Science.gov

Sample records for acid activated montmorillonite

  1. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  2. Transition metal oxide pillared clay. 1: A comparative study of textural and acidic properties of Fe(III) pillared montmorillonite and pillared acid activated montmorillonite

    SciTech Connect

    Mishra, T.; Parida, K.M.; Rao, S.B.

    1996-10-15

    Fe(III) pillared montmorillonite samples have been prepared by intercalating trinuclear acetato hydroxy-iron (III) nitrate [Fe(COOCH{sub 3}){sub 7}OH 2H{sub 2}O]{sup +} NO{sub 3}{sup {minus}} between the layers of both Na-exchanged and acid-activated montmorillonite, followed by calcination and characterized by various techniques. The multistep ion exchange process gave better complex loading than the single step process. FTIR and Moessbauer spectral analysis showed the presence of the complex inside the silicate layers. Materials prepared from the two starting materials are thermally stable up to 500 C, having basal spacings of 18.0 and 17.6 {angstrom} and high surface areas of 284 and 276 m{sup 2}/g, respectively. The acid-activated pillared montmorillonite shows somewhat low complex intake, but has high acidity in comparison to the Na-exchanged material. Iron oxide pillared clay has gained considerable importance as it can be used in demetalization, reduction of NO by NH{sub 3}, and Fischer-Tropsch reactions.

  3. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental

  4. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC. PMID:26857136

  5. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC.

  6. Interactions of aminomethylphosphonic acid and sarcosine with montmorillonite interlayer surfaces

    NASA Astrophysics Data System (ADS)

    Rennig, Amanda; Slutter, Annette; Tribe, Lorena

    The smectite clay, montmorillonite, can be found in many soils throughout the world. In addition to its importance in agriculture and soil remediation, montmorillonite has extensive applications in industry both in its natural form and as a component of composite materials. The adsorptive properties of montmorillonite have been explored in relation to its interactions with the common herbicide glyphosate. This herbicide, when exposed to microorganisms in the soil is degraded, forming two products: aminomethylphosphonic acid (AMPA) and sarcosine. The atomic-level interactions of these compounds with the montmorillonite interlayer surfaces are studied here using molecular mechanics. The final outcomes of these calculations are analyzed in terms of the proximity of the montmorillonite surface to the moieties of the degradation products. The phosphonate moiety was found to be the most important source of interactions for AMPA, while for sarcosine there was an even distribution between the amino and carboxylic moieties, and Na+ ion mediated surface complexes.0

  7. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite.

    PubMed

    Lu, Longfei; Cai, Jingong; Frost, Ray L

    2010-03-01

    The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm(-1) and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm(-1) and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm(-1) are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful. PMID:20071218

  8. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  9. Modeling the acid-base surface chemistry of montmorillonite.

    PubMed

    Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M

    2007-08-15

    Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.

  10. Acidity of edge surface sites of montmorillonite and kaolinite

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  11. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    PubMed

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) < 3 500) was investigated. The montmorillonite rapidly adsorbed the aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  12. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity.

    PubMed

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes. PMID:26778180

  13. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes.

  14. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity

    PubMed Central

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes. PMID:26778180

  15. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity.

    PubMed

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-18

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes.

  16. Effect of Montmorillonite Clay upon the polycondensation of Lactic Acid

    NASA Astrophysics Data System (ADS)

    El Amine, Belaouedj Mohammed; Mohammed, Belbachir

    2008-08-01

    The development of synthetic biodegradable polymers, such as poly(α-hydroxy acid), is particularly important for constructing medical devices, drug delivery systems, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing poly(D, L-lactic acid) (PDLA) as a biodegradable polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of lactic acid, including the reaction times, temperatures, and catalyst. The molecular weight of synthesized PLA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain PDLA by direct polycondensation using Maghnite-H+, a proton exchanged Montmorillonite clay, as catalyst was thus determined to be 120 °C for 28h with a molecular weight of 7970. The method for PDLA synthesis established here will facilitate production of PDLA of various molecular weights, which may have a potential utility as biomaterials.

  17. Fractionation of humic acids upon adsorption on montmorillonite and palygorskite

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.; Zolotareva, B. N.

    2013-06-01

    The adsorption of three humic acid (HA) preparations by clays—montmorillonite (Wyoming, USA) and palygorskite (Kolomenskoe district, Moscow oblast)—has been studied. The HA preparations were isolated from samples of the humus-accumulative horizons of a leached chernozem (Voronezh) and a chestnut soil (Volgograd), and a commercial preparation of sodium humate (Aldrich) was also used. The solid-state 13C NMR spectroscopy and IR spectroscopy revealed the selective adsorption of structural HA fragments (alkyls, O-alkyls (carbohydrates), and acetal groups) on these minerals. As a result, the aromaticity of the organic matter (OM) in the organic-mineral complexes (OMCs) and the degree of its humification have been found to be lower compared to the original HA preparations. The fractionation of HAs is controlled by the properties of the mineral surfaces. The predominant enrichment of OMCs with alkyls has been observed for montmorillonite, as well as an enrichment with O-alkyls (carbohydrates) for palygorskite. A decrease in the C : N ratio has been noted in the elemental composition of the OM in complexes, which reflected its more aromatic nature and (or) predominant sorption of N-containing structural components of HA molecules. The adsorption of HA preparations by montmorillonite predominantly occurs on the external surface of mineral particles, and the interaction of nonpolar alkyl groups of HAs with this mineral belongs to weak (van der Waals, hydrophobic) interactions. The adsorption of HA preparations by palygorskite is at least partly of chemical nature: Si-OH groups of minerals are involved in the adsorption process. The formation of strong bonds between the OM and palygorskite explains the long-term (over 300 million years) retention of fossil fulvate-type OM in its complex with palygorskite, which we revealed previously.

  18. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  19. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3-16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  20. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  1. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  2. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. PMID:20854214

  3. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  4. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  5. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation.

    PubMed

    Ferris, J P; Kamaluddin; Ertem, G

    1990-01-01

    2'-d-5'-GMP and 2'-d-5'-AMP bind 2 times more strongly to montmorillonite 22A than do 2'-d-5'-CMP and 5'-TMP. The dinucleotide d(pG)2 forms in 9.2% yield and the cyclic dinucleotide c(dpG)2 in 5.4% yield in the reaction of 2'-d-5'-GMP with EDAC in the presence of montmorillonite 22A. The yield of d(pC)2 (2.0%) is significantly lower but comparable to that obtained from 5'-TMP. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5'-ImdpA on montmorillonite 22A. The cyclic nucleotide (3',5'-cdAMP) was obtained in 14% yield from 3'-ImdpA. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as a catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  6. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate. PMID:26647147

  7. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    PubMed

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution.

  8. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite as an efficient, eco-benign, and water-tolerant nanoreactor for chemoselective oxathioacetalization of aldehydes

    NASA Astrophysics Data System (ADS)

    Shirini, Farhad; Atghia, Seyyed Vahid; Mamaghani, Manouchehr

    2013-01-01

    Sulfonic acid-functionalized ordered nanoporous sodium montmorillonite has been found to be a mild and efficient solid acid catalyst for the chemoselective protection of a variety of carbonyl compounds as oxathiolanes in good to excellent yields. The present method offers several advantages such as short reaction times, high yields, simple procedure and mild conditions. Also, the catalyst could be recycled and reused at least for five times without noticeably decreasing the catalytic activity.

  9. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    NASA Astrophysics Data System (ADS)

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-12-01

    We studied the spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay. This led to the unexpected finding that the degrees of polymerization (DP's) of the oligo- and poly-peptides obtained depended on the amounts of polypeptides that were preadsorbed. Plotting average molecular weights obtained against c-spacings of the clay platelet aggregates which widened as a result of polypeptide addition and adsorption before the polymerization, does not permit an obvious explanation of these observations. The best correlation assigns a role to the fractional occupation of the individual intercalation layers of the polypeptides, as the adsorption increases towards a first complete mono-interlayer, then to an incipient and eventually to a complete double layer on to a third interlayer, after which the clay stacking breaks up. Spacings which correspond to an intermediate occupation of any of the three successive interlayers favor amino acids self-addition to polymers. The opposite is true for nearly empty or filled intercalation layers. We hypothesize and describe, how a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances. Moderately filled intercalation spaces may also act as sinks for the newly formed oligomers and facilitate the freeing of reaction sites for the occupation by fresh reagent. The c-spacings required for these mechanisms are the result of the intercalation of the preadsorbed polymer, but similar conditions prevail when polymers are adsorbed as they are generated during polymerization.

  10. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.

    PubMed

    Madusanka, Nadeesh; de Silva, K M Nalin; Amaratunga, Gehan

    2015-12-10

    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcumin which is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties.

  11. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.

    PubMed

    Madusanka, Nadeesh; de Silva, K M Nalin; Amaratunga, Gehan

    2015-12-10

    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcumin which is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties. PMID:26428174

  12. Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids.

    PubMed

    Katti, Dinesh R; Ghosh, Pijush; Schmidt, Steven; Katti, Kalpana S

    2005-01-01

    Nanosized montmorillonite clay dispersed in small amounts in polymer results in polymer nanocomposites having superior engineering properties compared to those of the native polymer. These nanoinclusions are created by treating clay with an organic modifier which makes clay organophilic and results in intercalation or exfoliation of the montmorillonite. The modifiers used are usually long carbon chains with alkylammonium or alkylphosphonium cations. In this work, we have investigated the use of some alternative molecules which can act as modifiers for clay composites using clay for reinforcing a matrix of biopeptides or proteins. Such composites have potential applications in the fields of biomedical engineering and pharmaceutical science. In this work, the amino acids arginine and lysine are used as modifiers. The intercalation and mechanical behavior of the interlayer spacing with these amino acids as inclusions under compression and tension are studied using molecular dynamics simulations. Significant differences in the responses are observed. This work also provides an insight into the orientation and interaction of amino acids in the interlayer under different stress paths. PMID:16283756

  13. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2013-12-01

    The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2-6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30-35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51-60 %) of the selected biomarkers.

  14. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2013-12-01

    The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2-6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30-35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51-60 %) of the selected biomarkers. PMID:23749373

  15. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  16. Modification of nanosized natural montmorillonite for ultrasound-enhanced adsorption of Acid Red 17.

    PubMed

    Acisli, Ozkan; Khataee, Alireza; Karaca, Semra; Sheydaei, Mohsen

    2016-07-01

    This work aims to modify montmorillonite (MMT) via dodecyltrimethylammonium bromide (DTMA) and investigate its ability in ultrasound (US) assisted decolorization of a polluted solution. BET surface area of MMT was increased from 19.76 to 42.57 m(2)/g and basal spacing of MMT structural layers was increased from 1.13 to 1.69 nm by DTMA modification. The application of DTMA-modified MMT (DTMA-MMT) and US for the decolorization of Acid Red 17 (AR17) showed that US could improve the ability of DTMA-MMT on decolorization of AR17 solution due to simultaneous adsorption and sonocatalysis. The ability of US assisted DTMA-MMT was slightly decreased with pH, the initial dye concentration and the presence of inorganic anions. PMID:26964930

  17. Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.

    PubMed

    Mignon, Pierre; Sodupe, Mariona

    2012-01-14

    In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).

  18. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  19. Preparation and characterization of novel hybrid of chitosan-g-lactic acid and montmorillonite.

    PubMed

    Depan, Dilip; Kumar, Annamalai Pratheep; Singh, Raj Pal

    2006-08-01

    The utilization of biopolymers and the development of organic-inorganic hybrids are ever increasing interest of material science researchers around the globe for various applications. The present attempt is intended to prepare nanocomposites of lactic acid grafted chitosan and layered silicates. Nanocomposites were prepared by dissolving chitosan and dispersing sodium montmorillonite in aqueous solution of L-lactic acid with subsequent heating and film casting. They were characterized by conventional techniques such as Fourier transform infrared spectroscopy, X-ray diffractometry, thermogravimetric analysis, energy dispersive X-ray spectroscopy, and elemental analysis. The results from polar optical and transmission electron microscopic measurements are also discussed. Sorption behavior of samples has been followed by measuring swelling degree and contact angle. The films have shown enhanced hydrophilicity when compared with polylactic acid (PLA). Issues on the interactions of polycationic chitosan with clay are also discussed. It is observed that nanocomposites are exhibiting better thermal and physical properties than neat chitosan-g-LA and PLA. PMID:16673390

  20. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  1. Polymerization of Lactic Acid by MAGHNITE-H+ a Non-Toxic Montmorillonite Clay Catalyst

    NASA Astrophysics Data System (ADS)

    Harrane, A.; Belaouedj, M. A.; Meghabar, R.; Belbachir, M.

    2008-08-01

    The development of synthetic biodegradable polymers, such as poly(lactic acid), is particularly important for constructing medical devices, controlled drug release matrix, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing poly (D, L-lactic acid) (PDLA) as a biodegradable polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of D, L-lactic acid, including the reaction times, temperatures, and catalyst. The molecular weight of synthesized PDLA is dependent on both the reaction temperature, amount of catalyst and time. The optimum reaction condition to obtain PDLA by direct polycondensation using Maghnite-H+[1,2], a proton exchanged Montmorillonite clay, as catalyst was thus determined to be 120 °C, 5% amount of Maghnite-H+ for 28 h with a molecular weight of 7970. The method for PDLA synthesis established here will facilitate production of PDLA of various molecular weights, which may have a potential utility as biomaterials.

  2. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4).

  3. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful

    2016-01-01

    Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4). PMID:26592699

  4. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Mohamad Haafiz, M K; Zakaria, Zainoha

    2015-11-01

    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.

  5. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  6. Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites.

    PubMed

    Arjmandi, Reza; Hassan, Azman; Mohamad Haafiz, M K; Zakaria, Zainoha

    2015-11-01

    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA. PMID:26234577

  7. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Yang, Liu-Yan; Ma, Lena Q.

    2015-02-01

    Antibiotic ciprofloxacin (CIP) is immobile in the subsurface but it has been frequently detected in the aquatic system. Therefore it is important to investigate the factors impacting CIP's mobilization in aquifer. Laboratory columns packed with sand were used to test colloid-facilitated CIP transport by 1) using kaolinite or montmorillonite to mobilize presorbed-CIP in a column or 2) co-transporting with CIP by pre-mixing them before transport. The Langmuir model showed that CIP sorption by montmorillonite (23 g kg- 1) was 100 times more effective than sand or kaolinite. Even with strong CIP complexation ability to Fe/Al coating on sand surface, montmorillonite promoted CIP transport, but not kaolinite. All presorbed-CIP by sand was mobilized by montmorillonite after 3 pore volumes through co-transporting of CIP with montmorillonite. The majority of CIP was fixed onto the montmorillonite interlayer but still showed inhibition of bacteria growth. Our results suggested that montmorillonite with high CIP sorption ability can act as a carrier to enhance CIP's mobility in aquifer.

  8. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity.

    PubMed

    Chen, Hao; Gao, Bin; Yang, Liu-Yan; Ma, Lena Q

    2015-02-01

    Antibiotic ciprofloxacin (CIP) is immobile in the subsurface but it has been frequently detected in the aquatic system. Therefore it is important to investigate the factors impacting CIP's mobilization in aquifer. Laboratory columns packed with sand were used to test colloid-facilitated CIP transport by 1) using kaolinite or montmorillonite to mobilize presorbed-CIP in a column or 2) co-transporting with CIP by pre-mixing them before transport. The Langmuir model showed that CIP sorption by montmorillonite (23gkg(-1)) was 100 times more effective than sand or kaolinite. Even with strong CIP complexation ability to Fe/Al coating on sand surface, montmorillonite promoted CIP transport, but not kaolinite. All presorbed-CIP by sand was mobilized by montmorillonite after 3 pore volumes through co-transporting of CIP with montmorillonite. The majority of CIP was fixed onto the montmorillonite interlayer but still showed inhibition of bacteria growth. Our results suggested that montmorillonite with high CIP sorption ability can act as a carrier to enhance CIP's mobility in aquifer. PMID:25528132

  9. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats.

    PubMed

    Abdel-Wahhab, Mosaad A; El-Kady, Ahmed A; Hassan, Aziza M; Abd El-Moneim, Omaima M; Abdel-Aziem, Sekena H

    2015-09-01

    This study was conducted to prepare and characterize activated carbon (AC) and to evaluate its protective effect against deoxynivalenol (DON) toxicity in rats compared to Egyptian montmorillonite (EM). AC was prepared using a single-step chemical activation with phosphoric acid (H3PO4). The resulted AC has a high surface area and a high total pore volume. Male Sprague-Dawley rats were divided into 6 groups (n = 10) and treated for 3 weeks as follow: the control group, the groups fed AC or EM-supplemented diet (0.5% w/w), the group treated orally with DON (5 mg/kg b.w.) and the groups fed AC or EM-supplemented diet and treated with DON. Blood and liver samples were collected for different analyses. Treatment with DON increased liver function enzymes, lipid peroxidation, tumor necrosis factor α, DNA fragmentation, decreased hepatic glutathione content, up regulating mRNA Fas and TNF-α genes expression and increased micronucleated polychromatic erythrocytes and normochromatic erythrocytes in bone marrow. Co-treatment of DON plus AC or EM succeeded to normalize the levels of the biochemical parameters, reduced the cytotoxicity of bone marrow and ameliorated the hepatic genotoxicity. Moreover, AC was more effective than EM and has a high affinity to adsorb DON and to reduce its cytotoxicity and genotoxicity.

  10. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite

    SciTech Connect

    Fernandez, Rodrigo; Martirena, Fernando; Scrivener, Karen L.

    2011-01-15

    This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 {sup o}C and 800 {sup o}C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, {sup 27}Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay-cement blends.

  11. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity.

    PubMed

    Sohrabnezhad, Sh; Rassa, M; Mohammadi Dahanesari, E

    2016-10-01

    In this study silver halides (AgX, X=Cl, Br, I) in montmorillonite (MMT) were prepared by dispersion method in dark. AgNO3 was used as a silver precursor. The nanocomposites (NCs) (AgX-MMT) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed intercalation of AgCl and AgBr nanoparticles (NPs) into the clay interlayer space. The diffuse reflectance spectra indicated a broad surface plasmon resonance (SPR) absorption band in the visible region for AgCl-MMT and AgBr-MMT NCs, resulting of metallic Ag nanoparticles (Ag NPs). But the results were opposite in case of AgI-MMT NC. The antibacterial activity of NCs was investigated against Gram-positive bacteria, i.e., Staphylococcus aureus and Micrococcus luteus and Gram-negative bacteria, i.e., Escherichia coli, Pseudomonas aeruginosa, by the well diffusion method. The antibacterial effects on Staphylococcus aureus, Micrococcus luteus and Escherichia coli decrease in the order: AgCl-MMT>AgBr-MMT>AgI-MMT. No antibacterial activity was detected for Pseudomonas aeruginosa.

  12. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  13. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites.

    PubMed

    Liu, Ru; Chen, Yu; Cao, Jinzhen

    2016-01-13

    Wood flour (WF) was modified with sodium-montmorillonite (Na-MMT) and two types of surfactant modifiers, namely, didecyl dimethylammonium chloride (DDAC) and sodium dodecyl sulfonate (SDS) though a two-step process inside WF. The thus-modified WFs were characterized, and the effects of MMT type on physical, mechanical, and thermal properties of their composites with poly(lactic acid) (PLA) were investigated. The results showed: (1) either DDAC or SDS could modified Na-MMT into OMMT, and then uniformly distributed in WF cell walls; (2) OMMT improved the physical properties, most mechanical properties, and thermal properties of the composites except for the impact strength; and (3) compared with SDS, DDAC seemed to perform better in properties of composites. However, DDAC showed some negative effect on the early stage of composite thermal decomposition. PMID:26671464

  14. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  15. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

  16. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  17. A comparative study of the acidity toward the aqueous phase and adsorptive properties of Al{sub 13}-pillared montmorillonite and Al{sub 13}-pillared saponite

    SciTech Connect

    Bergaoui, L.; Mrad, I.; Ghorbel, A.; Lambert, J.F.

    1999-04-15

    The selectivity of an Al{sub 13}-pillared saponite and an Al{sub 13}-pillared montmorillonite for Cd{sup 2+} and Cu{sup 2+} adsorption was studied. The quantity of metal adsorbed on both pillared clays depends on the pH of the solution and the pillars density. Adsorption equilibria are regulated by the protonation equilibria of the amphoteric sites on the pillars. Pillared clays adsorb more cadmium and copper than classic aluminum hydroxides which is simply attributable to a higher density of surface aluminum groups. Significant differences in behavior are observed between pillared montmorillonite and pillared saponite. Pillared montmorillonite appears to be more acidic, which is correlated with a more advanced degree of structural modification of the pillars on calcination. The authors propose a tentative, partial structural model of pillar transformation compatible with these differences. At the same time, both pillared clays have similar affinities for cadmium II at low pH (5--6), but pillared montmorillonite seems to be a more efficient cadmium trap at pH = 8 when its surface groups are negatively ionized. Thus, the nature of the clay layers conditions the structural modifications of the intercalated [Al{sub 13}] polycations, which in turn determine adsorptive behavior.

  18. Synthesis and characterization of BiOI/montmorillonite composites with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Jizhong; Wang, Xiaojing; Li, Fatang; Zhang, Lei; Chen, Yue

    2015-12-01

    BiOI/montmorillonite composite photocatalysts are synthesized by a facile room temperature method using Bi(NO3)3, KI and montmorillonite (MMT) clay as precursors, and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and nitrogen adsorption-desorption measurements. The facile synthesis method avoids high temperature treatment, and is based on cheap precursors. The prepared Bi-M-x composites possess a hierarchically nanoplates structure and are composed of BiOI and MMT phases. The degradation rate of the methylene blue reached up to about 95% after 45 min whereas that for the pure BiOI was only 75%. The high photocatalytic Bi-M-x composites would have a potential application in environmental purification owing to its low cost and easy synthesis.

  19. Ga[sub 13], Al[sub 13], GaAl[sub 12], and chromium-pillared montmorillonites: Acidity and reactivity for cumene conversion

    SciTech Connect

    Bradley, S.M.; Kydd, R.A. )

    1993-05-01

    A comparison has been made of the acidic characters of a series of metal polyoxocation pillar interlayered clay minerals (M-PILCs) by studying the infrared spectra of adsorbed pyridine. These comparisons were made for Ga[sub 13]-, Al[sub 13]- and GaAl[sub 12]-PILCs, and for Na[sup +]-exchanged montmorillonite (Na-STx-1). The Ga[sub 13]-PILC, was found to exhibit the strongest Lewis acid sites, followed by the AL[sub 13]-, and GaAl[sub 12]-PILCs and then by the Ns-STx-1. The relative number of Lewis acid sites, however, was found to be much greater for the GaAl[sub 12]-PILC, particularly after calcination at higher temperatures, indicating that the Ga[sub 13] Lewis acid sites did not have as high a thermal stability. The Broensted acidic characters for the pillared clays depend on the pillar, and follow the general decreasing order of abundance of GaAl[sub 12]-, Al[sub 13], and Ga[sub 13]-PILC when expressed as absorbance per unit mass. When the acidities per unit surface area were estimated, however, the Ga[sub 13]-PILCs were found to have the greatest number. This indicated that while the pillars contribute to the PILC acidities primarily through increasing the exposed phyllosilicate sheet surface areas, there is also a significant effect arising from the acidic characters of the pillars themselves. The dehydrogenation activities of Ga[sub 13]-, GaAl[sub 12]-, Al[sub 13]-, and Na-STx-1, in addition to a chromium polyoxocation-PILC, were compared by observing the products formed upon reaction with the model compound cumene. The Ga[sub 13]- and chromium-PILCs and the Na-Stx-1 exhibited almost exclusively dehydrogenation activities, whereas the Al[sub 13]- and GaAl[sub 12]-PILCs exhibited both cracking and dehydrogenation behaviors. These results prove that the pillars themselves can very strongly effect the catalytic activities of the PILCs. 3 refs., 6 figs., 2 tabs.

  20. The mechanism of montmorillonite catalysis in RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash

    The formation of complex prebiotic molecules on the early Earth is likely to have involved a component of mineral catalysis. Amongst the variety of clay minerals that have been investigated by us for their ability to catalyze the formation of RNA oligomers is montmorillonite. These are 2:1 layer silicates that have a wide range of chemical compositions [(Na,Ca)0.33(Al,Fe,Mg)2(Si,Al)4O10(OH)2.nH2O]. They are commonly produced by the weathering of silicic volcanic ashes to form Bentonite. Once formed, montmorillonites gradually transform to Illites at a modest pressure and temperature. Of the many samples of montmorillonite that we have experimentally examined, a selected subset has been observed to be catalytic for RNA synthesis (Joshi et. al., 2009; Aldersley et al., 2011). Those that have been observed to be excellent catalysts come from a restricted range of elemental compositions. The recent identification of phyllosilicates including montmorillonite on Mars (Bishop et al., 2008) raises the possibility that such processes may have taken place there too. The extent of catalysis depended not only upon the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it, but also on the pH at which the reaction is promoted. The isotherm and catalysis studies were extended to provide binding information and catalytic outcomes over a wide pH range. When cations in raw montmorillonite are completely replaced by sodium ions, the resulting Na+-montmorillonite does not catalyze oligomer formation because the ions saturate the interlayer between the platelets of montmorillonite, which blocks the binding of the activated monomers. Acid washed montmorillonite titrated to pH 6-8 with alkali metal ions, serves as the model catalyst for this RNA synthesis (Aldersley et. al., 2011). The optimal binding occurred in the region of maximal oligomer formation. X-ray diffraction studies revealed changes in layer separations of

  1. Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites.

    PubMed

    Tunç, Sibel; Duman, Osman; Polat, Tülin Gürkan

    2016-10-01

    The effect of montmorillonite and carvacrol (as an antimicrobial agent) on the wettability, mechanical, gas barrier, thermal and color properties of methyl cellulose-based nanocomposite films was investigated. To make a comparison among the film samples, methyl cellulose (MC) film and methyl cellulose/montmorillonite (MC/MMT) and methyl cellulose/carvacrol/montmorillonite (MC/CRV/MMT) nanocomposite films with different clay concentration were prepared. The interactions among MMT, CRV and film matrix were characterized by FTIR spectroscopy. The contact angle value of MC film showed an increase of 2.5 fold with the incorporation of 60wt.% MMT into the film matrix. The addition of clay into the film matrix increased the melting point of MC film and improved the mechanical properties of film material. The tensile stress of pure MC film exhibited an increase of 9.2MPa in the presence of 60wt.% MMT. With the addition of MMT into the film matrixes, water vapor permeability values of MC film and MC/CRV film were decreased by 28% and 13%, respectively. The incorporation of 60wt.% MMT into the film matrix caused to a decrease of 47 fold for MC film and 16 fold for MC/CRV film in the oxygen permeability of film sample. The addition of CRV into MC film and MC/MMT nanocomposite films with different clay concentration reduced the mechanical strengths of film materials. Oxygen permeability values of MC film and MC/MMT nanocomposite films decreased with the inclusion of CRV into the film matrix. PMID:27312637

  2. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  3. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  4. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  5. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2.

    PubMed

    Liu, Qingyun; Jiang, Yanling; Zhang, Leyou; Zhou, Xinpei; Lv, Xintian; Ding, Yanyuan; Sun, Lifang; Chen, Pengpeng; Yin, Hailiang

    2016-08-01

    Nanocomposites based on silver sulfide (Ag2S) and Ca-montmorillonite (Ca(2+)-MMT) were synthesized by a simple hydrothermal method. The nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FTIR). The as-prepared Ag2S-MMT nanocomposites were firstly demonstrated to possess intrinsic peroxidase-like activity and could rapidly catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product which can be seen by the naked eye in only one minute. The experimental results revealed that the Ag2S-MMT nanocomposites exhibit higher thermal durance. Based on the TMB-H2O2 catalyzed color reaction, the Ag2S-MMT nanocomposites were exploited as a new type of biosensor for detection and estimation of H2O2 through a simple, cheap and selective colorimetric method. PMID:27157733

  6. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  7. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    PubMed

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.

  8. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  9. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction.

  10. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction. PMID:26451652

  11. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  12. Pillared montmorillonite catalysts for coal liquefaction

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried out at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.

  13. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  14. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively.

  15. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. PMID:25461009

  16. Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites

    NASA Astrophysics Data System (ADS)

    Del Castillo, H. L.; Gil, A.; Grange, P.

    1997-07-01

    Titanium-pillared montmorillonites using Ti(OC2H5)4, Ti(O-nC3H7)4, Ti(O-iC3H7)4 and Ti(O-nC4H,)4 as sources of titanium, and HCl, HClO4, HNO3, H2SO4, CH3CO2H and H3PO4 as acids for hydrolysis, have been prepared. The preparation of titanium-pillared clays (Ti-PILCS) is mainly affected by the acid/alkoxide mole ratio. The nature of the alkoxide influences both the basal spacing and the specific surface area. The use of Ti(OC2H5)4 as a source of titanium yielded the best textural and thermal stability results. The differences observed in the titanium-pillared clays as a function of the acid used for the hydrolysis seem to be mainly related to the pH of the solution of intercalation.

  17. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study.

    PubMed

    Aflaki Jalali, Marzieh; Dadvand Koohi, Ahmad; Sheykhan, Mehdi

    2016-05-20

    In this paper, removal of copper ions from aqueous solution using novel xanthan gum (XG) hydrogel, xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid (XG-g-P(AMPS)) hydrogel and xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid/montmorillonite (XG-g-P(AMPS)/MMT) hydrogel composite were studied. The structure and morphologies of the xanthan-based hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Adsorbents comprised a porous crosslink structure with side chains that carried carboxyl, hydroxyl and sulfonate. Maximum adsorption was observed in the pH=5.2, initial concentrations of Cu(2+)=321.8 mg/L, Temperature=45 °C, contact time=5 h with 0.2 g/50 mL of the hydrogels. Adsorption process was found to follow Langmuir isotherm model with maximum adsorption capacity of 24.57, 39.06 and 29.49 mg/g for the XG, XG-g-P(AMPS) and XG-g-P(AMPS)/MMT, respectively. Adsorption kinetics data fitted well with pseudo second order model. The negative ΔG° values and the positive ΔS° confirmed that the adsorption was a spontaneous process. The positive ΔH° values suggested that the adsorption was endothermic in nature.

