Science.gov

Sample records for acid adapted cells

  1. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    PubMed Central

    Giannattasio, Sergio; Guaragnella, Nicoletta; Ždralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  2. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid.

    PubMed

    Giannattasio, Sergio; Guaragnella, Nicoletta; Zdralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  3. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  4. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.

    PubMed

    Okano, Kenji; Kimura, Sakurako; Narita, Junya; Fukuda, Hideki; Kondo, Akihiko

    2007-07-01

    To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting alpha-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l(-1) h(-1) lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l(-1) h(-1) lactate). Maximum volumetric lactate productivity was further increased (1.57 g l(-1) h(-1) lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of L: -lactate) was achieved. In this study, we propose a new approach to lactate production by alpha-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation. PMID:17384945

  5. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses.

    PubMed

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Visser, Nico; Rieder, Elizabeth A

    2010-10-01

    Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures. PMID:20637812

  6. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. PMID:27234881

  7. Survival of acid adapted and non-acid adapted Salmonella Typhimurium in pasteurized orange juice and yogurt under different storage temperatures.

    PubMed

    Álvarez-Ordóñez, Avelino; Valdés, Lorena; Bernardo, Ana; Prieto, Miguel; López, Mercedes

    2013-10-01

    The survival capacity of Salmonella enterica serovar Typhimurium acid adapted and non-acid adapted cells was monitored in pasteurized yogurt (pH 4.1) and orange juice (pH 3.6) during storage at different temperatures (4, 10, 25 and 37 ). Acid adapted and non-acid adapted cells were obtained by means of their growth for 36 h in Brain Heart Infusion broth acidified at pH 4.8 with citric acid and buffered (pH 7.0) Brain Heart Infusion broth, respectively. S. typhimurium showed a great ability to survive in both foodstuffs and, especially, in yogurt, where both acid adapted and non-acid adapted populations suffered only a reduction of about 1.3-1.9 log10 cycles after 43 days of storage in the range of temperatures 4-25 . At 37  a higher bacterial inactivation was observed (4.0-4.4 log10 cycles). In orange juice, a different behaviour was observed for acid-adapted and non-acid adapted cells. Whereas non-acid adapted cells survived better than acid adapted cells at 4 and 10 , acid adapted cells showed enhanced survival abilities at higher temperatures (25 and 37 ). Thus, the times required to achieve a 5 log10 cycles reduction for non-acid adapted and acid adapted cells were 10.2 and 6.0 (4 ), 6.3 and 4.2 (10 ), 0.6 and 1.0 (25 ) and 0.10 and 0.15 (37 ) days, respectively. Evidence found in this study demonstrates that refrigeration temperatures protect S. typhimurium from inactivation in acid foods and indicates that S. typhimurium acid tolerance response (ATR) is determined by storage temperature and food composition. PMID:23729421

  8. Salicylic acid triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in root meristem cells of Allium cepa L.

    PubMed

    Patra, Jita; Sahoo, Malaya K; Panda, Brahma B

    2005-03-01

    Salicylic acid (SA), 0.01 mM, a signalling phytohormone, was tested for induction of adaptive response against genotoxicity of methyl mercuric chloride (MMCl), 0.013 mM; ethylmethane sulfonate (EMS), 2.5 mM, or maleic hydrazide (MH), 5 mM, in root meristem cells of Allium cepa. Induction of adaptive response to EMS by hydrogen peroxide (H2O2), 1 mM, and yet another secondary signal molecule was tested for comparison. Assessed by the incidence of mitoses with spindle and/or chromosome aberration and micronucleus, the findings provided evidence that SA-conditioning triggered adaptive response against the genotoxic-challenges of MMCl and EMS, but failed to do so against MH. H2O2, which is known to induce adaptive response to MMCl and MH, failed to induce the same against EMS in the present study. The findings pointed to the possible role of signal transduction in the SA-induced adaptive response to genotoxic stress that perhaps ruled out an involvement of H2O2. PMID:15725616

  9. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells

    PubMed Central

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  10. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells.

    PubMed

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  11. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.

    PubMed

    Palomino, Maria Mercedes; Allievi, Mariana C; Gründling, Angelika; Sanchez-Rivas, Carmen; Ruzal, Sandra M

    2013-11-01

    The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition. PMID:24014660

  12. Influence of temperature on acid-stress adaptation in Listeria monocytogenes.

    PubMed

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2014-01-01

    Our findings show that temperature plays a significant role in the induction of acid-stress adaptation in Listeria monocytogenes, and two distinct patterns were observed: (1) Presence of sublethal acid at 37°C or 22°C significantly induced acid-stress adaptation; and (2) Presence of sublethal acid at 4°C did not induce any acid-stress adaptation. Both patterns were confirmed by two experimental models: (1) L. monocytogenes cells were first grown at 37°C and then exposed to sublethal acid at 37°C, 22°C, and 4°C prior to lethal acid challenge; (2) Alternatively, L. monocytogenes cells were first grown at 4°C for 20 days before pre-exposure to sublethal acid and then challenged with lethal acid. Regardless of whether L. monocytogenes cells were simultaneously exposed with both cold stress and sublethal acid stress, or subjected to cold growth first before exposure to sublethal acid, no acid-stress adaptation was induced at 4°C. We also found that acid-stress adaptation in L. monocytogenes did not occur in acidic whey at 4°C. Bead beating treatment prior to mild acid pre-exposure at 4°C partially induced acid adaptation in L. monocytogenes. Our findings suggest that cold temperature can prevent the risk of acid-stress adaptation in L. monocytogenes. PMID:24102079

  13. Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation.

    PubMed Central

    Gahan, C G; O'Driscoll, B; Hill, C

    1996-01-01

    We have previously shown that tolerance to severe acid stress (pH 3.5) can be induced in Listeria monocytogenes following a 1-h adaptation to mild acid (pH 5.5), a phenomenon termed the acid tolerance response (ATR) (B. O'Driscoll, C. G. M. Gahan, and C. Hill, Appl. Environ. Microbiol. 62:1693-1698, 1966). In an attempt to determine the industrial significance of the ATR, we have examined the survival of adapted and nonadapted cells in a variety of acidic foods. Acid adaptation enhanced the survival of L. monocytogenes in acidified dairy products, including cottage cheese, yogurt, and whole-fat cheddar cheese. Acid-adapted L. monocytogenes cultures also demonstrated increased survival during active milk fermentation by a lactic acid culture. Similarly, acid-adapted cells showed greatly improved survival in low-pH foods (orange juice and salad dressing) containing acids other than lactic acid. However, in foods with a marginally higher pH, such as mozzarella cheese, a commercial cottage cheese, or low-fat cheddar cheese, acid adaptation did not appear to enhance survival. We have previously isolated mutants of L. monocytogenes that are constitutively acid tolerant in the absence of an induction step (O'Driscoll et al., Appl. Environ. Microbiol. 62:1693-1698, 1996). In the present study, one such mutant, ATM56, demonstrated an increased ability to survive in low-pH foods and during milk fermentation when compared with the wild-type strain. Significant numbers of ATM56 could be recovered even after 70 days in both whole-fat and low-fat cheddar cheese. Collectively, the data suggest that ATR mechanisms, whether constitutive or induced, can greatly influence the survival of L. monocytogenes in low-pH food environments. PMID:8795199

  14. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  15. Adaptive acid tolerance response of Vibrio parahaemolyticus as affected by acid adaptation conditions, growth phase, and bacterial strains.

    PubMed

    Chiang, Ming-Lun; Chou, Cheng-Chun; Chen, Hsi-Chia; Tseng, Yu-Ting; Chen, Ming-Ju

    2012-08-01

    Vibrio parahaemolyticus strain 690 was isolated from gastroenteritis patients. Its thermal and ethanol stress responses have been reported in our previous studies. In this study, we further investigated the effects of various acid adaptation conditions including pH (5.0-6.0) and time (30-90 min) on the acid tolerance in different growth phases of V. parahaemolyticus 690. Additionally, the adaptive acid tolerance among different V. parahaemolyticus strains was compared. Results indicated that the acid tolerance of V. parahaemolyticus 690 was significantly increased after acid adaptation at pH 5.5 and 6.0 for 30-90 min. Among the various acid adaptation conditions examined, V. parahaemolyticus 690 acid-adapted at pH 5.5 for 90 min exhibited the highest acid tolerance. The acid adaptation also influenced the acid tolerance of V. parahaemolyticus 690 in different growth phases with late-exponential phase demonstrating the greatest acid tolerance response (ATR) than other phases. Additionally, the results also showed that the induction of adaptive ATR varied with different strains of V. parahaemolyticus. An increase in acid tolerance of V. parahaemolyticus was observed after prior acid adaptation in five strains (556, 690, BCRC 13023, BCRC 13025, and BCRC 12864), but not in strains 405 and BCRC 12863. PMID:22827515

  16. Cancer cell adaptation to chemotherapy

    PubMed Central

    Di Nicolantonio, Federica; Mercer, Stuart J; Knight, Louise A; Gabriel, Francis G; Whitehouse, Pauline A; Sharma, Sanjay; Fernando, Augusta; Glaysher, Sharon; Di Palma, Silvana; Johnson, Penny; Somers, Shaw S; Toh, Simon; Higgins, Bernie; Lamont, Alan; Gulliford, Tim; Hurren, Jeremy; Yiangou, Constantinos; Cree, Ian A

    2005-01-01

    Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Methods Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. Results In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. Conclusion This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of

  17. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-СІІ and PsHSP18.1-СІ, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  18. Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10.

    PubMed

    Kawamoto, Jun; Kurihara, Tatsuo; Yamamoto, Kentaro; Nagayasu, Makiko; Tani, Yasushi; Mihara, Hisaaki; Hosokawa, Masashi; Baba, Takeshi; Sato, Satoshi B; Esaki, Nobuyoshi

    2009-01-01

    Shewanella livingstonensis Ac10, a psychrotrophic gram-negative bacterium isolated from Antarctic seawater, produces eicosapentaenoic acid (EPA) as a component of phospholipids at low temperatures. EPA constitutes about 5% of the total fatty acids of cells grown at 4 degrees C. We found that five genes, termed orf2, orf5, orf6, orf7, and orf8, are specifically required for the synthesis of EPA by targeted disruption of the respective genes. The mutants lacking EPA showed significant growth retardation at 4 degrees C but not at 18 degrees C. Supplementation of a synthetic phosphatidylethanolamine that contained EPA at the sn-2 position complemented the growth defect. The EPA-less mutant became filamentous, and multiple nucleoids were observed in a single cell at 4 degrees C, indicating that the mutant has a defect in cell division. Electron microscopy of the cells by high-pressure freezing and freeze-substitution revealed abnormal intracellular membranes in the EPA-less mutant at 4 degrees C. We also found that the amounts of several membrane proteins were affected by the depletion of EPA. While polyunsaturated fatty acids are often considered to increase the fluidity of the hydrophobic membrane core, diffusion of a small hydrophobic molecule, pyrene, in the cell membranes and large unilamellar vesicles prepared from the lipid extracts was very similar between the EPA-less mutant and the parental strain. These results suggest that EPA in S. livingstonensis Ac10 is not required for bulk bilayer fluidity but plays a beneficial role in membrane organization and cell division at low temperatures, possibly through specific interaction between EPA and proteins involved in these cellular processes. PMID:19011019

  19. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation.

    PubMed

    Wu, Chongde; He, Guiqiang; Zhang, Juan

    2014-10-01

    The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress. PMID:25062817

  20. β-Cell adaptation in pregnancy.

    PubMed

    Baeyens, L; Hindi, S; Sorenson, R L; German, M S

    2016-09-01

    Pregnancy in placental mammals places unique demands on the insulin-producing β-cells in the pancreatic islets of Langerhans. The pancreas anticipates the increase in insulin resistance that occurs late in pregnancy by increasing β-cell numbers and function earlier in pregnancy. In rodents, this β-cell expansion depends on secreted placental lactogens that signal through the prolactin receptor. Then at the end of pregnancy, the β-cell population contracts back to its pre-pregnancy size. In the current review, we focus on how glucose metabolism changes during pregnancy, how β-cells anticipate these changes through their response to lactogens and what molecular mechanisms guide the adaptive compensation. In addition, we summarize current knowledge of β-cell adaptation during human pregnancy and what happens when adaptation fails and gestational diabetes ensues. A better understanding of human β-cell adaptation to pregnancy would benefit efforts to predict, prevent and treat gestational diabetes. PMID:27615133

  1. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with “Auxin-Like” Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways

    PubMed Central

    Bhat, Supriya V.; Booth, Sean C.; McGrath, Seamus G. K.; Dahms, Tanya E. S.

    2015-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. PMID:25919284

  2. Role of fatty acids in Bacillus environmental adaptation

    PubMed Central

    Diomandé, Sara E.; Nguyen-The, Christophe; Guinebretière, Marie-Hélène; Broussolle, Véronique; Brillard, Julien

    2015-01-01

    The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness. PMID:26300876

  3. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  4. Regulated cell death and adaptive stress responses.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  5. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  6. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  7. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    NASA Astrophysics Data System (ADS)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H. James, II

    2015-03-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or ``chemistry space.'' Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  8. Dynamical Adaptation in Terrorist Cells/Networks

    NASA Astrophysics Data System (ADS)

    Hussain, D. M. Akbar; Ahmed, Zaki

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure.

  9. Heat treatment adaptations in Clostridium perfringens vegetative cells.

    PubMed

    Novak, J S; Tunick, M H; Juneja, V K

    2001-10-01

    Vegetative cells of Clostridium perfringens enterotoxigenic strains NCTC 8679, NCTC 8238. and H6 were grown at 37 degrees C followed by a 60-min exposure to 28 degrees C or 46 degrees C. D10-values, as a measure of thermal resistance at 60 degrees C, were significantly lower for 28 degrees C exposures as compared with cultures given 37 and 46 degrees C exposures. Following refrigeration at 4 degrees C for 24 h, D10-values for the 37 and 46 degrees C samples could not be differentiated from 28 degrees C samples. Western immunoblot analyses of lysates from heat-adapted cells also detected the increased expression of proteins reacting with antiserum directed against the molecular chaperonins from Escherichia coli; GroEL, DnaJ, and the small acid soluble protein from Bacillus subtilis, SspC. Differential scanning calorimetry (DSC) identified thermal transitions corresponding to ribosomal protein denaturations at 72.1 +/- 0.5 degrees C. Any cellular heat adaptations in the DSC profiles were lost following refrigeration for several days to simulate minimally processed food storage conditions. Further analyses of high-speed pellets from crude cell extract fractions using two-dimensional gel electrophoresis detected the differential gene expression of at least four major proteins in heat-adapted vegetative cells of C. perfringens. N-terminal amino acid analyses identified two of the proteins as glyceraldehyde 3-phosphate dehydrogenase and rubrerythrin. Both appear to have roles in this anaerobe under stressful conditions. PMID:11601701

  10. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    PubMed

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. PMID:22366811

  11. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments.

    PubMed

    Wojtkowiak, Jonathan W; Rothberg, Jennifer M; Kumar, Virendra; Schramm, Karla J; Haller, Edward; Proemsey, Joshua B; Lloyd, Mark C; Sloane, Bonnie F; Gillies, Robert J

    2012-08-15

    Tumor cell survival relies upon adaptation to the acidic conditions of the tumor microenvironment. To investigate potential acidosis survival mechanisms, we examined the effect of low pH (6.7) on human breast carcinoma cells. Acute low pH exposure reduced proliferation rate, induced a G1 cell cycle arrest, and increased cytoplasmic vacuolization. Gene expression analysis revealed elevated levels of ATG5 and BNIP3 in acid-conditioned cells, suggesting cells exposed to low pH may utilize autophagy as a survival mechanism. In support of this hypothesis, we found that acute low pH stimulated autophagy as defined by an increase in LC3-positive punctate vesicles, double-membrane vacuoles, and decreased phosphorylation of AKT and ribosomal protein S6. Notably, cells exposed to low pH for approximately 3 months restored their proliferative capacity while maintaining the cytoplasmic vacuolated phenotype. Although autophagy is typically transient, elevated autophagy markers were maintained chronically in low pH conditioned cells as visualized by increased protein expression of LC3-II and double-membrane vacuoles. Furthermore, these cells exhibited elevated sensitivity to PI3K-class III inhibition by 3-methyladenine. In mouse tumors, LC3 expression was reduced by systemic treatment with sodium bicarbonate, which raises intratumoral pH. Taken together, these results argue that acidic conditions in the tumor microenvironment promote autophagy, and that chronic autophagy occurs as a survival adaptation in this setting. PMID:22719070

  12. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  13. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids.

    PubMed

    de Carvalho, Carla C C R; Fischer, Martin A; Kirsten, Sandra; Würz, Birgit; Wick, Lukas Y; Heipieper, Hermann J

    2016-12-01

    Mycolata form a group of Gram-positive bacteria with unique cell envelope structures that are known for their high tolerance against antibiotics and both aromatic and aliphatic hydrocarbons. An important part of the unique surface structure of the mycolata is the presence of long chain α-alkyl-β-hydroxy fatty acids, the mycolic acids. In order to investigate the adaptive changes in the mycolic acid composition, we investigated the composition of mycolic acids during the response both to osmotic stress caused by NaCl and to 4-chlorophenol in Rhodococcus opacus PWD4. This bacterium was chosen as it is known to adapt to different kinds of stresses. In addition, it is a potential biocatalyst in bioremediation as well as for biotechnological applications. In the present study, cells of R. opacus PWD4, grown in liquid cultures, responded to toxic concentrations of NaCl by increasing the ratio between mycolic acids and membrane phospholipid fatty acids (MA/PLFA-ratio). Cells reacted to both NaCl and 4-chlorophenol by decreasing both the average chain length and the unsaturation index of their mycolic acids. These changes in mycolic acid composition correlated with increases in cell surface hydrophobicity and saturation of membrane fatty acids, demonstrating the relation between mycolic acid and phospholipid synthesis and their contribution to cell surface properties of R. opacus PWD4. PMID:27620730

  14. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    PubMed

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. PMID:26284451

  15. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  16. A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane.

    PubMed

    Chen, Z; Sheves, M; Lewis, A; Bouevitch, O

    1994-09-01

    The second order nonlinear polarizability and dipole moment changes upon light excitation of light-adapted bacteriorhodopsin (BR), dark-adapted BR, blue membrane, and acid purple membrane have been measured by second harmonic generation. Our results indicate that the dipole moment changes of the retinal chromophore, delta mu, are very sensitive to both the chromophore structure and protein/chromophore interactions. Delta mu of light-adapted BR is larger than that of dark-adapted BR. The acid-induced formation of the blue membrane results in an increase in the delta mu value, and formation of acid purple membrane, resulting from further reduction of pH to 0, returns the delta mu to that of light-adapted BR. The implications of these findings are discussed. PMID:7811928

  17. A comparison of the second harmonic generation from light-adapted, dark-adapted, blue, and acid purple membrane.

    PubMed Central

    Chen, Z; Sheves, M; Lewis, A; Bouevitch, O

    1994-01-01

    The second order nonlinear polarizability and dipole moment changes upon light excitation of light-adapted bacteriorhodopsin (BR), dark-adapted BR, blue membrane, and acid purple membrane have been measured by second harmonic generation. Our results indicate that the dipole moment changes of the retinal chromophore, delta mu, are very sensitive to both the chromophore structure and protein/chromophore interactions. Delta mu of light-adapted BR is larger than that of dark-adapted BR. The acid-induced formation of the blue membrane results in an increase in the delta mu value, and formation of acid purple membrane, resulting from further reduction of pH to 0, returns the delta mu to that of light-adapted BR. The implications of these findings are discussed. PMID:7811928

  18. Hypoxia and metabolic adaptation of cancer cells

    PubMed Central

    Eales, K L; Hollinshead, K E R; Tennant, D A

    2016-01-01

    Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype. PMID:26807645

  19. Low Temperature Adaptation Is Not the Opposite Process of High Temperature Adaptation in Terms of Changes in Amino Acid Composition

    PubMed Central

    Yang, Ling-Ling; Tang, Shu-Kun; Huang, Ying; Zhi, Xiao-Yang

    2015-01-01

    Previous studies focused on psychrophilic adaptation generally have demonstrated that multiple mechanisms work together to increase protein flexibility and activity, as well as to decrease the thermostability of proteins. However, the relationship between high and low temperature adaptations remains unclear. To investigate this issue, we collected the available predicted whole proteome sequences of species with different optimal growth temperatures, and analyzed amino acid variations and substitutional asymmetry in pairs of homologous proteins from related species. We found that changes in amino acid composition associated with low temperature adaptation did not exhibit a coherent opposite trend when compared with changes in amino acid composition associated with high temperature adaptation. This result indicates that during their evolutionary histories the proteome-scale evolutionary patterns associated with prokaryotes exposed to low temperature environments were distinct from the proteome-scale evolutionary patterns associated with prokaryotes exposed to high temperature environments in terms of changes in amino acid composition of the proteins. PMID:26614525

  20. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  1. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter.

    PubMed

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-04-23

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  2. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans.

    PubMed

    Baker, J L; Abranches, J; Faustoferri, R C; Hubbard, C J; Lemos, J A; Courtney, M A; Quivey, R

    2015-12-01

    The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans. PMID:26042838

  3. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  4. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    PubMed

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation. PMID:26277753

  5. Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation

    PubMed Central

    Gesbert, Gael; Ramond, Elodie; Tros, Fabiola; Dairou, Julien; Frapy, Eric; Barel, Monique

    2014-01-01

    Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens. PMID:25332124

  6. Adaptation and dynamics of cat retinal ganglion cells

    PubMed Central

    Enroth-Cugell, Christina; Shapley, R. M.

    1973-01-01

    1. The impulse/quantum (I/Q) ratio was measured as a function of background illumination for rod-dominated, pure central, linear square-wave responses of retinal ganglion cells in the cat. 2. The I/Q ratio was constant at low backgrounds (dark adapted state) and inversely proportional to the 0·9 power of the background at high backgrounds (the light adapted state). There was an abrupt transition from the dark-adapted state to the light-adapted state. 3. It was possible to define the adaptation level at a particular background as the ratio (I/Q ratio at that background)/(dark adapted I/Q ratio). 4. The time course of the square-wave response was correlated with the adaptation level. The response was sustained in the dark-adapted state, partially transient at the transition level, and progressively more transient the lower the impulse/quantum ratio of the ganglion cell became. This was true both for on-centre and off-centre cells. 5. The frequency response of the central response mechanism at different adaptation levels was measured. It was a low-pass characteristic in the dark-adapted state and became progressively more of a bandpass characteristic as the cell became more light-adapted. 6. The rapidity of onset of adaptation was measured with a time-varying adapting light. The impulse/quantum ratio is reset within 100 msec of the onset of the conditioning light, and is kept at the new value throughout the time the conditioning light is on. 7. These results can be explained by a nonlinear feedback model. In the model, it is postulated that the exponential function of the horizontal cell potential controls transmission from rods to bipolars. This model has an abrupt transition from dark- to light-adapted states, and its response dynamics are correlated with adaptation level. PMID:4747229

  7. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects. PMID:25983113

  8. Metabolic Changes Associated with Adaptation of Plant Cells to Water Stress 1

    PubMed Central

    Rhodes, David; Handa, Sangita; Bressan, Ray A.

    1986-01-01

    Suspension cultured cells of tomato (Lycopersicon esculentum Mill. cv VFNT Cherry) adapted to water stress induced with polyethylene glycol 6000 (PEG), exhibit marked alterations in free amino acid pools (Handa et al. 1983 Plant Physiol 73: 834-843). Using computer simulation models the in vivo rates of synthesis and utilization and compartmentation of free amino acid pools were determined from 15N labeling kinetics after substituting [15N]ammonium and [15N]nitrate for the 14N salts in the culture medium of cell lines adapted to 0% and 25% PEG. The 300-fold elevated proline pool in 25% PEG adapted cells is primarily the consequence of a 10-fold elevated rate of proline synthesis via the glutamate pathway. Ornithine was insufficiently labeled to serve as a major precursor for proline. Our calculations suggest that the rate of proline synthesis only slightly exceeds the rate required to sustain both protein synthesis and proline pool maintenance with growth. Mechanisms must operate to restrict proline oxidation in adapted cells. The kinetics of labeling of proline in 25% PEG adapted cells are consistent with a single, greatly enlarged metabolic pool of proline. The depletion of glutamine in adapted cells appears to be a consequence of a selective depletion of a large, metabolically inactive storage pool present in unadapted cultures. The labeling kinetics of the amino nitrogen groups of glutamine and glutamate are consistent with the operation of the glutamine synthetase-glutamate synthase cycle in both cell lines. However, we could not conclusively discriminate between the exclusive operation of the glutamine synthetase-glutamate synthase cycle and a 10 to 20% contribution of the glutamate dehydrogenase pathway of ammonia assimilation. Adaptation to water stress leads to increased nitrogen flux from glutamate into alanine and γ-aminobutyrate, suggesting increased pyruvate availability and increased rates of glutamate decarboxylation. Both alanine and

  9. Adaptation of core mechanisms to generate cell polarity

    PubMed Central

    Nelson, W. James

    2012-01-01

    Cell polarity is defined as asymmetry in cell shape, protein distributions and cell functions. It is characteristic of single-cell organisms, including yeast and bacteria, and cells in tissues of multi-cell organisms such as epithelia in worms, flies and mammals. This diversity raises several questions: do different cell types use different mechanisms to generate polarity, how is polarity signalled, how do cells react to that signal, and how is structural polarity translated into specialized functions? Analysis of evolutionarily diverse cell types reveals that cell-surface landmarks adapt core pathways for cytoskeleton assembly and protein transport to generate cell polarity. PMID:12700771

  10. Influence of temperature on acid-stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several factors play critical roles in controlling the induction of acid-stress adaptation in L. monocytogenes. Our findings show that temperature plays a significant role in the induction of acid-stress adaptation in Listeria monocytogenes and two distinct patterns were observed: (I) Presence of su...

  11. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  12. Effect of Acid Adaptation on the Fate of Listeria monocytogenes in THP-1 Human Macrophages Activated by Gamma Interferon

    PubMed Central

    Conte, Maria Pia; Petrone, Gloria; Di Biase, Assunta Maria; Longhi, Catia; Penta, Michela; Tinari, Antonella; Superti, Fabiana; Fabozzi, Giulia; Visca, Paolo; Seganti, Lucilla

    2002-01-01

    In Listeria monocytogenes the acid tolerance response (ATR) takes place through a programmed molecular response which ensures cell survival under unfavorable conditions. Much evidence links ATR with virulence, but the molecular determinants involved in the reactivity to low pHs and the behavior of acid-exposed bacteria within host cells are still poorly understood. We have investigated the effect of acid adaptation on the fate of L. monocytogenes in human macrophages. Expression of genes encoding determinants for cell invasion and intracellular survival was tested for acid-exposed bacteria, and invasive behavior in the human myelomonocytic cell line THP-1 activated with gamma interferon was assessed. Functional approaches demonstrated that preexposure to an acidic pH enhances the survival of L. monocytogenes in activated human macrophages and that this effect is associated with an altered pattern of expression of genes involved in acid resistance and cell invasion. Significantly decreased transcription of the plcA gene, encoding a phospholipase C involved in vacuolar escape and cell-to-cell spread, was observed in acid-adapted bacteria. This effect was due to a reduction in the quantity of the bicistronic plcA-prfA transcript, concomitant with an increase in the level(s) of the monocistronic prfA mRNA(s). The transcriptional shift from distal to proximal prfA promoters resulted in equal levels of the prfA transcript (and, as a consequence, of the inlA, hly, and actA transcripts) under neutral and acidic conditions. In contrast, the sodC and gad genes, encoding a cytoplasmic superoxide dismutase and the glutamate-based acid resistance system, respectively, were positively regulated at a low pH. Morphological approaches confirmed the increased intracellular survival and growth of acid-adapted L. monocytogenes cells both in vacuoles and in the cytoplasm of interferon gamma-activated THP-1 macrophages. Our data indicate that preexposure to a low pH has a positive

  13. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  14. Marked intra-strain variation in response of Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid or salt adaptation on adherence to abiotic surfaces.

    PubMed

    Adrião, A; Vieira, M; Fernandes, I; Barbosa, M; Sol, M; Tenreiro, R P; Chambel, L; Barata, B; Zilhao, I; Shama, G; Perni, S; Jordan, S J; Andrew, P W; Faleiro, M L

    2008-03-31

    During food processing, and particularly in cheese manufacturing processes, Listeria monocytogenes may be exposed routinely to environments of low pH or high salt concentration. It has been suggested that these environmental conditions may contribute to bacterial adherence to abiotic surfaces and increased resistance to disinfection. In this study strains isolated from the environment of artisanal cheese-making dairies were used to investigate the behaviour of L. monocytogenes in response to acid and salt stress and clear differences between strains was observed. In planktonic culture, strains varied in resistance to low pH or high NaCl concentration and in the occurrence of an adaptive response to moderate acid or NaCl. There was dislocation in responses to salt and acid. Strains resistant, or adaptive, to acid were not resistant or adaptive to NaCl. The reverse also was observed. Exposure to moderate acid did not promote adherence to polystyrene but survival, at low pH or high NaCl concentration, of cells adherent to stainless steel was increased, even for strains that had no adaptive response planktonically, but the detail of these observations varied between strains. In contrast to acid adaptation, with some strains salt adaptation enhanced adherence of L. monocytogenes to polystyrene but this was not true for all strains. For some strains salt- or acid adaptation may enhance the survival of sessile cells exposed to hypochlorite disinfection. PMID:18258322

  15. Effect of acid adaptation on the environmental stress tolerance of three strains of Vibrio parahaemolyticus.

    PubMed

    Chiang, Ming-Lun; Chen, Hsi-Chia; Wu, Chieh; Chen, Ming-Ju

    2014-04-01

    Three strains of Vibrio parahaemolyticus (690, BCRC 13023, and BCRC 13025), involved in foodborne outbreaks in Taiwan, were subjected to acid adaptation at pH 5.5 for 90 min. The effects of acid adaptation on the tolerance of V. parahaemolyticus to various environmental stresses, including heat (47°C), cold (4°C and -20°C), ethanol (8%), high salt (20% NaCl), and hydrogen peroxide (20 ppm) were examined. Results showed that acid adaptation increased the thermal tolerance of the three test strains of V. parahaemolyticus, while it did not affect their cold tolerance. Acid adaptation also increased the ethanol tolerance in V. parahaemolyticus 690 and BCRC 13025, but not in BCRC 13023. Differences in the tolerance to high salts were noted among the three strains after prior acid adaptation. However, these acid-adapted V. parahaemolyticus strains were more susceptible to hydrogen peroxide than their nonadapted controls. These findings demonstrated that acid adaption responses of V. parahaemolyticus varied among strains and types of stress challenge. PMID:24410096

  16. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    PubMed

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction. PMID:25930238

  17. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    PubMed

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA. PMID:26327680

  18. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  19. Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium.

