. An ACC precipitated from a solution with Ca:Mg:CO3 = 1:5:4 at 298 K (ration in mmol, pH = 8.2) and freeze dried right after isolation from the solution revealed a close resemblance with ikaite in its local order. Another ACC with Ca:Mg:CO3 = 1:10:1.4 (T = 298, pH = 8.7) showed distinctly different local order resembling monohydrocalcite. Both ACC, however, still had considerable amounts of water dominating the Ca-coordination sphere. During the transformation to calcite, the structural changes in the sample concerned the hydrate water coordinating Ca which was removed and replaced by the carbonate oxygens. The study shows that ACC obtained from different starting solutions show specific local order. Freeze drying leads to solid ACC powder which still contain considerable amounts of hydrate water. Structural subunits are distinct in ACC and different from the crystalline phase. The study supplements recent reports presented by Konrad et al., Purgstaller et al., and Tobler et al.. F. Konrad et al., Cryst. Growth Des. 16, 6310-6317(2016) B. Purgstaller et al., Geochimica et Cosmochimica

  20. The proteolytic processing site of the precursor of lysyl oxidase.

    PubMed Central

    Cronshaw, A D; Fothergill-Gilmore, L A; Hulmes, D J

    1995-01-01

    The precise cleavage site of the N-terminal propeptide region of the precursor of lysyl oxidase has not yet been established, due to N-terminal blocking of the mature protein. Using a combination of peptide fragmentation, amino acid sequencing, time-of-flight m.s. and partial chemical unblocking procedures, it is shown that the mature form of lysyl oxidase begins at residue Asp-169 of the precursor protein (numbered according to the human sequence). The cleavage site is 28 residues to the C-terminal side of the site previously suggested on the basis of apparant molecular mass by SDS/PAGE, with the consequence that the two putative, N-linked glycosylation sites and the position of the Arg/Gln sequence polymorphism are now all in the precursor region. PMID:7864821

  1. Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana

    NASA Astrophysics Data System (ADS)

    Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-04-01

    Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.

  2. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    PubMed

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  3. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-05-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  4. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  5. Specific Inhibition of the Cyanide-insensitive Respiratory Pathway in Plant Mitochondria by Hydroxamic Acids

    PubMed Central

    Schonbaum, Gregory R.; Bonner, Walter D.; Storey, Bayard T.; Bahr, James T.

    1971-01-01

    Hydroxamic acids, R-CONHOH, are inhibitors specific to the respiratory pathway through the alternate, cyanide-insensitive terminal oxidase of plant mitochondria. The nature of the R group in these compounds affects the concentration at which the hydroxamic acids are effective, but it appears that all hydroxamic acids inhibit if high enough concentrations are used. The benzhydroxamic acids are effective at relatively low concentrations; of these, the most effective are m-chlorobenzhydroxamic acid and m-iodobenzhydroxamic acid. The concentrations required for half-maximal inhibition of the alternate oxidase pathway in mung bean (Phaseolus aureus) mitochondria are 0.03 mm for m-chlorobenzhydroxamic acid and 0.02 mm for m-iodobenzhydroxamic acid. With skunk cabbage (Symplocarpus foetidus) mitochondria, the required concentrations are 0.16 for m-chlorobenzhydroxamic acid and 0.05 for m-iodobenzhydroxamic acid. At concentrations which inhibit completely the alternate oxidase pathway, these two compounds have no discernible effect on either the respiratory pathway through cytochrome oxidase, or on the energy coupling reactions of these mitochondria. These inhibitors make it possible to isolate the two respiratory pathways and study their mode of action separately. These inhibitors also enhance an electron paramagnetic resonance signal near g = 2 in anaerobic, submitochondrial particles from skunk cabbage, which appears to be specific to the alternate oxidase and thus provides a means for its assay. PMID:5543780

  6. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols

    PubMed Central

    2005-01-01

    Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the oxidative dehydrogenation of a wide range of unsaturated primary alcohols with hydrogen peroxide production. This differentiates the enzyme from VAO (vanillyl-alcohol oxidase), which is specific for phenolic compounds. Moreover, AAO is optimally active in the pH range of 5–6, whereas VAO has an optimum at pH 10. Kinetic studies showed that AAO is most active with p-anisyl alcohol and 2,4-hexadien-1-ol. AAO converts m- and p-chlorinated benzyl alcohols at a similar rate as it does benzyl alcohol, but introduction of a p-methoxy substituent in benzyl alcohol increases the reaction rate approx. 5-fold. AAO also exhibits low activity on aromatic aldehydes. 19F NMR analysis showed that fluorinated benzaldehydes are converted into the corresponding benzoic acids. Inhibition studies revealed that the AAO active site can bind a wide range of aromatic ligands, chavicol (4-allylphenol) and p-anisic (4-methoxybenzoic) acid being the best competitive inhibitors. Uncompetitive inhibition was observed with 4-methoxybenzylamine. The properties described above render AAO a unique oxidase. The possible mechanism of AAO binding and oxidation of substrates is discussed in the light of the results of the inhibition and kinetic studies. PMID:15813702

  7. Metabolism of 2-phenylethylamine to phenylacetic acid, via the intermediate phenylacetaldehyde, by freshly prepared and cryopreserved guinea pig liver slices.

    PubMed

    Panoutsopoulos, Georgios I

    2004-01-01

    2-Phenylethylamine is an endogenous amine, which acts as a neuromodulator of dopaminergic responses. Exogenous 2-phenylethylamine is found in certain foodstuffs and may cause toxic side-effects in susceptible individuals. The present investigation examined the metabolism of 2-phenylethylamine to phenylacetic acid, via phenylacetaldehyde, in freshly prepared and cryopreserved liver slices. Additionally, it compared the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase by using specific inhibitors for each oxidizing enzyme. In freshly prepared and cryopreserved liver slices, phenylacetic acid was the main metabolite of 2-phenylethalamine. In freshly prepared liver slices, phenylacetic acid was completely inhibited by disulfiram (inhibitor of aldehyde dehydrogenase), whereas isovanillin (inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent and allopurinol (inhibitor of xanthine oxidase) had no effect. In cryopreserved liver slices, isovanillin inhibited phenylacetic acid by 85%, whereas disulfiram inhibited acid formation to a lesser extent and allopurinol had no effect. In liver slices, 2-phenylethylamine is rapidly oxidized to phenylacetic acid, via phenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with no contribution from xanthine oxidase.

  8. Contribution of aldehyde oxidizing enzymes on the metabolism of 3,4-dimethoxy-2-phenylethylamine to 3,4-dimethoxyphenylacetic acid by guinea pig liver slices.

    PubMed

    Panoutsopoulos, Georgios I

    2006-01-01

    3,4-Dimethoxy-2-phenylethylamine is catalyzed to its aldehyde derivative by monoamine oxidase B, but the subsequent oxidation into the corresponding acid has not yet been studied. Oxidation of aromatic aldehydes is catalyzed mainly by aldehyde dehydrogenase and aldehyde oxidase. The present study examines the metabolism of 3,4-dimethoxy-2-phenylethylamine in vitro and in freshly prepared and cryopreserved guinea pig liver slices and the relative contribution of different aldehyde-oxidizing enzymes was estimated by pharmacological means. 3,4-Dimethoxy-2- phenylethylamine was converted into the corresponding aldehyde when incubated with monoamine oxidase and further oxidized into the acid when incubated with both, monoamine oxidase and aldehyde oxidase. In freshly prepared and cryopreserved liver slices, 3,4-dimethoxyphenylacetic acid was the main metabolite of 3,4-dimethoxy-2- phenylethylamine. 3,4-Dimethoxyphenylacetic acid formation was inhibited by 85% from disulfiram (aldehyde dehydrogenase inhibitor) and by 75-80% from isovanillin (aldehyde oxidase inhibitor), whereas allopurinol (xanthine oxidase inhibitor) inhibited acid formation by only 25-30%. 3,4- Dimethoxy-2-phenylethylamine is oxidized mainly to its acid, via 3,4-dimethoxyphenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with a lower contribution from xanthine oxidase.

  9. Targeting NADPH oxidases in vascular pharmacology

    PubMed Central

    Schramm, Agata; Matusik, Paweł; Osmenda, Grzegorz; Guzik, Tomasz J

    2012-01-01

    Oxidative stress is a molecular dysregulation in reactive oxygen species (ROS) metabolism, which plays a key role in the pathogenesis of atherosclerosis, vascular inflammation and endothelial dysfunction. It is characterized by a loss of nitric oxide (NO) bioavailability. Large clinical trials such as HOPE and HPS have not shown a clinical benefit of antioxidant vitamin C or vitamin E treatment, putting into question the role of oxidative stress in cardiovascular disease. A change in the understanding of the molecular nature of oxidative stress has been driven by the results of these trials. Oxidative stress is no longer perceived as a simple imbalance between the production and scavenging of ROS, but as a dysfunction of enzymes involved in ROS production. NADPH oxidases are at the center of these events, underlying the dysfunction of other oxidases including eNOS uncoupling, xanthine oxidase and mitochondrial dysfunction. Thus NADPH oxidases are important therapeutic targets. Indeed, HMG-CoA reductase inhibitors (statins) as well as drugs interfering with the renin-angiotensin-aldosterone system inhibit NADPH oxidase activation and expression. Angiotensin-converting enzyme (ACE) inhibitors, AT1 receptor antagonists (sartans) and aliskiren, as well as spironolactone or eplerenone, have been discussed. Molecular aspects of NADPH oxidase regulation must be considered, while thinking about novel pharmacological targeting of this family of enzymes consisting of several homologs Nox1, Nox2, Nox3, Nox4 and Nox5 in humans. In order to properly design trials of antioxidant therapies, we must develop reliable techniques for the assessment of local and systemic oxidative stress. Classical antioxidants could be combined with novel oxidase inhibitors. In this review, we discuss NADPH oxidase inhibitors such as VAS2870, VAS3947, GK-136901, S17834 or plumbagin. Therefore, our efforts must focus on generating small molecular weight inhibitors of NADPH oxidases, allowing the

  10. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  11. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    NASA Astrophysics Data System (ADS)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  12. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    NASA Astrophysics Data System (ADS)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  13. Sulcal Polymorphisms of the IFC and ACC Contribute to Inhibitory Control Variability in Children and Adults

    PubMed Central

    Linzarini, Adriano; Dollfus, Sonia; Etard, Olivier; Orliac, François; Houdé, Olivier

    2018-01-01

    Abstract Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life. Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and stable during development, we searched for evidence that interindividual differences in IC partly trace back to prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC), which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the “common variant–small effect” model in genetics, which states that frequent genetic polymorphisms have small effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the Stroop interference scores. PMID:29527565

  14. Sulcal Polymorphisms of the IFC and ACC Contribute to Inhibitory Control Variability in Children and Adults.

    PubMed

    Tissier, Cloélia; Linzarini, Adriano; Allaire-Duquette, Geneviève; Mevel, Katell; Poirel, Nicolas; Dollfus, Sonia; Etard, Olivier; Orliac, François; Peyrin, Carole; Charron, Sylvain; Raznahan, Armin; Houdé, Olivier; Borst, Grégoire; Cachia, Arnaud

    2018-01-01

    Inhibitory control (IC) is a core executive function that enables humans to resist habits, temptations, or distractions. IC efficiency in childhood is a strong predictor of academic and professional success later in life. Based on analysis of the sulcal pattern, a qualitative feature of cortex anatomy determined during fetal life and stable during development, we searched for evidence that interindividual differences in IC partly trace back to prenatal processes. Using anatomical magnetic resonance imaging (MRI), we analyzed the sulcal pattern of two key regions of the IC neural network, the dorsal anterior cingulate cortex (ACC) and the inferior frontal cortex (IFC), which limits the inferior frontal gyrus. We found that the sulcal pattern asymmetry of both the ACC and IFC contributes to IC (Stroop score) in children and adults: participants with asymmetrical ACC or IFC sulcal patterns had better IC efficiency than participants with symmetrical ACC or IFC sulcal patterns. Such additive effects of IFC and ACC sulcal patterns on IC efficiency suggest that distinct early neurodevelopmental mechanisms targeting different brain regions likely contribute to IC efficiency. This view shares some analogies with the "common variant-small effect" model in genetics, which states that frequent genetic polymorphisms have small effects but collectively account for a large portion of the variance. Similarly, each sulcal polymorphism has a small but additive effect: IFC and ACC sulcal patterns, respectively, explained 3% and 14% of the variance of the Stroop interference scores.

  15. Design, synthesis and biological evaluation of novel xanthine oxidase inhibitors bearing a 2-arylbenzo[b]furan scaffold.

    PubMed

    Tang, Hong-Jin; Li, Wei; Zhou, Mei; Peng, Li-Ying; Wang, Jin-Xin; Li, Jia-Huang; Chen, Jun

    2018-05-10

    Xanthine oxidase, which catalyzes the oxidative reaction of hypoxanthine and xanthine into uric acid, is a key enzyme to the pathogenesis of hyperuricemia and gout. In this study, for the purpose of discovering novel xanthine oxidase (XO) inhibitors, a series of 2-arylbenzo[b]furan derivatives (3a-3d, 4a-4o and 6a-6d) were designed and synthesized. All these compounds were evaluated their xanthine oxidase inhibitory and antioxidant activities by using in vitro enzymatic assay and cellular model. The results showed that a majority of the designed compounds exhibited potent xanthine oxidase inhibitory effects and antioxidant activities, and compound 4a emerged as the most potent xanthine oxidase inhibitor (IC 50  = 4.45 μM). Steady-state kinetic measurements of the inhibitor 4a with the bovine milk xanthine oxidase indicated a mixed type inhibition with 3.52 μM K i and 13.14 μM K is , respectively. The structure-activity relationship analyses have also been presented. Compound 4a exhibited the potent hypouricemic effect in the potassium oxonate-induced hyperuricemic mice model. A molecular docking study of compound 4a was performed to gain an insight into its binding mode with xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious in treatment of gout. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Manganese(IV) Oxide Production by Acremonium sp. Strain KR21-2 and Extracellular Mn(II) Oxidase Activity

    PubMed Central

    Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke

    2006-01-01

    Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194

  17. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  18. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.

    PubMed

    Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-Tsan

    2015-10-01

    In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.

  19. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate

    PubMed Central

    Keenan, Melissa M.; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D.; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A.; Murphy, Susan K.; Lucas, Joseph; Muoio, Deborah M.; Kim, So Young; Chi, Jen-Tsan

    2015-01-01

    In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future. PMID:26452058

  20. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates.

    PubMed

    Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar

    2011-01-01

    A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H(2)O(2). The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose.

  1. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    PubMed Central

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  2. In vitro assessment of anticholinesterase and NADH oxidase inhibitory activities of an edible fern, Diplazium esculentum.

    PubMed

    Roy, Subhrajyoti; Dutta, Somit; Chaudhuri, Tapas Kumar

    2015-07-01

    Diplazium esculentum is the most commonly consumed edible fern throughout Asia and Oceania. Several studies have been performed so far to determine different functional properties of this plant, but there have been no reports on the anticholinesterase and nicotinamide adenine dinucleotide (NADH) oxidase inhibitory activities of this plant. Therefore, the present study was conducted to determine the anticholinesterase and NADH oxidase inhibitory activities of 70% methanolic extract of D. esculentum. The D. esculentum extract was investigated for its acetylcholinesterase and NADH oxidase inhibitory activities as well as its free radical scavenging and total antioxidant activities in the linoleic acid system. The free radical scavenging activity of the extract was determined by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) method. The total antioxidant activity of the extract was evaluated by ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. The D. esculentum extract inhibited acetylcholinesterase and NADH oxidase in a dose-dependent manner, with IC50 values of 272.97±19.38 and 265.81±21.20 μg/mL, respectively. The extract also showed a potent DPPH radical scavenging activity with an IC50 value of 402.88±12.70 μg/mL. Moreover, the extract showed 27.41% and 33.22% of total antioxidant activities determined by FTC and TBA methods, respectively. Results indicated that 70% methanolic extract of D. esculentum effectively inhibited the enzymes acetylcholinesterase and NADH oxidase and acted as a potent antioxidant and free radical scavenger. These in vitro assays indicate that this plant extract is a significant source of natural antioxidants, which may be helpful in preventing the progression of various neurodegenerative disorders associated with oxidative stress.

  3. Isolated sulfite oxidase deficiency.

    PubMed

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  4. Potential US Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline.

    PubMed

    Muntner, Paul; Carey, Robert M; Gidding, Samuel; Jones, Daniel W; Taler, Sandra J; Wright, Jackson T; Whelton, Paul K

    2018-01-09

    The 2017 American College of Cardiology/American Heart Association (ACC/AHA) Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults provides recommendations for the definition of hypertension, systolic and diastolic blood pressure (BP) thresholds for initiation of antihypertensive medication, and BP target goals. This study sought to determine the prevalence of hypertension, implications of recommendations for antihypertensive medication, and prevalence of BP above the treatment goal among US adults using criteria from the 2017 ACC/AHA guideline and the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7). The authors analyzed data from the 2011 to 2014 National Health and Nutrition Examination Survey (N = 9 623). BP was measured 3 times following a standardized protocol and averaged. Results were weighted to produce US population estimates. According to the 2017 ACC/AHA and JNC7 guidelines, the crude prevalence of hypertension among US adults was 45.6% (95% confidence interval [CI]: 43.6% to 47.6%) and 31.9% (95% CI: 30.1% to 33.7%), respectively, and antihypertensive medication was recommended for 36.2% (95% CI: 34.2% to 38.2%) and 34.3% (95% CI: 32.5% to 36.2%) of US adults, respectively. Nonpharmacological intervention is advised for the 9.4% of US adults with hypertension who are not recommended for antihypertensive medication according to the 2017 ACC/AHA guideline. Among US adults taking antihypertensive medication, 53.4% (95% CI: 49.9% to 56.8%) and 39.0% (95% CI: 36.4% to 41.6%) had BP above the treatment goal according to the 2017 ACC/AHA and JNC7 guidelines, respectively. Compared with the JNC7 guideline, the 2017 ACC/AHA guideline results in a substantial increase in the prevalence of hypertension, a small increase in the percentage of US adults recommended for antihypertensive medication, and more intensive BP lowering for many

  5. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.

    PubMed

    Yuan, Haibo; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Shi, Zhongping; Liu, Long

    2018-01-01

    2,5-Furandicarboxylic acid (FDCA) is a promising bio-based building block and can be produced by biotransformation of 5-hydroxymethylfurfural (HMF). To improve the FDCA production, two genes-one encoding HMF oxidase (HMFO; from Methylovorus sp. strain MP688) and another encoding for HMF/Furfural oxidoreductase (HmfH; from Cupriavidus basilensis HMF14)-were introduced into Raoultella ornithinolytica BF60. The FDCA production in the engineered whole-cell biocatalyst increased from 51.0 to 93.6mM, and the molar conversion ratio of HMF to FDCA increased from 51.0 to 93.6%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  7. Influence of Magnesium Content on the Local Structure of Amorphous Calcium Carbonate (ACC): Real Time Determination by In Situ PDF Analysis

    NASA Astrophysics Data System (ADS)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2016-12-01

    Calcium carbonate minerals are an essential component in the exoskeletons of crustaceans and mollusks. The onset of exoskeleton mineralization includes the precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that later transforms to produce diverse structures. Despite the importance of ACC as a critical phase during skeleton formation, the chemical and physical properties are not well characterized at conditions that approximate biological environments. Of particular interest are the solubility of ACC, the short-range structure at the time of formation, and the evolution of ACC structure to final products. Recent advances showing the widespread occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015) underline the importance of understanding amorphous intermediates. Using quantitative laboratory techniques developed by our research group (Blue et al., 2013; Blue and Dove, 2015; Blue et al., in press), this experimental study quantifies the solubility of ACC in parallel with the physical characterization of the corresponding structure. We measured ACC solubility at specific time points during the precipitation and during its subsequent evolution under the mild pH conditions that approximate biological and environmental conditions. In parallel experiments, structural data were collected from in situ pair distribution function (PDF) analyses were conducted to follow the evolution of individual samples from initial precipitation to final product. The measurements are leading to a quantitative solubility function for ACC with variable Mg contents and an x-ray based understanding of ACC structure in the same particles. We are also finding temporal changes in the short-range order of ACC after precipitation and this order is dependent upon Mg content. Moreover, the data show Mg distribution through the ACC particles is dependent upon total alkalinity. Insights from this study hold promise

  8. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, A.; Bozinovski, D; Valley, M

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. Themore » oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.« less

  9. Cloning of a phenol oxidase gene from Acremonium murorum and its expression in Aspergillus awamori.

    PubMed

    Gouka, R J; van der Heiden, M; Swarthoff, T; Verrips, C T

    2001-06-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60 degrees C) and is fully stable for at least 1 h at 60 degrees C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning.

  10. Cloning of a Phenol Oxidase Gene from Acremonium murorum and Its Expression in Aspergillus awamori

    PubMed Central

    Gouka, Robin J.; van der Heiden, Monique; Swarthoff, Ton; Verrips, C. Theo

    2001-01-01

    Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60°C) and is fully stable for at least 1 h at 60°C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning. PMID:11375170

  11. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors.

    PubMed

    Szilágyi, Bence; Kovács, Péter; Ferenczy, György G; Rácz, Anita; Németh, Krisztina; Visy, Júlia; Szabó, Pál; Ilas, Janez; Balogh, György T; Monostory, Katalin; Vincze, István; Tábi, Tamás; Szökő, Éva; Keserű, György M

    2018-05-01

    d-Amino acid oxidase (DAAO) is a potential target in the treatment of schizophrenia as its inhibition increases brain d-serine level and thus contributes to NMDA receptor activation. Inhibitors of DAAO were sought testing [6+5] type heterocycles and identified isatin derivatives as micromolar DAAO inhibitors. A pharmacophore and structure-activity relationship analysis of isatins and reported DAAO inhibitors led us to investigate 1H-indazol-3-ol derivatives and nanomolar inhibitors were identified. The series was further characterized by pK a and isothermal titration calorimetry measurements. Representative compounds exhibited beneficial properties in in vitro metabolic stability and PAMPA assays. 6-fluoro-1H-indazol-3-ol (37) significantly increased plasma d-serine level in an in vivo study on mice. These results show that the 1H-indazol-3-ol series represents a novel class of DAAO inhibitors with the potential to develop drug candidates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Discovery of d-amino acid oxidase inhibitors based on virtual screening against the lid-open enzyme conformation.

    PubMed

    Szilágyi, Bence; Skok, Žiga; Rácz, Anita; Frlan, Rok; Ferenczy, György G; Ilaš, Janez; Keserű, György M

    2018-06-01

    d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC 50 . Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.