  18. Apparent and partial specific adsorption of 1,10-phenanthroline on mixtures of Ca-montmorillonite, activated carbon, and silica gel.

    PubMed

    Ferreiro, Eladio A; de Bussetti, Silvia G

    2005-12-01

    The process of 1,10-phenanthroline adsorption at pH 5 on Ca-montmorillonite, activated carbon, and silica gel mixtures was studied as a function of the equilibrium concentration and the composition of the mixture. A model is presented for determining adsorption of the main component (the variable in the system) of the mixture, based on the thermodynamic concept of apparent and partial quantities, in combination with an equation representing total adsorption of the other two adsorbents as a function of the weight fraction of one of them and introducing the concept of mean total adsorption. The partial specific adsorption of orthophenanthroline (OP) on Ca-montmorillonite is strongly influenced by the presence of activated carbon and silica gel. Owing to a phenomenon of cationic exchange, adsorption on the clay is higher at low proportions in the mixture, but the strong effect of carbon and silica gel becomes apparent at increasing amounts of clay in the mixture. The partial specific adsorption of orthophenanthroline on activated carbon and silica gel was determined using a total adsorption equation for the two adsorbents as a function of the weight fraction of one of them and shows behavior inverse to that of adsorption on clay. PMID:16043188

  19. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  20. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    NASA Astrophysics Data System (ADS)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  1. Effect of organic matter on estuarine flocculation: a laboratory study using montmorillonite, humic acid, xanthan gum, guar gum and natural estuarine flocs

    PubMed Central

    2014-01-01

    Background Riverine particles undergo a rapid transformation when they reach estuaries. The rapid succession of hydrodynamic and biogeochemical regimes forces the particles to flocculate, settle and enter the sediment pool. The rates and magnitudes of flocculation depend on the nature of the particles which are primarily affected by the types and quantities of organic matter (OM). Meanwhile, the OM characteristics vary widely between environments, as well as within a single environment due to seasonal climate and land use variability. We investigated the effect of the OM types and quantities through laboratory experiments using natural estuarine particles from the Mississippi Sound and Atchafalaya Bay as well as model mixtures of montmorillonite and organic molecules (i.e., biopolymers (guar/xanthan gums) and humic acid). Results Biopolymers promote flocculation but the magnitude depends on the types and quantities. Nonionic guar gum yields much larger flocs than anionic xanthan gum, while both of them exhibit a nonlinear behavior in which the flocculation is the most pronounced at the intermediate OM loading. Moreover, the effect of guar gum is independent of salinity whereas the effect of xanthan gum is pronounced at higher salinity. Meanwhile, humic acid does not affect flocculation at all salinity values tested in this study. These results are echoed in the laboratory manipulation of the natural estuarine particles. Flocculation of the humic acid-rich Mississippi Sound particles is unaffected by the OM, whereas that of biopolymer-rich Atchafalaya Bay particles is enhanced by the OM. Conclusions Flocculation is positively influenced by the presence of biopolymers that are produced as the result of marine primary production. Meanwhile, humic acid, which is abundant in the rivers that drain the agricultural soils of Southeastern United States, has little influence on flocculation. Thus, it is expected that humic acid-poor riverine particles (e.g., Mississippi

  2. Theoretical and experimental investigations on the structures of purified clay and acid-activated clay

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wen, Xiao-Dong; Li, Junfen; Yang, Liming

    2006-07-01

    The purified and acidified montmorillonite clay were characterized by XRD, BET and TPD. These results show that acidified clay is provided with more surface area and acid sites. For NH 3-TPD, molecular NH 3 desorption on purified clay and acidified clay occurs at temperatures with 873 and 1000 K, respectively. It is shown for the existence for strong acid sites. By two reactions of the tetrahydropyranylation of n-propanol and the esterification of cyclo-2-pentene with acetic acid, it is shown that the acidified clay displays better catalytic activity for above two organic reactions. By density-functional theory (DFT) method, we have analyzed the structures of different substituted montmorillonite and the effect sorption behavior of Na + in different montmorillonite models. The result shows that the process of substitution will occur apart from octahedral aluminums. The adsorption of NH 3 on clay surfaces have been investigated using TPD and DFT. This is shown that acid sites locate at round the octahedral aluminums, and substitution of Al 3+ for tetrahedral Si will be favorable to NH 3 adsorption.

  3. The adsorption of nucleotides and polynucleotides on montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Agarwal, Vipin K.

    1989-03-01

    The binding of adenine derivatives to Na+-montmorillonite increases in the order 5'-AMP, 3'-AMP, 5'-ADPacidic montmorillonite surface and binding is a consequence of the electrostatic interaction between the protonated base and the negative charges on the surface of the montmorillonite. Different binding trends were observed with Cu2+-montmorillonite with AMP binding more strongly than adenosine and UMP binding more strongly than uridine. It is concluded that ligation to the Cu2+ is a major force in the binding of nucleotides to Cu2+-montmorillonite. RNA homopolymers exhibit strong adsorption to Na+- and Cu2+-montmorillonite and are not readily washed from the clay. Factors contributing to the binding are discussed. Watson-Crick hydrogen bonding of 5'-AMP to poly(U) and 5'-GMP to poly(C) was observed when the homopolymers are bound to the surface of the clay. No association of 5'-UMP to poly(U) bound to clay was detected. The possible role of montmorillonite clays in the prebiotic formation of RNA is discussed.

  4. Possible selective adsorption of enantiomers by Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  5. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng

    2016-09-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions.

  6. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite.

    PubMed

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A; Gu, Cheng

    2016-01-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658

  7. Fabrication and characterization of novel starch-grafted poly l-lactic acid/montmorillonite organoclay nanocomposites.

    PubMed

    Eğri, Özlem; Salimi, Kouroush; Eğri, Sinan; Pişkin, Erhan; Rzayev, Zakir M O

    2016-02-10

    In this work, poly(L-lactic acid)-g-starch layered silicate nanocomposites (NCs) (PLLA-g-starch/MMT) were fabricated by intercalative bulk graft copolymerization of LA with starch, in the presence of either stannous octoate acting as a catalyst or LA-MMT organoclay acting as a cocatalyst-nanofiller. This procedure was performed inside a custom vacuum micro-reactor. To better understand the graft copolymerization mechanism, in situ processing types, interfacial interactions and nanostructure formation of PLLA-g-starch/MMT NCs, methods such as FT-IR, XRD, (1)H NMR, (13)C CP/MAS-NMR, DSC/TGA, TEM and SEM were utilized. The morphology and thermal behaviors of nanocomposites were found to be strongly dependent on the loading mass fraction of LA-MMT within the nanocomposite structure and the type of in situ processing such as interfacial, physical and chemical interactions. Preintercalated LA-MMT organoclay exhibited dual functions. It demonstrated the ability to act as a catalyst, essentially accelerating in situ graft copolymerization via esterification of LA carboxyl groups with hydroxyl groups of starch macromolecules, whilst also acting as a nananofiller-compatibilizer.

  8. Complete Defluorination of Perfluorinated Compounds by Hydrated Electrons Generated from 3-Indole-acetic-acid in Organomodified Montmorillonite

    PubMed Central

    Tian, Haoting; Gao, Juan; Li, Hui; Boyd, Stephen A.; Gu, Cheng

    2016-01-01

    Here we describe a unique process that achieves complete defluorination and decomposition of perfluorinated compounds (PFCs) which comprise one of the most recalcitrant and widely distributed classes of toxic pollutant chemicals found in natural environments. Photogenerated hydrated electrons derived from 3-indole-acetic-acid within an organomodified clay induce the reductive defluorination of co-sorbed PFCs. The process proceeds to completion within a few hours under mild reaction conditions. The organomontmorillonite clay promotes the formation of highly reactive hydrated electrons by stabilizing indole radical cations formed upon photolysis, and prevents their deactivation by reaction with protons or oxygen. In the constrained interlayer regions of the clay, hydrated electrons and co-sorbed PFCs are brought in close proximity thereby increasing the probability of reaction. This novel green chemistry provides the basis for in situ and ex situ technologies to treat one of the most troublesome, recalcitrant and ubiquitous classes of environmental contaminants, i.e., PFCs, utilizing innocuous reagents, naturally occurring materials and mild reaction conditions. PMID:27608658

  9. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.

    PubMed

    Garai, Ashesh; Nandi, Arun K

    2008-04-01

    The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (< 6 x 10(-3) s(-1)) and power law variation for the higher shear rate region. The characteristic time (A) increase with increasing clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained

  10. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.

  11. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  12. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  13. Montmorillonite, oligonucleotides, RNA and origin of life

    NASA Technical Reports Server (NTRS)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible

  14. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  15. Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst for phenol hydroxylation

    PubMed Central

    Fatimah, Is

    2013-01-01

    Zirconium dispersed in aluminum-pillared montmorillonite was prepared as a catalyst for phenol hydroxylation. The effects of varying the Zr content on the catalyst’s physicochemical character and activity were studied with XRD, BET surface area analysis, surface acidity measurements and scanning electron microscopy before investigating the performance for phenol conversion. The zirconia dispersion significantly affects the specific surface area, the total surface acidity and surface acidity distribution related to the formation of porous zirconia particles on the surface. The prepared samples exhibited excellent catalytic activity during phenol hydroxylation. PMID:25685535

  16. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  17. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior. PMID:25562752

  18. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.

  19. Formation of RNA oligomers on montmorillonite: site of catalysis

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  20. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  1. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  2. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  3. Sorption of sodium dodecylbenzene sulfonate by montmorillonite.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2007-01-01

    Sorption of linear alkylbenzene sulfonates by soils and sediments is an important process that may affect their fate, transport, toxicity and their application in remediation of contaminated soil and groundwater. In this study, batch experiments were conducted to elucidate the sorption of a widely used anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), by montmorillonite. It was observed that: (i) SDBS was sorbed significantly by montmorillonite saturated with Ca(2+), but little by Na-saturated montmorillonite; (ii) the amount of SDBS sorbed by Ca(2+)-montmorillonite was enhanced by NaCl; and (iii) no significant intercalation of SDBS into Ca(2+)-montmorillonite was observed by X-ray diffraction (XRD) analysis. These results indicate that the removal of SDBS by Ca(2+)-montmorillonite was primarily attributed to the precipitation between DBS(-) and Ca(2+) in solution which was released from montmorillonite via cation exchange. These results will help us to understand the sorption behavior and environmental effects of anionic surfactants. PMID:16759775

  4. Sorption of sodium dodecylbenzene sulfonate by montmorillonite.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2007-01-01

    Sorption of linear alkylbenzene sulfonates by soils and sediments is an important process that may affect their fate, transport, toxicity and their application in remediation of contaminated soil and groundwater. In this study, batch experiments were conducted to elucidate the sorption of a widely used anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), by montmorillonite. It was observed that: (i) SDBS was sorbed significantly by montmorillonite saturated with Ca(2+), but little by Na-saturated montmorillonite; (ii) the amount of SDBS sorbed by Ca(2+)-montmorillonite was enhanced by NaCl; and (iii) no significant intercalation of SDBS into Ca(2+)-montmorillonite was observed by X-ray diffraction (XRD) analysis. These results indicate that the removal of SDBS by Ca(2+)-montmorillonite was primarily attributed to the precipitation between DBS(-) and Ca(2+) in solution which was released from montmorillonite via cation exchange. These results will help us to understand the sorption behavior and environmental effects of anionic surfactants.

  5. Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.

    PubMed

    Zarzycki, Piotr; Thomas, Fabien

    2006-10-15

    The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.

  6. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. PMID:24813351

  7. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  8. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad.

    PubMed

    Costa, C; Conte, A; Buonocore, G G; Del Nobile, M A

    2011-08-15

    In this work, silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles have been obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and then to be reduced by a thermal treatment. Ag-MMT were used as active antimicrobial compounds to improve the shelf life of fresh fruit salad. In order to assess their influence on product shelf life, sensorial and microbiological quality has been monitored during the storage. The microbiological quality was determined by monitoring the principal spoilage microorganisms (mesophilic and psychrotrophic bacteria, coliforms, lactic acid bacteria, yeasts and molds). Additionally, the evolution of sensorial quality was assessed by monitoring color, odor, firmness and product overall quality. The Ag-MMT nanoparticles seemed to be effective in inhibiting microbial growth, above all at the highest tested concentration. Consequently, the sensorial quality of samples stored in the active packaging appeared to be better preserved. Thus, experimental results showed that a significant shelf life prolongation of fresh fruit salad can be obtained by a straightforward new packaging system.

  9. Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films.

    PubMed

    Wilpiszewska, Katarzyna; Antosik, Adrian Krzysztof; Spychaj, Tadeusz

    2015-09-01

    Preparation of novel carboxymethyl starch (CMS)-based biodegradable films with calcium montmorillonite has been described. The biocomposites were obtained by casting method, glycerol and citric acid were used as plasticizer and crosslinking agent, respectively. The effect of calcium montmorillonite (MMT-Ca) on hydrophilicity (moisture absorption, solubility in water as well as contact angle measurements) was evaluated. Moreover, thermomechanical and mechanical properties of nanocomposites were determined. For all the systems tested intercalated structure of MMT-Ca was revealed, however the most efficient clay platelets dispersion was noted for film containing 5 wt.% MMT-Ca. Such biodegradable CMS/MMT-Ca films exhibiting relatively good mechanical properties could find application in controlled delivery systems as well as in agriculture for seed tapes production where hydrophilicity of polymer carrier is strongly advantageous. PMID:26005142

  10. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite.

    PubMed

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca(2+) as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK(a2) (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d(001)) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water. PMID:20675045

  11. Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.

    2005-12-01

    It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection

  12. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites.

    PubMed

    Xu, Chengqun; Wu, Honghai; Gu, Feng Long

    2014-06-30

    BiOBr/Na-montmorillonite composites (BiOBr-Mt) were prepared under laboratory ambient conditions by using the surfactant cetyltrimethylammonium bromide (CTAB) as the Br source and template, and the as-synthesized samples were characterized by XRD, FT-IR, FESEM, TEM equipped with EDS, BET and UV-vis DRS techniques. Interestingly, the particle size of BiOBr can be controlled by CTAB modified Na-montmorillonite. The photocatalytic activity of the as-prepared was further evaluated by decomposition of Rhodamine B (RhB) under visible light irradiation; the obtained results revealed that the BiOBr-Mt sample had strong photoabsorption in the visible light region. It has higher photocatalytic activity than pure BiOBr alone. There exists an efficient adsorption for RhB onto BiOBr-Mt contrast to that onto the pure BiOBr. The adsorption processes can be well described by pseudo-second-order kinetic model; meanwhile, the adsorption behaviors can be described by both Freundlich and Langmuir equations but the former was better. Additionally, the relevant adsorption and degradation mechanisms were explored and the possible mechanisms were presented. The photocatalytic activity has high effect both in acidic and basic conditions on the degradation reaction but in acidic condition is more favorable. After three recycles, BiOBr-Mt did not exhibit any significant loss of photocatalytic activity, confirming the photocatalyst was essentially stable.

  13. Evidence of irreversible CO2 intercalation in montmorillonite

    SciTech Connect

    Romanov, V

    2013-02-13

    Mitigation of the global climate change via sequestration of anthropogenic carbon dioxide (CO2) in geologic formations requires assessment of the reservoir storage capacity and cap rock seal integrity. The typical cap rock is shale or mudstone rich in clay minerals that may significantly affect the effectiveness of the CO2 trapping. Specific objectives of this study were to conduct experimental investigation into the processes associated with CO2 and H2O trapped in swelling clay, namely, Wyoming and Texas montmorillonite powder. Combined (same-sample) multi-technique data ? manometric sorption isotherm hysteresis, diffuse reflectance infrared spectroscopy ?trapped CO2? fingerprints, irreversible X-ray diffraction patterns for the clay interlayer in intermediate hydration state, and HF acid digestion resulting in formation of non-extractable F:CO2 adducts ? corroborate a hypothesis that carbon dioxide molecules can be irreversibly trapped via anomalous extreme confinement in the galleries associated with montmorillonite interlayer, which may result in formation of carbonates in the longer term. Validation on Arizona montmorillonite lumps substantiated the evidence that such processes may occur in natural clay deposits but possibly on a different scale and at a different rate.

  14. FT-IR spectroscopic investigation of adsorption of 3-aminopyridine on sepiolite and montmorillonite from Anatolia

    NASA Astrophysics Data System (ADS)

    Akyüz, S.; Akyüz, T.; Yakar, A. E.

    2001-05-01

    The adsorption of 3-aminopyridine by natural sepiolite and montmorillonite from Eskisehir (Anatolia) was investigated in the temperature range from 20 to 125°C by infrared spectrometry using a variable temperature unit. The spectroscopic results indicate that the 3-aminopyridine molecules adsorbed on sepiolite are coordinated to Lewis acidic sites and/or surface hydroxyls by H-bonding interaction through pyridine ring nitrogen lone pairs. Surface Bronsted acid strength of sepiolite is weak and 3-aminopyridinium is not detected under the conditions applied in this study. It must be noted that the adsorption of aminopyridine affected the hydroxyl group vibrations of sepiolite. The intercalation of 3-aminopyridine within montmorillonite has been shown by X-ray diffraction to increase the interlayer spacing. IR spectroscopy indicates that sorbed 3-aminopyridine molecules by montmorillonite are mostly coordinated to exchangeable cations directly or indirectly through water bridges. The formation of 3-aminopyridinium cation is also detected at elevated temperatures.

  15. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  16. Synthesis and properties of melamine-formaldehyde/ montmorillonite nanocomposites.

    PubMed

    Wang, Haitao; Meng, Xiangfu; Qian, Zhongzhong; Zhoul, Hu; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2008-04-01

    In this paper, intercalated and partially exfoliated melamine-formaldehyde (MF)/montmorillonite (MMT) nanocomposites have been synthesized successfully via in-situ polymerization based on pristine montmorillonite, acidified montmorillonite and organic modified montmorillonite respectively. The obtained nanocomposites were characterized by XRD, TEM, TGA, and Raman spectroscopy. Free formaldehyde content of those composites was also determined by acetyl acetone technique. It was found that acidified montmorillonite and organic modified montmorillonite could catalyze the polycondensation reaction of methylolmelamines. The thermal stability and chemical resistance of those two nanocomposites were also improved dramatically compared to pure melamine-formaldehyde resin.

  17. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    NASA Astrophysics Data System (ADS)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  18. Modeling the sorption of zinc and nickel on Ca-montmorillonite

    NASA Astrophysics Data System (ADS)

    Bradbury, Michael H.; Baeyens, Bart

    1999-02-01

    In some previous work titration and Ni/Zn sorption edge/isotherm measurements carried out under a wide variety of experimental conditions on purified Na-montmorillonite were modelled in terms of cation exchange and surface complexation mass action equations. A major objective of the experimental/modelling programme is to understand and predict sorption in commercial bentonite systems. Since montmorillonite is the dominant clay mineral in bentonite and is often present in a mixed Na/Ca form, a natural extension to the previous investigations was to study Ni/Zn sorption on a conditioned Ca-montmorillonite. An important open question was whether the same basic parameters such as site types, site capacities, and acidity constants could be used for both materials and to see to what extent the Ni and Zn surface complexation constants were influenced by the form of the montmorillonite. Sorption edges for Ni and Zn at different Ca(NO 3) 2 background electrolyte concentrations, together with sorption isotherms measured over a range of pH values, are presented and modelled using the MINSORB code. The parameters characterising the sorption of Ni and Zn on Na- and Ca-montmorillonite systems are compared. Finally, examples are given that illustrate how the modelling can provide insight into the sorption processes.

  19. Acid Rain: Activities for Science Teachers.

    ERIC Educational Resources Information Center

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  20. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  1. Hydroesterification of olefins catalyzed by Pd(OAc){sub 2} immobilized on montmorillonite

    SciTech Connect

    Lee, Chul Woo; Alper, H.

    1995-01-13

    Palladium acetate immobilized on montmorillonite is an efficient catalyst for the hydroesterification of olefins with carbon monoxide and methanol, in the presence of triphenylphosphine and an acid promoter, affording branched chain esters. The reaction is regiospecific for aryl olefins as well as vinyl benzoate and regioselective for aliphatic olefins. 4 tabs.

  2. Activation of carboxylic acids in asymmetric organocatalysis.

    PubMed

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  3. Ni clay neoformation on montmorillonite surface.

    PubMed

    Dähn, R; Scheidegger, A; Manceau, A; Schlegel, M; Baeyens, B; Bradbury, M H

    2001-03-01

    Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

  4. Apparent diffusion coefficients and chemical species of neptunium (V) in compacted Na-montmorillonite.

    PubMed

    Kozai, N; Inada, K; Kozaki, T; Sato, S; Ohashi, H; Banba, T

    2001-02-01

    Diffusion of neptunium (V) in compacted Na-montmorillonite was studied through the non-steady state diffusion method. In this study, two experimental attempts were carried out to understand the diffusion mechanism of neptunium. One was to establish the diffusion activation energy, which was then used to determine the diffusion process in the montmorillonite. The other was the measurement of the distribution of neptunium in the montmorillonite by a sequential batch extraction. The apparent diffusion coefficients of neptunium in the montmorillonite at a dry density of 1.0 Mg m-3 were from 3.7 x 10(-12) m2 s-1 at 288 K to 9.2 x 10(-12) m2 s-1 at 323 K. At a dry density of 1.6 Mg m-3, the apparent diffusion coefficients ranged between 1.5 x 10(-13) m2 s-1 at 288 K and 8.7 x 10(-13) m2 s-1 at 323 K. The activation energy for the diffusion of neptunium at a dry density of 1.0 Mg m-3 was 17.5 +/- 1.9 kJ mol-1. This value is similar to those reported for diffusion of other ions in free water, e.g., 18.4 and 17.4 kJ mol-1 for Na+ and Cl-, respectively. At a dry density of 1.6 Mg.m-3, the activation energy was 39.8 +/- 1.9 kJ mol-1. The change in the activation energy suggests that the diffusion process changes depending on the dry density of the compacted montmorillonite. A characteristic distribution profile was obtained by the sequential extraction procedure for neptunium diffused in compacted montmorillonite. The estimated fraction of neptunium in the pore water was between 3% and 11% at a dry density of 1.6 Mg m-3 and at a temperature of 313 K. The major fraction of the neptunium in the montmorillonite was identified as neptunyl ions sorbed on the outer surface of the montmorillonite. These findings suggested that the activation energy for diffusion and the distribution profile of the involved nuclides could become powerful parameters in understanding the diffusion mechanism.

  5. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Wilson, James; Savage, David; Cuadros, Javier; Shibata, Masahiro; Ragnarsdottir, K. Vala

    2006-01-01

    It is envisaged that high-level nuclear waste (HLW) will be disposed of in underground repositories. Many proposed repository designs include steel waste canisters and bentonite backfill. Natural analogues and experimental data indicate that the montmorillonite component of the backfill could react with steel corrosion products to produce non-swelling Fe-rich phyllosilicates such as chamosite, berthierine, or Fe-rich smectite. In K-bearing systems, the alteration of montmorillonite to illite/glauconite could also be envisaged. If montmorillonite were altered to non-swelling minerals, the swelling capacity and self-healing properties of the bentonite backfill could be reduced, thereby diminishing backfill performance. The main aim of this paper was to investigate Fe-rich phyllosilicate mineral stability at the canister-backfill interface using thermodynamic modelling. Estimates of thermodynamic properties were made for Fe-rich clay minerals in order to construct approximate phase-relations for end-member/simplified mineral compositions in logarithmic activity space. Logarithmic activity diagrams (for the system Al 2O 3-FeO-Fe 2O 3-MgO-Na 2O-SiO 2-H 2O) suggest that if pore waters are supersaturated with respect to magnetite in HLW repositories, Fe(II)-rich saponite is the most likely montmorillonite alteration product (if f values are significantly lower than magnetite-hematite equilibrium). Therefore, the alteration of montmorillonite may not be detrimental to nuclear waste repositories that include Fe, as long as the swelling behaviour of the Fe-rich smectite produced is maintained. If f exceeds magnetite-hematite equilibrium, and solutions are saturated with respect to magnetite in HLW repositories, berthierine is likely to be more stable than smectite minerals. The alteration of montmorillonite to berthierine could be detrimental to the performance of HLW repositories.

  6. Building biologically active nucleic acid nanocomplexes.

    PubMed

    Smith, C I Edvard; Lundin, Karin E; Simonson, Oscar E; Moreno, Pedro M D; Svahn, Mathias G; Wenska, Malgorzata; Strömberg, Roger

    2008-01-01

    The Bioplex technology allows the hybridization of functional entities to various forms of nucleic acids by the use of synthetic nucleic acid analogs. Such supramolecular assemblies can be made in a predetermined fashion and can confer new properties. The Zorro technology is based on a novel construct generated to simultaneously bind to both DNA strands. Such compounds may have gene silencing activity.

  7. Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1968-01-01

    Surface area determinations were made on a montmorillonite with various cations emplaced on the exchangeable sites, utilizing nitrogen and carbon dioxide as adsorbates at 77 ??K and 195 ??K, respectively, in a dynamic system. From the fraction of a Mississippi montmorillonite less than about 1 ?? in size, samples were prepared by replacing the original exchangeable cations with Li+, Na+, K+, Rb+, Cs+, Mg++, Ca++, Ba++, and NH4+, forming a series of homoionic montmorillonite species. Surface areas from 3-point B.E.T. plots (half-hour adsorption points), with nitrogen as the adsorbate, ranged from 61 m2/g for Li-montmorillonite to 138 m2/g for Cs-montmorillonite, thus reflecting a certain degree of nitrogen penetration between layers. Complete penetration should theoretically result in a surface area of over 300 m2/g for this clay with a nitrogen monolayer between each pair of platelets. The experimental data indicate that the extent of penetration is time-dependent and is also a function of the interlayer forces as governed by the size and charge of the replaceable cation. This finding negates the generally accepted concept that nitrogen at 77 ??K does not penetrate the layers and provides a measure only of the external surface of expandable clay minerals. A further measure of the variation of interlayer forces is provided by the adsorption of carbon dioxide at 195 ??K. Surface area values ranged from 99 m2/g for Li-montmorillonite to 315 m2/g for Csmontmorillonite. Although the carbon dioxide molecule is larger than the nitrogen molecule, its greater penetration apparently is a result of its being kinetically more energetic (with a larger diffusion coefficient) at its higher adsorption temperature. Similar differences have been found with both adsorbates in the study of microporous substances, such as coal, where activated diffusion is of considerable significance. ?? 1968.

  8. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  9. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  10. Peptide chain elongation: A possible role of montmorillonite in prebiotic synthesis of protein precursors

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Faybíková, Katarína; Eder, Artur; Yongyai, Yongyos; Rode, Bernd M.

    1995-10-01

    Several studies have proven the ability of montmorillonite to catalyse amino acid condensation under assumed prebiotic conditions, simulating wetting-drying cycles. In this work, the oligomerization of short peptides gly2, gly3, gly4 and ala2 on Ca-and Cu-montmorillonite in drying-wetting cycles at 80 °C was studied. The catalytic effect of montmorillonite was found to be much higher than in the case of glycine oligomerization. From gly2 after 3 weeks, 10% oligomers (up to gly6, with gly3 as main products) are formed. Gly3 and gly4 give higher oligomers even after 1 cycle. Ala2 produces both ala3 and ala4, whereas ala does not produce any oligomers under these conditions. Heteroologomerization was observed: ala-gly-gly is formed from ala and gly2. Much higher yields are obtained using Ca-montmorillonite, because copper (II) oxidizes organic molecules. The influence of the reaction mechanism on the preferential oligomerization of oligopeptides is discussed.

  11. Interaction of cationic surfactants with iron and sodium montmorillonite suspensions

    SciTech Connect

    Chen, G.; Han, B.; Yan, H.

    1998-05-15

    Calorimetry, static technique, and X-ray diffraction (XRD) analysis were employed to study the adsorption of cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium bromide (DTAB) on Fe-montmorillonite and Na-montmorillonite suspensions. The results show that the process of adsorption is exothermic and that the type of clay and the alkyl chain length of surfactant affect the amount of adsorption and the enthalpy of adsorption significantly but that the effect of temperature is very limited in the temperature range studied. The magnitudes of adsorption amount and adsorption enthalpy follow the order Na-montmorillonite > Fe-montmorillonite, CTAB > DTAB. The basal spacings determined by X-ray powder diffraction indicate that the CTAB adsorbed between the clay interlayers in a bilayer arrangement, while the DTAB formed bilayers or monolayers at saturation adsorption between the Na-montmorillonite and Fe-montmorillonite interlayers, respectively. The adsorption mechanism is also discussed on the basis of the experimental data.

  12. Silver bromide in montmorillonite as visible light-driven photocatalyst and the role of montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Razavi, M.

    2016-09-01

    In this study, novel plasmonic photocatalyst, Ag/AgBr-montmorillonite (MMT) nanocomposite, was prepared by dispersion method and light irradiation. The structure, composition and optical properties of such material was investigated by transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The powder X-ray diffraction showed intercalation of Ag/AgBr nanoparticles into the clay interlayer space. The results showed that the prepared sample has a similar phase composition. However, their photocatalytic activity varied significantly. The photocatalytic testing result showed that the Ag/AgBr-MMT nanocomposite was more efficient photocatalyst in the discoloration of methylene blue under visible light illumination. The Ag/AgBr-MMT nanocomposite in pH = 2 and under visible light degraded 92 % of dye at the irradiation time of 20 min. MMT as matrix showed excellent role in separation efficiency of electron-hole pairs. The mechanism of separation of the photogenerated electrons and holes at the Ag/AgBr-MMT nanocomposite was discussed.

  13. Preparation and Characterization of Novel Montmorillonite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansa, Rola

    Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.

  14. Modeling the Adsorption of Oxalate onto Montmorillonite.

    PubMed

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-01

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model. PMID:26444928

  15. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. PMID:26609925

  16. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications.