    PubMed

    Gabriel, Alonzo A

    2012-11-01

    The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. PMID:23141645

  20. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  1. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  2. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990649

  3. Physiological Adaptation to the Loss of Amino Acid Transport Ability

    PubMed Central

    DeBusk, Ruth M.; Ogilvie-Villa, Susan

    1982-01-01

    A strain of Neurospora crassa devoid of constitutive amino acid transport ability can utilize arginine as the sole nitrogen source. Nitrogen starvation, presence of arginine, and mutational inactivation of the general permease are key factors in signaling production of an extracellular enzyme which removes the alpha-amino group from the amino acid. PMID:6214547

  4. Experimental Design to Evaluate Directed Adaptive Mutation in Mammalian Cells

    PubMed Central

    Chiaro, Christopher R; May, Tobias

    2014-01-01

    Background We describe the experimental design for a methodological approach to determine whether directed adaptive mutation occurs in mammalian cells. Identification of directed adaptive mutation would have profound practical significance for a wide variety of biomedical problems, including disease development and resistance to treatment. In adaptive mutation, the genetic or epigenetic change is not random; instead, the presence and type of selection influences the frequency and character of the mutation event. Adaptive mutation can contribute to the evolution of microbial pathogenesis, cancer, and drug resistance, and may become a focus of novel therapeutic interventions. Objective Our experimental approach was designed to distinguish between 3 types of mutation: (1) random mutations that are independent of selective pressure, (2) undirected adaptive mutations that arise when selective pressure induces a general increase in the mutation rate, and (3) directed adaptive mutations that arise when selective pressure induces targeted mutations that specifically influence the adaptive response. The purpose of this report is to introduce an experimental design and describe limited pilot experiment data (not to describe a complete set of experiments); hence, it is an early report. Methods An experimental design based on immortalization of mouse embryonic fibroblast cells is presented that links clonal cell growth to reversal of an inactivating polyadenylation site mutation. Thus, cells exhibit growth only in the presence of both the countermutation and an inducing agent (doxycycline). The type and frequency of mutation in the presence or absence of doxycycline will be evaluated. Additional experimental approaches would determine whether the cells exhibit a generalized increase in mutation rate and/or whether the cells show altered expression of error-prone DNA polymerases or of mismatch repair proteins. Results We performed the initial stages of characterizing our system

  5. Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain

    PubMed Central

    Lu, Zhongyan; Yokoyama, Masaru; Chen, Ning; Oka, Tomoichiro; Jung, Kwonil; Chang, Kyeong-Ok; Annamalai, Thavamathi

    2015-01-01

    ABSTRACT The porcine sapovirus (SaV) (PoSaV) Cowden strain is one of only a few culturable enteric caliciviruses. Compared to the wild-type (WT) PoSaV Cowden strain, tissue culture-adapted (TC) PoSaV has two conserved amino acid substitutions in the RNA-dependent RNA polymerase (RdRp) and six in the capsid protein (VP1). By using the reverse-genetics system, we identified that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328), but not the substitutions in the RdRp region, were critical for the cell culture adaptation of the PoSaV Cowden strain. The other two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro. Three-dimensional (3D) structural analysis of VP1 showed that residue 178 was located near the dimer-dimer interface, which may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 were located at protruding subdomain 2 (P2) of VP1, which may influence virus binding to cellular receptors; and residue 295 was located at the interface of two monomeric VP1 proteins, which may influence VP1 dimerization. Although reversion of the mutation at residue 291 or 295 from that of the TC strain to that of the WT reduced virus replication in vitro, it enhanced virus replication in vivo, and the revertants induced higher-level serum and mucosal antibody responses than those induced by the TC PoSaV Cowden strain. Our findings reveal the molecular basis for PoSaV adaptation to cell culture. These findings may provide new, critical information for the cell culture adaptation of other PoSaV strains and human SaVs or noroviruses. IMPORTANCE The tissue culture-adapted porcine sapovirus Cowden strain is one of only a few culturable enteric caliciviruses. We discovered that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328) were critical for its adaptation to LLC-PK cells. Two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro but enhanced virus replication and induced

  6. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition

    PubMed Central

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J.

    2010-01-01

    Summary The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso‐branched fatty acids which are characteristic for several sulfate‐reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight‐chain saturated (C14:0, C16:0, C18:0) to anteiso‐branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  7. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition.

    PubMed

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J

    2010-03-01

    The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  8. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  9. Response and adaptation of bone cells to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Li, Runzhi; Su, Peihong; Arfat, Yasir; Zhang, Ge; Shang, Peng; Qian, Airong

    2014-11-01

    Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut's health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.

  10. Retinoic Acid as a Modulator of T Cell Immunity.

    PubMed

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  11. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  12. Multifunctional Nucleic Acids for Tumor Cell Treatment

    PubMed Central

    Pofahl, Monika; Wengel, Jesper

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting and treatment. PMID:24494617

  13. Plasma cell adaptation to enhance particle acceleration

    SciTech Connect

    Ragheb, M. S.

    2008-06-15

    A plasma study is performed in order to construct a cell for plasma acceleration purpose. As well, a multicell design is introduced for the injection of beam driver application. The suggested idea is experimentally demonstrated for two plasma cell configuration. The preformed plasma is obtained by a symmetrically driven capacitive audio frequency discharge. It is featured by its moderate pressure of 0.1-0.2 Torr, low consumption power of 130 W maximum, low discharge voltage and frequency up to 950 V and 20 kHz, respectively, and high plasma density from 10{sup 11} to 10{sup 15} cm{sup -3}. The electron temperature obtained by Langmuir double probe varies from 1 up to 16 eV. It is observed that the increases of the discharge voltage and frequency enlarge the plasma parameters to their maximum values. The plasma cell filled with different gases demonstrates that the Ar and He gases manifest the highest ionization efficiency exceeding 100% at 950 V and 20 kHz. The formed plasma is cold; its density is uniform and stable along the positive column for long competitive lifetime. Showing that it follows the conditions to enhance particle acceleration and in conjunction with its periphery devices form a plasma cell that could be extended to serve this purpose. Demonstrating that an injected electron beam into the extended preformed plasma could follow, to long distance, a continuous trajectory of uniform density. Such plasma generated by H{sub 2} or Ar gases is suggested to be used, respectively, for low-density or higher density beam driver.

  14. Minimal Peroxide Exposure of Neuronal Cells Induces Multifaceted Adaptive Responses

    PubMed Central

    Chadwick, Wayne; Zhou, Yu; Park, Sung-Soo; Wang, Liyun; Mitchell, Nicholas; Stone, Matthew D.; Becker, Kevin G.; Martin, Bronwen; Maudsley, Stuart

    2010-01-01

    Oxidative exposure of cells occurs naturally and may be associated with cellular damage and dysfunction. Protracted low level oxidative exposure can induce accumulated cell disruption, affecting multiple cellular functions. Accumulated oxidative exposure has also been proposed as one of the potential hallmarks of the physiological/pathophysiological aging process. We investigated the multifactorial effects of long-term minimal peroxide exposure upon SH-SY5Y neural cells to understand how they respond to the continued presence of oxidative stressors. We show that minimal protracted oxidative stresses induce complex molecular and physiological alterations in cell functionality. Upon chronic exposure to minimal doses of hydrogen peroxide, SH-SY5Y cells displayed a multifactorial response to the stressor. To fully appreciate the peroxide-mediated cellular effects, we assessed these adaptive effects at the genomic, proteomic and cellular signal processing level. Combined analyses of these multiple levels of investigation revealed a complex cellular adaptive response to the protracted peroxide exposure. This adaptive response involved changes in cytoskeletal structure, energy metabolic shifts towards glycolysis and selective alterations in transmembrane receptor activity. Our analyses of the global responses to chronic stressor exposure, at multiple biological levels, revealed a viable neural phenotype in-part reminiscent of aged or damaged neural tissue. Our paradigm indicates how cellular physiology can subtly change in different contexts and potentially aid the appreciation of stress response adaptations. PMID:21179406

  15. Adaptation to steady light by intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2013-04-30

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC's receptor current showed a flash sensitivity that adapted in background light according to the Weber-Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca(2+) influx, in that the flash response elicited in the absence of extracellular Ca(2+) showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca(2+)-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors. PMID:23589882

  16. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering. PMID:25935346

  17. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  18. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  19. Retinal Ganglion Cell Adaptation to Small Luminance Fluctuations

    PubMed Central

    Freeman, Daniel K.; Graña, Gilberto

    2010-01-01

    To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (<125 ms), at least for on cells. The retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells. PMID:20538771

  20. Adaptation to alkalosis induces cell cycle delay and apoptosis in cortical collecting duct cells: role of Aquaporin-2.

    PubMed

    Rivarola, Valeria; Flamenco, Pilar; Melamud, Luciana; Galizia, Luciano; Ford, Paula; Capurro, Claudia

    2010-08-01

    Collecting ducts (CD) not only constitute the final site for regulating urine concentration by increasing apical membrane Aquaporin-2 (AQP2) expression, but are also essential for the control of acid-base status. The aim of this work was to examine, in renal cells, the effects of chronic alkalosis on cell growth/death as well as to define whether AQP2 expression plays any role during this adaptation. Two CD cell lines were used: WT- (not expressing AQPs) and AQP2-RCCD(1) (expressing apical AQP2). Our results showed that AQP2 expression per se accelerates cell proliferation by an increase in cell cycle progression. Chronic alkalosis induced, in both cells lines, a time-dependent reduction in cell growth. Even more, cell cycle movement, assessed by 5-bromodeoxyuridine pulse-chase and propidium iodide analyses, revealed a G2/M phase cell accumulation associated with longer S- and G2/M-transit times. This G2/M arrest is paralleled with changes consistent with apoptosis. All these effects appeared 24 h before and were always more pronounced in cells expressing AQP2. Moreover, in AQP2-expressing cells, part of the observed alkalosis cell growth decrease is explained by AQP2 protein down-regulation. We conclude that in CD cells alkalosis causes a reduction in cell growth by cell cycle delay that triggers apoptosis as an adaptive reaction to this environment stress. Since cell volume changes are prerequisite for the initiation of cell proliferation or apoptosis, we propose that AQP2 expression facilitates cell swelling or shrinkage leading to the activation of channels necessary to the control of these processes. PMID:20432437

  1. Nucleic Acid Aptamers for Living Cell Analysis

    NASA Astrophysics Data System (ADS)

    Xiong, Xiangling; Lv, Yifan; Chen, Tao; Zhang, Xiaobing; Wang, Kemin; Tan, Weihong

    2014-06-01

    Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.

  2. Adapting selected nucleic acid ligands (aptamers) to biosensors.

    PubMed

    Potyrailo, R A; Conrad, R C; Ellington, A D; Hieftje, G M

    1998-08-15

    A flexible biosensor has been developed that utilizes immobilized nucleic acid aptamers to specifically detect free nonlabeled non-nucleic acid targets such as proteins. In a model system, an anti-thrombin DNA aptamer was fluorescently labeled and covalently attached to a glass support. Thrombin in solution was selectively detected by following changes in the evanescent-wave-induced fluorescence anisotropy of the immobilized aptamer. The new biosensor can detect as little as 0.7 amol of thrombin in a 140-pL interrogated volume, has a dynamic range of 3 orders of magnitude, has an inter-sensing-element measurement precision of better than 4% RSD over the range 0-200 nM, and requires less than 10 min for sample analysis. The aptamer-sensor format is generalizable and should allow sensitive, selective, and fast determination of a wide range of analytes. PMID:9726167

  3. Formic acid fuel cells and catalysts

    SciTech Connect

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  4. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-02-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  5. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  6. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-01

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity. PMID:24812352

  7. Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells

    PubMed Central

    Poole, Daniel S.; Yú, Shuǐqìng; Caì, Yíngyún; Dinis, Jorge M.; Müller, Marcel A.; Jordan, Ingo; Friedrich, Thomas C.; Kuhn, Jens H.

    2014-01-01

    ABSTRACT The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and

  8. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions. PMID:21842364

  9. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    PubMed

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals. PMID:22586936

  10. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  11. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis.

    PubMed

    Sun, Xiao-Man; Ren, Lu-Jing; Ji, Xiao-Jun; Chen, Sheng-Lan; Guo, Dong-Sheng; Huang, He

    2016-07-01

    Adaptive laboratory evolution (ALE) is an effective method in changing the strain characteristics. Here, ALE with high oxygen as a selection pressure was applied to improve the production capacity of Schizochytrium sp. Results showed that cell dry weight (CDW) of endpoint strain was 32.4% higher than that of starting strain. But slight lipid accumulation impairment was observed. These major performance changes were accompanied with enhanced isocitrate dehydrogenase enzyme activity and reduced ATP:citrate lyase enzyme activity. And a serious decrease of 62.6% in SDHA 140rpm→170rpm was observed in the endpoint strain. To further study the docosahexaenoic acid (DHA) production ability of evolved strain, fed-batch strategy was applied and 84.34g/L of cell dry weight and 26.40g/L of DHA yield were observed. In addition, endpoint strain produced greatly less squalene than starting strain. This work demonstrated that ALE may be a promising tool in modifying microalga strains. PMID:27030957

  12. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  13. Activation and adaptation of transducer currents in turtle hair cells.

    PubMed

    Crawford, A C; Evans, M G; Fettiplace, R

    1989-12-01

    1. Transducer currents were recorded in turtle cochlear hair cells during mechanical stimulation of the hair bundle. The currents were measured under whole-cell voltage clamp in isolated cells that were firmly stuck to the floor of the recording chamber. 2. Stimuli were calibrated by projecting the image of the hair bundle onto a rapidly scanned 128 photodiode array. This technique showed that, while the cell body was immobilized, the tip of the bundle would follow faithfully the motion of an attached glass probe up to frequencies of more than 1 kHz. 3. The relationship between inward transducer current and bundle displacement was sigmoidal. Maximum currents of 200-400 pA were observed for deflections of the tip of the bundle of 0.5 microns, equivalent to rotating the bundle by about 5 deg. 4. In response to a step deflection of the bundle, the current developed with a time constant (about 0.4 ms for small stimuli) that decreased with the size of displacement. This suggests that the onset of the current was limited by the gating kinetics of the transduction channel. The onset time course was slowed about fourfold for a 20 degrees C drop in temperature. 5. For small maintained displacements, the current relaxed to about a quarter of the peak level with a time constant of 3-5 ms. This adaptation was associated with a shift of the current-displacement relationship in the direction of the stimulus. The rate and extent of adaptation were decreased by lowering external Ca2+. 6. Adaptation was strongly voltage sensitive, and was abolished at holding potentials positive to the reversal potential of the transducer current of about 0 mV. It was also diminished by loading cells with 10 mM of the Ca2+ chelator BAPTA. These observations suggest that adaptation may be partly controlled by influx of Ca2+ through the transducer channels. 7. Removal of adaptation produced asymmetric responses, with fast onsets but slow decays following return of the bundle to its resting position

  14. Phase Variation in the Helicobacter pylori Phospholipase A Gene and Its Role in Acid Adaptation

    PubMed Central

    Tannæs, Tone; Dekker, Niek; Bukholm, Geir; Bijlsma, Jetta J. E.; Appelmelk, Ben J.

    2001-01-01

    Previously, we have shown that Helicobacter pylori can spontaneously and reversibly change its membrane lipid composition, producing variants with low or high content of lysophospholipids. The “lyso” variant contains a high percentage of lysophospholipids, adheres better to epithelial cells, and releases more proteins such as urease and VacA, compared to the “normal” variant, which has a low content of lysophospholipids. Prolonged growth of the normal variant at pH 3.5, but not under neutral conditions, leads to enrichment of lyso variant colonies, suggesting that the colony switch is relevant to acid adaptation. In this study we show that the change in membrane lipid composition is due to phase variation in the pldA gene. A change in the (C) tract length of this gene results in reversible frameshifts, translation of a full-length or truncated pldA, and the production of active or inactive outer membrane phospholipase A (OMPLA). The role of OMPLA in determining the colony morphology was confirmed by the construction of an OMPLA-negative mutant. Furthermore, variants with an active OMPLA were able to survive acidic conditions better than variants with the inactive form. This explains why the lyso variant is selected at low pH. Our studies demonstrate that phase variation in the pldA gene, resulting in an active form of OMPLA, is important for survival under acidic conditions. We also demonstrated the active OMPLA genotype in fresh isolates of H. pylori from patients referred to gastroscopy for dyspepsia. PMID:11705905

  15. Amino acids and our genetic code: a highly adaptive and interacting defense system.

    PubMed

    Verheesen, R H; Schweitzer, C M

    2012-04-01

    Since the discovery of the genetic code, Mendel's heredity theory and Darwin's evolution theory, science believes that adaptations to the environment are processes in which the adaptation of the genes is a matter of probability, in which finally the specie will survive which is evolved by chance. We hypothesize that evolution and the adaptation of the genes is a well-organized fully adaptive system in which there is no rigidity of the genes. The dividing of the genes will take place in line with the environment to be expected, sensed through the mother. The encoding triplets can encode for more than one amino acid depending on the availability of the amino acids and the needed micronutrients. Those nutrients can cause disease but also prevent diseases, even cancer and auto immunity. In fact we hypothesize that auto immunity is an effective process of the organism to clear suboptimal proteins, formed due to amino acid and micronutrient deficiencies. Only when deficiencies sustain, disease will develop, otherwise the autoantibodies will function as all antibodies function, in a protective way. Furthermore, we hypothesize that essential amino acids are less important than nonessential amino acid (NEA). Species developed the ability to produce the nonessential amino acids themselves because they were not provided by food sufficiently. In contrast essential amino acids are widely available, without any evolutionary pressure. Since we can only produce small amounts of NEA and the availability in food can be reasoned to be too low they are still our main concern in amino acid availability. In conclusion, we hypothesize that increasing health will only be possible by improving our natural environment and living circumstances, not by changing the genes, since they are our last line of defense in surviving our environmental changes. PMID:22289341

  16. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate

    PubMed Central

    Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E.

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  17. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate.

    PubMed

    Dueregger, Andrea; Schöpf, Bernd; Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  18. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  19. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  20. Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme.

    PubMed

    Sato, Yuhya; Watanabe, Seiya; Yamaoka, Naoto; Takada, Yasuhiro

    2008-01-01

    The gene (icl) encoding cold-adapted isocitrate lyase (ICL) of a psychrophilic bacterium, Colwellia psychrerythraea, was cloned and sequenced. Open reading frame of the gene was 1,587 bp in length and corresponded to a polypeptide composed of 528 amino acids. The deduced amino acid sequence showed high homology with that of cold-adapted ICL from other psychrophilic bacterium, C. maris (88% identity), but the sequential homology with that of the Escherichia coli ICL was low (28% identity). Primer extension analysis revealed that transcriptional start site for the C. psychrerythraea icl gene was guanine, located at 87 bases upstream of translational initiation codon. The expression of this gene in the cells of an E. coli mutant defective in ICL was induced by not only low temperature but also acetate. However, cis-acting elements for cold-inducible expression known in the several other bacterial genes were absent in the promoter region of the C. psychrerythraea icl gene. The substitution of Ala214 for Ser in the C. psychrerythraea ICL introduced by point mutation resulted in the increased thermostability and lowering of the specific activity at low temperature, indicating that Ala214 is important for psychrophilic properties of this enzyme. PMID:17965824

  1. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream.

    PubMed

    Liljeqvist, Maria; Ossandon, Francisco J; González, Carolina; Rajan, Sukithar; Stell, Adam; Valdes, Jorge; Holmes, David S; Dopson, Mark

    2015-04-01

    An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment. PMID:25764459

  2. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment1

    PubMed Central

    Simões, Rui V.; Serganova, Inna S.; Kruchevsky, Natalia; Leftin, Avigdor; Shestov, Alexander A.; Thaler, Howard T.; Sukenick, George; Locasale, Jason W.; Blasberg, Ronald G.; Koutcher, Jason A.; Ackerstaff, Ellen

    2015-01-01

    Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism. PMID:26408259

  3. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment.

    PubMed

    Simões, Rui V; Serganova, Inna S; Kruchevsky, Natalia; Leftin, Avigdor; Shestov, Alexander A; Thaler, Howard T; Sukenick, George; Locasale, Jason W; Blasberg, Ronald G; Koutcher, Jason A; Ackerstaff, Ellen

    2015-08-01

    Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism. PMID:26408259

  4. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  5. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-01

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. PMID:25941086

  6. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  7. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    PubMed

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  8. Ebolavirus evolves in human to minimize the detection by immune cells by accumulating adaptive mutations.

    PubMed

    Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja

    2016-06-01

    The current outbreak of Zaire ebolavirus (EBOV) lasted longer than the previous outbreaks and there is as yet no proven treatment or vaccine available. Understanding host immune pressure and associated EBOV immune evasion that drive the evolution of EBOV is vital for diagnosis as well as designing a highly effective vaccine. The aim of this study was to deduce adaptive selection pressure acting on each amino acid sites of EBOV responsible for the recent 2014 outbreak. Multiple statistical methods employed in the study include SLAC, FEL, REL, IFEL, FUBAR and MEME. Results show that a total of 11 amino acid sites from sGP and ssGP, and 14 sites from NP, VP40, VP24 and L proteins were inferred as positively and negatively selected, respectively. Overall, the function of 11 out of 25 amino acid sites under selection pressure exactly found to be involved in T cell and B-cell epitopes. We identified that the EBOV had evolved through purifying selection pressure, which is a predictor that is known to aid the virus to adapt better to the human host and subsequently reduce the efficiency of existing immunity. Furthermore, computational RNA structure prediction showed that the three synonymous nucleotide mutations in NP gene altered the RNA secondary structure and optimal base-pairing energy, implicating a possible effect on genome replication. Here, we have provided evidence that the EBOV strains involved in the recent 2014 outbreak have evolved to minimize the detection by T and B cells by accumulating adaptive mutations to increase the survival fitness. PMID:27366764

  9. Global Profiling of Metabolic Adaptation to Hypoxic Stress in Human Glioblastoma Cells

    PubMed Central

    Kucharzewska, Paulina; Christianson, Helena C.; Belting, Mattias

    2015-01-01

    Oncogenetic events and unique phenomena of the tumor microenvironment together induce adaptive metabolic responses that may offer new diagnostic tools and therapeutic targets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal feature of the tumor microenvironment and has been linked to increased tumor aggressiveness as well as resistance to conventional oncological treatments. Previous studies have provided important insights into hypoxia induced changes of the transcriptome and proteome; however, how this translates into changes at the metabolite level remains to be defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein, lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and 126 metabolites were identified and quantified in cells and corresponding media, respectively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or hypoxic (1% O2) conditions. In conjunction, we performed gene array studies with hypoxic and normoxic cells following short and prolonged incubation. We found that levels of several key metabolites varied with the duration of hypoxic stress. In some cases, metabolic changes corresponded with hypoxic regulation of key pathways at the transcriptional level. Our results provide new insights into the metabolic response of glioblastoma cells to hypoxia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms to microenvironmental stress. PMID:25633823

  10. Shielding analysis of the IEM cell offset adapter plate

    SciTech Connect

    Simons, R.L.

    1995-01-13

    The adapter plate for the Interim Examination and Maintenance (IEM) cell ten foot ceiling valve was modified so that the penetration through the valve is offset to the north side of the steel plate. The modifications required that the shielding effectiveness be evaluated for several operating conditions. The highest gamma ray dose rate (51 mrem/hr) occurs when a Core Component Container (CCC) with six high burn-up driver fuel assemblies is transferred into or out of Solid Waste Cask (SWC). The neutron dose rate at the same source location is 2.5 mrem/hr. The total dose rate during the transfer is less than the 200 mrem/hr limit. If the ten foot ceiling valve is closed, the dose rate with twelve DFA in the cell will be less than 0.1 mrem/hr. However, with the ceiling valve open the dose rate will be as high as 12 mrem/hr. The latter condition will require controlled access to the area around the offset adapter plate when the ceiling valve is open. It was found that gaps in the shield block around the SWC floor valve will allow contact dose rates as high as 350 mrem/hr during the transfer of a fully loaded CCC. Although this situation does not pertain to the offset adapter plate, it will require controlled access around the SWC valve during the transfer of a fully loaded CCC.

  11. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    PubMed

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %. PMID:23872959

  12. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  13. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  14. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  15. Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation.

    PubMed

    Pflock, Michael; Finsterer, Nadja; Joseph, Biju; Mollenkopf, Hans; Meyer, Thomas F; Beier, Dagmar

    2006-05-01

    The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease; however, urease-independent mechanisms are likely to contribute to acid adaptation. Acid-responsive gene regulation is mediated at least in part by the ArsRS two-component system consisting of the essential OmpR-like response regulator ArsR and the nonessential cognate histidine kinase ArsS, whose autophosphorylation is triggered in response to low pH. In this study, by global transcriptional profiling of an ArsS-deficient H. pylori mutant grown at pH 5.0, we define the ArsR approximately P-dependent regulon consisting of 109 genes, including the urease gene cluster, the genes encoding the aliphatic amidases AmiE and AmiF, and the rocF gene encoding arginase. We show that ArsR approximately P controls the acid-induced transcription of amiE and amiF by binding to extended regions located upstream of the -10 box of the respective promoters. In contrast, transcription of rocF is repressed by ArsR approximately P at neutral, acidic, and mildly alkaline pH via high-affinity binding of the response regulator to a site overlapping the promoter of the rocF gene. PMID:16672598

  16. The expansion of amino-acid repeats is not associated to adaptive evolution in mammalian genes

    PubMed Central

    2009-01-01

    Background The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. Results Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. Conclusions Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene. PMID:20021652

  17. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry

    PubMed Central

    Peng, A.W.; Effertz, T.

    2014-01-01

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca2+ entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence of adaptation in the mammalian auditory system. Recordings from rat cochlear hair cells, demonstrate that altering Ca2+ entry or internal Ca2+ buffering has little effect on either adaptation kinetics or steady state adaptation responses. Two additional findings include a voltage dependent process and an extracellular Ca2+ binding site both modulating the resting open probability independent of adaptation. These data suggest that slow motor adaptation is negligible in mammalian auditory cells and that the remaining adaptation process is independent of calcium entry. PMID:24267652

  18. Red blood cell as an adaptive optofluidic microlens

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Netti, P. A.; Ferraro, P.

    2015-03-01

    The perspective of using live cells as lenses could open new revolutionary and intriguing scenarios in the future of biophotonics and biomedical sciences for endoscopic vision, local laser treatments via optical fibres and diagnostics. Here we show that a suspended red blood cell (RBC) behaves as an adaptive liquid-lens at microscale, thus demonstrating its imaging capability and tunable focal length. In fact, thanks to the intrinsic elastic properties, the RBC can swell up from disk volume of 90 fl up to a sphere reaching 150 fl, varying focal length from negative to positive values. These live optofluidic lenses can be fully controlled by triggering the liquid buffer’s chemistry. Real-time accurate measurement of tunable focus capability of RBCs is reported through dynamic wavefront characterization, showing agreement with numerical modelling. Moreover, in analogy to adaptive optics testing, blood diagnosis is demonstrated by screening abnormal cells through focal-spot analysis applied to an RBC ensemble as a microlens array.

  19. Adaptation of BHK-21 Cells to Growth in Shaker Culture and Subsequent Challenge by Japanese Encephalitis Virus

    PubMed Central

    Guskey, Louis E.; Jenkin, Howard M.

    1975-01-01

    Baby hamster kidney (BHK-21) cells were adapted to grow in shaker culture using Waymouth medium 752/1 containing 20 mM N-2-hydroxyethyl-piperazine-N′-2′-ethanesulfonic acid buffer and supplemented with 2.5% (vol/vol) calf serum, 0.002% (wt/vol) sodium oleate, and 0.2% fatty acid-free bovine serum albumin (WO2.5). Infectivity of Japanese encephalitis virus grown in the cells adapted to WO2.5 approached 2 × 108 plaque-forming units per ml. The culture volume of infected cells was reduced fivefold 12 h after infection. This step resulted in a 10-fold increase in infectivity over that obtained from infected cultures not subjected to volume reduction. PMID:1237269

  20. Adaptation of BHK-21 cells to growth in shaker culture and subsequent challenge by Japanese encephalitis virus.

    PubMed

    Guskey, L E; Jenkin, H M

    1975-09-01

    Baby hamster kidney (BHK-21) cells were adapted to grow in shaker culture using Waymouth medium 752/1 containing 20 mM N-2-hydroxyethyl-piperazine-N'-2'-ethanesulfonic acid buffer and supplemented with 2.5% (vol/vol) calf serum, 0.002% (wt/vol) sodium oleate, and 0.2% fatty acid-free bovine serum albumin (WO2.5). Infectivity of Japanese encephalitis virus grown in the cells adapted to WO2.5 approached 2 x 10(8) plaque-forming units per ml. The culture volume of infected cells was reduced fivefold 12 h after infection. This step resulted in a 10-fold increase in infectivity over that obtained from infected cultures not subjected to volume reduction. PMID:1237269

  1. The adaptive, cut-cell Cartesian approach (warts and all)

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.

    1995-01-01

    Solution-adaptive methods based on cutting bodies out of Cartesian grids are gaining popularity now that the ways of circumventing the accuracy problems associated with small cut cells have been developed. Researchers are applying Cartesian-based schemes to a broad class of problems now, and, although there is still development work to be done, it is becoming clearer which problems are best suited to the approach (and which are not). The purpose of this paper is to give a candid assessment, based on applying Cartesian schemes to a variety of problems, of the strengths and weaknesses of the approach as it is currently implemented.

