Science.gov

Sample records for acid aerosol measurement

  1. ACID AEROSOL MEASUREMENT WORKSHOP

    EPA Science Inventory

    This report documents the discussion and results of the U.S. EPA Acid Aerosol Measurement Workshop, conducted February 1-3, 1989, in Research Triangle Park, North Carolina. t was held in response to recommendations by the Clean Air Scientific Advisory Committee (CASAC) regarding ...

  2. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  3. Stratospheric Sulfuric Acid and Black Carbon Aerosol Measured During POLARIS and its Role in Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Pueschel, R. F.; Drdla, K.; Verma, S.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosol can affect the environment in three ways. Sulfuric acid aerosol have been shown to act as sites for the reduction of reactive nitrogen and chlorine and as condensation sites to form Polar Stratospheric Clouds, under very cold conditions, which facilitate ozone depletion. Recently, modeling studies have suggested a link between BCA (Black Carbon Aerosol) and ozone chemistry. These studies suggest that HNO3, NO2, and O3 may be reduced heterogeneously on BCA particles. The ozone reaction converts ozone to oxygen molecules, while HNO3 and NO2 react to form NOx. Finally, a buildup of BCA could reduce the single-scatter albedo of aerosol below a value of 0.98, a critical value that has been postulated to change the effect of stratospheric aerosol from cooling to warming. Correlations between measured BCA amounts and aircraft usage have been reported. Attempts to link BCA to ozone chemistry and other stratospheric processes have been hindered by questions concerning the amount of BCA that exists in the stratosphere, the magnitude of reaction probabilities, and the scarcity of BCA measurements. The Ames Wire Impactors (AWI) participated in POLARIS as part of the complement of experiments on the NASA ER-2. One of our main objectives was to determine the amount of aerosol surface area, particularly BCA, available for reaction with stratospheric constituents and assess if possible, the importance of these reactions. The AWI collects aerosol and BCA particles on thin Palladium wires that are exposed to the ambient air in a controlled manner. The samples are returned to the laboratory for subsequent analysis. The product of the AWI analysis is the size, surface area, and volume distributions, morphology and elemental composition of aerosol and BCA. This paper presents results from our experiments during POLARIS and puts these measurements in the context of POLARIS and other missions in which we have participated. It describes modifications to the AWI data

  4. Measurement of acidic aerosol species in eastern Europe: implications for air pollution epidemiology.

    PubMed Central

    Brauer, M; Dumyahn, T S; Spengler, J D; Gutschmidt, K; Heinrich, J; Wichmann, H E

    1995-01-01

    A large number of studies have indicated associations between particulate air pollution and adverse health outcomes. Wintertime air pollution in particular has been associated with increased mortality. Identification of causal constituents of inhalable particulate matter has been elusive, although one candidate has been the acidity of the aerosol. Here we report measurements of acidic aerosol species made for approximately 1.5 years in Erfurt, Germany, and Sokolov, Czech Republic. In both locations, the burning of high-sulfur coal is the primary source of ambient air pollution. Twenty-four-hour average measurements were made for PM10, [particulate matter with an aerodynamic diameter (da) < or = 10 microns], as well as fine particle (da < 2.5 microns) H+ and SO4(2-) for the entire study. Additionally, separate day and night measurements of fine particle H+, SO4(2-), NO3-, and NH4+ and the gases, SO2, HNO3, HONO, and NH3 were collected with an annular denuder/filter pack system over a 7-month (late winter-summer) period with additional measurements during pollution episodes the following winter. At both sites, 24-hr SO2 (mean concentrations of 52 micrograms/m3, with peak levels of > 585 micrograms/m3) and PM10 (mean concentration 60 micrograms m3) concentrations were quite high. However, aerosol SO4(2-) concentrations (mean concentration of approximately 10 micrograms/m3) were not as great as expected given the high SO2 concentrations, and acidity was very low (mean concentration of < 1 microgram/m3, with peak levels of only 7 micrograms/m3). Low acidity is likely to be the result of NH3 neutralization and slow conversion of SO2 to SO4(2-).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7656878

  5. Wintertime measurements of aerosol acidity and trace elements in Wuhan, a city in central China

    NASA Astrophysics Data System (ADS)

    Waldman, J. M.; Lioy, P. J.; Zelenka, M.; Jing, L.; Lin, Y. N.; He, Q. C.; Qian, Z. M.; Chapman, R.; Wilson, W. E.

    well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m -3 Aerosol acidity was negligible during most monitoring periods, H +: 14 (range 0-50 neq m -3, equivalent to 0-2.5 μm m -3 as H 2SO 4). Sulfur dioxide, measured by the West-Gaeke method for part of the study, concentrations were low. Although not directly measured, the aerosol measurments suggested that gaseous HCl (from refuse incineration) and NH 3 (animal wastes) concentrations might have been high. Higher aerosol acidity might be expected if HCl sources were more prominent and not neutralized by local ammonia or other base components.