  17. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    PubMed Central

    2009-01-01

    Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu). Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans. PMID:19166595

  18. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-04-25

    The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  19. Analysis of Oligonucleotide DNA Binding and Sedimentation Properties of Montmorillonite Clay Using Ultraviolet Light Spectroscopy

    PubMed Central

    Beall, Gary W.; Sowersby, Drew S.; Roberts, Rachel D.; Robson, Michael H.; Lewis, L. Kevin

    2009-01-01

    Smectite clays such as montmorillonite form complexes with a variety of biomolecules, including the nucleic acids DNA and RNA. Most previous studies of DNA adsorption onto clay have relied upon spectrophotometric analysis after separation of free nucleic acids from bound complexes by centrifugation. In the current work we demonstrate that such studies produce a consistent error due to (a) incomplete sedimentation of montmorillonite and (b) strong absorbance of the remaining clay at 260 nm. Clay sedimentation efficiency was strongly dependent upon cation concentration (Na+ or Mg2+) and on the level of dispersion of the original suspension. An improved clay:DNA adsorption assay was developed and utilized to assess the impact of metal counterions on binding of single-stranded DNA to montmorillonite. X-ray diffraction demonstrated, for the first time, formation of intercalated structures consistent with orientation of the DNA strands parallel to the clay surface. Observed gallery spacings were found to closely match values calculated utilizing atomistic modeling techniques. PMID:19061334

  20. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    SciTech Connect

    Sanqin, Wu; Zepeng, Zhang; Yunhua, Wang; Libing, Liao; Jiansheng, Zhang

    2014-11-15

    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. • The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.

  1. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  2. Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation.

    PubMed

    Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng

    2016-01-01

    Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface.

  3. Photoinduced biochemical activity of fullerene carboxylic acid

    SciTech Connect

    Tokuyama, Hidetoshi; Yamago, Shigeru; Nakamura, Eiichi; Shiraki, Takashi; Sugiura, Yukio

    1993-08-25

    Here we report the preparation of a water-miscible fullerene carboxylic acid (2) and its biological activity-cytotoxicity and G-selective DNA cleaving ability. What is truly remarkable is that the biological activity of C{sub 60} was observed only under irradiation with visible light and not in the dark, suggesting that fullerenes may serve as useful photosensitive biochemical probes. We have found, for the first time, that even low-energy visible light is surfficient to induce biological activity in fullerene derivatives. Among the numerous implications of the present findings, the most exciting prospect includes the use of fullerene derivatives for photodynamic therapy. 18 refs., 2 figs., 1 tab.

  4. Influence of Montmorillonite on Nucleotide Oligomerization Reactions: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Mathew, Damien C.; Luthey-Schulten, Zaida

    2010-03-01

    We investigate a proposed origins of life scenario involving the clay montmorillonite and its catalytic role in forming oligonucleotides from activated mononucleotides. Clay and mineral surfaces are important for concentrating the reactants and for promoting nucleotide polymerization reactions. Using classical molecular dynamics methods we provide atomic details of reactant conformations prior to polynucleotide formation, lending insight into previously reported experimental observations of this phenomenon. The simulations clarify the catalytic role of metal ions, demonstrate that reactions leading to correct linkages take place primarily in the interlayer, and explain the observed sequence selectivity in the elongation of the chain. The study comparing reaction probabilities involving L- and D-chiral forms of the reactants has found enhancement of homochiral over heterochiral products when catalyzed by montmorillonite.

  5. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  6. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Craig, P. I.; Kral, T. A.

    2016-05-01

    Methanogens were grown in media containing bicarbonate buffer, nontronite or montmorillonite clay, and hydrogen gas. No other nutrients were added. These results suggest that martian clays may provide adequate nutrients to support organism growth.

  7. Silylation of montmorillonite surfaces: dependence on solvent nature.

    PubMed

    Su, Linna; Tao, Qi; He, Hongping; Zhu, Jianxi; Yuan, Peng; Zhu, Runliang

    2013-02-01

    Silylation of clay mineral surfaces has attracted much attention due to their extensive applications in materials science and environmental engineering. Silylation of montmorillonite surfaces with 3-aminopropyltriethoxysilane was carried out in polar-protic and nonpolar solvents. The swelling property of the silylated montmorillonites was investigated by intercalating with cetyltrimethylammonium bromide. Silylated montmorillonites prepared in nonpolar solvents showed a larger amount of loaded silane and a higher extent of condensation among different silane molecules, comparing with those prepared in polar-protic solvents with high dielectric constant. Meanwhile, the silylated montmorillonites prepared in nonpolar solvents displayed poor swelling property due to the linkage between silane oligomers and clay layers, that is, the neighboring clay layers were locked by the silane oligomers. The present study demonstrated that the polarity of the solvents used had an important influence on the extent of grafting, interlayer structure, and swelling property of the silylated products. This is of high importance for synthesis and application of silylated clay minerals.

  8. Heterogeneous reaction of NO2 on the surface of montmorillonite particles.

    PubMed

    Zhang, Zefeng; Shang, Jing; Zhu, Tong; Li, Hongjun; Zhao, Defeng; Liu, Yingju; Ye, Chunxiang

    2012-01-01

    The studies on heterogeneous reactions over montmorillonite, which is a typical 2:1 layered aluminosilicate, will benefit to the understanding of heterogeneous reactions on clay minerals. Montmorillonite can be classified as sodium montmorillonite or calcium montmorillonite depending on the cation presented between the different layers. Using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), the heterogeneous reaction mechanism of NO2 on the surface of montmorillonite was firstly investigated. Results showed that the reaction of NO2 on the surface of sodium and calcium montmorillonite fit a first-order kinetics, and the reaction duration of calcium montmorillonite was longer than that of sodium montmorillonite under the dry condition. For either sodium or calcium montmorillonite, the uptake coefficient decreased as humidify increased. PMID:23520844

  9. Preparation and Characterization of Titania-Pillared Montmorillonite

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin; Song, Shaoxian; Zhang, Min; Tuo, Biyang

    In this work, a Ti-pillared montmorillonite with high thermal stability has been prepared by using a Na-montmorillonite as the host clay and polyhydroxy-titania ions as the pillaring precursor. The formation of Ti-pillared montmorillonite has been confirmed from the characterizations through X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric-differential scanning calorimeter, and specific surface area analyses. In the preparation of Ti-pillared montmorillonite several parameters, such as the type of solvent in which the synthesis is realized, the ratio of polyhydroxy-titania ions and montmorillonite, the intercalation time, the calcining temperature, and calcining time, were tested to understand their effects on the basal spacing. It was shown that this method could produce a Ti-pillared montmorillonite with the basal spacing of 3.74 nm, specific surface area of 409 m2/g, and mean pore size of 2.94 nm, as well as a high thermal stability up to 900°C.

  10. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; Jerauld, Gary R.

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  11. Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures.

    PubMed

    Yang, Kun; Zhu, Lizhong; Zhao, Baowei

    2005-11-01

    Losses of surfactants through sorption to soils/sediments, especially to clay minerals, by various chemical interactions such as sorption and precipitation threaten the success of surfactant in enhancing remediation of contaminated soil and groundwater. In this study, the behavior of mixtures of a nonionic surfactant (TX-100) and an anionic surfactant (SDBS) sorbed to a montmorillonite saturated with calcium (Ca-montmorillonite) was investigated, and compared with that of individual surfactants. It is shown that the amounts of both TX-100 and SDBS sorbed to Ca-montmorillonite are significant. However, the amount of either TX-100 or SDBS sorbed can be decreased and minimized when they are mixed with each other. Mixed micelle formation, which causes negative deviation of critical micelle concentrations (CMCs) from the ideal, is responsible for the decrease in sorbed TX-100 and sorbed SDBS in their mixtures. Because of their ability to minimize their amounts sorbed and thus enhance their active concentrations, as observed in mixed TX-100 and SDBS systems, mixed anionic-nonionic surfactants exhibit potential advantages in the area of enhanced soil and groundwater remediation.

  12. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    PubMed

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity. PMID:25211030

  13. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    PubMed

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

  14. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  15. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions.

    PubMed

    Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi

    2004-09-01

    REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.

  16. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  17. Ce{sup 3+}-exchanged montmorillonite (Ce{sup 3+}-mont) as a useful substrate-selective acetalization catalyst

    SciTech Connect

    Tateiwa, Jun-ichi; Horiuchi, Hiroki; Uemura, Sakae

    1995-06-30

    Cation-exchanged montmorillonite (M{sup n+}-mont; M{sup n+} = Ce{sup 3+}, Zr{sup 4+}, Fe{sup 3+}, Al{sup 3+}, Zn{sup 2+}, H{sup +}, and Na{sup +}) was evaluated as a catalyst for the acetalization of carbonyl compounds with methanol. Cyclohexanones, benzaldehydes, and acid-sensitive 2-furancarboxaldehyde were efficiently acetalized in methanol in the presence of Ce{sup 3+}-mont. 30 refs., 2 tabs.

  18. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

    2011-01-01

    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO3 and NaBH4 were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO3. The interlamellar space limits changed little (d-spacing = 1.24–1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19–8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO3/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

  19. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  20. Cosorption of Zn(II) and 2-, 3-, or 4-aminopyridine by montmorillonite.

    PubMed

    Ikhsan, Jaslin; Angove, Michael J; Johnson, Bruce B; Wells, John D

    2005-04-15

    Data from acid-base titrations at 25 degrees C of Zn(NO(3))(2) and 2-, 3-, or 4-aminopyridine in 10 mM KNO(3) as background electrolyte suggested that soluble complexes ZnL(2+) and Zn(OH)L(+) form, where L represents aminopyridine. Zinc-hydroxyaminopyridine complexes have not been reported previously. The cosorption of Zn(II) with each of the aminopyridines to K-saturated Wyoming (SWy-K) and Texas (STx-K), and Ca-enriched Texas (STx-Ca) montmorillonites was measured at 25 degrees C, with 10 mM KNO(3) or 3.3 mM Ca(NO(3))(2) as background electrolyte. Comparison with previous data for sorption of Zn(II) and the aminopyridines separately and surface complexation modeling of the cosorption data showed that under acid conditions competition between Zn(2+) and aminopyridinium ions for the permanent negatively charged sites of montmorillonite results in suppression of the uptake of each sorbate by the other, but only when a large excess of the competing sorbate is present. Under alkaline conditions the sorption of Zn(II) was not affected by the presence of even a large excess of aminopyridine, but the sorption of 4-aminopyridine in particular was slightly enhanced when a large excess of Zn(II) was present. The enhancement was attributed to the formation of metal-bridged ternary surface complexes at the variable-charge sites on the edges of the montmorillonite crystals.

  1. Fluxless soldering using activated acid vapors

    SciTech Connect

    Frear, D.R.; Keicher, D.M.

    1992-01-01

    Acid vapors have been used to fluxlessly reduce metal oxides and enhance wetting of solder on metallizations. Dilute solutions of hydrogen, acetic acid and formic acid in an inert carrier gas of nitrogen or argon were used with the sessile drop technique for 60Sn-40 Pb solder on Cu and Au/Ni metallizations. The time to reduce metal oxides and the extent of wetting as a function of acid vapor concentrations were characterized. Acetic and formic acids reduce the surface metal oxides sufficiently to form metallurgically sound solder joints. Hydrogen did not reduce oxides rapidly enough at 220{degree}C to be suitable for soldering applications. The optimum conditions for oxide reduction with formic acid was with an acid vapor concentration in nitrogen carrier gas of 4% for Cu metallizations and 1.6% on Au/Ni. The acetic acid vapor concentration, also in nitrogen, was optimized at 1.5% for both metallizations. Above a vapor concentration of 1.5%, the acetic acid combined with the bare metal to form acetates which increased the wetting time. These results indicate that acid vapor fluxless soldering is a viable alternative to traditional flux soldering.

  2. Preparation and characterization of zwitterionic surfactant-modified montmorillonites.

    PubMed

    Zhu, Jianxi; Qing, Yanhong; Wang, Tong; Zhu, Runliang; Wei, Jingming; Tao, Qi; Yuan, Peng; He, Hongping

    2011-08-15

    A series of zwitterionic surfactant-modified montmorillonites (ZSMMs) were synthesized using montmorillonite and three zwitterionic surfactants with different alkyl chain lengths at different concentrations [0.2-4.0 cation exchange capacity (CEC)]. These ZSMMs were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis and differential thermo-gravimetric (TG/DTG) analyses. The zwitterionic surfactant could be intercalated into the interlayer spaces of montmorillonites and causing interlayer space-swelling. From XRD measurements, the amount of the surfactants loaded and the basal spacing increased with surfactant concentration and alkyl chain length. One endothermic DTG peak occurred at ~390 °C, which was assigned to the decomposition of the zwitterionic surfactant on the organo-montmorillonites from 0.2 to 0.6 CEC. When the surfactant loading was increased, a new endothermic peak appeared at ~340 °C. From the microstructures of these ZSMMs, the mechanism of zwitterionic surfactant adsorption was proposed. At relatively low loadings of the zwitterionic surfactant, most of surfactants enter the spacing by an ion-exchange mechanism and are adsorbed onto the interlayer cation sites. When the concentration of the zwitterionic surfactant exceeds the CEC of montmorillonite, the surfactant molecules then adhere to the surface-adsorbed surfactant. Some surfactants enter the interlayers, whereas the others are attached to the clay surface. When the concentration of surfactant increases further beyond 2.0 CEC, the surfactants may occupy the inter-particle space within the house-of-cards aggregate structure.

  3. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    PubMed

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  4. The effect of dispersion technique of montmorillonite on polyisocyanurate nanocomposites

    NASA Astrophysics Data System (ADS)

    Cabulis, U.; Fridrihsone, A.; Andersons, J.; Vlcek, T.

    2014-05-01

    The biomass represents an abundant, renewable, competitive and low cost resource that can play an alternative role to petrochemical resources. The central topic of the research activity reported is the use of rape seed oil (RO) as a raw material for the production of rigid polyisocyanurate foams (PIR). The content of the renewable resource-derived polymers achieved in ready foams is up to 20%. By using biopolymers as a matrix, a prospective way is to reinforce them with nanoparticles, organically modified clays, for improvement of mechanical properties while, at the same time, replacing petrochemical raw materials. Organoclay Cloisite® 15A was tested as a filler of PIR foams. Three different techniques - ultrasonification, mixing by three-roll mills, and high-pressure homogenization were used for dispergation of nanoclays in polyols. Composite polyisocyanurate foams and solid polymer samples were produced and tested for stiffness and strength. This paper discusses the studies into the use of RO as a renewable source in rigid PIR foams filled with organomodified montmorillonite clay with loadings from 1 to 5% by weight.

  5. Adsorption of hydrogen sulfide on montmorillonites modified with iron.

    PubMed

    Nguyen-Thanh, Danh; Block, Karin; Bandosz, Teresa J

    2005-04-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.

  6. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process. PMID:27083565

  7. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    PubMed

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  8. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  9. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  10. Physical activity as a determinant of fecal bile acid levels

    PubMed Central

    Wertheim, Betsy C.; Martínez, María Elena; Ashbeck, Erin L.; Roe, Denise J.; Jacobs, Elizabeth T.; Alberts, David S.; Thompson, Patricia A.

    2009-01-01

    Physical activity is protective against colon cancer, whereas colonic bile acid exposure is a suspected risk factor. While likely related, the association between physical activity and bile acid levels has not been well studied. Furthermore, the effect of triglycerides, which are known to modify bile acid levels, on this relationship has not been investigated. We conducted a cross-sectional analysis of baseline fecal bile acid levels for 735 colorectal adenoma formers obtained from participants in a phase III ursodeoxycholic acid chemoprevention trial. Compared to the lowest quartile of recreational physical activity duration, the highest quartile was associated with a 17% lower fecal bile acid concentration, adjusted for age, sex, dietary fiber intake, and body mass index (P = 0.042). Furthermore, consistent with a previously established relationship between serum triglyceride levels and bile acid metabolism, we stratified by triglyceride level and observed a 34% lower fecal bile acid concentration (highest versus lowest quartiles of physical activity) in individuals with low triglycerides (< 136 mg/dL; P = 0.002). In contrast, no association between physical activity and fecal bile acid concentration was observed for subjects with high triglycerides (≥ 136 mg/dL). Our results suggest that the biological mechanism responsible for the protective effect of physical activity on the incidence of colon cancer may be partially mediated by decreasing colonic bile acid exposure. However, this effect may be limited to individuals with lower triglyceride levels. PMID:19383885

  11. Speciation of uranium(VI) sorption complexes on montmorillonite

    SciTech Connect

    Chisholm-Brause, C.J.; Morris, D.E.; Richard, R.E.

    1992-05-01

    Environmental contaminant releases that contain uranium are among the most serious problems that must be confronted by restoration programs. To facilitate restoration, information concerning the speciation of uranium is needed. Under oxidizing conditions, dissolved uranium is predominantly in the U(VI) (uranyl) form and is quite mobile in the environment, however sorption onto soils may retard its movement. In this study, we have investigated the effects of changes in solution speciation on the nature of uranyl sorption complexes on montmorillonite, a common soil constituent. Aqueous U(VI) solutions between pH 3 to 7 were batch-equilibrated with montmorillonite for several days; specific pH values were selected such that the solutions consisted of dominantly monomeric, oligomeric, or a mix of monomeric and oligomeric aqueous uranyl species. Emission spectroscopy was used to investigate the nature of U(VI) sorbed to montmorillonite.

  12. Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles.

    PubMed

    Nistor, Manuela Tatiana; Vasile, Cornelia; Chiriac, Aurica P

    2015-08-01

    Montmorillonite nanoparticles have been physically incorporated within a crosslinked collagen/poly(N-isopropyl acrylamide) network in order to adjust the properties of the stimuli-responsive hybrid systems. The research underlines both the influence of hydrogel composition and nanoparticle type on hybrid hydrogel properties. The dispersion of the montmorillonite nanoparticles in polymeric matrix have been visualized by SEM, TEM and AFM techniques and quantitatively and qualitatively estimated using near infrared chemical imaging. The electrical charge of the nanoparticles influenced the polymeric chain arrangement and the pore size. The morphologies of the nanoparticulated layers are partially exfoliated or intercalated and uniformly dispersed through the polymeric semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide). The hybrid hydrogels exhibit pseudoplastic behavior and the addition of nanoparticles has resulted in the increase of the complex viscosity. The adhesion capacity was affected mainly by the presence of organically modified montmorillonites. PMID:26042709

  13. Influence of interlayer cations on organic intercalation of montmorillonite.

    PubMed

    Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-09-15

    The influence of the types of interlayer cations on organic intercalation of montmorillonite (Mt) was studied in this paper. The distribution of Na(+), K(+), Mg(2+), Ca(2+) and Fe(3+) in montmorillonite interlayer, their interaction with structure layers and the effect of interlayer cations on the basal spacing of Mt, the amount of binding water for different interlayer cations and the binding force between them were investigated systematically. 1-Hexadecy1-3-methylimidazolium chloride monohydrate (C16mimCl) was intercalated into montmorillonites with different interlayer cations. The influence of interlayer cations on organic intercalation was investigated. Molecular dynamics (MD) modeling was used to speculate the interlayer microstructures of the organically intercalated Mt with different interlayer cations. These simulations help to predict the microstructure of organo-Mt and guide their relevant engineering applications. PMID:26001131

  14. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH†

    PubMed Central

    Guha, Samit; Shaw, Gillian Karen; Mitcham, Trevor M.; Bouchard, Richard R.

    2015-01-01

    Absorption of 808 nm laser light by liposomes containing a pH sensitive, near-infrared croconaine rotaxane dye increases dramatically in weak acid. A stealth liposome composition permits acid activated, photothermal heating and also acts as an effective nanoparticle probe for ratiometric photoacoustic imaging of acidic pH in deep sample locations, including a living mouse. PMID:26502996

  15. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    NASA Astrophysics Data System (ADS)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  16. Oligomerization of uridine phosphorimidazolides on montmorillonite: a model for the prebiotic synthesis of RNA on minerals

    NASA Technical Reports Server (NTRS)

    Ding, P. Z.; Kawamura, K.; Ferris, J. P.

    1996-01-01

    The 5'-phosphorimidazolide of uridine reacts on Na(+)-montmorillonite 22A in aqueous solution to give oligomers as long as 7 mers. The maximum chain length increases to 9 mers and the overall oligomer yield increases when 9:1 ImpU, A5' ppA mixtures react under the same conditions. The oligomer yield and maximum chain length decreases with the structure of the added pyrophosphate in the order A5' ppA > A5' ppU > U5' ppU. Structure analysis of individual oligomer fractions was performed by selective enzymatic hydrolyses followed by HPLC analysis of the products. The regioselectivity for 3',5'-bond formation is 80-90% in the 9:1 ImpU, A5' ppA reaction, a percentage comparable to that observed in the 9:1 ImpA, A5' ppA reaction. Oligomerization of ImpU is inhibited by addition of dA5' ppdA, and MeppA. No oligomers containing A5' ppU were products of the 9:1 ImpU,A5' ppA reaction, a finding consistent with the simple addition of the ImpU to the A5' ppA and not the rearrangement of an ImpU-A5' ppA adduct. Concentrations of lysine or arginine which were close to that of the ImpU did not inhibit oligomer formation. Treatment of Na(+)-montmorillonite with 1 M arginine yielded arginine-montmorillonite, an amino acid-mineral adduct which did not catalyze ImpU oligomerization. Neither the 4-9 mers formed in the 9:1 ImpU, A5' ppA reaction nor the 4-9 mers formed by the base hydrolysis of poly(U) served as templates for the formation of oligo(A)s.

  17. Potentiometric Acid-Base Titrations with Activated Graphite Electrodes

    NASA Astrophysics Data System (ADS)

    Riyazuddin, P.; Devika, D.

    1997-10-01

    Dry cell graphite (DCG) electrodes activated with potassium permanganate are employed as potentiometric indicator electrodes for acid-base titrations. Special attention is given to an indicator probe comprising activated DCG-non-activiated DCG electrode couple. This combination also proves suitable for the titration of strong or weak acids.

  18. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  19. Oligomerization of mononucleotides on montmorillonite: A potential approach to the prebiotic synthesis of RNA. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Goezen; Ding, Zi Ping; Prabahar, Joseph

    1994-01-01

    The condensation of the 5'-phosphorimidazolide of adenosine (ImpA) on montmorillonite in a pH 8 aqueous solution yields oligomers containing up to 10 monomer units. The regiospecificity of 3',5'-phosphodiester bond formation is enhanced by addition of 10% diadenosine pyrophosphate (AppA) to the reaction mixture. A series of activated derivatives of 5'-AMP was prepared to investigate the effect of the leaving group on oligomer formation. The benzimidazole and p-dimethylamino-pyridine derivatives gave the best yields of oligomers. Factors important for oligomer formation is discussed.

  20. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals.

    PubMed

    Wang, Yajie; Xu, Jing; Li, Jinjun; Wu, Feng

    2013-09-15

    Photooxidation of arsenite(As(III)) in a suspension of natural montmorillonite under the irradiation of metal halide lamp (λ ≥ 313 nm)has been investigated. The results showed that the natural montmorillonite induced the photooxidation of As(III) by generating hydroxyl radicals (HO·) and hydroperoxyl/superoxide radicals (HO₂·/O₂⁻·). HO· which was responsible for the As(III) photooxidation. Approximately 38% of HO· was generated by the photolysis of ferric ions, and the formation of the remaining 62% was strongly dependent on the HO₂·/O₂⁻·. The presence of free ironions (Fe(2+) and Fe(3+)), made significant contributions to the photogeneration of these reactive oxygen species (ROS). The photooxidation of As(III) in natural montmorillonite suspensions was greatly influenced by the pH values. The photooxidation of As(III) by natural montmorillonite followed the Langmuir-Hinshelwood equation. In addition, the photooxidation of As(III) could be enhanced by the addition of humic acid. This work demonstrates that photooxidation may be an important environmental process for the oxidation of As(III) and may be a way to remove As(III) from acidic surface water containing iron-bearing clay minerals. PMID:23770489

  1. [Biological activity of retinoic acid and methylretinoate].

    PubMed

    Dusheĭko, A A; Chernukhina, L A; Blazhevich, M A; Davydova, L P

    1980-01-01

    Vitamin A lack in the diet of chicken produces a significant increase in the glandular stomach as well as formation of erosions and ulcers on the surface of the mucous membrane of the intermediate zone. Replacement of retinyl acetate in the diet by retinoic acid or methyl retionate gives no rise to changes in the morphological integrity of the glandular stomach of the chickens. Moreover, these compounds produce a reverse development of vitamin A-induced changes. It is thus concluded that when the diet lacks vitamin A, both retinoic acid and methyl retionate are capable of maintaining the structural integrity of the stomach.

  2. Perfluoroalkyl acids : Recent activities and research progress

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of man-made fluorinated organic chemicals consisting of a carbon backbone typically of four to fourteen in length and a charged functional moiety (primarily carboxylate, sulfonate or phosphonate). The two most widely known PFAAs are ...

  3. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  4. Chitosan-Montmorillonite microspheres: A sustainable fertilizer delivery system.

    PubMed

    dos Santos, Bruna Rodrigues; Bacalhau, Fabiana Britti; Pereira, Tamires dos Santos; Souza, Claudinei Fonseca; Faez, Roselena

    2015-08-20

    Controlled release fertilizers are efficient tools that increase the sustainability of agricultural practices. However, the biodegradability of the matrices and the determination of the release into soil still require some investigation. This paper describes the preparation of potassium-containing microspheres based on chitosan and montmorillonite clay and the in situ soil release. The chitosan-montmorillonite microspheres were prepared using a coagulation method and different proportions of montmorillonite. The structural, thermal and morphological properties as well the water swelling and fertilizer sorption capacity were evaluated. The best formulations were applied in soil, and the fertilizer release was monitored using time-domain reflectometry (TDR). Montmorillonite clay provides better sorption properties than the chitosan microspheres because of the rough and porous surface. Due to these properties, high levels of fertilizer were sorbed onto the material. ChMMT33-containing potassium shows two specific periods of fertilizer release: the first one lasted approximately three days and was assigned to the external fertilizer on the microspheres. The second was assigned to the internal fertilizer. TDR is an important and fast tool and was used to determine the fertilizer release and the ion movement in the soil. PMID:25965492

  5. Intercalation of both CTMAB and Al13 into montmorillonite.

    PubMed

    Zhu, Runliang; Wang, Tong; Ge, Fei; Chen, Wangxiang; You, Zhimin

    2009-07-01

    Clays intercalated with both organic cations and hydroxy-metal cations, also known as inorganic-organic clays (IOCs), have drawn great interests in the recent years because they possess the properties of both organoclays and pillared layered clays (PILCs). In this work, cetyltrimethyl ammonium bromide (CTMAB) and hydroxy-aluminum ([Al13O4(OH)24(H2O)12]7+ or Al13) were selected as the representatives of organic cations and hydroxy-metal cations, and three different methods were employed for the intercalation of montmorillonite at various CTMAB/Al13 ratios. This work aims to provide some novel information for clarifying the structural characteristics of IOCs. The experimental results showed that the structures of the resulting IOCs strongly depended on the intercalation methods and CTMAB/Al13 ratio. Both the intercalation agents could be intercalated into montmorillonite if they were used simultaneously for the intercalation, or if Al13 was intercalated after CTMAB, and the resulting IOCs were shown to have large basal spacing and small surface areas. However, if Al13 was intercalated first, the loading amounts of CTMAB would decrease significantly when the used Al13 amounts were relatively large (> or = 4 mmol Al/g montmorillonite). This could be attributed to the "lock" effect of montmorillonite's layers by the pre-intercalated Al13, and the basal spacing values of the resulting IOCs were shown to be equal to those of the PILCs. PMID:19394028

  6. Influence of Ca2+ on tetracycline adsorption on montmorillonite.

    PubMed

    Parolo, M Eugenia; Avena, Marcelo J; Pettinari, Gisela R; Baschini, Miria T

    2012-02-15

    The adsorption of tetracycline (TC) on montmorillonite was studied as a function of pH and Ca(2+) concentration using a batch technique complemented with X-ray diffraction and transmission electron microscopy. In the absence of Ca(2+), TC adsorption was high at low pH and decreased as the pH increased. In the presence of Ca(2+), at least two different adsorption processes took place in the studied systems, i.e., cation exchange and Ca-bridging. Cation exchange was the prevailing process at pH<5, and thus, TC adsorption decreased by increasing total Ca(2+) concentration. On the contrary, Ca-bridging was the prevailing process at pH>5, and thus, TC adsorption increased by increasing Ca(2+) concentration. The pH 5 represents an isoadsorption pH where both adsorption processes compensate each other. TC adsorption became independent of Ca(2+) concentration at this pH. For TC adsorption on Ca(2+)-montmorillonite in 0.01 M NaCl experiments, the ratio adsorbed TC/retained Ca(2+) was close to 1 in the pH range of 5-9, indicating an important participation of Ca(2+) in the binding of TC to montmorillonite. X-ray diffraction and transmission electron microscopy showed that TC adsorption induced intercalation between montmorillonite layers forming a multiphase system with stacking of layers with and without intercalated TC. PMID:22189389

  7. Chitosan-Montmorillonite microspheres: A sustainable fertilizer delivery system.

    PubMed

    dos Santos, Bruna Rodrigues; Bacalhau, Fabiana Britti; Pereira, Tamires dos Santos; Souza, Claudinei Fonseca; Faez, Roselena

    2015-08-20

    Controlled release fertilizers are efficient tools that increase the sustainability of agricultural practices. However, the biodegradability of the matrices and the determination of the release into soil still require some investigation. This paper describes the preparation of potassium-containing microspheres based on chitosan and montmorillonite clay and the in situ soil release. The chitosan-montmorillonite microspheres were prepared using a coagulation method and different proportions of montmorillonite. The structural, thermal and morphological properties as well the water swelling and fertilizer sorption capacity were evaluated. The best formulations were applied in soil, and the fertilizer release was monitored using time-domain reflectometry (TDR). Montmorillonite clay provides better sorption properties than the chitosan microspheres because of the rough and porous surface. Due to these properties, high levels of fertilizer were sorbed onto the material. ChMMT33-containing potassium shows two specific periods of fertilizer release: the first one lasted approximately three days and was assigned to the external fertilizer on the microspheres. The second was assigned to the internal fertilizer. TDR is an important and fast tool and was used to determine the fertilizer release and the ion movement in the soil.