    PubMed

    Zhou, Xuechou; Tan, Bingcan; Zheng, Xinyu; Kong, Dexian; Li, Qinglu

    2015-11-15

    The interfacial electron transfer of glucose oxidase (GOx) on a poly(glutamic acid)-modified glassy carbon electrode (PGA/GCE) was investigated. The redox peaks measured for GOx and flavin adenine dinucleotide (FAD) are similar, and the anodic peak of GOx does not increase in the presence of glucose in a mediator-free solution. These indicate that the electroactivity of GOx is not the direct electron transfer (DET) between GOx and PGA/GCE and that the observed electroactivity of GOx is ascribed to free FAD that is released from GOx. However, efficient electron transfer occurred if an appropriate mediator was placed in solution, suggesting that GOx is active. The PGA/GCE-based biosensor showed wide linear response in the range of 0.5-5.5 mM with a low detection limit of 0.12 mM and high sensitivity and selectivity for measuring glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Representation of cardiovascular magnetic resonance in the AHA / ACC guidelines.

    PubMed

    von Knobelsdorff-Brenkenhoff, Florian; Pilz, Guenter; Schulz-Menger, Jeanette

    2017-09-25

    Whereas evidence supporting the diagnostic value of cardiovascular magnetic resonance (CMR) has increased, there exists significant worldwide variability in the clinical utilization of CMR. A recent study demonstrated that CMR is represented in the majority of European Society for Cardiology (ESC) guidelines, with a large number of specific recommendations in particular regarding coronary artery disease. To further investigate the gap between the evidence and clinical use of CMR, this study analyzed the role of CMR in the guidelines of the American College of Cardiology (ACC) and American Heart Association (AHA). Twenty-four AHA/ACC original guidelines, updates and new editions, published between 2006 and 2017, were screened for the terms "magnetic", "MRI", "CMR", "MR" and "imaging". Non-cardiovascular MR examinations were excluded. All CMR-related paragraphs and specific recommendations for CMR including the level of evidence (A, B, C) and the class of recommendation (I, IIa, IIb, III) were extracted. Twelve of the 24 guidelines (50.0%) contain specific recommendations regarding CMR. Four guidelines (16.7%) mention CMR in the text only, and 8 (33.3%) do not mention CMR. The 12 guidelines with recommendations for CMR contain in total 65 specific recommendations (31 class-I, 23 class-IIa, 6 class-IIb, 5 class-III). Most recommendations have evidence level C (44/65; 67.7%), followed by level B (21/65; 32.3%). There are no level A recommendations. 22/65 recommendations refer to vascular imaging, 17 to congenital heart disease, 8 to cardiomyopathies, 8 to myocardial stress testing, 5 to left and right ventricular function, 3 to viability, and 2 to valvular heart disease. CMR is represented in two thirds of the AHA/ACC guidelines, which contain a number of specific recommendations for the use of CMR. In a simplified comparison with the ESC guidelines, CMR is less represented in the AHA/ACC guidelines in particular in the field of coronary artery disease.

  15. Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils?

    Treesearch

    Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov

    2017-01-01

    The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...

  16. Absence of Proton Channels in COS-7 Cells Expressing Functional NADPH Oxidase Components

    PubMed Central

    Morgan, Deri; Cherny, Vladimir V.; Price, Marianne O.; Dinauer, Mary C.; DeCoursey, Thomas E.

    2002-01-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O2 −) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H+ efflux was thought to be contained within the gp91phox subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063–36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COSphox). The 7D5 antibody, which detects an extracellular epitope of the gp91phox protein, labeled 96–98% of COSphox cells. NADPH oxidase was functional because COSphox (but not COSWT) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COSWT) or COSphox cells studied at pHo 7.0 and pHi 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H+ current in COSWT or COSphox cells. Therefore, gp91phox does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase. PMID:12034764

  17. Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species.

    PubMed

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-03-16

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.

  18. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban... ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.102 Allocation of budget authority for renewal of expiring consolidated ACC funding increments. (a) Applicability. This...

  19. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban... ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.102 Allocation of budget authority for renewal of expiring consolidated ACC funding increments. (a) Applicability. This...

  20. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban... ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.102 Allocation of budget authority for renewal of expiring consolidated ACC funding increments. (a) Applicability. This...

  1. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban... ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.102 Allocation of budget authority for renewal of expiring consolidated ACC funding increments. (a) Applicability. This...

  2. 24 CFR 982.102 - Allocation of budget authority for renewal of expiring consolidated ACC funding increments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... renewal of expiring consolidated ACC funding increments. 982.102 Section 982.102 Housing and Urban... ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Funding and PHA Application for Funding § 982.102 Allocation of budget authority for renewal of expiring consolidated ACC funding increments. (a) Applicability. This...

  3. ACCE/ACS National Educator and Leader of the Year Winners: AEC Congratulates These Outstanding Educators

    ERIC Educational Resources Information Center

    Australian Educational Computing, 2012

    2012-01-01

    This article presents the ACCE/ACS National Educator and Leader of the Year winners. Anne Mirtschin is the recipient of the ACCE/ACS 2012 Educator of the Year Award. Mirtschin is an innovative teacher at Hawkesdale P-12 College a small rural school that is isolated culturally and geographically. She uses online tools and technology to create…

  4. Mechanism and energetics by which glutamic acid 242 prevents leaks in cytochrome c oxidase.

    PubMed

    Kaila, Ville R I; Verkhovsky, Michael I; Hummer, Gerhard; Wikström, Mårten

    2009-10-01

    Cytochrome c oxidase (CcO) is the terminal enzyme of aerobic respiration. The energy released from the reduction of molecular oxygen to water is used to pump protons across the mitochondrial or bacterial membrane. The pump function introduces a mechanistic requirement of a valve that prevents protons from flowing backwards during the process. It was recently found that Glu-242, a key amino acid in transferring protons to be pumped across the membrane and to the site of oxygen reduction, fulfils the function of such a valve by preventing simultaneous contact to the pump site and to the proton-conducting D-channel (Kaila V.R.I. et al. Proc. Natl. Acad. Sci. USA 105, 2008). Here we have incorporated the valve model into the framework of the reaction mechanism. The function of the Glu valve is studied by exploring how the redox state of the surrounding metal centers, dielectric effects, and membrane potential, affects the energetics and leaks of this valve. Parallels are drawn between the dynamics of Glu-242 and the long-standing obscure difference between the metastable O(H) and stable O states of the binuclear center. Our model provides a suggestion for why reduction of the former state is coupled to proton translocation while reduction of the latter is not.

  5. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  6. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  7. Following Glucose Oxidase Activity by Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Processes Involving Enzyme-DNAzyme Conjugates

    PubMed Central

    Niazov, Angelica; Freeman, Ronit; Girsh, Julia; Willner, Itamar

    2011-01-01

    A hybrid consisting of glucose oxidase-functionalized with hemin/G-quadruplex units is used for the chemiluminescence detection of glucose. The glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2. The latter in the presence of luminol acts as substrate for the hemin/G-quadruplex-catalyzed generation of chemiluminescence. The glucose oxidase/hemin G-quadruplex hybrid was immobilized on CdSe/ZnS quantum dots (QDs). The light generated by the hybrid, in the presence of glucose, activated a chemiluminescence resonance energy transfer process to the QDs, resulting in the luminescence of the QDs. The intensities of the luminescence of the QDs at different concentrations of glucose provided an optical means to detect glucose. PMID:22346648

  8. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model.

    PubMed

    Kaliaperumal, Jagatheesh; Padarthi, Pavankumar; Elangovan, Namasivayam; Hari, Natarajan

    2014-07-01

    At present, the majority of established treatments for breast cancer are based on clinical manifestations, some fundamental of molecular and cellular biology of cancer. In recent times, the therapy is moving towards personalized medicines. Nevertheless, both the methodologies have own demerits. In the present study, we proposed a novel idea of targeted therapy with twin pharmacological potential by a peptide pACC1. The peptide was formulated with chitosan and evaluated with DMBA induced mammary carcinoma. Results suggest that the peptide holds great control on tumor cell multiplication, fatty acid synthesis and lactate levels. In addition, peptide also brings normal metabolic signs in glycolytic and glycogenic pathways. Histological studies confirm the dual pharmacological actions. Further, it is also proven that the peptide controls membrane receptor levels of HER2 and EGFR. In conclusion, that the peptide pACC1 could be employed as greater therapeutic adjuvant with currently established drugs without considering the stage of the cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.

    PubMed

    Ling Liu; Xiang Chen; Zhiyuan Lu; Shuai Cao; De Wu; Xu Zhang

    2017-03-01

    This paper focuses on the development of an upper limb rehabilitation training system designed for use by children with cerebral palsy (CP). It attempts to meet the requirements of in-home training by taking advantage of the combination of portable accelerometers (ACC) and surface electromyography (SEMG) sensors worn on the upper limb to capture functional movements. In the proposed system, the EMG-ACC acquisition device works essentially as wireless game controller, and three rehabilitation games were designed for improving upper limb motor function under a clinician's guidance. The games were developed on the Android platform based on a physical engine called Box2D. The results of a system performance test demonstrated that the developed games can respond to the upper limb actions within 210 ms. Positive questionnaire feedbacks from twenty CP subjects who participated in the game test verified both the feasibility and usability of the system. Results of a long-term game training conducted with three CP subjects demonstrated that CP patients could improve in their game performance through repetitive training, and persistent training was needed to improve and enhance the rehabilitation effect. According to our experimental results, the novel multi-feedback SEMG-ACC-based user interface improved the users' initiative and performance in rehabilitation training.

  10. Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana.

    PubMed

    Li, Guilin; Wang, Lijun; Wang, Ying; Li, Han; Liu, Zhenguo; Wang, Hongfang; Xu, Baohua; Guo, Xingqi

    2018-06-22

    Y-box binding protein 1 (YB-1) is a member of the cold shock domain protein superfamily and is involved in development, environmental stresses and DNA oxidative damage in many organisms. However, the precise functions of YB-1 are still not well understood in various insects, including bees. In the current study, we identified a YB-1 gene in Apis cerana cerana (AccYB-1). The predicted cis-acting elements in the promoter sequence of AccYB-1 indicated its possible roles in development and stress responses. AccYB-1 expression was higher in one-day-old larvae and dark-eyed pupae than in other development stages. Tissue-specific expression analysis showed that the mRNA level of AccYB-1 was higher in the thorax and midgut than in other tissues. The results from real-time PCR showed that AccYB-1 was induced by many environmental stresses. Silencing AccYB-1 downregulated the transcriptional level of some growth- and development-related genes and antioxidant genes and decreased the enzyme activities of several antioxidant-related enzymes, further indicating a possible function of AccYB-1 in growth, development and stress responses. Taken together, our findings suggest that AccYB-1 may play an indispensable role in growth and development and environmental stress responses in Apis cerana cerana. To our knowledge, this is the first paper to explore the role of YB-1 in bees. Copyright © 2018. Published by Elsevier B.V.

  11. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-André; Paclet, Marie-Hélène; Polack, Benoît; Morel, Françoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b 558; and (iii) to determine the S100A8 consensus site involved in cytochrome b 558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the functional partner for NADPH oxidase activation contrary to S100A9, however, the loading with calcium and a combination with phosphorylated S100A9 are essential in vivo. Endogenous S100A9 and S100A8 colocalize in differentiated and PMA stimulated PLB985 cells, with Nox2/gp91phox and p22phox. Recombinant S100A8, loaded with calcium and fused with the first 129 or 54 N-terminal amino acid residues of the P. aeruginosa ExoS toxin, induced a similar oxidase activation in vitro, to the one observed with S100A8 in the presence of S100A9 in vivo. This suggests that S100A8 is the essential component of the S100A9/S100A8 heterocomplex for oxidase activation. In this context, recombinant full-length rS100A9-A8 and rS100A9-A8 truncated 90 chimera proteins as opposed to rS100A9-A8 truncated 86 and rS100A9-A8 truncated 57 chimeras, activate the NADPH oxidase function of purified cytochrome b 558 suggesting that the C-terminal region of S100A8 is directly involved in the molecular interface with the hemoprotein. The data point to four strategic 87HEES90 amino acid residues of the S100A8 C-terminal sequence that are involved directly in the molecular interaction with cytochrome b558 and then in the phagocyte NADPH oxidase

  12. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  13. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Subramanian, Chitra; Saenkham, Panatda; Rock, Charles O.

    2011-01-01

    The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements. PMID:21876172

  14. SPERMINE OXIDASE: AN AMINE OXIDASE WITH SPECIFICITY FOR SPERMINE AND SPERMIDINE

    PubMed Central

    Hirsch, James G.

    1953-01-01

    Sheep serum and bovine serum contain an enzyme which brings about a rapid oxidative deamination of certain biological amines. This enzyme differs from previously described amine oxidases in several regards and especially in its substrate specificity. Studies thus far indicate that only spermine and the closely related compound spermidine serve as substrates for the enzyme in sheep serum. For this reason, the enzyme has been named spermine oxidase. Spermine oxidase is active in a variety of fluids of various ionic strength and buffer composition. The reaction takes place between pH 6.0 and pH 8.0 with an optimal rate in the vicinity of neutrality. Under certain conditions, the rate of oxygen consumption during the initial phase of the reaction is independent of the concentration of substrate. The diminution in rate observed during the latter phase of the enzymatic attack appears to be due to an alteration in the kinetics at low concentrations of substrate, or to competitive inhibition by a product of the reaction. Carbonyl reagents almost completely block the action of spermine oxidase, while certain amines and the cyanide ion bring about partial inhibition. Thiol reagents and sequestering compounds do not alter the course of the oxidative process. In the presence of low concentrations of mercuric chloride, the sheep serum-spermine system consumes approximately twice as much oxygen as controls containing no mercuric ion. The mechanism by which the mercuric ion stimulates additional oxygen uptake is obscure. PMID:13052805

  15. AccR Is a Master Regulator Involved in Carbon Catabolite Repression of the Anaerobic Catabolism of Aromatic Compounds in Azoarcus sp. CIB*

    PubMed Central

    Valderrama, J. Andrés; Shingler, Victoria; Carmona, Manuel; Díaz, Eduardo

    2014-01-01

    Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp60 phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp60 of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria. PMID:24302740

  16. Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes.

    PubMed

    Bour, Sandy; Daviaud, Danièle; Gres, Sandra; Lefort, Corinne; Prévot, Danielle; Zorzano, Antonio; Wabitsch, Martin; Saulnier-Blache, Jean-Sébastien; Valet, Philippe; Carpéné, Christian

    2007-08-01

    A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.

  17. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    PubMed Central

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  18. Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Lin, Chieh-Hsin; Chen, Ping-Kun; Chang, Yue-Cune; Chuo, Liang-Jen; Chen, Yan-Syun; Tsai, Guochuan E; Lane, Hsien-Yuan

    2014-05-01

    N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission is vital for learning and memory. Hypofunction of NMDAR has been reported to play a role in the pathophysiology of Alzheimer disease (AD), particularly in the early phase. Enhancing NMDAR activation might be a novel treatment approach. One of the methods to enhance NMDAR activity is to raise the levels of NMDA coagonists by blocking their metabolism. This study examined the efficacy and safety of sodium benzoate, a D-amino acid oxidase inhibitor, for the treatment of amnestic mild cognitive impairment and mild AD. We conducted a randomized, double-blind, placebo-controlled trial in four major medical centers in Taiwan. Sixty patients with amnestic mild cognitive impairment or mild AD were treated with 250-750 mg/day of sodium benzoate or placebo for 24 weeks. Alzheimer's Disease Assessment Scale-cognitive subscale (the primary outcome) and global function (assessed by Clinician Interview Based Impression of Change plus Caregiver Input) were measured every 8 weeks. Additional cognition composite was measured at baseline and endpoint. Sodium benzoate produced a better improvement than placebo in Alzheimer's Disease Assessment Scale-cognitive subscale (p = .0021, .0116, and .0031 at week 16, week 24, and endpoint, respectively), additional cognition composite (p = .007 at endpoint) and Clinician Interview Based Impression of Change plus Caregiver Input (p = .015, .016, and .012 at week 16, week 24, and endpoint, respectively). Sodium benzoate was well-tolerated without evident side-effects. Sodium benzoate substantially improved cognitive and overall functions in patients with early-phase AD. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for early dementing processes. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Various applications of immobilized glucose oxidase and polyphenol oxidase in a conducting polymer matrix.

    PubMed

    Cil, M; Böyükbayram, A E; Kiralp, S; Toppare, L; Yağci, Y

    2007-06-01

    In this study, glucose oxidase and polyphenol oxidase were immobilized in conducting polymer matrices; polypyrrole and poly(N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide-co-pyrrole) via electrochemical method. Fourier transform infrared and scanning electron microscope were employed to characterize the copolymer of (N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide) with pyrrole. Kinetic parameters, maximum reaction rate and Michealis-Menten constant, were determined. Effects of temperature and pH were examined for immobilized enzymes. Also, storage and operational stabilities of enzyme electrodes were investigated. Glucose and polyphenol oxidase enzyme electrodes were used for determination of the glucose amount in orange juices and human serum and phenolic amount in red wines, respectively.

  1. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  2. Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp.

    PubMed

    Conforte, Valeria P; Echeverria, Mariela; Sánchez, Cintia; Ugalde, Rodolfo A; Menéndez, Ana B; Lepek, Viviana C

    2010-08-01

    Ethylene inhibits the establishment of symbiosis between rhizobia and legumes. Several rhizobia species express the enzyme ACC deaminase, which degrades the ethylene precursor 1-cyclopropane-1-carboxilate (ACC), leading to reductions in the amount of ethylene evolved by the plant. M. loti has a gene encoding ACC deaminase, but this gene is under the activity of the NifA-RpoN-dependent promoter; thus, it is only expressed inside the nodule. The M. loti structural gene ACC deaminase (acdS) was integrated into the M. loti chromosome under a constitutive promoter activity. The resulting strain induced the formation of a higher number of nodules and was more competitive than the wild-type strain on Lotus japonicus and L. tenuis. These results suggest that the introduction of the ACC deaminase activity within M. loti in a constitutive way could be a novel strategy to increase nodulation competitiveness of the bacteria, which could be useful for the forage inoculants industry.

  3. Establishing the solubility and local structure(s) of Amorphous Calcium Carbonate (ACC): Toward an understanding of invertebrate biomineralization

    NASA Astrophysics Data System (ADS)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2017-12-01

    Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the

  4. Hierarchical CNFs/MnCo2O4.5 nanofibers as a highly active oxidase mimetic and its application in biosensing

    NASA Astrophysics Data System (ADS)

    Gao, Mu; Lu, Xiaofeng; Nie, Guangdi; Chi, Maoqiang; Wang, Ce

    2017-12-01

    Recently, much attention has been paid on the nanomaterial-based artificial enzymes due to their tunable catalytic activity, high stability and low cost compared to the natural enzymes. Different from the peroxidase mimics which have been studied for several decades, nanomaterials with oxidase-like property are burgeoning in the recent years. In this paper, hierarchical carbon nanofibers (CNFs)/MnCo2O4.5 nanofibers as efficient oxidase mimics are reported. The products are synthesized by an electrospinning technique and an electrochemcial deposition process in which the CNFs are used as the working electrode where MnCo2O4.5 nanosheets deposit on. The resulting binary metal oxide-based nanocomposites exhibit a good oxidase-like activity toward the oxidations of 3,3‧,5,5‧tetramethylbenzi-dine (TMB), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) salt and o-phenylenediamine (OPD) without exogenous addition of H2O2. The system of CNFs/MnCo2O4.5-TMB can be used as a candidate to detect sulfite and ascorbic acid via a colorimetric method with a high sensitivity. This work provides the efficient utilization and potential applications of binary metal oxide-based nanocomposites with oxidase activities in biosensors and other biotechnologies.

  5. Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin.

    PubMed Central

    Vujcic, Slavoljub; Diegelman, Paula; Bacchi, Cyrus J; Kramer, Debora L; Porter, Carl W

    2002-01-01

    During polyamine catabolism, spermine and spermidine are first acetylated by spermidine/spermine N(1)-acetyltransferase (SSAT) and subsequently oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine, respectively. In attempting to clone the PAO involved in this back-conversion pathway, we encountered an oxidase that preferentially cleaves spermine in the absence of prior acetylation by SSAT. A BLAST search using maize PAO sequences identified homologous mammalian cDNAs derived from human hepatoma and mouse mammary carcinoma: the encoded proteins differed by 20 amino acids. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by 75% while spermidine and N (1)-acetylspermidine pools increased, suggesting that spermine was selectively and directly oxidized by the enzyme. Substrate specificity using lysates of oxidase-transfected HEK-293 cells revealed that the newly identified oxidase strongly favoured spermine over N (1)-acetylspermine and that it failed to act on N (1)-acetylspermidine, spermidine or the preferred PAO substrate, N (1), N (12)-diacetylspermine. The PAO inhibitor, MDL-72,527, only partially blocked oxidation of spermine while a previously reported PAO substrate, N (1)-( n -octanesulphonyl)spermine, potently inhibited the reaction. Overall, the data indicate that the enzyme represents a novel mammalian oxidase which, on the basis of substrate specificity, we have designated spermine oxidase in order to distinguish it from the PAO involved in polyamine back-conversion. The identification of an enzyme capable of directly oxidizing spermine to spermidine has important implications for understanding polyamine homoeostasis and for interpreting metabolic and cellular responses to clinically relevant polyamine analogues and inhibitors. PMID:12141946

  6. A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M.

    PubMed

    Wu, Tonglei; Wang, Shaohua; Wang, Zhen; Peng, Xiaowei; Lu, Yanli; Wu, Qingmin

    2015-06-01

    Copper is a potent antimicrobial agent. Multiple mechanisms of copper tolerance are utilized by some pathogenic bacteria. BMEII0580, which is significantly similar to the multicopper oxidase from Escherichia coli, was predicted to be the probable blue copper protein YacK precursor in Brucella melitensis 16M, and was designated as Brucella multicopper oxidase (BmcO). A bioinformatics analysis indicated that the typical motifs of multicopper oxidases are present in BmcO. BmcO, the expression of which was up-regulated by copper, could catalyze the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), dimethoxyphenol (DMP) and para-phenylenediamine (pPD), which are widely used as substrates for multicopper oxidase. Additionally, BmcO exhibited ferroxidase activity, which indicated that it might play an important role in the Fe(2+) uptake of B. melitensis. Importantly, the mutant strain 16MΔbmcO was more sensitive to copper than the wild-type strain B. melitensis 16M as well as its complementation strain 16MΔbmcO(bmcO). The infection assays of cells showed that similar bacterial numbers of B. melitensis 16M, 16MΔbmcO and 16MΔbmcO(bmcO) strains were recovered from the infected macrophages. This result indicated that BmcO was not essential for B. melitensis intracellular growth. In conclusion, our results confirm that BmcO is a multicopper oxidase and contributes to the copper tolerance of B. melitensis 16M. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    PubMed

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  8. Absence of proton channels in COS-7 cells expressing functional NADPH oxidase components.