  2. Evaluation of organic acids as fuel cell electrolytes

    SciTech Connect

    Ahmad, J.; Nguyen, T.H.; Foley, R.T.

    1981-11-01

    The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half-cell at various temperatures. The rate of the electro-oxidation of hydrogen at 115/degree/C was very high in methanesulfonic acid. The rate of the electro-oxidation of propane in all three acids was low even at 135/degree/C. Further, there is evidence for adsorption of these acids on the platinum electrode. It is concluded that anhydrous sulfonic acids are not good electrolytes; water solutions are required. Sulfonic acids containing unprotected carbon-hydrogen bonds are adsorbed on platinum and probably decompose during electrolysis. 9 refs.

  3. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation

    PubMed Central

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively. PMID:27158448

  4. Invariant NKT cells provide innate and adaptive help for B cells.

    PubMed

    Vomhof-DeKrey, Emilie E; Yates, Jennifer; Leadbetter, Elizabeth A

    2014-06-01

    B cells rely on CD4(+) T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. iNKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  5. Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation.

    PubMed

    Jakob, Kinga; Satorhelyi, Peter; Lange, Christian; Wendisch, Volker F; Silakowski, Barbara; Scherer, Siegfried; Neuhaus, Klaus

    2007-08-01

    Corynebacteria form an important part of the red smear cheese microbial surface consortium. To gain a better understanding of molecular adaptation due to low pH induced by lactose fermentation, the global gene expression profile of Corynebacterium glutamicum adapted to pH 5.7 with lactic acid under continuous growth in a chemostat was characterized by DNA microarray analysis. Expression of a total of 116 genes was increased and that of 90 genes was decreased compared to pH 7.5 without lactic acid, representing 7% of the genes in the genome. The up-regulated genes encode mainly transcriptional regulators, proteins responsible for export, import, and metabolism, and several proteins of unknown function. As much as 45% of the up-regulated open reading frames code for hypothetical proteins. These results were validated using real-time reverse transcription-PCR. To characterize the functions of 38 up-regulated genes, 36 single-crossover disruption mutants were generated and analyzed for their lactic acid sensitivities. However, only a sigB knockout mutant showed a highly significant negative effect on growth at low pH, suggesting a function in organic-acid adaptation. A sigE mutant already displayed growth retardation at neutral pH but grew better at acidic pH than the sigB mutant. The lack of acid-sensitive phenotypes in 34 out of 36 disrupted genes suggests either a considerable redundancy in acid adaptation response or coincidental effects. Other up-regulated genes included genes for ion transporters and metabolic pathways, including carbohydrate and respiratory metabolism. The enhanced expression of the nrd (ribonucleotide reductase) operon and a DNA ATPase repair protein implies a cellular response to combat acid-induced DNA damage. Surprisingly, multiple iron uptake systems (totaling 15% of the genes induced >or=2-fold) were induced at low pH. This induction was shown to be coincidental and could be attributed to iron-sequestering effects in complex media at low p

  6. Adaptive Response of T and B Cells in Atherosclerosis.

    PubMed

    Ketelhuth, Daniel F J; Hansson, Göran K

    2016-02-19

    Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease. PMID:26892965

  7. Adaptive Multigrid Solution of Stokes' Equation on CELL Processor

    NASA Astrophysics Data System (ADS)

    Elgersma, M. R.; Yuen, D. A.; Pratt, S. G.

    2006-12-01

    We are developing an adaptive multigrid solver for treating nonlinear elliptic partial-differential equations, needed for mantle convection problems. Since multigrid is being used for the complete solution, not just as a preconditioner, spatial difference operators are kept nearly diagonally dominant by increasing density of the coarsest grid in regions where coefficients have rapid spatial variation. At each time step, the unstructured coarse grid is refined in regions where coefficients associated with the differential operators or boundary conditions have rapid spatial variation, and coarsened in regions where there is more gradual spatial variation. For three-dimensional problems, the boundary is two-dimensional, and regions where coefficients change rapidly are often near two-dimensional surfaces, so the coarsest grid is only fine near two-dimensional subsets of the three-dimensional space. Coarse grid density drops off exponentially with distance from boundary surfaces and rapid-coefficient-change surfaces. This unstructured coarse grid results in the number of coarse grid voxels growing proportional to surface area, rather than proportional to volume. This results in significant computational savings for the coarse-grid solution. This coarse-grid solution is then refined for the fine-grid solution, and multigrid methods have memory usage and runtime proportional to the number of fine-grid voxels. This adaptive multigrid algorithm is being implemented on the CELL processor, where each chip has eight floating point processors and each processor operates on four floating point numbers each clock cycle. Both the adaptive grid algorithm and the multigrid solver have very efficient parallel implementations, in order to take advantage of the CELL processor architecture.

  8. Osmotin: A protein associated with osmotic stress adaptation in plant cells: Final report, September 1, 1983--August 31, 1988

    SciTech Connect

    Bressan, R.A.

    1988-12-01

    Osmotin is a cationic protein which accumulates (up to 12% of total cell protein) in cells adapted to grow in the medium with low water potentials. The synthesis of osmotin is developmentally regulated and is induced by abscisic acid (ABA) in cultured cells. In whole plants, both the synthesis and accumulation of osmotin is tissue specific. The highest rate of synthesis occurs in outer stem tissue and the highest level of accumulation occurs in roots. ABA induced synthesis of osmotin is transient in cells and NaCl stabilizes its synthesis and accumulation. NaCl adapted tobacco cells exhibit a stable increase in both their ability to tolerate salt and to produce osmotin in the absence of NaCl. Osmotin is localized in vacuolar inclusions, but also appears to be loosely associated with the tonoplast and plasma membrane. Osmotin is also found in the culture medium of adapted cells during all stages of cell growth. The molecular weight of mature osmotin deduced from the cDNA nucleotide sequence is 23,984 daltons. Osmotin is synthesized as a preprotein 2.5 kD larger than the mature protein. Three proteins, thaumatin, TPR and MAI, exhibit a very high level (52% to 61%) of sequence homology with osmotin. Osmotin mRNA synthesis is induced by ABA. The level of osmotin mRNA increases after NaCl adaptation. 34 refs., 11 figs.

  9. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  10. Adaptation of β-Cell and Endothelial Function to Carbohydrate Loading: Influence of Insulin Resistance.

    PubMed

    Hurwitz, Barry E; Schneiderman, Neil; Marks, Jennifer B; Mendez, Armando J; Gonzalez, Alex; Llabre, Maria M; Smith, Steven R; Bizzotto, Roberto; Santini, Eleonora; Manca, Maria Laura; Skyler, Jay S; Mari, Andrea; Ferrannini, Ele

    2015-07-01

    High-carbohydrate diets have been associated with β-cell strain, dyslipidemia, and endothelial dysfunction. We examined how β-cell and endothelial function adapt to carbohydrate overloading and the influence of insulin resistance. On sequential days in randomized order, nondiabetic subjects (classified as insulin-sensitive [IS] [n = 64] or insulin-resistant [IR] [n = 79] by euglycemic clamp) received four mixed meals over 14 h with either standard (300 kcal) or double carbohydrate content. β-Cell function was reconstructed by mathematical modeling; brachial artery flow-mediated dilation (FMD) was measured before and after each meal. Compared with IS, IR subjects showed higher glycemia and insulin hypersecretion due to greater β-cell glucose and rate sensitivity; potentiation of insulin secretion, however, was impaired. Circulating free fatty acids (FFAs) were less suppressed in IR than IS subjects. Baseline FMD was reduced in IR, and postprandial FMD attenuation occurred after each meal, particularly with high carbohydrate, similarly in IR and IS. Throughout the two study days, higher FFA levels were significantly associated with lower (incretin-induced) potentiation and impaired FMD. In nondiabetic individuals, enhanced glucose sensitivity and potentiation upregulate the insulin secretory response to carbohydrate overloading. With insulin resistance, this adaptation is impaired. Defective suppression of endogenous FFA is one common link between impaired potentiation and vascular endothelial dysfunction. PMID:25754957

  11. Adaptation of β-Cell and Endothelial Function to Carbohydrate Loading: Influence of Insulin Resistance

    PubMed Central

    Hurwitz, Barry E.; Schneiderman, Neil; Marks, Jennifer B.; Mendez, Armando J.; Gonzalez, Alex; Llabre, Maria M.; Smith, Steven R.; Bizzotto, Roberto; Santini, Eleonora; Manca, Maria Laura; Skyler, Jay S.; Mari, Andrea

    2015-01-01

    High-carbohydrate diets have been associated with β-cell strain, dyslipidemia, and endothelial dysfunction. We examined how β-cell and endothelial function adapt to carbohydrate overloading and the influence of insulin resistance. On sequential days in randomized order, nondiabetic subjects (classified as insulin-sensitive [IS] [n = 64] or insulin-resistant [IR] [n = 79] by euglycemic clamp) received four mixed meals over 14 h with either standard (300 kcal) or double carbohydrate content. β-Cell function was reconstructed by mathematical modeling; brachial artery flow-mediated dilation (FMD) was measured before and after each meal. Compared with IS, IR subjects showed higher glycemia and insulin hypersecretion due to greater β-cell glucose and rate sensitivity; potentiation of insulin secretion, however, was impaired. Circulating free fatty acids (FFAs) were less suppressed in IR than IS subjects. Baseline FMD was reduced in IR, and postprandial FMD attenuation occurred after each meal, particularly with high carbohydrate, similarly in IR and IS. Throughout the two study days, higher FFA levels were significantly associated with lower (incretin-induced) potentiation and impaired FMD. In nondiabetic individuals, enhanced glucose sensitivity and potentiation upregulate the insulin secretory response to carbohydrate overloading. With insulin resistance, this adaptation is impaired. Defective suppression of endogenous FFA is one common link between impaired potentiation and vascular endothelial dysfunction. PMID:25754957

  12. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  13. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    PubMed

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. PMID:26559141

  14. Organism-Adapted Specificity of the Allosteric Regulation of Pyruvate Kinase in Lactic Acid Bacteria

    PubMed Central

    Veith, Nadine; Feldman-Salit, Anna; Cojocaru, Vlad; Henrich, Stefan; Kummer, Ursula; Wade, Rebecca C.

    2013-01-01

    Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may

  15. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.

    PubMed

    Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L

    2015-03-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. PMID:25556191

  16. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  17. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories

    PubMed Central

    Laan, Liedewij; Koschwanez, John H; Murray, Andrew W

    2015-01-01

    Cells are organized by functional modules, which typically contain components whose removal severely compromises the module's function. Despite their importance, these components are not absolutely conserved between parts of the tree of life, suggesting that cells can evolve to perform the same biological functions with different proteins. We evolved Saccharomyces cerevisiae for 1000 generations without the important polarity gene BEM1. Initially the bem1∆ lineages rapidly increase in fitness and then slowly reach >90% of the fitness of their BEM1 ancestors at the end of the evolution. Sequencing their genomes and monitoring polarization reveals a common evolutionary trajectory, with a fixed sequence of adaptive mutations, each improving cell polarization by inactivating proteins. Our results show that organisms can be evolutionarily robust to physiologically destructive perturbations and suggest that recovery by gene inactivation can lead to rapid divergence in the parts list for cell biologically important functions. DOI: http://dx.doi.org/10.7554/eLife.09638.001 PMID:26426479

  18. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30. PMID:16086245

  19. Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

    PubMed Central

    Schlums, Heinrich; Cichocki, Frank; Tesi, Bianca; Theorell, Jakob; Beziat, Vivien; Holmes, Tim D.; Han, Hongya; Chiang, Samuel C.C.; Foley, Bree; Mattsson, Kristin; Larsson, Stella; Schaffer, Marie; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Miller, Jeffrey S.; Bryceson, Yenan T.

    2015-01-01

    SUMMARY The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hyperme-thylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets. PMID:25786176

  20. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  1. New applications for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stickles, R. P.; Breuer, C. T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  2. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  3. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids.

    PubMed Central

    Chesney, R W; Gusowski, N; Dabbagh, S

    1985-01-01

    Rats fed a reduced sulfur amino acid diet (LTD) or a high-taurine diet (HTD) demonstrate a renal adaptive response. The LTD results in hypotaurinuria and enhanced brush border membrane vesicle (BBMV) accumulation of taurine. The HTD causes hypertaurinuria and reduced BBMV uptake. This adaptation may relate to changes in plasma or renal cortex taurine concentration. Rats were fed a normal-taurine diet (NTD), LTD, or HTD for 14 d or they underwent: (a) 3% beta-alanine for the last 8 d of each diet; (b) 3 d of fasting; or (c) a combination of 3% beta-alanine added for 8 d and 3 d of fasting. Each maneuver lowered the cortex taurine concentration, but did not significantly lower plasma taurine values compared with controls. Increased BBMV taurine uptake occurred after each manipulation. Feeding 3% glycine did not alter the plasma, renal cortex, or urinary taurine concentrations, or BBMV uptake of taurine. Feeding 3% methionine raised plasma and urinary taurine excretion but renal tissue taurine was unchanged, as was initial BBMV uptake. Hence, nonsulfur-containing alpha-amino acids did not change beta-amino acid transport. The increase in BBMV uptake correlates with the decline in renal cortex and plasma taurine content. However, since 3% methionine changed plasma taurine without altering BBMV uptake, it is more likely that the change in BBMV uptake and the adaptive response expressed at the brush border surface relate to changes in renal cortex taurine concentrations. Finally, despite changes in urine and renal cortex taurine content, brain taurine values were unchanged, which suggests that this renal adaptive response maintains stable taurine concentrations where taurine serves as a neuromodulator. PMID:3935668

  4. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  5. HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2

    PubMed Central

    Fernández-Oliva, Alberto; Finzi, Andrés; Haim, Hillel; Menéndez-Arias, Luis; Sodroski, Joseph

    2015-01-01

    ABSTRACT Previous studies have shown that a major block to HIV-1 replication in common marmosets operates at the level of viral entry and that this block can be overcome by adaptation of the virus in tissue-cultured cells. However, our current studies indicate that HIV-1 encounters additional postentry blocks in common marmoset peripheral blood mononuclear cells. Here, we show that the common marmoset APOBEC3G (A3G) and BST2 proteins block HIV-1 in cell cultures. Using a directed-evolution method that takes advantage of the natural ability of HIV-1 to mutate during replication, we have been able to overcome these blocks in tissue-cultured cells. In the adapted viruses, specific changes were observed in gag, vif, env, and nef. The contribution of these changes to virus replication in the presence of the A3G and BST2 restriction factors was studied. We found that certain amino acid changes in Vif and Env that arise during adaptation to marmoset A3G and BST2 allow the virus to replicate in the presence of these restriction factors. The changes in Vif reduce expression levels and encapsidation of marmoset APOBEC3G, while the changes in Env increase viral fitness and discretely favor cell-to-cell transmission of the virus, allowing viral escape from these restriction factors. IMPORTANCE HIV-1 can infect only humans and chimpanzees. The main reason for this narrow tropism is the presence in many species of dominant-acting factors, known as restriction factors, that block viral replication in a species-specific way. We have been exploring the blocks to HIV-1 in common marmosets, with the ultimate goal of developing a new animal model of HIV-1 infection in these monkeys. In this study, we observed that common marmoset APOBEC3G and BST2, two known restriction factors, are able to block HIV-1 in cell cultures. We have adapted HIV-1 to replicate in the presence of these restriction factors and have characterized the mechanisms of escape. These studies can help in the

  6. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  7. Effect of acid adaptation and acid shock on thermal tolerance and survival of Escherichia coli O157:H7 and O111 in apple juice.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-10-01

    Gradual exposure to moderate acidic environments may enhance the thermal tolerance and survival of Escherichia coli O157:H7 in acid and acidified foods. Limited studies comparing methodologies to induce this phenomenon have been performed. The effects of strain and physiological state on thermal tolerance and survival of E. coli in apple juice were studied. The decimal reduction time (D-value) at 56°C [D56°C] was determined for E. coli O157:H7 strains C7927 and ATCC 43895 and E. coli O111 at four physiological states: unadapted, acid-shocked (two methodologies used), and acid-adapted cells. The effect of acidulant was also evaluated by determining the D56°C for the O157:H7 strains subjected to acid shock during 18 h in Trypticase soy broth (TSB), with pH 5 adjusted with hydrochloric, lactic, and malic acids. Survival of the three strains at four physiological states was determined at 1 ± 1°C and 24 ± 2°C. Experiments were performed in triplicate. For thermal inactivation, a significant interaction was found between strain and physiological state (P < 0.0001). Highest thermal tolerance was observed for the 43895 strain subjected to acid shock during 18 h in TSB acidified with HCl (D56°C of 3.0 ± 0.1 min) and the lowest for the acid-shocked C7927 strain treated for 4 h in TSB acidified with HCl (D56°C of 0.45 ± 0.06 min). Acidulants did not alter the heat tolerance of strain C7927 (D56°C of 1.9 ± 0.1 min; P > 0.05) but significantly affected strain 43895 (P < 0.05), showing the greatest tolerance when malic acid was used (D56°C of 3.7 ± 0.3 min). A significant interaction between strain, storage temperature, and physiological state was noted during the survival experiments (P < 0.05). E. coli O111 was the most resistant strain, surviving 6 and 23 days at 24 and 1°C, respectively. Our findings may assist in designing challenge studies for juices and other pH-controlled products, where Shiga toxin-producing E. coli represents the pathogen of concern

  8. The emergence of grid cells: Intelligent design or just adaptation?

    PubMed

    Kropff, Emilio; Treves, Alessandro

    2008-01-01

    Individual medial entorhinal cortex (mEC) 'grid' cells provide a representation of space that appears to be essentially invariant across environments, modulo simple transformations, in contrast to multiple, rapidly acquired hippocampal maps; it may therefore be established gradually during rodent development. We explore with a simplified mathematical model the possibility that the self-organization of multiple grid fields into a triangular grid pattern may be a single-cell process, driven by firing rate adaptation and slowly varying spatial inputs. A simple analytical derivation indicates that triangular grids are favored asymptotic states of the self-organizing system, and computer simulations confirm that such states are indeed reached during a model learning process, provided it is sufficiently slow to effectively average out fluctuations. The interactions among local ensembles of grid units serve solely to stabilize a common grid orientation. Spatial information, in the real mEC network, may be provided by any combination of feedforward cortical afferents and feedback hippocampal projections from place cells, since either input alone is likely sufficient to yield grid fields. PMID:19021261

  9. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  10. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid.

    PubMed

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F; Swietach, Pawel

    2016-09-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer-stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  11. Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts

    PubMed Central

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  12. Position-specific adaptation in complex cell receptive fields of the cat striate cortex.

    PubMed

    Marlin, S; Douglas, R; Cynader, M

    1993-06-01

    1. Responses of complex cells in cat striate cortex were studied with flashed light slit stimuli. The responses to slits flashed in different positions in the receptive field were assessed quantitatively before and after periods of prolonged stimulation of one small region of the receptive field. This type of prolonged stimulation resulted in reduced responsivity over a limited zone within the complex cell receptive field. 2. The adaptation-induced responsivity decrement was generally observed in both the ON and OFF response profiles but could also be restricted to one or the other. In general, the magnitude of the response decrements was greatest in the ON response profiles. The adaptation-induced response decrement did not necessarily spread throughout the receptive field but was restricted to a small region surrounding the adapted receptive field position (RFP). Adaptation spread equally widely across the ON and OFF response profiles despite the smaller adaptation effects in the OFF profile. 3. The adaptation effects from repeated stimulation at a single RFP did not spread symmetrically across the receptive field, and a given cell's preferred direction of motion indicated the direction of the asymmetric spread of the adaptation. RFPs that would be stimulated by a light slit originating at the point of adaptation and moving in the preferred direction (preferred side) showed greater adaptation-induced response decrements than did RFPs that would be stimulated by a light slit moving in the opposite direction from the point of adaptation (nonpreferred side). There was significant enhancement of responses at some RFPs on the non-preferred side of the point of adaptation. This asymmetric spread of adaptation could be caused by adaptation of inhibitory connections that contribute to complex cell direction selectivity. 4. The asymmetry of adaptation was significantly different for the ON and OFF response profiles. The asymmetric spread of adaptation for the ON response

  13. Adaptation of in vivo amino acid kinetics facilitates increased amino acid availability for fetal growth in adolescent and adult pregnancies alike

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, adult women with a normal BMI synthesize extra amino acids after an overnight fast by increasing body protein breakdown and decreasing amino acid oxidation. It is not known whether adolescent girls can make these adaptations during pregnancy. The present study aimed to measure and ...

  14. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    PubMed Central

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  15. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  16. Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives

    PubMed Central

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Avery, Simon V.; Novodvorska, Michaela; Archer, David B.

    2014-01-01

    The food spoilage yeast Zygosaccharomyces bailii shows great resistance to weak-acid preservatives, including sorbic acid (2, 4-hexadienoic acid). That extreme resistance was shown to be due to population heterogeneity, with a small sub-population of cells resistant to a variety of weak acids, probably caused by a lower internal pH reducing the uptake of all weak acids. In the present paper, it was found that resistant cells were extremely rare in exponential cultures, but increased by up to 8000-fold in stationary phase. Inoculation of media containing sorbic acid with a population of Z. bailii cells gave rise to what appeared to be a prolonged lag phase, suggesting adaptation to the conditions before the cells entered the period of exponential growth. However, the apparent lag phase caused by sorbic acid was largely due to the time required for the resistant sub-population to grow to detectable levels. The slow growth rate of the sub-population was identical to that of the final total population. The non-resistant bulk population remained viable for 3 days but had lost viability by 6 days and, during that time, there was no indication of any development of resistance in the bulk population. The sub-population growing in sorbic acid showed very high population diversity in colony size and internal pH. After removal of sorbic acid, the population rapidly reverted back to the normal, largely non-resistant, population distribution. The data presented suggest that a reevaluation of the lag phase in microbial batch culture is required, at least for the resistance of Z. bailii to sorbic acid. Furthermore, the significance of phenotypic diversity and heterogeneity in microbial populations is discussed more broadly with potential relevance to bacterial “persisters”, natural selection and evolution. PMID:24813627

  17. Depletion of arachidonic acid from GH3 cells. Effects on inositol phospholipid turnover and cellular activation.

    PubMed Central

    Dudley, D T; Macfarlane, D E; Spector, A A

    1987-01-01

    We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C. Images Fig. 4. PMID:3120699

  18. Identification of amino acid changes in the envelope glycoproteins of bovine viral diarrhea viruses isolated from alpaca that may be involved in host adaptation.

    PubMed

    Neill, John D; Dubovi, Edward J; Ridpath, Julia F

    2015-09-30

    Bovine viral diarrhea viruses (BVDV) are most commonly associated with infections of cattle. However, BVDV are often isolated from closely related ruminants with a number of BVDV-1b viruses being isolated from alpacas that were both acutely and persistently infected. The complete nucleotide sequence of the open reading frame of eleven alpaca-adapted BVDV isolates and the region encoding the envelope glycoproteins of an additional three isolates were determined. With the exception of one, all alpaca isolates were >99.2% similar at the nucleotide level. The Hercules isolate was more divergent, with 95.7% sequence identity to the other viruses. Sequence similarity of the 14 viruses indicated they were isolates of a single BVDV strain that had adapted to and were circulating through alpaca herds. Hercules was a more distantly related strain that has been isolated only once in Canada and represented a separate adaptation event that possessed the same adaptive changes. Comparison of amino acid sequences of alpaca and bovine-derived BVDV strains revealed three regions with amino acid sequences unique to all alpaca isolates. The first contained two small in-frame deletions near the N-terminus of the E2 glycoprotein. The second was found near the C-terminus of the E2 protein where four altered amino acids were located within a 30 amino acid domain that participates in E2 homodimerization. The third region contained three variable amino acids in the C-terminus of the E(rns) within the amphipathic helix membrane anchor. These changes were found in the polar side of the amphipathic helix and resulted in an increased charge within the polar face. Titration of bovine and alpaca viruses in both bovine and alpaca cells indicated that with increased charge in the amphipathic helix, the ability to infect alpaca cells also increased. PMID:26072370

  19. Adaptable Particle-in-Cell Algorithms for Graphical Processing Units

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor; Singh, Tajendra

    2010-11-01

    Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).

  20. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  1. Autophagy Is a Protective Mechanism for Human Melanoma Cells under Acidic Stress*

    PubMed Central

    Marino, Maria Lucia; Pellegrini, Paola; Di Lernia, Giuseppe; Djavaheri-Mergny, Mojgan; Brnjic, Slavica; Zhang, Xiaonan; Hägg, Maria; Linder, Stig; Fais, Stefano; Codogno, Patrice; De Milito, Angelo

    2012-01-01

    Cyclic hypoxia and alterations in oncogenic signaling contribute to switch cancer cell metabolism from oxidative phosphorylation to aerobic glycolysis. A major consequence of up-regulated glycolysis is the increased production of metabolic acids responsible for the presence of acidic areas within solid tumors. Tumor acidosis is an important determinant of tumor progression and tumor pH regulation is being investigated as a therapeutic target. Autophagy is a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, currently considered an important survival mechanism in cancer cells under metabolic stress or subjected to chemotherapy. We investigated the response of human melanoma cells cultured in acidic conditions in terms of survival and autophagy regulation. Melanoma cells exposed to acidic culture conditions (7.0 < pH < 6.2) promptly accumulated LC3+ autophagic vesicles. Immunoblot analysis showed a consistent increase of LC3-II in acidic culture conditions as compared with cells at normal pH. Inhibition of lysosomal acidification by bafilomycin A1 further increased LC3-II accumulation, suggesting an active autophagic flux in cells under acidic stress. Acute exposure to acidic stress induced rapid inhibition of the mammalian target of rapamycin signaling pathway detected by decreased phosphorylation of p70S6K and increased phosphorylation of AMP-activated protein kinase, associated with decreased ATP content and reduced glucose and leucine uptake. Inhibition of autophagy by knockdown of the autophagic gene ATG5 consistently reduced melanoma cell survival in low pH conditions. These observations indicate that induction of autophagy may represent an adaptation mechanism for cancer cells exposed to an acidic environment. Our data strengthen the validity of therapeutic strategies targeting tumor pH regulation and autophagy in progressive malignancies. PMID:22761435

  2. Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity

    PubMed Central

    Stauffer, Eric A.; Scarborough, John D.; Hirono, Moritoshi; Miller, Emilie D.; Shah, Kavita; Mercer, John A.; Holt, Jeffrey R.; Gillespie, Peter G.

    2009-01-01

    Summary In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells. PMID:16102537

  3. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure. PMID:26832172

  4. Inactivation of acid-adapted and nonadapted Escherichia coli O157:H7 during drying and storage of beef jerky treated with different marinades.

    PubMed

    Calicioglu, Mehmet; Sofos, John N; Samelis, John; Kendall, Patricia A; Smith, Gary C

    2002-09-01

    The inactivation of both acid-adapted and unadapted Escherichia coli O157:H7 during the processing of beef jerky was studied. Following inoculation with the pathogen, beef slices were subjected to different predrying marinade treatments, dried at 60 degrees C for 10 h, and stored at 25 degrees C for 60 d. The predrying treatments evaluated were as follows: (i) no treatment (C), (ii) traditional marinade (TM), (iii) double-strength TM modified with added 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce with 5% ethanol (MM), (iv) dipping into 5% acetic acid for 10 min followed by application of TM (AATM), and (v) dipping into 1% Tween 20 for 15 min and then into 5% acetic acid for 10 min followed by TM (TWTM). Bacterial survivors were determined during drying and storage using tryptic soy agar with 0.1% pyruvate, modified eosin methylene blue agar, and sorbitol MacConkey agar. Results indicated that bacterial populations decreased during drying in the order of TWTM (4.9 to 6.7 log) > AATM > MM > C > or = TM (2.8 to 4.9 log) predrying treatments. Populations of acid-adapted E. coli O157:H7 decreased faster (P < 0.05) in AATM and TWTM than nonadapted cells during drying, whereas no significant difference was found in inactivation of acid-adapted and nonadapted inocula in C and TM samples. MM was more effective in inactivating the nonadapted than the adapted inoculum. Bacterial populations continued to decline during storage and dropped below the detection limit (-0.4 log10 CFU/cm2) as early as day 0 (after drying) or as late as day 60, depending on acid adaptation, predrying treatment, and agar medium. The results indicated that acid adaptation may not increase resistance to the hurdles involved in jerky processing and that use of additional antimicrobial chemicals or preservatives in jerky marination may improve the effectiveness of drying in inactivating E. coli O157:H7. PMID:12233848

  5. Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice.

    PubMed

    Chen, Qiang; Yu, Zhijun; Sun, Weiyang; Li, Xue; Chai, Hongliang; Gao, Xiaolong; Guo, Jiao; Zhang, Kun; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Qin, Chuan; Huang, Geng; Yang, Songtao; Qian, Jun; Gao, Yuwei; Xia, Xianzhu; Wang, Tiecheng; Hua, Yuping

    2015-05-15

    Although H7N7 AIVs primarily circulate in wild waterfowl, documented cases of human infection with H7N7 viruses suggest they may pose a pandemic threat. Here, we generated mouse-adapted variants of a wild waterfowl-origin H7N7 virus to identify adaptive changes that confer enhanced virulence in mammals. The mouse lethal doses (MLD50) of the adapted variants were reduced >5000-fold compared to the parental virus. Mouse-adapted variants viruses displayed enhanced replication in vitro and in vivo, and acquired the ability to replicate in extrapulmonary tissues. These observations suggest that enhanced growth characteristics and modified cell tropism may increase the virulence of H7N7 AIVs in mice. Genomic analysis of the adapted variant viruses revealed amino acid changes in the PB2 (E627K), PB1 (R118I), PA (L550M), HA (G214R), and NA (S372N) proteins. Our results suggest that these amino acid substitutions collaboratively enhance the ability of H7N7 virus to replicate and cause severe disease in mammals. PMID:25769645

  6. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no

  7. Do sensory neurons mediate adaptive cytoprotection of gastric mucosa against bile acid injury?

    PubMed

    Mercer, D W; Ritchie, W P; Dempsey, D T

    1992-01-01

    Pretreatment with the mild irritant 1 mmol acidified taurocholate protects the gastric mucosa from the injury induced by the subsequent application of 5 mmol acidified taurocholate, a phenomenon referred to as "adaptive cytoprotection." How this occurs remains an enigma. The purpose of this study was to investigate the role of sensory neurons and mucus secretion in this phenomenon. Prior to injury with 5 mmol acidified taurocholate (pH 1.2), the stomachs of six groups of rats were subjected to the following protocol. Two groups were topically pretreated with either saline or the mild irritant 1 mmol acidified taurocholate. Two other groups received the topical anesthetic 1% lidocaine prior to pretreatment with either saline or 1 mmol acidified taurocholate. The last two groups got the mucolytic agent 10% N-acetylcysteine (NAC) after pretreatment with either saline or 1 mmol acidified taurocholate. Injury was assessed by measuring net transmucosal ion fluxes, luminal appearance of deoxyribonucleic acid (DNA), and gross and histologic injury. Pretreatment with the mild irritant 1 mmol acidified taurocholate significantly decreased bile acid-induced luminal ion fluxes and DNA accumulation, suggesting mucosal protection (corroborated by gross and histologic injury analysis). This effect was negated by lidocaine but not by NAC. Thus, it appears that sensory neurons, and not increased mucus secretion, play a critical role in adaptive cytoprotection. PMID:1733359

  8. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.