  8. Gastroretentive montmorillonite-tetracycline nanoclay for the treatment of Helicobacter pylori infection.

    PubMed

    Iannuccelli, Valentina; Maretti, Eleonora; Montorsi, Monia; Rustichelli, Cecilia; Sacchetti, Francesca; Leo, Eliana

    2015-09-30

    The paper aims to explore the potential benefits provided by an organically modified montmorillonite (nanoclay) in the problematic management of the Helicobacter pylori gastric infection that is one of the most prevalent infectious diseases worldwide. Two nanoclay samples were produced by the intercalation of tetracycline (TC) into the interlayer of montmorillonite (MM) under two different pH reaction conditions (pH 3.0 and 8.7). MM/TC nanoclays were characterized by EDX, XRD, FTIR, DSC, drug adsorption extent, in vitro mucoadhesiveness and desorption in simulated gastric media. The reaction between MM and TC led to a complete MM cation (Na(+) and Ca(2+)) exchange process, an increase of MM characteristic interlayer spacing as well as an involvement of NHR3(+) group of TC, regardless of the reaction pH value. However, MM/TC nanoclay obtained under alkaline conditions provided a lower TC adsorption as well as a drug fraction weakly linked to MM in comparison with the nanoclay obtained in acidic conditions. Both the nanoclays exhibited good mucoadhesion properties to porcine mucin and TC desorption occurring mainly via a cation exchange process by H(+) ions. Based on the results obtained, TC intercalation into MM nanoplatelets could represent a potential advantageous approach allowing the antibiotic to distribute homogeneously on the gastric mucosa, diffuse through the gastric mucus layer and achieve the microorganism localization. PMID:26238817

  9. Adsorption and characterization of MCPA on DDTMA- and raw-montmorillonite: Surface sites involved.

    PubMed

    Santiago, Cintia C; Fernández, Mariela A; Torres Sánchez, Rosa M

    2016-01-01

    The 4-chloro-2-methylphenoxy acid (MCPA) is an herbicide widely used in agriculture, which generates a great concern about contamination of surface water and serious consequences for human health and the environment. In this work, the adsorption of MCPA on an Argentine montmorillonite (MMT) and its organo-montmorillonite product (OMMT) with different dodecyl trimethyl ammonium loading was investigated. MCPA adsorption on OMMT increases at least 3 times, with respect to the amount determined for MMT. X-ray diffraction and zeta potential analyses indicated the inner (interlayer) and outer surface participate as adsorption sites. Changes in surface electric charge and also interlayer expansion suggest that dimethyl amine (MCPA counterion) was also surface-adsorbed. The larger aggregates of OMMT, without and with MCPA, obtained compared to those of MMT samples, generate an improvement in the coagulation efficiency. This property, particularly after MCPA retention, allows an easier separation of the solids from the solution and enables a simple technological process application. PMID:26786275

  10. Elaboration et caracterisation de nanocomposites polyethylene/montmorillonite

    NASA Astrophysics Data System (ADS)

    Stoeffler, Karen

    This research project consists in preparing polyethylene/montmorillonite nanocomposites for film packaging applications. Montmorillonite is a natural clay with an exceptional aspect ratio. In recent years, its incorporation in polymer matrices has attracted great interest. The pioneer work from Toyota on polyamide-6/montmorillonite composites has shown that it was possible to disperse the clay at a nanometric scale. Such a structure, so-called exfoliated, leads to a significant increase in mechanical, barrier and fire retardant properties, even at low volumetric fractions of clay. This allows a valorization of the polymeric material at moderate cost. Due to its high polarity, montmorilloite exfoliation in polymeric matrices is problematic. In the particular case of polyolefin matrices, the platelets dispersion remains limited: most frequently, the composites obtained exhibit conventional structures (microcomposites) or intercalated structures. To solve this problem, two techniques are commonly employed: the surface treatment of the clay, which allows the expansion of the interfoliar gallery while increasing the affinity between the clay and the polymer, and the use of a polar compatibilizing agent (grafted polyolefin). The first part of this thesis deals with the preparation and the characterization of highly thermally stable organophilic montmorillonites. Commercial organophilic montmorillonites are treated with quaternary ammonium intercalating agents. However, those intercalating agents present a poor thermal stability and are susceptible to decompose upon processing, thus affecting the clay dispersion and the final properties of the nanocomposites. In this work, it was proposed to modify the clay with alkyl pyridinium, alkyl imidazolium and alkyl phosphonium intercalating agents, which are more stable than ammonium based cations. Organophilic montmorillonites with enhanced thermal stabilites compared to commercial organoclays (+20°C to +70°C) were prepared

  11. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  12. Diffusion of ion-exchanging electrolytes in montmorillonite gels

    SciTech Connect

    Jahnke, F.M.

    1987-01-01

    The primary contributions of this work are: (1) Development of a unique radially perfused diffusion cell suitable for measuring transient diffusion rates in compacted, highly adsorbing and swelling porous media such as montmorillonite clay gels; (2) examination of the effective diffusion coefficient (D{sub 6}) of electrolytes in montmorillonite clay gels; and (3) Measurement of the transient diffusion rates of cesium, chloride and tritium in 15 w/o montmorillonite clay gels at pH 9 and sodium chloride backgrounds of 10{sup {minus}1} to 10{sup {minus}3} kmol/m{sup 3}. Results are interpreted by using the dilute limit of the multicomponent transport equations derived for species migration in a single clay pore after macroscopic averaging. The tortuosity of the clay gel is found by tritium diffusion. Transient chloride diffusion rates are found to be at molecular rates. Negative adsorption of anions from the clay gel, required for an a priori prediction of chloride profiles, are calculated from site-binding theory. Surface diffusion is the primary mode of cesium transport in montmorillonite clay gels. Migration of cesium is primarily along the inner Helmholtz plane of clay particles. The primary implication for the montmorillonite clay-based packing as a nuclear waste migration barrier is that surface diffusion must be included to describe properly diffusion rates of either anions or cations. Currently surface diffusion is neglected and cesium penetration into the packing is drastically underestimated. Penetration depths of anions is grossly overestimated. In either case, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations.

  13. Exfoliation and intercalation of montmorillonite by small peptides

    PubMed Central

    Block, Karin A.; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C.

    2015-01-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  14. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  15. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  16. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  17. Synthesis and evaluation of dioleoyl glyceric acids showing antitrypsin activity.

    PubMed

    Habe, Hiroshi; Fukuoka, Tokuma; Sato, Shun; Kitamoto, Dai; Sakaki, Keiji

    2011-01-01

    Previously, Lešová et al. reported the isolation and identification of metabolite OR-1, showing antitrypsin activity, produced during fermentation by Penicillium funiculosum. The structure of OR-1 was a mixture of glyceric acid (GA), esterified with C(14)-C(18) fatty acids, and oleic acid (C18:1) as the most predominant fatty acid (Folia Microbiol. 46, 21-23, 2001). In this study, dioleoyl D-GA and dioleoyl L-GA were synthesized via diesterification with oleoyl chloride, and their antitrypsin activities were evaluated using both a disk diffusion method and spectral absorption measurements. The results show that both compounds and their equivalent mixtures possess antitrypsin activities; however, their IC(50) values (approximately 2 mM) are much higher than that of OR-1 (4.25 µM), suggesting that dioleoyl GA does not play a major role in the OR-1 antitrypsin activity. PMID:21606621

  18. Multiple forms of acid phosphatase activity in Gaucher's disease.

    PubMed

    Chambers, J P; Peters, S P; Glew, R H; Lee, R E; McCafferty, L R; Mercer, D W; Wenger, D A

    1978-07-01

    Although the primary genetic defect in all individuals with Gaucher's disease is a deficiency in glucocerebrosidase activity, the finding of marked elevations in splenic and serum acid phosphatase activity is almost as consistent a finding. Gaucher spleen and serum contain at least two forms of acid phosphatase that can be readily separated by chromatography on columns containing the cation exchange resin Sulphopropyl Sephadex. The major species of acid phosphatase (designated SP-I) contained in Triton X-100 (1% v/v) extracts of Gaucher spleen accounts for 65%--95% of the total activity and has the following properties: (1) it does not bind to the cation exchange column; (2) it exhibitis a pH optimum of 4.5--5.0; (3) it is inhibited by sodium fluoride (15 mM), L(+)-tartaric acid (20 mM), and beta-mercaptoethanol (2.1 M), and (4) it is resistant to inhibition by sodium dithionite (10 mM). The minor acid phosphatase activity (designated SP-II) present in extracts of Gaucher spleen has properties similar to those of the major species of acid phosphatase activity contained in serum from patients with Gaucher's disease: (1) it binds firmly to cation exchange columns (eluted by 0.5 M sodium chloride); (2) it exhibits a pH optimum of 5.0--6.0; (3) it is inhibited by sodium fluoride and sodium dithionite; and (4) it is resistant to inhibition by beta-mercaptoethanol (2.1 M) and L(+)-tartaric acid (20 mM). In addition, a second form of acid phosphatase that is tartrate resistant was found to be elevated in Gaucher serum. This form of serum acid phosphatase did not bind to Sulphopropyl Sephadex, was found to be significantly resistant to beta-mercaptoethanol (2.1 M), and was only partially inhibited by sodium dithionite (10 mM). The findings reported here indicate that at least three distinct forms of acid phosphatase activity are elevated in Gaucher's disease. Furthermore, the minor acid phosphatase activity contained in spleen homogenates has properties very similar to

  19. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution.

    PubMed

    Katavic, Vesna; Mietkiewska, Elzbieta; Barton, Dennis L; Giblin, E Michael; Reed, Darwin W; Taylor, David C

    2002-11-01

    Genomic fatty acid elongation 1 (FAE1) clones from high erucic acid (HEA) Brassica napus, Brassica rapa and Brassica oleracea, and low erucic acid (LEA) B. napus cv. Westar, were amplified by PCR and expressed in yeast cells under the control of the strong galactose-inducible promoter. As expected, yeast cells expressing the FAE1 genes from HEA Brassica spp. synthesized very long chain monounsaturated fatty acids that are not normally found in yeast, while fatty acid profiles of yeast cells expressing the FAE1 gene from LEA B. napus were identical to control yeast samples. In agreement with published findings regarding different HEA and LEA B. napus cultivars, comparison of FAE1 protein sequences from HEA and LEA Brassicaceae revealed one crucial amino acid difference: the serine residue at position 282 of the HEA FAE1 sequences is substituted by phenylalanine in LEA B. napus cv. Westar. Using site directed mutagenesis, the phenylalanine 282 residue was substituted with a serine residue in the FAE1 polypeptide from B. napus cv. Westar, the mutated gene was expressed in yeast and GC analysis revealed the presence of very long chain monounsaturated fatty acids (VLCMFAs), indicating that the elongase activity was restored in the LEA FAE1 enzyme by the single amino acid substitution. Thus, for the first time, the low erucic acid trait in canola B. napus can be attributed to a single amino acid substitution which prevents the biosynthesis of the eicosenoic and erucic acids.

  20. Activation of Inactive Nitrogenase by Acid-Treated Component I

    PubMed Central

    Nagatani, H. H.; Shah, Vinod K.; Brill, Winston J.

    1974-01-01

    When Azotobacter vinelandii was derepressed for nitrogenase synthesis in a N-free medium containing tungstate instead of molybdate, an inactive component I was synthesized. Although this inactive component I could be activated in vivo upon addition of molybdate to the medium, it could not be activated in vitro when molybdate was added to the extracts. Activation occurred, however, when an acid-treated component I was added to extracts of cells derepressed in medium containing tungstate. Acid treatment completely abolished component I activity. Mutant strains UW45 and UW10 were unable to fix N2. Both strains synthesized normal levels of component II but produced inactive component I. Acid-treated component I activated inactive component I in extracts of mutant strain UW45 but not mutant strain UW10. This activating factor could be obtained from N2-fixing Klebsiella pneumoniae, Clostridium pasteurianum, and Rhodospirillum rubrum. PMID:4218230

  1. Synthesis and antituberculosis activity of new fatty acid amides.

    PubMed

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains.

  2. Structural Requirements for the Procoagulant Activity of Nucleic Acids

    PubMed Central

    Gansler, Julia; Jaax, Miriam; Leiting, Silke; Appel, Bettina; Greinacher, Andreas; Fischer, Silvia; Preissner, Klaus T.

    2012-01-01

    Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects. PMID:23226277

  3. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.

  4. Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis.

    PubMed

    Yang, Yang; Feng, Yuyao; Zhang, Xiaowei; Nakajima, Takero; Tanaka, Naoki; Sugiyama, Eiko; Kamijo, Yuji; Aoyama, Toshifumi

    2016-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways. In fact, the first and last reactions in the sulfatide synthesis pathway are regulated by PPARα. Therefore, we also measured the expression levels of enzymes involved in sulfatide metabolism and the regulation of cellular sulfatide content. The levels of these enzymes and cellular sulfatide content both increased in a PPARα-dependent manner. These results indicate that PPARα activation plays defensive and compensative roles by reducing cellular toxicity associated with fatty acids and sulfuric acid. PMID:27644403

  5. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    PubMed Central

    Chang, Yi; Chen, Wei-Fan; Lin, Kuan-Hung; Hsieh, Cheng-Ying; Chou, Duen-Suey; Lin, Li-Jyun; Sheu, Joen-Rong; Chang, Chao-Chien

    2013-01-01

    Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM) exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM) significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt, as well as hydroxyl radical (OH●) formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation. PMID:23533502

  6. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  7. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  9. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  10. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  11. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  12. Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers

    NASA Astrophysics Data System (ADS)

    Tomer, V.; Polizos, G.; Manias, E.; Randall, C. A.

    2010-10-01

    Polymer nanocomposites prepared by epoxy reinforced with high permittivity barium titanate (BT) fillers or high aspect ratio montmorillonite (MMT) fillers exhibited marked changes in their high electric field properties and their relaxation dynamics, depending on the nanoparticle type and concentration, the nanoparticle size, and the epoxy matrix conversion. We investigated epoxy resin composites based on organically modified montmorillonite (oMMT) or BT (BaTiO3) nanoparticles in order to delineate the effects of the high aspect ratio of the MMT and the high permittivity of the BT particles. We also explored the potential benefits of the synergy between the two fillers in systems consisting of epoxy and both oMMT and BT particles. It was observed that the nature of the organic-inorganic interfaces dominate the glass transition temperature and the dielectric properties of these composites. Specifically, using dielectric relaxation spectroscopy, we probed the local dynamics of the polymer at the interfaces. The MMT systems had approximately three orders of magnitude slower interfacial dynamics than those at the BT interfaces, indicating more robust interfaces in the MMT composites than in the BT-based composites; the corresponding energy barriers (activation energies) associated with these motions were also doubled for the MMT systems. Furthermore, we investigated the effect of the decreased glass transition, interfacial area, polymer-phase at the organic-inorganic interface, and of the dielectric breakdown on the electrical energy storage capabilities of these composites.

  13. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde. PMID:21856030

  14. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    PubMed

    Radian, Adi; Mishael, Yael

    2012-06-01

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment. PMID:22545663

  15. Antileishmanial activity of diterpene acids in copaiba oil

    PubMed Central

    dos Santos, Adriana Oliveira; Izumi, Erika; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; da Veiga-Júnior, Valdir Florêncio; Nakamura, Celso Vataru

    2013-01-01

    Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs. PMID:23440116

  16. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes.

    PubMed

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang

    2009-10-01

    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It was demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases. PMID:19665786

  17. Urease inhibitory activities of β-boswellic acid derivatives

    PubMed Central

    2013-01-01

    Background and the purpose of the study Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative. Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-β-boswellic acid; 2, 3-O-acetyl-11-hydroxy-β-boswellic acid; 3. 3-O- acetyl-11-keto-β-boswellic acid and 4, 11-keto-β-boswellic acid. Their inhibitory activity on Jack bean urease were evaluated. Docking and pharmacophore analysis using AutoDock 4.2 and Ligandscout 3.03 programs were also performed to explain possible mechanism of interaction between isolated compounds and urease enzyme. Results It was found that compound 1 has the strongest inhibitory activity against Jack bean urease (IC50 = 6.27 ± 0.03 μM), compared with thiourea as a standard inhibitor (IC50 = 21.1 ± 0.3 μM). Conclusion The inhibition potency is probably due to the formation of appropriate hydrogen bonds and hydrophobic interactions between the investigated compounds and urease enzyme active site and confirms its traditional usage. PMID:23351363

  18. Nitric acid vapor removal by activated, impregnated carbons

    SciTech Connect

    Wood, G.O.

    1996-12-31

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The nitric acid vapor was generated from concentrated acid solutions and detected by trapping in a water bubbler for pH measurements. Both low and moderate relative humidity conditions were used. All carbons were effective at vapor contact times representative of air-purifying respirator use. One surprising observation was the desorption of low levels of ammonia from impregnated carbons. This was apparently due to residual ammonia from the impregnation processes.

  19. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  20. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

    PubMed Central

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655

  1. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    PubMed

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655

  2. Iron-montmorillonite - A spectral analog of Martian soil

    NASA Astrophysics Data System (ADS)

    Banin, A.; Margulies, L.; Chen, Y.

    1985-02-01

    Spectral data for smectite clays, particularly for montmorillonite, which contain various adsorbed ions and are measured in the UV, VIS, and NIR ranges are analyzed and compared with Martian soil and dust spectra. It is shown that the structural octahedral iron in smectite clays affects their light absorbance in the UV at 240-260 nm, which results from an O(2-) to Fe(3+) charge transfer, similar to one observed in the Martian spectrum. Adsorbed iron affects, via crystal field absorptions, the reflectance of montmorillonite in the VIS and NIR ranges, resulting in stronger absorption and higher opacity in the range 0.40-0.65 micron. Both in spectral contrast and presence of (or lack of) spectral features, the Fe-montmorillonite spectra in the VIS and NIR are in reasonable agreement with the Martian spectrum. It is found that the spectral characteristics of iron-saturated smectite clays cannot be used to preclude the presence of clays in Martian soils and dust.

  3. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  4. Synthesis and antifungal activity of cinnamic acid esters.

    PubMed

    Tawata, S; Taira, S; Kobamoto, N; Zhu, J; Ishihara, M; Toyama, S

    1996-05-01

    Cinnamic, p-coumaric and ferulic acids were isolated from pineapple stems (Ananas comosus var. Cayenne). Twenty-four kinds of esters were prepared from these acids, alcohols and the components of Alpinia. Isopropyl 4-hydroxycinnamate (11) and butyl 4-hydroxycinnamate (12) were found to have almost the same effectiveness in antifungal activity against Pythium sp. at 10 ppm as that of the commercial fungicide iprobenfos (kitazin P).

  5. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  6. Mineral catalysis of the formation of dimers of 5'-AMP in aqueous solution: The possible role of montmorillonite clays in the prebiotic synthesis of RNA

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Agarwal, Vipin

    1989-03-01

    The reaction of the 5'-AMP with water soluble carbodiimide (EDAC) in the presence of Na+-montmorillonite 22A results in the formation of 2',5'-(pA)2 (18.9%), 3',5'-(pA)2 (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5'-(pA)2 (15.5%), 3',5'-(pA)2 (3.7%) and AppA (14.9%). The 3',5'-cyclic dinucleotide, 3',5'-c(pA)2, is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. Products which contain the phophodiester bond are formed at different ionic strengths, pH and temperatures using Na+-montmorillonite. Phosphodiester bond formation was not observed when Cu2+-montmorillonite was used or when DISN was used in the place of EDAC. The extent catalysis of phophodiester bond formation varied with the particular clay mineral used. Those Na+-clays which bind 5'-AMP more strongly are better catalysts. Cu2+-montmorillonite, which binds 5'-AMP strongly, exhibits no catalytic activity.

  7. Vis-NIR Spectroscopy of Mineral Mixtures with Montmorillonite and Silica: Implications for Detecting Alteration Products on Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.

    2009-12-01

    generally present in silica-mixture spectra that contain >10 wt% silica. Conclusions. Vis-NIR spectra of our mineral mixtures show that montmorillonite has a lower detection limit than amorphous silica, based on the presence of the ~2.2 μm absorption. This indicates that chemically weathered surfaces on Mars that contain silica must have much more alteration material to be detected than surfaces with clay. Furthermore, the shape and position of the 1.4 and 1.9 μm features changes with igneous mineral type and silica abundance, which adds to the difficulty in using vis-NIR to detect amorphous silica on Mars. Our study is consistent with a previous study that demonstrates the inability to detect thin silica coatings on basaltic particulates by vis-NIR spectroscopy [5], and suggests acidic chemical weathering and the precipitation of amorphous silica on Mars may be more pervasive and intense than vis-NIR spectroscopic data indicate. References. [1] J.-P. Bibring et al. (2006) Science, 312, 400-404. [2] F. Poulet et al. (2005) Nature, 438, 623-627. [3] J.F. Mustard et al. (2008) Nature, 454, 305-309. [4] R.E. Milliken et al. (2008) Geology, 36, 847-850. [5] M.D. Kraft et al. (2007) 7th Int. Conf. Mars, 3396.

  8. Dihydroasparagusic acid: antioxidant and tyrosinase inhibitory activities and improved synthesis.

    PubMed

    Venditti, Alessandro; Mandrone, Manuela; Serrilli, Anna Maria; Bianco, Armandodoriano; Iannello, Carmelina; Poli, Ferruccio; Antognoni, Fabiana

    2013-07-17

    Dihydroasparagusic acid (DHAA) is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. In this work, DHAA was synthetically produced by modifying some published protocols, and the synthesized molecule was tested in several in vitro assays (DPPH, ABTS, FRAP-ferrozine, BCB, deoxyribose assays) to evaluate its radical scavenging activity. Results show that DHAA is endowed with a significant in vitro antioxidant activity, comparable to that of Trolox. DHAA was also evaluated for its inhibitory activity toward tyrosinase, an enzyme involved, among others, in melanogenesis and in browning processes of plant-derived foods. DHAA was shown to exert an inhibitory effect on tyrosinase activity, and the inhibitor kinetics, analyzed by a Lineweaver-Burk plot, exhibited a competitive mechanism. Taken together, these results suggest that DHAA may be considered as a potentially active molecule for use in various fields of application, such as pharmaceutical, cosmetics, agronomic and food. PMID:23790134

  9. Ultrasound promoted selective synthesis of 1,1'-binaphthyls catalyzed by Fe impregnated pillared Montmorillonite K10 in presence of TBHP as an oxidant.

    PubMed

    Bhor, Malhari D; Nandurkar, Nitin S; Bhanushali, Mayur J; Bhanage, Bhalchandra M

    2008-03-01

    Naphthols were selectively coupled under sonication using Fe(+3) impregnated pillared Montmorillonite K10 and TBHP as an oxidant. Considerable enhancement in the reaction rate was observed under sonication as compared to the reaction performed under silent condition. The activity of catalyst was compared with other Fe clay catalysts. Various parameters like solvent, catalyst and TBHP concentration has been studied. The heterogeneous active catalyst K10-FePLS120 was recycled without loss in activity and selectivity performance. PMID:17493859

  10. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  11. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  12. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity.

    PubMed

    Kong, Lingbao; Li, Shanshan; Liao, Qingjiao; Zhang, Yanni; Sun, Ruina; Zhu, Xiangdong; Zhang, Qinghua; Wang, Jun; Wu, Xiaoyu; Fang, Xiaonan; Zhu, Ying

    2013-04-01

    Hepatitis C virus (HCV) infects up to 170 million people worldwide and causes significant morbidity and mortality. Unfortunately, current therapy is only curative in approximately 50% of HCV patients and has adverse side effects, which warrants the need to develop novel and effective antivirals against HCV. We have previously reported that the Chinese herb Fructus Ligustri Lucidi (FLL) directly inhibited HCV NS5B RNA-dependent RNA polymerase (RdRp) activity (Kong et al., 2007). In this study, we found that the FLL aqueous extract strongly suppressed HCV replication. Further high-performance liquid chromatography (HPLC) analysis combined with inhibitory assays indicates that oleanolic acid and ursolic acid are two antiviral components within FLL aqueous extract that significantly suppressed the replication of HCV genotype 1b replicon and HCV genotype 2a JFH1 virus. Moreover, oleanolic acid and ursolic acid exhibited anti-HCV activity at least partly through suppressing HCV NS5B RdRp activity as noncompetitive inhibitors. Therefore, our results for the first time demonstrated that natural products oleanolic acid and ursolic acid could be used as potential HCV antivirals that can be applied to clinic trials either as monotherapy or in combination with other HCV antivirals. PMID:23422646

  13. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization

    SciTech Connect

    Chmielarz, Lucjan; Gil, Barbara; Kustrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-15

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 deg. C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Bronsted acid sites. - Graphical abstract: Synthesis of the montmorillonite based porous clay heterostructures (PCHs) intercalated with silica-titania pillars has been performed. The mechanism of the thermal degradation of organic templates in the pore system of PCHs was studied. PCHs were characterized with respect to structure, texture, composition, surface acidity, thermal stability and form of introduced titanium.

  14. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers

    NASA Astrophysics Data System (ADS)

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh S.; Giammar, Daniel E.; Catalano, Jeffrey G.

    2016-02-01

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  15. Effect of leaving group on the oligomerization of 5'-AMP on montmorillonite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Prabahar, K. Joseph; Ferris, James P.

    1994-01-01

    The oligomerization of imidazole derivative of 5'-AMP (ImpA) in the presence of montmorillonite clay yields oligomers containing up to 10 monomer units. In these reactions, the heterocyclic base, imidazole is the leaving group. In our present study, we synthesized a series of activated nucleotides of 5'AMP using other leaving groups such as pyrazole, 1,2,4-triazole, piperidine, morpholine, 4-aminopyridine, 4-methylaminopyridine, 4-dimethylaminopyridine, 2-aminobenzimidazole etc. to determine the effect of amine leaving group on the products of the oligomerization reaction. Earlier results from our laboratory showed that the presence AppA in the clay reaction of ImpA enhances the oligomerization reaction to yield higher oligomers. We also studied the effect of AppA in the clay mediated oligomerization reaction of the activated nucleotides. Oligomerization of 2-amino-benzimidazole derivative of 5'-AMP gave higher oligomers containing up to nine monomer units in the presence of AppA.

  16. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  17. Delaminated montmorillonite with iron(III)-TiO₂ species as a photocatalyst for removal of a textile azo-dye from aqueous solution.

    PubMed

    Torres-Luna, Juan A; Carriazo, José G; Sanabria, Nancy R

    2016-01-01

    A set of mesoporous delaminated montmorillonites containing iron(III)-titanium oxide species was synthesized using two minerals: a bentonite as support and an ilmenite as source of Fe-TiO2 species. Several values of both sulphuric acid concentration and temperature were employed to extract Fe-TiO2 species from an ilmenite. Analyses by X-ray fluorescence, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption confirmed the successful formation of delaminated (or exfoliated) mesoporous structures. Optical properties of solids were determined by UV-Vis diffuse reflectance spectroscopy, and their band gap energy values were also calculated. A small UV-shift of band gap values regarding that of commercial photo-active TiO2 was detected as consequence of the quantum size effect, suggesting that photocatalytic experiments should be performed under UV-radiation assistance. The synthesized solids showed good activity in the photocatalytic oxidation of a textile dye (reactive yellow 145: RY 145), achieving conversions higher than 70% and chemical oxygen demand removal between 60% and 80%.

  18. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant.

  19. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant. PMID:26430780

  20. Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite.

    PubMed

    Zavarin, Mavrik; Powell, Brian A; Bourbin, Mathilde; Zhao, Pihong; Kersting, Annie B

    2012-03-01

    Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) → Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH < 5 (Kv ~ 0.3). In contrast to Np(V), Pu(V) sorption equilibrium was not achieved on the time-scale of weeks. Pu(V) sorption was much stronger than Np(V), and sorption rates exhibited both a pH and ionic strength dependence. Differences in Np(V) and Pu(V) sorption behavior are indicative of surface-mediated transformation of Pu(V) to Pu(IV) which has been reported for a number of redox-active and redox-inactive minerals. A model of the pH and ionic strength dependence of Pu(V) sorption rates suggests that H(+) exchangeable cations facilitate Pu(V) reduction. While surface complexation may play a dominant role in Pu sorption and colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs. PMID:22296270

  1. Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production.

    PubMed

    Miyamae, Yusaku; Kurisu, Manami; Han, Junkyu; Isoda, Hiroko; Shigemori, Hideyuki

    2011-01-01

    Caffeoylquinic acid (CQA) is one of the phenylpropanoids which have various bioactivities such as antioxidant, antibacterial, anticancer, antihistamic, and other biological effects. We previously reported that 3,5-di-O-caffeoylquinic acid inhibited amyloid β(1-42)-induced cellular toxicity on human neuroblastoma SH-SY5Y cells and increased the mRNA expression level of glycolytic enzymes and the intracellular ATP level. To investigate structure-activity relationship on the accelerating activity on ATP production, we synthesized 1,4,5-tri-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, 3,4,5-tri-O-caffeoylquinic acid, and other derivatives. Additionally, we evaluated intracellular ATP level in SH-SY5Y treated with each CQA derivative. As a result, 3,4,5-tri-O-caffeoylquinic acid showed the highest accelerating activity on ATP production among tested compounds. It was suggested that caffeoyl groups bound to quinic acid are important for activity and the more caffeoyl groups are bound to quinic acid, the higher accelerating activity on ATP production exhibits.

  2. Strontium adsorption properties of an aluminum-pillared montmorillonite carrying carboxylate functional groups.

    PubMed

    Papachristodoulou, C A; Assimakopoulos, P A; Gangas, N-H J

    2002-01-01

    Strontium adsorption was studied in an aluminum-pillared montmorillonite (PILC) carrying organic acid groups. The in situ dissociation of these groups increases the number of negative sites in the modified PILC, promoting thus the uptake of cations from an exchange solution. To investigate the role of solution pH and acid strength in cation uptake phenomena, base titrations were performed for PILCs carrying either oxalate or acetate groups. Comparison with the pristine PILC showed that extra Sr(2+) uptake initiated at pH 6 and 8 in the presence of oxalate and acetate, respectively. The overall increase in Sr(2+) uptake was higher in the presence of oxalate and amounted to about 136% as compared with the pristine PILC, at pH slightly above 8. The effect of the acid's strength was further probed through strontium adsorption isotherms, taken at a constant pH for PILC samples carrying acetate, oxalate, malonate, or citrate groups. The results demonstrate that cation uptake can be optimized by tuning the pH conditions to the acid's strength or vice versa. PMID:16290332

  3. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  6. Aggregation Rates of Sediments (Montmorillonite, Kaolinite, Illite and Goethite) with the Enveloped Φ6 Bacteriophage

    NASA Astrophysics Data System (ADS)

    Katz, A.; Block, K. A.; Peña, S.; Alimova, A.; Gottlieb, P.