    PubMed

    Morgan, Deri; Cherny, Vladimir V; Price, Marianne O; Dinauer, Mary C; DeCoursey, Thomas E

    2002-06-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O(2)(-)) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H(+) efflux was thought to be contained within the gp91(phox) subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063-36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COS(phox)). The 7D5 antibody, which detects an extracellular epitope of the gp91(phox) protein, labeled 96-98% of COS(phox) cells. NADPH oxidase was functional because COS(phox) (but not COS(WT)) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COS(WT)) or COS(phox) cells studied at pH(o) 7.0 and pH(i) 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H(+) current in COS(WT) or COS(phox) cells. Therefore, gp91(phox) does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase.

  9. [Effects of nitrogen additions on soil hydrolase and oxidase activities in Pinus elliottii plantations.

    PubMed

    Zhang, Chuang; Zou, Hong Tao; Zhang, Xin Yu; Kou, Liang; Yang, Yang; Sun, Xiao Min; Li, Sheng Gong; Wang, Hui Min

    2016-11-18

    We evaluated responses of hydrolase and oxidase activities in a subtropical Pinus elliottii plantation through a nitrogen (N) addition field experiment (dosage level: 0, 40, 120 kg N·hm -2 ·a -1 ). The results showed that N additions significantly decreased the carbon, nitrogen and phosphorus related hydrolase and oxidase activities. The activities of β-1,4-glucosidase (BG), cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG) and peroxidase (PER) activities were decreased by 16.5%-51.1% due to N additions, and the decrease was more remarkable in the higher N addition treatment. The activities of α-1,4-glucosidase (aG), β-1,4-xylosidase (BX), acid phosphatase (AP) and phenol oxidase (PPO) were decreased by 14.5%-38.6% by N additions, however, there was no significant difference among the different N addition treatments. Soil enzyme activities varied obviously in different seasons. The activities of BG, NAG, BX, CBH, AP and PPO were in the order of March > June > October, and aG and PER activities were in the order of October > March > June. Most of the soil hydrolase and oxidase activities were positively correlated with soil pH, but negatively with NO 3 - -N content. It indicated that N additions inhibited soil hydrolase and oxidase activities by reducing soil pH and increasing soil nitrification. N additions inhibited the soil organic matter mineralization and turnover in the subtropical area, and the effects were obvious with the increasing dosage of N additions.

  10. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  11. Effect of 1-aminocyclopropane-1-carboxylic acid on the production of ethylene in senescing flowers of Ipomoea tricolor Cav

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konze, J.R.; Jones, J.F.; Boller, T.

    1980-10-01

    Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to rib segments excised from flowers of Ipomoea tricolor Cav. resulted in the formation of C/sub 2/H/sub 4/ in greater quantities than produced under natural conditions. The ability of ACC to enhance C/sub 2/H/sub 4/ production was independent of the physiological age of the tissue and its capacity to synthesize C/sub 2/H/sub 4/ without applied ACC. When ACC was fed to rib segments that had been treated with (/sup 14/C)methionine, incorporation of radioactivity into C/sub 2/H/sub 4/ was reduced by 80%. Aminoethoxyvinylglycine and aminooxyacetic acid inhibited C/sub 2/H/sub 4/ production in rib segments of I.more » tricolor but had no effect on ACC-enhanced C/sub 2/H/sub 4/ production. Protoplasts obtained from flower tissue of I. tricolor did not form C/sub 2/H/sub 4/, even when incubated with methionine or selenomethionine. They produced C/sub 2/H/sub 4/ upon incubation with ACC, however. ACC-dependent C/sub 2/H/sub 4/ production in protoplasts was inhibited by n-propyl gallate, AgCl, CoCl/sub 2/, KCN, Na/sub 2/S, and NaN/sub 3/. ACC-dependent C/sub 2/H/sub 4/ synthesis in rib segments and protoplasts was dependent on O/sub 2/, the K/sub m/ for O/sub 2/ being 1.0 to 1.4% (v/v). These results confirm the following pathway for C/sub 2/H/sub 4/ biosynthesis in I. tricolor: methionine (selenomethionine) ..-->..S-adenosylmethionine (selenoadenosylmethionine) ..-->.. ACC ..-->.. C/sub 2/H/sub 4/.« less

  12. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    PubMed Central

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  13. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    PubMed

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  14. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.

    PubMed

    Lazo, Fanny; Vivas-Ruiz, Dan E; Sandoval, Gustavo A; Rodríguez, Edith F; Kozlova, Edgar E G; Costal-Oliveira, F; Chávez-Olórtegui, Carlos; Severino, Ruperto; Yarlequé, Armando; Sanchez, Eladio F

    2017-12-01

    An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca 2+ , Mg 2+ and Mn 2+ did not alter Bpic-LAAO activity; however, Zn 2+ is an inhibitor. Some reagents such as β-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 μg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    PubMed Central

    Dahiya, Tulika; Pundir, C.S.

    2013-01-01

    Background & objectives: High level of urinary oxalate substantially increases the risk of hyperoxaluria, a significant risk factor for urolithiasis. The primary goal of this study was to reduce urinary oxalate excretion employing liposome encapsulated oxalate oxidase in animal model. Methods: A membrane bound oxalate oxidase was purified from Bougainvillea leaves. The enzyme in its native form was less effective at the physiological pH of the recipient animal. To increase its functional viability, the enzyme was immobilized on to ethylene maleic anhydride (EMA). Rats were injected with liposome encapsulated EMA- oxalate oxidase and the effect was observed on degradation of oxalic acid. Results: The enzyme was purified to apparent homogeneity with 60-fold purification and 31 per cent yield. The optimum pH of EMA-derivative enzyme was 6.0 and it showed 70 per cent of its optimal activity at pH 7.0. The EMA-bound enzyme encapsulated into liposome showed greater oxalate degradation in 15 per cent casein vitamin B6 deficient fed rats as compared with 30 per cent casein vitamin B6 deficient fed rats and control rats. Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones. PMID:23481063

  16. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  17. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.

    PubMed

    Zafred, Domen; Steiner, Barbara; Teufelberger, Andrea R; Hromic, Altijana; Karplus, P Andrew; Schofield, Christopher J; Wallner, Silvia; Macheroux, Peter

    2015-08-01

    The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF. © 2015 FEBS.

  18. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts.

  19. Report of the Annual Scientific Session of the American College of Cardiology (ACC) 2018, Orlando.

    PubMed

    Hashimoto, Takuya; Ako, Junya

    2018-04-28

    The 67 th Annual Scientific Session and Expo of the American College of Cardiology (ACC) were held at the Orange County Convention Center, Orlando, from March 10-12, 2018. This meeting offered 2,700 accepted abstracts presented in oral and poster sessions by 2,100 experts and 37 Late-Breaking Clinical Trials and Featured Clinical Research presentations. This report introduces the key presentations and highlights from the ACC 2018 Scientific Session.

  20. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are

  1. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    PubMed Central

    Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  2. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    PubMed

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  3. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  4. Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells.

    PubMed

    Zainal Abidin, Syafiq Asnawi; Rajadurai, Pathmanathan; Hoque Chowdhury, Md Ezharul; Othman, Iekhsan; Naidu, Rakesh

    2018-06-08

    The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC 50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.

  5. Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity.

    PubMed

    Campillo-Brocal, Jonatan C; Chacón-Verdú, María Dolores; Lucas-Elío, Patricia; Sánchez-Amat, Antonio

    2015-03-24

    L-Amino acid oxidases (LAOs) have been generally described as flavoproteins that oxidize amino acids releasing the corresponding ketoacid, ammonium and hydrogen peroxide. The generation of hydrogen peroxide gives to these enzymes antimicrobial characteristics. They are involved in processes such as biofilm development and microbial competition. LAOs are of great biotechnological interest in different applications such as the design of biosensors, biotransformations and biomedicine. The marine bacterium Marinomonas mediterranea synthesizes LodA, the first known LAO that contains a quinone cofactor. LodA is encoded in an operon that contains a second gene coding for LodB, a protein required for the post-translational modification generating the cofactor. Recently, GoxA, a quinoprotein with sequence similarity to LodA but with a different enzymatic activity (glycine oxidase instead of lysine-ε-oxidase) has been described. The aim of this work has been to study the distribution of genes similar to lodA and/or goxA in sequenced microbial genomes and to get insight into the evolution of this novel family of proteins through phylogenetic analysis. Genes encoding LodA-like proteins have been detected in several bacterial classes. However, they are absent in Archaea and detected only in a small group of fungi of the class Agaromycetes. The vast majority of the genes detected are in a genome region with a nearby lodB-like gene suggesting a specific interaction between both partner proteins. Sequence alignment of the LodA-like proteins allowed the detection of several conserved residues. All of them showed a Cys and a Trp that aligned with the residues that are forming part of the cysteine tryptophilquinone (CTQ) cofactor in LodA. Phylogenetic analysis revealed that LodA-like proteins can be clustered in different groups. Interestingly, LodA and GoxA are in different groups, indicating that those groups are related to the enzymatic activity of the proteins detected. Genome

  6. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  7. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  8. The ACCE 2012 Study Tour: Reflections on Reoccurring Themes

    ERIC Educational Resources Information Center

    Clements, Di; Grover, David; Grover, Pam; Hearne, Dominic; Knipe, Steven; Martin, Kim; Pazzi, Georgina; Pollard, Edward; Prestridge, Sarah

    2012-01-01

    Transformational leadership is essential in education as it empowers educators to make positive changes to the way they think, feel and act in improving learning for all. Reflection is a vital element of leading the change process. In relation to participating in the ACCE study tour experience, reflection allows one to sit and think about the…

  9. Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone.

    PubMed

    Xu, Ting; Wang, Ya-Ting; Liang, Wu-Sheng; Yao, Fei; Li, Yong-Hong; Li, Dian-Rong; Wang, Hao; Wang, Zheng-Yi

    2013-06-01

    Sclerotinia sclerotiorum is a filamentous fungal pathogen that can infect many economically important crops and vegetables. Alternative oxidase is the terminal oxidase of the alternative respiratory pathway in fungal mitochondria. The function of alternative oxidase was investigated in the regulation of sensitivity of S. sclerotiorum to two commercial fungicides, azoxystrobin and procymidone which have different fungitoxic mechanisms. Two isolates of S. sclerotiorum were sensitive to both fungicides. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, significantly increased the values of effective concentration causing 50% mycelial growth inhibition (EC50) of azoxystrobin to both S. sclerotiorum isolates, whereas notably decreased the EC50 values of procymidone. In mycelial respiration assay azoxystrobin displayed immediate inhibitory effect on cytochrome pathway capacity, but had no immediate effect on alternative pathway capacity. In contrast, procymidone showed no immediate impact on capacities of both cytochrome and alternative pathways in the mycelia. However, alternative oxidase encoding gene (aox) transcript and protein levels, alternative respiration pathway capacity of the mycelia were obviously increased by pre-treatment for 24 h with both azoxystrobin and procymidone. These results indicate that alternative oxidase was involved in the regulation of sensitivity of S. sclerotiorum to the fungicides azoxystrobin and procymidone, and that both fungicides could affect aox gene expression and the alternative respiration pathway capacity development in mycelia of this fungal pathogen.

  10. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  11. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus

    PubMed Central

    Smirnova, Irina; Chang, Hsin-Yang; von Ballmoos, Christoph; Ädelroth, Pia; Gennis, Robert B.; Brzezinski, Peter

    2014-01-01

    The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and “pump site” occur simultaneously. However, with the ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though the ba3 CytcO uses only a single proton pathway for transfer of the substrate and “pumped” protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site, respectively. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site. PMID:24004023

  12. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    PubMed Central

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  13. Population impact of the 2017 ACC/AHA guidelines compared with the 2013 ESH/ESC guidelines for hypertension management.

    PubMed

    Vaucher, Julien; Marques-Vidal, Pedro; Waeber, Gérard; Vollenweider, Peter

    2018-01-01

    Background The 2017 ACC/AHA guidelines on hypertension management recommend the introduction of antihypertensive treatment for patients with new stage 1 hypertension thresholds (130-139/80-89 mm Hg) and with a cardiovascular disease or related condition. We compared the Swiss population and economic impact of antihypertensive treatment of the 2017 ACC/AHA guidelines with the 2013 European guidelines. Methods Analyses were based on 4438 participants (aged 45-85 years; 2448 women) of the CoLaus|PsyCoLaus study recruited between 2014-2017. Participants eligible for antihypertensive treatment according to the 2017 ACC/AHA and 2013 European guidelines were sex and age standardised using the Swiss population for 2016. In addition, we estimated the population-wide annual costs of antihypertensive treatment. Results Individuals eligible for antihypertensive treatment were 40.3% (95% confidence interval 38.5-42.1) and 31.3% (29.7-32.9) according to the 2017 ACC/AHA and 2013 European guidelines, respectively. That difference would translate into approximately 250,000 additional individuals eligible for antihypertensive treatment, corresponding to an additional annual cost of 72.5 million CHF (63.0 million EUR). Conclusion The 2017 ACC/AHA guidelines on the management of hypertension substantially increase the number of individuals eligible for antihypertensive treatment compared to the 2013 European guidelines. While implementation of the 2017 ACC/AHA guidelines is expected to lead to cost reduction by preventing cardiovascular diseases, that reduction might be mitigated by the costs incurred by antihypertensive treatments in a larger proportion of the population.

  14. Increased statin eligibility based on ACC/AHA versus NCEP guidelines for high cholesterol management in Chile.

    PubMed

    Echeverría, Guadalupe; Dussaillant, Catalina; Villarroel, Luis; Rigotti, Attilio

    2016-01-01

    In 2013, the American College of Cardiology and the American Heart Association (ACC/AHA) jointly released new guidelines for cardiovascular risk assessment and cholesterol management that substantially modified the previous recommendations proposed by the National Cholesterol Education Program (NCEP) in 2001. The relative impact of these new guidelines on potential statin use has not been estimated in Latin American populations. To estimate and compare eligibility for statin therapy based on ACC/AHA and NCEP guidelines in adult Chilean population. Using data from the last National Health Survey (2009-2010 NHS), we conducted a cross-sectional analysis in a ​representative sample of the Chilean adult population and calculated the proportion of individuals that would receive statins under each set of guidelines. According to ACC/AHA guidelines, the population eligible for statin treatment increased from 21.7% (NCEP guidelines) to 33.2% (overall 53% increase). This effect was more pronounced among women (29.6% under ACC/AHA vs 15.6% under NCEP) and with those of advanced age (75% of the subjects >60 years of age compared with 46% under NCEP). The newly eligible group included more women and older subjects and individuals with lower LDL cholesterol levels. Compared with NCEP recommendations, the new ACC/AHA guidelines significantly increased the number of Chilean adults eligible for statin therapy. Full implementation of the new recommendations may have important public health implications in Chile and other Latin American countries, as more women and older subjects without cardiovascular disease would qualify for statin treatment. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Yutaka; Kubota, Ryo; Wang, Yimin

    In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissuesmore » revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.« less

  16. [Study on garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M].

    PubMed

    Wu, Fayin; Zhou, Hefeng; Fan, Zhiying; Zhu, Yawen; Li, Yongye; Yao, Yukun; Ran, Dan

    2014-02-01

    To observe the effect of garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M. Human salivary in adenoid cystic carcinoma cell line AC-M was cultured, divided into the experimental group (5-FU group, garlic oil group, garlic oil + 5-FU group) and the control group, to observe the growth activity of tumor cells by MTT methods; to analyse the changes of cell cycle and apoptosis rate by flow cytometry. MTT experiments showed that 5-FU, garlic oil, garlic oil and 5-FU on ACC-M cells have inhibition in different concentration, with the increase of concentration and action time of the rise; Cell cycle analysis showed significant changes in flow cytometry. With the increase of concentration and the acting time, the G0/G1, phase of the cell ratio increased, S had no significant change, but G2/M phase cells decreased. Apoptosis rate display showed garlic oil combined with 5-FU induced apoptosis of ACC-M cells was significantly stronger than single group. Garlic oil can effectively induce the apoptosis of adenoid cystic carcinoma cell line ACC-M. The effect of garlic oil combined with 5-FU on ACC-M cells was stronger than the garlic oil, 5-FU used alone.

  17. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.

    PubMed

    Colussi, Timothy; Parsonage, Derek; Boles, William; Matsuoka, Takeshi; Mallett, T Conn; Karplus, P Andrew; Claiborne, Al

    2008-01-22

    The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.

  18. Structure of alpha-glycerophosphate Oxidase from Streptococcus sp.: a Template for the Mitochondrial alpha-glycerophosphate Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Colussi; D Parsonage; W Boles

    The FAD-dependent {alpha}-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the {alpha}-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpO{Delta}, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 {angstrom} resolution. Using the GlpO{Delta} structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 {angstrom} resolution. The first two domains ofmore » the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a {beta}{beta}{alpha} element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2{alpha} in GlpO{Delta}, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpO{Delta} is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also

  19. Structure of {alpha}-Glycerophosphate Oxidase from Streptococcus sp.: A Template for the Mitochondrial {alpha}-Glycerophosphate Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colussi,T.; Parsonage, D.; Boles, W.

    The FAD-dependent a-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the a-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpO?, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 Angstroms resolution. Using the GlpO? structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 Angstroms resolution. The first two domains ofmore » the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a {beta}a element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2a in GlpO?, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpO? is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.« less

  20. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.

    PubMed

    Hansen, H; Grossmann, K

    2000-11-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  1. In vitro xanthine oxidase inhibitory and in vivo hypouricemic activity of herbal coded formulation (Gouticin).

    PubMed

    Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul

    2014-05-01

    Currently, natural products have been used in treating gouty arthritis and are recognized as xanthine oxidase inhibitors. Current study was designed to evaluate in vitro xanthine oxidase inhibitory potential of Gouticin and its ingredients extracts and in vivo hypouricemic activity of gouticin tablet 500 mg twice daily. Ethanol extracts of Gouticin and its ingredients were evaluated in vitro, at 200, 100, 50, 25 μ g/ml concentrations for xanthine oxidase inhibitory activity. IC(50) values of Gouticin and its ingredients were estimated. Further, in vivo therapeutic effect of Gouticin was investigated in comparison with allopathic medicine (Allopurinol) to treat gout. Total patients were 200 that were divided into test and control group. Herbal coded medicine (Gouticin) was given to test group and allopathic medicine allopurinol was administered to control group. In vitro, Gouticin has the highest percent inhibition at 96% followed by Allopurinol with 93% inhibition. In vivo study, mean serum uric acid level of patients was 4.62 mg/dl and 5.21mg/dl by use of Gouticin and Allopurinol at end of therapy. The study showed that herbal coded formulation gouticin and its ingredients are potential sources of natural xanthine oxidase inhibitors. Gouticin 500 mg twice daily is more effective than the allopurinol 300mg once daily in the management of gout.

  2. Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.).

    PubMed

    Siddiq, M; Dolan, K D

    2017-03-01

    Polyphenol oxidase (PPO) was extracted and characterized from high-bush blueberries. PPO showed an optimum activity at pH 6.1-6.3 and 35°C, with the enzyme showing significant activity over a wide temperature range (25-60°C). Catechol was the most readily oxidized substrate followed by 4-methylcatechol, DL-DOPA, and dopamine. Blueberry PPO showed a K m of 15mM and V max of 2.57 ΔA 420 nm/min×10 -1 , determined with catechol. PPO was completely inactivated in 20min at 85°C, however, after 30minat 75°C it showed about 10% residual activity. Thermal treatment at 55 and 65°C for 30min resulted in the partial inactivation of PPO. Ascorbic acid, sodium diethyldithiocarbamic acid, L-cysteine, and sodium metabisulfite were effective inhibitors of PPO at 1.0mM. Benzoic acid and cinnamic acid series inhibitors showed relatively weak inhibition of PPO (21.8-27.6%), even at as high as 2.0mM concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  5. A novel multi-hyphenated analytical method to simultaneously determine xanthine oxidase inhibitors and superoxide anion scavengers in natural products.

    PubMed

    Qi, Jin; Sun, Li-Qiong; Qian, Steven Y; Yu, Bo-Yang

    2017-09-01

    Natural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products. Superoxide anion scavenging activity in the analyte was measured by on-line chemiluminescence chromatography based on pyrogallol-luminol oxidation, while xanthine oxidase inhibitory activity was determined by semi-on-line HPLC analysis. After optimizing multiple elements, including chromatographic conditions (e.g., organic solvent concentration and mobile phase pH), concentrations of xanthine/xanthine oxidase and reaction temperature, our validated analytical method was capable of mixed sample analysis. The final results from our method are presented in an easily understood visual format including comprehensive bioactivity data of natural products. Copyright © 2017. Published by Elsevier B.V.

  6. Quantitation of immunoadsorbed flavoprotein oxidases by luminol-mediated chemiluminescence.

    PubMed

    Hinkkanen, A; Maly, F E; Decker, K

    1983-04-01

    The detection of the flavoenzymes 6-hydroxy-L-nicotine oxidase and 6-hydroxy-D-nicotine oxidase at the sub-femtomol level was achieved by coupling the reaction of the immunoadsorbed proteins to the peroxidase-catalysed oxidation of luminol. The H2O2-producing oxidases retained their full activity when bound to the respective immobilized antibodies. This fact allowed the concentration of the enzymes from very dilute solutions and the quantitative assay of their activities in the microU range. Due to strict stereoselectivity and the absence of immunological cross-reactivity, the two flavoproteins could be determined in the same solution. This method was used to measure the 6-hydroxy-D-nicotine oxidase and 6-hydroxy-L-nicotine oxidase activities in Escherichia coli RR1 and different Arthrobacter strains cultured under non-inducing conditions. The same activity ratio of 6-hydroxy-L-nicotine oxidase/6-hydroxy-D-nicotine oxidase as in D L-nicotine-induced cells of A. oxidans was observed in non-induced wild type and in riboflavin-requiring (rf-) mutant cells of this aerob.

  7. Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liao, Yalin

    2017-12-01

    Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.

  8. Quantitative Protein Sulfenic Acid Analysis Identifies Platelet Releasate-Induced Activation of Integrin β2 on Monocytes via NADPH Oxidase.