    PubMed

    Matsumoto, Tomotaka; John, Anoop; Baeza-Centurion, Pablo; Li, Boyang; Akashi, Hiroshi

    2016-06-01

    A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees. PMID:26873577

  9. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  10. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  11. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

    PubMed Central

    Park, Jeongho; Kim, Myunghoo

    2014-01-01

    T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation. PMID:25550694

  12. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation.

    PubMed

    Kim, Chang H; Park, Jeongho; Kim, Myunghoo

    2014-12-01

    T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation. PMID:25550694

  13. Adaptive growth responses of Listeria monocytogenes to acid and osmotic shifts above and across the growth boundaries.

    PubMed

    Belessi, C-I A; Le Marc, Y; Merkouri, S I; Gounadaki, A S; Schvartzman, S; Jordan, K; Drosinos, E H; Skandamis, P N

    2011-01-01

    The effect of acid and osmotic shifts on the growth of Listeria monocytogenes was evaluated at 10°C. Two types of shifts were tested: (i) within the range of pH and water activity (a(w)) levels that allow growth of L. monocytogenes and (ii) after habituation at no-growth conditions back to growth-permitting conditions. A L. monocytogenes cheese isolate, with high survival capacity during cheesemaking, was inoculated (10(2) CFU/ml) in tryptic soy broth supplemented with 0.6% yeast extract at six pH levels (5.1 to 7.2; adjusted with lactic acid) and 0.5% NaCl (a(w) 0.995), or four a(w) levels (0.995 to 0.93, adjusted with 0.5 to 10.5% NaCl) at pH 7.2 and grown to early stationary phase. L. monocytogenes was then shifted (at 10(2) CFU/ml) to each of the aforementioned growth-permitting pH and a(w) levels and incubated at 10°C. Shifts from no-growth to growth-permitting conditions were carried out by transferring L. monocytogenes habituated at pH 4.9 or a(w) 0.90 (12.5% NaCl) for 1, 5, and 10 days to all pH and a(w) levels permitting growth. Reducing a(w) or pH at different levels in the range of 0.995 to 0.93 and 7.2 to 5.1, respectively, decreased the maximum specific growth rate of L. monocytogenes. The lag time of the organism increased with all osmotic downshifts, as well as by the reduction of pH to 5.1. Conversely, any type of shift within pH 5.5 to 7.2 did not markedly affect the lag times of L. monocytogenes. The longer the cells were incubated at no-growth a(w) (0.90), the faster they initiated growth subsequently, suggesting adaptation to osmotic stress. Conversely, extended habituation at pH 4.9 had the opposite effect on subsequent growth of L. monocytogenes, possibly due to cell injury. These results suggest that there is an adaptation or injury rate induced at conditions inhibiting the growth of the pathogen. Thus, quantifying adaptation phenomena under growth-limiting environments, such as in fermented dairy and meat products or products preserved in

  14. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  15. Intracellular compartmentation of ions in salt adapted tobacco cells. [Nicotiana tabacum L

    SciTech Connect

    Binzel, M.L.; Hess, F.D.; Bressan, R.A.; Hasegawa, P.M. )

    1988-02-01

    Na{sup +} and Cl{sup {minus}} are the principal solutes utilized for osmotic adjustment in cells of Nicotiana tabacum L. var Wisconsin 38 (tobacco) adapted to NaCl, accumulating to levels of 472 and 386 millimolar, respectively, in cells adapted to 428 millimolar NaCl. X-ray microanalysis of unetched frozen-hydrated cells adapted to salt indicated that Na{sup +} and Cl{sup {minus}} were compartmentalized in the vacuole, at concentrations of 780 and 624 millimolar, respectively, while cytoplasmic concentrations of the ions were maintained at 96 millimolar. The morphometric differences which existed between unadapted and salt adapted cells, (cytoplasmic volume of 22 and 45% of the cell, respectively), facilitated containment of the excited volume of the x-ray signal in the cytoplasm of the adapted cells. Confirmation of ion compartmentation in salt adapted cells was obtained based on kinetic analyses of {sup 22}Na{sup +} and {sup 36}Cl{sup {minus}} efflux from cells in steady state. These data provide evidence that ion compartmentation is a component of salt adaptation of glycophyte cells.

  16. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold. PMID:17565494

  17. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. PMID:26573260

  18. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity. PMID:23361840

  19. Stearidonic acid raises red blood cell membrane eicosapentaenoic acid.

    PubMed

    Maki, Kevin C; Rains, Tia M

    2012-03-01

    The consumption of EPA and DHA has been associated with reduced risk for cardiovascular disease morbidity and mortality. Mean intakes of EPA and DHA in the United States and elsewhere are below levels recommended by health authorities. The main non-marine source of dietary (n-3) fatty acids (α-linolenic acid) is poorly converted to EPA in humans. Stearidonic acid (SDA) is a non-marine fatty acid that appears to be more readily converted to EPA in humans. Results from previous studies suggested that SDA, relative to EPA, increases RBC EPA, with reported efficiencies ranging from ~16 to 30%. A recently published, randomized, single-blind, controlled, parallel group study in healthy men and women characterized the relationships between intakes of SDA and EPA and EPA enrichment of RBC membranes over a 12-wk period. %EPA in RBC membranes was greater after EPA (0.44, 1.3, or 2.7 g/d, respectively) and SDA (1.3, 2.6, or 5.2 g/d, respectively) consumption compared to a safflower control (all P < 0.02). Based on quadratic response surface models, for EPA intakes of 0.25, 0.50, and 0.89 g/d, SDA intakes of 0.61, 1.89, and 5.32 g/d, respectively, would be required to produce equivalent values for RBC %EPA, translating to relative efficiencies of 41.0, 26.5, and 16.7%. Thus, dietary SDA over a range of intakes increases RBC %EPA, with declining relative efficiency as SDA intake increases. PMID:22279138

  20. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    PubMed

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h). PMID:26596574

  1. Reviving function in CD4+ T cells adapted to persistent systemic antigen.

    PubMed

    Noval Rivas, Magali; Weatherly, Kathleen; Hazzan, Marc; Vokaer, Benoit; Dremier, Sarah; Gaudray, Florence; Goldman, Michel; Salmon, Isabelle; Braun, Michel Y

    2009-10-01

    In bone marrow-transplanted patients, chronic graft-versus-host disease is a complication that results from the persistent stimulation of recipient minor histocompatibility Ag (mHA)-specific T cells contained within the graft. In this study, we developed a mouse model where persistent stimulation of donor T cells by recipient's mHA led to multiorgan T cell infiltration. Exposure to systemic mHA, however, deeply modified T cell function and chronically stimulated T cells developed a long-lasting state of unresponsiveness, or immune adaptation, characterized by their inability to mediate organ immune damages in vivo. However, analysis of the gene expression profile of adapted CD4+ T cells revealed the specific coexpression of genes known to promote differentiation and function of Th1 effector cells as well as genes coding for proteins that control T cell activity, such as cell surface-negative costimulatory molecules and regulatory cytokines. Strikingly, blockade of negative costimulation abolished T cell adaptation and stimulated strong IFN-gamma production and severe multiorgan wasting disease. Negative costimulation was also shown to control lethal LPS-induced toxic shock in mice with adapted T cells, as well as the capacity of adapted T cells to reject skin graft. Our results demonstrate that negative costimulation is the molecular mechanism used by CD4+ T cells to adapt their activity in response to persistent antigenic stimulation. The effector function of CD4+ T cells that have adapted to chronic Ag presentation can be activated by stimuli strong enough to overcome regulatory signals delivered to the T cells by negative costimulation. PMID:19734216

  2. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells. PMID:26922726

  3. Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain.

    PubMed

    Jiang, Yunyun; Ren, Fazheng; Liu, Songling; Zhao, Liang; Guo, Huiyuan; Hou, Caiyun

    2016-03-28

    Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10(th), 20(th), 30(th), 40(th), and 50(th) repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wildtype strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68. PMID:26608165

  4. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  5. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe.

    PubMed

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  6. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  7. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  8. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair

    PubMed Central

    Halvey, Patrick J.; Wang, Xiaojing; Wang, Jing; Bhat, Ajaz A.; Dhawan, Punita; Li, Ming; Zhang, Bing; Liebler, Daniel C.; Slebos, Robbert J.C.

    2014-01-01

    Summary A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We employed standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biological replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein FDR of 3.17% across all cell lines. Networks of co-expressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multi-system adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition (EMT) in RKO cells, as evidenced by increased mobility and invasion properties compared to SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes. PMID:24247723

  9. The role of amino acids in skeletal muscle adaptation to exercise.

    PubMed

    Aguirre, Nick; van Loon, Luc J C; Baar, Keith

    2013-01-01

    The synthesis of new protein is necessary for both strength and endurance adaptations. While the proteins that are made might differ, myofibrillar proteins following resistance exercise and mitochondrial proteins and metabolic enzymes following endurance exercise, the basic premise of shifting to a positive protein balance after training is thought to be the same. What is less clear is the contribution of nutrition to the adaptive process. Following resistance exercise, proteins rich in the amino acid leucine increase the activation of mTOR, the rate of muscle protein synthesis (MPS), and the rate of muscle mass and strength gains. However, an effect of protein consumption during acute post-exercise recovery on mitochondrial protein synthesis has yet to be demonstrated. Protein ingestion following endurance exercise does facilitate an increase in skeletal MPS, supporting muscle repair, growth and remodeling. However, whether this results in improved performance has yet to be demonstrated. The current literature suggests that a strength athlete will experience an increased sensitivity to protein feeding for at least 24 h after exercise, but immediate consumption of 0.25 g/kg bodyweight of rapidly absorbed protein will enhance MPS rates and drive the skeletal muscle hypertrophic response. At rest, ∼0.25 g/kg bodyweight of dietary protein should be consumed every 4-5 h and another 0.25-0.5 g/kg bodyweight prior to sleep to facilitate the postprandial muscle protein synthetic response. In this way, consuming dietary protein can complement intense exercise training and facilitate the skeletal muscle adaptive response. PMID:23899757

  10. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  11. [Bounds of change in unsaturation index of fatty acid composition of phospholipids at adaptation of molluscs to biogenic and abiogenic factors of external medium].

    PubMed

    Chebotareva, M A; Zabelinskiĭ, S A; Shukoliukova, E P; Krivchenko, A I

    2011-01-01

    Comparative study of fatty acid composition of total phospholipids, as well as of phosphatidylcholine and phosphatidylethanolamine from hepatopancreas and leg muscle was performed on several representatives of gasteropods (Gastropoda) molluscs and bivalve (Bivalvia) mussel (Mytilus edulus). The objects of our study were marine litorins (Littorina saxsatilis) adapted to different temperature conditions of White Sea and Barents Sea, freshwater lymnaea (Lymnaea stagnalis) infested by Trematoda and mussels from White Sea and Black Sea. It was shown that depending on the existence conditions of studied tissue or lipid, the maximal change is observed in the percentage of saturated acids (4-83 %), the percentage of unsaturated acids was less expressed (1-14 %) and the changes in unsaturation index (UI) did not exceed 20 % on average. It was supposed that observed quantitative bounds of UI change under the action of different external factors is utmost for maintenance of membrane fluidity necessary for normal vital activity of cell, particularly in studied ectothermic molluscs. PMID:22145319

  12. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  13. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  14. Mechanisms of β-cell functional adaptation to changes in workload.

    PubMed

    Wortham, M; Sander, M

    2016-09-01

    Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, post-translational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease. PMID:27615135

  15. Unveiling the Metabolic Pathways Associated with the Adaptive Reduction of Cell Size During Vibrio harveyi Persistence in Seawater Microcosms.

    PubMed

    Kaberdin, Vladimir R; Montánchez, Itxaso; Parada, Claudia; Orruño, Maite; Arana, Inés; Barcina, Isabel

    2015-10-01

    Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V. harveyi incubation in seawater microcosm at 20 °C for 2 weeks did not change cell viability and culturability, it led to a progressive reduction in the average cell size. Microarray analysis revealed that this morphological change was accompanied by a profound decrease in gene expression affecting the central carbon metabolism, major biosynthetic pathways, and energy production. In contrast, V. harveyi elevated expression of genes closely linked to the composition and function of cell envelope. In addition to triggering lipid degradation via the β-oxidation pathway and apparently promoting the use of endogenous fatty acids as a major energy and carbon source, V. harveyi upregulated genes involved in ancillary mechanisms important for sustaining iron homeostasis, cell resistance to the toxic effect of reactive oxygen species, and recycling of amino acids. The above adaptation mechanisms and morphological changes appear to represent the major hallmarks of the initial V. harveyi response to starvation. PMID:25903990

  16. Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts.

    PubMed Central

    Moe, O W; Miller, R T; Horie, S; Cano, A; Preisig, P A; Alpern, R J

    1991-01-01

    Increased Na/H antiporter activity has been demonstrated after in vivo chronic metabolic acidosis as well as in vitro acid preincubation of cultured rabbit renal tubule cells. To study the underlying molecular mechanisms of this adaptive increase in Na/H antiporter activity, the present studies examined the effect of low pH media on Na/H antiporter activity and mRNA abundance in cultured renal tubule cells. Na/H antiporter activity was increased by 60% in a mouse renal cortical tubule cell line (MCT), and by 90% in an opossum kidney cell line (OKP) after 24 h of preincubation in acid (low [HCO3]) media. The ethylisopropylamiloride sensitivity of the Na/H antiporters were different in these two cell lines (MCT IC50 = 65 nM; OKP IC50 = 4.5 microM). In MCT cells, Na/H antiporter mRNA abundance measured by RNA blots increased by two- to fivefold after 24 h in low [HCO3] media. Na/H antiporter mRNA abundance was also increased in MCT cells with high CO2 preincubation as well as in rat renal cortex with in vivo chronic acid feeding. In contrast to renal epithelia, acid preincubation of NIH 3T3 fibroblasts led to suppression of Na/H antiporter activity. RNA blots of 3T3 fibroblasts revealed the same size Na/H antiporter transcript as in MCT cells. However, Na/H antiporter mRNA levels were suppressed by acid preincubation. These studies demonstrate differential regulation of Na/H antiporter activity and mRNA abundance in renal epithelial cells and fibroblasts in response to an acidotic environment. Images PMID:1658050

  17. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    -based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  18. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    PubMed Central

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid significantly decreased glioma cell proliferation and tube formation in mouse brain endothelial cells, respectively. In addition, gallic acid decreased U87 cell invasion in vitro. Western blot analysis showed that expression of ADAM17, p-Akt and p-Erk was suppressed by gallic acid in both U87 and U251n cell lines. These data suggest that suppression of ADAM17 and downregulation of PI3K/Akt and Ras/MAPK signaling pathways may contribute to gallic acid-induced decrease of invasiveness. Gallic acid may be a valuable candidate for treatment of brain tumor. PMID:20553913

  19. A motif of eleven amino acids is a structural adaptation that facilitates motor capability of eutherian prestin

    PubMed Central

    Tan, Xiaodong; Pecka, Jason L.; Tang, Jie; Lovas, Sándor; Beisel, Kirk W.; He, David Z. Z.

    2012-01-01

    Cochlear outer hair cells (OHCs) alter their length in response to transmembrane voltage changes. This so-called electromotility is the result of conformational changes of membrane-bound prestin. Prestin-based OHC motility is thought to be responsible for cochlear amplification, which contributes to the exquisite frequency selectivity and sensitivity of mammalian hearing. Prestin belongs to an anion transporter family, the solute carrier protein 26A (SLC26A). Prestin is unique in this family in that it functions as a voltage-dependent motor protein manifested by two hallmarks, nonlinear capacitance and motility. Evidence suggests that prestin orthologs from zebrafish and chicken are anion exchangers or transporters with no motor function. We identified a segment of 11 amino acid residues in eutherian prestin that is extremely conserved among eutherian species but highly variable among non-mammalian orthologs and SLC26A paralogs. To determine whether this sequence represents a motif that facilitates motor function in eutherian prestin, we utilized a chimeric approach by swapping corresponding residues from the zebrafish and chicken with those of gerbil. Motility and nonlinear capacitance were measured from chimeric prestin-transfected human embryonic kidney 293 cells using a voltage-clamp technique and photodiode-based displacement measurement system. We observed a gain of motor function with both of the hallmarks in the chimeric prestin without loss of transport function. Our results show, for the first time, that the substitution of a span of 11 amino acid residues confers the electrogenic anion transporters of zebrafish and chicken prestins with motor-like function. Thus, this motif represents the structural adaptation that assists gain of motor function in eutherian prestin. PMID:22399806

  20. A motif of eleven amino acids is a structural adaptation that facilitates motor capability of eutherian prestin.

    PubMed

    Tan, Xiaodong; Pecka, Jason L; Tang, Jie; Lovas, Sándor; Beisel, Kirk W; He, David Z Z

    2012-02-15

    Cochlear outer hair cells (OHCs) alter their length in response to transmembrane voltage changes. This so-called electromotility is the result of conformational changes of membrane-bound prestin. Prestin-based OHC motility is thought to be responsible for cochlear amplification, which contributes to the exquisite frequency selectivity and sensitivity of mammalian hearing. Prestin belongs to an anion transporter family, the solute carrier protein 26A (SLC26A). Prestin is unique in this family in that it functions as a voltage-dependent motor protein manifested by two hallmarks, nonlinear capacitance and motility. Evidence suggests that prestin orthologs from zebrafish and chicken are anion exchangers or transporters with no motor function. We identified a segment of 11 amino acid residues in eutherian prestin that is extremely conserved among eutherian species but highly variable among non-mammalian orthologs and SLC26A paralogs. To determine whether this sequence represents a motif that facilitates motor function in eutherian prestin, we utilized a chimeric approach by swapping corresponding residues from the zebrafish and chicken with those of gerbil. Motility and nonlinear capacitance were measured from chimeric prestin-transfected human embryonic kidney 293 cells using a voltage-clamp technique and photodiode-based displacement measurement system. We observed a gain of motor function with both of the hallmarks in the chimeric prestin without loss of transport function. Our results show, for the first time, that the substitution of a span of 11 amino acid residues confers the electrogenic anion transporters of zebrafish and chicken prestins with motor-like function. Thus, this motif represents the structural adaptation that assists gain of motor function in eutherian prestin. PMID:22399806

  1. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    PubMed

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. PMID:25995028

  2. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells.

    PubMed

    Enver, Tariq; Soneji, Shamit; Joshi, Chirag; Brown, John; Iborra, Francisco; Orntoft, Torben; Thykjaer, Thomas; Maltby, Edna; Smith, Kath; Abu Dawud, Raed; Jones, Mark; Matin, Maryam; Gokhale, Paul; Draper, Jonathan; Andrews, Peter W

    2005-11-01

    Human embryonic stem cell (HESC) lines vary in their characteristics and behaviour not only because they are derived from genetically outbred populations, but also because they may undergo progressive adaptation upon long-term culture in vitro. Such adaptation may reflect selection of variants with altered propensity for survival and retention of an undifferentiated phenotype. Elucidating the mechanisms involved will be important for understanding normal self-renewal and commitment to differentiation and for validating the safety of HESC-based therapy. We have investigated this process of adaptation at the cellular and molecular levels through a comparison of early passage (normal) and late passage (adapted) sublines of a single HESC line, H7. To account for spontaneous differentiation that occurs in HESC cultures, we sorted cells for SSEA3, which marks undifferentiated HESC. We show that the gene expression programmes of the adapted cells partially reflected their aberrant karyotype, but also resulted from a failure in X-inactivation, emphasizing the importance in adaptation of karyotypically silent epigenetic changes. On the basis of growth potential, ability to re-initiate ES cultures and global transcription profiles, we propose a cellular differentiation hierarchy for maintenance cultures of HESC: normal SSEA3+ cells represent pluripotent stem cells. Normal SSEA3- cells have exited this compartment, but retain multilineage differentiation potential. However, adapted SSEA3+ and SSEA3- cells co-segregate within the stem cell territory, implying that adaptation reflects an alteration in the balance between self-renewal and differentiation. As this balance is also an essential feature of cancer, the mechanisms of culture adaptation may mirror those of oncogenesis and tumour progression. PMID:16159889

  3. Retinoic Acid Stimulates Regeneration of Mammalian Auditory Hair Cells

    NASA Astrophysics Data System (ADS)

    Lefebvre, Philippe P.; Malgrange, Brigitte; Staecker, Hinrich; Moonen, Gustave; van de Water, Thomas R.

    1993-04-01

    Sensorineural hearing loss resulting from the loss of auditory hair cells is thought to be irreversible in mammals. This study provides evidence that retinoic acid can stimulate the regeneration in vitro of mammalian auditory hair cells in ototoxic-poisoned organ of Corti explants in the rat. In contrast, treatment with retinoic acid does not stimulate the formation of extra hair cells in control cultures of Corti's organ. Retinoic acid-stimulated hair cell regeneration can be blocked by cytosine arabinoside, which suggests that a period of mitosis is required for the regeneration of auditory hair cells in this system. These results provide hope for a recovery of hearing function in mammals after auditory hair cell damage.

  4. Irbic acid, a dicaffeoylquinic acid derivative from Centella asiatica cell cultures.

    PubMed

    Antognoni, Fabiana; Perellino, Nicoletta Crespi; Crippa, Sergio; Dal Toso, Roberto; Danieli, Bruno; Minghetti, Anacleto; Poli, Ferruccio; Pressi, Giovanna

    2011-10-01

    3,5-O-dicaffeoyl-4-O-malonilquinic acid (1) (irbic acid) has been isolated for the first time from cell cultures of Centella asiatica and till now it has never been reported to be present in the intact plant. Evidence of its structure was obtained by spectroscopic analyses (MS/NMR). Besides 1, cell cultures produce also the known 3,5-O-dicaffeoylquinic acid, chlorogenic acid, and the triferulic acid 2 (4-O-8'/4'-O-8″-didehydrotriferulic acid). Biological activities were evaluated for compound 1, which showed to have a strong radical scavenging capacity, together with a high inhibitory activity on collagenase. This suggests a possible utilization of this substance as a topical agent to reduce the skin ageing process. PMID:21635941

  5. Direct acid methylation for extraction of fatty acid content from microalgae cells.

    PubMed

    Frigo-Vaz, Benjamin D; Wang, Ping

    2014-08-01

    Direct acid methylation was examined as a means for both analysis of fatty acid content in microalgal cells and biodiesel production without pretreatment. Microalgal cells of Chlamydomonas reinhardtii and Dunaliella tertiolecta were prepared and examined. It appeared that direct acid methylation extracted higher fatty acid content than the solvent-based Soxhlet extraction process. It also revealed that the latter was prone to extract a significant amount of nonlipid hydrophobic impurities, including hydrophobic proteins and phytol-type compounds, while direct methylation produces essentially pure ester product. This work demonstrates that direct acid methylation provides superior fatty acid extraction, promising an efficient process for either quantification of lipid content or production of biodiesel. PMID:24838798

  6. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  7. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  8. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates.

    PubMed

    Murali Achary, V Mohan; Panda, Brahma B

    2010-03-01

    Experiments employing growing root cells of Allium cepa were conducted with a view to elucidate the role of reactive oxygen intermediates (ROI) in aluminium (Al)-induced DNA damage, cell death and adaptive response to genotoxic challenge imposed by ethyl methanesulphonate (EMS) or methyl mercuric chloride (MMCl). In a first set of experiments, root cells in planta were treated with Al at high concentrations (200-800 microM) for 3 h without or with pre-treatments of dihydroxybenzene disulphonic acid (Tiron) and dimethylthiourea (DMTU) for 2 h that trap O(2)(.-)and hydrogen peroxide (H(2)O(2)), respectively. At the end of treatments, generation of O(2)(.-) and H(2)O(2), cell death and DNA damage were determined. In a second set of experiments, root cells in planta were conditioned by Al at low concentrations (5 or 10 microM) for 2 h and after a 2 h intertreatment interval challenged by MMCl or EMS for 3 h without or with a pre-treatment of Tiron or DMTU. Conditioning treatments, in addition, included two oxidative agents viz rose bengal and H(2)O(2) for comparison. Following treatments, root cells in planta were allowed to recover in tap water. Genotoxicity and DNA damage were evaluated by micronucleus (MN), chromosome aberration (CA) or spindle aberration (SA) and comet assays at different hours (0-30 h) of recovery. The results demonstrated that whereas Al at high concentrations induced DNA damage and cell death, in low concentrations induced adaptive response conferring genomic protection from genotoxic challenge imposed by MMCl, EMS and Al. Pre-treatments of Tiron and DMTU prevented Al-induced DNA damage, cell death, as well as genotoxic adaptation to MMCl and EMS, significantly. The findings underscored the biphasic (hormetic) mode of action of Al that at high doses induced DNA damage and at low non-toxic doses conferred genomic protection, both of which were mediated through ROI but perhaps involving different networks. PMID:19955331

  9. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  10. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    PubMed

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions. PMID:26679704

  11. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  12. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  13. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia

    PubMed Central

    Brose, Stephen A.; Marquardt, Amanda L.; Golovko, Mikhail Y.

    2014-01-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined total Gln/Glu incorporation into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0- fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0- fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, TAGs, DAGs, free FA, and phospholipids, with the highest rate of incorporation into TAGs. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. PMID:24266789

  14. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression. PMID:26133667

  15. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  16. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  17. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  18. Adaptive Responses to Dasatinib-Treated Lung Squamous Cell Cancer Cells Harboring DDR2 Mutations

    PubMed Central

    Watters, January M.; Fang, Bin; Kinose, Fumi; Song, Lanxi; Koomen, John M.; Teer, Jamie K.; Fisher, Kate; Chen, Yian Ann; Rix, Uwe; Haura, Eric B.

    2014-01-01

    DDR2 mutations occur in ~4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic RTKs and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib’s action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure, employing a mass spectrometry (MS)-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of receptor tyrosine kinases (RTK) and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF-1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small molecule chemical library screen. We found that dasatinib combined with MET and IGF-1R inhibitors had a synergistic effect and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive resistant mechanisms upon DDR2 targeting, and they suggest new, rationale co-targeting strategies for DDR2-mutant lung SCC. PMID:25348954

  19. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid.

    PubMed

    Löfling, Jonas; Lyi, Sangbom Michael; Parrish, Colin R; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. PMID:23497940

  20. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages

    PubMed Central

    Wu, Zeguang; Frascaroli, Giada; Bayer, Carina; Schmal, Tatjana

    2015-01-01

    ABSTRACT Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4+ T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV—namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity—but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. IMPORTANCE Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host′s immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4+ T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can

  1. High-Pass Filtering at Vestibular Frequencies by Transducer Adaptation in Mammalian Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Songer, Jocelyn E.; Eatock, Ruth Anne

    2011-11-01

    The mammalian saccule detects head tilt and low-frequency head accelerations as well as higher-frequency bone vibrations and sounds. It has two different hair cell types, I and II, dispersed throughout two morphologically distinct regions, the striola and extrastriola. Afferents from the two zones have distinct response dynamics which may arise partly from zonal differences in hair cell properties. We find that type II hair cells in the rat saccular epithelium adapt with a time course appropriate for influencing afferent responses to head motions. Moreover, striolar type II hair cells adapted by a greater extent than extrastriolar type II hair cells and had greater phase leads in the mid-frequency range (5-50 Hz). These differences suggest that hair cell transduction may contribute to zonal differences in the adaptation of vestibular afferents to head motions.

  2. Adaptation to an automated platform of algorithmic combinations of advantageous mutations in genes generated using amino acid scanning mutational strategy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent mutational strategies for generating and screening of genes for optimized traits, including directed evolution, domain shuffling, random mutagenesis, and site-directed mutagenesis, have been adapted for automated platforms. Here we discuss the amino acid scanning mutational strategy and its ...

  3. Effect of acid adaptation on inactivation of Salmonella during drying and storage of beef jerky treated with marinades.

    PubMed

    Calicioglu, Mehmet; Sofos, John N; Samelis, John; Kendall, Patricia A; Smith, Gary C

    2003-12-15

    This study evaluated the influence of pre-drying marinade treatments on inactivation of acid-adapted or nonadapted Salmonella on beef jerky during preparation, drying and storage. The inoculated (five-strain composite, 6.0 log CFU/cm2) slices were subjected to the following marinades (24 h, 4 degrees C) prior to drying at 60 degrees C for 10 h and aerobic storage at 25 degrees C for 60 days: (1) no marinade, control (C), (2) traditional marinade (TM), (3) double amount of TM modified with added 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce with 5% ethanol (MM), (4) dipping into 5% acetic acid and then TM (AATM), and (5) dipping into 1% Tween 20 and then into 5% acetic acid, followed by TM (TWTM). Bacterial survivors were determined on tryptic soy agar with 0.1% pyruvate and xylose-lysine-tergitol 4 (XLT4) agar. Results indicated that drying reduced bacterial populations in the order of pre-drying treatments TWTM (4.8-6.0 log CFU/cm2)> or =AATM> or =MM>TM> or =C (2.6-5.0 log CFU/cm2). Nonadapted Salmonella were significantly (P<0.05) more resistant to inactivation during drying than acid-adapted Salmonella in all treatments. Bacterial populations decreased below the detection limit (-0.4 log CFU/cm2) as early as 7 h during drying or remained detectable even after 60 days of storage, depending on acid adaptation, pre-drying treatment, and agar media. The results indicated that acid adaptation may not cause increased resistance of Salmonella to the microbial hurdles involved in jerky processing and that use of modified marinades in manufacturing jerky may improve the effectiveness of drying in inactivating Salmonella. PMID:14580973

  4. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  5. Proteins associated with adaptation of cultured tobacco cells to NaCl

    SciTech Connect

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-09-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate /sup 35/S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables.