  6. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  7. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  8. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  9. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  10. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  11. Wintertime measurements of aerosol acidity and trace elements in wuhan, a city in central china

    SciTech Connect

    Waldman, J.M.; Lioy, P.J.; Zelenka, M.; Jing, L.; Lin, Y.N.

    1991-01-01

    In the People's Republic of China (P.R.C.), the pervasive use of soft coal leads to situations where the concentrations of SO2 and particulate matter approach or surpass those historically observed in London. A cooperative investigation of the effects of air pollution upon the lung function of children in five Chinese cities has been developed among China EPA, U.S. EPA and Robert Wood Johnson Medical School. The paper presents initial results of a winter air pollution field study conducted in Wuhan, one of the selected cities. A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. The purpose of this initial intensive study period was to obtain information on the chemical and physical characteristics of the aerosol species in the urban P.R.C. setting. The focus was the composition and acidity of fine particulate material.

  12. Oxodicarboxylic acids in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Römpp, Andreas; Winterhalter, Richard; Moortgat, Geert K.

    Fine mode aerosol was collected on quartz fiber filters at several sites across Europe. These samples were analyzed for carboxylic acids by liquid chromatography coupled to a hybrid (quadrupole and time-of-flight) mass spectrometer (LC/MS/MS-TOF). A series of oxodicarboxylic acids (C 7-C 11) was detected. Oxodicarboxylic acids are linear dicarboxylic acids with an additional carbonyl group. Previous measurements of these acids are scarce and their sources are largely unknown. Several structural isomers (different positions of the carbonyl group within the molecule) could be identified and differentiated by the combination of laboratory experiments and high mass accuracy measurements. The homologs with 9-11 carbon atoms were identified for the first time in atmospheric aerosol particles. The concentrations of oxodicarboxylic acids in ambient aerosol samples frequently exceeded those of the corresponding unsubstituted dicarboxylic acids. Oxodicarboxylic acids have been shown to be products of the reaction of dicarboxylic acids with OH radicals in chamber experiments and a reaction mechanism is proposed. Good correlation of oxodicarboxylic acid and hydroxyl radical concentrations was found at two measurement sites (Finland and Crete) of different geographic location and meteorological conditions. The ratios of individual isomers from the field samples are comparable to those of the laboratory experiments. The results of this study imply that the reaction of OH radicals and dicarboxylic acids is an important pathway for the production of oxodicarboxylic acids in the atmosphere. Oxodicarboxylic acids seem to be important intermediates in atmospheric oxidation processes of organic compounds.

  13. COMPARISON OF THREE METHODS FOR MEASUREMENT OF ATMOSPHERIC NITRIC ACID AND AEROSOL NITRATE AND AMMONIUM

    EPA Science Inventory

    Three methods for measuring gaseous ambient nitric acid in the low concentration range 0-15 mcg/cum were compared under field conditions in southwestern Ontario during June 1-14, 1982. The methods employed were (1) tunable diode laser absorption, (2) a tungstic acid denuder tube,...

  14. Balloon-Borne Measurements of Total Reactive Nitrogen, Nitric Acid, and Aerosol in the Cold Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Matthews, W. A.; Fahey, D. W.; Murcray, D. G.; Hofmann, D. J.; Johnston, P. V.; Iwasaka, Y.; Iwata, A.; Sheldon, W. R.

    1990-01-01

    Total reactive nitrogen (NO(Y)) between 15 and 29 km was measured for the first time on board a balloon within the Arctic cold vortex. Observations of HNO3, aerosol, and ozone were made by instruments on the same balloon gondola which was launched from Esrange, Sweden (68 deg N, 20 deg E) on January 23, 1989. The NO(y) mixing ratio was observed to increase very rapidly from 6 ppbv at 18 km altitude to a maximum of 21 ppbv at 21 km, forming a sharp layer with a thickness of about 2 km. A minimum in the NO(y) mixing ratio of 5 ppbv was found at 27 km. The measured HNO3 profile shows broad similarities to that of NO(y). This observation, together with the observed very low column amount of NO2, shows that NO(x) had been almost totally converted to HNO3, and that NO(y) was composed mainly of HNO3. The enhanced aerosol concentration between 19 and 22 km suggests that the maximum abundance of HNO3 trapped in the form of nitric acid trihydrate (NAT) was about 6 ppbv at 21 km. The sampled air parcels were highly supersaturated with respect to NAT. Although extensive denitrification throughout the stratosphere did not prevail, an indication of denitrification was found at altitudes of 27 and 22 km, and between 18 and 15 km.