    PubMed

    Li, Ru; Klockenbusch, Cordula; Lin, Liwen; Jiang, Honghui; Lin, Shujun; Kast, Juergen

    2016-12-02

    Physiological stimuli such as thrombin, or pathological stimuli such as lysophosphatidic acid (LPA), activate platelets. The activated platelets bind to monocytes through P-selectin-PSGL-1 interactions but also release the contents of their granules, commonly called "platelet releasate". It is known that monocytes in contact with platelet releasate produce reactive oxygen species (ROS). Reversible cysteine oxidation by ROS is considered to be a potential regulator of protein function. In a previous study, we used THP-1 monocytic cells exposed to LPA- or thrombin-induced platelet releasate and a modified biotin switch assay to unravel the biological processes that are influenced by reversible cysteine oxidation. To gain a better understanding of the redox regulation of monocytes in atherosclerosis, we have now altered the modified biotin switch to selectively quantify protein sulfenic acid, a subpopulation of reversible cysteine oxidation. Using arsenite as reducing agent in the modified biotin switch assay, we were able to quantify 1161 proteins, in which more than 100 sulfenic acid sites were identified. Bioinformatics analysis of the quantified sulfenic acid sites highlighted the relevant, previously missed biological process of monocyte transendothelial migration, which included integrin β 2 . Flow cytometry validated the activation of LFA-1 (α L β 2 ) and Mac-1 (α M β 2 ), two subfamilies of integrin β 2 complexes, on human primary monocytes following platelet releasate treatment. The activation of LFA-1 was mediated by ROS from NADPH oxidase (NOX) activation. Production of ROS and activation of LFA-1 in human primary monocytes were independent of P-selectin-PSGL-1 interaction. Our results proved the modified biotin switch assay to be a powerful tool with the ability to reveal new regulatory mechanisms and identify new therapeutic targets.

  9. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  10. Variable responses of two VlMYBA gene promoters to ABA and ACC in Kyoho grape berries.

    PubMed

    Zhai, Xiawan; Zhang, Yushu; Kai, Wenbin; Liang, Bin; Jiang, Li; Du, Yangwei; Wang, Juan; Sun, Yufei; Leng, Ping

    2017-04-01

    The VlMYBA subfamily of transcription factors has been known to be the functional regulators in anthocyanin biosynthesis in red grapes. In this study, the expressions of the VlMYBA1-2 and VlMYBA 2 genes, and the responses of the VlMYBA1-2/2 promoters to ABA and ACC treatments in Kyoho grape berries are examined through quantitative real-time PCR analysis and the transient expression assay. The results show that the expressions of VlMYBA1-2/2 increase dramatically after véraison and reach their highest levels when the berries are nearly fully ripe. Exogenous ABA promotes the expressions of VlMYBA1-2/2, whereas the ACC treatment increases the expression of VlMYBA2, however, it has no effect on VlMYBA1-2. The ABA treatment has a faster and stronger effect on berry pigmentation than ACC does. The VlMYBA1-2 promoter sequence contains two ABA response elements (ABRE) but no ethylene response element (ERE), whereas the VlMYBA2 promoter sequence contains two ABRE and one ERE in the upstream region of the start codon. The VlMYBA2 promoter can be activated by both ABA (more effective) and ACC, whereas the VlMYBA1-2 promoter can be activated by ABA only. In sum, ABA can promote the coloring of Kyoho grape by the promotion of VlMYBA1-2/2 transcriptions via activating the response of their promoters to ABA, whereas ethylene only regulates VlMYBA2 through the response activation of its promoter to ACC which partially enhances the coloring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Identification of crypto- and neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans.

    PubMed

    Honda, Sari; Miura, Yukari; Masuda, Akiko; Masuda, Toshiya

    2014-01-01

    Xanthine oxidase (XO) inhibitory activity has been found in boiling water extracts from roasted coffee beans. Therefore, assay-guided purification of the extracts was performed using size-exclusion column chromatography, and subsequently with reversed phase HPLC to afford lactone derivatives of chlorogenic acids. Among the tested lactones, crypto- and neochlorogenic lactones showed potent XO inhibitory activities compared with three major chlorogenic acids found in coffee beans. These XO inhibitory lactones may ameliorate gout and hyperuricemia in humans who drink coffee.

  12. 4-Hydroxyanisole: the most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables.

    PubMed

    Espín, J C; Tudela, J; García-Cánovas, F

    1998-05-15

    A continuous spectrophotometric method for determining the monophenolase activity of polyphenol oxidase from several plant sources is described. This assay method is based on the coupling reaction between 3-methyl-2-benzothiazolinone hydrazone and the quinone product of the oxidation of 4-hydroxyanisole in the presence of polyphenol oxidase. 4-Hydroxyanisole proved to be the best monophenol assayed to measure the monophenolase activity of polyphenol oxidase from apple, artichoke, avocado, medlar, pear, and strawberry. Kinetic constants of 4-hydroxyanisole were compared to those of p-hydroxyphenyl propionic acid, a very sensitive monophenol previously reported to assay the monophenolase activity of polyphenol oxidase from apple, pear, and mushroom. The high values of the maximum steady state rate obtained for 4-hydroxyanisole suggest the existence of high catalytic constant toward this monophenol. These kinetic values were supported by nuclear magnetic resonance assays which predicted the highest reactivity of 4-hydroxyanisole. Therefore nuclear magnetic resonance assays proved to be a valuable and useful tool to predict the best monophenolic substrate for plant polyphenol oxidases. The 3-methyl-2-benzothiazlolinone-adduct for 4-hydroxyanisole was stable, with high molar absorptivity at the optimum pHs of the polyphenol oxidases assayed. All this together makes the use of 4-hydroxyanisol as monophenolic substrate and 3-methyl-2-benzothiazolinone as coupling reagent the most sensitive and precise assay method up to date reported in the literature to determine the monophenolas activity of polyphenol oxidase from fruits and vegetables.

  13. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae.

    PubMed

    Faccio, Greta; Kruus, Kristiina; Buchert, Johanna; Saloheimo, Markku

    2010-08-20

    Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  14. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase.

    PubMed

    Li Lee, Mui; Chung, Ivy; Yee Fung, Shin; Kanthimathi, M S; Hong Tan, Nget

    2014-04-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  16. Transport of sup 14 C-IAA and sup 14 C-ACC within floral organs of Ipomoea nil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, H.G.; Maurice, H.R.; Koning, R.E.

    1989-04-01

    The transport of {sup 14}C-IAA {sup 14}C-ACC from agarose donor blocks applied to I. nil filaments their recovery as {sup 14}C-accumulation into floral organs was examined. The accumulation of the isotopes in the corolla tissue was greater when {sup 14}C-ACC was applied than {sup 14}C-IAA in intact isolated flower buds. Greater levels of the isotopes accumulated in the pistil, with minimal levels in receptacle and calyx tissues from isolated buds. With intact buds, greater levels of the isotopes were recovered in pistil, calyx receptacle tissues. This study provides further evidence for the role of the filaments as transport vectors formore » IAA ACC for the production of ethylene.« less

  17. Levels and interactions of plasma xanthine oxidase, catalase and liver function parameters in Nigerian children with Plasmodium falciparum infection.

    PubMed

    Iwalokun, B A; Bamiro, S B; Ogunledun, A

    2006-12-01

    Elevated plasma levels of xanthine oxidase and liver function parameters have been associated with inflammatory events in several human diseases. While xanthine oxidase provides in vitro protection against malaria, its pathophysiological functions in vivo and interactions with liver function parameters remain unclear. This study examined the interactions and plasma levels of xanthine oxidase (XO) and uric acid (UA), catalase (CAT) and liver function parameters GOT, GPT and bilirubin in asymptomatic (n=20), uncomplicated (n=32), and severe (n=18) falciparum malaria children aged 3-13 years. Compared to age-matched control (n=16), significant (p<0.05) elevation in xanthine oxidase by 100-550%, uric acid by 15.4-153.8%, GOT and GPT by 22.1-102.2%, and total bilirubin by 2.3-86% according to parasitaemia (geometric mean parasite density (GMPD)=850-87100 parasites/microL) was observed in the malarial children. Further comparison with control revealed higher CAT level (16.2+/-0.5 vs 14.6+/-0.4 U/L; p<0.05) lacking significant (p>0.05) correlation with XO, but lower CAT level (13.4-5.4 U/L) with improved correlations (r=-0.53 to -0.91; p<0.05) with XO among the asymptomatic and symptomatic malaria children studied. 75% of control, 45% of asymptomatic, 21.9% of uncomplicated, and none of severe malaria children had Hb level>11.0 g/dL. Multivariate analyses further revealed significant (p<0.05) correlations between liver function parameters and xanthine oxidase (r=0.57-0.64) only in the severe malaria group. We conclude that elevated levels of XO and liver enzymes are biochemical features of Plasmodium falciparum parasitaemia in Nigerian children, with both parameters interacting differently to modulate the catalase response in asymptomatic and symptomatic falciparum malaria.

  18. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.

    PubMed

    Shi, Deng-Ke; Zhu, Jing; Sun, Ze-Hua; Zhang, Guang; Liu, Rui; Zhang, Tian-Jun; Wang, Sheng-Li; Ren, Ang; Zhao, Ming-Wen

    2017-10-01

    The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.

  19. Construction of a D-amino acid oxidase reactor based on magnetic nanoparticles modified by a reactive polymer and its application in screening enzyme inhibitors.

    PubMed

    Mu, Xiaoyu; Qiao, Juan; Qi, Li; Liu, Ying; Ma, Huimin

    2014-08-13

    Developing facile and high-throughput methods for exploring pharmacological inhibitors of D-amino acid oxidase (DAAO) has triggered increasing interest. In this work, DAAO was immobilized on the magnetic nanoparticles, which were modified by a biocompatible reactive polymer, poly(glycidyl methacrylate) (PGMA) via an atom transfer radical polymerization technique. Interestingly, the enzyme immobilization process was greatly promoted with the assistance of a lithium perchlorate catalyst. Meanwhile, a new amino acid ionic liquid (AAIL) was successfully synthesized and employed as the efficient chiral ligand in a chiral ligand exchange capillary electrophoresis (CLE-CE) system for chiral separation of amino acids (AAs) and quantitation of methionine, which was selected as the substrate of DAAO. Then, the apparent Michaelis-Menten constants in the enzyme system were determined with the proposed CLE-CE method. The prepared DAAO-PGMA-Fe3O4 nanoparticles exhibited excellent reusability and good stability. Moreover, the enzyme reactor was successfully applied in screening DAAO inhibitors. These results demonstrated that the enzyme could be efficiently immobilized on the polymer-grafted magnetic nanoparticles and that the obtained enzyme reactor has great potential in screening enzyme inhibitors, further offering new insight into monitoring the relevant diseases.

  20. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  1. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase.

    PubMed

    Lee, J; Hofhaus, G; Lisowsky, T

    2000-07-14

    The yeast ERV1 gene encodes a small polypeptide of 189 amino acids that is essential for mitochondrial function and for the viability of the cell. In this study we report the enzymatic activity of this protein as a flavin-linked sulfhydryl oxidase catalyzing the formation of disulfide bridges. Deletion of the amino-terminal part of Erv1p shows that the enzyme activity is located in the 15 kDa carboxy-terminal domain of the protein. This fragment of Erv1p still binds FAD and catalyzes the formation of disulfide bonds but is no longer able to form dimers like the complete protein. The carboxy-terminal fragment contains a conserved CXXC motif that is present in all homologous proteins from yeast to human. Thus Erv1p represents the first FAD-linked sulfhydryl oxidase from yeast and the first of these enzymes that is involved in mitochondrial biogenesis.

  2. Health Literacy: Readability of ACC/AHA Online Patient Education Material.

    PubMed

    Kapoor, Karan; George, Praveen; Evans, Matthew C; Miller, Weldon J; Liu, Stanley S

    To determine whether the online patient education material offered by the American College of Cardiology (ACC) and the American Heart Association (AHA) is written at a higher level than the 6th-7th grade level recommended by the National Institute of Health (NIH). Online patient education material from each website was subjected to reading grade level (RGL) analysis using the Readability Studio Professional Edition. One-sample t testing was used to compare the mean RGLs obtained from 8 formulas to the NIH-recommended 6.5 grade level and 8th grade national mean. In total, 372 articles from the ACC website and 82 from the AHA were studied. Mean (±SD) RGLs for the 454 articles were 9.6 ± 2.1, 11.2 ± 2.1, 11.9 ± 1.6, 10.8 ± 1.6, 9.7 ± 2.1, 10.8 ± 0.8, 10.5 ± 2.6, and 11.7 ± 3.5 according to the Flesch-Kincaid grade level (FKGL), Simple Measure of Gobbledygook (SMOG Index), Coleman-Liau Index (CLI), Gunning-Fog Index (GFI), New Dale-Chall reading level formula (NDC), FORCAST, Raygor Readability Estimate (RRE), and Fry Graph (Fry), respectively. All analyzed articles had significantly higher RGLs than both the NIH-recommended grade level of 6.5 and the national mean grade level of 8 (p < 0.00625). Patient education material provided on the ACC and AHA websites is written above the NIH-recommended 6.5 grade level and 8th grade national mean reading level. Additional studies are required to demonstrate whether lowering the RGL of this material improves outcomes among patients with cardiovascular disease. © 2017 S. Karger AG, Basel.

  3. Correlation Between Monoamine Oxidase Inhibitors and Anticonvulsants

    PubMed Central

    Dwivedi, Chandradhar; Misra, Radhey S.; Chaudhari, Anshumali; Parmar, Surendra S.

    1980-01-01

    Monoamine oxidase inhibitory and anticonvulsant properties of 2-substituted styryl-6-bromo-3-(4-ethylbenzoate/4 benzhydrazide)-4-quinazoles are studied. All styryl quinazolone esters except compound number 9 exhibited monoamine oxidase inhibitory properties during oxidative deamination of kynuramine. Corresponding hydrazides were found to have relatively higher activity. All these quinazolones were able to protect against pentylenetetrazol induced seizures. These observations in general do not prove that monoamine oxidase inhibitory properties represent the biochemical basis for the anticonvulsant activity of these compounds. PMID:7420438

  4. GPR43 activation enhances psoriasis-like inflammation through epidermal upregulation of IL-6 and dual oxidase 2 signaling in a murine model.

    PubMed

    Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; El-Sherbeeny, Ahmed M; Al-Harbi, Mohammed M; Almukhlafi, Talal S

    2017-05-01

    The gut is densely inhabited by commensal bacteria, which metabolize dietary fibers/undigested carbohydrates and produce short-chain fatty acids such as acetate. GPR43 is one of the receptors to sense short-chain fatty acids, and expressed in various immune and non-immune cells. Acetate/GPR43 signaling has been shown to affect various inflammatory diseases through Th17 responses and NADPH oxidase (NOX)-derived reactive oxygen species (ROS) generation. However, no study has previously explored the effects of GPR43 activation during psoriasis-like inflammation. Therefore, this study investigated the effect of acetate/phenylacetamide (GPR43 agonists) on imiquimod induced skin inflammation in mice. Mice were administered phenylacetamide/acetate followed by assessment of skin inflammation, NOXs (NOX-2, NOX-4, dual oxidases), and Th17 related signaling. Our study showed induction of epidermal GPR43 after imiquimod treatment, i.e. psoriasis-like inflammation. Acetate administration in psoriatic mice led to further increase in skin inflammation (ear thickness/myeloperoxidase activity) with concurrent increase in Th17 immune responses and epidermal dual oxidase-2 signaling. Further, topical application of GPR43 agonist, phenylacetamide led to enhanced ear thickness with concomitant epidermal IL-6 signaling as well as dual oxidase-2 upregulation which may be responsible for increased psoriasis-like inflammation. Taken together, dual oxidase-2 and IL-6 play important roles in GPR43-mediated skin inflammation. The current study suggests that GPR43 activation in psoriatic patients may lead to aggravation of psoriatic inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Development and psychometric evaluation of the Assessment of Core CBT Skills (ACCS): An observation-based tool for assessing cognitive behavioral therapy competence.

    PubMed

    Muse, Kate; McManus, Freda; Rakovshik, Sarah; Thwaites, Richard

    2017-05-01

    This article outlines the development and psychometric evaluation of the Assessment of Core CBT Skills (ACCS) rating scale. The ACCS aims to provide a novel assessment framework to deliver formative and summative feedback regarding therapists' performance within observed cognitive-behavioral treatment sessions, and for therapists to rate and reflect on their own performance. Findings from 3 studies are outlined: (a) a feedback study (n = 66) examining content validity, face validity and usability; (b) a focus group (n = 9) evaluating usability and utility; and (c) an evaluation of the psychometric properties of the ACCS in real world cognitive behavioral therapy (CBT) training and routine clinical practice contexts. Results suggest that the ACCS has good face validity, content validity, and usability and provides a user-friendly tool that is useful for promoting self-reflection and providing formative feedback. Scores on both the self and assessor-rated versions of the ACCS demonstrate good internal consistency, interrater reliability, and discriminant validity. In addition, ACCS scores were found to be correlated with, but distinct from, the Revised Cognitive Therapy Scale (CTS-R) and were comparable to CTS-R scores in terms of internal consistency and discriminant validity. In addition, the ACCS may have advantages over the CTS-R in terms of interrater reliability of scores. The studies also provided insight into areas for refinement and a number of modifications were undertaken to improve the scale. In summary, the ACCS is an appropriate and useful measure of CBT competence that can be used to promote self-reflection and provide therapists with formative and summative feedback. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: application to glucose oxidase

    PubMed Central

    Venema, K.; van Berkel, W. J. H.; Korf, J.

    2007-01-01

    This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver the reactants and the device was linked on-line to an electrochemical detector. The microreactor was used for on-line preparation of apoglucose oxidase in strong acid and its subsequent reactivation with flavin adenine dinucleotide. In addition we describe a miniaturized version of the microreactor used to assess several characteristics of femtomole to attomole amounts of glucose oxidase. A low negative potential over the electrodes was used when ferrocene was the mediator in combination with horseradish peroxidase, ensuring the absence of oxidation of electro-active compounds in biological fluids. A low backpressure at very low flow rates is an advantage, which increases the sensitivity. A variety of further applications of the microreactor are suggested. Figure Preparation of apoGOx and restoration of enzyme activity using a soluton of FAD PMID:17909761

  7. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella.

    PubMed

    Ramiro, Daniel Alves; Guerreiro-Filho, Oliveiro; Mazzafera, Paulo

    2006-09-01

    We examined the role of phenolic compounds, and the enzymes peroxidase and polyphenol oxidase, in the expression of resistance of coffee plants to Leucoptera coffeella (Lepidoptera: Lyonetiidae). The concentrations of total soluble phenols and chlorogenic acid (5-caffeoylquinic acid), and the activities of the oxidative enzymes peroxidase (POD) and polyphenol oxidase (PPO), were estimated in leaves of Coffea arabica, C. racemosa, and progenies of crosses between these species, which have different levels of resistance, before and after attack by this insect. The results indicate that phenols do not play a central role in resistance to the coffee leaf miner. Differences were detected between the parental species in terms of total soluble phenol concentrations and activities of the oxidative enzymes. However, resistant and susceptible hybrid plants did not differ in any of these characteristics. Significant induction of chlorogenic acid and PPO was only found in C. racemosa, the parental donator of the resistance genes against L. coffeella. High-performance liquid chromatography (HPLC) analysis also showed qualitative similarity between hybrids and the susceptible C. arabica. These results suggest that the phenolic content and activities of POD and PPO in response to the attack by the leaf miner may not be a strong evidence of their participation in direct defensive mechanisms.

  8. The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation

    PubMed Central

    Kanade, Santosh R.; Paul, Beena; Rao, A. G. Appu; Gowda, Lalitha R.

    2006-01-01

    Field bean (Dolichos lablab) contains a single isoform of PPO (polyphenol oxidase) – a type III copper protein that catalyses the o-hydroxylation of monophenols and oxidation of o-diphenols using molecular oxygen – and is a homotetramer with a molecular mass of 120 kDa. The enzyme is activated manyfold either in the presence of the anionic detergent SDS below its critical micellar concentration or on exposure to acid-pH. The enhancement of kcat upon activation is accompanied by a marked shift in the pH optimum for the oxidation of t-butyl catechol from 4.5 to 6.0, an increased sensitivity to tropolone, altered susceptibility to proteolytic degradation and decreased thermostability. The Stokes radius of the native enzyme is found to increase from 49.1±2 to 75.9±0.6 Å (1 Å=0.1 nm). The activation by SDS and acid-pH results in a localized conformational change that is anchored around the catalytic site of PPO that alters the microenvironment of an essential glutamic residue. Chemical modification of field bean and sweet potato PPO with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide followed by kinetic analysis leads to the conclusion that both the enzymes possess a core carboxylate essential to activity. This enhanced catalytic efficiency of PPO, considered as an inducible defence oxidative enzyme, is vital to the physiological defence strategy adapted by plants to insect herbivory and pathogen attack. PMID:16393141

  9. Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis.

    PubMed

    Basili, Stefania; Raparelli, Valeria; Napoleone, Laura; Del Ben, Maria; Merli, Manuela; Riggio, Oliviero; Nocella, Cristina; Carnevale, Roberto; Pignatelli, Pasquale; Violi, Francesco

    2014-07-01

    NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3g/daily n-3-polyunsaturated fatty acids) was tested. Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti

    PubMed Central

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W. Anthony; Miesfeld, Roger L.

    2011-01-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Ae. aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid 14C-leucine as a metabolic precursor of 14C-acetyl-CoA, we found that 14C-triacylglycerol and 14C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. PMID:21971482

  11. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti.

    PubMed

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W Anthony; Miesfeld, Roger L

    2011-12-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Aedes aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid (14)C-leucine as a metabolic precursor of (14)C-acetyl-CoA, we found that (14)C-triacylglycerol and (14)C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  13. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes.

    PubMed Central

    Okamura, H; Murooka, Y; Harada, T

    1976-01-01

    Tyramine oxidase in Klebsiella aerogenes is highly specific for tyramine, dopamine, octopamine, and norepinephrine, and its synthesis is induced specifically by these compounds. The enzyme is present in a membrane-bound form. The Km value for tyramine is 9 X 10(-4) M. Tyramine oxidase synthesis was subjected to catabolite repression by glucose in the presence of ammonium salts. Addition of cyclic adenosine 3',5'-monophosphate (cAMP) overcame the catabolite repression. A mutant strain, K711, which can produce a high level of beta-galactosidase in the presence of glucose and ammonium chloride, can also synthesize tyramine oxidase and histidase in the presence of inducer in glucose ammonium medium. Catabolite repression of tyramine oxidase synthesis was relieved when the cells were grown under conditions of nitrogen limitation, whereas beta-galactosidase was strongly repressed under these conditions. A cAMP-requiring mutant, MK54, synthesized tyramine oxidase rapidly when tyramine was used as the sole source of nitrogen in the absence of cAMP. However, a glutamine synthetase-constitutive mutant, MK94, failed to synthesize tyramine oxidase in the presence of glucose and ammonium chloride, although it synthesized histidase rapidly under these conditions. These results suggest that catabolite repression of tyramine oxidase synthesis in K. aerogenes is regulated by the intracellular level of cAMP and an unknown cytoplasmic factor that acts independently of cAMP and is formed under conditions of nitrogen limitation. PMID:179974

  14. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.