    2015-12-01

    The interaction between sediments and viruses has been studied extensively from the prospective of virus survivability and infectivity. However, the role of soil organisms, including viruses in C and N sequestration in soil has not been studied as extensively. Φ6, a member of the cystoviridae family, is a bacteriophage that infects Pseudomonas syringae, a common plant pathogen known to readily form biofilms.The small mineral fraction (< 0.2 μm) of soil and Φ6 are colloidal particles, therefore aggregation can be explained by DLVO (Derjaguin & Landau, Verwey & Overbeek) theory. Time-resolved visible-light turbidity measurements were used to calculate the heteroaggregation rates of Φ6 with the sediments. Samples were suspended in a low-concentration cation buffer so that the kinetics were in the reaction limited cluster aggregation (RLCA) regime in where the probability of two particles adhering after collision is determined by the interaction forces between the particles.At neutral pH to slightly acidic pH, Φ6 is slightly negatively charged; montmorillonite and illite are negatively charged; and kaolinite and goethite are positively charged. In isolation, neither Φ6 nor the sediments aggregated in the modified buffer. However, in mixtures, Φ6 and montmorillonite, and Φ6 and illite, exhibited increases in turbidity, indicating heteroaggregation. Neither Φ6 and kaolinite, nor Φ6 and goethite, exhibited increased turbidity upon mixing indicating little or no aggregation. These results suggest that the interaction of the virus with the sediments is governed by hydrophobic rather than electrostatic forces. Heteroaggregation rates were calculated from the time rate of change of the turbidity.

  7. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  8. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  9. Synthesis and characterization of polyaniline nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite composites through reverse micelle template

    SciTech Connect

    Mo Zunli Zhang Ping; Zuo Dandan; Sun Yaling; Chen Hong

    2008-07-01

    Polyaniline (PANI) nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite (MMT) nanocomposites were synthesized via in situ polymerization of aniline monomer through reverse micelle template (RMT) in the presence of montmorillonite and Ce(OH){sub 3}, Pr{sub 2}O{sub 3}. In the experiment, sulphosalicylic acid was used as dopant, aniline was designated as oil phase and the aqueous solution comprising Ce{sup 3+} and Pr{sup 3+} as water phase. The nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that PANI nanorods were synthesized in the interlayer spaces of MMT with uniform spherical rare earth nanoparticles. The thermal stability of the nanocomposites prepared was enhanced drastically compared with pure polyaniline.

  10. Reaction of montmorillonite in alkaline solution at 60 C, 90 C, 120 C and 180 C

    SciTech Connect

    Amaya, Takayuki; Shimojo, Mikio; Fujihara, Hiroshi; Yokoyama, Katsuhiko

    1999-07-01

    The reaction of montmorillonite was investigated. Three kinds of bentonites with different montmorillonite composition were mixed with 0.3M NaOH solution and 0.3M Ca(OH){sub 2} slurry. They were immersed at 60 C, 90 C, 120 C, and 180 C for one month, three months and six months. The concentrations of the soluble ions were measured and the bentonites were analyzed quantitatively after the immersion. 50% of the montmorillonite was reacted within two weeks at greater than 90 C. Montmorillonite reacts less when mixed with Si-minerals. It extensively reacted in 0.3M Ca(OH){sub 2} slurry. These results suggest that the reaction mechanism of the montmorillonite in alkaline solution was dominantly Si dissolution, and would decrease by controlling the concentration of Si ion. The cement/bentonite system under Si saturated conditions is discussed.

  11. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  12. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0. PMID:25351717

  13. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-01

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content. PMID:27516282

  14. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-01

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content.

  15. Pu(V) and Pu(IV) sorption to montmorillonite.

    PubMed

    Begg, James D; Zavarin, Mavrik; Zhao, Pihong; Tumey, Scott J; Powell, Brian; Kersting, Annie B

    2013-05-21

    Plutonium (Pu) adsorption to and desorption from mineral phases plays a key role in controlling the environmental mobility of Pu. Here we assess whether the adsorption behavior of Pu at concentrations used in typical laboratory studies (≥10(-10) [Pu] ≤ 10(-6) M) are representative of adsorption behavior at concentrations measured in natural subsurface waters (generally <10(-12) M). Pu(V) sorption to Na-montmorillonite was examined over a wide range of initial Pu concentrations (10(-6)-10(-16) M). Pu(V) adsorption after 30 days was linear over the wide range of concentrations studied, indicating that Pu sorption behavior from laboratory studies at higher concentrations can be extrapolated to sorption behavior at low, environmentally relevant concentrations. Pu(IV) sorption to montmorillonite was studied at initial concentrations of 10(-6)-10(-11) M and was much faster than Pu(V) sorption over the 30 day equilibration period. However, after one year of equilibration, the extent of Pu(V) adsorption was similar to that observed for Pu(IV) after 30 days. The continued uptake of Pu(V) is attributed to a slow, surface-mediated reduction of Pu(V) to Pu(IV). Comparison between rates of adsorption of Pu(V) to montmorillonite and a range of other minerals (hematite, goethite, magnetite, groutite, corundum, diaspore, and quartz) found that minerals containing significant Fe and Mn (hematite, goethite, magnetite, and groutite) adsorbed Pu(V) faster than those which did not, highlighting the potential importance of minerals with redox couples in increasing the rate of Pu(V) removal from solution. PMID:23614502

  16. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  17. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: the possible role of montmorillonite clays.

    PubMed

    Ferris, J P; Ertem, G; Kamaluddin; Agarwal, V; Hua, L L

    1989-01-01

    The binding of adenosine to Na(+)-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na(+)-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5'-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na(+)-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  18. Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Ertem, G.

    1993-01-01

    Oligomers of adenylic acid of up to the 11-mer in length are formed by the reaction of the phosphorimidazolide of adenosine (ImpA) in pH 8 aqueous solution at room temperature in the presence of Na(+)-montmorillonite. These oligomers are joined by phosphodiester bonds in which the 3',5'-linkage predominates over the 2',5'-linkage by a 2:1 ratio. Reaction of a 9:1 mixture of ImpA, A5'ppA results in the formation of oligomers with a 3:1 ratio of 3',5'- to 2',5'-linked phosphodiester bonds. A high proportion of these oligomers contain the A5'ppA grouping. A5'ppA reacts much more rapidly with ImpA than does 5'-ADP (ppA) or 5'-ATP (pppA). The exchangeable cation associated with the montmorillonite effects the observed catalysis with Li+, Na+, NH4+, and Ca2+ being the more effective while Mg2+ and Al3+ are almost ineffective catalysts. 2',5'-Linked oligomers, up to the tetramer in length, are formed using UO2(2+)-montmorillonite. The structure analysis of individual oligomer fractions was performed by selective enzymatic and KOH hydrolytic studies followed by HPLC analysis of the reaction products. It is concluded from the composition of the oligomers that the rate of addition ImpA to a 3'-terminus containing a 2',5'-linkage is slower than the addition to a nucleoside joined by a 3',5'-linked phosphodiester bond. The potential importance of mineral catalysis of the formation of RNA and other oligomers on primitive Earth is discussed.

  19. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  20. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  1. Antiplatelet activity of a novel formula composed of malic acid, succinic acid and citric acid from Cornus officinalis fruit.

    PubMed

    Zhang, Qi-Chun; Zhao, Yue; Bian, Hui-Min

    2013-12-01

    The present study investigated the antiplatelet activity of a novel formula composed by malic acid, succinic acid and citric acid with a ratio of 3:2:2. The IC50 and inhibition of platelet aggregation induced by various agonists as well as platelet adhesion were evaluated in vitro. Of note, the IC50 for the formula inhibiting adenosine diphosphate (ADP)-induced platelet aggregation was 0.185 mg/mL. Meanwhile, the formula showed more potent inhibitory effect on platelet aggregation induced by ADP and thrombin than the single component at same concentration (0.37 mg/mL). Moreover, the formula could prevent platelet adhesion significantly without influence on platelet viability.

  2. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  3. Impact of dietary aromatic amino acids on osteoclastic activity.

    PubMed

    Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-Ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Chutkan, Norman; Robbins, Richard; Nadeau, Hugh; Johnson, Maribeth; Hamrick, Mark W; Isales, Carlos M

    2014-08-01

    We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.

  4. Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation.

    PubMed

    Tabet, Djamel; Saidi, Mohamed; Houari, Mohamed; Pichat, Pierre; Khalaf, Hussein

    2006-09-01

    Fe-pillared montmorillonite has been used as a Fenton-type heterogeneous catalyst for the removal of cinnamic acid in water. The influences of the cinnamic acid, catalyst and H2O2 concentrations and pH on the removal rate of cinnamic acid have been studied. The results show that the efficiency of Fe-pillared montmorillonite is higher than that of the Fe ions in the homogeneous phase, and less sensitive to pH. PMID:16546315

  5. [Blood acid-base balance of sportsmen during physical activity].

    PubMed

    Petrushova, O P; Mikulyak, N I

    2014-01-01

    The aim of this study was to investigate the acid-base balance parameters in blood of sportsmen by physical activity. Before exercise lactate concentration in blood was normal. Carbon dioxide pressure (рСО2), bicarbonate concentration (НСО3 -), base excess (BE), were increased immediately after physical activity lactate concentration increased, while pH, BE, НСО3 -, рСО2 decreased in capillary blood of sportsmen. These changes show the development of lactate-acidosis which is partly compensated with bicarbonate buffering system and respiratory alkalosis. During postexercise recovery lactate concentration decreased, while рСО2, НСО3 -, BE increased. The results of this study can be used for diagnostics of acid-base disorders and their medical treatment for preservation of sportsmen physical capacity.

  6. Immune Activation in the Liver by Nucleic Acids

    PubMed Central

    Sun, Qian; Wang, Qingde; Scott, Melanie J.; Billiar, Timothy R.

    2016-01-01

    Abstract Viral infection in the liver, including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, is a major health problem worldwide, especially in developing countries. The infection triggers a pro-inflammatory response in patients that is crucial for host defense. Recent studies have identified multiple transmembrane and cytosolic receptors that recognize pathogen-derived nucleic acids, and these receptors are essential for driving immune activation in the liver. In addition to sensing DNA/RNA from pathogens, these intracellular receptors can be activated by nucleic acids of host origin in response to sterile injuries. In this review, we discuss the expanding roles of these receptors in both immune and nonimmune cells in the liver. PMID:27350945

  7. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives. PMID:26827629

  8. Toxocara canis: Larvicidal activity of fatty acid amides.

    PubMed

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  9. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.

    PubMed

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J

    2014-07-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.

  10. Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    PubMed Central

    Cartron, Michaël L.; England, Simon R.; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon

    2014-01-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. PMID:24709265

  11. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  12. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations.

  13. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite.

    PubMed

    Yan, KeFeng; Li, XiaoSen; Xu, ChunGang; Lv, QiuNan; Ruan, XuKe

    2014-06-01

    The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the "surface H2O" constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage. The "interlayer H2O" constructs the network by hydrogen bonds, forming the interlayer cage. CH4 molecules and their surrounding H2O molecules form clathrate hydrates. The cation of montmorillonite has a steric effect on constructing the network and destroying the balance of hydrogen bonds between the H2O molecules, distorting the cage of hydrate in clay. Therefore, the cages are irregular, which is unlike the ideal CH4 clathrate hydrates cage. The pore size of montmorillonite is another impact factor to the hydrate formation. It is quite easier to form CH4 hydrate nucleation in montmorillonite with large pore size than in montmorillonite with small pore. The MD work provides the constructive information to the investigation of the reservoir formation for natural gas hydrate (NGH) in sediments. PMID:24906646

  14. X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres.

    PubMed

    Giesting, Paul; Guggenheim, Stephen; Koster van Groos, August F; Busch, Andreas

    2012-05-15

    Powder X-ray diffraction shows that K- and Ca-exchanged montmorillonites swell upon interacting with CO(2) at ambient temperatures, depending on their initial hydration state. K-exchanged montmorillonite swells rapidly to a maximum d(001) of ∼12.2 Å. In contrast, Ca-exchanged montmorillonite swells more slowly, but reaches a maximum d(001) of ∼15.1 Å. Reaction kinetics differ significantly between the K- and Ca-exchanged montmorillonite complexes. Expansion of K-exchanged montmorillonite samples was rapid, occurring on time scales of tens of minutes or less. The Ca-exchanged montmorillonite samples continued to expand over periods up to 42 h. Aging of both K- and Ca-exchanged montmorillonite complexes at elevated CO(2) pressure for 1-2 days resulted in greater stability when CO(2) pressure was released. The observed intercalation reactions have important consequences for carbon sequestration: (1) CO(2) absorption by swelling clays may represent a significant pathway for storage of CO(2). (2) The swelling of smectites under CO(2) pressure may have a significant impact on the permeability of caprock formations. PMID:22494460

  15. Microstructural investigation of MX-80 bentonite and Na/Ca-montmorillonite using basal spacing determination

    NASA Astrophysics Data System (ADS)

    Holmboe, M.; Wold, S.

    2010-12-01

    Knowledge about the microstructure of saturated compacted bentonite is of fundamental importance in order to describe and predict diffusive transport through the bentonite barrier in a deep geological repository. If the mineral composition is well characterized, microstructural models of compacted bentonite on the nanoscale can be based on accurate information of the basal spacings and corresponding interlayer distances within the montmorillonite particles. From the average basal spacing, the interlayer and the so-called interparticle or free porosity can be calculated [1]. The basal spacings of the montmorillonite particles can be measured by neutron and X-ray small-angle scattering or diffraction. However, due to microstructural heterogeneity and interstratification of different hydration states, profile fitting through mixed layered modeling is necessary although challenging [2,3]. In this study, we have used low-angle XRD in reflection mode together with one-dimensional analysis of mixed layered clays [2] in order to compare both the relative layer distribution and average basal spacing of MX-80 bentonite and Na/Ca-montmorillonite samples. Two different methods for water saturation commonly used in the literature were compared, saturation by constant relative humidity (adsorption and desorption) and saturation under constant volume conditions, forming compacted clay with dry densities of 0.5-1.8 g/cm3. No significant difference in basal spacings was observed between highly compacted (< 4 H2O layers) homoionic montmorillonite and MX-80 bentonite samples saturated under volume constricted conditions, if the accessory minerals and lower smectite content was accounted for. This was however not the case for the samples saturated at constant RH%, which indicates mixing of the exchangeable cations in the interlayers. Interestingly, even if the total water content was the same water uptake restricted by water activity did not always result in the same magnitude of

  16. Binding and degradation of DNA on montmorillonite coated by hydroxyl aluminum species.

    PubMed

    Cai, Peng; Huang, Qiaoyun; Li, Ming; Liang, Wei

    2008-04-01

    Adsorption, desorption and degradation by DNase I of DNA on montmorillonite (M) and different hydroxyaluminum-M complexes (Al(OH)(x)-M) containing 2.5, 10.0 and 20.0 mmol coated Al/g clay (AM(2.5), AM(10) and AM(20)) were studied. The adsorption isotherms of DNA on montmorillonite and Al(OH)(x)-M complexes conformed to the Langmuir equation. The amount of DNA adsorbed followed the sequence of montmorillonite>AM(20)>AM(10)>AM(2.5). A marked decrease in the adsorption of DNA on montmorillonite and Al(OH)(x)-M complexes was observed with the increase of pH from 4.0 to 9.0. Calcium ion significantly promoted DNA adsorption. The adsorption enthalpy of DNA on montmorillonite was endothermic, whereas that on Al(OH)(x)-M complexes was exothermic. The percent desorption of DNA from clays was in the order of montmorillonite>AM(2.5)>AM(10)>AM(20), suggesting that OH-Al loading on montmorillonite surface increased the binding affinity of DNA. Fourier transform infrared (FTIR) spectra showed that the binding of DNA on AM(10) and AM(20) changed its conformation from the B-form to the Z-form. The presence of montmorillonite and Al(OH)(x)-M complexes provided protection for DNA against degradation by DNase I. The higher level of protection was found with Al(OH)(x)-M complexes compared to montmorillonite. The higher stability of DNA in the system of Al(OH)(x)-M complexes seemed to be attributed mainly to the conformational change of bound DNA and their greater adsorption capacity for DNase I. The information obtained in this study is of fundamental significance for understanding the behavior of extracellular DNA in soil environments. PMID:18055187

  17. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  18. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  19. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars—synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Chmielarz, Lucjan; Gil, Barbara; Kuśtrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-01

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 °C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Brønsted acid sites.

  20. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  1. Anaerobic decomposition of benzoic acid during methane fermentation: Specific activity of fatty acid intermediates and postion of radioactive label

    SciTech Connect

    Bridges, R.L.

    1990-01-01

    A study of the pathway of anaerobic decomposition of benzoic acid by a mixed methanogenic culture of bacteria was conducted. Specific activities of the possible fatty acid intermediates cyclohexanecarboxylic acid, propanoic acid, and acetic acid were determined. In the case of propanoic acid, the position of the radioactive label was also determined by isotropic trapping and Phares-Schmidt degradation of the intermediate. The specific activities of cyclohexanecarboxylic acid and propanoic acid are the same as the benzoate substrate fed to the mixed methanogenic cultures. These fatty acids must be direct breakdown products from the aromatic ring. When (4{minus}{sup 14}C) benzoate is the substrate, the propanoic acid produced is labeled exclusively in the carboxyl position. This supports the pathway proposed by Keith et al. (1978), but would be unlikely for the pathway proposed by Evans (1977). The specific activity of the acetic acid isolated from a culture fed (4{minus}{sup 14}C) benzoate is 42% of the specific activity of the substrate. This is possible only if the methylmalonyl-CoA pathway for the conversion of propanoate to acetate is not being utilized. The amount of various intermediates found indicates that at least three syntrophically linked organisms are present in the mixed methanogenic culture. One is responsible for the production of cyclohexanecarboxylic acid, one for the production of acetate from propanoate, and one for the production of methane.

  2. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  3. Antimicrobial activity and stability of weakly acidified chlorous acid water.

    PubMed

    Horiuchi, Isanori; Kawata, Hiroyuki; Nagao, Tamiko; Imaohji, Haruyuki; Murakami, Kazuya; Kino, Yasuhiro; Yamasaki, Hisashi; Koyama, A Hajime; Fujita, Yatsuka; Goda, Hisataka; Kuwahara, Tomomi

    2015-01-01

    The antimicrobial activity of weakly acidified chlorous acid water (WACAW) against Staphylococcus aureus, non-pathogenic Escherichia coli, enterohemorrhagic E. coli (EHEC O157:H7), Candida albicans, and spore-forming Bacillus and Paenibacillus species was evaluated in vitro. The antiviral activity was also examined using feline calicivirus (FCV). Diluted WACAW (>100 ppm) effectively reduced the number of non-spore-forming bacteria (>4 log10 CFU reductions) within 5 min. Treatment with this sanitizer at 400 ppm for 30 min achieved>5 log10 CFU reductions in spore-forming Bacillus and Paenibacillus species while an equivalent concentration of sodium hypochlorite (NaClO) resulted in only a 0.98 and 2.72 log10 CFU reduction, respectively. The effect of this sanitizer against FCV was equivalent to that of NaClO. Immersion in WACAW (400 ppm) achieved >4 and 2.26 log10 CFU reductions in Campylobacter jejuni and EHEC, respectively, on artificially contaminated broiler carcass pieces. Finally, theantimicrobial activity of this sanitizer was shown to be maintained for at least 28 d when in contact with nonwoven fabric (100% cotton). This study showed that pH control of chlorous acid is expected to modify its antimicrobial activity and stability. WACAW is expected to have applications in various settings such as the food processing and healthcare industries. PMID:25817812

  4. Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic Acid.

    PubMed

    Han, Li; Lai, Peng; Du, Jun-Rong

    2014-01-01

    Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA) and oleanolic acid (OA) at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0) to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, acyl-CoA:cholesterol acyltransferase (ACAT), and diacylglycerol acyltransferase (DGAT) in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139  μ M, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT. PMID:24669228

  5. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  6. Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method

    NASA Astrophysics Data System (ADS)

    Boeva, N. M.; Bocharnikova, Yu. I.; Belousov, P. E.; Zhigarev, V. V.

    2016-08-01

    A way of determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis is developed using as an example the bentonites of the 10th Khutor deposit (Republic of Khakassia) and the Vodopadnyi area (Sakhalin Island). A correlation is established between the cation exchange capacity of smectite and its weight loss upon heating in the range of dehydration; the enthalpy of dehydration of montmorillonite; and the weight loss and the enthalpy of thermal dissociation of ethylene glycol contained in the interlayer space of the mineral's crystal structure. These data open up new possibilities for determining the cation exchange capacity of montmorillonite, the most important technological indicator of the natural clay nanomineral.

  7. A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation.

    PubMed

    Qiao, Zhihua; Zhao, Song; Wang, Jixiao; Wang, Shichang; Wang, Zhi; Guiver, Michael D

    2016-08-01

    Highly permeable montmorillonite layers bonded and aligned with the chain stretching orientation of polyvinylamineacid are immobilized onto a porous polysulfone substrate to fabricate aligned montmorillonite/polysulfone mixed-matrix membranes for CO2 separation. High-speed gas-transport channels are formed by the aligned interlayer gaps of the modified montmorillonite, through which CO2 transport primarily occurs. High CO2 permeance of about 800 GPU is achieved combined with a high mixed-gas selectivity for CO2 that is stable over a period of 600 h and independent of the water content in the feed.

  8. A Highly Permeable Aligned Montmorillonite Mixed-Matrix Membrane for CO2 Separation.

    PubMed

    Qiao, Zhihua; Zhao, Song; Wang, Jixiao; Wang, Shichang; Wang, Zhi; Guiver, Michael D

    2016-08-01

    Highly permeable montmorillonite layers bonded and aligned with the chain stretching orientation of polyvinylamineacid are immobilized onto a porous polysulfone substrate to fabricate aligned montmorillonite/polysulfone mixed-matrix membranes for CO2 separation. High-speed gas-transport channels are formed by the aligned interlayer gaps of the modified montmorillonite, through which CO2 transport primarily occurs. High CO2 permeance of about 800 GPU is achieved combined with a high mixed-gas selectivity for CO2 that is stable over a period of 600 h and independent of the water content in the feed. PMID:27312314

  9. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  10. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  11. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  12. Activating frataxin expression by repeat-targeted nucleic acids.

    PubMed

    Li, Liande; Matsui, Masayuki; Corey, David R

    2016-02-04

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression.

  13. Antiradical activity of gallic acid included in lipid interphases.

    PubMed

    Salcedo, C L; Frías, M A; Cutro, A C; Nazareno, M A; Disalvo, E A

    2014-10-01

    Polyphenols are well known as antioxidant agents and by their effects on the hydration layers of lipid interphases. Among them, gallic acid and its derivatives are able to decrease the dipole potential and to act in water as a strong antioxidant. In this work we have studied both effects on lipid interphases in monolayers and bilayers of dimyristoylphosphatidylcholine. The results show that gallic acid (GA) increases the negative surface charges of large unilamellar vesicles (LUVs) and decreases the dipole potential of the lipid interphase. As a result, positively charged radical species such as ABTS(+) are able to penetrate the membrane forming an association with GA. These results allow discussing the antiradical activity (ARA) of GA at the membrane phase which may be taking place in water spaces between the lipids.

  14. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  15. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues.

    PubMed

    Innocente, Adrine M; Silva, Gloria N S; Cruz, Laura Nogueira; Moraes, Miriam S; Nakabashi, Myna; Sonnet, Pascal; Gosmann, Grace; Garcia, Célia R S; Gnoatto, Simone C B

    2012-10-12

    More than 40% of the World population is at risk of contracting malaria, which affects primarily poor populations in tropical and subtropical areas. Antimalarial pharmacotherapy has utilised plant-derived products such as quinine and artemisinin as well as their derivatives. However, worldwide use of these antimalarials has caused the spread of resistant parasites, resulting in increased malaria morbidity and mortality. Considering that the literature has demonstrated the antimalarial potential of triterpenes, specially betulinic acid (1) and ursolic acid (2), this study investigated the antimalarial activity against P. falciparum chloroquine-sensitive 3D7 strain of some new derivatives of 1 and 2 with modifications at C-3 and C-28. The antiplasmodial study employed flow cytometry and spectrofluorimetric analyses using YOYO-1, dihydroethidium and Fluo4/AM for staining. Among the six analogues obtained, compounds 1c and 2c showed excellent activity (IC₅₀ = 220 and 175 nM, respectively) while 1a and b demonstrated good activity (IC₅₀ = 4 and 5 μM, respectively). After cytotoxicity evaluation against HEK293T cells, 1a was not toxic, while 1c and 2c showed IC₅₀ of 4 μM and a selectivity index (SI) value of 18 and 23, respectively. Moreover, compound 2c, which presents the best antiplasmodial activity, is involved in the calcium-regulated pathway(s).

  16. Fate of retinoic acid-activated embryonic cell lineages.

    PubMed

    Dollé, Pascal; Fraulob, Valérie; Gallego-Llamas, Jabier; Vermot, Julien; Niederreither, Karen

    2010-12-01

    Retinoic acid (RA), a vitamin A derivative, is synthesized by specific cell populations and acts as a diffusible embryonic signal activating ligand-inducible transcription factors, the RA receptors (RARs). RA-activatable transgenic systems have revealed many discrete, transient sites of RA action during development. However, there has been no attempt to permanently label the RA-activated cell lineages during mouse ontogenesis. We describe the characterization of a RA-activatable Cre transgene, which through crosses with a conditional reporter strain (the ROSA26R lacZ reporter), leads to a stable labeling of the cell populations experiencing RA signaling during embryogenesis. RA response-element (RARE)-driven Cre activity mimics at early stages the known activity of the corresponding RARE-lacZ transgene (Rossant et al.,1991). Stable labeling of the Cre-excised cell populations allows to trace the distribution of the RA-activated cell lineages at later stages. These are described in relationship with current models of RA activity in various developmental systems, including the embryonic caudal region, limb buds, hindbrain, sensory organs, and heart. PMID:21046629

  17. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  18. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth. PMID:26037611

  19. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth.

  20. Montmorillonite Catalysis of 30-50 Mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World

    NASA Astrophysics Data System (ADS)

    Ferris, James P.

    2002-08-01

    Elongation of the primer 32pdA(pdA)8pA proceeds by the reaction of the 5'-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in the formation of 40-50 mers using the 5'-phosphorimidazolide of adenosine (ImpA) and 25-30 mers using the 5'-phosphorimidazolide of uridine (ImpU). The limitation on the lengths of the chains formed is not due to the inhibitors formed since the same chain lengths were formed using 2-3 times the amount of montmorillonite catalyst. The shorter oligomers formed by the addition of U monomers is not due to its greater rate of decomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are capped at the 5'-end to form, with ImpA, Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base in the activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites of the 3', 5'- and 2', 5'-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life based on RNA (the RNA world scenario) is discussed.

  1. Intergrown mica and montmorillonite in the Allende carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1982-01-01

    High resolution transmission electron microscopy (HRTEM) observations were made of a mixture of mica and montmorillonite from fine-grained calcium, aluminum inclusions (CAI) in the Allende C3(V) meteorite. A petrographic thin section having a diameter of 4 mm contained CAI fragments ranging from less than 1 to 50 microns. The observed textural and chemical characteristics placed the inclusion in the fine-grained alkali-rich spinel aggregate category of Warks' (1979) classifications of CAIs and as type 3 in Kornacki's classifications of fine grains in Allende. Chemical analyses were performed on the phyllosilicate grains observed in the TEM scan by means of an X ray observed, and the proximity to the matrix boundary suggests a metamorphism which included aqueous alteration at a relatively low temperature.

  2. Pomegranate peel pectin films as affected by montmorillonite.

    PubMed

    Oliveira, Túlio Ítalo S; Zea-Redondo, Luna; Moates, Graham K; Wellner, Nikolaus; Cross, Kathryn; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    The industrial production of pomegranate juice has been favored by its alleged health benefits derived from its antioxidant properties. The processing of pomegranate juice involves squeezing juice from the fruit with the seeds and the peels together, leaving a pomace consisting of approximately 73 wt% peels. In this study, pectin was extracted from pomegranate peels, and used to produce films with different contents of montmorillonite (MMT) as a nanoreinforcement material. The nanoreinforcement improved the tensile strength and modulus of films when added at up to 6 wt%, while the further addition of MMT (to 8 wt%) reduced the reinforcement effect, probably because of dispersion problems. The elongation was decreased with increasing MMT concentrations. The water vapor permeability decreased with increasing MMT contents up to 8 wt% MMT, indicating that the increased tortuosity of the permeant path was effective on barrier properties of the film. PMID:26769511

  3. Steady-state droplet size in montmorillonite stabilised emulsions.

    PubMed

    Ganley, William J; van Duijneveldt, Jeroen S

    2016-08-14

    The formation of hexadecane-in-water emulsions stabilised by montmorillonite platelets was studied. In this system the platelets form a monolayer around the droplets and the droplet size decreases with increasing platelet volume fraction. However, the number of platelets present exceeds that required for monolayer coverage. The kinetics of emulsification were investigated and coalescence of droplets during turbulent mixing was found to continue even after the droplets had reached their ultimate size. Non-spherical droplets, resulting from arrested coalescence, were not observed suggesting that particles may be desorbing from the interface during the turbulent flow. A kinetic model based on a competition between droplet break-up and coalescence, mediated by particle adsorption and desorption, reproduces experimental trends in droplet diameter. The model can be used to predict the most efficient formulation to minimise droplet diameters for given materials and mixing conditions and sheds light on the processes occurring during emulsification in this system. PMID:27407026

  4. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    NASA Astrophysics Data System (ADS)

    Ansari, Farahnaz; Sachse, Sophia; Michalowski, S.; Kavosh, Masoud; Pielichowski, Krzysztof; Njuguna, James

    2014-08-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness.