  15. WINTERTIME MEASUREMENTS OF ACIDIC AEROSOLS IN WUHAN: A CITY IN CENTRAL CHINA

    EPA Science Inventory

    A two-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (PRC). his is an industrial region where soft coal burning is widespread and emission controls for vehicle...

  16. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  17. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  18. Criteria pollutant and acid aerosol characterization study, Catano, Puerto Rico

    SciTech Connect

    Edgerton, E.S.; Harlos, D.P.; Sune, J.M.; Akland, G.G.; Vallero, D.A.

    1995-07-01

    The primary objective of the Catano Criteria Pollutant and Acid Aerosol Characterization Study (CPAACS) was to measure criteria pollutant concentrations and acid aerosol concentrations in and around the Ward of Catano, Puerto Rico, during the summer of 1994. Continuous air sampling for criteria pollutants was performed at three fixed stations and one moobile station that was deployed to four locations. Air samples for acid aerosol analyses and particulate matter measurements were collected at three sites. Semicontinuous sulfate analysis was performed at the primary site. Continuous measurements of wind speed, wind direction, temperature, and relative humidity were also made at each site. The study was conducted from June 1 through September 30, 1994.

  19. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  20. NITRIC ACID-NITRATE AEROSOL MEASUREMENTS BY A DIFFUSION DENUDER: A PERFORMANCE EVALUATION

    EPA Science Inventory

    A nitric acid diffusion denuder made of nylon was operated in Riverside, CA, Houston, TX, and Claremont, CA. The pre-exponential and diffusion coefficients for the first term of the Gormley-Kennedy equation were estimated by regressing the log (mass deposited) against the axial d...

  1. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  2. Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Okada, K.; Zaizen, Y.; Makino, Y.

    2003-07-01

    Aircraft observation of aerosols was conducted in February 2000, for spatial and vertical distributions of dicarboxylic acids in the free troposphere over the western to central North Pacific. Oxalic, malonic, adipic and azelaic acids were detected in the aerosol samples as the major species. Concentrations of these diacids decreased exponentially with an increase in altitude. They were higher in the western North Pacific (130°E) and decrease eastward. Local flights conducted over Naha (Okinawa), Iwo-jima and Saipan showed that diacid concentrations decreased from the lower to upper troposphere. In the atmosphere over Saipan, where the air is not strongly affected from polluted East Asia, diacid concentrations were almost below the detection limit. Vertical profiles of diacids over Naha and Iwo-jima would be typical over the western North Pacific during winter, suggesting that diacids were significantly injected to the free troposphere from East Asia. Backward air mass trajectories also suggested that the diacids in the free troposphere over the North Pacific are strongly affected by the outflow from East Asia. Diacids, which were produced by both primary emission and secondary photochemical processes in polluted air of East Asia, could alter the physico-chemical properties of aerosols in the free troposphere over the western North Pacific.

  3. Acid aerosol transport episodes in Toronto, Ontario

    SciTech Connect

    Thurston, G.D. . Inst. of Environmental Medicine); Waldman, J. )

    1987-01-01

    In this paper, the authors examine the pollution data collected during a 1986 field study in order to assess the nature and sources of acidic aerosols in the Toronto metropolitan area during this period. Through the examination of the continuous and filter aerosol data, isobaric back-trajectories of air masses, weather maps, and available trace element data, assessment are made of the character and possible sources of acid aerosols in this Southern Ontario city.

  4. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  5. Asthmatic responses to airborne acid aerosols.

    PubMed Central

    Ostro, B D; Lipsett, M J; Wiener, M B; Selner, J C

    1991-01-01

    BACKGROUND: Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. METHODS: Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. RESULTS: Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. CONCLUSIONS: In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms. PMID:1851397

  6. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  7. EFFECTS OF SULFURIC ACID AEROSOLS ON VEGETATION

    EPA Science Inventory

    A continuous flow system for exposing plants to submicron aerosols of sulfuric acid has been developed and an operational model has been constructed. Exposure chambers have been designed to allow simultaneous exposures of the same plant to aerosol and control environments. All su...