    PubMed

    Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2014-12-01

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

  15. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury

    PubMed Central

    Cervelli, Manuela; Bellavia, Gabriella; D'Amelio, Marcello; Cavallucci, Virve; Moreno, Sandra; Berger, Joachim; Nardacci, Roberta; Marcoli, Manuela; Maura, Guido; Piacentini, Mauro; Amendola, Roberto; Cecconi, Francesco; Mariottini, Paolo

    2013-01-01

    Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. PMID

  16. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural.

    PubMed

    Carro, Juan; Fernández-Fueyo, Elena; Fernández-Alonso, Carmen; Cañada, Javier; Ullrich, René; Hofrichter, Martin; Alcalde, Miguel; Ferreira, Patricia; Martínez, Angel T

    2018-01-01

    2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H 2 O 2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O 2 , to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O 2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.

  17. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688

    PubMed Central

    Dijkman, Willem P.

    2014-01-01

    In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations. PMID:24271187

  18. A single mutation in the castor Delta9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry.

    PubMed

    Guy, Jodie E; Abreu, Isabel A; Moche, Martin; Lindqvist, Ylva; Whittle, Edward; Shanklin, John

    2006-11-14

    Sequence analysis of the diiron cluster-containing soluble desaturases suggests they are unrelated to other diiron enzymes; however, structural alignment of the core four-helix bundle of desaturases to other diiron enzymes reveals a conserved iron binding motif with similar spacing in all enzymes of this structural class, implying a common evolutionary ancestry. Detailed structural comparison of the castor desaturase with that of a peroxidase, rubrerythrin, shows remarkable conservation of both identity and geometry of residues surrounding the diiron center, with the exception of residue 199. Position 199 is occupied by a threonine in the castor desaturase, but the equivalent position in rubrerythrin contains a glutamic acid. We previously hypothesized that a carboxylate in this location facilitates oxidase chemistry in rubrerythrin by the close apposition of a residue capable of facilitating proton transfer to the activated oxygen (in a hydrophobic cavity adjacent to the diiron center based on the crystal structure of the oxygen-binding mimic azide). Here we report that desaturase mutant T199D binds substrate but its desaturase activity decreases by approximately 2 x 10(3)-fold. However, it shows a >31-fold increase in peroxide-dependent oxidase activity with respect to WT desaturase, as monitored by single-turnover stopped-flow spectrometry. A 2.65-A crystal structure of T199D reveals active-site geometry remarkably similar to that of rubrerythrin, consistent with its enhanced function as an oxidase enzyme. That a single amino acid substitution can switch reactivity from desaturation to oxidation provides experimental support for the hypothesis that the desaturase evolved from an ancestral oxidase enzyme.

  19. A single mutation in the castor Δ9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry

    PubMed Central

    Guy, Jodie E.; Abreu, Isabel A.; Moche, Martin; Lindqvist, Ylva; Whittle, Edward; Shanklin, John

    2006-01-01

    Sequence analysis of the diiron cluster-containing soluble desaturases suggests they are unrelated to other diiron enzymes; however, structural alignment of the core four-helix bundle of desaturases to other diiron enzymes reveals a conserved iron binding motif with similar spacing in all enzymes of this structural class, implying a common evolutionary ancestry. Detailed structural comparison of the castor desaturase with that of a peroxidase, rubrerythrin, shows remarkable conservation of both identity and geometry of residues surrounding the diiron center, with the exception of residue 199. Position 199 is occupied by a threonine in the castor desaturase, but the equivalent position in rubrerythrin contains a glutamic acid. We previously hypothesized that a carboxylate in this location facilitates oxidase chemistry in rubrerythrin by the close apposition of a residue capable of facilitating proton transfer to the activated oxygen (in a hydrophobic cavity adjacent to the diiron center based on the crystal structure of the oxygen-binding mimic azide). Here we report that desaturase mutant T199D binds substrate but its desaturase activity decreases by ≈2 × 103-fold. However, it shows a >31-fold increase in peroxide-dependent oxidase activity with respect to WT desaturase, as monitored by single-turnover stopped-flow spectrometry. A 2.65-Å crystal structure of T199D reveals active-site geometry remarkably similar to that of rubrerythrin, consistent with its enhanced function as an oxidase enzyme. That a single amino acid substitution can switch reactivity from desaturation to oxidation provides experimental support for the hypothesis that the desaturase evolved from an ancestral oxidase enzyme. PMID:17088542

  20. Purification and Characterization of Pyranose Oxidase from the White Rot Fungus Trametes multicolor

    PubMed Central

    Leitner, Christian; Volc, Jindrich; Haltrich, Dietmar

    2001-01-01

    We purified an intracellular pyranose oxidase from mycelial extracts of the white rot fungus Trametes multicolor by using ammonium sulfate fractionation, hydrophobic interaction, ion-exchange chromatography, and gel filtration. The native enzyme has a molecular mass of 270 kDa as determined by equilibrium ultracentrifugation and is composed of four identical 68-kDa subunits as determined by matrix-assisted laser desorption ionization mass spectrometry. Each subunit contains one covalently bound flavin adenine dinucleotide as its prosthetic group. The enzyme oxidizes several aldopyranoses specifically at position C-2, and its preferred electron donor substrates are d-glucose, d-xylose, and l-sorbose. During this oxidation reaction electrons are transferred to oxygen, yielding hydrogen peroxide. In addition, the enzyme catalyzes the two-electron reduction of 1,4-benzoquinone, several substituted benzoquinones, and 2,6-dichloroindophenol, as well as the one-electron reduction of the ABTS [2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid)] cation radical. As judged by the catalytic efficiencies (kcat/Km), some of these quinone electron acceptors are much better substrates for pyranose oxidase than oxygen. The optimum pH of the pyranose oxidase-catalyzed reaction depends strongly on the electron acceptor employed and varies from 4 to 8. It has been proposed that the main metabolic function of pyranose oxidase is as a constituent of the ligninolytic system of white rot fungi that provides peroxidases with H2O2. An additional function could be reduction of quinones, key intermediates that are formed during mineralization of lignin. PMID:11472941

  1. The ability of the 2013 ACC/AHA cardiovascular risk score to identify rheumatoid arthritis patients with high coronary artery calcification scores

    PubMed Central

    Kawai, Vivian K.; Chung, Cecilia P.; Solus, Joseph F.; Oeser, Annette; Raggi, Paolo; Stein, C. Michael

    2014-01-01

    Objective Patients with rheumatoid arthritis (RA) have increased risk of atherosclerotic cardiovascular disease (ASCVD) that is underestimated by the Framingham risk score (FRS). We hypothesized that the 2013 ACC/AHA 10-year risk score would perform better than the FRS and the Reynolds risk score (RRS) in identifying RA patients known to have elevated cardiovascular risk based on high coronary artery calcification (CAC) scores. Methods Among 98 RA patients eligible for risk stratification using the ACC/AHA score we identified 34 patients with high CAC (≥ 300 Agatston units or ≥75th percentile) and compared the ability of the 10-year FRS, RRS and the ACC/AHA risk scores to correctly assign these patients to an elevated risk category. Results All three risk scores were higher in patients with high CAC (P values <0.05). The percentage of patients with high CAC correctly assigned to the elevated risk category was similar among the three scores (FRS 32%, RRS 32%, ACC/AHA 41%) (P=0.233). The c-statistics for the FRS, RRS and ACC/AHA risk scores predicting the presence of high CAC were 0.65, 0.66, and 0.65, respectively. Conclusions The ACC/AHA 10-year risk score does not offer any advantage compared to the traditional FRS and RRS in the identification of RA patients with elevated risk as determined by high CAC. The ACC/AHA risk score assigned almost 60% of patients with high CAC into a low risk category. Risk scores and standard risk prediction models used in the general population do not adequately identify many RA patients with elevated cardiovascular risk. PMID:25371313

  2. NADPH oxidase activity and reactive oxygen species production in brain and kidney of adult male hypertensive Ren-2 transgenic rats.

    PubMed

    Vokurková, M; Rauchová, H; Řezáčová, L; Vaněčková, I; Zicha, J

    2015-01-01

    Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase-mediated superoxide (O(2)(-)) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren-2 renin gene (Ren-2 TGR) and their age-matched normotensive controls - Hannover Sprague Dawley rats (HanSD). We found no difference in the activity of NADPH oxidase measured as a lucigenin-mediated O(2)(-) production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren-2 TGR compared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren-2 TGR+LOS) did not change NADPH oxidase-dependent O(2)(-) production in the kidney. We detected significantly elevated indirect markers of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) in Ren-2 TGR, while they were significantly decreased in Ren-2 TGR+LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions.

  3. NADPH oxidases of the brain: distribution, regulation, and function.

    PubMed

    Infanger, David W; Sharma, Ram V; Davisson, Robin L

    2006-01-01

    The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.

  4. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.

    PubMed

    Bravo, Karent; Osorio, Edison

    2016-04-15

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gravity Responsive NADH Oxidase of the Plasma Membrane

    NASA Technical Reports Server (NTRS)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  6. Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition.

    PubMed

    Albury, Mary S; Elliott, Catherine; Moore, Anthony L

    2010-12-01

    The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd

    2016-01-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD+. The oxidation of NADH to NAD+ was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. PMID:26930704

  8. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis.

    PubMed

    Ge, Xiuchun; Yu, Yang; Zhang, Min; Chen, Lei; Chen, Weihua; Elrami, Fadi; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-05-01

    Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence. Copyright © 2016 Ge et al.

  9. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  10. Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus

    PubMed Central

    Hagan, Cindy C.; Graham, Julia M.E.; Tait, Roger; Widmer, Barry; van Nieuwenhuizen, Adrienne O.; Ooi, Cinly; Whitaker, Kirstie J.; Simas, Tiago; Bullmore, Edward T.; Lennox, Belinda R.; Sahakian, Barbara J.; Goodyer, Ian M.; Suckling, John

    2015-01-01

    Objective There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. Method Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. Results Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. Conclusions The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain. PMID:25685707

  11. Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus.

    PubMed

    Hagan, Cindy C; Graham, Julia M E; Tait, Roger; Widmer, Barry; van Nieuwenhuizen, Adrienne O; Ooi, Cinly; Whitaker, Kirstie J; Simas, Tiago; Bullmore, Edward T; Lennox, Belinda R; Sahakian, Barbara J; Goodyer, Ian M; Suckling, John

    2015-01-01

    There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain.

  12. The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils.

    PubMed

    Doussiere, Jacques; Bouzidi, Farid; Vignais, Pierre V

    2002-07-01

    In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic

  13. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining.

    PubMed

    Byczkowska, Anna; Kunikowska, Anita; Kaźmierczak, Andrzej

    2013-02-01

    Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green-yellow, yellow-orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.

  14. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  15. Calcium transport in vesicles energized by cytochrome oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less

  16. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.

    PubMed

    Röcker, Jessica; Schmitt, Matthias; Pasch, Ludwig; Ebert, Kristin; Grossmann, Manfred

    2016-11-01

    Due to the increase of sugar levels in wine grapes as one of the impacts of climate change, alcohol reduction in wines becomes a major focus of interest. This study combines the use of glucose oxidase and catalase activities with the aim of rapid conversion of glucose into non-fermentable gluconic acid. The H2O2 hydrolysing activity of purified catalase is necessary in order to stabilize glucose oxidase activity. After establishing the adequate enzyme ratio, the procedure was applied in large-scale trials (16L- and 220L-scale) of which one was conducted in a winery under industrial wine making conditions. Both enzyme activity and wine flavour were clearly influenced by the obligatory aeration in the different trials. With the enzyme treatment an alcohol reduction of 2%vol. was achieved after 30h of aeration. However the enzyme treated wines were significantly more acidic and less typical. Copyright © 2016. Published by Elsevier Ltd.

  17. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    PubMed

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  19. Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem1[W

    PubMed Central

    Pogány, Miklós; von Rad, Uta; Grün, Sebastian; Dongó, Anita; Pintye, Alexandra; Simoneau, Philippe; Bahnweg, Günther; Kiss, Levente; Barna, Balázs; Durner, Jörg

    2009-01-01

    Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels. PMID:19726575

  20. Potential U.S. Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline.

    PubMed

    Muntner, Paul; Carey, Robert M; Gidding, Samuel; Jones, Daniel W; Taler, Sandra J; Wright, Jackson T; Whelton, Paul K

    2018-01-16

    The 2017 American College of Cardiology/American Heart Association (ACC/AHA) Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults provides recommendations for the definition of hypertension, systolic and diastolic blood pressure (BP) thresholds for initiation of antihypertensive medication, and BP target goals. This study sought to determine the prevalence of hypertension, implications of recommendations for antihypertensive medication, and prevalence of BP above the treatment goal among U.S. adults using criteria from the 2017 ACC/AHA guideline and the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7). The authors analyzed data from the 2011 to 2014 National Health and Nutrition Examination Survey (N = 9,623). BP was measured 3 times following a standardized protocol and averaged. Results were weighted to produce U.S. population estimates. According to the 2017 ACC/AHA and JNC7 guidelines, the crude prevalence of hypertension among U.S. adults was 45.6% (95% confidence interval [CI]: 43.6% to 47.6%) and 31.9% (95% CI: 30.1% to 33.7%), respectively, and antihypertensive medication was recommended for 36.2% (95% CI: 34.2% to 38.2%) and 34.3% (95% CI: 32.5% to 36.2%) of U.S. adults, respectively. Nonpharmacological intervention is advised for the 9.4% of U.S. adults with hypertension who are not recommended for antihypertensive medication according to the 2017 ACC/AHA guideline. Among U.S. adults taking antihypertensive medication, 53.4% (95% CI: 49.9% to 56.8%) and 39.0% (95% CI: 36.4% to 41.6%) had BP above the treatment goal according to the 2017 ACC/AHA and JNC7 guidelines, respectively. Compared with the JNC7 guideline, the 2017 ACC/AHA guideline results in a substantial increase in the prevalence of hypertension, a small increase in the percentage of U.S. adults recommended for antihypertensive medication, and more intensive BP

  1. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.

    PubMed

    Cervelli, Manuela; Polticelli, Fabio; Angelucci, Emanuela; Di Muzio, Elena; Stano, Pasquale; Mariottini, Paolo

    2015-05-01

    Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N(1)-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.

  2. Analysis of nutritional habits and intake of polyunsaturated fatty acids in veterans with peripheral arterial disease.

    PubMed

    Nosova, Emily V; Bartel, Kevin; Chong, Karen C; Alley, Hugh F; Conte, Michael S; Owens, Christopher D; Grenon, S Marlene

    2015-10-01

    Inadequate nutrient intake may contribute to the development and progression of peripheral arterial disease (PAD). This study's aim was to assess intake of essential fatty acids and nutrients among veterans with PAD. All 88 subjects had ankle-brachial indices of <0.9 and claudication. A validated food frequency questionnaire evaluated dietary intake, and values were compared to guidelines established by the American Heart Association (AHA) and American College of Cardiology (ACC), as well as the AHA/ACC endorsed Dietary Approaches to Stop Hypertension (DASH) eating plan. The mean age was 69 ± 8 years. Compared to the AHA/ACC guidelines, subjects with PAD had an inadequate intake of long-chain polyunsaturated fatty acids (n-3 PUFA; 59% consumed >1 gram daily). Our subjects with PAD had an increased intake of cholesterol (31% met the cut-off established in the DASH plan), total fat (5%) and sodium (53%). They had an inadequate intake of magnesium (3%), calcium (5%), and soluble fiber (3%). Dietary potassium intake met the recommended guidelines. In our subjects with PAD, intake of critical nutrients deviated substantially from the recommended amounts. Further prospective studies should evaluate whether PAD patients experience clinical benefit if diets are modified to meet the AHA/ACC recommendations. © The Author(s) 2015.

  3. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen.

    PubMed

    Castresana, J; Lübben, M; Saraste, M; Higgins, D G

    1994-06-01

    Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.

  4. Primary Prevention With Statins: ACC/AHA Risk-Based Approach Versus Trial-Based Approaches to Guide Statin Therapy.

    PubMed

    Mortensen, Martin B; Afzal, Shoaib; Nordestgaard, Børge G; Falk, Erling

    2015-12-22

    Guidelines recommend initiating primary prevention for atherosclerotic cardiovascular disease (ASCVD) with statins based on absolute ASCVD risk assessment. Recently, alternative trial-based and hybrid approaches were suggested for statin treatment eligibility. This study compared these approaches in a direct head-to-head fashion in a contemporary population. The study used the CGPS (Copenhagen General Population Study) with 37,892 subjects aged 40 to 75 years recruited in 2003 to 2008, all free of ASCVD, diabetes, and statin use at baseline. Among the population studied, 42% were eligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association (ACC/AHA) risk assessment and cholesterol treatment guidelines approach, versus 56% with the trial-based approach and 21% with the hybrid approach. Among these statin-eligible subjects, the ASCVD event rate per 1,000 person-years was 9.8, 6.8, and 11.2, respectively. The ACC/AHA-recommended absolute risk score was well calibrated around the 7.5% 10-year ASCVD risk treatment threshold and discriminated better than the trial-based or hybrid approaches. Compared with the ACC/AHA risk-based approach, the net reclassification index for eligibility for statin therapy among 40- to 75-year-old subjects from the CGPS was -0.21 for the trial-based approach and -0.13 for the hybrid approach. The clinical performance of the ACC/AHA risk-based approach for primary prevention of ASCVD with statins was superior to the trial-based and hybrid approaches. Our results indicate that the ACC/AHA guidelines will prevent more ASCVD events than the trial-based and hybrid approaches, while treating fewer people compared with the trial-based approach. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Identification of vascular patients at very high risk for recurrent cardiovascular events: validation of the current ACC/AHA very high risk criteria.

    PubMed

    van den Berg, M Johanneke; Bhatt, Deepak L; Kappelle, L Jaap; de Borst, Gert J; Cramer, Maarten J; van der Graaf, Yolanda; Steg, Ph Gabriel; Visseren, Frank L J

    2017-11-14

    To validate and assess performance of the current ACC/AHA very high risk criteria in patients with clinically manifest arterial disease. Data were used from the SMART study (n = 7216) and REACH Registry (n = 48 322), two prospective cohorts of patients with manifest atherosclerotic arterial disease. Prevalence and incidence rates of recurrent major adverse cardiovascular events (MACE) were calculated, according to the ACC/AHA VHR criteria (cardiovascular disease combined with diabetes, smoking, dyslipidaemia, and/or recent recurrent coronary events). Performance of the ACC/AHA criteria was compared with single very high risk factors in terms of C-statistics and Net Reclassification Index. All patients were at VHR according to the ESC guidelines (incidence of recurrent MACE in SMART was 2.4/100PY, with 95% CI 2.3-2.5/100PY and in REACH 5.1/100PY with 95% CI 5.0-5.3/100PY). In SMART 57% of the patients were at VHR according to the ACC/AHA criteria (incidence of recurrent MACE 2.7/100PY, 95% CI 2.5-2.9/100PY) and in REACH this was 64% (5.9/100PY, 95% CI 5.7-6.1/100PY). The C-statistic for the ACC/AHA VHR criteria was 0.53 in REACH and 0.54 in SMART. Very high risk factors with comparable or slightly better performance were eGFR < 45, polyvascular disease and age >70 years. Around two third of the patients meeting the ACC/AHA VHR criteria had a predicted 10-year risk of recurrent MACE <30%. The ACC/AHA VHR criteria have limited discriminative power. Identifying patients with clinically manifest arterial disease at VHR for recurrent vascular events using eGFR <45, polyvascular disease, or age >70 years performs as well as the ACC/AHA VHR criteria. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  6. Acidity of a Cu-bound histidine in the binuclear center of cytochrome C oxidase.

    PubMed

    Fadda, Elisa; Chakrabarti, Nilmadhab; Pomès, Régis

    2005-12-01

    Cytochrome c oxidase (CcO) is a crucial enzyme in the respiratory chain. Its function is to couple the reduction of molecular oxygen, which takes place in the Fea3-CuB binuclear center, to proton translocation across the mitochondrial membrane. Although several high-resolution structures of the enzyme are known, the molecular basis of proton pumping activation and its mechanism remain to be elucidated. We examine a recently proposed scheme (J. Am. Chem. Soc. 2004, 126, 1858; FEBS Lett. 2004, 566, 126) that involves the deprotonation of the CuB-bound imidazole ring of a histidine (H291 in mammalian CcO) as a key element in the proton pumping mechanism. The central feature of that proposed mechanism is that the pKa values of the imidazole vary significantly depending on the redox state of the metals in the binuclear center. We use density functional theory in combination with continuum electrostatics to calculate the pKa values, successively in bulk water and within the protein, of the Cu-bound imidazole in various Cu- and Cu-Fe complexes. From pKas in bulk water, we derived a value of -266.34 kcal.mol(-1) for the proton solvation free energy (Delta). This estimate is in close agreement with the experimental value of -264.61 kcal.mol(-1) (J. Am. Chem. Soc. 2001, 123, 7314), which reinforces the conclusion that Delta is more negative than previous values used for pKa calculations. Our approach, on the basis of the study of increasingly more detailed models of the CcO binuclear center at different stages of the catalysis, allows us to examine successively the effect of each of the two metals' redox states and of solvation on the acidity of imidazole, whose pKa is approximately 14 in bulk water. This analysis leads to the following conclusions: first, the effect of Cu ligation on the imidazole acidity is negligible regardless of the redox state of the metal. Second, results obtained for Cu-Fe complexes in bulk water indicate that Cu-bound imidazole pKa values lie within

  7. GAD65 Promoter Polymorphism rs2236418 Modulates Harm Avoidance in Women via Inhibition/Excitation Balance in the Rostral ACC.

    PubMed

    Colic, Lejla; Li, Meng; Demenescu, Liliana Ramona; Li, Shija; Müller, Iris; Richter, Anni; Behnisch, Gusalija; Seidenbecher, Constanze I; Speck, Oliver; Schott, Björn H; Stork, Oliver; Walter, Martin

    2018-05-30

    Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes ( GAD1 , GAD2 , and GLS ) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women. SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women

  8. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis.