  5. Kinetics of salicylic acid adsorption on activated carbon.

    PubMed

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  6. Aflatoxin B(1) adsorption by natural and copper modified montmorillonite.

    PubMed

    Daković, Aleksandra; Matijasević, Srdan; Rottinghaus, George E; Ledoux, David R; Butkeraitis, Paula; Sekulić, Zivko

    2008-10-01

    Adsorption of aflatoxin B(1) (AFB1) by natural montmorillonite (MONT) and montmorillonite modified with copper ions (Cu-MONT) was investigated. Both MONTs were characterized using the X-ray powder diffraction (XRPD) analysis, thermal analysis (DTA/TGA) and scanning electron miscroscopy/electron dispersive spectroscopy (SEM/EDS). The results of XRPD and SEM/EDS analyses of Cu-MONT suggested partial ion exchange of native inorganic cations in MONT with copper occurred. Investigation of AFB1 adsorption by MONT and Cu-MONT, at pH 3, 7 or 9, showed that adsorption of this toxin by both MONTs was high (over 93%). Since AFB1 is nonionizable, no differences in AFB1 adsorption by both MONTs, at different pHs, were observed, as expected. Futhermore, it was determined that adsorption of AFB1 by both MONTs followed a non-linear (Langmuir) type of isotherm, at pH 3. The calculated maximum adsorbed amounts of AFB1 by MONT (40.982mg/g) and Cu-MONT (66.225mg/g), derived from Langmuir plots of isotherms, indicate that Cu-MONT was much effective in adsorbing AFB1. Since, the main cation in an exchangeable position in MONT is calcium, and in Cu-MONT both calcium and copper, the fact that ion exchange of inorganic cations in MONT with copper increases adsorption of AFB1 suggests that additional interactions between AFB1 and copper ions in Cu-MONT caused greater adsorption. PMID:18585010

  7. Biodegradable nanocomposites from toughened polyhydroxybutyrate and titanate-modified montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Montmorillonite clay treated with neopentyl (diallyl)oxy tri( dioctyl) pyrophosphato-titanate was used as a reinforcement for toughened bacterial bioplastic, Polyhydroxybutyrate (PHB) in order to develop novel biodegradable nanocomposites. The modified clay, PHB, toughening partner and specific comp...

  8. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  9. Activity of capryloyl collagenic acid against bacteria involved in acne.

    PubMed

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  10. Elevation of Serum Acid Sphingomyelinase Activity in Acute Kawasaki Disease.

    PubMed

    Konno, Yuuki; Takahashi, Ikuko; Narita, Ayuko; Takeda, Osamu; Koizumi, Hiromi; Tamura, Masamichi; Kikuchi, Wataru; Komatsu, Akira; Tamura, Hiroaki; Tsuchida, Satoko; Noguchi, Atsuko; Takahashi, Tsutomu

    2015-01-01

    Kawasaki disease (KD) is an acute systemic vasculitis that affects both small and medium-sized vessels including the coronary arteries in infants and children. Acid sphingomyelinase (ASM) is a lysosomal glycoprotein that hydrolyzes sphingomyelin to ceramide, a lipid, that functions as a second messenger in the regulation of cell functions. ASM activation has been implicated in numerous cellular stress responses and is associated with cellular ASM secretion, either through alternative trafficking of the ASM precursor protein or by means of an unidentified mechanism. Elevation of serum ASM activity has been described in several human diseases, suggesting that patients with diseases involving vascular endothelial cells may exhibit a preferential elevation of serum ASM activity. As acute KD is characterized by systemic vasculitis that could affect vascular endothelial cells, the elevation of serum ASM activity should be considered in these patients. In the present study, serum ASM activity in the sera of 15 patients with acute KD was determined both before and after treatment with infusion of high-dose intravenous immunoglobulin (IVIG), a first-line treatment for acute KD. Serum ASM activity before IVIG was significantly elevated in KD patients when compared to the control group (3.85 ± 1.46 nmol/0.1 ml/6 h vs. 1.15 ± 0.10 nmol/0.1 ml/6 h, p < 0.001), suggesting that ASM activation may be involved in the pathophysiology of this condition. Serum ASM activity before IVIG was significantly correlated with levels of C-reactive protein (p < 0.05). These results suggest the involvement of sphingolipid metabolism in the pathophysiology of KD. PMID:26447086

  11. Mitogen-activated protein kinase and abscisic acid signal transduction.

    PubMed

    Heimovaara-Dijkstra, S; Testerink, C; Wang, M

    2000-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.

  12. Amino acid residues modulating the activities of staphylococcal glutamyl endopeptidases.

    PubMed

    Ono, Toshio; Ohara-Nemoto, Yuko; Shimoyama, Yu; Okawara, Hisami; Kobayakawa, Takeshi; Baba, Tomomi T; Kimura, Shigenobu; Nemoto, Takayuki K

    2010-10-01

    The glutamyl endopeptidase family of enzymes from staphylococci has been shown to be important virulence determinants of pathogenic family members, such as Staphylococcus aureus. Previous studies have identified the N-terminus and residues from positions 185-195 as potentially important regions that determine the activity of three members of the family. Cloning and sequencing of the new family members from Staphylococcus caprae (GluScpr) and Staphylococcus cohnii (GluScoh) revealed that the N-terminal Val residue is maintained in all family members. Mutants of the GluV8 enzyme from S. aureus with altered N-terminal residues, including amino acids with similar properties, were inactive, indicating that the Val residue is specifically required at the N-terminus of this enzyme family in order for them to function correctly. Recombinant GluScpr was found to have peptidase activity intermediate between GluV8 and GluSE from Staphylococcus epidermis and to be somewhat less specific in its substrate requirements than other family members. The 185-195 region was found to contribute to the activity of GluScpr, although other regions of the enzyme must also play a role in defining the activity. Our results strongly indicate the importance of the N-terminal and the 185-195 region in the activity of the glutamyl endopeptidases of staphylococci. PMID:20707600

  13. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter.

  14. Synthesis and antiproliferative activity of glutamic acid-based dipeptides.

    PubMed

    Silveira-Dorta, Gastón; Martín, Víctor S; Padrón, José M

    2015-08-01

    A small and focused library of 22 dipeptides derived from N,N-dibenzylglutamic acid α- and γ-benzyl esters was prepared in a straightforward manner. The evaluation of the antiproliferative activity in the human solid tumor cell lines HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast), and WiDr (colon) provided γ-glutamyl methionine (GI50 = 6.0-41 μM) and α-glutamyl proline (GI50 = 7.5-18 μM) as lead compounds. In particular, glutamyl serine and glutamyl proline dipeptides were more active in the resistant cancer cell line WiDr than the conventional anticancer drugs cisplatin and etoposide. Glutamyl tryptophan dipeptides did not affect cell growth of HBL-100, while in T-47D cells, proliferation was inhibited. This result might be attributed to the inhibition of the ATB(0,+) transporter. PMID:25900811

  15. Influence of the organic complex concentration on adsorption of herbicide in organic modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Kaludjerovic, Lazar; Tomic, Zorica; Djurovic, Rada; Milosevic, Maja

    2016-04-01

    Pesticides are recognized as an important source of potential pollution to soil and water due to their mobility and degradation in soils. Results presented in this paper show impact of the organic complex concentration on the adsorption of herbicides (acetochlor) at the surface of the organic modified montmorillonite. In this work, natural montmorillonite from Bogovina, located near Boljevac municipality, was used for organic modification. Cation-exchange capacity of this montmorillonite was determined by extraction with ammonium acetate (86 mmol/100g of clay). Montmorillonite have been modified first with NaCl and than with two organic complexes, hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium chloride (PTMA). For both organic complexes, three saturation concentrations were selected for monitoring of the herbicide adsorption (43 mmol/100g of clay (0.5 CEC), 86 mmol/100g of clay (1 CEC) and 129 mmol/100g of clay (1.5 CEC)). Changes in the properties of the inorganic and organic bentonite have been examined using the X-ray powder diffraction (XRPD) and batch equilibrium method. Increase in basal spacing (d) of montmorillonites saturated with 1.5 CEC of organic cation indicate that sorption of PTMA and HDTMA can exceed the saturation of 1 CEC. Both organic montmorillonites have shown higher uptake of the herbicide, compared to the inorganic montmorillonite. Comparing the values Freundlich coefficients in batch equilibrium method, (presented in the form of log Kf and 1/n), it can be seen that the sorption decreases in the series: 0.5CEC> 1CEC> 1.5CEC> NaM, for both organic montmorillonites.

  16. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  17. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  18. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms

    PubMed Central

    Huang, Chifu B.; Altimova, Yelena; Myers, Taylor M.; Ebersole, Jeffrey L.

    2011-01-01

    Objectives This study assessed the antibacterial activity of short-, medium-, and long-chain fatty acids against various oral microorganisms. Methods The short-chain fatty acids [formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), isobutyric acid (C4), isovaleric acid (C5), hexanoic acid (C6)], medium-chain fatty acids [octanoic acid (C8), capric acid (C10), lauric acid (12)], and long-chain fatty acids [myristic acid (C14), palmitic acid (C16)], were investigated for antimicrobial activity against Streptococcus mutans, S. gordonii, S. sanguis, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Results The data demonstrated that the fatty acids exhibited patterns of inhibition against oral bacteria with some specificity that appeared related more to the bacterial species that the general structural characteristics of the microorganism. As a group the fatty acids were much less effective against C. albicans than the oral bacteria, with effectiveness limited to hexanoic, octanoic, and lauric acids. Formic acid, capric, and lauric acids were broadly inhibitory for the bacteria. Interestingly, fatty acids that are produced at metabolic end-products by a number of these bacteria, were specifically inactive against the producing species, while substantially inhibiting the growth of other oral microorganisms. Conclusions The results indicate that the antimicrobial activity of short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs) could influence the microbial ecology in the oral cavity via at least 2 potential pathways. First, the agents delivered exogenously as therapeutic adjuncts could be packaged to enhance a microbial-regulatory environment in the subgingival sulcus. Second, it would be the intrinsic nature of these fatty acid inhibitors in contributing to the characteristics of the microbial biofilms, their evolution, and emergence of

  19. Activated carbon passes tests for acid-gas cleanup

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-06-24

    Use of activated carbon to remove hydrocarbon contaminants from the acid-gas feed to Claus sulfur-recovery units has been successfully pilot tested in Saudi Arabia. Pilot plant results are discussed here along with issues involved in scale-up to commercial size. Heavy hydrocarbons, particularly benzene, toluene, and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}+s from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated by use of low-pressure steam. A post-regeneration drying step using plant fuel gas also proved beneficial. The paper discusses feed contaminants, vapor-phase cleanup, testing design, test parameters and results, bed drying after regeneration, regeneration conditions, basic flow, system control, and full-scale installation.

  20. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  1. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  2. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  3. A Density Functional Theory Study of a Calcium- Montmorillonite: A First Investigation for Medicine Application

    NASA Astrophysics Data System (ADS)

    Dewi Kencana Wungu, Triati; Fauzan, Muhammad Rifqi Al; Widayani; Suprijadi

    2016-08-01

    In this study, we performed structural geometry and electronic properties calculations of calcium - based clay mineral for medicine application using first principles calculation by means of Density Functional Theory. Here, a kind of clay mineral used was Ca- montmorillonite and it is applied as an absorber of dangerous metal contained in a human body, such as Pb, which causes osteoporosis. Osteoporosis is a disease associated with bone mass decreases. Since montmorillonite has ability to exchange its cation (Ca+2), therefore, it plays an important role in preventing or/and cure human bone from osteoporosis. In order to understand how Ca-montmorillonite can do detoxification in the human body, we firstly investigated the mechanism of Pb adsorption on the surface of Ca-montmorillonite in an atomic level point of view. We found that the repulsive interactions between H of OH groups with Ca and Pb yielding the rotation of the H of OH groups of montmorillonite. A relatively small movement of Ca was observed when Pb is adsorbed and the band gap of Ca- montmorillonite becomes 1.87 eV narrow.

  4. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    PubMed

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  5. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents.

    PubMed

    Yilmaz, Meral; Türk, Ayşen Ozdemir; Tay, Turgay; Kivanç, Merih

    2004-01-01

    The antimicrobial activity of the chloroform, diethyl ether, acetone, petroleum ether, and ethanol extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents against 9 bacteria and fungi has been investigated. The extracts and pure compounds alone were found active against the same bacteria and the same yeasts. Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Proteus vulgaris, Listeria monocytogenes, Aeromonas hydrophila, Candida albicans, and Candida glabrata growth were inhibited. In addition, the MICs of the extracts, (-)-usnic acid, atranorin and fumarprotocetraric acid were determined. PMID:15241936

  6. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  7. Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment

    PubMed Central

    Biondi, Elisa; Branciamore, Sergio; Maurel, Marie-Christine; Gallori, Enzo

    2007-01-01

    Background The hypothesis of an RNA-based origin of life, known as the "RNA world", is strongly affected by the hostile environmental conditions probably present in the early Earth. In particular, strong UV and X-ray radiations could have been a major obstacle to the formation and evolution of the first biomolecules. In 1951, J. D. Bernal first proposed that clay minerals could have served as the sites of accumulation and protection from degradation of the first biopolymers, providing the right physical setting for the evolution of more complex systems. Numerous subsequent experimental studies have reinforced this hypothesis. Results The ability of the possibly widespread prebiotic, clay mineral montmorillonite to protect the catalytic RNA molecule ADHR1 (Adenine Dependent Hairpin Ribozyme 1) from UV-induced damages was experimentally checked. In particular, the self-cleavage reaction of the ribozyme was evaluated after UV-irradiation of the molecule in the absence or presence of clay particles. Results obtained showed a three-fold retention of the self-cleavage activity of the montmorillonite-protected molecule, with respect to the same reaction performed by the ribozyme irradiated in the absence of the clay. Conclusion These results provide a suggestion with which RNA, or RNA-like molecules, could have overcame the problem of protection from UV irradiation in the RNA world era, and suggest that a clay-rich environment could have favoured not only the formation of first genetic molecules, but also their evolution towards increasingly complex molecular organization. PMID:17767730

  8. Effect of exchangeable cations on apparent diffusion of Ca 2+ ions in Na- and Ca-montmorillonite mixtures

    NASA Astrophysics Data System (ADS)

    Kozaki, T.; Sawaguchi, T.; Fujishima, A.; Sato, S.

    Compacted Na-bentonite, of which the major mineral is montmorillonite, is a candidate buffer material for the geological disposal of high-level radioactive waste. A potential alteration of the bentonite in a repository is the partial replacement of the exchangeable cations of Na + with Ca 2+. The Ca 2+ cations could be released from cementitious materials and diffuse into the buffer material in the repository. In this study, to evaluate the alteration that could reduce the performance of the bentonite buffer, the apparent diffusion coefficients of HTO and Ca 2+ ions were determined from non-steady, one-dimensional diffusion experiments using Na- and Ca-montmorillonite mixtures with different ionic equivalent fractions of Ca 2+ ions. The apparent diffusion coefficient of HTO at a dry density of 1.0 Mg m -3 slightly increased with an increase in the ionic equivalent fraction of Ca 2+ ions. However, the apparent diffusion coefficient of Ca 2+ and the activation energy for diffusion at the same dry density were independent of the ionic equivalent fraction of Ca 2+ ions. These findings suggest that unlike HTO, which can be postulated to diffuse mainly in pore water, Ca 2+ ion diffusion could occur predominantly in interlayer spaces, of which the basal spacing was determined to be constant by the XRD technique.

  9. Nanocomposites of rice and banana flours blend with montmorillonite: partial characterization.

    PubMed

    Rodríguez-Marín, María L; Bello-Pérez, Luis A; Yee-Madeira, Hernani; Zhong, Qixin; González-Soto, Rosalía A

    2013-10-01

    Rice and banana flours are inexpensive starchy materials that can form films with more improved properties than those made with their starch because flour and starch present different hydrophobicity. Montmorillonite (MMT) can be used to further improve the properties of starch-based films, which has not received much research attention for starchy flours. The aim of this work was to evaluate the mechanical and barrier properties of nanocomposite films of banana and rice flours as matrix material with addition of MMT as a nanofiller. MMT was modified using citric acid to produce intercalated structures, as verified by the X-ray diffraction pattern. The intercalated MMT was blended with flour slurries, and films were prepared by casting. Nanocomposite films of banana and rice flours presented an increase in the tensile at break and elongation percentage, respectively, more than their respective control films without MMT. This study showed that banana and rice flours could be alternative raw materials to use in making nanocomposite films.

  10. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  11. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  12. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease.

  13. Pillared clays and pillared acid-activated clays: A comparative study of physical, acidic, and catalytic properties

    SciTech Connect

    Mokaya, R.; Jones, W.

    1995-04-15

    The preparation, characterisation, and catalytic properties of alumina-pillared materials derived from an acid-treated host clay matrix is described. Various levels of acid treatment are studied in order to ascertain the level of acid treatment which yields pillared materials with the most suitable physicochemical properties and thermal stability. The pillared acid-activated clays prepared possess basal spacing (19.3 {angstrom} after thermal treatment at 500{degrees}C) and surface areas (315-374 m{sup 2}/g) comparable to conventional pillared clays but significantly higher pore volume (0.33-0.48 cm{sup 3}/g), average pore diameter and surface acidity. The improvement in acidity is mainly of the Broensted acid type. As a result of improved acidity, the pillared acid-activated clays are better catalysts compared to conventional pillared clays and they exhibit activity indicative of the presence of strong Broensted acid sites in the temperature range 250-400{degrees}C. 36 refs., 5 figs., 6 tabs.

  14. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. PMID:20417031

  15. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  16. Changes in Dehydrodiferulic Acids and Peroxidase Activity against Ferulic Acid Associated with Cell Walls during Growth of Pinus pinaster Hypocotyl.

    PubMed Central

    Sanchez, M.; Pena, M. J.; Revilla, G.; Zarra, I.

    1996-01-01

    Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed. PMID:12226339

  17. Anti-Thrombosis Activity of Sinapic Acid Isolated from the Lees of Bokbunja Wine.

    PubMed

    Kim, Mi-Sun; Shin, Woo-Chang; Kang, Dong-Kyoon; Sohn, Ho-Yong

    2016-01-01

    From the lees of bokbunja wine (LBW) made from Rubus coreanus Miquel, we have identified six compounds (1: trans-4-hydroxycinnamic acid; 2: trans-4-hydroxy-3-methoxycinnamic acid; 3: 3,4-dihydroxycinnamic acid; 4: 4-hydroxy-3-methoxybenzoic acid; 5: 3,5-dimethoxy-4- hydroxybenzoic acid; and 6: 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid)) through silica gel chromatography and UHPLC-MS. The compounds 1-6 showed strong anticoagulation and platelet aggregation inhibitory activities without hemolytic effect against human red blood cells. To date, this is the first report of the in vitro anti-thrombosis activity of sinapic acid. Our results suggest that different cinnamic and benzoic acid derivatives are closely linked to the anti-thrombosis activity of LBW, and sinapic acid could be developed as a promising anti-thrombosis agent. PMID:26387815

  18. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: non-DLVO interactions

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C.; Syngouna, V. I.

    2011-12-01

    This study aims to gain insights into the interaction of virus particles with clay colloids. Bacteriophages MS2 and ΦX174 were used as model viruses and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model colloids. The experimental data obtained from batch experiments of MS2 and ΦX174 attachment onto KGa-1b and STx-1b suggested that virus attachment is adequately described by the Freundlich isotherm equation. Both MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b. Furthermore, theoretical interaction energy calculations suggested that electrostatic as well as Lewis acid-base interactions are of vital importance in the attachment of viruses onto clay colloids.

  19. Metabolically active eukaryotic communities in extremely acidic mine drainage.

    PubMed

    Baker, Brett J; Lutz, Michelle A; Dawson, Scott C; Bond, Philip L; Banfield, Jillian F

    2004-10-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50 degrees C), metal-rich (up to 269 mM Fe(2+), 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name "Acidomyces richmondensis" for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure.

  20. Acid Rain: A Teacher's Guide. Activities for Grades 4 to 12.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This guide on acid rain for elementary and secondary students is divided into three study areas: (1) What Causes Acid Rain; (2) What Problems Acid Rain Has Created; (3) How You and Your Students Can Help Combat Acid Rain. Each section presents background information and a series of lessons pertaining to the section topic. Activities include…

  1. Acid Rain. Activities for Grades 4 to 12. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wood, David; Bryant, Jeannette

    This teacher's guide on acid rain is divided into three study areas to explain: (1) what causes acid rain; (2) what problems acid rain has created; and (3) what teachers and students can do to help combat acid rain. Instructions for activities within the study areas include suggested grade levels, objectives, materials needed, and directions for…

  2. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum.

    PubMed

    Lago, João Henrique G; Ramos, Clécio Sousa; Casanova, Diego Campos C; Morandim, Andreia de A; Bergamo, Debora Cristina B; Cavalheiro, Alberto J; Bolzani, Vanderlan da S; Furlan, Maysa; Guimarães, Elsie F; Young, Maria Claudia M; Kato, Massuo J

    2004-11-01

    Piper crassinervium, P. aduncum, P. hostmannianum, and P. gaudichaudianum contain the new benzoic acid derivatives crassinervic acid (1), aduncumene (8), hostmaniane (18), and gaudichaudianic acid (20), respectively, as major secondary metabolites. Additionally, 19 known compounds such as benzoic acids, chromenes, and flavonoids were isolated and identified. The antifungal activity of these compounds was evaluated by bioautographic TLC assay against Cladosporium cladosporioides and C. sphaerospermum.

  3. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.

    PubMed

    Kruska, Nicol; Reiser, Georg

    2011-08-01

    The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.

  4. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G; Edwards, J O; Mancinelli, R L; Fröschl, H

    1995-09-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mössbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mössbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mössbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the

  5. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  6. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids.

    PubMed

    Appleman, Timothy D; Dickenson, Eric R V; Bellona, Christopher; Higgins, Christopher P

    2013-09-15

    Perfluoroalkyl acids (PFAAs) are of concern because of their persistence in the environment and the potential toxicological effects on humans exposed to PFAAs through a variety of possible exposure routes, including contaminated drinking water. This study evaluated the efficacy of nanofiltration (NF) and granular activated carbon (GAC) adsorption in removing a suite of PFAAs from water. Virgin flat-sheet NF membranes (NF270, Dow/Filmtec) were tested at permeate fluxes of 17-75 Lm(-2)h(-1) using deionized (DI) water and artificial groundwater. The effects of membrane fouling by humic acid on PFAA rejection were also tested under constant permeate flux conditions. Both virgin and fouled NF270 membranes demonstrated >93% removal for all PFAAs under all conditions tested. GAC efficacy was tested using rapid small-scale columns packed with Calgon Filtrasorb300 (F300) carbon and DI water with and without dissolved organic matter (DOM). DOM effects were also evaluated with F600 and Siemens AquaCarb1240C. The F300 GAC had <20% breakthrough of all PFAAs in DI water for up to 125,000 bed volumes (BVs). When DOM was present, >20% breakthrough of all PFAAs by 10,000 BVs was observed for all carbons.

  7. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  8. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-08-06

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated).

  9. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2007-01-01

    The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim. PMID:18062653

  10. Ethylenediaminetetraacetic acid-sensitive antiphagocytic activity of Neisseria gonorrhoeae.

    PubMed Central

    Rosenthal, R S; Fulbright, R S; Eads, M E; Sawyer, W D

    1977-01-01

    Colonial types of Neisseria gonorrhoeae were examined for the presence of pilus-independent antiphagocytic activity. Type 3 and depiliated type 1 gonococci had a shearing- and protease-resistant antiphagocytic activity that was eliminated by treatment with ethylenediaminetetraacetic acid (EDTA) and that was not present on type 4 bacteria. Incubation of EDTA-treated bacteria 37 degrees C for 90 min resulted in fas prevented by antibiotics that block the final assembly of cell wall macromolecules that depend on the C55-isoprenoid carrier for export. These include both lipopolysaccharide and peptidoglycan. Restoration was, however, unaffected by drugs that interfere with the synthesis of peptidoglycan, but not that of lipopolysaccharide, and by inhibitors of protein synthesis. These data suggested that gonococci have an antiphagocytic mechanism in addition to the previously described determinant (presumably pili) that was removed by blending or by treatment with proteases. Of the two antiphagocytic activities, type 1 had both, type 3 had only the EDTA-sensitive component, and type 4 had neither. PMID:404246

  11. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  12. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-01-01

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated). PMID:26287131

  13. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2007-01-01

    The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim.

  14. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  15. A widely used retinoic acid receptor antagonist induces peroxisome proliferator-activated receptor-gamma activity.

    PubMed

    Schupp, Michael; Curtin, Joshua C; Kim, Roy J; Billin, Andrew N; Lazar, Mitchell A

    2007-05-01

    Nuclear receptors (NRs) are transcription factors whose activity is regulated by the binding of small lipophilic ligands, including hormones, vitamins, and metabolites. Pharmacological NR ligands serve as important therapeutic agents; for example, all-trans retinoic acid, an activating ligand for retinoic acid receptor alpha (RARalpha), is used to treat leukemia. Another RARalpha ligand, (E)-S,S-dioxide-4-(2-(7-(heptyloxy)-3,4-dihydro-4,4-dimethyl-2H-1-benzothiopyran-6-yl)-1-propenyl)-benzoic acid (Ro 41-5253), is a potent antagonist that has been a useful and purportedly specific probe of RARalpha function. Here, we report that Ro 41-5253 also activates the peroxisome proliferator-activated receptor gamma (PPARgamma), a master regulator of adipocyte differentiation and target of widely prescribed antidiabetic thiazolidinediones (TZDs). Ro 41-5253 enhanced differentiation of mouse and human preadipocytes and activated PPARgamma target genes in mature adipocytes. Like the TZDs, Ro 41-5253 also down-regulated PPARgamma protein expression in adipocytes. In addition, Ro 41-5253 activated the PPARgamma-ligand binding domain in transiently transfected HEK293T cells. These effects were not prevented by a potent RARalpha agonist or by depleting cells of RARalpha, indicating that PPARgamma activation was not related to RARalpha antagonism. Indeed, Ro 41-5253 was able to compete with TZD ligands for binding to PPARgamma, suggesting that Ro 41-5253 directly affects PPAR activity. These results vividly demonstrate that pharmacological NR ligands may have "off-target" effects on other NRs. Ro 41-5253 is a PPARgamma agonist as well as an RARalpha antagonist whose pleiotropic effects on NRs may signify a unique spectrum of biological responses.

  16. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  17. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides

    SciTech Connect

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.

    1996-07-12

    Scandium triflate catalyzes the acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The catalytic activity of the scandium triflates is found to be quite high allowing the acylation of secondary and tertiary alcohols.

  18. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite.

    PubMed

    Khataee, Alireza; Sheydaei, Mohsen; Hassani, Aydin; Taseidifar, Mojtaba; Karaca, Semra

    2015-01-01

    The sonocatalytic performance of the synthesized TiO2/Montmorillonite K10 (TiO2/MMT) nanocomposite was studied in removal of Basic Blue 3 (BB3) from water. The TiO2/MMT nanocomposite was prepared by hydrothermal method. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to characterize the synthesized nanocomposite. The average size of TiO2 nanoparticles decreased from 60-80nm to 40-60nm through the immobilization of this semiconductor on the surface of MMT. The obtained results indicated that the sonocatalytic activity of TiO2/MMT nanocomposite was higher than that of pure TiO2 nanoparticles and MMT particles. Furthermore, the main influence factors on the sonocatalytic activity such as the BB3 concentration, pH of solution, TiO2/MMT dose, power of ultrasonic generator, and inorganic salts were studied. The intermediates of BB3 degradation during the sonocatalytic process in the presence of the TiO2/MMT nanocomposite have been monitored by gas chromatography-mass spectrometry. PMID:25060118

  19. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-01

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection.

  20. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay.

    PubMed

    Adzmi, Fariz; Meon, Sariah; Musa, Mohamed Hanafi; Yusuf, Nor Azah

    2012-01-01

    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p < 0.05) better storage compared with room temperature (30°C). PMID:22309479

  1. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-01

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection. PMID:27318738

  2. Effects of Graded Levels of Montmorillonite on Performance, Hematological Parameters and Bone Mineralization in Weaned Pigs

    PubMed Central

    Duan, Q. W.; Li, J. T.; Gong, L. M.; Wu, H.; Zhang, L. Y.

    2013-01-01

    The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs. PMID:25049749

  3. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    PubMed Central

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  4. Synthesis and biological activity of some 5-substituted aminomethyl-8-hydroxyquinoline-7-sulphonic acids.

    PubMed

    Yanni, A S; Mohharam, A M

    1990-01-01

    5-Aryl (or alkyl)-8-hydroxyquinoline-7-sulphonic acids have been prepared by the Mannich reaction of 8-hydroxyquinoline-7-sulphonic acid with primary and secondary amines. Their bactericidal activities have been determined.

  5. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  6. Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity

    PubMed Central

    Subba Rao, G. S. R.; Kondaiah, Paturu; Singh, Sanjay K.; Ravanan, Palaniyandi; Sporn, Michael B.

    2008-01-01

    Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid and boswellic acids, by modification of A-ring with a cyano- and enone- functionalities, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid. PMID:20622928

  7. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  8. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  9. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  10. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay.

  11. Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide

    SciTech Connect

    Hur, Tae-Bong; Baltrus, John P.; Howard, Bret H.; Harbert, William P.; Romanov, Vyacheslav N.

    2013-03-01

    Carbonation reaction with silicate minerals that are common components of the host rock and cap rock within geological storage reservoirs and the associated structural deformation were investigated for better understanding of the geochemical reactions associated with geologic CO2 storage. Exposure of a model expanding clay, Wyoming montmorillonite, SWy-2, to high-pressure CO2 resulted in the formation of a mineral carbonate phase via dry CO2–clay mineral interactions at two different temperatures. The experimental evidence suggests that the properties of CO2 fluid at 70 °C provide more favorable conditions for carbonate formation at the clay surface less accessible to CO2 at 22 °C. The carbonation reaction occurred predominantly within the first couple of days of exposure to the fluid and then proceeded slower with continuing exposure. As compared to the as-received clay under the same ambient conditions, the (0 0 1) basal spacing of the clay bearing carbonates (after the CO2 exposure) was slightly expanded at a relative humidity (RH) level of 12% but it was slightly collapsed at the RH level of 40%. Finally, experimental observations suggest that the carbonation reaction occurs at the external surface as well as internal surface (interlayer) of the clay particles.