  6. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  7. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  8. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV.

    PubMed

    Rölle, Alexander; Brodin, Petter

    2016-03-01

    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system. PMID:26869205

  9. Uptake of aristolochic acid I into Caco-2 cells by monocarboxylic acid transporters.

    PubMed

    Kimura, Osamu; Haraguchi, Koichi; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Endo, Tetsuya

    2014-01-01

    The uptake mechanism of aristolochic acid I (AAI) was investigated using Caco-2 cells cultured on dishes and permeable membranes. The uptake of AAI from the apical membrane of Caco-2 cells cultured on a dish was rapid, and a decrease in the pH of the incubation medium significantly increased uptake. Incubation at low temperature (4°C) and treatment with sodium azide (a metabolic inhibitor) or carbonylcyanide p-trifluoromethoxyphenylhydrazone (a protonophore) significantly inhibited the AAI uptake. Coincubation with L-lactic acid or benzoic acid, typical substrates for the proton-linked monocarboxylic acid transporters (MCTs), significantly decreased the AAI uptake, as did coincubation with α-cyano-4-hydroxycinnamate (an inhibitor of MCTs). Dixon plotting revealed the competitive inhibition of benzoic acid on the AAI uptake. To confirm the AAI uptake via MCTs, the apical-to-basolateral transport of AAI was investigated using the Caco-2 cells cultured on the permeable membranes. The transport of AAI at pH 6.0 was markedly higher than that at pH 7.4, and was significantly decreased by coincubation with benzoic acid. These results suggest that the uptake of AAI from the apical membrane of Caco-2 cells is mediated mainly by MCTs along with benzoic acid. PMID:25177030

  10. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    SciTech Connect

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  11. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  12. Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

    PubMed Central

    Hyde, Russell; Taylor, Peter M; Hundal, Harinder S

    2003-01-01

    Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms. PMID:12879880

  13. Adenine nucleoside diphosphates block adaptation of mechanoelectrical transduction in hair cells.

    PubMed

    Gillespie, P G; Hudspeth, A J

    1993-04-01

    By adapting to sustained stimuli, hair cells in the internal ear retain their sensitivity to minute transient displacements. Because one model for adaptation asserts that this process is mediated by a myosin isozyme, we reasoned that we should be able to arrest adaptation by interfering with myosin's ATPase cycle though introduction of ADP into hair cells. During tight-seal, whole-cell recordings of transduction currents in cells isolated from bullfrog (Rana catesbeiana) sacculus, dialysis with 5-25 mM ADP gave variable results. In half of the cells examined, the rate of adaptation remained unchanged or even increased; adaptation was blocked in the remaining cells. Because we suspected that the variable effect of ADP resulted from the conversion of ADP to ATP by adenylate kinase, we employed the ADP analog adenosine 5'-[beta-thio]diphosphate (ADP[beta S]), which is not a substrate for adenylate kinase. Adaptation consistently disappeared in the presence of 1-10 mM ADP[beta S]; in addition, the transduction channels' open probability at rest grew from approximately 0.1 to 0.8 or more. Both effects could be reversed by 2 mM ATP. When used in conjunction with the adenylate kinase inhibitor P1,P5-bis(5'-adenosyl) pentaphosphate (Ap5A), ADP had effects similar to those of ADP[beta S]. These results suggest that adaptation by hair cells involves adenine nucleotides, and they lend support to the hypothesis that the adaptation process is powered by a myosin motor. PMID:8464880

  14. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers

    PubMed Central

    Desriac, Noémie; Broussolle, Véronique; Postollec, Florence; Mathot, Anne-Gabrielle; Sohier, Danièle; Coroller, Louis; Leguerinel, Ivan

    2013-01-01

    Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain. PMID:24106490

  15. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers.

    PubMed

    Desriac, Noémie; Broussolle, Véronique; Postollec, Florence; Mathot, Anne-Gabrielle; Sohier, Danièle; Coroller, Louis; Leguerinel, Ivan

    2013-01-01

    Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain. PMID:24106490

  16. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  17. Mechanisms of suberoylanilide hydroxamic acid inhibition of mammary cell growth

    PubMed Central

    Said, Thenaa K; Moraes, Ricardo CB; Sinha, Raghu; Medina, Daniel

    2001-01-01

    The mechanism of suberoylanilide hydroxamic acid in cell growth inhibition involved induction of pRb-2/p130 interaction and nuclear translocation with E2F-4, followed by significant repression in E2F-1 and PCNA nuclear levels, which led to inhibition in DNA synthesis in mammary epithelial cell lines. PMID:11250759

  18. Fatty Acid-Induced T Cell Loss Greases Liver Carcinogenesis.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2016-05-10

    A new study has added loss of CD4(+) T cells caused by aberrant lipid metabolism to the list of mechanisms promoting nonalcoholic steatohepatitis progression to liver cancer (Ma et al., 2016). Exposure of CD4(+) T cells to free linoleic acid causes their ROS-mediated depletion, thereby favoring liver cancer growth. PMID:27166937

  19. {sub p}53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    SciTech Connect

    Takahashi, Akihisa; Su Xiaoming; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-11-15

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  20. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  1. Innate lymphoid cell function in the context of adaptive immunity.

    PubMed

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  2. Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis.

    PubMed

    Ignatowicz, E; Vezzani, A M; Rizzi, M; D'Incalci, M

    1991-11-01

    We investigated whether in vivo excitotoxicity was mediated by a mechanism of programmed cell death called apoptosis. Neurotoxic doses of kainic acid (1.2 nmol) and quinolinic acid (120 nmol) were unilaterally injected in the dorsal hippocampus of anesthetized rats. Eight or 16 h later the animals were killed and DNA was extracted from the injected hippocampi. DNA from mouse thymocytes exposed to methylprednisolone (10(-5) M for 6 h at 37 degrees C) was used as a positive control of apoptotic cells. No typical 'ladder' of DNA fragments (multimers of approximately 200 Kb) which characterizes apoptosis was seen in hippocampal cells after toxic doses of kainic or quinolinic acid, as assessed by agarose gel electrophoresis. This suggests that hippocampal nerve cell death induced in vivo by the excitotoxins is not mediated by apoptosis. PMID:1839770

  3. Solid Acid Fuel Cell Stack for APU Applications

    SciTech Connect

    Duong, Hau H.

    2011-04-15

    Solid acid fuel cell technology affords the opportunity to operate at the 200-300 degree centigrade regime that would allow for more fuel flexibility, compared to polymer electrode membrane fuel cell, while avoiding the relatively more expensive and complex system components required by solid oxide fuel cell. This project addresses many factors such as MEA size scalability, fuel robustness, stability, etc., that are essential for successful commercialization of the technology.

  4. Silicon dioxide thin film mediated single cell nucleic acid isolation.

    PubMed

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  5. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    PubMed Central

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  6. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour.

    PubMed

    Frechin, Mathieu; Stoeger, Thomas; Daetwyler, Stephan; Gehin, Charlotte; Battich, Nico; Damm, Eva-Maria; Stergiou, Lilli; Riezman, Howard; Pelkmans, Lucas

    2015-07-01

    Cells sense the context in which they grow to adapt their phenotype and allow multicellular patterning by mechanisms of autocrine and paracrine signalling. However, patterns also form in cell populations exposed to the same signalling molecules and substratum, which often correlate with specific features of the population context of single cells, such as local cell crowding. Here we reveal a cell-intrinsic molecular mechanism that allows multicellular patterning without requiring specific communication between cells. It acts by sensing the local crowding of a single cell through its ability to spread and activate focal adhesion kinase (FAK, also known as PTK2), resulting in adaptation of genes controlling membrane homeostasis. In cells experiencing low crowding, FAK suppresses transcription of the ABC transporter A1 (ABCA1) by inhibiting FOXO3 and TAL1. Agent-based computational modelling and experimental confirmation identified membrane-based signalling and feedback control as crucial for the emergence of population patterns of ABCA1 expression, which adapts membrane lipid composition to cell crowding and affects multiple signalling activities, including the suppression of ABCA1 expression itself. The simple design of this cell-intrinsic system and its broad impact on the signalling state of mammalian single cells suggests a fundamental role for a tunable membrane lipid composition in collective cell behaviour. PMID:26009010

  7. Characterization of ascorbic acid uptake by isolated rat kidney cells

    SciTech Connect

    Bowers-Komro, D.M.; McCormick, D.B. )

    1991-01-01

    Isolated kidney cells accumulated L(1-14C)ascorbic acid in a time-dependent manner and reached a steady state after 15 min at 37 degrees C. Initial velocity for uptake was over 300 pmol/mg protein per min when cells were separated from the bathing solution using a density gradient established during centrifugation. The uptake process was saturable with an apparent concentration at half maximal uptake of 36 mumols/L. Ascorbate uptake was reduced by metabolic inhibitors and was temperature dependent. Although ascorbic acid is an acid anion at pH 7.4, uptake did not appear to be inhibited by other acid anions such as p-aminohippurate and probenecid; however, involvement of the ion gradient established by Na+, H(+)-adenosine triphosphatase could not be confirmed. Replacing the sodium ion with other monovalent ions reduced the accumulation of ascorbate significantly. Isoascorbic and dehydroascorbic acids inhibited ascorbate uptake (34 and 13 mmol/L, respectively), whereas high concentrations of glucose showed some stimulation. These findings indicated that ascorbic acid is reabsorbed by the kidney in a sodium-dependent active transport process that is not common to other acid anions and has some specificity for the ascorbic acid structure.

  8. Effects of acid adaptation and modified marinades on survival of postdrying Salmonella contamination on beef jerky during storage.

    PubMed

    Calicioglu, Mehmet; Sofos, John N; Kendall, Patricia A; Smith, Gary C

    2003-03-01

    This study was undertaken to evaluate the survival of acid-adapted and nonadapted Salmonella cultures inoculated after drying on beef jerky that had been treated with marinades before drying at 60 degrees C for 10 h. Beef slices were (i) not treated prior to refrigeration at 4 degrees C for 24 h (control [C]); (ii) marinated with traditional marinade (TM), (iii) marinated with TM modified with 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce containing 5% ethanol (MM) at twice the amount used in the TM treatment; (iv) dipped into 5% acetic acid and then marinated with TM (AATM); and (v) dipped into 1% Tween 20, then dipped into 5% acetic acid, and then marinated with TM (TWTM); after each treatment, meat slices were refrigerated at 4 degrees C for 24 h prior to drying. Dried slices were inoculated with acid-adapted or nonadapted Salmonella (ca. 5.7 log CFU/cm2) prior to aerobic storage at 25 degrees C for 60 days. Tryptic soy agar with 0.1% pyruvate, as well as xylose-lysine-tergitol 4 (XLT4) agar, was used to determine survivor counts. Bacterial decreases achieved with the different treatments were found to be in the following order: TWTM (5.4 to 6.3 log units) > or = AATM > or = MM > C > or = TM (2.9 to 5.1 log units). Acid-adapted Salmonella decreased faster than nonadapted Salmonella for all treatments. Bacterial populations decreased to below the detection limit (-0.4 log CFU/cm2) in as few as 14 days or remained detectable by direct plating after 60 days of storage, depending on acid adaptation, treatment, and agar media. The results of this study indicate that the modified marinades used in jerky processing and the low water activity of the dried product provide antimicrobial effects against possible postprocessing contamination with Salmonella, while the preparation of cultures under acid-adaptation conditions did not increase Salmonella survival during storage and may have reduced it. PMID:12636291

  9. The effect of ascetic acid on mammalian cells

    SciTech Connect

    Mariana, Oana C; Trujillo, Antoinette; Sanders, Claire K; Burnett, Kassidy S; Freyer, James P; Mourant, Judith R

    2010-01-01

    Effects of the contrast agent, acetic acid, on mammalian cells are studied using light scattering measurements, viability and fluorescence pH assays. Results depend on whether cells are in PBS or are live and metabolizing. Acetic acid is a contrast agent used to aid the detection of cancerous and precancerous lesions of the uterine cervix. Typically 3% or 5% acetic acid is applied to the swface of the cervix and areas of the tissue that turn 'acetowhite' are considered more likely to be precancerous. The mechanism of action of acetic acid has never been understood in detail, although there are several hypotheses. One is that a decrease in pH causes cytokeratins in epithelial cells to polymerize. We will present data demonstrating that this is not the sole mechanism of acetowhitening. Another hypothesis is that a decrease in pH in the nucleus causes deacetylation of the histones which in turn results in a dense chromatin structure. Relevant to this hypothesis we have measured the internal pH of cells. Additional goals of this work are to understand what physical changes result in acetowhitening, to understand why there is variation in how cells respond to acetic acid, and to investigate how acetowhitening affects the light scatter properties measured by a fiber-optic probe we have developed for cervical cancer diagnostics.

  10. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

    PubMed Central

    2011-01-01

    Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9

  11. Stress-induced adaptive islet cell identity changes.

    PubMed

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  12. Novel phosphoric acid doped polybenzimidazole membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng

    Acid doped polybenzimidazole (PBIRTM, called mPBI in this thesis) membranes are applied as electrolytes in high temperature polymer electrolyte membrane fuel cells (PEMFCs). Several series of homopolymers and copolymers with high I.V. were synthesized in PPA solution. A novel membrane fabrication and acid doping process, called the PPA process, was developed by casting the polymer-polyphosphoric acid (PPA) solution directly after polymerization without isolation or redissolution of the polymers. The PPA absorbed moisture from the atmosphere and hydrolyzed to phosphoric acid, which induced a sol-gel transition and produced a high acid doped PBI membrane. A water spray method was developed to make an acid doped ABPBI membrane by spraying water or dilute phosphoric acid onto the cast solution directly. This process induced film formation for ABPBI, but washed out most of the phosphoric acid dopant. A more rigid pPBI homopolymer was synthesized in PPA solution with high inherent viscosity (2˜3 dL/g). Acid doped pPBI membranes showed high acid doping level (pPBI·69H3PO4) and high conductivity (0.24 S/cm at 160°C). Fuel cells based on pPBI/PA showed good performance at various conditions. For example, a fuel cell based on pPBI/PA showed a maximum power density of 0.92 W/cm2 at 160°C and ambient pressure (H2/O2). The degradation rate of the cell potential was -21 mV/1,000 hours and -35 mV/1,000 hours at 160°C and 180°C, respectively in continuous testing. Fuel cells also showed good performance and tolerance to carbon monoxide poisoning when operated at temperatures higher than 120°C. The voltage drop was only 31 mV (from 0.657 V to 0.626 V at 0.3 A/cm2) when reformate gas (40.0% H2, 0.2% CO, 19.0% CO2, 40.8% N2) was used instead of pure hydrogen at one atmosphere pressure and 160°C. The structure-property relationships were investigated on the homopolymers and copolymers with different rigidities in the main chain. It is found that para-oriented structures

  13. Survival and growth of acid-adapted and unadapted Salmonella in and on raw tomatoes as affected by variety, stage of ripeness, and storage temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2008-08-01

    Consumption of raw round and Roma tomatoes has been associated with outbreaks of salmonellosis. A study was done to determine whether survival and growth of Salmonella in and on tomatoes is affected by variety of tomato, stage of ripeness, and storage temperature. The influence of acid adaptation of cells and site of inoculation on survival and growth was studied. Salmonella grew in stem scar and pulp tissues of round, Roma, and grape tomatoes stored at 12 and 21 degrees C but not in those tomatoes stored at 4 degrees C. Survival and growth was largely unaffected by variety and stage of ripeness at the time of inoculation. The pathogen did not grow on the skin of grape tomatoes stored at 4, 12, and 21 degrees C. Survival and growth of Salmonella inoculated into stem scar and pulp tissues of round and Roma tomatoes were unaffected by exposure of cells to an acidic (pH 4.75) environment before inoculation. Results emphasize the importance of preventing contamination of tomatoes with Salmonella at all stages of ripeness, regardless of variety or previous exposure of cells to an acidic environment. PMID:18724750

  14. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).

    PubMed

    Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja

    2014-04-01

    Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes. PMID:24552840

  15. Adaptation of the chlorophycean Dictyosphaerium chlorelloides to stressful acidic, mine metal-rich waters as result of pre-selective mutations.

    PubMed

    López-Rodas, Victoria; Marvá, Fernando; Rouco, Mónica; Costas, Eduardo; Flores-Moya, Antonio

    2008-06-01

    Several species of microalgae, closely related to mesophilic lineages, inhabit the extreme environment (pH 2.5, high levels of metals) of the Spain's Aguas Agrias Stream water (AASW). Consequently, AASW constitutes an interesting natural laboratory for analysis of adaptation by microalgae to extremely stressful conditions. To distinguish between the pre-selective or post-selective origin of adaptation processes allowing the existence of microalgae in AASW, a Luria-Delbrück fluctuation analysis was performed with the chlorophycean Dictyosphaerium chlorelloides isolated from non-acidic waters. In the analysis, AASW was used as selective factor. Preselective, resistant D. chlorelloides cells appeared with a frequency of 1.1 x 10(-6) per cell per generation. AASW-resistant mutants, with a diminished Malthusian fitness, are maintained in non-extreme waters as the result of a balance between new AASW-resistant cells arising by mutation and AASW-resistant mutants eliminated by natural selection (equilibrium at c. 12 AASW-resistants per 10(7) wild-type cells). We propose that the microalgae inhabiting this stressful environment could be the descendents of chance mutants that arrived in the past or are even arriving at the present. PMID:18495202

  16. Thermal inactivation of acid, cold, heat, starvation, and desiccation stress-adapted Escherichia coli O157:H7 in moisture-enhanced nonintact beef.

    PubMed

    Shen, Cangliang; Geornaras, Ifigenia; Belk, Keith E; Smith, Gary C; Sofos, John N

    2011-04-01

    This study was conducted to compare thermal inactivation of stress-adapted and nonadapted Escherichia coli O157:H7 in nonintact beef moisture enhanced with different brine formulations and cooked to 65°C. Coarsely ground beef was mixed with acid, cold, heat, starvation, or desiccation stress-adapted or nonadapted rifampin-resistant E. coli O157:H7 (eight-strain mixture, 5 to 6 log CFU/g) and a brine solution for a total moisture enhancement level of 10%. The brine treatments included distilled water (control), sodium chloride (0.5% NaCl) plus sodium tripolyphosphate (0.25% STP), or NaCl + STP combined with cetylpyridinium chloride (0.2% CPC), lactic acid (0.3% LA), or sodium metasilicate (0.2% SM). The treated meat was extruded into bags (15 cm diameter), semifrozen (-20°C for 4.5 h), and cut into 2.54-cm (1-in.)-thick portions. Samples were individually vacuum packaged, frozen (-20°C for 42 h), and tempered at 4°C for 2.5 h before cooking. Partially thawed (-1.8 ± 0.4°C) samples were pan broiled to an internal temperature of 65°C. Pathogen counts of partially thawed (before cooking) samples moisture enhanced with brines containing CPC, LA, or SM were 0.7 to 1.1, 0.0 to 0.4, and 0.2 to 0.4 log CFU/g, respectively, lower than those of the control. Compared with microbial count reductions obtained after pan broiling of beef inoculated with nonadapted E. coli O157:H7 cells, count reductions during cooking of meat inoculated with cold and desiccation stress-adapted, acid stress-adapted, and heat and starvation stress-adapted cells indicated sensitization, cross protection, and no effect, respectively, of these stresses on the pathogen during subsequent exposure to heat. Among all stressed cultures, CPC-treated samples (0.8 to 3.6 log CFU/g) and LA-treated samples (0.8 to 3.5 log CFU/g) had the lowest numbers of E. coli O157:H7 survivors after cooking. PMID:21477465

  17. Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.

  18. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  19. Molecular characterization of E2 glycoprotein of classical swine fever virus: adaptation and propagation in porcine kidney cells.

    PubMed

    Kumar, Rakesh; Barman, Nagendra N; Khatoon, Elina; Rajbongshi, Gitika; Deka, Nipu; Morla, Sudhir; Kumar, Sachin

    2015-05-01

    Classical swine fever virus (CSFV) is the causative agent of a highly contagious disease, hog cholera in pigs. The disease is endemic in many parts of the world, and vaccination is the only way to protect the animals from CSFV infection. The lapinized vaccine strains are occasionally not protective because of animal to animal passage, inadequate vaccination strategy, suboptimal vaccine dose, and emergence of new variants. The surface glycoprotein E2 of CSFV is a major antigenic determinant and can modulate the disease outcome in pigs. In the present study, we characterized the CSFV in porcine kidney cells. The CSFV vaccine strains showed enhanced replication following 15 passages in porcine kidney cells. Nucleotide sequence analysis of the E2 protein gene of the cell culture-adapted vaccine strain of CSFV showed a mutation in putative amino acid sequences that are identical to its virulent counterpart. The study suggests the possibility of exaltation in vaccine strains following its adaptation in host cells and paves the way for a further exploration of the biology of its outbreak. PMID:25552311

  20. Inflammasome-Dependent Induction of Adaptive NK Cell Memory.

    PubMed

    van den Boorn, Jasper G; Jakobs, Christopher; Hagen, Christian; Renn, Marcel; Luiten, Rosalie M; Melief, Cornelis J M; Tüting, Thomas; Garbi, Natalio; Hartmann, Gunther; Hornung, Veit

    2016-06-21

    Monobenzone is a pro-hapten that is exclusively metabolized by melanocytes, thereby haptenizing melanocyte-specific antigens, which results in cytotoxic autoimmunity specifically against pigmented cells. Studying monobenzone in a setting of contact hypersensitivity (CHS), we observed that monobenzone induced a long-lasting, melanocyte-specific immune response that was dependent on NK cells, yet fully intact in the absence of T- and B cells. Consistent with the concept of "memory NK cells," monobenzone-induced NK cells resided in the liver and transfer of these cells conferred melanocyte-specific immunity to naive animals. Monobenzone-exposed skin displayed macrophage infiltration and cutaneous lymph nodes showed an inflammasome-dependent influx of macrophages with a tissue-resident phenotype, coinciding with local NK cell activation. Indeed, macrophage depletion or the absence of the NLRP3 inflammasome, the adaptor protein ASC or interleukin-18 (IL-18) abolished monobenzone CHS, thereby establishing a non-redundant role for the NLRP3 inflammasome as a critical proinflammatory checkpoint in the induction of hapten-dependent memory NK cells. PMID:27287410

  1. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  2. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  3. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  4. Neural network adapted to wound cell analysis in surgical patients.

    PubMed

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. PMID:21362082

  5. Amino Acid Synthesis in Photosynthesizing Spinach Cells 1

    PubMed Central

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO2 fixation for more than 60 hours. The incorporation of 14CO2 under saturating CO2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14C “saturation” of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of 14C into glutamine (a factor of 21), aspartate, asparagine, valine, alanine, arginine, and histidine. No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling. In the case of glutamate, 14C labeling decreased, but specific radioactivity increased. The production of labeled γ-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis. PMID:16661904

  6. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  7. Natural Interferon α/β–Producing Cells Link Innate and Adaptive Immunity

    PubMed Central

    Kadowaki, Norimitsu; Antonenko, Svetlana; Lau, Johnson Yiu-Nam; Liu, Yong-Jun

    2000-01-01

    Innate immune responses to pathogens critically impact the development of adaptive immune responses. However, it is not completely understood how innate immunity controls the initiation of adaptive immunities or how it determines which type of adaptive immunity will be induced to eliminate a given pathogen. Here we show that viral stimulation not only triggers natural interferon (IFN)-α/β–producing cells (IPCs) to produce vast amounts of antiviral IFN-α/β but also induces these cells to differentiate into dendritic cells (DCs). IFN-α/β and tumor necrosis factor α produced by virus-activated IPCs act as autocrine survival and DC differentiation factors, respectively. The virus-induced DCs stimulate naive CD4+ T cells to produce IFN-γ and interleukin (IL)-10, in contrast to IL-3–induced DCs, which stimulate naive CD4+ T cells to produce T helper type 2 cytokines IL-4, IL-5, and IL-10. Thus, IPCs may play two master roles in antiviral immune responses: directly inhibiting viral replication by producing large amounts of IFN-α/β, and subsequently triggering adaptive T cell–mediated immunity by differentiating into DCs. IPCs constitute a critical link between innate and adaptive immunity. PMID:10899908

  8. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

    PubMed

    Rampal, Ritika; Awasthi, Amit; Ahuja, Vineet

    2016-07-01

    All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation. PMID:26980802

  9. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Lewis, Adam J.; Morgan, William F.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  10. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings.

    PubMed

    Kostopoulou, Zacharoula; Therios, Ioannis; Roumeliotis, Efstathios; Kanellis, Angelos K; Molassiotis, Athanassios

    2015-01-01

    Ascorbic acid (AsA) and melatonin (Mel) are known molecules participating in stress resistance, however, their combined role in counteracting the impact of salinity in plants is still unknown. In this work the effect of exogenous application of 0.50 mΜ AsA, 1 μΜ Mel and their combination (AsA + Mel) on various stress responses in leaves and roots of Citrus aurantium L. seedlings grown under 100 mΜ NaCl for 30 days was investigated. Application of AsA, Mel or AsA + Mel to saline solution decreased NaCl-induced electrolyte leakage and lipid peroxidation and prevented NaCl-associated toxicity symptoms and pigments degradation. Also, leaves exposed to combined AsA + Mel treatment displayed lower Cl(-) accumulation. Treatments with AsA and/or Mel modulated differently carbohydrates, proline, phenols, glutathione and the total antioxidant power of tissues as well as the activities of SOD, APX, POD, GR and PPO compared to NaCl alone treatment. Exposure of leaves and roots to chemical treatments and especially to combined AsA and Mel application was able to regulate CaMIPS, CaSLAH1 and CaMYB73 expression, indicating that sugar metabolism, ion homeostasis and transcription regulation were triggered by AsA and Mel. These results provide evidence that the activation of the metabolic pathways associated with combined AsA and Mel application are linked with salt adaptation in citrus plants. PMID:25500452

  11. The effect of volatile fatty acids (VFAs) on nutrient removal in SBR with biomass adapted to dairy wastewater.

    PubMed

    Janczukowicz, Wojciech; Rodziewicz, Joanna; Czaplicka, Kamila; Kłodowska, Izabella; Mielcarek, Artur

    2013-01-01

    This study aims to determine the effect of volatile fatty acids on nitrates and orthophosphate removal in a sequencing batch reactor (SBR) with activated sludge biomass adapted to process dairy wastewater. The research also determine whether it is the type of fatty acid applied that is responsible for the effectiveness of denitrification and dephosphatation at varying nitrate:orthophosphate ratios, or whether these processes are additionally affected by the presence of microorganisms that have adapted to the specific carbon composition of the wastewater being treated. At the beginning of an operating cycle SBRs were dosed with VFAs to provide a source of carbon. A comparative analysis was performed of nitrate and orthophosphate removal at initial nitrate concentrations of 1.22, 7.3 and 15.2 mgN(NO3)L⁻¹. Doses of fatty acids were approximately 10.5 mg⁻¹COD·mgP(PO4). They consisted of acetic, propionic, butyric, isobutyric, valeric, isovaleric and caproic acids. Increases of nitrate concentration from 1.22 to 15.2 mg N(NO3)L⁻¹ were observed to reduce the quantity of removed orthophosphate depending on the fatty acid applied, from 7.2-9.2 mgP(PO4)L to 4.5 - 6.7 mgP(PO4)L. Every increase in the removed nitrates by 5.0 mgN(NO3)L⁻¹ was accompanied by a decrease in the removed orthophosphate of around 1 mgP(PO4)L⁻¹. The reactor containing acetic acid was found to remove the highest amount of orthophosphate irrespective of the nitrates concentration. Acids present in significant amount in dairy wastewaters (i.e. acetic, propionic and butyric) were more effective source of carbon in the denitrification process compared to low concentration acids. PMID:23445424

  12. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells

    PubMed Central

    Liu, Huan; Huang, Guo-wei; Zhang, Xu-mei; Ren, Da-lin; X. Wilson, John

    2010-01-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system. PMID:20838574

  13. LYSOPHOSPHATIDIC ACID INHIBITS CD8 T CELL ACTIVATION AND CONTROL OF TUMOR PROGRESSION

    PubMed Central

    Oda, Shannon K.; Strauch, Pamela; Fujiwara, Yuko; Al-Shami, Amin; Oravecz, Tamas; Tigyi, Gabor; Pelanda, Roberta; Torres, Raul M.

    2013-01-01

    CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment. PMID:24455753

  14. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression.