  8. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  9. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  10. Acidic sulfate aerosols: characterization and exposure

    SciTech Connect

    Lioy, P.J.; Waldman, J.M.

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidicaerosol in excess of 20 to 40 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO/sub 4/(2)- levels. Exposures of 100 to 900 micrograms/m/sup 3//hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) was present in the atmosphere, and exposures less than 2000 micrograms/m/sup 3//hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H/sub 2/SO/sub 4/ and on what factors can be used to predict acidic sulfate episodes. 96 references.

  11. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  12. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  13. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  14. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  15. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  16. Method for volatility measurements on polydisperse aerosol

    NASA Astrophysics Data System (ADS)

    Schmid, Otmar; Hagen, Donald E.; Whitefield, Philip D.; Hopkins, Alfred R.; Eimer, Ben

    2000-08-01

    We describe a method for measuring the amount of volatile material in the aerosol phase using a thermal discriminator. This method, which requires the measurement of the particle size distributions of the heated (through discriminator) and non-heated (bypassing discriminator) sample aerosol, includes the effects due to both particle loss and partially volatile aerosols. Tests with polydisperse internally mixed, i.e. partially volatile, aerosol (not shown here) indicate a high degree of accuracy of this method even for ultrafine particles.

  17. A biogenic source of oxalic acid in marine aerosol

    NASA Astrophysics Data System (ADS)

    Facchini, M.; Rinaldi, M.; Ceburnis, D.; O'Dowd, C.; Sciare, J.; Burrows, J. P.

    2010-12-01

    Oxalic acid has been often observed in marine aerosol, nevertheless, given the ubiquitous character and the high concentrations found in polluted environments, its origin has often been attributed to continental sources. In this work, we present the results of oxalic acid analyses, on aerosol samples collected at Mace Head (Ireland, 53°20’N, 9°54’W) and Amsterdam Island (Indian Ocean, 37°48’S, 77°34’E), supporting the existence of a biogenic source of oxalic acid over the oceans. Measurements cover the year 2006, at the Northern Hemisphere site, and the period 2003-2007, at the Southern Hemisphere one. Aerosol oxalic acid was detected in clean marine air masses in concentrations ranging from 2.7 to 39 ng m-3, at Mace Head, and from 0.31 to 17 ng m-3, at Amsterdam Island. In both hemispheres, oxalic acid concentration showed a clear seasonal trend, with maxima in spring-summer and minima in the fall-winter period, in analogy with other marine biogenic aerosol components (e.g., MSA and amines). Oxalic acid was distributed along the whole aerosol size spectrum, with the major contribution given by the 1.0-2.0 µm size range, and by the lower accumulation mode (0.25-0.5 µm). Given the observed size distributions, marine aerosol oxalic acid can be assumed as the result of the combination of different formation processes, among which in-cloud oxidation of gaseous precursors [1] and photochemical degradation of biogenic unsaturated fatty acids [2] are likely the most important. Among aerosol oxalic acid precursors, glyoxal is the most likely candidate in the marine boundary layer, as a source of glyoxal over the oceans has recently been discovered by satellite observations [3] and confirmed by in situ measurements [4]. In support of this hypothesis, SCIAMACHY satellite retrieved glyoxal column concentrations, over the two sampling sites, resulted characterized by a clear seasonal trend, resembling the aerosol oxalic acid one. [1] Warneck, Atmospheric

  18. Aerosol Measurement and Processing System (AMAPS)

    Atmospheric Science Data Center

    2016-03-22

    Description:  Access aerosol data from MISR and MODIS Subset Level-2 MISR granules by parameter and by space/time region Extract MISR aerosol data for overflights of specific geographic regions or ground site ... or concerns. Details:  Aerosol Measurement and Processing System (AMAPS) Screenshot:  ...

  19. INDOOR CONCENTRATION MODELING OF AEROSOL STRONG ACIDITY

    EPA Science Inventory

    A model for estimating indoor concentrations of acid aerosol was applied to data collected during the summer of 1989, in a densely populated location in New Jersey. he model, from a study of a semi-rural community in Pennsylvania, was used to estimate indoor concentrations of aer...

  20. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  1. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  2. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  3. Acid aerosol transport episodes in Toronto, Ontario

    SciTech Connect

    Thurston, G.D.; Waldman, J.M.