  12. Montmorillonite-levan nanocomposites with improved thermal and mechanical properties.

    PubMed

    Chen, Xiaoming; Gao, Hongsheng; Ploehn, Harry J

    2014-01-30

    This work reports on the structure and properties of novel nanocomposites composed of exfoliated montmorillonite clay blended with levan, a polysaccharide produced by Bacillus sp. Dry levan is very brittle, making it difficult to obtain stand-alone films. MMT-levan composites were prepared by solution blending in water, coating on plastic surfaces, partial drying at 50°C, and conditioning in air at 50-60% relative humidity. This process results in freestanding, transparent, and flexible films of pure levan and MMT-levan composites plasticized by 10-15 wt% water. XRD patterns from levan-MMT composites indicate an MMT interlayer spacing 0.62 nm greater than that of the starting MMT, suggesting re-stacking of MMT platelets coated by adsorbed, uncoiled levan molecules. FTIR results suggest that levan adheres to MMT via water-mediated hydrogen bonding between the levan's hydroxyl groups and MMT surface oxygens. MMT-levan composites have improved thermal stability and a well-defined glass transition temperature that increases with MMT loading. The tensile moduli of levan-MMT composites increase by as much as 480% relative to pure levan. The XRD and mechanical property results suggest that MMT reinforces levan through a filler network structure composed of MMT platelets bridged by adsorbed levan molecules, enhanced when the MMT loading becomes high enough (5-10wt% MMT) to induce an isotropic-nematic transition in MMT platelet orientation. PMID:24299812

  13. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  14. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater. PMID:24373983

  15. Electrochemical determination of phenol using CTAB-functionalized montmorillonite electrode.

    PubMed

    Huang, Wensheng; Zhou, Dazhai; Liu, Xiaopeng; Zheng, Xiaojiang

    2009-06-01

    Montmorillonite calcium (MMT) was modified with cetyltrimethylammonium bromide (CTAB) via replacement of its inorganic exchangeable cations. The resulting CTAB-modified MMT (CTAB/MMT) was used to modify the carbon paste electrode (CPE). The electrochemical behaviours of phenol at the unmodified CPE, MMT-modified CPE and CTAB/MMT-modified CPE were examined. It was found that the oxidation signal of phenol was remarkably improved at the CTAB/MMT-modified CPE, which was attributed to the higher accumulation efficiency of CTAB/MMT. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of phenol. The effect of supporting electrolyte on the oxidation of phenol was examined, and 0.1 mol l(-1) NaOH was finally employed. In addition, the influences of mass content of CTAB/MMT and accumulation time were also investigated. The optimal mass content of CTAB/MMT is 25%, and the accumulation time is 3 min. Under the optimized conditions, the oxidation peak current of phenol is proportional to its concentration over the range from 1.0 x 10(-7) to 3.0 x 10(-5) mol l(-1), and the limit of detection is estimated to be 6.0 x 10(-8) mol l(-1). Finally, the CTAB/MMT-modified CPE was successfully applied to determine phenol in water samples. PMID:19705607

  16. Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology.

    PubMed

    Kishimoto, Yuki; Ito, Fuyu; Usami, Hisanao; Togawa, Eiji; Tsukada, Masuhiro; Morikawa, Hideaki; Yamanaka, Shigeru

    2013-06-01

    The purpose of our research is creating a new nanocomposite material. Generally silk fibroin (SF) is regarded as a promising base material for biomedical uses. The incorporation of montmorillonite (MMT) into SF fibers would improve physical properties of the SF fibers. We investigated a new method of combining electospun SF with MMT. Specifically, electrospun silk nanofibers were treated with methanol and dipped in a MMT suspension. We could obtain a nanosheet composite of silk nanofibers and MMT. Their ultrastructures were successfully visualized by high resolution transmission electron microscopy. This compound was comprised of individual silk nanofibers surrounded by thin layers of MMT, each with a thickness of about 1.2 nm. This structure was confirmed by elemental analysis. We also performed IR, NMR and X-ray diffraction analyses in conjunction with morphological data. Conclusively we obtained a new composite of silk nanofiber and MMT, which has never been reported. Using this unique nanocomposite biological tests of its application for a scaffold for tissue engineering are under way. PMID:23500446

  17. Insights into asphaltene aggregation in the Na-montmorillonite interlayer.

    PubMed

    Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2016-10-01

    This study aimed to provide insights into the diffusion and aggregation of asphaltenes in the Na-montmorillonite (MMT) interlayer with different water saturation, salinity, interlayer space and humic substances. The molecular configuration, density profile, diffusion coefficient and aggregation intensity were determined by molecular dynamic simulation, while the 3D topography and particle size of the aggregates were characterized by atomic force microscopy. Results indicated that the diffusivity of asphaltenes was up to 5-fold higher in the MMT interlayer filled with fresh water than with saline water (salinity: 35‰). However, salinity had little impact on the asphaltene aggregation. This study also showed a marked decrease in the mobility of asphaltenes with decrease in the pore water content and the interlayer space of MMT. This was more pronounced in the organo-MMT where the humic substances were present. The co-aggregation process resulted in the sequestration of asphaltenes in the hollow cone-shaped cavity of humic substances in the MMT interlayer, which decreased the asphaltene diffusion by up to one-order of magnitude and increased the asphaltene aggregation by about 33%. These findings have important ramifications for evaluating the fate and transport of heavy fractions of the residual oil in the contaminated soils. PMID:27362529

  18. Structure property and deformation analysis of polypropylene montmorillonite nanocomposites

    NASA Astrophysics Data System (ADS)

    Hernandez-Luna, Alejandro

    Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5% wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among materials, but more important, aided the mapping of the elastic and plastic contributions. These are essential concepts in fracture analysis.

  19. Insights into asphaltene aggregation in the Na-montmorillonite interlayer.

    PubMed

    Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2016-10-01

    This study aimed to provide insights into the diffusion and aggregation of asphaltenes in the Na-montmorillonite (MMT) interlayer with different water saturation, salinity, interlayer space and humic substances. The molecular configuration, density profile, diffusion coefficient and aggregation intensity were determined by molecular dynamic simulation, while the 3D topography and particle size of the aggregates were characterized by atomic force microscopy. Results indicated that the diffusivity of asphaltenes was up to 5-fold higher in the MMT interlayer filled with fresh water than with saline water (salinity: 35‰). However, salinity had little impact on the asphaltene aggregation. This study also showed a marked decrease in the mobility of asphaltenes with decrease in the pore water content and the interlayer space of MMT. This was more pronounced in the organo-MMT where the humic substances were present. The co-aggregation process resulted in the sequestration of asphaltenes in the hollow cone-shaped cavity of humic substances in the MMT interlayer, which decreased the asphaltene diffusion by up to one-order of magnitude and increased the asphaltene aggregation by about 33%. These findings have important ramifications for evaluating the fate and transport of heavy fractions of the residual oil in the contaminated soils.

  20. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.

    PubMed

    Ul-Islam, Mazhar; Khan, Taous; Park, Joong Kon

    2012-08-01

    Polymer composites containing solid clay nanoparticles have attracted immense attention due to the reinforced physico-mechanical properties of the final product. Bacterial cellulose-montmorillonite (BC-MMT) composites were prepared by impregnation of BC sheets with MMT suspension. FE-SEM showed that MMT adsorbed onto the surface as well as penetrated into the matrix of the BC sheets. Peaks for both BC and MMT were present in the FT-IR spectrum of the composite. XRD also showed diffraction peaks for MMT and BC with a slight decrease in the composite crystallinity from 63.22% of pure BC to 49.68% of BC-MMT3. The mechanical and thermal properties of BC-MMT composites were significantly improved compared to those of the pure BC. Tensile strength for composites was increased up to 210 MPa from 151.3 Mpa (BC) while their degradation temperature extended from 232 °C (BC) up to 310 °C. Similarly, the water holding capacity was decreased while the water release rate was improved for the BC-MMT composites as compared to the pure BC.

  1. Activity of the antiestrogenic cajanin stilbene acid towards breast cancer.

    PubMed

    Fu, Yujie; Kadioglu, Onat; Wiench, Benjamin; Wei, Zuofu; Wang, Wei; Luo, Meng; Yang, Xiaohe; Gu, Chengbo; Zu, Yuangang; Efferth, Thomas

    2015-11-01

    Antiestrogenic therapy is a mainstay for estrogen receptor (ERα)-positive breast cancer. Due to the development of resistance to established antihormones such as tamoxifen, novel compounds are required. The low abundant cajanin stilbene acid (CSA) recently isolated by us from Pigeon Pea (Cajanus cajan) has structural similarities with estrogen. We analyzed the cytotoxic and anticancer activity of CSA in ERα-positive and -negative human breast cancer cells in vitro, in vivo and in silico. CSA exerts anticancer and antiestrogenic activities towards ERα-positive breast cancer, and it showed cytotoxicity towards tamoxifen-resistant MCF-7 cells, implying that CSA may be active against tamoxifen-resistant breast cancer cells. CSA showed low cytotoxicity in ERα-negative breast tumor cells as expected. Comparable cytotoxicity was observed towards p53 negative MCF-7 cells, implying that CSA is effective independent of the p53 status. Xenografted MCF-7 cells in nude mice were better inhibited by CSA than by cyclophosphamide. Testing of 8 primary cell cultures derived from human breast cancer biopsies showed that cell cultures from ER-positive tumors were more sensitive than from ER-negative ones. Dose-dependent decrease in ERα protein levels was observed upon CSA treatment. Synergistic effect with tamoxifen was observed in terms of increased p53 protein level. CSA affected pathways related to p53, cancer and cell proliferation. Gene promoter analyses supported the ERα regulation. CSA bound to the same site as 17β-estradiol and tamoxifen on ERα. In conclusion, CSA exerts its anticancer effects in ERα-positive breast cancer cells by binding and inhibiting ERα. PMID:26365581

  2. Amino acids, precursors for cationic and anionic intercalation synthesis and characterization of amino acid pillared materials

    NASA Astrophysics Data System (ADS)

    Fudala, Á.; Pálinkó, I.; Kiricsi, I.

    1999-05-01

    The preparation and characterization of amino acid pillared materials are reported in this contribution. Host substances were Na-montmorillonite for cationic and hydrotalcite for anionic pillaring. Guest molecules were L-phenylalanine and L-tyrosine. The pillared materials were characterized by powder X-ray diffraction, BET measurements and FT-IR spectroscopy. Pillaring was successful: the layers propped open and the basal distances increased significantly. For hydrotalcite this increase was always significantly larger than for montmorillonite. This fact indicated that the spatial arrangement of the amino acid moieties is widely different. A model for this arrangement is given.

  3. Application of hexafluoroacetone as protecting and activating reagent in amino acid and peptide chemistry.

    PubMed

    Burger, K; Rudolph, M; Fehn, S; Worku, A; Golubev, A

    1995-06-01

    Using hexafluoroacetone as protecting and activating reagent, multifunctional amino acids like aspartic acid can be functionalized regioselectively. This strategy offers i.a. a two-step synthesis for aspartame and preparatively simple access to multifunctional natural and unnatural amino acids, like 4-oxo-L-amino acids, 5-diazo-4-oxo-L-amino acids, 4-substituted L-proline derivatives and various heterocyclic L-amino acids. On application of this strategy to amino diacetic acid N-substituted glycines become readily available.

  4. Argillization by descending acid at Steamboat Springs, Nevada

    USGS Publications Warehouse

    Schoen, R.; White, D.E.; Hemley, J.J.

    1974-01-01

    Steamboat Springs, Nevada, an area of present-day hot springs, clearly illustrates the genetic dependence of some kaolin deposits on hot-spring activity. Andesite, granodiorite and arkosic sediments are locally altered at the land surface to siliceous residues consisting of primary quartz and anatase, plus opal from primary silicates. These siliceous residues commonly exhibit the textural and structural features of their unaltered equivalents. Beneath the siliceous residues, kaolin and alunite replace primary silicates and fill open spaces, forming a blanketlike deposit. Beneath the kaolin-alunite zone, montmorillonite, commonly accompanied by pyrite, replaces the primary silicates. On the ground surface, the same alteration mineral zones can he traced outward from the siliceous residue; however, hematite rather than pyrite accompanies montmorillonite. Chemical analysis indicates that sulfuric acid is the active altering agent. The acid forms from hydrogen sulfide that exsolves from deep thermal water, rises above the water table and is oxidized by sulfur-oxidizing bacteria living near the ground surface. This acid dissolves in precipitation or condensed water vapor and percolates downward destroying most of the primary minerals producing a siliceous residue. Coincidence of the water table with the downward transition from siliceous residue to kaolin alunite signifies decreasing hydrogen metasomatism because of dilution of descending acid by ground water. In hot-spring areas, beds of siliceous sinter deposited at the surface by hypogene thermal water look, superficially, like areas of surficial acid alteration. Features diagnostic of a surficial alteration are the relict rock structures of a siliceous residue and a kaolin-alunite zone immediately beneath. ?? 1974.

  5. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts.

    PubMed

    Knetsch, MLW.; Wang, M.; Snaar-Jagalska, B. E.; Heimovaara-Dijkstra, S.

    1996-06-01

    Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression.

  6. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts.

    PubMed Central

    Knetsch, MLW.; Wang, M.; Snaar-Jagalska, B. E.; Heimovaara-Dijkstra, S.

    1996-01-01

    Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression. PMID:12239411

  7. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    PubMed

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  8. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  9. Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling.

    PubMed

    Fang, Zhongxiang; Hu, Yuxia; Liu, Donghong; Chen, Jianchu; Ye, Xingqian

    2008-06-01

    Phenolic acids in potherb mustard (Brassica juncea, Coss.) were determined and the effects of pickling methods on the contents of total free phenolic acids, total phenolic acids, total phenolics, and antioxidant activities were investigated. Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid were identified in the present study. The contents of total free phenolic acids, total phenolic acids and total phenolics in fresh potherb mustard were 84.8±0.58μg/g dry weight (DW), 539±1.36μg/g DW, and 7.95±0.28mg/g DW, respectively. The total free phenolic acids increased during the pickling processes, but the total phenolic acids, total phenolics, and antioxidant activities decreased. However, after 5 weeks of fermentation, all the pickling methods retained over 70% of total phenolic contents and above 65% of antioxidant capacities. The results indicated that pickling processes were relatively good methods for the preservation of phenolic acids and antioxidants for potherb mustard. PMID:26065739

  10. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation.

    PubMed

    Ferris, J P; Kamaluddin

    1989-01-01

    Adenine deoxynucleotides bind more strongly to Na(+)-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na(+)-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na(+)-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na(+)-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na(+)-montmorillonite is omitted from the reaction mixture.

  11. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents.

    PubMed

    Ranković, Branislav; Kosanić, Marijana; Stanojković, Tatjana; Vasiljević, Perica; Manojlović, Nedeljko

    2012-01-01

    The aim of this study was to investigate the chemical composition of acetone extracts of the lichens Toninia candida and Usnea barbata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts together with some of their major metabolites. The chemical composition of T. candida and U. barbata extracts was determined using HPLC-UV analysis. The major phenolic compounds in these extracts were norstictic acid (T. candida) and usnic acid (U. barbata). Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. Results of the study proved that norstictic acid had the largest antioxidant activity. The total content of phenols in the extracts was determined as the pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration using the broth microdilution method. The most active was usnic acid with minimum inhibitory concentration values ranging from 0.0008 to 0.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using the microculture tetrazolium test. Usnic acid was found to have the strongest anticancer activity towards both cell lines with IC(50) values of 12.72 and 15.66 μg/mL. PMID:23203090

  12. Biological Activities of Toninia candida and Usnea barbata Together with Their Norstictic Acid and Usnic Acid Constituents

    PubMed Central

    Ranković, Branislav; Kosanić, Marijana; Stanojković, Tatjana; Vasiljević, Perica; Manojlović, Nedeljko

    2012-01-01

    The aim of this study was to investigate the chemical composition of acetone extracts of the lichens Toninia candida and Usnea barbata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts together with some of their major metabolites. The chemical composition of T. candida and U. barbata extracts was determined using HPLC-UV analysis. The major phenolic compounds in these extracts were norstictic acid (T. candida) and usnic acid (U. barbata). Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. Results of the study proved that norstictic acid had the largest antioxidant activity. The total content of phenols in the extracts was determined as the pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration using the broth microdilution method. The most active was usnic acid with minimum inhibitory concentration values ranging from 0.0008 to 0.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using the microculture tetrazolium test. Usnic acid was found to have the strongest anticancer activity towards both cell lines with IC50 values of 12.72 and 15.66 μg/mL. PMID:23203090

  13. Stability of Organically Modified Montmorillonites and Their Polystyrene Nanocomposites After Prolonged Thermal Treatment

    SciTech Connect

    Frankowski,D.; Capracotta, M.; Martin, J.; Khan, S.; Spontak, R.

    2007-01-01

    Melt intercalation of montmorillonite (MMT) into polymeric matrices to improve the mechanical properties of polymers has evolved into a subject of tremendous fundamental and technological interest. The thermal treatment experienced during processing or end use can substantially affect the clay and diminish the target properties of polymer/clay nanocomposites (NCs) because of deintercalation or degradation of surface modifiers. In this work, changes in morphology, chemistry, and thermal stability of organically modified (OM) MMT after annealing in O{sub 2}-rich and N{sub 2} environments are investigated. Degradation of the alkyl ammonium cation occurs at temperatures as low as 105 {sup o}C upon prolonged exposure in an O{sub 2}-rich environment. X-ray diffractometry (XRD) performed in situ establishes the response of two OM-MMTs to elevated temperatures at short times, whereas ex situ XRD provides insight into high-temperature exposure at long times. Active sites on the silicate surfaces are found to induce scission of, as well as chemical interaction with, the chains comprising a polystyrene (PS) matrix. Size-exclusion chromatography indicates that PS chain scission occurs primarily after relatively short annealing times, whereas branching and cross-linking are more prevalent after long exposure times in an O{sub 2}-rich environment.

  14. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  15. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  16. Radical scavenging activity of lipophilized products from transesterification of flaxseed oil with cinnamic acid or ferulic acid.

    PubMed

    Choo, Wee-Sim; Birch, Edward John; Stewart, Ian

    2009-09-01

    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.

  17. Terminal Amino Acids Disturb Xylanase Thermostability and Activity*

    PubMed Central

    Liu, Liangwei; Zhang, Guoqiang; Zhang, Zhang; Wang, Suya; Chen, Hongge

    2011-01-01

    Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)8 because the general structure consists of ∼10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ∼2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (Topt) 6 °C, but the C-terminal deletion increased its Topt 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme Topt but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG0) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities. PMID:22072708

  18. Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range

    EPA Science Inventory

    Montmorillonite K10 clay was pillared with BiCl3 and Cu(NO3)2 to extend its applicability as catalytic adsorbent to degrade aqueous solution of anionic azo-dye Methyl Orange (MO) in the presence of visible light irradiation. The preparation of Bi/Cu-montmorillonite utilized benig...

  19. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products. PMID:26910999

  20. Antifungal activity of 4-substituted crotonic acid esters.

    PubMed

    Gershon, H; Shanks, L; Gawiak, D E

    1976-08-01

    Twenty-three 4-substituted crotonic acid esters were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes. For the analogues of the methyl ester containing substituents in the 4 position, the following order of fungitoxicity was observed: I greater than Br greater than Cl greater than CH3S greater than CH3O greater than F=H. Of the homologues of the esters of the 4-iodo and 4-bromo compounds which included methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl, ethyl 4-iodocrotonate was most toxic to the four fungi at pH 7.0 in the presence of 10% beef serum (C. albicans, 18mug/ml, A. niger, 40 mug/ml, M. mucedo, 5 mug/ml, T. mentagrophytes, 4 mug/ml). It is believed that the mechanism of fungitoxicity is due, in part, to a nucleophilic reaction involving SH-containing compounds. This is based on the correlation of fungitoxicity with the order of leaving groups in the nucleophilic reaction and the protection against the toxicity of the test compounds to the fungi by cysteine and glutathione.

  1. An ab initio molecular dynamics study of hydronium complexation in Na-montmorillonite

    NASA Astrophysics Data System (ADS)

    Churakov, Sergey V.; Kosakowski, Georg

    2010-06-01

    The Car-Parrinello molecular dynamics simulation technique was used to predict the structure and dynamics of hydronium solvation in mono-, bi- and trihydrated Na-montmorillonite. In monohydrated montmorillonite, hydronium ions are located within the hexagonal rings of the basal clay plane. Oxygen sites of hydronium ions point towards the clay surface and hydrogen atoms towards the water layer. In bi- and trihydrated montmorillonite, hydronium ions form water-solvated, outer-sphere complexes. Similar to the solvation mechanism in bulk water, hydronium ions donate three hydrogen bonds to interlayer water molecules. In all studied hydration states, hydronium ions do not form hydrogen bonds with the basal oxygen sites. Similar to bulk water, the free energy barrier for a classical proton transfer between interlayer water molecules is of the order of kT and therefore not the limiting factor for the proton diffusion. The diffusivity of hydrogen in the interlayer is controlled by the structural rearrangements of the solvating water molecules.

  2. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  3. Organic acid-catalyzed polyurethane formation via a dual-activated mechanism: unexpected preference of N-activation over O-activation of isocyanates.

    PubMed

    Sardon, Haritz; Engler, Amanda C; Chan, Julian M W; García, Jeannette M; Coady, Daniel J; Pascual, Ana; Mecerreyes, David; Jones, Gavin O; Rice, Julia E; Horn, Hans W; Hedrick, James L

    2013-10-30

    A systematic study of acid organocatalysts for the polyaddition of poly(ethylene glycol) to hexamethylene diisocyanate in solution has been performed. Among organic acids evaluated, sulfonic acids were found the most effective for urethane formations even when compared with conventional tin-based catalysts (dibutyltin dilaurate) or 1,8-diazabicyclo[5.4.0]undec-7-ene. In comparison, phosphonic and carboxylic acids showed considerably lower catalytic activities. Furthermore, sulfonic acids gave polyurethanes with higher molecular weights than was observed using traditional catalyst systems. Molecular modeling was conducted to provide mechanistic insight and supported a dual activation mechanism, whereby ternary adducts form in the presence of acid and engender both electrophilic isocyanate activation and nucleophilic alcohol activation through hydrogen bonding. Such a mechanism suggests catalytic activity is a function of not only acid strength but also inherent conjugate base electron density. PMID:24083673

  4. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids.

  5. Antioxidant and Antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant activity of three major polyamine conjugates, N,N'-dicoumaroyl- putrescine (DCP), N-p-coumaroyl-N'-feruloylputrescine (CFP) and N,N'-diferuloyl- putrescine (DFP) isolated from corn bran, and their related hydroxycinnamic acids, p-coumaric acid (CA) and ferulic acid (FA), were evaluat...

  6. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids. PMID:25475328

  7. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Eberl, D.D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz- 1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and ??s-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K> Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 A??, the limiting molecular dimension of neo -hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 A?? determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 A?? determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  8. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  9. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    PubMed Central

    Wisastra, Rosalina; Kok, Petra A.M; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid, whereas the larger inhibitor 23d blocks the enzyme active site. PMID:24231650

  10. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  11. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.

  12. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand. PMID:23791684

  13. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  14. 2-Octynoic Acid Inhibits Hepatitis C Virus Infection through Activation of AMP-Activated Protein Kinase

    PubMed Central

    Yang, Darong; Xue, Binbin; Wang, Xiaohong; Yu, Xiaoyan; Liu, Nianli; Gao, Yimin; Liu, Chen; Zhu, Haizhen

    2013-01-01

    Many chronic hepatitis C virus (HCV)-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA) on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK) and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs) and inhibited microRNA-122 (miR-122) expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C. PMID:23741428

  15. Constructing covalent interface in rubber/clay nanocomposite by combining structural modification and interlamellar silylation of montmorillonite.

    PubMed

    Zha, Chao; Wang, Wencai; Lu, Yonglai; Zhang, Liqun

    2014-11-12

    Strong interfacial interaction and nanodispersion are necessary for polymer nanocomposites with expectations on mechanical performance. In this work, montmorillonite (MMT) was first structurally modified by acid treatment to produce more silanol groups on the layer surface. This was followed by chemical modification of γ-methacryloxy propyl trimethoxysilane molecule (KH570) through covalent grafting with the silanol groups. (29)Si and (27)Al magic angle spinning (MAS) NMR results revealed the microstructural changes of MMT after acid treatment and confirmed the increase of silanol groups on acid-treated MMT surfaces. Thermogravimetric analysis indicated an increase in the grafted amount of organosilane on the MMT surface. X-ray diffraction (XRD) showed that the functionalization process changed the highly ordered stacking structure of the MMT mineral into a highly disordered structure, indicating successful grafting of organosilane to the interlayer surface of the crystalline sheets. The styrene-butadiene rubber (SBR)/MMT nanocomposites were further prepared by co-coagulating with SBR latex and grafted-MMT aqueous suspension. During vulcanization, a covalent interface between modified MMT and rubber was established through peroxide-radical-initiated reactions, and layer aggregation was effectively prevented. The SBR/MMT nanocomposites had highly and uniformly dispersed MMT layers, and the covalent interfacial interaction was finally achieved and exhibited high performance. PMID:25322875

  16. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  17. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  18. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  19. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    PubMed

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  20. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian.

    PubMed

    Wang, Yong; Sun, Yang; Zhang, Ying; Zhang, Xing; Feng, Juntao

    2016-01-01

    Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration) values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP) content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici. PMID:27294911

  1. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.

    PubMed

    Li, He; Turunen, Ossi

    2015-01-01

    Thermopolyspora flexuosa GH11 xylanase (XYN11A) shows optimal activity at pH 6-7 and 75-80 °C. We studied how mutation to aspartic acid (N46D and V48D) in the vicinity of the catalytic acid/base affects the pH activity of highly thermophilic GH11 xylanase. Both mutations shifted the pH activity profile toward acidic pH. In general, the Km values were lower at pH 4-5 than at pH 6, and in line with this, the rate of hydrolysis of xylotetraose was slightly faster at pH 4 than at pH 6. The N46D mutation and also lower pH in XYN11A increased the hydrolysis of xylotriose. The Km value increased remarkably (from 2.5 to 11.6 mg/mL) because of V48D, which indicates the weakening of binding affinity of the substrate to the active site. Xylotetraose functioned well as a substrate for other enzymes, but with lowered reaction rate for V48D. Both N46D and V48D increased the enzyme inactivation by ionic liquid [emim]OAc. In conclusion, the pH activity profile could be shifted to acidic pH due to an effect from two different directions, but the tightly packed GH11 active site can cause steric problems for the mutations.

  2. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  3. Exploration of the antiplatelet activity profile of betulinic acid on human platelets.

    PubMed

    Tzakos, Andreas G; Kontogianni, Vassiliki G; Tsoumani, Maria; Kyriakou, Eleni; Hwa, John; Rodrigues, Francisco A; Tselepis, Alexandros D

    2012-07-18

    Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation. PMID:22720759

  4. Exploration of the antiplatelet activity profile of betulinic acid on human platelets.

    PubMed

    Tzakos, Andreas G; Kontogianni, Vassiliki G; Tsoumani, Maria; Kyriakou, Eleni; Hwa, John; Rodrigues, Francisco A; Tselepis, Alexandros D

    2012-07-18

    Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation.

  5. Effect of stilbene and chalcone scaffolds incorporation in clofibric acid on PPARα agonistic activity.

    PubMed

    Giampietro, Letizia; D'Angelo, Alessandra; Giancristofaro, Antonella; Ammazzalorso, Alessandra; De Filippis, Barbara; Di Matteo, Mauro; Fantacuzzi, Marialuigia; Linciano, Pasquale; Maccallini, Cristina; Amoroso, Rosa

    2014-01-01

    In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, new compounds based on a combination of clofibric acid, the active metabolite of clofibrate, and trans-stilbene, chalcone, and other lipophilic groups were synthesized. They were evaluated for PPARα transactivation activity; all branched derivatives showed an increase of the transcriptional activity of receptor compared to the linear ones. Noteworthy, stilbene and benzophenone branched derivatives activated the PPARα better than clofibric acid. PMID:23432317

  6. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  7. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  8. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  9. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  10. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  11. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids.

    PubMed

    Ruby, Maxwell A; Goldenson, Benjamin; Orasanu, Gabriela; Johnston, Thomas P; Plutzky, Jorge; Krauss, Ronald M

    2010-08-01

    Recent evidence suggests that lipoproteins serve as circulating reservoirs of peroxisomal proliferator activated receptor (PPAR) ligands that are accessible through lipolysis. The present study was conducted to determine the biochemical basis of PPAR-alpha activation by lipolysis products and their contribution to PPAR-alpha function in vivo. PPAR-alpha activation was measured in bovine aortic endothelial cells following treatment with human plasma, VLDL lipolysis products, or oleic acid. While plasma failed to activate PPAR-alpha, oleic acid performed similarly to VLDL lipolysis products. Therefore, fatty acids are likely to be the PPAR-alpha ligands generated by VLDL lipolysis. Indeed, unbound fatty acid concentration determined PPAR-alpha activation regardless of fatty acid source, with PPAR-alpha activation occurring only at unbound fatty acid concentrations that are unachievable under physiological conditions without lipase action. In mice, a synthetic lipase inhibitor (poloxamer-407) attenuated fasting-induced changes in expression of PPAR-alpha target genes. Apolipoprotein CIII (apoCIII), an endogenous inhibitor of lipoprotein and hepatic lipase, regulated access to the lipoprotein pool of PPAR-alpha ligands, because addition of exogenous apoCIII inhibited, and removal of endogenous apoCIII potentiated, lipolytic PPAR-alpha activation. These data suggest that the PPAR-alpha response is generated by unbound fatty acids released locally by lipase activity and not by circulating plasma fatty acids.