    PubMed

    Oda, Shannon K; Strauch, Pamela; Fujiwara, Yuko; Al-Shami, Amin; Oravecz, Tamas; Tigyi, Gabor; Pelanda, Roberta; Torres, Raul M

    2013-10-01

    CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment. PMID:24455753

  15. Enhancement effect of poly(amino acid)s on insulin uptake in alveolar epithelial cells.

    PubMed

    Oda, Keisuke; Yumoto, Ryoko; Nagai, Junya; Katayama, Hirokazu; Takano, Mikihisa

    2012-01-01

    In this study, we elucidated the effect of poly(amino acid)s such as poly-L-ornithine (PLO) on FITC-insulin uptake in cultured alveolar type II epithelial cells, RLE-6TN. FITC-insulin uptake by RLE-6TN cells as well as its cell surface binding was markedly increased by PLO without cytotoxicity. The uptake of FITC-insulin in the presence of PLO was shown to be mediated by endocytosis, but in contrast to the uptake in the absence of PLO, the contribution of macropinocytosis emerged. Colocalization of FITC-insulin and LysoTracker Red was observed by confocal laser scanning microscopy both in the absence and presence of PLO, indicating that FITC-insulin was partly targeted to lysosomes in the cells and degraded. The half-life of the intracellular degradation of FITC-insulin was, however, prolonged by the presence of PLO. PLO also stimulated the uptake of other FITC-labeled compounds. Among them, the enhancement effects of PLO on FITC-albumin and FITC-insulin uptake were prominent. The effect of PLO on insulin absorption was also examined in in-vivo pulmonary administration in rats, and co-administration of PLO enhanced the hypoglycemic action of insulin. These findings suggest that co-administration of poly(amino acid)s such as PLO is a useful strategy for enhancing insulin uptake by alveolar epithelial cells and subsequent absorption from the lung. PMID:22510869

  16. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  17. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  18. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  19. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  20. Ionotropic glutamate receptors mediate OFF responses in light-adapted ON bipolar cells

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2013-01-01

    Previous studies have suggested that photoreceptor synaptic inputs to depolarizing bipolar cells (DBCs or ON bipolar cells) are mediated by mGluR6 receptors and those to hyperpolarizing bipolar cells (HBCs or OFF bipolar cells) are mediated by AMPA/kainate receptors. Here we show that in addition to mGluR6 receptors which mediate the sign-inverting, depolarizing light responses, subpopulations of cone-dominated and rod/cone mixed DBCs use GluR4 AMPA receptors to generate a transient sign-preserving OFF response under light adapted conditions. These AMPA receptors are located at the basal junctions postsynaptic to rods and they are silent under dark-adapted conditions, as tonic glutamate release in darkness desensitizes these receptors. Light adaptation enhances rod-cone coupling and thus allows cone photocurrents with an abrupt OFF depolarization to enter the rods. The abrupt rod depolarization triggers glutamate activation of unoccupied AMPA receptors, resulting in a transient OFF response in DBCs. It has been widely accepted that the DNQX-sensitive, OFF transient responses in retinal amacrine cells and ganglion cells are mediated exclusively by HBCs. Our results suggests that this view needs revision as AMPA receptors in subpopulations of DBCs are likely to significantly contribute to the DNQX-sensitive OFF transient responses in light-adapted third- and higher-order visual neurons. PMID:22842089

  1. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed Central

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  2. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  3. Integral edge seals for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  4. Interleukin-33 and Mast Cells Bridge Innate and Adaptive Immunity: From the Allergologist’s Perspective

    PubMed Central

    Jang, Tae Young; Kim, Young Hyo

    2015-01-01

    Interleukin (IL) 33, a member of the IL-1 superfamily, is an “alarmin” protein and is secreted in its active form from damaged cells undergoing necrotic cell death. Mast cells are one of the main effector cell types in allergic disorders. They secrete a variety of mediators, including T helper 2 cytokines. As mast cells have high-affinity IgE receptors (FcεRI) on their surface, they can capture circulating IgE. IgE-bound mast cells degranulate large amounts of histamine, heparin, and proteases when they encounter antigens. As IL-33 is an important mediator of innate immunity and mast cells play an important role in adaptive immune responses, interactions between the two could link innate and adaptive immunity. IL-33 promotes the adhesion of mast cells to laminin, fibronectin, and vitronectin. IL-33 increases the expression of adhesion molecules, such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in endothelial cells, thus enhancing mast cell adhesion to blood vessel walls. IL-33 stimulates mast cell proliferation by activating the ST2/Myd88 pathway; increases mast cell survival by the activation of survival proteins such as Bcl-XL; and promotes the growth, development, and maturation of mast cell progenitors. IL-33 is also involved in the activation of mature mast cells and production of different proinflammatory cytokines. The interaction of IL-33 and mast cells could have important clinical implications in the field of clinical urology. Epithelial dysfunction and mast cells could play an important role in the pathogenesis of interstitial cystitis. Urinary levels of IL-33 significantly increase in patients with interstitial cystitis. In addition, the number of mast cells significantly increase in the urinary bladders of patients with interstitial cystitis. Therefore, inhibition of mast cell activation and degranulation in response to increase in IL-33 is a potential therapeutic target in the treatment of interstitial cystitis

  5. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15

    PubMed Central

    Li, Jie; Guo, Wei-Jian; Yang, Qing-Yao

    2002-01-01

    AIM: Ursolic acid (UA) and oleanolic acid (OA) are triperpene acids having a similar chemical structure and are distributed wildly in plants all over the world. In recent years, it was found that they had marked anti-tumor effects. There is little literature currently available regarding their effects on colon carcinoma cells. The present study was designed to investigate their inhibitory effects on human colon carcinoma cell line HCT15. METHODS: HCT15 cells were cultured with different drugs. The treated cells were stained with hematoxylin-eosin and their morphologic changes observed under a light microscope. The cytotoxicity of these drugs was evaluated by tetrazolium dye assay. Cell cycle analysis was performed by flow cytometry (FCM). Data were expressed as means ± SEM and Analysis of variance and Student’ t-test for individual comparisons. RESULTS: Twenty-four to 72 h after UA or OA 60 μmol/L treatment, the numbers of dead cells and cell fragments were increased and most cells were dead at the 72nd hour. The cytotoxicity of UA was stronger than that of OA. Seventy-eight hours after 30 μmol/L of UA or OA treatment, a number of cells were degenerated, but cell fragments were rarely seen. The IC50 values for UA and OA were 30 and 60 μmol/L, respectively. Proliferation assay showed that proliferation of UA and OA-treated cells was slightly increased at 24 h and significantly decreased at 48 h and 60 h, whereas untreated control cells maintained an exponential growth curve. Cell cycle analysis by FCM showed HCT15 cells treated with UA 30 and OA 60 for 36 h and 72 h gradually accumulated in G0/G1 phase (both drugs P < 0.05 for 72 h), with a concomitant decrease of cell populations in S phase (both drugs P < 0.01 for 72 h) and no detectable apoptotic fraction. CONCLUSION: UA and OA have significant anti-tumor activity. The effect of UA is stronger than that of OA. The possible mechanism of action is that both drugs have an inhibitory effect on tumor cell

  6. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes.

    PubMed

    Eng, George; Lee, Benjamin W; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S; Keller, Gordon; Robinson, Richard B; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  7. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  8. Cross-adaptation to odor stimulation of olfactory receptor cells in the box turtle, Terrapene carolina.

    PubMed

    Tonosaki, K

    1993-01-01

    Electrical recording from small twigs of olfactory nerve and electro-olfactogram (EOG) from olfactory epithelium in a turtle shows that olfactory receptors in the nose are responsive to various odors. I have used the effects of cross-adaptation to odor stimulation on the olfactory receptors to investigate the stimulus-specific components of these responses and to provide information about the responsiveness of cells. The results of the cross-adaptation experiments strongly support the hypothesis that different categories of receptor cells exist in the olfactory epithelium. PMID:8386588

  9. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  10. Enhanced production of docosahexaenoic acid in mammalian cells.

    PubMed

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  11. Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1996-01-01

    A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  12. Spectral properties of dark-adapted retinal ganglion cells in the plaice (Pleuronectes platessa, L.)

    PubMed Central

    Hammond, P.

    1968-01-01

    1. Spectral, spatial and temporal properties of receptive fields of dark-adapted, on—off retinal ganglion cells in the intact eye of the plaice, were analysed by recording from their axon terminals in the superficial layers of the optic tectum with indium micro-electrodes. 2. Two cell-types were identified. The first gave fast-adapting, spectrally opponent on—off responses without centre-surround subdivisions of the receptive field. On and off response-components were mutually antagonistic. The second type gave slow-adapting on—off or off responses for different stimulus positions within the receptive field, with centre-surround or adjacent field configurations. Only on—off centre cells, showing mutual antagonism between field centre and surround, or off centre cells with inhibitory centres, were found. These cells had weak opponent or non-opponent properties. 3. Most cells of each type received inputs both from cones and rods. At stimulus intensities suprathreshold for cones, response-components gave spectral peaks which have been classified into one of four wave-length ranges; blue, 440-460 nm; blue-green, 470-490 nm; green, 510-540 nm; and orange, 560-590 nm. No cells analysed gave sensitivity maxima in the red. At low stimulus intensities all cells with rod input gave a single spectral peak between 510 and 530 nm. ImagesFig. 3Fig. 4Fig. 9 PMID:5649636

  13. Cystine and dibasic amino acid uptake by opossum kidney cells

    SciTech Connect

    States, B.; Segal, S. )

    1990-06-01

    The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.

  14. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  15. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  16. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  17. Adaptive beam shaper based on a single liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Zenou, Michael; Reznikov, Mitya; Manevich, Michael; Varshal, Joseph; Reznikov, Yuriy; Kotler, Zvi

    2013-03-01

    We describe a method allowing rapid transformation of a Gaussian input laser beam into a variety of beam profiles such as top-hat and ring-shaped. A liquid crystal cell with a simple binary phase structure was designed and prepared using microlithographic processes. The new design provides an electrically tunable, variable mode, beam shaping device with millisecond response time (ton˜5 ms and toff˜35 ms).

  18. Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds.

    PubMed

    Löffler, Claudia; Eberlein, Christian; Mäusezahl, Ines; Kappelmeyer, Uwe; Heipieper, Hermann J

    2010-07-01

    The physiology of the response in the methanotrophic bacterium Methylococcus capsulatus Bath towards thermal and solvent stress was studied. A systematic investigation of the toxic effects of organic compounds (chlorinated phenols and alkanols) on the growth of this bacterium was carried out. The sensitivity to the tested alkanols correlated with their chain length and hydrophobicity; methanol was shown to be an exception to which the cells showed a very high tolerance. This can be explained by the adaptation of these bacteria to growth on C1 compounds. On the other hand, M. capsulatus Bath was very sensitive towards the tested chlorinated phenols. The high toxic effect of phenolic compounds on methanotrophic bacteria might be explained by the occurrence of toxic reactive oxygen species. In addition, a physiological proof of the presence of cis-trans isomerization as a membrane-adaptive response mechanism in M. capsulatus was provided. This is the first report on physiological evidence for the presence of the unique postsynthetic membrane-adaptive response mechanism of the cis-trans isomerization of unsaturated fatty acids in a bacterium that does not belong to the genera Pseudomonas and Vibrio where this mechanism was already reported and described extensively. PMID:20487020

  19. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  20. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.

    PubMed

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-06-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706

  1. Control of growth and adaptation to nutritional shifts for bacteria exposed to amino acid-limiting environments

    NASA Astrophysics Data System (ADS)

    Mateescu, Eduard M.; Hwa, Terence

    2007-03-01

    In order to grow at the highest rate sustainable by the environment, bacteria turn on different metabolic pathways and utilize a myriad of adaptive strategies. The macromolecular composition (RNA, DNA, protein) and overall cell size (mass) can be very different in different environments. Surprisingly however, these differences appear to depend only on the growth rate and not on the growth medium itself. As the nutritional environment changes in time, the cells quickly adapt their composition to the one corresponding to the new conditions. Here, we propose a phenomenological model of growth and adaptation control for the bacterial cell, based on a simplified formulation of the central dogma and a simplified implementation of the stringent response. The core model contains no free parameters and provides a simple intuitive understanding of cell growth control. The results generated by the model, physiological state of the cell as well as the characteristics of the transition between optimized states of growth, are in qualitative and semi-quantitative agreement (i.e. within a factor of 2) with the experimental observations.

  2. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  3. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis. PMID:26378497

  4. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  5. Chromatic adaptation in red-green cone-opponent retinal ganglion cells of the macaque.

    PubMed

    Lee, Barry B; Smith, Vivianne C; Pokorny, Joel; Sun, Hao

    2008-11-01

    The degree of chromatic adaptation of midget ganglion cells of the parvocellular (PC) pathway was studied by measuring long-(L) to middle-wavelength (M) cone weighting at different mean chromaticities in the mid-photopic range. Cone weighting was measured using a protocol involving changing the relative phase of modulated lights, which provided an estimate independent of the level of maintained activity. The degree of adaptation at 2500 td was found to be less than complete (i.e., sub-Weberian), with the M- and L-cone contributions having slopes averaging 0.89 rather than 1.0. This is broadly consistent with the degree of light adaptation present in this cell class. The changes in maintained activity following a step change in chromaticity took tens of seconds to return toward a baseline level, but changes in cone weighting appeared much faster. PMID:18281074

  6. Adaptation of healthy adult cats to select dietary fibers in vivo affects gas and short-chain fatty acid production from fiber fermentation in vitro.

    PubMed

    Barry, K A; Wojcicki, B J; Bauer, L L; Middelbos, I S; Vester Boler, B M; Swanson, K S; Fahey, G C

    2011-10-01

    Nine young adult (1.73 ± 0.03 yr) male cats were used to determine the effects of microbial adaptation to select dietary fiber sources on changes in pH in vitro and on total and hydrogen gas, short-chain fatty acid (SCFA), and branched-chain fatty acid (BCFA) production. Cats were adapted to diets containing 4% cellulose, fructooligosaccharides (FOS), or pectin for 30 d before fecal sampling. Each cat was used as a single donor, and fecal inoculum was reacted with each of the aforementioned fiber substrates. Adaptation to dietary FOS resulted in a greater change in pH when exposed to FOS than pectin (adaptation × substrate, P < 0.001). When exposed to the FOS substrate, adaptation to dietary FOS or pectin increased hydrogen gas production (adaptation × substrate, P = 0.021). Adaptation to dietary FOS increased acetate and total SCFA production when exposed to FOS substrate in vitro (adaptation × substrate, P = 0.001). When exposed to the FOS substrate, propionate production tended to increase with adaptation to dietary cellulose (adaptation × substrate, P = 0.060). The BCFA + valerate tended to decrease with adaptation to dietary FOS when exposed to FOS substrate in vitro (adaptation × substrate, P = 0.092). Fructooligosaccharides resulted in the greatest change in pH and production of total gas (P < 0.001), hydrogen gas (P < 0.001), acetate (P < 0.001), propionate (P < 0.001), butyrate (P < 0.001), total SCFA (P < 0.001), and total BCFA + valerate production (P < 0.001). Adaptation to the FOS or pectin diet increased production of hydrogen gas with FOS and pectin substrates. Adaptation to pectin increased (P = 0.033) total gas production with FOS and pectin substrates. Overall, adaptation to either FOS or pectin led to greater SCFA and gas production, but adaptation to FOS resulted in the greatest effect overall. PMID:21531846

  7. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2013-09-15

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm(2) at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  8. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  9. Intertissue Signal Transfer of Abscisic Acid from Vascular Cells to Guard Cells1[W

    PubMed Central

    Kuromori, Takashi; Sugimoto, Eriko; Shinozaki, Kazuo

    2014-01-01

    Abscisic acid (ABA) is a phytohormone that responds to environmental stresses, such as water deficiency. Recent studies have shown that ABA biosynthetic enzymes are expressed in the vascular area under both nonstressed and water-stressed growth conditions. However, specific cells in the vasculature involved in ABA biosynthesis have not been identified. Here, we detected the expression of two genes encoding ABA biosynthetic enzymes, ABSCISIC ACID DEFICIENT2 and ABSCISIC ALDEHYDE OXIDASE3, in phloem companion cells in vascular tissues. Furthermore, we identified an ATP-binding cassette transporter, Arabidopsis thaliana ABCG25 (AtABCG25), expressed in the same cells. Additionally, AtABCG25-expressing Spodoptera frugiperda9 culture cells showed an ABA efflux function. Finally, we observed that enhancement of ABA biosynthesis in phloem companion cells induced guard cell responses, even under normal growth conditions. These results show that ABA is synthesized in specific cells and can be transported to target cells in different tissues. PMID:24521878

  10. Cells labeled with multiple fluorophores bound to a nucleic acid carrier

    SciTech Connect

    Dattagupta, N.; Kamarch, M.E.

    1989-04-25

    In passing labeled cells through a cell sorter, the improvement which comprises employing a labeled cell comprising a cell, an antibody specific to and bound to such cell, a nucleic acid fragment joined to the antibody, and a plurality of labels on the nucleic acid fragment. Because of the presence of multiple labels, the sensitivity of the separation of labeled cells in increased.

  11. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    PubMed Central

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  12. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    PubMed

    Fricke, G Matthew; Letendre, Kenneth A; Moses, Melanie E; Cannon, Judy L

    2016-03-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  13. Plant cell in the process of the adaptation to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    Analysis of structural-and-functional rearrangements in the organelles of meristematic, differentiating and differentiated cells of pea root under microgravity demonstrated certain consistencies in their manifestation, namely: a) heterogeneity of the organelles in a cell population with respect to the degree of the rearrangements; b) coincidence of a spatial succession in development; c) increased reactivity under changes in functional load during cell growth and differentiation; d) enhanced activity when a cell loses its specific functions (replacement of functions). It is assumed that microgravity does not prevent the development of certain adaptative reactions of organisms at the cellular level.

  14. Cutting Edge: Retinoic Acid Signaling in B Cells Is Essential for Oral Immunization and Microflora Composition.

    PubMed

    Pantazi, Eirini; Marks, Ellen; Stolarczyk, Emilie; Lycke, Nils; Noelle, Randolph J; Elgueta, Raul

    2015-08-15

    Retinoic acid (RA) is a critical regulator of the intestinal adaptive immune response. However, the intrinsic impact of RA on B cell differentiation in the regulation of gut humoral immunity in vivo has never been directly shown. To address this issue, we have been able to generate a mouse model where B cells specifically express a dominant-negative receptor α for RA. In this study, we show that the silencing of RA signaling in B cells reduces the numbers of IgA(+) Ab-secreting cells both in vitro and in vivo, suggesting that RA has a direct effect on IgA plasma cell differentiation. Moreover, the lack of RA signaling in B cells abrogates Ag-specific IgA responses after oral immunization and affects the microbiota composition. In conclusion, these results suggest that RA signaling in B cells through the RA receptor α is important to generate an effective gut humoral response and to maintain a normal microbiota composition. PMID:26163586

  15. [An immunofluorescent analysis of bovine rotavirus during its isolation and adaptation to cell cultures].

    PubMed

    Skybyts'kyĭ, V H; Nosach, L M; Martynenko, D L; Onufriiev, V P

    1993-01-01

    The results from comparative studies in the reactions of immunofluorescence, complement binding, diffusion precipitation, hemagglutination, solid-phase immunoenzyme analysis, histochemical variant of immunoenzyme analysis as tests for detection of cattle rotavirus in the process of its isolation from pathological material and adaptation to cell cultures are presented. The immunofluorescence reaction is shown to have an advantage over the other reactions. PMID:8388533

  16. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  17. A Dopamine- and Protein Kinase A-Dependent Mechanism for Network Adaptation in Retinal Ganglion Cells

    PubMed Central

    Vaquero, C. F.; Pignatelli, A.; Partida, G. J.; Ishida, A. T.

    2011-01-01

    Vertebrates can detect light intensity changes in vastly different photic environments, in part, because post-receptoral neurons undergo “network adaptation”. Previous data implicated dopaminergic, cAMP-dependent inhibition of retinal ganglion cells in this process, yet left unclear how this occurs, and whether this occurs in darkness versus light. To test for light- and dopamine-dependent changes in ganglion cell cAMP levels in situ, we immunostained dark- and light-adapted retinas with anti-cAMP antisera, in the presence and absence of various dopamine receptor ligands. To test for direct effects of dopamine receptor ligands and membrane-permeable protein kinase ligands on ganglion cell excitability, we recorded spikes from isolated ganglion cells in perforated-patch whole-cell mode, before and during application of these agents by microperfusion. Our immunostainings show that light, endogenous dopamine, and exogenous dopamine elevate ganglion cell cAMP levels in situ by activating D1-type dopamine receptors. Our spike recordings show that D1-type agonists and 8-bromo cAMP reduce spike frequency and curtail sustained spike firing, and that these effects entail protein kinase A activation. These effects resemble those of background light on ganglion cell responses to light flashes. Network adaptation could thus be produced, to some extent, by dopaminergic modulation of ganglion cell spike generation, a mechanism distinct from modulation of transmitter release onto ganglion cells or of transmitter-gated currents in ganglion cells. Combining these observations, with results obtained in studies of photoreceptor, bipolar, and horizontal cells, indicates that all three layers of neurons in the retina are equipped with mechanisms for adaptation to ambient light. PMID:11606650

  18. Oxidation of L-ascorbic acid to dehydroascorbic acid on the surface of the red blood cell

    SciTech Connect

    Wagner, E.; Jennings, M.; Bennett, K.

    1986-05-01

    L-ascorbic acid-1-/sup 14/C when incubated with human blood did not bind irreversibly to any of the protein components of plasma but did migrate irreversibly into erythrocytes. Isolation and characterization via IR of the moiety trapped within the cell established its identity as apparently, unchanged L-ascorbic acid. When dehydroascorbic acid-1-/sup 14/C was incubated with human blood, the results were identical including the identity of the entrapped moiety, L-ascorbic acid. It was found that L-ascorbic acid was enzymatically oxidized on the surface of the red blood cell to dehydroascorbic acid which diffused through the lipid soluble portion of the cell membrane and was enzymatically reduced back to ascorbic acid within the cell.

  19. Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells

    SciTech Connect

    Wang, Guanyu; Liu, Luying; Sharma, Sherven; Liu, Hai; Yang, Weifang; Sun, Xiaonan; Dong, Qinghua

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Adaptive radioresistant KYSE-150R cells expressed high level of Bmi-1. Black-Right-Pointing-Pointer Bmi-1 depletion sensitized KYSE-150R cells to RT. Black-Right-Pointing-Pointer Bmi-1 depletion increased the generation of ROS in KYSE-150R cells exposed to radiation. Black-Right-Pointing-Pointer Bmi-1 depletion impaired DNA repair capacities in KYSE-150R cells exposed to radiation. -- Abstract: Radiotherapy (RT) is a major modality of cancer treatment. However, tumors often acquire radioresistance, which causes RT to fail. The exact mechanisms by which tumor cells subjected to fractionated irradiation (FIR) develop an adaptive radioresistance are largely unknown. Using the radioresistant KYSE-150R esophageal squamous cell carcinoma (ESCC) model, which was derived from KYSE-150 parental cells using FIR, the role of Bmi-1 in mediating the radioadaptive response of ESCC cells to RT was investigated. The results showed that the level of Bmi-1 expression was significantly higher in KYSE-150R cells than in the KYSE-150 parental cells. Bmi-1 depletion sensitized the KYSE-150R cells to RT mainly through the induction of apoptosis, partly through the induction of senescence. A clonogenic cell survival assay showed that Bmi-1 depletion significantly decreased the radiation survival fraction in KYSE-150R cells. Furthermore, Bmi-1 depletion increased the generation of reactive oxygen species (ROS) and the expression of oxidase genes (Lpo, Noxo1 and Alox15) in KYSE-150R cells exposed to irradiation. DNA repair capacities assessed by {gamma}-H2AX foci formation were also impaired in the Bmi-1 down-regulated KYSE-150R cells. These results suggest that Bmi-1 plays an important role in tumor radioadaptive resistance under FIR and may be a potent molecular target for enhancing the efficacy of fractionated RT.

  20. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  1. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    PubMed Central

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  2. Possible contribution of cell-wall-bound ferulic acid in drought resistance and recovery in triticale seedlings.

    PubMed

    Hura, T; Hura, K; Grzesiak, S

    2009-11-01

    Studies were undertaken to estimate whether the presence of free and cell-wall-bound ferulic acid in leaf tissues can support drought resistance and its recovery under rehydration. An experiment was carried out on two genotypes of winter triticale: Lamberto and Ticino, at the propagation phase. Lamberto exhibited high content of ferulic acid bound with carbohydrates of the cell-wall under drought and rehydration. The markedly better parameters of chlorophyll fluorescence for this variety under both treatments correlated strongly and positively with the high contents of cell-wall-bound ferulic acid. The photosynthetic apparatus of Lamberto, in relation to Ticino, proved to be the more efficient after 4 weeks of drought treatment. The after-effects of soil drought better elicited the function disturbances of the photosynthetic apparatus in Ticino, which did not fully recover in comparison to Lamberto. Ferulic acid covalently bound to carbohydrates of the cell wall may act as a light filter limiting mesophyll penetration under drought conditions and can also support drought adaptation by down-regulation of leaf growth. The observed increase in the content of cell-wall-bound ferulic acid, as a response to water deficit in the leaf, could be one of the protective mechanisms induced by drought conditions. The ability to accumulate phenolic compounds in dehydrated leaves might be an additional and reliable biochemical parameter indicating the resistance of plants to drought stress. PMID:19464752

  3. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    PubMed Central

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  4. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress. PMID:25867895

  5. Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments.

    PubMed

    Song, Houhui; Huff, Jason; Janik, Katharine; Walter, Kerstin; Keller, Christine; Ehlers, Stefan; Bossmann, Stefan H; Niederweis, Michael

    2011-05-01

    Homeostasis of intracellular pH is a trait critical for survival of Mycobacterium tuberculosis in macrophages. However, mechanisms by which M. tuberculosis adapts to acidic environments are poorly understood. In this study, we analysed the physiological functions of OmpATb, a surface-accessible protein of M. tuberculosis. OmpATb did not complement the permeability defects of a Mycobacterium smegmatis porin mutant to glucose, serine and glycerol, in contrast to the porin MspA. Uptake rates of these solutes were unchanged in an ompATb operon mutant of M. tuberculosis indicating that OmpATb is not a general porin. Chemical analysis of low-pH culture filtrates showed that the proteins encoded by the ompATb operon are involved in generating a rapid ammonia burst, which neutralized medium pH and preceded exponential growth of M. tuberculosis. Addition of ammonia accelerated growth of the ompATb operon mutant demonstrating that ammonia secretion is indeed a mechanism by which M. tuberculosis neutralizes acidic environments. Infection experiments revealed that the ompATb operon was not required for full virulence in mice suggesting that M. tuberculosis has multiple mechanisms of resisting phagosomal acidification. Taken together, these results show that the ompATb operon is necessary for rapid ammonia secretion and adaptation of M. tuberculosis to acidic environments in vitro but not in mice. PMID:21410778

  6. Sensory Transduction and Adaptation in Inner and Outer Hair Cells of the Mouse Auditory System

    PubMed Central

    Stauffer, Eric A.; Holt, Jeffrey R.

    2009-01-01

    Auditory function in the mammalian inner ear is optimized by collaboration of two classes of sensory cells known as inner and outer hair cells. Outer hair cells amplify and tune sound stimuli that are transduced and transmitted by inner hair cells. Although they subserve distinct functions, they share a number of common properties. Here we compare the properties of mechanotransduction and adaptation recorded from inner and outer hair cells of the postnatal mouse cochlea. Rapid outer hair bundle deflections of about 0.5 micron evoked average maximal transduction currents of about 325 pA, whereas inner hair bundle deflections of about 0.9 micron were required to evoke average maximal currents of about 310 pA. The similar amplitude was surprising given the difference in the number of stereocilia, 81 for outer hair cells and 48 for inner hair cells, but may be reconciled by the difference in single-channel conductance. Step deflections of inner and outer hair bundles evoked adaptation that had two components: a fast component that consisted of about 60% of the response occurred over the first few milliseconds and a slow component that consisted of about 40% of the response followed over the subsequent 20 –50 ms. The rate of the slow component in both inner and outer hair cells was similar to the rate of slow adaptation in vestibular hair cells. The rate of the fast component was similar to that of auditory hair cells in other organisms and several properties were consistent with a model that proposes calcium-dependent release of tension allows transduction channel closure. PMID:17942617

  7. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.

    PubMed

    Kawai, Fusao

    2002-04-01

    The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation. PMID:11916858

  8. Galactosylated poly(ethyleneglycol)-lithocholic Acid selectively kills hepatoma cells, while sparing normal liver cells.

    PubMed

    Gankhuyag, Nomundelger; Singh, Bijay; Maharjan, Sushila; Choi, Yun-Jaie; Cho, Chong-Su; Cho, Myung-Haing

    2015-06-01

    Delivering drugs selectively to cancer cells but not to nearby normal cells is a major obstacle in drug therapy. In this study, lithocholic acid (LCA), a potent anti-cancer drug, is converted to two forms of poly(ethyleneglycol) (PEG) conjugates, viz., PEG-LCA (PL) and lactobionic acid (LBA) conjugated PEG-LCA (LPL). The latter form contains a galactose ligand in LBA to target the hepatocytes. Both forms are self-assembled to form nanoparticle formulation, and they have high potency than LCA to kill HepG2 cancer cells, sparing normal LO2 cells. Besides, LPL has high specificity to mouse liver cells in vivo. Western blot results confirm that the cell death is occurred through apoptosis induced by LPL nanoparticles. In conclusion, the induction of apoptosis and cell death is much more efficient with LPL nanoparticles than LCA molecules. PMID:25657071

  9. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  10. Cell wall structure and function in lactic acid bacteria.

    PubMed

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  11. General Acid Catalysis: A Flexible Experiment, Adaptable to Student Ability and Various Teaching Approaches.

    ERIC Educational Resources Information Center

    Bulmer, R. S.; And Others

    1981-01-01

    The acid-catalyzed hydrolysis of N-vinyl pyrrolidone provides a simple spectrophotometric kinetic experiment to introduce general acid catalysis, solvent isotope effects, and other aspects of ionic reactions in solution in advanced courses. The Bronsted equation and concept of linear free-energy changes is also covered. (SK)

  12. Adaptation by the collecting duct to an exogenous acid load is blunted by deletion of the proton-sensing receptor GPR4.