    1987-07-01

    Authors used recently developed equipment to continuously monitor levels of H/sub 2/SO/sub 4/, NH/sub 4/HSO/sub 4/ and (NH/sub 4/)/sub 2/SO/sub 4/ concentrations in the ambient air outside Toronto, Ontario. These data were combined with 48-hour isobaric air mass back-trajectories ending in Toronto on each of the four days with highest acid (and sulfate) aerosol levels. The air masses with highest acid levels were found to have first passed over the SO/sub 2/ source region of the U.S. and then across the Great Lakes to Toronto. The role of ammonia as a modulator of aerosol acidity for eastern U.S. cities but not for Toronto (where the Great Lakes serve as ammonia sinks) is also discussed.

  4. Trace gas and aerosol measurements at Whiteface Mountain, New York

    SciTech Connect

    Kelly, T.J.

    1985-09-01

    This report presents the results of a 12-month program of atmospheric chemical measurements performed at Whiteface Mountain, New York. The purpose of this program was to study the concentrations and seasonal variability of several atmospheric chemical species which are of importance in the acid deposition issue. Whiteface Mountain (WFM) was chosen as the site of these measurements because it lies in the Adirondack Mountains of New York State, one of the areas considered susceptible to ecological damage from acid deposition. These measurements were the first long term study of atmospheric chemistry in the Adirondacks. Continuous real-time measurements of SO/sub 2/ and NO/sub x/ were made with commercial instruments modified for increased sensitivity and stability, and aerosol composition, HNO/sub 3/ and SO/sub 2/ were measured with a three-stage filter pack. The main conclusions of this work are (1) that concentrations of gaseous SO/sub 2/ and NO/sub x/ are highest in the winter months, whereas their oxidation products SO/sub 4//sup 2 -/ and HNO/sub 3/ were highest in summer; (2) that aerosol acidity is closely associated with SO/sub 4//sup 2 -/, aerosol NO/sub 3//sup -/ concentrations being very low in all seasons; (3) and that the relative importance of aerosol acidity and HNO/sub 3/ vary with season, because the strong seasonal variation in SO/sub 4//sup 2 -/ results in a very strong seasonal variation in aerosol acidity.

  5. EXPOSURE MODELING OF ACID AEROSOLS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting an intensive characterization and human exposure monitoring program of acid species and related air pollutants in an urban environment. he EPA's Atmospheric Research and Exposure Assessment Laboratory (AREAL) in coopera...

  6. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  7. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  8. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  9. FIELD METHOD COMPARISON FOR THE CHARACTERIZATION OF ACID AEROSOLS AND GASES

    EPA Science Inventory

    This paper presents findings from two intercomparison studies of acid aerosol measurement systems, which were conducted in Uniontown and State College, PA, during the summers of 1990 and 1991, respectively. s part of these studies, acid aerosol and gas concentrations (NH3, HNO3, ...

  10. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  11. Identification of keto- and hydroxy-dicarboxylic acids in remote marine aerosols from the western North Pacific: GC and GC/TOF-MS measurements

    NASA Astrophysics Data System (ADS)

    Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the

  12. Exposure of acid aerosol for schoolchildren in metropolitan Taipei

    NASA Astrophysics Data System (ADS)

    Mao, I.-Fang; Lin, Chih-Hung; Lin, Chun-Ji; Chen, Yi-Ju; Sung, Fung-Chang; Chen, Mei-Lien

    Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO 2, SO 2, HNO 3, NO 3-, SO 42-, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m -3, 18.5 μg m -3, and 49.5 nmol m -3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m -3, 8.8 μg m -3 and 14.7 nmol m -3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO 2 levels were low (0.13-8.03 ppb) in the metropolitan Taipei. However, the SO 42- concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.

  13. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  14. Indoor concentration modeling of aerosol strong acidity

    SciTech Connect

    Zelenka, M.; Waldman, J.; Suh, H.; Koutrakis, P.

    1993-01-01

    A model for estimating indoor concentrations of acid aerosol was applied to data collected during the summer of 1989, in a densely populated location in New Jersey. The model, from a study of a semi-rural community in Pennsylvania, was used to estimate indoor concentrations of aerosol strong acidity (H+) at an elderly care residence in suburban New Jersey. The purpose of the present work is to assess the applicability of the model for predicting H+ exposures in a suburban environment and to evaluate the models performance for daytime and nighttime periods. Indoor and outdoor samples were taken at an elderly care home between June 20 and July 30, 1989. The indoor and outdoor monitoring schedule collected two 12-h samples per day. Samples were taken with the Indoor Denuder Sampler (IDS). Samples were analyzed for indoor and outdoor concentrations of aerosol strong acidity (H+), ammonia (NH3), and anion determination. The model generally underestimated the indoor H+ concentration. Slight improvement was seen in the model estimate of H+ for the nighttime period (7:00 pm to 7:00 am, local time). The model applied to the site in New Jersey did not predict the indoor H+ concentrations as well as it did for the experiment from which it was developed.