  13. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  14. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies

    NASA Astrophysics Data System (ADS)

    Yang, Shitong; Ren, Xuemei; Zhao, Guixia; Shi, Weiqun; Montavon, Gilles; Grambow, Bernd; Wang, Xiangke

    2015-10-01

    Heavy metal ions that leach from various industrial and agricultural processes are simultaneously present in the contaminated soil and water systems. The competitive sorption of these toxic metal ions on the natural soil components and sediments significantly influences their migration, bioavailability and ecotoxicity in the geochemical environment. In this study, the competitive sorption and selectivity order of Cu(II) and Ni(II) on montmorillonite are investigated by combining the batch experiments, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), surface complexation modeling and X-ray Absorption Spectroscopy (XAS). The batch experimental data show that the coexisting Ni(II) exhibits a negligible influence on the sorption behavior of Cu(II), whereas the coexisting Cu(II) reduces the Ni(II) sorption percentage and changes the shape of the Ni(II) sorption isotherm. The sorption species of Cu(II) and Ni(II) on montmorillonite over the acidic and near-neutral pH range are well simulated by the surface complexation modeling. However, this model cannot identify the occurrence of surface nucleation and the co-precipitation processes at a highly alkaline pH. Based on the results of the EPR and XAS analyses, the microstructures of Cu(II) on montmorillonite are identified as the hydrated free Cu(II) ions at pH 5.0, inner-sphere surface complexes at pH 6.0 and the surface dimers/Cu(OH)2(s) precipitate at pH 8.0 in the single-solute and the binary-solute systems. For the Ni(II) sorption in the single-solute system, the formed microstructure varies from the hydrated free Ni(II) ions at the pH values of 5.0 and 6.0 to the inner-sphere surface complexes at pH 8.0. For the Ni(II) sorption in the binary-solute system, the coexisting Cu(II) induces the formation of the inner-sphere complexes at pH 6.0. In contrast, Ni(II) is adsorbed on montmorillonite via the formation of Ni phyllosilicate co-precipitate/α-Ni(OH)2(s) precipitate at pH 8.0. The selective sequence

  15. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  16. Synthesis, Structure-Activity Relationship, and Mechanistic Investigation of Lithocholic Acid Amphiphiles for Colon Cancer Therapy

    PubMed Central

    Bhargava, Priyanshu; Singh, Ashima; Motiani, Rajender K.; Shyam, Radhey; Sreekanth, Vedagopuram; Sengupta, Sagar; Bajaj, Avinash

    2014-01-01

    We report a structure-activity relationship of lithocholic acid amphiphiles for their anticancer activities against colon cancer. We synthesized ten cationic amphiphiles differing in nature of cationic charged head groups using lithocholic acid. We observed that anticancer activities of these amphiphiles against colon cancer cell lines are contingent on nature of charged head group. Lithocholic acid based amphiphile possessing piperidine head group (LCA-PIP1) is ~10 times more cytotoxic as compared to its precursor. Biochemical studies revealed that enhanced activity of LCA-PIP1 as compared to lithocholic acid is due to greater activation of apoptosis.LCA-PIP1 induces sub G0 arrest and causes cleavage of caspases. A single dose of lithocholic acid-piperidine derivative is enough to reduce the tumor burden by 75% in tumor xenograft model. PMID:25685308

  17. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material

    PubMed Central

    Vieira, Bárbara A.; Dias, Luiza R. S.; de Sousa, Valéria P.; Castro, Helena C.; Rodrigues, Carlos R.; Cabral, Lucio M.

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  18. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    PubMed

    Bello, Murilo L; Junior, Aridio M; Vieira, Bárbara A; Dias, Luiza R S; de Sousa, Valéria P; Castro, Helena C; Rodrigues, Carlos R; Cabral, Lucio M

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  19. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  20. Enzymatic activity of poliovirus RNA polymerase mutants with single amino acid changes in the conserved YGDD amino acid motif.

    PubMed

    Jablonski, S A; Luo, M; Morrow, C D

    1991-09-01

    RNA-dependent RNA polymerases contain a highly conserved region of amino acids with a core segment composed of the amino acids YGDD which have been hypothesized to be at or near the catalytic active site of the molecule. Six mutations in this conserved YGDD region of the poliovirus RNA-dependent RNA polymerase were made by using oligonucleotide site-directed DNA mutagenesis of the poliovirus cDNA to substitute A, C, M, P, S, or V for the amino acid G. The mutant polymerase genes were expressed in Escherichia coli, and the purified RNA polymerases were tested for in vitro enzyme activity. Two of the mutant RNA polymerases (those in which the glycine residue was replaced with alanine or serine) exhibited in vitro enzymatic activity ranging from 5 to 20% of wild-type activity, while the remaining mutant RNA polymerases were inactive. Alterations in the in vitro reaction conditions by modification of temperature, metal ion concentration, or pH resulted in no significant differences in the activities of the mutant RNA polymerases relative to that of the wild-type enzyme. An antipeptide antibody directed against the wild-type core amino acid segment containing the YGDD region of the poliovirus polymerase reacted with the wild-type recombinant RNA polymerase and to a limited extent with the two enzymatically active mutant polymerases; the antipeptide antibody did not react with the mutant RNA polymerases which did not have in vitro enzyme activity. These results are discussed in the context of secondary-structure predictions for the core segment containing the conserved YGDD amino acids in the poliovirus RNA polymerase. PMID:1651402

  1. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  2. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  3. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  4. Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH radical scavenging activity.

    PubMed

    She, G-M; Xu, C; Liu, B; Shi, R-B

    2010-05-01

    Vegetables of mint (the aerial part of Mentha haplocalyx) contain a significant amount of polyphenols with many health benefits. The crude aqueous acetone extract exhibited high antioxidant activity (IC(50)= 45.67 mug/mL) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The activity-guided separation of chlorophyll removal fraction on column chromatography afforded 8 polyphenolic acids, including a new compound, cis-salvianolic acid J (1), and 7 known compounds, salvianolic acid J (2), lithospermic acid (3), rosmarinic acid (4), lithospermic acid B (5), magnesium lithospermate B (6), sodium lithospermate B (7), and danshensu (8), respectively. Their structural elucidations of all the compounds were based on extensive spectroscopic methods, including HRESIMS and 2D NMR experiments (HSQC, HMBC, and ROESY) and by comparison with reference values. Compounds 2, 3, and 5 to 8 were isolated from Mentha genus for the 1st time. The DPPH radical scavenging activities of all the isolated compounds were evaluated.

  5. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues.

    PubMed

    Jubie, Selvaraj; Ramesh, Patil Nilesh; Dhanabal, Palanichamy; Kalirajan, Rajagopal; Muruganantham, Nithyanantham; Antony, Anthoniswamy Shanish

    2012-08-01

    Stearic acid, a saturated fatty acid was isolated from the microalga Spirulina platensis. Some novel stearic acid analogues having 1,3,4-oxadiazole, 1,2,4-triazole and 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole are synthesized and characterized by IR, NMR and mass spectral analysis. All the synthesized compounds were screened for antimicrobial activity by using cup plate method. The synthesized compounds have been further screened for their antidepressant activity in swiss albino mice by forced swim test (FST), midbrain dopamine has been estimated and quantified. All the compounds showed good antimicrobial activity and compound 6 showed significant antidepressant activity.

  6. Synthesis of silver/montmorillonite nanocomposites using γ-irradiation

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Gharayebi, Yadollah; Sedaghat, Sajjad

    2010-01-01

    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO3 solution, and after the absorption of silver ions, Ag+ was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [ds] = 1.24–1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57–30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation. PMID:21170354

  7. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  8. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.

    PubMed

    Erkan, Naciye; Ayranci, Guler; Ayranci, Erol

    2008-09-01

    Antioxidant activities of three pure compounds: carnosic acid, rosmarinic acid and sesamol, as well as two plant extracts: rosemary extract and blackseed essential oil, were examined by applying DPPH and ABTS(+) radical-scavenging assays and the ferric thiocyanate test. All three test methods proved that rosemary extract had a higher antioxidant activity than blackseed essential oil. The order of antioxidant activity of pure compounds showed variations in different tests. This was attributed to structural factors of individual compounds. Phenolic contents of blackseed essential oil and rosemary extract were also determined. Rosemary extract was found to have a higher phenolic content than blackseed essential oil. This fact was utilised in explaining the higher antioxidant activity of rosemary extract.

  9. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.

    PubMed

    Erkan, Naciye; Ayranci, Guler; Ayranci, Erol

    2008-09-01

    Antioxidant activities of three pure compounds: carnosic acid, rosmarinic acid and sesamol, as well as two plant extracts: rosemary extract and blackseed essential oil, were examined by applying DPPH and ABTS(+) radical-scavenging assays and the ferric thiocyanate test. All three test methods proved that rosemary extract had a higher antioxidant activity than blackseed essential oil. The order of antioxidant activity of pure compounds showed variations in different tests. This was attributed to structural factors of individual compounds. Phenolic contents of blackseed essential oil and rosemary extract were also determined. Rosemary extract was found to have a higher phenolic content than blackseed essential oil. This fact was utilised in explaining the higher antioxidant activity of rosemary extract. PMID:26050168

  10. Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media

    PubMed Central

    Mays, David C.; Hunt, James R.

    2008-01-01

    Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes one order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay. PMID:17874771

  11. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Fumonisin B1 (FB1) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AF’s carcinogenicity by acting as a cancer promoter. An oral dose of calcium montmorillonite clay (i.e. NovaSil, NS) was able to reduce aflatoxin exposure in a Ghanaian population at risk. In vitro...

  12. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.

    PubMed

    Abollino, O; Aceto, M; Malandrino, M; Sarzanini, C; Mentasti, E

    2003-04-01

    Clays (especially montmorillonite and bentonite) are widely used as barriers in landfills to prevent contamination of subsoil and groundwater by leachates containing heavy metals. For this reason it is important to study the adsorption of metals by these clays. The sorption of seven metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) on Na-montmorillonite was studied as a function of pH and in the presence of ligands, forming complexes of different stabilities with the metals of interest. The continuous column method was used as it better simulates natural conditions. The total capacity of Na-montmorillonite towards these metals was determined. The pH variations influence to a higher extent the concentrations of Cu, Pb and Cd in the effluent. Moreover the results suggest that complex formation hinders the sorption of the metals on the clay, with an increasing influence in the order: Mn < or = Pb < or = Cd < or = Zn < Ni < Cu < Cr. The evaluation of the total capacity of Na-montmorillonite shows that this clay is a good sorbent towards all examined metals.

  13. Intestine-Specific, Oral Delivery of Captopril/Montmorillonite: Formulation and Release Kinetics

    PubMed Central

    2011-01-01

    The intercalation of captopril (CP) into the interlayers of montmorillonite (MMT) affords an intestine-selective drug delivery system that has a captopril-loading capacity of up to ca. 14 %w/w and which exhibits near-zero-order release kinetics. PMID:27502639

  14. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  15. Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite.

    PubMed

    Burgos, A E; Ribeiro-Santos, Tatiana A; Lago, Rochel M

    2016-01-01

    Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA(+)) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer-Emmett-Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA(+) in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g(-1) for M9CTA(+), M16CTA(+) and M34CTA(+), respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA(+) to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA(+), which allows the recovery and reuse of the adsorbent for at least five times. PMID:27508371

  16. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media.

    PubMed

    Mays, David C; Hunt, James R

    2007-08-15

    Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes 1 order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady-state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay. PMID:17874771

  17. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  18. THE EFFECTS OF PANTOTHENIC ACID ON RESPIRATORY ACTIVITY.

    PubMed

    Pratt, E F; Williams, R J

    1939-05-20

    Experiments using the Warburg-Barcroft apparatus led to the following results and conclusions: (1) Two yeasts in three different media were strikingly stimulated in their respiration by minute amounts of pantothenic acid. (2) Nine other compounds (vitamins and other biologically important substances) were tested and found in all cases to have on the deficient G.M. yeast, lesser and in some cases no appreciable stimulative effect. Thiamin was the most effective of these compounds. Its action was shown to be different and in some ways antagonistic to that of pantothenic acid. (3) Liver extract (Lilly's Number 343) contains substances capable of speeding up respiration (and growth) to a much higher level than seems possible with known compounds. (4) Pantothenic acid was found to have a definite stimulative effect on fermentation by dialyzed maceration juice from yeast. (5) It likewise stimulated respiration of apple and potato tissue and indications of a similar effect on certain animal tissues were obtained.

  19. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  20. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change.

  1. Activation of transcription by PU.1 requires both acidic and glutamine domains.

    PubMed Central

    Klemsz, M J; Maki, R A

    1996-01-01

    The B-lymphocyte- and macrophage-specific transcription factor PU.1 is a member of the ets family of proteins. To understand how PU.1 functions as a transcription factor, we initiated a series of experiments to define its activation domain. Using deletion analysis, we showed that the activation domain of PU.1 is located in the amino-terminal half of the protein. Within this region, we identified three acidic subdomains and one glutamine-rich subdomain. The deletion of any of these subdomains resulted in a significant loss in the ability of PU.1 to transactivate in cotransfection studies. Amino acid substitution analysis showed that the activation of transcription by PU.1 requires acidic residues between amino acids 7 and 74 and a group of glutamine residues between amino acids 75 and 84. These data show that PU.1 contains two types of known activation domains and that both are required for maximal transactivation. PMID:8524320

  2. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    PubMed

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  3. [Effect of acid rain, copper, and atrazine on soil hydrolase activity].

    PubMed

    Liu, Guangshen; Xu, Dongmei; Li, Kebin; Liu, Weiping

    2004-01-01

    The effects of acid rain, Cu2+ and atrazine on the activities of soil urease, invertase and acid phosphatase were studied by means of orthogonal test. The results showed that the inhibition rate was H+ > Cu2+, and atrazine had no significant influence on urease and intertase. Interaction analysis revealed that Cu x atrazine exhibited synergism on soil acid phosphatase activity, Cu x H had antagonism on soil invertase and urease, but atrazine x H had no interaction within the investigated concentration range. Among the three enzymes, soil acid phosphatase was the most sensitive one to the contaminations.

  4. Antimicrobial activity of extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric and stenosporic acid constituents.

    PubMed

    Candan, Mehmet; Yilmaz, Meral; Tay, Turgay; Kivanç, Merih; Türk, Hayrettin

    2006-01-01

    The antimicrobial activity of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Xanthoparmelia pokornyi and its gyrophoric acid and stenosporic acid constituents has been screened against some foodborne bacteria and fungi. Both the extracts and the acids showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Staphylococcus aureus, Streptococcus faecalis, Yersinia enterocolitica, Candida albicans and Candida glabrata. The extracts were inactive against the tested filamentous fungi. The MIC values of the extracts and the acids for the bacteria have also been determined.

  5. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures - Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    The diffuse reflectance spectra of Hawaiian palagonite mixtures with an Fe-rich montmorillonite have prompted their present use as spectral analogs of the Martian surface. Like the Mars spectrum and unlike clays, the 2.2-micron reflectance spectrum absorption band is not present in the palagonite sample; neither is the 2.2-micron Al-OH clay lattice band seen in palagonite-montmorillonite mixtures, where the latter component remains below 15 wt pct. Fe-rich montmorillonite clay may therefore be present in Mars, in combination with palagonite, while remaining undetected in remotely sensed spectra.

  6. Reflectance spectra of sulfate-and carbonate-bearing Fe(3+)-doped montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Burns, Roger G.

    1993-01-01

    Ferric smectites and ferrihydrite may be common alteration products of igneous lithologies on Mars, and experiments involving montmorillonite enriched with Fe(3+) support the likelihood of ferric smectites on Mars. Mossbauer spectroscopy has been used to identify ferrihydrite (Fe4(O,OH,H2O)12) as the primary ferric material in Fe(3+)-doped montmorillonite. Ferrihydrite is especially interesting due to its role as a precursor in the formation of hematite and goethite. Reflectance spectroscopy in the visible and infrared regions are coupled with Mossbauer spectroscopy in this study to characterize the ferric material in montmorillonites containing Fe(3+), as well as carbonates or sulfates, in the interlayer region.

  7. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  8. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  9. Experiments on the origins of optical activity. [in amino acids

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Flores, J. J.

    1975-01-01

    An investigation was conducted concerning the asymmetric adsorption of phenylalanine enantiomers by kaolin. No preferential adsorption of either phenylalanine enantiomer could be detected and there was no resolution of the racemic phenylalanine by kaolin. The attempted asymmetric polymerization of aspartic acid by kaolin is also discussed along with a strontium-90 bremsstrahlung radiolysis of leucine.

  10. Biological activity and biotechnological aspects of peptide nucleic acid.

    PubMed

    Lundin, Karin E; Good, Liam; Strömberg, Roger; Gräslund, Astrid; Smith, C I Edvard

    2006-01-01

    During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.

  11. Anti-inflammatory activities of oleanolic acid on HMGB1 activated HUVECs.

    PubMed

    Yang, Eun-Ju; Lee, Wonhwa; Ku, Sae-Kwang; Song, Kyung-Sik; Bae, Jong-Sup

    2012-05-01

    As a late mediator of inflammation, high mobility group box 1 (HMGB1) protein up-regulates pro-inflammatory cytokines in several inflammatory diseases. Further, high plasma levels of HMGB1 correlate with poor prognosis and increased mortality in patients with severe inflammation. Oleanolic acid (OA), a triterpenoid known for its anti-inflammatory and anti-cancer properties, is commonly present in several medicinal plants but the effects of OA on HMGB1-mediated pro-inflammatory responses of human endothelial cells is not well-studied. In this study, we investigated this question by monitoring the effect of OA on lipopolysaccharide (LPS)-mediated release of HMGB1 and the HMGB1-mediated modulation of inflammatory responses in human umbilical vein endothelial cells (HUVECs). OA potently inhibited the release of HMGB1 by HUVECs as well as down-regulated HMGB1-dependent adhesion and migration of the monocytic cell line THP-1 to activated HUVECs. OA also down-regulated the cell surface expression of the receptor of HMGB1, thereby inhibiting HMGB1-dependent pro-inflammatory responses by inhibiting activation of nuclear factor-κB (NF-κB) and production of tumor necrosis factor-α (TNF-α) by HMGB1. Given these results, OA showed anti-inflammatory activities and could be a candidate as a therapeutic agent for various inflammatory diseases through the inhibition of the HMGB1 signaling pathway.

  12. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    PubMed

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  13. Sorption speciation of nickel(II) onto Ca-montmorillonite: batch, EXAFS techniques and modeling.

    PubMed

    Tan, XiaoLi; Hu, Jun; Montavon, Gilles; Wang, XiangKe

    2011-11-01

    The sorption speciation of Ni(II) on Ca-montmorillonite was evaluated using a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and modeling. The pH and temperature at the aqueous-montmorillonite interface affects both the extent of Ni(II) sorption as well as the local atomic structure of the adsorbed Ni(II) ions. At 0.001 mol L(-1) Ca(NO(3))(2) and low pH, the study reveals that the majority of Ni(II) is adsorbed in the interlayers of Ca-montmorillonite coordinated by six water molecules in an octahedron as an outer-sphere complex. At higher pH, inner-sphere surface complexes are formed. The Ni-Si/Al distances (R(Ni-Al) = 3.00 Å, R(Ni-Si1) = 3.10 Å and R(Ni-Si2) = 3.26 Å) determined by EXAFS confirm the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5 and 8.5. At pH 10.0, the Ni-Ni/Si distances (R(Ni-Ni) = 3.07 Å and R(Ni-Si) = 3.26 Å) indicates the formation of Ni-phyllosilicate precipitates. A rise in temperature promotes inner-sphere complexation, which in turn leads to an increase in Ni(II) sorption on Ca-montmorillonite. Sorption edges are fitted excellently by surface complexation model (SCM) with the aid of surface species determined from EXAFS spectroscopy. PMID:21918750

  14. Effects of exogenous fatty acids and cholesterol on aminopeptidase activities in rat astroglia.

    PubMed

    Ramírez-Expósito, M J; García, M J; Mayas, M D; Ramírez, M; Martínez-Martos, J M

    2002-12-01

    Several studies have addressed the interaction between fatty acids and lipids with central nervous system peptides. Because aminopeptidases (AP) are involved in the regulation of neuropeptides, this work studies several AP expressed in cultured astroglia, after exogenous addition of oleic and linoleic fatty acids and cholesterol to the culture medium. Alanyl-AP, arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities were analysed in whole cells using the corresponding aminoacyl-beta-naphthylamides as substrates. Oleic acid inhibits alanyl-AP, cystyl-AP and leucyl-AP activities, whereas linoleic acid inhibits alanyl-AP, arginyl-AP and tyrosyl-AP activities. Neither oleic acid nor linoleic acid modifies pyroglutamyl-AP activity. In contrast, cholesterol increases arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities, although it does not modify alanyl-AP activity. The changes reported here suggest that oleic and linoleic fatty acids and cholesterol can modulate peptide activities via their degradation route involving aminopeptidases; each of them being differentially regulated.

  15. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity.

    PubMed

    Fujioka, Kazutoshi; Shibamoto, Takayuki

    2006-08-01

    The antioxidant activities of a commercial brewed coffee were investigated by measuring malonaldehyde (MA) formation from oxidized cod liver oil using a gas chromatographic method (MA-GC assay) and a thiobarbituric acid method (TBA assay). The highest antioxidant activity obtained by the MA-GC assay was from regular whole brewed coffee (97.8%) at a level of 20%, and the highest antioxidant activity obtained by the TBA assay was from decaffeinated whole brewed coffee (96.6%) at a level of 5%. Among 31 chemicals identified in a dichloromethane extract, guaiacol, ethylguaiacol, and vinylguaiacol exhibited antioxidant activities, which were comparable to that of alpha-tocopherol. Among nine chlorogenic acids (three caffeoylquinic acids, three feruloylquinic acids, and three dicaffeoylquinic acids) identified, 5-caffeoylquinic acid contained the greatest amount both in regular (883.5 microg/mL) and in decaffeinated (1032.6 microg/mL) coffees; it exhibited 24.5% activity by the MA-GC assay and 45.3% activity by the TBA assay at a level of 10 microg/mL. Caffeic and ferulic acids showed moderate antioxidant activities in both assays. PMID:16881716

  16. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon.

    PubMed

    Raynaud, Jean Pierre; Cousse, Henri; Martin, Pierre Marie

    2002-10-01

    In different cell systems, the lipido-sterolic extract of Serenoa repens (LSESr, Permixon inhibits both type 1 and type 2 5alpha-reductase activity (5alphaR1 and 5alphaR2). LSESr is mainly constituted of fatty acids (90+/-5%) essentially as free fatty acids (80%). Among these free fatty acids, the main components are oleic and lauric acids which represent 65% and linoleic and myristic acids 15%. To evaluate the inhibitory effect of the different components of LSESr on 5alphaR1 or 5alphaR2 activity, the corresponding type 1 and type 2 human genes have been cloned and expressed in the baculovirus-directed insect cell expression system Sf9. The cells were incubated at pH 5.5 (5alphaR2) and pH 7.4 (5alphaR1) with 1 or 3nM testosterone in presence or absence of various concentrations of LSESr or of its different components. Dihydrotestosterone formation was measured with an automatic system combining HPLC and an on-line radiodetector. The inhibition of 5alphaR1 and 5alphaR2 activity was only observed with free fatty acids: esterified fatty acids, alcohols as well as sterols assayed were inactive. A specificity of the fatty acids in 5alphaR1 or 5alphaR2 inhibition has been found. Long unsaturated chains (oleic and linolenic) were active (IC(50)=4+/-2 and 13+/-3 microg/ml, respectively) on 5alphaR1 but to a much lesser extent (IC(50)>100 and 35+/-21 microg/ml, respectively) on 5alphaR2. Palmitic and stearic acids were inactive on the two isoforms. Lauric acid was active on 5alphaR1 (IC(50)=17+/-3 microg/ml) and 5alphaR2 (IC(50)=19+/-9 microg/ml). The inhibitory activity of myristic acid was evaluated on 5alphaR2 only and found active on this isoform (IC(50)=4+/-2 microg/ml). The dual inhibitory activity of LSESr on 5alpha-reductase type 1 and type 2 can be attributed to its high content in free fatty acids.

  17. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  18. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  19. Kinetics and quantitative structure-activity relationship study on the degradation reaction from perfluorooctanoic acid to trifluoroacetic acid.

    PubMed

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-08-14

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure-activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure-activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure-activity model shows, the bond length and energy of C1-C2 (RC1-C2 and EC1-C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated.

  20. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L.) Nash and Its Antioxidant and Antimicrobial Activity

    PubMed Central

    Prajna, Jha; Richa, Jindal; Dipjyoti, Chakraborty

    2013-01-01

    Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents). Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level). The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains. PMID:26555971

  1. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  2. A convenient and efficient approach to polyfluorosalicylic acids and their tuberculostatic activity.

    PubMed

    Shchegol'kov, Evgeny V; Shchur, Irina V; Burgart, Yanina V; Saloutin, Victor I; Solodnikov, Sergey Yu; Krasnykh, Olga P; Kravchenko, Marionella A

    2016-05-15

    We have developed the practical method for polyfluorosalicylic acids synthesis via nucleophilic ortho-mono-substitution of fluorine atom with magnesium methoxide. We have managed to increase the yield of targeted polyfluorosalicylic acids from good to quantitative. We have studied the tuberculostatic activity of polyfluorosalicylic acids. It has been found that minimum inhibitory concentration (MIC) of compounds is from 0.7 to 6.5μg/mL depending on the structure. PMID:27072906

  3. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  4. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L. ).

    PubMed

    Nakatani, N; Kayano, S; Kikuzaki, H; Sumino, K; Katagiri, K; Mitani, T

    2000-11-01

    Neochlorogenic acid (3-CQA) and cryptochlorogenic acid (4-CQA), isolated from prune (Prunus domestica L.), were identified by NMR and MS analyses. In addition, the quantity of chlorogenic acid isomers in prune were measured by HPLC. These isomers, 3-CQA, 4-CQA, and chlorogenic acid (5-CQA), were contained in the ratio 78.7:18. 4:3.9, respectively. 4-CQA was identified and quantified in prune for the first time, and relatively high amounts of this isomer were characteristic. Antioxidative activities of the chlorogenic acid isomers, such as scavenging activity on superoxide anion radicals and inhibitory effect against oxidation of methyl linoleate, were also evaluated. Each isomer showed antioxidative activities which were almost the same.

  5. Medium chain fatty acid ethyl esters - activation of antimicrobial effects by Malassezia enzymes.

    PubMed

    Mayser, Peter

    2015-04-01

    Free medium and short chain fatty acids are known to have broad antimicrobial activity. However, their practical use in topical therapy is limited by their intensive smell and acidity. Surprisingly, a nearly identical antimicrobial effect was found with the ethyl ester derivatives of these fatty acids, but only against Malassezia (M.) yeast, not against Candida spp. Obviously, these esters are hydrolysed by M. enzymes, thus generating a selective activation of antimicrobial activity especially in areas well populated with these yeast ('targeting'). Octanoic acid ethyl ester (CAS 106-32-1) was found to be most suitable. In an agar dilution test, the minimal inhibitory concentrations against M. globosa, M. pachydermatis and M. sympodialis, respectively, ranged between ~5 and 10 mmol l(-1) after 10 days of incubation. The effect started immediately and was not delayed by other lipid sources applied simultaneously. Based on these data, fatty acid monoesters may represent a new therapeutic concept in M.-associated diseases. PMID:25676074

  6. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  7. p21 induction plays a dual role in anti-cancer activity of ursolic acid

    PubMed Central

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong

    2015-01-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  8. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  9. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids

    PubMed Central

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P.; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-01-01

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα−/− male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand. PMID:27669233

  10. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-01-01

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand. PMID:27669233

  11. Role of the AMP-activated protein kinase in regulating fatty acid metabolism during exercise.

    PubMed

    Steinberg, Gregory R

    2009-06-01

    During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.

  12. Evaluation of Perfluoroalkyl Acid Activity Using Primary Mouse and Human Hepatocytes.

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) in the environment. Using a transient transfection assay developed in COS-1 cells, our group h...

  13. EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...

  14. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  15. Relationship between the electrochemical activity of Raney nickel and the rate of hydrogenation of maleic acid

    SciTech Connect

    Pervii, E.N.; Sofronkov, A.N.; Fedyshina, N.M.

    1986-02-10

    The purpose of this investigation was to determine the conditions in which a direct correlation exists between the rate of hydrogenation of maleic acid and the electrochemical activity of catalysts of hydrogen ionization. The rate of maleic acid hydrogenation in presence of Raney nickel catalyst was studied by a combination of volumetric and potentiometric methods.

  16. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  17. Acute larvicidal activity against mosquitoes and oxygen consumption inhibitory activity of dihydroguaiaretic acid derivatives.

    PubMed

    Nishiwaki, Hisashi; Tabara, Yoshimi; Kishida, Taro; Nishi, Kosuke; Shuto, Yoshihiro; Sugahara, Takuya; Yamauchi, Satoshi

    2015-03-11

    (-)-Dihydroguaiaretic acid (DGA) and its derivatives having 3-hydroxyphenyl (3-OH-DGA) and variously substituted phenyl groups instead of 3-hydroxy-4-methoxyphenyl groups were synthesized to measure their larvicidal activity against the mosquito Culex pipiens Linnaeus, 1758 (Diptera: Culicidae). Compared with DGA and 3-OH-DGA (LC50 (M), 3.52 × 10(-5) and 4.57 × 10(-5), respectively), (8R,8'R)-lignan-3-ol (3) and its 3-Me (10), 2-OH (12), 3-OH (13), and 2-OMe (15) derivatives showed low potency (ca. 6-8 × 10(-5) M). The 4-Me derivative (11) showed the lowest potency (12.1 × 10(-5) M), and the 2-F derivative (4) showed the highest (2.01 × 10(-5) M). All of the synthesized compounds induced an acute toxic symptom against mosquito larvae, with potency varying with the type and position of the substituents. The 4-F derivative (6), which killed larvae almost completely within 45 min, suppressed the O2 consumption of the mitochondrial fraction, demonstrating that this compound inhibited mitochondrial O2 consumption contributing to a respiratory inhibitory activity.

  18. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery. PMID:23611786

  19. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery.

  20. Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana.

    PubMed

    Taura, F

    2009-06-01

    Tetrahydrocannabinol (THC), the psychoactive component of marijuana, is now regarded as a promising medicine because this cannabinoid has been shown to exert a variety of therapeutic activities. It has been demonstrated