    PubMed

    Sun, Xuming; Stephens, Lisa; DuBose, Thomas D; Petrovic, Snezana

    2015-07-15

    We previously reported that the deletion of the pH sensor GPR4 causes a non-gap metabolic acidosis and defective net acid excretion (NAE) in the GPR4 knockout mouse (GPR4-/-) (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, and Petrovic S. J Am Soc Nephrol 21: 1745-1755, 2010). Since the major regulatory site of NAE in the kidney is the collecting duct (CD), we examined acid-base transport proteins in intercalated cells (ICs) of the CD and found comparable mRNA expression of kidney anion exchanger 1 (kAE1), pendrin, and the a4 subunit of H(+)-ATPase in GPR4-/- vs. +/+. However, NH4Cl loading elicited adaptive doubling of AE1 mRNA in GPR4+/+, but a 50% less pronounced response in GPR4-/-. In GPR4+/+, NH4Cl loading evoked a cellular response characterized by an increase in AE1-labeled and a decrease in pendrin-labeled ICs similar to what was reported in rabbits and rats. This response did not occur in GPR4-/-. Microperfusion experiments demonstrated that the activity of the basolateral Cl(-)/HCO3(-) exchanger, kAE1, in CDs isolated from GPR4-/- failed to increase with NH4Cl loading, in contrast to the increase observed in GPR4+/+. Therefore, the deficiency of GPR4 blunted, but did not eliminate the adaptive response to an acid load, suggesting a compensatory response from other pH/CO2/bicarbonate sensors. Indeed, the expression of the calcium-sensing receptor (CaSR) was nearly doubled in GPR4-/- kidneys, in the absence of apparent disturbances of Ca(2+) homeostasis. In summary, the expression and activity of the key transport proteins in GPR4-/- mice are consistent with spontaneous metabolic acidosis, but the adaptive response to a superimposed exogenous acid load is blunted and might be partially compensated for by CaSR. PMID:25972512

  13. Role of acid sphingomyelinase bioactivity in human CD4+ T-cell activation and immune responses

    PubMed Central

    Bai, A; Kokkotou, E; Zheng, Y; Robson, S C

    2015-01-01

    Acid sphingomyelinase (ASM), a lipid hydrolase enzyme, has the potential to modulate various cellular activation responses via the generation of ceramide and by interaction with cellular receptors. We have hypothesized that ASM modulates CD4+ T-cell receptor activation and impacts immune responses. We first observed interactions of ASM with the intracellular domains of both CD3 and CD28. ASM further mediates T-cell proliferation after anti-CD3/CD28 antibody stimulation and alters CD4+ T-cell activation signals by generating ceramide. We noted that various pharmacological inhibitors of ASM or knockdown of ASM using small hairpin RNA inhibit CD3/CD28-mediated CD4+ T-cell proliferation and activation. Furthermore, such blockade of ASM bioactivity by biochemical inhibitors and/or molecular-targeted knockdown of ASM broadly abrogate T-helper cell responses. In conclusion, we detail immune, pivotal roles of ASM in adaptive immune T-cell responses, and propose that these pathways might provide novel targets for the therapy of autoimmune and inflammatory diseases. PMID:26203857

  14. Adaptive supervisory control strategy of a fuel cell/battery-powered city bus

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Li, Jianqiu; Hua, Jianfeng; Li, Xiangjun; Ouyang, Minggao

    This paper presents an adaptive supervisory control strategy for a fuel cell/battery-powered city bus to fulfill the complex road conditions in Beijing bus routes. An equivalent consumption minimization strategy (ECMS) is firstly proposed to optimize the fuel economy. The adaptive supervisory control strategy is exploited based on this, incorporating an estimating algorithm for the vehicle accessorial power, an algorithm for the battery charge-sustaining and a Recursive Least Squares (RLS) algorithm for fuel cell performance identification. Finally, an adaptive supervisory controller (ASC) considering the fuel consumption minimization, the battery charge-sustaining and the fuel cell durability has been implemented within the hybrid city buses. Results in the "China city bus typical cycle" testing and the demonstrational program of Beijing bus routes are presented, demonstrating that this approach provides an improvement of fuel economy along with robustness and ease of implementation. However, the fuel cell system does not leave much room for the optimal strategy to promote the fuel economy. Benefits may also result in a prolongation of the fuel cell working life, which needs to be verified in future.

  15. Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone

    PubMed Central

    Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi

    2012-01-01

    Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209

  16. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3.

    PubMed

    Bolaños, Juan P

    2013-06-15

    Besides the necessary changes in the expression of cell cycle-related proteins, cancer cells undergo a profound series of metabolic adaptations focused to satisfy their excessive demand for biomass. An essential metabolic transformation of these cells is increased glycolysis, which is currently the focus of anticancer therapies. Several key players have been identified, so far, that adapt glycolysis to allow an increased proliferation in cancer. In this issue of the Biochemical Journal, Novellasdemunt and colleagues elegantly identify a novel mechanism by which MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2], a key component of the MAPK pathway, up-regulates glycolysis in response to stress in cancer cells. The authors found that, by phosphorylating specific substrate residues, MK2 promotes both increased the gene transcription and allosteric activation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), a key glycolysis-promoting enzyme. These results reveal a novel pathway through which MK2 co-ordinates metabolic adaptation to cell proliferation in cancer and highlight PFKFB3 as a potential therapeutic target in this devastating disease. PMID:23725459

  17. Phenylalanine sensitive K562-D cells for the analysis of the biochemical impact of excess amino acid

    PubMed Central

    Sanayama, Yoshitami; Matsumoto, Akio; Shimojo, Naoki; Kohno, Yoichi; Nakaya, Haruaki

    2014-01-01

    Although it is recognized that the abnormal accumulation of amino acid is a cause of the symptoms in metabolic disease such as phenylketonuria (PKU), the relationship between disease severity and serum amino acid levels is not well understood due to the lack of experimental model. Here, we present a novel in vitro cellular model using K562-D cells that proliferate slowly in the presence of excessive amount of phenylalanine within the clinically observed range, but not phenylpyruvate. The increased expression of the L-type amino acid transporter (LAT2) and its adapter protein 4F2 heavy chain appeared to be responsible for the higher sensitivity to phenylalanine in K562-D cells. Supplementation with valine over phenylalanine effectively restored cell proliferation, although other amino acids did not improve K562-D cell proliferation over phenylalanine. Biochemical analysis revealed mammalian target of rapamycin complex (mTORC) as a terminal target of phenylalanine in K562-D cell proliferation, and supplementation of valine restored mTORC1 activity. Our results show that K562-D cell can be a potent tool for the investigation of PKU at the molecular level and to explore new therapeutic approaches to the disease. PMID:25373594

  18. DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni

    2011-06-01

    A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.

  19. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  20. Two Adaptation Processes in Auditory Hair Cells Together Can Provide an Active Amplifier

    PubMed Central

    Vilfan, Andrej; Duke, Thomas

    2003-01-01

    The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid process involves Ca2+ ions binding to the channels; and a slower adaptation is associated with the movement of myosin motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms can produce “self-tuned critical oscillations”, i.e., maintain the hair bundle at the threshold of an oscillatory instability. The characteristic frequency depends on the geometry of the bundle and on the Ca2+ dynamics, but is independent of channel kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle motion observed in some experimental preparations. PMID:12829475

  1. Synchronization of cells with activator-inhibitor pathways through adaptive environment-mediated coupling

    NASA Astrophysics Data System (ADS)

    Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.; Tchawoua, C.; Kofane, T. C.

    2015-11-01

    In this paper, we report the synchronized dynamics of cells with activator-inhibitor pathways via an adaptive environment-mediated coupling scheme with feedbacks and control mechanisms. The adaptive character of the extracellular medium is modeled via its damping parameter as a physiological response aiming at annihilating the cellular differentiation existing between the chaotic biochemical pathways of the cells, in order to preserve homeostasis. We perform an investigation on the existence and stability of the synchronization manifold of the coupled system under the proposed coupling pattern. Both mathematical and computational tools suggest the accessibility of conducive prerequisites (conditions) for the emergence of a robust synchronous regime. The relevance of a phase-synchronized dynamics is appraised and several numerical indicators advocate for the prevalence of this fascinating phenomenon among the interacting cells in the phase space.

  2. Fine tuning of the threshold of T cell selection by the Nck adapters.

    PubMed

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-12-15

    Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire. PMID:21078909

  3. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  4. Polyploid Titan Cells Produce Haploid and Aneuploid Progeny To Promote Stress Adaptation

    PubMed Central

    Gerstein, Aleeza C.; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L.; Fraser, James A.; Berman, Judith

    2015-01-01

    ABSTRACT Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. PMID:26463162

  5. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation. PMID:26001374

  6. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  7. Cell membrane fatty acid composition differs between normal and malignant cell lines.

    PubMed

    Meng, Xialong; Riordan, Neil H; Riordan, Hugh D; Mikirova, Nina; Jackson, James; González, Michael J; Miranda-Massari, Jorge R; Mora, Edna; Trinidad Castillo, Waleska

    2004-06-01

    Twenty-eight fatty acids (C8:0 to C24:l n-9) were measured by gas chromatography in four normal cell lines (C3H / 10T1 / 2, CCD-18Co, CCD-25SK and CCD-37Lu) and seven cancer cell lines (C-41, Caov-3, LS-180, PC-3, SK-MEL-28, SK-MES-1 and U-87 MG). Results show differences in the content and proportions of fatty acids when comparing cancer cell lines with their normal counterparts. Cancer cell lines showed lower C20: 4 n-6, C24:1 n-9, polyunsaturated fatty acids (PUFA's) and ratios of C20:4 n-6 to C20:5 n-3 and C16:0 to C18:1 n-9 and stearic to oleic (SA/OA) than their normal counterparts. All cancer cell lines had SA/OA ratios lower than 7.0 while normal cell lines had ratios greater than 0.7 (p<0.05). In addition, the ratios of total saturated fatty acids (SFA) to PUFA'S and the concentration of C18:1 n-9, C18:2 n-6, C20:5 n-3 were higher in cancer cell lines as compared to normal cell lines. A positive correlation was detected between C16:0 and longer SFA'S (r = +0.511, p<0.05) in normal cell lines whereas a negative correlation (r=0.608, p<0.05) was obtained for malignant cell lines. Moreover, cancerous cell lines exhibited a particular desaturation defect and an abnormal incorporation of C18:2 n-6 and C20-4 n-6 fatty acids. PMID:15377057

  8. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer. PMID:26349913

  9. Effects of acetic acid on light scattering from cells

    PubMed Central

    Marina, Oana C.; Sanders, Claire K.

    2012-01-01

    Abstract. Acetic acid has been used for decades as an aid for the detection of precancerous cervical lesions, and the use of acetic acid is being investigated in several other tissues. Nonetheless, the mechanism of acetowhitening is unclear. This work tests some of the hypotheses in the literature and measures changes in light scattering specific to the nucleus and the cytoplasm. Wide angle side scattering from both the nucleus and the cytoplasm increases with acetic application to tumorigenic cells, with the increase in nuclear scattering being greater. In one cell line, the changes in nuclear scattering are likely due to an increase in number or scattering efficiency of scattering centers smaller than the wavelength of excitation light. There are likely several cellular changes that cause acetowhitening and the cellular changes may differ with cell type. These results should lead to a better understanding of acetowhitening and potentially the development of adjunct techniques to improve the utility of acetic acid application. For the well-studied case of cervical tissue, acetowhitening has been shown to be sensitive, but not specific for oncogenic changes needing treatment. PMID:23224185

  10. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  11. Regulation and function of innate and adaptive interleukin-17-producing cells

    PubMed Central

    Hirota, Keiji; Ahlfors, Helena; Duarte, João H; Stockinger, Brigitta

    2012-01-01

    Interleukin-17 (IL-17)-mediated immune responses play a crucial role in the mucosal host defence against microbial and fungal pathogens. However, the chronic activation of IL-17-producing T helper cells can cause autoimmune disease. In addition, recent studies have highlighted key roles of innate cell-mediated IL-17 responses in various inflammatory settings. Besides inflammation, there have also been intriguing findings regarding the involvement of IL-17 responses in the pathogenesis of cardiovascular diseases and tumour formation. Here, we discuss the latest discoveries in regulation and function of innate and adaptive IL-17-producing cells. PMID:22193778

  12. Effects of RAMEA-complexed polyunsaturated fatty acids on the response of human dendritic cells to inflammatory signals

    PubMed Central

    Rajnavölgyi, Éva; Laczik, Renáta; Kun, Viktor; Szente, Lajos

    2014-01-01

    Summary The n−3 fatty acids are not produced by mammals, although they are essential for hormone synthesis and maintenance of cell membrane structure and integrity. They have recently been shown to inhibit inflammatory reactions and also emerged as potential treatment options for inflammatory diseases, such as rheumatoid arthritis, asthma and inflammatory bowel diseases. Dendritic cells (DC) play a central role in the regulation of both innate and adaptive immunity and upon inflammatory signals they produce various soluble factors among them cytokines and chemokines that act as inflammatory or regulatory mediators. In this study we monitored the effects of α-linoleic acid, eicosapentaenoic acid and docosahexaenoic acid solubilized in a dimethyl sulfoxide (DMSO)/ethanol 1:1 mixture or as complexed by randomly methylated α-cyclodextrin (RAMEA) on the inflammatory response of human monocyte-derived dendritic cells (moDC). The use of RAMEA for enhancing aqueous solubility of n−3 fatty acids has the unambiguous advantage over applying RAMEB (the β-cyclodextrin analog), since there is no interaction with cell membrane cholesterol. In vitro differentiated moDC were left untreated or were stimulated by bacterial lipopolysaccharide and polyinosinic:polycytidylic acid, mimicking bacterial and viral infections, respectively. The response of unstimulated and activated moDC to n−3 fatty acid treatment was tested by measuring the cell surface expression of CD1a used as a phenotypic and CD83 as an activation marker of inflammatory moDC differentiation and activation by using flow cytometry. Monocyte-derived DC activation was also monitored by the secretion level of the pro- and anti-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-10 and IL-12, respectively. We found that RAMEA-complexed n−3 fatty acids reduced the expression of CD1a protein in both LPS and Poly(I:C) stimulated moDC significantly, but most efficiently by eicosapentaenic acid, while no significant change

  13. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  14. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells

    PubMed Central

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N8-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  15. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells.

    PubMed

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N(8)-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  16. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.

    PubMed

    Soltani, Mohamed; Metzger, Pierre; Largeau, Claude

    2005-12-01

    The lipids of three gram-negative bacteria, Acinetobacter calcoaceticus, Marinobacter aquaeolei, and Pseudomonas oleovorans grown on mineral media supplemented with ammonium acetate or hydrocarbons, were isolated, purified, and their structures determined. Three pools of lipids were isolated according to a sequential procedure: unbound lipids extracted with organic solvents, comprising metabolic lipids and the main part of membrane lipids, OH--labile lipids (mainly ester-bound in the lipopolysaccharides, LPS) and H+-labile lipids (mainly amide-bound in the LPS). Unsaturated FA composition gave evidence for an aerobic desaturation pathway for the synthesis of these acids in A. calcoaceticus and M. aquaeolei, a nonclassic route in gram-negative bacteria. Surprisingly, both aerobic and anaerobic pathways are operating in the studied strain of P. oleovorans. The increase of the proportion of saturated FA observed for the strain of P. oleovorans grown on light hydrocarbons would increase the temperature transition of the lipids for maintaining the inner membrane fluidity. An opposite phenomenon occurs in A. calcoaceticus and M. aquaeolei grown on solid or highly viscous C19 hydrocarbons. The increases of FA < C18 when the bacteria were grown on n-nonadecane, or of iso-FA in cultures on isononadecane would decrease the transition temperature of the lipids, to maintain the fluidity of the inner membranes. Moreover, P. oleovorans grown on hydrocarbons greatly decreases the proportion of P-hydroxy acids of LPS, thus likely maintaining the physical properties of the outer membrane. By contrast, no dramatic change in hydroxy acid composition occurred in the other two bacteria. PMID:16477811

  17. Computing in mammalian cells with nucleic acid strand exchange

    NASA Astrophysics Data System (ADS)

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

  18. Computing in mammalian cells with nucleic acid strand exchange

    PubMed Central

    Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2015-01-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution. PMID:26689378

  19. Computing in mammalian cells with nucleic acid strand exchange.

    PubMed

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L; Santangelo, Philip J; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution. PMID:26689378

  20. Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia

    PubMed Central

    Liu, Jizhong; Masurekar, Ashish; Johnson, Suzanne; Chakraborty, Sohini; Griffiths, John; Smith, Duncan; Alexander, Seema; Dempsey, Clare; Parker, Catriona; Harrison, Stephanie; Li, Yaoyong; Miller, Crispin; Di, Yujun; Ghosh, Zhumur; Krishnan, Shekhar; Saha, Vaskar

    2015-01-01

    Despite the high cure rates in childhood acute lymphoblastic leukemia (ALL), relapsed ALL remains a significant clinical problem. Genetic heterogeneity does not adequately explain variations in response to therapy. The chemoprotective tumor microenvironment may additionally contribute to disease recurrence. This study identifies metabolic reprogramming of leukemic cells by bone marrow stromal cells (BMSC) as a putative mechanism of drug resistance. In a BMSC-extracellular matrix culture model, BMSC produced chemoprotective soluble factors and facilitated the emergence of a reversible multidrug resistant phenotype in ALL cells. BMSC environment induced a mitochondrial calcium influx leading to increased reactive oxygen species (ROS) levels in ALL cells. In response to this oxidative stress, drug resistant cells underwent a redox adaptation process, characterized by a decrease in ROS levels and mitochondrial membrane potential with an upregulation of antioxidant production and MCL-1 expression. Similar expanded subpopulations of low ROS expressing and drug resistant cells were identified in pre-treatment bone marrow samples from ALL patients with slower response to therapy. This suggests that the bone marrow microenvironment induces a redox adaptation in ALL subclones that protects against cytotoxic stress and potentially gives rise to minimal residual disease. Targeting metabolic remodeling by inhibiting antioxidant production and antiapoptosis was able to overcome drug resistance. Thus metabolic plasticity in leukemic cell response to environmental factors contributes to chemoresistance and disease recurrence. Adjunctive strategies targeting such processes have the potential to overcome therapeutic failure in ALL. PMID:26474278

  1. Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia.

    PubMed

    Liu, Jizhong; Masurekar, Ashish; Johnson, Suzanne; Chakraborty, Sohini; Griffiths, John; Smith, Duncan; Alexander, Seema; Dempsey, Clare; Parker, Catriona; Harrison, Stephanie; Li, Yaoyong; Miller, Crispin; Di, Yujun; Ghosh, Zhumur; Krishnan, Shekhar; Saha, Vaskar

    2015-12-15

    Despite the high cure rates in childhood acute lymphoblastic leukemia (ALL), relapsed ALL remains a significant clinical problem. Genetic heterogeneity does not adequately explain variations in response to therapy. The chemoprotective tumor microenvironment may additionally contribute to disease recurrence. This study identifies metabolic reprogramming of leukemic cells by bone marrow stromal cells (BMSC) as a putative mechanism of drug resistance. In a BMSC-extracellular matrix culture model, BMSC produced chemoprotective soluble factors and facilitated the emergence of a reversible multidrug resistant phenotype in ALL cells. BMSC environment induced a mitochondrial calcium influx leading to increased reactive oxygen species (ROS) levels in ALL cells. In response to this oxidative stress, drug resistant cells underwent a redox adaptation process, characterized by a decrease in ROS levels and mitochondrial membrane potential with an upregulation of antioxidant production and MCL-1 expression. Similar expanded subpopulations of low ROS expressing and drug resistant cells were identified in pre-treatment bone marrow samples from ALL patients with slower response to therapy. This suggests that the bone marrow microenvironment induces a redox adaptation in ALL subclones that protects against cytotoxic stress and potentially gives rise to minimal residual disease. Targeting metabolic remodeling by inhibiting antioxidant production and antiapoptosis was able to overcome drug resistance. Thus metabolic plasticity in leukemic cell response to environmental factors contributes to chemoresistance and disease recurrence. Adjunctive strategies targeting such processes have the potential to overcome therapeutic failure in ALL. PMID:26474278

  2. Mechanical anisotropy and adaptation of metastatic cells probed by magnetic microbeads

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Shi, Yanhui; Jhiang, Sissy M.; Menq, Chia-Hsiang

    2010-02-01

    Metastatic cells have the ability to break through the basal lamina, enter the blood vessels, circulate through the vasculature, exit at distant sites, and form secondary tumors. This multi-step process, therefore, clearly indicates the inherent ability of metastatic cells to sense, process, and adapt to the mechanical forces in different surrounding environments. We describe a magnetic probing device that is useful in characterizing the mechanical properties of cells along arbitrary two-dimensional directions. Magnetic force, with the advantages of biocompatibility and specificity, was produced by magnetic poles placed in an octupole configuration and applied to fibronectin-coated magnetic microbeads attached on cell membrane. Cell deformation in response to the applied force was then recorded through the displacement of the microbeads. The motion of the beads was measured by computer processing the video images acquired by a high-speed CMOS camera. Rotating force vectors with constant magnitude while pointing to directions of all 360 degrees were applied to study the mechanical anisotropy of metastatic breast cancer cells MDA-MB-231. The temporal changes in magnitude and directionality of the cellular responses were then analyzed to investigate the cellular adaptation to force stimulation. This probing technology thus has the potential to provide us a better understanding of the mechano-signatures of cells.

  3. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  4. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  5. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  6. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.

    PubMed Central

    Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.

    1994-01-01

    The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311

  7. Choice between autotrophy and heterotrophy in Pseudomonas oxalaticus. Utilization of oxalate by cells after adaptation from growth on formate to growth on oxalate

    PubMed Central

    Blackmore, Maureen A.; Quayle, J. R.; Walker, I. O.

    1968-01-01

    1. The labelling patterns of phosphoglycerate obtained from formate-grown or oxalate-grown Pseudomonas oxalaticus after exposure for 15sec. to [14C]formate or [14C]oxalate respectively were determined. 2. The phosphoglycerate obtained from the formate-grown cells contained 78% of the radioactivity in the carboxyl group. This is in accord with that predicted for operation of the ribulose diphosphate cycle of carbon dioxide fixation. 3. The labelling pattern of the phosphoglycerate obtained from the oxalate-grown cells approached uniformity, as predicted for the heterotrophic pathway of oxalate assimilation. The departure from complete uniformity may have been due to concurrent 14CO2 fixation into C4 dicarboxylic acids. 4. The labelling pattern of phosphoglycerate obtained from cells that had just started to grow on oxalate after adaptation from formate was determined after incubation of the cells for 15sec. with [14C]oxalate. This pattern approached uniformity. 5. The pathway of incorporation of 14CO2 into cells that had just started to grow on oxalate after adaptation from formate, in the presence of either formate or oxalate as energy source, was studied by chromatographic and radio-autographic analysis. 6. It is concluded from the isotopic data that a mixed heterotrophic–autotrophic metabolism, with the former mode predominating, operates in the initial stages of growth on oxalate after adaptation from growth on formate. PMID:16742592

  8. Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms

    PubMed Central

    Hinks, Timothy S.C.; Zhou, Xiaoying; Staples, Karl J.; Dimitrov, Borislav D.; Manta, Alexander; Petrossian, Tanya; Lum, Pek Y.; Smith, Caroline G.; Ward, Jon A.; Howarth, Peter H.; Walls, Andrew F.; Gadola, Stephan D.; Djukanović, Ratko

    2015-01-01

    Background Asthma is a chronic inflammatory disease involving diverse cells and mediators whose interconnectivity and relationships to asthma severity are unclear. Objective We performed a comprehensive assessment of TH17 cells, regulatory T cells, mucosal-associated invariant T (MAIT) cells, other T-cell subsets, and granulocyte mediators in asthmatic patients. Methods Sixty patients with mild-to-severe asthma and 24 control subjects underwent detailed clinical assessment and provided induced sputum, endobronchial biopsy, bronchoalveolar lavage, and blood samples. Adaptive and invariant T-cell subsets, cytokines, mast cells, and basophil mediators were analyzed. Results Significant heterogeneity of T-cell phenotypes was observed, with levels of IL-13–secreting T cells and type 2 cytokines increased at some, but not all, asthma severities. TH17 cells and γδ-17 cells, proposed drivers of neutrophilic inflammation, were not strongly associated with asthma, even in severe neutrophilic forms. MAIT cell frequencies were strikingly reduced in both blood and lung tissue in relation to corticosteroid therapy and vitamin D levels, especially in patients with severe asthma in whom bronchoalveolar lavage regulatory T-cell numbers were also reduced. Bayesian network analysis identified complex relationships between pathobiologic and clinical parameters. Topological data analysis identified 6 novel clusters that are associated with diverse underlying disease mechanisms, with increased mast cell mediator levels in patients with severe asthma both in its atopic (type 2 cytokine–high) and nonatopic forms. Conclusion The evidence for a role for TH17 cells in patients with severe asthma is limited. Severe asthma is associated with a striking deficiency of MAIT cells and high mast cell mediator levels. This study provides proof of concept for disease mechanistic networks in asthmatic patients with clusters that could inform the development of new therapies. PMID:25746968

  9. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2000-01-01

    PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution. PMID:11102370

  10. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Ferritin-Iron Bioavailability as Determined Using an In Vitro Digestion/Caco-2 Cell Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  11. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Iron Bioavailability from Reconstituted Ferritin Measured by an In Vitro Digestion/Caco-2 Cell Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  12. Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells

    PubMed Central

    Burnett, Riesa M.; Craven, Kelly E.; Krishnamurthy, Purna; Goswami, Chirayu P.; Badve, Sunil; Crooks, Peter; Mathews, William P.; Bhat-Nakshatri, Poornima; Nakshatri, Harikrishna

    2015-01-01

    Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically. PMID:25926557

  13. Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells.

    PubMed

    Burnett, Riesa M; Craven, Kelly E; Krishnamurthy, Purna; Goswami, Chirayu P; Badve, Sunil; Crooks, Peter; Mathews, William P; Bhat-Nakshatri, Poornima; Nakshatri, Harikrishna

    2015-05-20

    Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically. PMID:25926557

  14. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    PubMed Central

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  15. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.

    PubMed

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  16. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    PubMed

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226-1236, 2016. © 2015 Wiley Periodicals, Inc. PMID:26480024

  17. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation.

    PubMed

    Paaby, Annalise B; Bergland, Alan O; Behrman, Emily L; Schmidt, Paul S

    2014-12-01

    Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype-phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion-deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five-year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life-history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life-history adaptation in Drosophila, and suggest that life-history trade-offs can be explained by extensive pleiotropy at a single locus. PMID:25319083

  18. The B-cell antigen receptor integrates adaptive and innate immune signals

    PubMed Central

    Otipoby, Kevin L.; Waisman, Ari; Derudder, Emmanuel; Srinivasan, Lakshmi; Franklin, Andrew; Rajewsky, Klaus

    2015-01-01

    B cells respond to antigens by engagement of their B-cell antigen receptor (BCR) and of coreceptors through which signals from helper T cells or pathogen-associated molecular patterns are delivered. We show that the proliferative response of B cells to the latter stimuli is controlled by BCR-dependent activation of phosphoinositidyl 3-kinase (PI-3K) signaling. Glycogen synthase kinase 3β and Foxo1 are two PI-3K-regulated targets that play important roles, but to different extents, depending on the specific mitogen. These results suggest a model for integrating signals from the innate and the adaptive immune systems in the control of the B-cell immune response. PMID:26371314

  19. RhoGTPases as Key Players in Mammalian Cell Adaptation to Microgravity

    PubMed Central

    Deroanne, Christophe; Nusgens, Betty; Vico, Laurence; Guignandon, Alain

    2015-01-01

    A growing number of studies are revealing that cells reorganize their cytoskeleton when exposed to conditions of microgravity. Most, if not all, of the structural changes observed on flown cells can be explained by modulation of RhoGTPases, which are mechanosensitive switches responsible for cytoskeletal dynamics control. This review identifies general principles defining cell sensitivity to gravitational stresses. We discuss what is known about changes in cell shape, nucleus, and focal adhesions and try to establish the relationship with specific RhoGTPase activities. We conclude by considering the potential relevance of live imaging of RhoGTPase activity or cytoskeletal structures in order to enhance our understanding of cell adaptation to microgravity-related conditions. PMID:25649831

  20. Dressed to impress: impact of environmental adaptation on the C andida albicans cell wall

    PubMed Central

    2015-01-01

    Summary C andida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C . albicans. PMID:25846717

  1. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    PubMed

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells. PMID:25773945

  2. [Adaptation to the availability of essential amino-acids: role of GCN2/eIF2α/ATF4 pathway].

    PubMed

    Fafournoux, Pierre; Averous, Julien; Bruhat, Alain; Carraro, Valérie; Jousse, Céline; Maurin, Anne-Catherine; Mesclon, Florent; Parry, Laurent

    2015-01-01

    In mammals, metabolic adaptations are required to overcome nutritional deprivation in amino-acids/proteins as well as episodes of malnutrition. GCN2 protein kinase, which phosphorylates the α subunit of the translation initiation factor eIF2, is a sensor of amino-acid(s) deficiencies. On one hand, this review briefly describes the main features of amino-acid metabolism. On the other hand, it describes the role of GCN2 in regulating numerous physiological functions. PMID:27021050

  3. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  4. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  5. Direct formic acid microfluidic fuel cell design and performance evolution

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  6. Long-chain polyunsaturated fatty acids stimulate cellular fatty acid uptake in human placental choriocarcinoma (BeWo) cells.

    PubMed

    Johnsen, G M; Weedon-Fekjaer, M S; Tobin, K A R; Staff, A C; Duttaroy, A K

    2009-12-01

    Supplementation of long-chain polyunsaturated fatty acids (LCPUFAs) is advocated during pregnancy in some countries although very little information is available on their effects on placental ability to take up these fatty acids for fetal supply to which the fetal growth and development are critically dependent. To identify the roles of LCPUFAs on placental fatty acid transport function, we examined the effects of LCPUFAs on the uptake of fatty acids and expression of fatty acid transport/metabolic genes using placental trophoblast cells (BeWo). Following 24 h incubation of these cells with 100 microM of LCPUFAs (arachidonic acid, 20:4n-6, eicosapentaenoic acid, 20:5n-3, or docosahexaenoic acid, 22:6n-3), the cellular uptake of [(14)C] fatty acids was increased by 20-50%, and accumulated fatty acids were preferentially incorporated into phospholipid fractions. Oleic acid (OA, 18:1n-9), on the other hand, could not stimulate fatty acid uptake. LCPUFAs and OA increased the gene expression of ADRP whilst decreased the expression of ASCL3, ACSL4, ACSL6, LPIN1, and FABP3 in these cells. However, LCPUFAs but not OA increased expression of ACSL1 and ACSL5. Since acyl-CoA synthetases are involved in cellular uptake of fatty acids via activation for their channelling to lipid metabolism and/or for storage, the increased expression of ACSL1 and ACLS5 by LCPUFAs may be responsible for the increased fatty acid uptake. These findings demonstrate that LCPUFA may function as an important regulator of general fatty acid uptake in trophoblast cells and may thus have impact on fetal growth and development. PMID:19880178

  7. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs.