    PubMed

    Kim, Ok Tae; Um, Yurry; Jin, Mei Lan; Kim, Jang Uk; Hegebarth, Daniela; Busta, Lucas; Racovita, Radu C; Jetter, Reinhard

    2018-06-01

    Centella asiatica is widely used as a medicinal plant due to accumulation of the ursane-type triterpene saponins asiaticoside and madecassoside. The molecular structure of both compounds suggests that they are biosynthesized from α-amyrin via three hydroxylations, and the respective Cyt P450-dependent monooxygenases (P450 enzymes) oxidizing the C-28 and C-2α positions have been reported. However, a third enzyme hydroxylating C-23 remained elusive. We previously identified 40,064 unique sequences in the transcriptome of C. asiatica elicited by methyl jasmonate, and among them we have now found 149 unigenes encoding putative P450 enzymes. In this set, 23 full-length cDNAs were recognized, 13 of which belonged to P450 subfamilies previously implicated in secondary metabolism. Four of these genes were highly expressed in response to jasmonate treatment, especially in leaves, in accordance with the accumulation patterns of asiaticoside. The functions of these candidate genes were tested using heterologous expression in yeast cells. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that yeast expressing only the oxidosqualene synthase CaDDS produced the asiaticoside precursor α-amyrin (along with its isomer β-amyrin), while yeast co-expressing CaDDS and CYP716A83 also contained ursolic acid along with oleanolic acid. This P450 enzyme thus acts as a multifunctional triterpenoid C-28 oxidase converting amyrins into corresponding triterpenoid acids. Finally, yeast strains co-expressing CaDDS, CYP716A83 and CYP714E19 produced hederagenin and 23-hydroxyursolic acid, showing that CYP714E19 is a multifunctional triterpenoid oxidase catalyzing the C-23 hydroxylation of oleanolic acid and ursolic acid. Overall, our results demonstrate that CaDDS, CYP716A83 and CYP714E19 are C. asiatica enzymes catalyzing consecutive steps in asiaticoside biosynthesis.

  9. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    PubMed

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  10. Inhibition of Human Vascular NADPH Oxidase by Apocynin Derived Oligophenols

    PubMed Central

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47phox and p22phox. To that end, while apocynin was unable to block the interaction of his-tagged p47phox with a surface immobilized biotinalyted p22phox peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC50 = 1.6 μM). These results provide evidence that peroxidase-catalyzed AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase. PMID:19523836

  11. Current status of NADPH oxidase research in cardiovascular pharmacology.

    PubMed

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Alvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new

  12. Current status of NADPH oxidase research in cardiovascular pharmacology

    PubMed Central

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Castiñeiras-Landeira, María Isabel; Raposeiras-Roubín, Sergio; González-Juanatey, José R; Álvarez, Ezequiel

    2013-01-01

    The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new

  13. Renalase prevents AKI independent of amine oxidase activity.

    PubMed

    Wang, Ling; Velazquez, Heino; Moeckel, Gilbert; Chang, John; Ham, Ahrom; Lee, H Thomas; Safirstein, Robert; Desir, Gary V

    2014-06-01

    AKI is characterized by increased catecholamine levels and hypertension. Renalase, a secretory flavoprotein that oxidizes catecholamines, attenuates ischemic injury and the associated increase in catecholamine levels in mice. However, whether the amine oxidase activity of renalase is involved in preventing ischemic injury is debated. In this study, recombinant renalase protected human proximal tubular (HK-2) cells against cisplatin- and hydrogen peroxide-induced necrosis. Similarly, genetic depletion of renalase in mice (renalase knockout) exacerbated kidney injury in animals subjected to cisplatin-induced AKI. Interestingly, compared with the intact renalase protein, a 20-amino acid peptide (RP-220), which is conserved in all known renalase isoforms, but lacks detectable oxidase activity, was equally effective at protecting HK-2 cells against toxic injury and preventing ischemic injury in wild-type mice. Furthermore, in vitro treatment with RP-220 or recombinant renalase rapidly activated Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinases and downregulated c-Jun N-terminal kinase. In summary, renalase promotes cell survival and protects against renal injury in mice through the activation of intracellular signaling cascades, independent of its ability to metabolize catecholamines, and we have identified the region of renalase required for these effects. Renalase and related peptides show potential as therapeutic agents for the prevention and treatment of AKI. Copyright © 2014 by the American Society of Nephrology.

  14. HMSN/ACC truncation mutations disrupt brain-type creatine kinase-dependant activation of K+/Cl- co-transporter 3.

    PubMed

    Salin-Cantegrel, Adèle; Shekarabi, Masoud; Holbert, Sébastien; Dion, Patrick; Rochefort, Daniel; Laganière, Janet; Dacal, Sandra; Hince, Pascale; Karemera, Liliane; Gaspar, Claudia; Lapointe, Jean-Yves; Rouleau, Guy A

    2008-09-01

    The potassium-chloride co-transporter 3 (KCC3) is mutated in hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC); however, the molecular mechanisms of HMSN/ACC pathogenesis and the exact role of KCC3 in the development of the nervous system remain poorly understood. The functional regulation of this transporter by protein partners is also largely unknown. Using a yeast two-hybrid approach, we discovered that the C-terminal domain (CTD) of KCC3, which is lost in most HMSN/ACC-causing mutations, directly interacts with brain-specific creatine kinase (CK-B), an ATP-generating enzyme that is also a partner of KCC2. The interaction of KCC3 with CK-B was further confirmed by in vitro glutathione S-transferase pull-down assay, followed by sequencing of the pulled-down complexes. In transfected cultured cells, immunofluorescence labeling showed that CK-B co-localizes with wild-type KCC3, whereas the kinase fails to interact with the inactive truncated KCC3. Finally, CK-B's inhibition by DNFB results in reduction of activity of KCC3 in functional assays using Xenopus laevis oocytes. This physical and functional association between the co-transporter and CK-B is, therefore, the first protein-protein interaction identified to be potentially involved in the pathophysiology of HMSN/ACC.

  15. Oxygen activation in flavoprotein oxidases: the importance of being positive.

    PubMed

    Gadda, Giovanni

    2012-04-03

    The oxidation of flavin hydroquinones by O(2) in solution is slow, with second-order rate constants of ~250 M(-1) s(-1). This is due to the obligatory, single-electron transfer that initiates the reaction being thermodynamically unfavored and poorly catalyzed. Notwithstanding considerations of O(2) accessibility to the reaction site, its desolvation and geometry and other factors that can also contribute to further rate acceleration, flavoprotein oxidases must activate O(2) for reaction with flavin hydroquinones to be able to achieve the 100-1000-fold rate enhancements typically observed. Protein positive charges have been identified in glucose oxidase, monomeric sarcosine oxidase, N-methyltryptophan oxidase and fructosamine oxidase that electrostatically stabilize the transition state for the initial single electron transfer that generates the O(2)(-•)/flavin semiquinone radical pair. In choline oxidase despite the presence of three histidines in the active site, the trimethylammonium group of the reaction product provides such an electrostatic stabilization. A nonpolar site proximal to the flavin C(4a) atom in choline oxidase has also been identified, which contributes to the geometry and desolvation of the O(2) reaction site. The relevance of O(2) activation by product charges to other flavoprotein oxidases, such as for example those catalyzing amine oxidations, is discussed in this review. A nonpolar site close to the flavin C(4a) atom and a positive charge is identified through structural analysis in several flavoprotein oxidases. Mutagenesis has disclosed nonpolar sites in O(2)-reducing enzymes that utilize copper/TPQ or iron. It is predicted that classes of O(2)-reducing enzymes utilizing other cofactors also contain a similar catalytic motif.

  16. Aspartic acid substitutions in monoamine oxidase-A reveal both catalytic-dependent and -independent influences on cell viability and proliferation.

    PubMed

    Wei, Zelan; Satram-Maharaj, Tamara; Chaharyn, Bradley; Kuski, Kelly; Pennington, Paul R; Cao, Xia; Chlan, Jennifer; Mousseau, Darrell D

    2012-11-01

    Post-translational influences could underlie the ambiguous roles of monoamine oxidase-A (MAO-A) in pathologies such as depression, cancer and Alzheimer disease. In support of this, we recently demonstrated that the Ca²⁺-sensitive component of MAO-A catalytic activity is inhibited by a pro-survival p38 (MAPK)-dependent mechanism. We substituted three aspartic acid (D) residues in human MAO-A that reside in putative Ca²⁺-binding motifs and overexpressed the individual proteins in the human HEK293 cell line. We assayed the overexpressed proteins for catalytic activity and for their influence on cell viability (using MTT conversion and trypan blue exclusion) and proliferation/DNA synthesis [using bromodeoxyuridine (BrdU) incorporation]. Innate MAO-A catalytic activity (and the capacity for generating hydrogen peroxide) was unaffected by the D61A substitution, but inhibited moderately or completely by the D248A and D328G substitutions, respectively. The Ca²⁺-sensitive activities of wild-type and D248A MAO-A proteins were enhanced by treatment with the selective p38(MAPK) inhibitor, SB203580, but was completely abrogated by the D61A substitution. Monoamine oxidase-A(D61A) was toxic to cells and exerted no effect on cell proliferation, while MAO-A(D248A) was generally comparable to wild-type MAO-A. As expected, the catalytic-dead MAO-A(D328G) was not cytotoxic, but unexpectedly enhanced both MTT conversion and BrdU staining. Variant-dependent changes in Bax and Bcl-2/Bcl-XL protein expression were observed. A different pattern of effects in N2-a cells suggests cell line-dependent roles for MAO-A. A catalytic-dependent mechanism influences MAO-A-mediated cytotoxicity, whereas a catalytic-independent mechanism contributes to proliferation. Context-dependent inputs by either mechanism could underlie the ambiguous pathological contributions of MAO-A.

  17. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  18. Partially dissociable roles of OFC and ACC in stimulus-guided and action-guided decision making.

    PubMed

    Khani, Abbas

    2014-05-01

    Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.

  19. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  20. Generating disulfides with the quiescin sulfhydryl oxidases

    PubMed Central

    Heckler, Erin J.; Rancy, Pumtiwitt C.; Kodali, Vamsi K.; Thorpe, Colin

    2008-01-01

    The Quiescin-sulfhydryl oxidase (QSOX) family of flavoenzymes catalyzes the direct and facile insertion of disulfide bonds into unfolded reduced proteins with concomitant reduction of oxygen to hydrogen peroxide. This review discusses the chemical mechanism of these enzymes and the involvement of thioredoxin and flavin-binding domains in catalysis. The variability of CxxC motifs in the QSOX family is highlighted and attention is drawn to the steric factors that may promote efficient thiol/disulfide exchange during oxidative protein folding. The varied cellular location of these multi-domain sulfhydryl oxidases is reviewed and potential intracellular and extracellular roles are summarized. Finally, this review identifies important unresolved questions concerning this ancient family of sulfhydryl oxidases. PMID:17980160

  1. Doctors' knowledge, attitudes, and compliance with 2013 ACC/AHA guidelines for prevention of atherosclerotic cardiovascular disease in Singapore.

    PubMed

    Setia, Sajita; Fung, Selwyn Sze-Wang; Waters, David D

    2015-01-01

    There is an unmet need for strategies to prevent atherosclerotic cardiovascular disease in Singapore. The main objective of this study was to investigate Singapore physicians' response to the 2013 American College of Cardiology and American Heart Association (ACC/AHA) guidelines for treatment of cholesterol and their impact on clinical practice. This survey was conducted in two stages, qualitative and quantitative. Physicians were initially screened on the basis of an initial screener questionnaire, and eligible physicians were then included in the study. Qualitative (n=19) and quantitative (n=66) surveys were completed by eligible physicians from Singapore. Physicians were less familiar with the 2013 ACC/AHA guidelines (35%) as compared with the Singapore Ministry of Health (MoH) lipid guidelines 2006 (49%). Of the physicians whose opinion was sought on the ACC/AHA guidelines, more than 50% disagreed with the definition of high-, moderate-, and low-intensity statin therapy; recommendation of atorvastatin 40-80 mg and rosuvastatin 20-40 mg as medications for high-intensity statin therapy; and classification of individuals who would benefit from moderate- to high-intensity statin therapy. Most physicians assumed that Asians may be intolerant to high-intensity statin therapy. Although embracing the 2013 ACC/AHA guidelines in clinical practice is expected to provide better clinical care to patients, our study revealed high reluctance by physicians, especially in the use of high-dose statins. However, ACC/AHA guidelines can be easily adopted in Asia as there is a wealth of data available for atorvastatin in primary and secondary prevention of atherosclerotic cardiovascular disease with similar efficacy and safety profiles in the white and Asian populations.

  2. The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease.

    PubMed

    Jung, Keum Ji; Jang, Yangsoo; Oh, Dong Joo; Oh, Byung-Hee; Lee, Sang Hoon; Park, Seong-Wook; Seung, Ki-Bae; Kim, Hong-Kyu; Yun, Young Duk; Choi, Sung Hee; Sung, Jidong; Lee, Tae-Yong; Kim, Sung Hi; Koh, Sang Baek; Kim, Moon Chan; Chang Kim, Hyeon; Kimm, Heejin; Nam, Chungmo; Park, Sungha; Jee, Sun Ha

    2015-09-01

    To evaluate the performance of the American College of Cardiology/American Heart Association (ACC/AHA) 2013 Pooled Cohort Equations in the Korean Heart Study (KHS) population and to develop a Korean Risk Prediction Model (KRPM) for atherosclerotic cardiovascular disease (ASCVD) events. The KHS cohort included 200,010 Korean adults aged 40-79 years who were free from ASCVD at baseline. Discrimination, calibration, and recalibration of the ACC/AHA Equations in predicting 10-year ASCVD risk in the KHS cohort were evaluated. The KRPM was derived using Cox model coefficients, mean risk factor values, and mean incidences from the KHS cohort. In the discriminatory analysis, the ACC/AHA Equations' White and African-American (AA) models moderately distinguished cases from non-cases, and were similar to the KRPM: For men, the area under the receiver operating characteristic curve (AUROCs) were 0.727 (White model), 0.725 (AA model), and 0.741 (KRPM); for women, the corresponding AUROCs were 0.738, 0.739, and 0.745. Absolute 10-year ASCVD risk for men in the KHS cohort was overestimated by 56.5% (White model) and 74.1% (AA model), while the risk for women was underestimated by 27.9% (White model) and overestimated by 29.1% (AA model). Recalibration of the ACC/AHA Equations did not affect discriminatory ability but improved calibration substantially, especially in men in the White model. Of the three ASCVD risk prediction models, the KRPM showed best calibration. The ACC/AHA Equations should not be directly applied for ASCVD risk prediction in a Korean population. The KRPM showed best predictive ability for ASCVD risk. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Doctors’ knowledge, attitudes, and compliance with 2013 ACC/AHA guidelines for prevention of atherosclerotic cardiovascular disease in Singapore

    PubMed Central

    Setia, Sajita; Fung, Selwyn Sze-Wang; Waters, David D

    2015-01-01

    Purpose There is an unmet need for strategies to prevent atherosclerotic cardiovascular disease in Singapore. The main objective of this study was to investigate Singapore physicians’ response to the 2013 American College of Cardiology and American Heart Association (ACC/AHA) guidelines for treatment of cholesterol and their impact on clinical practice. Methods This survey was conducted in two stages, qualitative and quantitative. Physicians were initially screened on the basis of an initial screener questionnaire, and eligible physicians were then included in the study. Results Qualitative (n=19) and quantitative (n=66) surveys were completed by eligible physicians from Singapore. Physicians were less familiar with the 2013 ACC/AHA guidelines (35%) as compared with the Singapore Ministry of Health (MoH) lipid guidelines 2006 (49%). Of the physicians whose opinion was sought on the ACC/AHA guidelines, more than 50% disagreed with the definition of high-, moderate-, and low-intensity statin therapy; recommendation of atorvastatin 40–80 mg and rosuvastatin 20–40 mg as medications for high-intensity statin therapy; and classification of individuals who would benefit from moderate- to high-intensity statin therapy. Most physicians assumed that Asians may be intolerant to high-intensity statin therapy. Conclusion Although embracing the 2013 ACC/AHA guidelines in clinical practice is expected to provide better clinical care to patients, our study revealed high reluctance by physicians, especially in the use of high-dose statins. However, ACC/AHA guidelines can be easily adopted in Asia as there is a wealth of data available for atorvastatin in primary and secondary prevention of atherosclerotic cardiovascular disease with similar efficacy and safety profiles in the white and Asian populations. PMID:26082642

  4. Purification and characterization of polyphenol oxidase from jackfruit ( Artocarpus heterophyllus ) bulbs.

    PubMed

    Tao, Yi-Ming; Yao, Le-Yi; Qin, Qiu-Yan; Shen, Wang

    2013-12-26

    Polyphenol oxidase (PPO) from jackfruit bulb was purified through acetone precipitation, ion-exchange column, and gel filtration column. PPO was a dimer with the molecular weight of 130 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration. The Km was 8.3 and 18.2 mM using catechol and 4-methylcatechol as substrates, respectively. The optimum pH was 7.0 (catechol as the substrate) or 6.5 (4-methylcatechol as the substrate). The optimum temperature was 8 °C. The enzyme was stable below 40 °C. The activation energy (Ea) of heat inactivation was estimated to be 103.30 kJ/mol. The PPO activity was activated by Mn(2+), SDS, Tween-20, Triton X-100, citric acid, and malic acid but inhibited by K(+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), cetyl trimethyl ammonium bromide (CTAB), kojic acid, tropolone, glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Cys and AA were effective to reduce browning of jackfruit bulbs during the storage at 8 °C for 15 days.

  5. Mentoring in 2 + 2 Programs: LISD/ACC 2 + 2 Articulation Project.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    The role of mentoring in the 2 + 2 Instrumentation and Control (I&C) articulation project between the Leander Independent School District (LISD) and Austin Community College (ACC) is discussed in this document. Following a brief history of the origin and function of the mentor, the paper explains the need for the mentoring system in the I&C…

  6. Sound the Alarm: The Effect of Narcissism on Retaliatory Aggression is Moderated by dACC Reactivity to Rejection

    PubMed Central

    Chester, David S.; DeWall, C. Nathan

    2015-01-01

    Objective Narcissists behave aggressively when their egos are threatened by interpersonal insults. This effect has been explained in terms of narcissist’s motivation to reduce the discrepancy between their grandiose self and its threatened version, though no research has directly tested this hypothesis. If this notion is true, the link between narcissism and retaliatory aggression should be moderated by neural structures that subserve discrepancy detection, such as the dorsal anterior cingulate cortex (dACC). This study tested the hypothesis that narcissism would only predict greater retaliatory aggression in response to social rejection when the dACC was recruited by the threat. Method Thirty participants (15 females; MAge=18.86, SD=1.25; 77% White) completed a trait narcissism inventory, were socially accepted and then rejected while undergoing fMRI, and then could behave aggressively towards one of the rejecters by blasting them with unpleasant noise. Results When narcissists displayed greater dACC activation during rejection, they behaved aggressively. But there was only a weak or nonsignificant relation between narcissism and aggression among participants with a blunted dACC response. Conclusions Narcissism’s role in aggressive retaliation to interpersonal threats is likely determined by the extent to which the brain’s discrepancy detector registers the newly-created gap between the grandiose and threatened selves. PMID:25564936

  7. Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.

    PubMed

    Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas

    2016-12-01

    Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Identification of a melatonin receptor type 1A gene ( AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress

    NASA Astrophysics Data System (ADS)

    Li, Guilin; Zhang, Yanming; Ni, Yong; Wang, Ying; Xu, Baohua; Guo, Xingqi

    2018-04-01

    It is known that melatonin plays an indispensable role in the defense against some environment-induced stresses. The melatonin receptor (MTNR) is also closely linked to the environmental stress response in mammals. However, little is known about the function of the MTNR in insects, including honeybees. In this study, we identified a MTNR from Apis cerana cerana named AccMTNR1A, which contained a typical seven-transmembrane domain common to this family of receptors. A subcellular localization analysis showed that AccMTNR1A was localized in the cytomembrane. Additionally, we found that cold stress apparently boosted AccMTNR1A transcription, indicating that AccMTNR1A possibly connects to the cold stress response. The knockdown of AccMTNR1A attenuated the expression level of some genes associated with the cold stress response, suggesting that AccMTNR1A likely plays an analogous role with these genes during low temperature stress response. Moreover, silencing of AccMTNR1A also suppressed the transcription of some antioxidant genes, prompting the possibility that the response of AccMTNR1A to cold stress response may be related to antioxidant signaling pathways. Collectively, the findings presented here provide evidence that AccMTNR1A may play essential roles in protecting Apis cerana cerana from cold stress.

  9. Comparison of the ACC/AHA and Framingham algorithms to assess cardiovascular risk in HIV-infected patients.

    PubMed

    Pinto Neto, Lauro Ferreira da Silva; Dias, Fernanda Rezende; Bressan, Flavia Feres; Santos, Carolina Rocio Oliveira

    The aim of this study was to compare the predictions of Framingham cardiovascular (CV) risk score (FRS) and the American College of Cardiology/American Heart Association (ACC/AHA) risk score in an HIV outpatient clinic in the city of Vitoria, Espirito Santo, Brazil. In a cross-sectional study 341 HIV infected patients over 40 years old consecutively recruited were interviewed. Cohen's kappa coefficient was used to assess agreement between the two algorithms. 61.3% were stratified as low risk by Framingham score, compared with 54% by ACC/AHA score (Spearman correlation 0.845; p<0.000). Only 26.1% were classified as cardiovascular high risk by Framingham compared to 46% by ACC/AHA score (Kappa=0.745; p<0.039). Only one out of eight patients had cardiovascular high risk by Framingham at the time of a myocardial infarction event registered up to five years before the study period. Both cardiovascular risk scores but especially Framingham underestimated high-risk patients in this HIV-infected population. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase.

    PubMed

    Haider, Saqlain; Alhusban, Manal; Chaurasiya, Narayan D; Tekwani, Babu L; Chittiboyina, Amar G; Khan, Ikhlas A

    2018-05-23

    There is little information available on the monoamine oxidase isoform selectivity of N-alkyl harmine analogs, which exhibit a myriad of activities including monoamine oxidase isoform A (MAO-A), tyrosine-phosphorylation-regulated kinase (DYRK1A) and cytotoxicity to several select cancer cell lines. Compounds 3e and 4c exhibited an IC 50 of 0.83 ± 0.03 and 0.43 ± 0.002 μM against MAO-A and an IC 50 of 0.26 ± 0.04 and 0.36 ± 0.001 μM against MAO-B, respectively. Molecular docking studies revealed π-π interactions between the synthesized molecules and aromatic amino acid residues. Conclusion & future perspective: The current study delineates the structural requirements for MAO-A selectivity and such information may be helpful in designing selective analogs for kinase, DYRK1A and harmine-based cytotoxics without apparent MAO enzyme inhibition.

  11. Applicability of the 2013 ACC/AHA Risk Assessment and Cholesterol Treatment Guidelines in the real world: results from a multiethnic case-control study.