  15. Spatial and temporal patterns in sulfate aerosol acidity and neutralization within a metropolitan area

    SciTech Connect

    Waldman, J.M.; Lloy, P.J. ); Thurston, G.D.; Lippmann, M. )

    1988-01-01

    Measurements of atmospheric acidity are relatively new and not routine. The influences and variability due to local phenomena have not been investigated heretofore. As part of a U.S. EPA-sponsored air pollution-health effects study in metropolitan Toronto (population 2.3 million), aerosol acidity was monitored at three sites. This study is discussed in the book. The primary objective was to document human exposures to acidic aerosol during the study period. Because of its chemical reactivity, it was not known whether substantial variations in acidic aerosol concentrations would be found within the subregion (area 60 km{sup 2}). A network of three acidic aerosol monitoring sites was used. Hence, this study design offered the first opportunity to compare spatial and temporal patterns of acidic aerosol levels within a large, receptor region.

  16. Acid aerosols in the Pittsburgh Metropolitan area

    NASA Astrophysics Data System (ADS)

    McCurdy, Thomas; Zelenka, Michael P.; Lawrence, Philip M.; Houston, Robert M.; Burton, Robert

    This article presents data on ambient concentrations of selected acidic aerosols at four existing monitoring sites in the Pittsburgh PA metropolitan area. The data were collected by staff of the Allegheny County Health Department, Division of Air Quality during the summer and fall of 1993. The sampling protocol was focused on obtaining 24 h-average ammonia, ammonium, acidic sulfates, and particle strong acids data on a 2 to 3 day cycle. The data were obtained using Harvard University School of Public Health's "Short-HEADS" annular denuder sampling train. The Pittsburgh area is of interest because it is downwind of a major regional source of sulfur and nitrogen emissions from coal-burning power plants: the Ohio River Valley. The data presented here indicate that ground-level concentrations of acidic aerosols in Pittsburgh are highly correlated spatially and that many pollutants are higher on days when ground-level wind direction vectors indicate that wind is coming from the southwest rather than from the Pittsburgh source area itself. The monitoring site that is most upwind of the Pittsburgh source area - South Fayette - has particle strong acid levels about twice those of sites closer in to the Pittsburgh central business district.

  17. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Mcmaster, L. R.; Chu, W. P.; Swissler, T. J.; Osborn, M. T.; Russell, P. B.; Oberbeck, V. R.; Livingston, J.; Rosen, J. M.

    1989-01-01

    Consideration is given to aerosol correlative measurements experiments for the Stratospheric Aerosol and Gas Experiment (SAGE) II, conducted between November 1984 and July 1986. The correlative measurements were taken with an impactor/laser probe, a dustsonde, and an airborne 36-cm lidar system. The primary aerosol quantities measured by the ground-based instruments are compared with those calculated from the aerosol size distributions from SAGE II aerosol extinction measurements. Good agreement is found between the two sets of measurements.

  18. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  19. Use of Cavity Ring Down Spectroscopy to Characterize Organic Acids and Aerosols Emitted in Biomass Burning

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Fiddler, Marc; Singh, Sujeeta

    2012-02-01

    One poorly understood, but significant class of volatile organic compounds (VOC) present in biomass burning is gas-phase organic acids and inorganic acids. These acids are extremely difficult to measure because of their adsorptive nature. Particulates and aerosols are also produced during biomass burning and impact the radiation budget of the Earth and, hence, impact global climate. Use cavity ring down spectroscopy (CRD) to measure absorption cross sections for OH overtone induced photochemistry in some organic acids (acetic acid and peracetic acid) will be presented and planed measurements of optical properties of aerosols composed of mixtures of different absorbing and non-absorbing species using CRD will be discussed.

  20. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Lewandowski, M.; Jaoui, M.; Offenberg, J. H.; Krug, J. D.; Kleindienst, T. E.

    2015-04-01

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA) have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ m-3 air sample volume) and the percent change in secondary organic carbon (SOC). The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, and extend the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m-3 increase in H+ was approximately a factor of 3 less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m-3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  1. Measurements of nitric acid, carboxylic acids, and selected aerosol species for the NASA/GTE Pacific Mission - West (PEM-WEST)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1993-01-01

    The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall

  2. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  3. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  4. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  5. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  6. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  7. Venus -Mesospheric hazes of ice, dust, and acid aerosols

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Keesee, R. G.