    PubMed

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-01-01

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs. PMID:26912401

  8. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-01-01

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a “triple-reassortment” H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs. PMID:26912401

  9. Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment.

    PubMed

    Debnath, Monojit

    2015-12-01

    Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review. PMID:26162591

  10. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  11. Retinoic acid induces cells cultured from oral squamous cell carcinomas to become anti-angiogenic.

    PubMed Central

    Lingen, M. W.; Polverini, P. J.; Bouck, N. P.

    1996-01-01

    Retinoids have shown great promise as chemopreventive against the development of squamous cell carcinomas of the upper aerodigestive tract. However, the exact mechanism by which they block new tumors from arising is unknown. Here, we report that 13-cis- and all-trans-retinoic acid, used at clinically achievable doses of 10(-6) mol/L or less, can directly and specifically affect cell lines cultured from oral squamous cell carcinomas, inducing them to switch from an angiogenic to an anti-angiogenic phenotype. Although retinoic-acid-treated and untreated tumor cells make the same amount of interleukin-8, the major inducer of neovascularization produced by such tumor lines, they vary in production of inhibitory activity. Only the retinoic-acid-treated cells produce a potent angio-inhibitory activity that is able to block in vitro migration of endothelial cells toward tumor cell conditioned media and to halt neovascularization induced by such media in the rat cornea. Anti-angiogenic activity is induced in the tumor cells by low doses of retinoids in the absence of toxicity with a kinetics that suggest that it could be contributing to the effectiveness of the retinoids as chemopreventive agents. Images Figure 6 PMID:8686749

  12. Biophysically Defined and Cytocompatible Covalently Adaptable Networks as Viscoelastic 3D Cell Culture Systems

    PubMed Central

    McKinnon, Daniel D.; Domaille, Dylan W.; Cha, Jennifer N.; Anseth, Kristi S.

    2015-01-01

    Presented here is a cytocompatible covalently adaptable hydrogel uniquely capable of mimicking the complex biophysical properties of native tissue and enabling natural cell functions without matrix degradation. Demonstrated is both the ability to control elastic modulus and stress relaxation time constants by more than an order of magnitude while predicting these values based on fundamental theoretical understanding and the simulation of muscle tissue and the encapsulation of myoblasts. PMID:24127293

  13. Pathogenicity and genetic characteristics associated with cell adaptation of a virulent porcine reproductive and respiratory syndrome virus nsp2 DEL strain CA-2.

    PubMed

    Lee, Seung-Chul; Choi, Hwan-Won; Nam, Eeuri; Noh, Yun-Hee; Lee, Sunhee; Lee, Yoo Jin; Park, Gun-Seok; Shin, Jae-Ho; Yoon, In-Joong; Kang, Shien-Young; Lee, Changhee

    2016-04-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the most common and world-widespread viral pathogen of swine. We previously reported genomic sequences and pathogenicity of type 2 Korean PRRSV strains belonging to the virulent lineage 1 family, which contain remarkable amino acid deletions in nonstructural protein 2 (nsp2 DEL) compared to VR-2332. Here, a virulent type 2 Korean PRRSV nsp2 DEL strain, CA-2, was serially propagated in MARC-145 cells for up to 100 passages (CA-2-P100). As the passage number increased, the phenotypic characteristics of cell-adapted CA-2 strains were altered, in terms of higher viral titers and larger plaque sizes compared to the parental virus. Pro-inflammatory cytokine genes, including TNF-α, IL-8, MCP-1, and MCP-2, were found to be significantly down-regulated in PAM cells with the CA-2-P100 strain compared to its parental nsp2 DEL virus. Animal inoculation studies demonstrated that the virulence of CA-2-P100 was reduced significantly, with showing normal weight gain, body temperatures, and lung lesions comparable to the control group. Furthermore, high-passage CA-2-P100 showed declined and transient viremia kinetics, as well as delayed and low PRRSV-specific antibody responses in infected pigs. In addition, we determined whole genome sequences of low to high-passage derivatives of CA-2. The nsp2 DEL pattern was conserved for 100 passages, whereas no other deletions or insertions arose during the cell adaptation process. However, CA-2-P100 possessed 54 random nucleotide substitutions that resulted in 27 amino acid changes distributed throughout the genome, suggesting that these genetic drifts provide a possible molecular basis correlated with the cell-adapted features in vitro and the attenuated phenotype in vivo. Taken together, our data indicate that the cell-attenuated CA-2-P100 strain is a promising candidate for developing a safe and effective live PRRSV vaccine. PMID:27016772

  14. Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells

    PubMed Central

    Liu, Yanhua; Zhang, Qiufeng; Hu, Mo; Yu, Kaiwen; Fu, Jiaqi; Zhou, Fan

    2015-01-01

    Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways. PMID:25939512

  15. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  16. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    PubMed

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-01

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC. PMID:25970773

  17. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  18. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  19. The adaptation of a CTN-1 rabies virus strain to high-titered growth in chick embryo cells for vaccine development

    PubMed Central

    2014-01-01

    Background Rabies virus is the causative agent of rabies, a central nervous system disease that is almost invariably fatal. Currently vaccination is the most effective strategy for preventing rabies, and vaccines are most commonly produced from cultured cells. Although the vaccine strains employed in China include CTN, aG, PM and PV, there are no reports of strains that are adapted to primary chick embryo cells for use in human rabies prevention in China. Results Rabies virus strain CTN-1 V was adapted to chick embryo cells by serial passage to obtain the CTNCEC25 strain. A virus growth curve demonstrated that the CTNCEC25 strain achieved high titers in chick embryo cells and was nonpathogenic to adult mice by intracerebral inoculation. A comparison of the structural protein genes of the CTNCEC25 strain and the CTN-1 V strain identified eight amino acid changes in the mature M, G and L proteins. The immunogenicity of the CTNCEC25 strain increased with the adaptation process in chick embryo cells and conferred high protective efficacy. The inactivated vaccine induced high antibody responses and provided full protection from an intramuscular challenge in adult mice. Conclusions This is the first description of a CTNCEC25 strain that was highly adapted to chick embryo cells, and both its in vitro and in vivo biological properties were characterized. Given the high immunogenicity and good propagation characteristics of the CTNCEC25 strain, it has excellent potential to be a candidate for development into a human rabies vaccine with high safety and quality characteristics for controlling rabies in China. PMID:24885666

  20. Talin-bound NPLY motif recruits integrin-signaling adapters to regulate cell spreading and mechanosensing

    PubMed Central

    Pinon, Perrine; Pärssinen, Jenita; Vazquez, Patricia; Bachmann, Michael; Rahikainen, Rolle; Jacquier, Marie-Claude; Azizi, Latifeh; Määttä, Juha A.; Bastmeyer, Martin; Hytönen, Vesa P.

    2014-01-01

    Integrin-dependent cell adhesion and spreading are critical for morphogenesis, tissue regeneration, and immune defense but also tumor growth. However, the mechanisms that induce integrin-mediated cell spreading and provide mechanosensing on different extracellular matrix conditions are not fully understood. By expressing β3-GFP-integrins with enhanced talin-binding affinity, we experimentally uncoupled integrin activation, clustering, and substrate binding from its function in cell spreading. Mutational analysis revealed Tyr747, located in the first cytoplasmic NPLY747 motif, to induce spreading and paxillin adapter recruitment to substrate- and talin-bound integrins. In addition, integrin-mediated spreading, but not focal adhesion localization, was affected by mutating adjacent sequence motifs known to be involved in kindlin binding. On soft, spreading-repellent fibronectin substrates, high-affinity talin-binding integrins formed adhesions, but normal spreading was only possible with integrins competent to recruit the signaling adapter protein paxillin. This proposes that integrin-dependent cell–matrix adhesion and cell spreading are independently controlled, offering new therapeutic strategies to modify cell behavior in normal and pathological conditions. PMID:24778313

  1. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation.

    PubMed

    Sun, Xiaoming; Shi, Yi; Akahoshi, Tomohiro; Fujiwara, Mamoru; Gatanaga, Hiroyuki; Schönbach, Christian; Kuse, Nozomi; Appay, Victor; Gao, George F; Oka, Shinichi; Takiguchi, Masafumi

    2016-06-01

    The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level. PMID:27239036

  2. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  3. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    SciTech Connect

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-(/sup 3/H)ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-(/sup 3/H)ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO/sub 2/, and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment.

  4. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    PubMed

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  5. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  6. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  7. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  9. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation.

    PubMed

    Corbet, Cyril; Pinto, Adán; Martherus, Ruben; Santiago de Jesus, João Pedro; Polet, Florence; Feron, Olivier

    2016-08-01

    Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. PMID:27508876

  10. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells

    PubMed Central

    Luo, Yuchun; Cai, Xiangna; Liu, Sucai; Wang, Sen; Nold-Petry, Claudia A.; Nold, Marcel F.; Bufler, Philip; Norris, David; Dinarello, Charles A.; Fujita, Mayumi

    2014-01-01

    IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (−61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (−60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8+ T cells (−74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity. PMID:25294929

  11. Unexpected Role for Adaptive αβTH17 Cells in Acute Respiratory Distress Syndrome1

    PubMed Central

    Li, John T.; Melton, Andrew C.; Su, George; Hamm, David E.; LaFemina, Michael; Howard, James; Fang, Xiaohui; Bhat, Sudarshan; Huynh, Kieu-My; O’Kane, Cecilia M.; Ingram, Rebecca J.; Muir, Roshell R.; McAuley, Daniel F.; Matthay, Michael A.; Sheppard, Dean

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. Here we report that expansion of antigen-specific αβT helper 17 (αβTH17) cells contribute to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in antigen-specific αβTH17 cells were protected from experimental ARDS induced by a single dose of endotracheal lipopolysaccharide (LPS). Loss of IL-17 receptor C or antibody blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTH17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the T cell receptor. Our findings could be relevant to ARDS in humans, since we found significant elevation of IL-17A in bronchoalveolar lavage (BAL) fluid from patients with ARDS and recombinant IL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTH17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease. PMID:26002979

  12. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  13. The effects of physiological adaptations to calorie restriction on global cell proliferation rates.

    PubMed

    Bruss, Matthew D; Thompson, Airlia C S; Aggarwal, Ishita; Khambatta, Cyrus F; Hellerstein, Marc K

    2011-04-01

    Calorie restriction (CR) reduces the rate of cell proliferation in mitotic tissues. It has been suggested that this reduction in cell proliferation may mediate CR-induced increases in longevity. However, the mechanisms that lead to CR-induced reductions in cell proliferation rates remain unclear. To evaluate the CR-induced physiological adaptations that may mediate reductions in cell proliferation rates, we altered housing temperature and access to voluntary running wheels to determine the effects of food intake, energy expenditure, percent body fat, and body weight on proliferation rates of keratinocytes, liver cells, mammary epithelial cells, and splenic T-cells in C57BL/6 mice. We found that ∼20% CR led to a reduction in cell proliferation rates in all cell types. However, lower cell proliferation rates were not observed with reductions in 1) food intake and energy expenditure in female mice housed at 27°C, 2) percent body fat in female mice provided running wheels, or 3) body weight in male mice provided running wheels compared with ad libitum-fed controls. In contrast, reductions in insulin-like growth factor I were associated with decreased cell proliferation rates. Taken together, these data suggest that CR-induced reductions in food intake, energy expenditure, percent body fat, and body weight do not account for the reductions in global cell proliferation rates observed in CR. In addition, these data are consistent with the hypothesis that reduced cell proliferation rates could be useful as a biomarker of interventions that increase longevity. PMID:21285400

  14. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  15. A flexible micro biofuel cell utilizing hydrogel containing ascorbic acid

    NASA Astrophysics Data System (ADS)

    Goto, Hideaki; Fukushi, Yudai; Nishioka, Yasushiro

    2014-11-01

    This paper reports on a biofuel cell with a dimension of 13×24 mm2 fabricated on a flexible polyimide substrate. I its porous carbon-coated platinum (Pt) electrodes of 3 mm in width and 10 mm in length were fabricated using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Pt electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. It utilizes a solidified ascorbic acid (AA) aqueous solution in an agarose hydrogel to increase the portability. The maximum power and power density for the biofuel cell with the fuel unit containing 100 mM AA were 0.063 μW and 0.21 μW/cm2 at 0.019 V, respectively.

  16. Fatty Acid and Lipid Transport in Plant Cells.

    PubMed

    Li, Nannan; Xu, Changcheng; Li-Beisson, Yonghua; Philippar, Katrin

    2016-02-01

    Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. PMID:26616197

  17. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  18. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    PubMed Central

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  19. Transcriptomic changes induced by mycophenolic acid in gastric cancer cells

    PubMed Central

    Dun, Boying; Sharma, Ashok; Xu, Heng; Liu, Haitao; Bai, Shan; Zeng, Lingwen; She, Jin-Xiong

    2014-01-01

    Background: Inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA) can inhibit proliferation and induce apoptosis in cancer cells. This study investigated the underlying molecular mechanisms of MPA’s anticancer activity. Methods: A gastric cancer cell line (AGS) was treated with MPA and gene expression at different time points was analyzed using Illumina whole genome microarrays and selected genes were confirmed by real-time RT-PCR. Results: Transcriptomic profiling identified 1070 genes with ≥2 fold changes and 85 genes with >4 fold alterations. The most significantly altered biological processes by MPA treatment include cell cycle, apoptosis, cell proliferation and migration. MPA treatment altered at least ten KEGG pathways, of which eight (p53 signaling, cell cycle, pathways in cancer, PPAR signaling, bladder cancer, protein processing in ER, small cell lung cancer and MAPK signaling) are cancer-related. Among the earliest cellular events induced by MPA is cell cycle arrest which may be caused by six molecular pathways: 1) up-regulation of cyclins (CCND1 and CCNE2) and down-regulation of CCNA2 and CCNB1, 2) down-regulation of cyclin-dependent kinases (CDK4 and CDK5); 3) inhibition of cell division related genes (CDC20, CDC25B and CDC25C) and other cell cycle related genes (MCM2, CENPE and PSRC1), 4) activation of p53, which activates the cyclin-dependent kinase inhibitors (CDKN1A), 5) impaired spindle checkpoint function and chromosome segregation (BUB1, BUB1B, BOP1, AURKA, AURKB, and FOXM1); and 6) reduction of availability of deoxyribonucleotides and therefore DNA synthesis through down-regulation of the RRM1 enzyme. Cell cycle arrest is followed by inhibition of cell proliferation, which is mainly attributable to the inhibition of the PI3K/AKT/mTOR pathway, and caspase-dependent apoptosis due to up-regulation of the p53 and FAS pathways. Conclusions: These results suggest that MPA has beneficial anticancer activity through

  20. Adapting and testing a portable Raman spectrometer for SERS analysis of amino acids and small peptides

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Philippidis, A.; Nevin, A.; Comelli, D.; Valentini, G.; Anglos, D.

    2013-07-01

    Surface-Enhanced Raman Spectroscopy (SERS), a powerful spectrochemical technique enabling highly sensitive analysis of organic and biological materials, is investigated for applications in the analysis of archaeological materials including in situ screening. In this work, a compact mobile Raman spectrometer is employed for acquiring Surface-Enhanced Raman spectra from natural amino acids (L-Arg, L-Phe, L-Met) and a tripeptide (Glutathione), adsorbed on silver colloids. The detection limits of the portable Raman spectrometer, together with an optimization of sample preparation and experimental parameters, are reported. The collection and interpretation of SER spectra of amino acids and peptides is a starting point for the optimization of the instrumentation and its application in the study of more complex biological molecules in the context of detection and analysis of archaeological materials and residues.

  1. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  2. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy

    PubMed Central

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I.; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling. PMID:26020623

  3. Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass

    SciTech Connect

    Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh Michael; Foston, Marcus B; Myles, Dean A A; Ragauskas, Arthur J; Evans, Barbara R

    2010-01-01

    The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here, we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to sub-micron length scales resulting from the industrially-relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of Rg ~ 135 lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 , and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the break down process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.

  4. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    PubMed Central

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551

  5. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.

    PubMed

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut

    2013-06-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role

  6. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation.

    PubMed

    Huang, Xiaojia; Yang, Kaiyong; Zhang, Yi; Wang, Qiang; Li, Yongjin

    2016-04-01

    Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders. PMID:26738727

  7. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOEpatents

    Bavykin, Sergei

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  8. Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers.

    PubMed

    Planz, Viktoria; Seif, Salem; Atchison, Jennifer S; Vukosavljevic, Branko; Sparenberg, Lisa; Kroner, Elmar; Windbergs, Maike

    2016-07-11

    The human skin comprises a complex multi-scale layered structure with hierarchical organization of different cells within the extracellular matrix (ECM). This supportive fiber-reinforced structure provides a dynamically changing microenvironment with specific topographical, mechanical and biochemical cell recognition sites to facilitate cell attachment and proliferation. Current advances in developing artificial matrices for cultivation of human cells concentrate on surface functionalizing of biocompatible materials with different biomolecules like growth factors to enhance cell attachment. However, an often neglected aspect for efficient modulation of cell-matrix interactions is posed by the mechanical characteristics of such artificial matrices. To address this issue, we fabricated biocompatible hybrid fibers simulating the complex biomechanical characteristics of native ECM in human skin. Subsequently, we analyzed interactions of such fibers with human skin cells focusing on the identification of key fiber characteristics for optimized cell-matrix interactions. We successfully identified the mediating effect of bio-adaptive elasto-plastic stiffness paired with hydrophilic surface properties as key factors for cell attachment and proliferation, thus elucidating the synergistic role of these parameters to induce cellular responses. Co-cultivation of fibroblasts and keratinocytes on such fiber mats representing the specific cells in dermis and epidermis resulted in a hierarchical organization of dermal and epidermal tissue layers. In addition, terminal differentiation of keratinocytes at the air interface was observed. These findings provide valuable new insights into cell behaviour in three-dimensional structures and cell-material interactions which can be used for rational development of bio-inspired functional materials for advanced biomedical applications. PMID:27241237

  9. Shedding light on proteins, nucleic acids, cells, humans and fish.

    PubMed

    Setlow, Richard B

    2002-03-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma. PMID:11906839

  10. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  11. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    NASA Astrophysics Data System (ADS)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  12. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate

    DOE PAGESBeta

    Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui; Smith, Holly; Dowe, Nancy; Zhang, Min; Pienkos, Philip T.

    2015-03-31

    Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results are the following:more » A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved

  13. The acquisition of mechano‐electrical transducer current adaptation in auditory hair cells requires myosin VI

    PubMed Central

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.

    2016-01-01

    Key points The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano‐electrical transducer (MET) channels.The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli.In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles.We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop.We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. Abstract Mutations in Myo6, the gene encoding the (F‐actin) minus end‐directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells’ apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano‐electrical transduction. We report that Ca2+‐dependent adaptation of the mechano‐electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links

  14. Enhancement of cell viability after treatment with polyunsaturated fatty acids.

    PubMed

    Bartl, J; Walitza, S; Grünblatt, E

    2014-01-24

    Attention-deficit/hyperactivity disorder (ADHD) is highly prevalent in children and adolescents and both environmental and genetic factors play major roles. Polyunsaturated fatty acids (PUFAs) are postulated to contribute to the development of the infant brain and an imbalance in these may increase the risk of ADHD. In recent clinical studies, supplementation with PUFAs improved symptoms of ADHD in some cases. Similarly, some beneficial effects were observed with PUFA treatment in neuronal cell cultures. Therefore, in this study, we hypothesized that a specific PUFA combination (available on the market as Equazen™ [Vifor Pharma, Switzerland]) along with iron, zinc, or vitamin B5 (vitB5) would produce an additive beneficial effect on the viability of rat pheochromocytoma-12 dopaminergic cells. The specific PUFA combination alone, as well as added to each of the three nutrients, was tested in a dose-response manner. The specific PUFAs significantly improved cell viability, starting at very low doses (100pM) from 60h up to 90h; while the combined treatment with vitB5 and minerals did not provide additional benefit. Our results confirmed the beneficial effect of the specific PUFAs on neuronal cell viability; although supplementation with minerals and vitB5 did not enhance this effect. PMID:24269370

  15. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  16. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin.

    PubMed

    Levrat, M A; Rémésy, C; Demigné, C

    1991-11-01

    The digestive and metabolic effects of inulin (from chicory) were studied in rats adapted to semipurified diets containing 0, 5, 10 or 20% inulin (wt/wt). Moderate levels of inulin (5-10%) did not significantly affect food intake or body weight gain. Dietary inulin resulted in considerably greater cecal fermentation and a significantly greater intraluminal concentration of propionate (peaking at 58.4 mmol/L). A lower concentration of acetate (42.6 mmol/L) was observed in rats fed 20% inulin. Lactic fermentations were observed in rats fed the 10 or 20% inulin diets. The cecal pool of volatile fatty acids tended to reach a plateau in rats fed diets containing more than 10% inulin (up to 600-700 mumol), but volatile fatty acid absorption was a slightly hyperbolic function of the dietary inulin level. Butyrate absorption was proportionally lower than that of propionate. Inulin-containing diets induced an enlargement of the cecal pool of calcium, phosphate and (to a lesser extent) magnesium. There was also an enhanced absorption of these divalent cations. The cecal pool of bile acids was greater in rats fed inulin, and this oligosaccharide displayed a slight hypocholesterolemic effect, even in rats fed the 5% inulin diet. However, plasma triglycerides were depressed only in rats fed the 20% inulin diet. In conclusion, inulin seems very effective in promoting propionic fermentation and in enhancing the calcium content of the large intestine. However, high levels of inulin (greater than 10%) may affect growth in rats and lead to acidic (pH 5.65) cecal fermentation. PMID:1941180

  17. Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome.

    PubMed

    Li, John T; Melton, Andrew C; Su, George; Hamm, David E; LaFemina, Michael; Howard, James; Fang, Xiaohui; Bhat, Sudarshan; Huynh, Kieu-My; O'Kane, Cecilia M; Ingram, Rebecca J; Muir, Roshell R; McAuley, Daniel F; Matthay, Michael A; Sheppard, Dean

    2015-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease. PMID:26002979

  18. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility

    PubMed Central

    Takeda, Akira; Kobayashi, Daichi; Aoi, Keita; Sasaki, Naoko; Sugiura, Yuki; Igarashi, Hidemitsu; Tohya, Kazuo; Inoue, Asuka; Hata, Erina; Akahoshi, Noriyuki; Hayasaka, Haruko; Kikuta, Junichi; Scandella, Elke; Ludewig, Burkhard; Ishii, Satoshi; Aoki, Junken; Suematsu, Makoto; Ishii, Masaru; Takeda, Kiyoshi; Jalkanen, Sirpa; Miyasaka, Masayuki; Umemoto, Eiji

    2016-01-01

    Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network. DOI: http://dx.doi.org/10.7554/eLife.10561.001 PMID:26830463

  19. An Engineered Approach to Stem Cell Culture: Automating the Decision Process for Real-Time Adaptive Subculture of Stem Cells

    PubMed Central

    Ker, Dai Fei Elmer; Weiss, Lee E.; Junkers, Silvina N.; Chen, Mei; Yin, Zhaozheng; Sandbothe, Michael F.; Huh, Seung-il; Eom, Sungeun; Bise, Ryoma; Osuna-Highley, Elvira; Kanade, Takeo; Campbell, Phil G.

    2011-01-01

    Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell

  20. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  1. Optimization of ascorbic acid-2-phosphate production from ascorbic acid using resting cell of Brevundimonas diminuta.

    PubMed

    Shin, Woo-Jung; Kim, Byung-Yong; Bang, Won-Gi

    2007-05-01

    With the aim to produce ascorbic acid-2-phosphate (AsA-2-P) from L-ascorbic acid (AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120 g/l (wet weight). The optimum concentrations of AsA and pyrophosphate were 550 mM and 450 mM, respectively. The most effective buffer was 50 mM sodium formate. The optimum pH was 4.5 and temperature was 40 degrees C. Under the above conditions, 27.5 g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA. PMID:18051298

  2. Uric acid: a modulator of prostate cells and activin sensitivity.

    PubMed

    Sangkop, Febbie; Singh, Geeta; Rodrigues, Ely; Gold, Elspeth; Bahn, Andrew

    2016-03-01

    Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial. PMID:26910779

  3. Gambogic acid induces apoptotic cell death in T98G glioma cells.

    PubMed

    Thida, Mya; Kim, Dae Won; Tran, Thi Thu Thuy; Pham, Minh Quan; Lee, Heesu; Kim, Inki; Lee, Jae Wook

    2016-02-01

    Gambogic acid (GA), a natural product with a xanthone structure, has a broad range of anti-proliferative effects on cancer cell lines. We evaluated GA for its cytotoxic effects on T98G glioblastoma cells. GA exhibited potent anti-proliferative activity and induced apoptosis in T98G glioblastoma cells in a dose-dependent manner. Incubation of cells with GA revealed apoptotic features including increased Bax and AIF expression, cytochrome c release, and cleavage of caspase-3, -8, -9, and PARP, while Bcl-2 expression was downregulated. Furthermore, GA induced reactive oxygen species (ROS) generation in T98G cells. Our results indicate that GA increases Bax- and AIF-associated apoptotic signaling in glioblastoma cells. PMID:26631318

  4. Motor Rumblings: Characterization of Adaptation Motors in Saccular Hair Cells by Noise Analysis

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan E.; Markin, Vladislav; Jaramillo, Fernán

    2003-05-01

    The mechanical sensitivity of hair cells, the sensory receptors of the vestibular and auditory systems, is maintained by adaptation, which resets the transducer to cancel the effects of static stimuli. One model of adaptation proposes that myosin motors coupled to transduction channels move along the long axis of the hair bundle's stereocilia, to regulate the tension in the tip links which are thought to gate transduction channels [1, 2]. These motors can be activated by applying a transduction channel blocker to the bundle, causing it to move [3, 4]. We studied the variance in the position of the bundle during these displacements, and found that it increases as the bundle moves to its new position. We can explain both displacement and variance with a simple model in which a single motor acting on the bundle takes ˜3.6 nm steps whose frequency declines with the motor's load.

  5. Single Cell Mass Cytometry Adapted to Measurements of the Cell Cycle1

    PubMed Central

    Behbehani, Gregory K.; Bendall, Sean C.; Clutter, Matthew R.; Fantl, Wendy J.; Nolan, Garry P.

    2013-01-01

    Mass cytometry is a recently introduced technology that utilizes transition element isotope-tagged antibodies for protein detection on a single-cell basis. By circumventing the limitations of emission spectral overlap associated with fluorochromes utilized in traditional flow cytometry, mass cytometry currently allows measurement of up to 40 parameters per cell. Recently a comprehensive mass cytometry analysis was described for the hematopoietic differentiation program in human bone marrow from a healthy donor. The present study describes approaches to delineate cell cycle stages utilizing iododeoxyuridine (IdU) to mark cells in S phase, simultaneously with antibodies against cyclin B1, cyclin A, and phosphorylated histone H3 (S28) that characterize the other cell cycle phases. Protocols were developed in which an antibody against phosphorylated retinoblastoma protein (Rb) at serines 807 and 811 was used to separate cells in G0 and G1 phases of the cell cycle. This mass cytometry method yielded cell cycle distributions of both normal and cancer cell populations that were equivalent to those obtained by traditional fluorescence cytometry techniques. We applied this to map the cell cycle phases of cells spanning the hematopoietic hierarchy in healthy human bone marrow as a prelude to later studies with cancers and other disorders of this lineage. PMID:22693166

  6. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  7. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments.

    PubMed

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  8. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments

    PubMed Central

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  9. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  10. UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit.

    PubMed

    Usaga, Jessie; Padilla-Zakour, Olga I; Worobo, Randy W

    2016-02-01

    The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages. PMID:26818991

  11. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    SciTech Connect

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  12. Derivation of cell-adapted Sacbrood virus (SBV) from the native Korean honeybee.

    PubMed

    Kweon, Chang-Hee; Yoo, Mi-Sun; Noh, Jin-Hyeong; Reddy, Kondreddy Eswar; Yang, Dong-Kun; Cha, Sang-Ho; Kang, Seung-Won

    2015-02-16

    Sacbrood virus (SBV), a causative agent of larval death in honeybees, is one of the most devastating diseases in bee industry throughout the world. Lately the Korean Sacbrood virus (KSBV) induced great losses in Korean honeybee (Apis cerana) colonies. However, there is no culture system available for honeybee viruses, including SBV, therefore, the research on honeybee viruses is practically limited until present. In this study, we investigated the growth and replication of SBV in cell cultures. The replication signs of KSBV after passages from mammalian cells was identified and confirmed by using combined approaches with nested, quantitative, negative-strand PCR and electron microscopy along with in vivo experiment. The results revealed that mammalian cell lines, including Vero cells could support the replication KSBV. Although there were no signs of cytopathic effect (CPE) in cells, it was for the first time demonstrated that SBV could be replicated in cells through the sequential passages linked with cell adaptation. KSBV from the present study would be a valuable source to understand the mechanism of pathogenicity of sacbrood virus in the future. PMID:25527463

  13. Natural history of β-cell adaptation and failure in type 2 diabetes

    PubMed Central

    Alejandro, Emilyn U.; Gregg, Brigid; Blandino-Rosano, Manuel; Cras-Méneur, Corentin; Bernal-Mizrachi, Ernesto

    2014-01-01

    Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure. PMID:25542976

  14. Development of the adaptive NK cell response to human cytomegalovirus in the context of aging.

    PubMed

    López-Botet, Miguel; Muntasell, Aura; Martínez-Rodríguez, José E; López-Montañés, María; Costa-García, Marcel; Pupuleku, Aldi

    2016-09-01

    Human cytomegalovirus (HCMV) establishes a highly prevalent life-long latent infection. Though generally subclinical, HCMV infection may have severe consequences during fetal development and in immunocompromised individuals. Based on epidemiological studies HCMV(+) serology has been associated with the development of atherosclerosis, immune senescence and an increase mortality rate in elderly people. Such long-term detrimental effects of the viral infection presumably result from an inefficient immune control of the pathogen, depending on the quality and evolution of the individual host-pathogen relationship. Together with antigen-specific T lymphocytes, NK cells play an important role in anti-viral immune defense. HCMV promotes in some individuals the differentiation and persistent steady state expansion