    PubMed

    Magnoni, Marco; Berteotti, Martina; Norata, Giuseppe Danilo; Limite, Luca Rosario; Peretto, Giovanni; Cristell, Nicole; Maseri, Attilio; Cianflone, Domenico

    2016-01-01

    The 2013 ACC/AHA cholesterol treatment guidelines have introduced a new cardiovascular risk assessment approach (PCE) and have revisited the threshold for prescribing statins. This study aims to compare the ex ante application of the ACC/AHA and the ATP-III guideline models by using a multiethnic case-control study. ATP-III-FRS and PCE were assessed in 739 patients with first STEMI and 739 age- and gender-matched controls; the proportion of cases and controls that would have been eligible for statin as primary prevention therapy and the discriminatory ability of both models were evaluated. The application of the ACC/AHA compared to the ATP-III model, resulted in an increase in sensitivity [94% (95%CI: 91%-95%) vs. 65% (61%-68%), p< 0.0001], a reduction in specificity [19% (15%-22%) vs. 55% (51%-59%), p< 0.0001] with similar global accuracy [0.56 (0.53-0.59) vs.0.59 (0.57-0.63), p ns]. When stratifying for ethnicity, the accuracy of the ACC/AHA model was higher in Europeans than in Chinese (p = 0.003) and to identified premature STEMI patients within Europeans much better compared to the ATP-III model (p = 0.0289). The application of the ACC/AHA model resulted in a significant reduction of first STEMI patients who would have escaped from preventive treatment. Age and ethnicity affected the accuracy of the ACC/AHA model improving the identification of premature STEMI among Europeans only. Key messages According to the ATP-III guideline model, about one-third of patients with STEMI would not be eligible for primary preventive treatment before STEMI. The application of the new ACC/AHA cholesterol treatment guideline model leads to a significant reduction of the percentage of patients with STEMI who would have been considered at lower risk before the STEMI. The global accuracy of the new ACC/AHA model is higher in the Europeans than in the Chinese and, moreover, among the Europeans, the application of the new ACC/AHA guideline model also improved

  12. Effects of repeated administration of the monoamine oxidase inhibitor phenelzine on the discriminability of d-lysergic acid diethylamide (LSD) and 1-(m-trifluoromethylphenyl) piperazine (TFMPP).

    PubMed

    Cunningham, K A; Carroll, B A; Appel, J B

    1986-01-01

    Rats trained to discriminate d-lysergic acid diethylamide (LSD; 0.08 mg/kg) or 1-(m-trifluoromethylphenyl) piperazine (TFMPP; 0.8 mg/kg) were treated with the monoamine oxidase inhibitor (MAOI) phenelzine (10 mg/kg/day) for 7 days. After a 24 h "washout" period, they were challenged with the training drug (and dose) or saline, during extinction test sessions. Following 0.08 mg/kg LSD, LSD-trained rats responded primarily on the saline lever (29% drug-appropriate responding) while, after TFMPP (0.8 mg/kg), TFMPP-trained animals responded on the drug lever (75% drug-appropriate responding). These preliminary data suggest that, if serotonin receptors are involved in the behavioral effects of TFMPP, these receptors differ from those involved in the effects of LSD.

  13. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.

    PubMed

    Hiraka, Kentaro; Kojima, Katsuhiro; Lin, Chi-En; Tsugawa, Wakako; Asano, Ryutaro; La Belle, Jeffrey T; Sode, Koji

    2018-04-30

    l-lactate biosensors employing l-lactate oxidase (LOx) have been developed mainly to measure l-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some l-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of l-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5mM l-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9-12% due to oxygen interference. The Ala96Leu mutant maintained 56-69% of the response current at the same l-lactate level and minimized the relative bias error to -19% from -49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of l-lactate concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    PubMed

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  15. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder.

    PubMed

    Bradley, Kailyn A; Alonso, Carmen M; Mehra, Lushna M; Xu, Junqian; Gabbay, Vilma

    2018-06-08

    Alterations in γ-aminobutyric acid (GABA) have been hypothesized to play a role in the pathogenesis of psychiatric illness. Our previous work has specifically linked anterior cingulate cortex (ACC) GABA deficits with anhedonia in youth with major depressive disorder (MDD). As anhedonia reflects alterations within the reward circuitry, we sought to extend this investigation and examine GABA levels in another key reward-related region, the striatum, in the same adolescent population. Thirty-six youth [20 with MDD and 16 healthy controls; (HC)], ages 12 to 21 years old, underwent J-edited proton magnetic resonance spectroscopy ( 1 H MRS) whereby GABA levels were measured in striatal and ACC voxels. GABA levels were compared between groups and between voxel positions and were examined in relation to clinical symptomatology, such as depression severity, anhedonia, anxiety, and suicidality. Depressed youth had unexpectedly higher GABA levels in the striatum compared to HC. In both depressed and healthy youth, GABA levels were higher in the striatum than in the ACC, while the differences in depressed youth were greater. Moreover, in depressed youth, higher striatal GABA above the mean of HCs was correlated with lower ACC GABA below the mean of HCs. Striatal GABA was not correlated with clinical symptomatology in this small sample. Together, these findings suggest that higher striatal GABA levels may serve some compensatory function as a result of lower ACC GABA in depressed adolescents. It is also possible that, like lower ACC GABA, higher striatal GABA might simply be another pathological feature of adolescent depression. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.

    PubMed

    Condino-Neto, A; Whitney, C; Newburger, P E

    1998-11-01

    We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.

  18. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase.

    PubMed

    Zhang, Jianzhi; Li, Xi

    2018-01-01

    To enhance the efficiency of phenyllactic acid (PLA) production from L-phenylalanine (L-Phe) by introducing a novel artificial pathway into Escherichia coli RESULTS: The production of PLA from L-Phe by recombinant E. coli (ldh-lpox) coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase was studied. The new PLA synthesis pathway was confirmed to be efficient in recombinant E. coli. Subsequently, two different biocatalyst processes were carried out and optimized for PLA production. In the whole cell biosynthesis process at high cell density using collected recombinant cells as catalyst, at optimal conditions (L-Phe 6 g/l, pH 7.5, 35 °C, CDW 24.5 g/l and 200 rpm), the recombinant E. coli (ldh-lpox) produced 1.62 g PLA/l with a conversion of 28% from L-Phe. Similarly, during the two-temperature-stage fermentation process in flasks using IPTG-induced cells, the temperature in the second stage was increased to 35 °C to benefit the biocatalyst process, and comparable phenyllactic acid production of 1.47 g/l was obtained from 12 g L-Phe/l. Recombinant E. coli (ldh-lpox) was efficient in PLA production realizing a high titer of several folds compared with studies using L-Phe as substrate.

  19. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models

  20. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    PubMed

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. GATEWAY Report Brief: Tunable-White Lighting at the ACC Care Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Summary of a GATEWAY program report that documented the performance of tunable-white LED lighting systems installed in several spaces within the ACC Care Center, a senior-care facility in Sacramento, CA. The project results included energy savings and improved lighting quality, as well as other possible health-related benefits that may have been attributable, at least in part, to the lighting changes.

  2. Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus

    PubMed Central

    Daou, Marianne; Piumi, François; Cullen, Daniel; Record, Eric

    2016-01-01

    ABSTRACT The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium. The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde. IMPORTANCE This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these

  3. A novel proteolytic processing of prolysyl oxidase

    PubMed Central

    Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E.; Yamauchi, Mitsuo

    2012-01-01

    Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residue Gly162 and Asp163 (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity and mass spectrometry. One form was identified as a well characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX (tLOX) resulting from the cleavage at the carboxy terminus of Arg192. The tLOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX. PMID:21591931

  4. A novel proteolytic processing of prolysyl oxidase.

    PubMed

    Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E; Yamauchi, Mitsuo

    2011-01-01

    Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residues Gly(162) and Asp(163) (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity, and mass spectrometry. One form was identified as a well-characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX resulting from the cleavage at the carboxy terminus of Arg(192). The truncated form of LOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX.

  5. Exploiting algal NADPH oxidase for biophotovoltaic energy

    DOE PAGES

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K.; ...

    2015-01-29

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anionmore » production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. Furthermore, the results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.« less

  6. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases.

    PubMed

    Gao, Hui-Ming; Zhou, Hui; Hong, Jau-Shyong

    2012-06-01

    Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases. Published by Elsevier Ltd.

  7. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of type-2-copper-depleted ascorbate oxidase.

    PubMed

    O'Neill, P; Fielden, E M; Avigliano, L; Marcozzi, G; Ballini, A; Agrò, F

    1984-08-15

    The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.

  8. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina.

    PubMed

    Krause, Frank; Scheckhuber, Christian Q; Werner, Alexandra; Rexroth, Sascha; Reifschneider, Nicole H; Dencher, Norbert A; Osiewacz, Heinz D

    2004-06-18

    To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging.

  9. Sound the Alarm: The Effect of Narcissism on Retaliatory Aggression Is Moderated by dACC Reactivity to Rejection.

    PubMed

    Chester, David S; DeWall, C Nathan

    2016-06-01

    Narcissists behave aggressively when their egos are threatened by interpersonal insults. This effect has been explained in terms of narcissists' motivation to reduce the discrepancy between their grandiose self and its threatened version, though no research has directly tested this hypothesis. If this notion is true, the link between narcissism and retaliatory aggression should be moderated by neural structures that subserve discrepancy detection, such as the dorsal anterior cingulate cortex (dACC). This study tested the hypothesis that narcissism would only predict greater retaliatory aggression in response to social rejection when the dACC was recruited by the threat. Thirty participants (15 females; Mage  = 18.86, SD = 1.25; 77% White) completed a trait narcissism inventory, were socially accepted and then rejected while undergoing fMRI, and then could behave aggressively toward one of the rejecters by blasting him or her with unpleasant noise. When narcissists displayed greater dACC activation during rejection, they behaved aggressively. But there was only a weak or nonsignificant relation between narcissism and aggression among participants with a blunted dACC response. Narcissism's role in aggressive retaliation to interpersonal threats is likely determined by the extent to which the brain's discrepancy detector registers the newly created gap between the grandiose and threatened selves. © 2015 Wiley Periodicals, Inc.

  10. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The dual actions of Paederia scandens extract as a hypouricemic agent: xanthine oxidase inhibitory activity and uricosuric effect.

    PubMed

    Yan, Haiyan; Ma, Ying; Liu, Mei; Zhou, Lanlan

    2008-09-01

    Hyperuricemia is associated with a number of pathological conditions, such as gout. Lowering of elevated uric acid levels in the blood could be achieved by xanthine oxidase inhibitors and inhibitors of renal urate reabsorption. Some natural compounds isolated from herbs used in traditional Chinese medicine have been previously demonstrated to act as xanthine oxidase inhibitors. In the present investigation, Paederia scandens (Lour.) Merrill (Rubiaceae) extract (PSE; 4.5, 2.25, and 1.125 g/kg) orally for 14 days was demonstrated to possess in vivo potent hypouricemic activity in hyperuricemic rats pretreated with potassium oxonate. In addition, PSE was also demonstrated to be an inhibitor of xanthine oxidase. Lineweaver-Burk analysis of the enzyme kinetics indicated that the inhibition of PSE was of a mixed type. Using an oxonate-induced hyperuricemic rat model, PSE was indeed shown to exhibit uricosuric action in vivo, which could explain, at least in part, the observed hypouricemic effect of PSE in these rats. The potential application of this compound in the treatment of conditions associated with hyperuricemia is discussed.

  12. ACCE Study Tour to ISTE2011 (San Francisco, New York, Washington, Philadelphia)

    ERIC Educational Resources Information Center

    Gronn, Donna; Romeo, Geoff

    2011-01-01

    In June/July this year a group of 28 educators from across Australia travelled to the US on the 2011 ACCE ISTE Study Tour. The group comprised a very broad section of educators--primary, secondary and tertiary classroom teachers, ICT coordinators, managers, private consultants and regional office managers. The government, catholic and independent…

  13. SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids

    PubMed Central

    Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L.; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G. F.; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara

    2012-01-01

    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway. PMID:22457791

  14. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids.

    PubMed

    Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G F; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara

    2012-01-01

    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.

  15. Traditional Uighur Medicine Karapxa decoction, inhibits liver xanthine oxidase and reduces serum uric acid concentrations in hyperuricemic mice and scavenges free radicals in vitro.

    PubMed

    Amat, Nurmuhammat; Umar, Anwar; Hoxur, Parida; Anaydulla, Mihrigul; Imam, Guzalnur; Aziz, Ranagul; Upur, Halmurat; Kijjoa, Anake; Moore, Nicholas

    2015-04-25

    Karapxa decoction (KD) is a Traditional Uighur Medicine used for hepatitis, cholecystitis, gastralgia, oedema, gout and arthralgia. Because of its purported effect in gout, its effects were tested in hyperuricemic mice models induced by yeast extract paste or potassium oxonate, as well as its capacity to scavenge free radicals in vitro. Hyperuricemia was induced in mice by yeast extract paste or potassium oxonate. KD was given orally for 14 days at 200, 400 and 800 mg/kg/day, with Allopurinol 10 mg/kg/day as positive control. Serum uric acid (UA), and liver xanthine oxidase activity (XO) were measured. Scavenging activity of KD on 1, 1-diphenyl-2-picrylhydrazyl radicals (DPP•), nitric oxide (•NO), superoxide (O2•-), efficiency against lipid peroxidation, and XO inhibition were determined in vitro. KD inhibited liver XO activity and reduced serum uric acid in hyperuricemic mice. KD also showed noticeable antioxidant activity, scavenging free radicals (DPP•, •NO and O2•-). It was effective against lipid peroxidation and inhibited XO in vitro. This study supports the traditional use of Karapxa decoction to treat hyperuricemia and gout.

  16. Characterization of oxidative phosphorylation in the colorless chlorophyte Polytomella sp. Its mitochondrial respiratory chain lacks a plant-like alternative oxidase.

    PubMed

    Reyes-Prieto, Adrián; El-Hafidi, Mohammed; Moreno-Sánchez, Rafael; González-Halphen, Diego

    2002-07-01

    The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.

  17. Thermostable and highly specific L-aspartate oxidase from Thermococcus litoralis DSM 5473: cloning, overexpression, and enzymological properties.

    PubMed

    Washio, Tsubasa; Oikawa, Tadao

    2018-01-01

    We successfully expressed the L-aspartate oxidase homolog gene (accession no: OCC_06611) of Thermococcus litoralis DSM 5473 in the soluble fraction of Escherichia coli BL21 (DE3) using a pET21b vector with 6X His tag at its C-terminus. The gene product (Tl-LASPO) showed L-aspartate oxidase activity in the presence of FAD in vitro, and this report is the first that details an L-aspartate oxidase derived from a Thermococcus species. The homologs of Tl-LASPO existed mainly in archaea, especially in the genus of Thermococcus, Pyrococcus, Sulfolobus, and Halobacteria. The quaternary structure of Tl-LASPO was homotrimeric with a subunit molecular mass of 52 kDa. The enzyme activity of Tl-LASPO increased with temperature up to 70 °C. Tl-LASPO was active from pH 6.0 to 9.0, and its highest activity was at pH 8.0. Tl-LASPO was stable at 80 °C for 1 h. The highest k cat /K m value was observed in assays at 70 °C. Tl-LASPO was highly specific for L-aspartic acid. Tl-LASPO utilized fumaric acid, 2,6-dichlorophenolindophenol, and ferricyanide in addition to FAD as a cofactor under anaerobic conditions. The absorption spectrum of holo-Tl-LASPO exhibited maxima at 380 and 450 nm. The FAD dissociation constant, K d , of the FAD-Tl-LASPO complex was determined to be 5.9 × 10 -9 M.

  18. Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1.

    PubMed

    Ferrari, Alessandro R; Rozeboom, Henriëtte J; Dobruchowska, Justyna M; van Leeuwen, Sander S; Vugts, Aniek S C; Koetsier, Martijn J; Visser, Jaap; Fraaije, Marco W

    2016-11-04

    By inspection of the predicted proteome of the fungus Myceliophthora thermophila C1 for vanillyl-alcohol oxidase (VAO)-type flavoprotein oxidases, a putative oligosaccharide oxidase was identified. By homologous expression and subsequent purification, the respective protein could be obtained. The protein was found to contain a bicovalently bound FAD cofactor. By screening a large number of carbohydrates, several mono- and oligosaccharides could be identified as substrates. The enzyme exhibits a strong substrate preference toward xylooligosaccharides; hence it is named xylooligosaccharide oxidase (XylO). Chemical analyses of the product formed upon oxidation of xylobiose revealed that the oxidation occurs at C1, yielding xylobionate as product. By elucidation of several XylO crystal structures (in complex with a substrate mimic, xylose, and xylobiose), the residues that tune the unique substrate specificity and regioselectivity could be identified. The discovery of this novel oligosaccharide oxidase reveals that the VAO-type flavoprotein family harbors oxidases tuned for specific oligosaccharides. The unique substrate profile of XylO hints at a role in the degradation of xylan-derived oligosaccharides by the fungus M. thermophila C1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Multivalent Interactions of Human Primary Amine Oxidase with the V and C22 Domains of Sialic Acid-Binding Immunoglobulin-Like Lectin-9 Regulate Its Binding and Amine Oxidase Activity

    PubMed Central

    Fair-Mäkelä, Ruth; Salo-Ahen, Outi M. H.; Guédez, Gabriela; Bligt-Lindén, Eva; Grönholm, Janne; Jalkanen, Sirpa; Salminen, Tiina A.

    2016-01-01

    Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools. PMID:27893774

  20. Urate oxidase for the prevention and treatment of tumour lysis syndrome in children with cancer.

    PubMed

    Cheuk, Daniel Kl; Chiang, Alan Ks; Chan, Godfrey Cf; Ha, Shau Yin

    2017-03-08

    Tumour lysis syndrome (TLS) is a serious complication of malignancies and can result in renal failure or death. Previous reviews did not find clear evidence of benefit of urate oxidase in children with cancer. This review is the second update of a previously published Cochrane review. To assess the effects and safety of urate oxidase for the prevention and treatment of TLS in children with malignancies. In March 2016 we searched CENTRAL, MEDLINE, Embase, and CINAHL. In addition, we searched the reference lists of all identified relevant papers, trials registers and other databases. We also screened conference proceedings and we contacted experts in the field and the manufacturer of rasburicase, Sanofi-aventis. Randomised controlled trials (RCT) and controlled clinical trials (CCT) of urate oxidase for the prevention or treatment of TLS in children under 18 years with any malignancy. Two review authors independently extracted trial data and assessed individual trial quality. We used risk ratios (RR) for dichotomous data and mean difference (MD) for continuous data. We included seven trials, involving 471 participants in the treatment groups and 603 participants in the control groups. No new studies were identified in the update. One RCT and five CCTs compared urate oxidase and allopurinol. Three trials tested Uricozyme, and three trials tested rasburicase for the prevention of TLS.The RCT did not evaluate the primary outcome (incidence of clinical TLS). It showed no clear evidence of a difference in mortality (both all-cause mortality (Fisher's exact test P = 0.23) and mortality due to TLS (no deaths in either group)), renal failure (Fisher's exact test P = 0.46), and adverse effects between the treatment and the control groups (Fisher's exact test P = 1.0). The frequency of normalisation of uric acid at four hours (10 out of 10 participants in the treatment group versus zero out of nine participants in the control group, Fisher's exact test P < 0.001) and area

  1. Oxidases and Peroxidases in Cardiovascular and Lung Disease: New Concepts in Reactive Oxygen Species Signaling

    PubMed Central

    Ghouleh, Imad Al; Khoo, Nicholas K.H.; Knaus, Ulla G.; Griendling, Kathy K.; Touyz, Rhian M.; Thannickal, Victor J.; Barchowsky, Aaron; Nauseef, William M.; Kelley, Eric E.; Bauer, Phillip M.; Darley-Usmar, Victor; Shiva, Sruti; Cifuentes-Pagano, Eugenia; Freeman, Bruce A.; Gladwin, Mark T.; Pagano, Patrick J.

    2011-01-01

    Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even in environmental toxicity. The complexity of this family’s effects on cellular processes stems from the fact that there are 7 members, each with unique tissue distribution, cellular localization and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophillic fatty acids has impact on many redox sensitive pathologies, and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. The following review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh’s Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, and encompasses further interaction and discussion among the presenters. PMID:21722728

  2. How effective are the ESC/EAS and 2013 ACC/AHA guidelines in treating dyslipidemia? Lessons from a lipid clinic.

    PubMed

    Barkas, Fotios; Milionis, Haralampos; Kostapanos, Michael S; Mikhailidis, Dimitri P; Elisaf, Moses; Liberopoulos, Evangelos

    2015-02-01

    There is a paucity of data regarding the attainment of lipid-lowering treatment goals according to the recent American College of Cardiology/American Heart Association (ACC/AHA) guidelines. The aim of the present study was to assess how applicable these 2013 recommendations are in the setting of an Outpatient University Hospital Lipid Clinic. This was a retrospective (from 1999 to 2013) observational study including 1000 consecutive adults treated for hyperlipidemia and followed up for ≥3 years. Comparisons for the applicability of current European Society of Cardiology/European Atherosclerosis Society (ESC/EAS) and recent ACC/AHA guidelines were performed. Achievement rates of low density lipoprotein cholesterol (LDL-C) targets set by ESC/EAS were 21%, 44% and 62% among patients at very high, high and moderate cardiovascular risk, respectively, receiving statin monotherapy. Among individuals on high-intensity statins only 47% achieved the anticipated ≥50% LDL-C reduction, i.e. the ACC/AHA target. The corresponding rate was significantly greater among those on statin + ezetimibe (76%, p < 0.05). Likewise, higher rates of LDL-C target attainment according to ESC/EAS guidelines were observed in patients on statin + ezetimibe compared with statin monotherapy (37, 50 and 71% for the three risk groups, p < 0.05 for the very high risk group). The application of the ACC/AHA guidelines may be associated with undertreatment of high risk patients due to suboptimal LDL-C response to high-intensity statins in clinical practice. Adding ezetimibe substantially increases the rate of the ESC/EAS LDL-C target achievement together with the rate of LDL-C lowering response suggested by the ACC/AHA.

  3. The Allende multicompound chondrule (ACC)—Chondrule formation in a local super-dense region of the early solar system

    NASA Astrophysics Data System (ADS)

    Bischoff, Addi; Wurm, Gerhard; Chaussidon, Marc; Horstmann, Marian; Metzler, Knut; Weyrauch, Mona; Weinauer, Julia

    2017-05-01

    In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine-rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O-poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral-chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer-sized, and super-dense chondrule-forming regions with extremely high solid-to-gas mass ratios of 1000 or more.

  4. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.

  5. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  6. Enzymatic oxidation of 2-phenylethylamine to phenylacetic acid and 2-phenylethanol with special reference to the metabolism of its intermediate phenylacetaldehyde.