    1983-01-01

    Four distinct types of particles are suggested to be present in the upper atmosphere of Venus. The lowest and densest haze may consist of a submicron sulfuric acid aerosol which extends above the cloud tops, up to about 80 km, representing an extension of the upper cloud deck. Temperature structure measurements in the 70-120 km altitude range indicate the occasional appearance of two independent water ice layers, of which the lower may form between 80 and 100 km and is probably the detached haze layer noted in high contrast limb photography. A nucleation of this ice layer on sulfuric acid aerosols is hypothesized. Temperatures of the Venus mesopause, near 120 km altitude, are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions, yielding a haze (analogous to noctilucent clouds on earth) which is expected to be tenuous to the point of optical invisibility.

  8. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  9. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  10. Measuring Sodium Chloride Contents of Aerosols

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Amount of sodium chloride in individual aerosol particles measured in real time by analyzer that includes mass spectrometer. Analyzer used to determine mass distributions of active agents in therapeutic or diagnostic aerosols derived from saline solutions and in analyzing ocean spray. Aerosol particles composed of sodium chloride introduced into oven, where individually vaporized on hot wall. Vapor molecules thermally dissociated, and some of resulting sodium atoms ionized on wall. Ions leave oven in burst and analyzed by spectrometer, which is set to monitor sodium-ion intensity.

  11. Aerosol optical thickness measurements during FIFE '89

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Bruegge, Carol J.; Markham, Brian L.

    1990-01-01

    The measurements used for correction and calibration are presented which permit the estimation of atmospheric effects on reflected and transmitted solar radiation. Four sun-photometers are calibrated and used to derive aerosol optical thicknesses that agree with expected uncertainties, and lower values and higher values are associated with cool dry northerly flows and warm humid southerly flows, respectively. The rapid increase in the vertical aerosol optical thickness after sunrise is related to the growth of the mixing layer which can be inferred from the 2D maps of the instantaneous aerosol number densities.

  12. CRITERIA POLLUTANT AND ACID AEROSOL CHARACTERIZATION STUDY - CATANO, PUERTO RICO

    EPA Science Inventory

    The objective of the Catano Criteria Pollutant and Acid Aerosol Characterization study was to characterize criteria pollutant and acid aerosol concentrations in the Ward of Catano and adjacent residential areas in the Commonwealth of Puerto Rico. on-Governmental organizations (NG...

  13. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  14. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  15. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  16. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    NASA Astrophysics Data System (ADS)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  17. Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Ng, Nga L.; Chan, Arthur W. H.; Feingold, Graham; Flagan, Richard C.; Seinfeld, John H.

    2007-07-01

    The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter participated in the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) mission during August-September 2006. A particle-into-liquid sampler (PILS) coupled to ion chromatography was used to characterize the water-soluble ion composition of aerosol and cloud droplet residual particles (976 5-min PM1.0 samples in total). Sulfate and ammonium dominated the water-soluble mass (NH4+ + SO42- = 84 ± 14%), while organic acids contributed 3.4 ± 3.7%. The average NH4+:SO42- molar ratio was 1.77 ± 0.85. Particulate concentrations of organic acids increased with decreasing carbon number from C9 to C2. Organic acids were most abundant above cloud, presumably as a result of aqueous phase chemistry in cloud droplets, followed by subsequent droplet evaporation above cloud tops; the main product of this chemistry was oxalic acid. The evolution of organic acids with increasing altitude in cloud provides evidence for the multistep nature of oxalic acid production; predictions from a cloud parcel model are consistent with the observed oxalate:glyoxylate ratio as a function of altitude in GoMACCS cumuli. Suppressed organic acid formation was observed in clouds with relatively acidic droplets, as determined by high particulate nitrate concentrations (presumably high HNO3 levels too) and lower liquid water content, as compared to other cloud fields probed. In the Houston Ship Channel region, an area with significant volatile organic compound emissions, oxalate, acetate, formate, benzoate, and pyruvate, in decreasing order, were the most abundant organic acids. Photo-oxidation of m-xylene in laboratory chamber experiments leads to a particulate organic acid product distribution consistent with the Ship Channel area observations.

  18. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  19. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  20. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  1. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  2. Aircraft measurement of organic aerosols over China.