    PubMed

    Panoutsopoulos, Georgios I; Kouretas, Demetrios; Gounaris, Elias G; Beedham, Christine

    2004-12-01

    2-phenylethylamine is an endogenous constituent of the human brain and is implicated in cerebral transmission. This bioactive amine is also present in certain foodstuffs such as chocolate, cheese and wine and may cause undesirable side effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalysed by monoamine oxidase B but the oxidation to its acid is usually ascribed to aldehyde dehydrogenase and the contribution of aldehyde oxidase and xanthine oxidase, if any, is ignored. The objective of this study was to elucidate the role of the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in the metabolism of phenylacetaldehyde derived from its parent biogenic amine. Treatments of 2-phenylethylamine with monoamine oxidase were carried out for the production of phenylacetaldehyde, as well as treatments of synthetic or enzymatic-generated phenylacetaldehyde with aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase. The results indicated that phenylacetaldehyde is metabolised mainly to phenylacetic acid with lower concentrations of 2-phenylethanol by all three oxidising enzymes. Aldehyde dehydrogenase was the predominant enzyme involved in phenylacetaldehyde oxidation and thus it has a major role in 2-phenylethylamine metabolism with aldehyde oxidase playing a less prominent role. Xanthine oxidase does not contribute to the oxidation of phenylacetaldehyde due to low amounts being present in guinea pig. Thus aldehyde dehydrogenase is not the only enzyme oxidising xenobiotic and endobiotic aldehydes and the role of aldehyde oxidase in such reactions should not be ignored.

  7. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert G.; Wilkerson, Andrea M.

    This report summarizes the results from a trial installation of light-emitting diode (LED) lighting systems in several spaces within the ACC Care Center in Sacramento, CA. The Sacramento Municipal Utility District (SMUD) coordinated the project and invited the U.S. Department of Energy (DOE) to document the performance of the LED lighting systems as part of a GATEWAY evaluation. DOE tasked the Pacific Northwest National Laboratory (PNNL) to conduct the investigation. SMUD and ACC staff coordinated and completed the design and installation of the LED systems, while PNNL and SMUD staff evaluated the photometric performance of the systems. ACC staff alsomore » track behavioral and health measures of the residents; some of those results are reported here, although PNNL staff were not directly involved in collecting or interpreting those data. The trial installation took place in a double resident room and a single resident room, and the corridor that connects those (and other) rooms to the central nurse station. Other spaces in the trial included the nurse station, a common room called the family room located near the nurse station, and the ACC administrator’s private office.« less

  8. Ursolic acid suppresses TGF-β1-induced quiescent HSC activation and transformation by inhibiting NADPH oxidase expression and Hedgehog signaling

    PubMed Central

    Yu, Shan-Shan; Chen, Biao; Huang, Chen-Kai; Zhou, Juan-Juan; Huang, Xin; Wang, An-Jiang; Li, Bi-Min; He, Wen-Hua; Zhu, Xuan

    2017-01-01

    Activation of quiescent hepatic stellate cells (q-HSCs) and their transformation to myofibroblasts (MFBs) is a key event in liver fibrosis. Hedgehog (Hh) signaling stimulates q-HSCs to differentiate into MFBs, and NADPH oxidase (NOX) may be involved in regulating Hh signaling. The author's preliminary study demonstrated that ursolic acid (UA) selectively induces apoptosis in activated HSCs and inhibits their proliferation in vitro via negative regulation of NOX activity and expression. However, the effect of UA on q-HSCs remains to be elucidated. The present study aimed to investigate the effect of UA on q-HSC activation and HSC transformation and to observe alterations in the NOX and Hh signaling pathways during q-HSC activation. q-HSC were isolated from adult male Sprague-Dawley rats. Following culture for 3 days, the cells were treated with or without transforming growth factor-β1 (TGF-β1; 5 µg/l); intervention groups were pretreated with UA (40 µM) or diphenyleneiodonium chloride (DPI; 10 µM) for 30 min prior to addition of TGF-β1. mRNA and protein expression of NOX and Hh signaling components and markers of q-HSC activation were examined by western blotting and reverse transcription-polymerase chain reaction. TGF-β1 induced activation of q-HSCs, with increased expression of α-smooth muscle actin (α-SMA) and type I collagen. In addition, expression of NOX subunits (gp91phox, p67phox, p22phox, and Rac1) and Hh signaling components, including sonic Hh, sterol-4-alpha-methyl oxidase, and Gli family zinc finger 2, were upregulated in activated HSCs. Pretreatment of q-HSCs with UA or DPI prior to TGF-β1 significantly downregulated expression of NOX subunits and Hh signaling components and additionally inhibited expression of α-SMA and type I collagen, thereby preventing transformation to MFBs. UA inhibited TGF-β1-induced activation of q-HSCs and their transformation by inhibiting expression of NOX subunits and the downstream Hh pathway. PMID:29042951

  9. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise

    PubMed Central

    Li, Mengyao; Verdijk, Lex B.; Sakamoto, Kei; Ely, Brian; van Loon, Luc J.C.; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. PMID:23000302

  10. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise.

    PubMed

    Li, Mengyao; Verdijk, Lex B; Sakamoto, Kei; Ely, Brian; van Loon, Luc J C; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. Published by Elsevier Ireland Ltd.

  11. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    PubMed

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  12. d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain.

    PubMed

    Cristino, Luigia; Luongo, Livio; Squillace, Marta; Paolone, Giovanna; Mango, Dalila; Piccinin, Sonia; Zianni, Elisa; Imperatore, Roberta; Iannotta, Monica; Longo, Francesco; Errico, Francesco; Vescovi, Angelo Luigi; Morari, Michele; Maione, Sabatino; Gardoni, Fabrizio; Nisticò, Robert; Usiello, Alessandro

    2015-05-01

    We have investigated the relevance of d-aspartate oxidase, the only enzyme known to selectively degrade d-aspartate (d-Asp), in modulating glutamatergic system homeostasis. Interestingly, the lack of the Ddo gene, by raising d-Asp content, induces a substantial increase in extracellular glutamate (Glu) levels in Ddo-mutant brains. Consistent with an exaggerated and persistent N-methyl-d-aspartate receptor (NMDAR) stimulation, we documented in Ddo knockouts severe age-dependent structural and functional alterations mirrored by expression of active caspases 3 and 7 along with appearance of dystrophic microglia and reactive astrocytes. In addition, prolonged elevation of d-Asp triggered in mutants alterations of NMDAR-dependent synaptic plasticity associated to reduction of hippocampal GluN1 and GluN2B subunits selectively located at synaptic sites and to increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-to-N-methyl-d-aspartate ratio. These effects, all of which converged on a progressive hyporesponsiveness at NMDAR sites, functionally resulted in a greater vulnerability to phencyclidine-induced prepulse inhibition deficits in mutants. In conclusion, our results indicate that d-aspartate oxidase, by strictly regulating d-Asp levels, impacts on the homeostasis of glutamatergic system, thus preventing accelerated neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    USDA-ARS?s Scientific Manuscript database

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  14. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  15. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Wang, Jun; Kang, Xinhuang

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  16. The xanthine oxidase activity in different of secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, Katarzyna; Wojciech Szajdak, Lech

    2010-05-01

    The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbęchy, Bridge, Shelterbelt and Hirudo in two layers: acrotelm (0-50 cm) and catotelm (50-100 cm). The object of this study was to characterize the biochemical properties by the determination of the xanthine oxidase activity in two layers (acrotelm and catotelm) of the four different peat-moorsh soils used as meadow. The xanthine oxidase activity was determined spectrophotometrically by measuring uric acid formation at λmax=290 nm with xanthine as substrate. In peat-moorsh soil the highest activities of xanthine oxidasewas observed in the Shelterbelt and whereas the lowest - in Zbęchy, Bridge and Hirudo. Activities of this enzyme in peat-moorsh soil ranged from 5.96 to 19.51 μmol h-1g d.m soil. Increased activities of xanthine oxidase have been recorded on the depth 50-100 cm - catotelm (from 11.71 to 19.51 μmol h-1g d.m soil) in comparison with the depth 0-50 cm - acrotelm (from 5.96 to 14.64 μmol h-1g d.m soil). This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.

  17. Identification of NADPH oxidase family members associated with cold stress in strawberry.

    PubMed

    Zhang, Yunting; Li, Yali; He, Yuwei; Hu, Wenjie; Zhang, Yong; Wang, Xiaorong; Tang, Haoru

    2018-04-01

    NADPH oxidase is encoded by a small gene family (Respiratory burst oxidase homologs, Rbohs ) and plays an important role in regulating various biological processes. However, little information about this gene family is currently available for strawberry. In this study, a total of seven Rboh genes were identified from strawberry through genomewide analysis. Gene structure analysis showed the number of exons ranged from 10 to 23, implying that this variation occurred in FvRboh genes by the insertion and distribution of introns; the order and approximate size of exons were relatively conserved. FvRbohC was predicted to localize to the thylakoid membrane of the chloroplast, while other members were computed to localize to the plasma membrane, indicating different functions. Amino acid sequence alignment, conserved domain, and motif analysis showed that all identified FvRbohs had typical features of plant Rbohs. Phylogenetic analysis of Rbohs from strawberry, grape, Arabidopsis, and rice suggested that the FvRbohs could be divided into five subgroups and showed a closer relationship with those from grape and Arabidopsis than those from rice. The expression patterns of FvRboh genes in root, stem, leaf, flower, and fruit revealed robust tissue specificity. The expression levels of FvRbohA and FvRbohD were quickly induced by cold stress, followed by an increase in NADPH oxidase activity, leading to O2- accumulation and triggering the antioxidant reaction by the transient increases in SOD activity. This suggested these two genes may be involved in cold stress and defense responses in strawberry.

  18. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  19. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings

    PubMed Central

    Jakubowicz, Małgorzata; Gałgańska, Hanna; Nowak, Witold; Sadowski, Jan

    2010-01-01

    In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-α1, -α2, -γ1, and -δ, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-γ1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-γ 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PAPLD signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity. PMID:20581125

  20. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats.

    PubMed

    Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F

    2016-05-01

    It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evidence for a Key Role of Cytochrome bo3 Oxidase in Respiratory Energy Metabolism of Gluconobacter oxydans

    PubMed Central

    Richhardt, Janine; Luchterhand, Bettina; Büchs, Jochen

    2013-01-01

    The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H+/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain. PMID:23852873

  2. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  3. Deciphering of the Dual oxidase (Nox family) gene from kuruma shrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization.

    PubMed

    Inada, Mari; Kihara, Keisuke; Kono, Tomoya; Sudhakaran, Raja; Mekata, Tohru; Sakai, Masahiro; Yoshida, Terutoyo; Itami, Toshiaki

    2013-02-01

    In many physiological processes, including the innate immune system, free radicals such as nitric oxide (NO) and reactive oxygen species (ROS) play significant roles. In humans, 2 homologs of Dual oxidases (Duox) generate hydrogen peroxide (H(2)O(2)), which is a type of ROS. Here, we report the identification and characterization of a Duox from kuruma shrimp, Marsupenaeus japonicus. The full-length cDNA sequence of the M. japonicus Dual oxidase (MjDuox) gene contains 4695 bp and was generated using reverse transcriptase-polymerase chain reaction (RT-PCR) and random amplification of cDNA ends (RACE). The open reading frame of MjDuox encodes a protein of 1498 amino acids with an estimated mass of 173 kDa. In a homology analysis using amino acid sequences, MjDuox exhibited 69.3% sequence homology with the Duox of the red flour beetle, Tribolium castaneum. A transcriptional analysis revealed that the MjDuox mRNA is highly expressed in the gills of healthy kuruma shrimp. In the gills, MjDuox expression reached its peak 60 h after injection with WSSV and decreased to its normal level at 72 h. In gene knockdown experiments of free radical-generating enzymes, the survival rates decreased during the early stages of a white spot syndrome virus (WSSV) infection following the knockdown of the NADPH oxidase (MjNox) or MjDuox genes. In the present study, the identification, cloning and gene knockdown of the kuruma shrimp MjDuox are reported. Duoxes have been identified in vertebrates and some insects; however, few reports have investigated Duoxes in crustaceans. This study is the first to identify and clone a Dual oxidase from a crustacean species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  5. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong

    2011-01-01

    Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067

  6. Comparative Activity-Based Flavin-Dependent Oxidase Profiling.

    PubMed

    Krysiak, Joanna; Breinbauer, Rolf

    2017-01-01

    Activity-based protein profiling (ABPP) has become a powerful chemoproteomic technology allowing for the dissection of complex ligand-protein interactions in their native cellular environment. One of the biggest challenges for ABPP is the extension of the proteome coverage. In this chapter a new ABPP strategy dedicated to monoamine oxidases (MAO) is presented. These enzymes are representative examples of flavin-dependent oxidases, playing a crucial role in the regulation of nervous system signaling.

  7. Multidomain flavin-dependent sulfhydryl oxidases.

    PubMed

    Coppock, Donald L; Thorpe, Colin

    2006-01-01

    Eukaryotic flavin-dependent sulfhydryl oxidases catalyze oxidative protein folding with the generation of disulfides and the reduction of oxygen to hydrogen peroxide. This review deals principally with the Quiescinsulfhydryl oxidases (QSOX) that are found in multiple forms in multicellular organisms and singly in a number of protozoan parasites. QSOX is an ancient fusion of thioredoxin domains and an FAD-binding module, ERV1/ALR. Interdomain disulfide exchanges transmit reducing equivalents from substrates to the flavin cofactor and thence to molecular oxygen. The in vitro substrate specificity of avian QSOX1 and the likely substrates of QSOXs in vivo are discussed. The location of QSOX immunoreactivity and mRNA expression levels in human cells and tissues is reviewed. Generally, there is a marked association of QSOX1 expression with cell types that have a high secretory load of disulfide-containing peptides and proteins. The abundance of sulfhydryl oxidases in the islets of Langerhans suggests that oxidative protein folding may directly contribute to the oxidative stress believed to be a factor in the progression to type II diabetes. Finally, the structure and mechanism of QSOX proteins is compared to their smaller stand-alone cousins: yeast ERV1p and ERV2p, the mammalian augmenter of liver regeneration (ALR), and the viral ALR homologs.

  8. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    PubMed

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  9. Differential dose- and time-dependent effects of molindone on dopamine neurons of rat brain: mediation by irreversible inhibition of monoamine oxidase.

    PubMed

    Meller, E; Friedman, E

    1982-03-01

    The effects of molindone (2.5, 10 and 40 mg/kg) on striatal tyrosine hydroxylase activity and dopamine (DA), 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were measured as a function of time (0-72 hr). Whereas a dose of 2.5 mg/kg produced effects typical of DA receptor blockade (activation of synaptosomal tyrosine hydroxylase, increased DA metabolite levels and unchanged DA levels), a dose of 40 mg/kg produced opposite effects (decreased tyrosine hydroxylase activity and metabolite concentrations and elevated DA levels). A dose of 10 mg/kg elicited intermediate effects. The atypical effects of both higher doses were long-lasting (less than 72 hr). Molindone at doses of 10 or 40 mg/kg, but nor 2.5 mg/kg, selectively, irreversibly and dose-dependently inhibited type A monoamine oxidase. This inhibition appeared to be due to a metabolite, inasmuch as the drug itself inhibited monoamine oxidase (reversibly) only at high concentrations (less than or equal to 10(-4) M). The heretofore unsuspected inhibition of monoamine oxidase by molindone provided a consistent mechanistic interpretation of the differential dose- and time-dependent effects of the drug on dopaminergic neuronal activity. This mechanism may also serve to explain the reported efficacy of molindone in animal tests for antidepressant activity as well as its inability to produce increased DA receptor binding after chronic treatment.

  10. Effect of contraceptive steroids on monoamine oxidase activity

    PubMed Central

    Southgate, Jennifer; Collins, G. G. S.; Pryse-Davies, J.; Sandler, M.

    1969-01-01

    Cyclical variations in monoamine oxidase activity during the human menstrual cycle, specific to the endometrium and modified in women undergoing contraceptive steroid treatment, may reflect changes in hormonal environment. Treatment of rats with individual constituents of the contraceptive pill causes analogous changes: oestrogens inhibit and progestogens potentiate uterine monoamine oxidase activity. ImagesFig. 2Fig. 3

  11. Cellular mechanism of resistance of human colorectal adenocarcinoma cells against apoptosis-induction by Russell's Viper venom L-amino acid oxidase (Rusvinoxidase).

    PubMed

    Mukherjee, Ashis K; Saviola, Anthony J; Mackessy, Stephen P

    2018-04-24

    The present study highlights the cellular mechanism of resistance in human adenocarcinoma (Colo-205) cells against apoptosis induction by Rusvinoxidase, an L-amino acid oxidase purified from Russell's Viper venom (RVV). The significantly lower cytotoxicity as well as apoptotic activity of Rusvinoxidase towards Colo-205 cells (compared to MCF-7 breast cancer cells) is correlated with lower depletion of cellular glutathione content and increased down-regulation of catalase activity of Colo-205 cells following Rusvinoxidase treatment. Exposure to Rusvinoxidase subsequently diminished reactive oxygen species (ROS) production and failed to impair mitochondrial membrane potential, resulting in apoptosis induction resistance in Colo-205 cells. Further, higher expression levels of caspase 8, compared to caspase 9, indicate that Rusvinoxidase preferentially triggers the extrinsic pathway of apoptosis in Colo-205 cells. A time-dependent lower ratio of the relative expression of Bax and Bcl-xL (pro- and anti-apoptotic proteins) in Colo-205 cells, compared to our previous study on MCF-7 cells, unambiguously supports a higher cellular resistance mechanism in Colo-205 cells against Rusvinoxidase-induced apoptosis. Copyright © 2018. Published by Elsevier B.V.

  12. Oxidase positive rods from cases of suspected gonorrhoea. A comparison of conventional, gas chromatographic and genetic methods of identification.

    PubMed

    Bovre, K; Hagen, N; Berdal, B P; Jantzen, E

    1977-02-01

    Genito-urethral specimens from 3260 women and 1170 men, with ailments suggestive of gonorrhoea, were examined for growth of oxidase positive rodshaped bacteria, as well as of gonococci. Moraxella osloensis was identified in 26 cases (0.64 per cent of women and 0.43 per cent of men). Three patients harboured phenylalanine negative (or weakly reacting) and tryptophan deaminase negative M. phenylpyrouvica and, in three cases, a Flavobacterium species was detected. Among six oropharyngeal specimens from patients suspected of gonorrhoea, two yielded growth of oxidase positive rods, Kingella kingae and Neisseria elongata, respectively, N. gonorrhoeae was isolated from 537 patients, i.e., 12.1 per cent of all cases. The isolates of oxidase positive rods were in most cases completely identified by streptomycin resistance transformation. On this basis, the diagnostic reliability of some morphological and cultural-biochemical tests and gas chromatography was examined. Gas chromatographic analysis of fatty acid and alcohol composition of whole cells proved distinctive of species defined genetically, irrespective of confusing behaviour of some strains in other tests.

  13. The 2013 ACC/AHA 10-year atherosclerotic cardiovascular disease risk index is better than SCORE and QRisk II in rheumatoid arthritis: is it enough?

    PubMed

    Ozen, Gulsen; Sunbul, Murat; Atagunduz, Pamir; Direskeneli, Haner; Tigen, Kursat; Inanc, Nevsun

    2016-03-01

    To determine the ability of the new American College of Cardiology and American Heart Association (ACC/AHA) 10-year atherosclerotic cardiovascular disease (ASCVD) risk algorithm in detecting high cardiovascular (CV) risk, RA patients identified by carotid ultrasonography (US) were compared with Systematic Coronary Risk Evaluation (SCORE) and QRisk II algorithms. SCORE, QRisk II, 2013 ACC/AHA 10-year ASCVD risk and EULAR recommended modified versions were calculated in 216 RA patients. In sonographic evaluation, carotid intima-media thickness >0.90 mm and/or carotid plaques were used as the gold standard test for subclinical atherosclerosis and high CV risk (US+). Eleven (5.1%), 15 (6.9%) and 44 (20.4%) patients were defined as having high CV risk according to SCORE, QRisk II and ACC/AHA 10-year ASCVD risk, respectively. Fifty-two (24.1%) patients were US + and of those, 8 (15.4%), 7 (13.5%) and 23 (44.2%) patients were classified as high CV risk according to SCORE, QRisk II and ACC/AHA 10-year ASCVD risk, respectively. The ACC/AHA 10-year ASCVD risk index better identified US + patients than SCORE and QRisk II (P < 0.0001). With EULAR modification, reclassification from moderate to high risk occurred only in two, five and seven patients according to SCORE, QRisk II and ACC/AHA 10-year ASCVD risk, respectively. The 2013 ACC/AHA 10-year ASCVD risk estimator was better than the SCORE and QRisk II indices in RA, but still failed to identify 55% of high risk patients. Furthermore adjustment of threshold and EULAR modification did not work well. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.

    PubMed

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne

    2008-07-01

    Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of

  15. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  16. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    PubMed

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions (<50

  17. Biosensors for D-amino acid detection.

    PubMed

    Sacchi, Silvia; Rosini, Elena; Caldinelli, Laura; Pollegioni, Loredano

    2012-01-01

    The presence of D-amino acids in foods is promoted by harsh technological processes (e.g., high temperature or extreme pH values) or can be the consequence of adulteration or microbial contamination (D-amino acids are major components of the bacterial cell wall). For this reason, quality control is becoming more and more important both for the industry (as a cost factor) and for consumer protection. For routine food analysis and quality control, simple and easily applicable analytical methods are needed: biosensors can often satisfy these requirements. The use of an enzymatic, stereospecific reaction could confer selectivity to a biosensor for detecting and quantifying D-amino acids in foodstuffs. The flavoenzyme D-amino acid oxidase from the yeast Rhodotorula gracilis is an ideal biocatalyst for this kind of application because of its absolute stereospecificity, very high turnover number with various substrates, tight binding with the FAD cofactor, and broad substrate specificity. Furthermore, alterations in the local brain concentrations of D-serine (predominantly D-amino acid in the mammalian central nervous system) have been related to several neurological and psychiatric diseases. Therefore, quantifying this neuromodulator represents an important task in biological, medical, and pharmaceutical research. Recently, an enzymatic microbiosensor, also using R. gracilis D-amino acid oxidase as biocatalyst, was developed for detecting D-serine in vivo.

  18. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    PubMed

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, S.; Orville, A.; Yuan, H.

    2010-09-15

    The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction. Each reductive half-reaction is followed by an oxidative half-reaction where the reduced flavin is oxidized by oxygen. Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme. The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of amore » hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme. Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions. This is accompanied by a significant decrease in the overall rate of turnover with choline. Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid.« less

  20. Plasma diamine oxidase levels in pregnancy complicated by threatened abortion.

    PubMed Central

    Legge, M; Duff, G B

    1981-01-01

    Plasma diamine oxidase levels were assayed in 66 patients who presented with pregnancy complicated by threatened abortion. Levels within the normal range were associated with continuing pregnancies, whereas levels below the normal range were associated with subsequent abortion. Among those patients in whom gestation was greater than eight weeks, 66.6% of diamine oxidase levels correctly predicted the pregnancy outcome. Assay of the diamine oxidase levels at eight weeks of gestation or less gave little useful information. PMID:6785320