    PubMed

    Wang, Gehui; Kawamura, Kimitaka; Hatakeyama, Shiro; Takami, Akinori; Li, Hong; Wang, Wei

    2007-05-01

    Lower to middle (0.5-3.0 km altitude) tropospheric aerosols (PM2.5) collected by aircraft over inland and east coastal China were, for the first time, characterized for organic molecular compositions to understand anthropogenic, natural, and photochemical contribution to the air quality. n-Alkanes, fatty acids, sugars, polyacids are detected as major compound classes, whereas lignin and resin products, sterols, polycyclic aromatic hydrocarbons, and phthalic acids are minor species. Average concentrations of all the identified compounds excluding malic acid correspond to 40-50% of those reported on the ground sites. Relative abundances of secondary organic aerosol (SOA) components such as malic acid are much higher in the aircraft samples, suggesting an enhanced photochemical production over China. Organic carbon (OC) concentrations in summer (average, 24.3 microg m(-3)) were equivalent to those reported on the ground sites. Higher OC/EC (elemental carbon) ratios in the summer aircraft samples also support a significant production of SOA over China. High loadings of organic aerosols in the Chinese troposphere may be responsible to an intercontinental transport of the pollutants and potential impact on the regional and global climate changes. PMID:17539513

  3. Space measurements of tropospheric aerosols

    NASA Technical Reports Server (NTRS)

    Griggs, M.

    1981-01-01

    A global-scale ground-truth experiment was conducted in the summer of 1980 with the AVHRR sensor on NOAA-6 to investigate the relationship between the upwelling visible radiance and the aerosol optical thickness over oceans at different sites around the globe. The possibility of using inland bodies of water such as rivers, lakes and reservoirs has been recently investigated using the Landsat MSS7 (approximately 0.9 micron) channel. This upwelling near-infrared radiance is less influenced than the visible radiance by the suspended matter generally found in the inland bodies of water, and by the adjacency effect of the surrounding higher albedo land. It is found that the water turbidity has more influence than the adjacency effect and reduces the effectiveness of the technique for inland observations.

  4. Measurements of Gases and Aerosols during 2010Cal-Mex

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Molina, L.

    2012-04-01

    The major goal of the collaborative Cal-Mex 2010 research project is to assess the sources and processing of emissions along the California-Mexico border region and their effects on regional air quality and climate in order to provide scientific information to decision makers of both nations when addressing these two inter-related issues. During the Cal-Mex 2010 field study, the TAMU teams have collected extensive data sets from Tijuana/San Diego border, including volatile organic compounds (VOCs), gaseous sulfuric acid (H2SO4) and a suite set of physical and chemical parameters of aerosols. This comprehensive data set requires additional effort to process and analyze the measurements of gases and aerosols during Cal-Mex 2010. In this talk, preliminary data analysis of gases and aerosols will be presented, including VOCs and particle mixing states, morphology, and effective densities.

  5. A study of the performance of different acidic aerosol samplers and the characteristics of acidic aerosols in Hsinchu Taiwan

    SciTech Connect

    Tsai, C.J.; Perng, S.B.; Chiou, S.F.; Lin, T.Y.

    1999-07-01

    An annular denuder system (ADS), a honeycomb denuder system (HDS) and a micro-orifice uniform deposit impactor (MOUDI) were used to investigate the physical and chemical characteristics of acidic aerosols in Hsinchu Taiwan. The performances of different denuder samplers were also compared. The concentrations (in {mu}g/m{sup 3}) of major ionic species: H{sup +}, SO{sub 4}{sup 2{minus}} NO{sub 3}{sup {minus}} and NH{sub 4}{sup +} are found to average 0.019{+-}0.01 (std. dev.) (range: 0.00--0.02), 7.60{+-}5.08 (range: 1.37--16.54), 7.67{+-}5.50 (range: 1.18--21.58) and 5.27{+-}2.90 (range: 1.14--9.42), as measured by the ADS, respectively. Aerosol acidity is not severe compared to urban cities in other countries, due to neutralization of aerosol acidity by ammonia in Hsinchu. The results indicate that the size distributions of H{sup +} and NH{sub 4}{sup +} are in the single mode while those of NO{sub 3}{sup {minus}} and SO{sub 4}{sup 2{minus}} are found to be mainly bimodal. The ions such as SO{sub 4}{sup 2{minus}}, NO{sub 3}{sup {minus}}, NH{sub 4}{sup +} and H{sup +} are dominant in the fine mode, while ions such as Cl{sup {minus}}, Na{sup +} and K{sup +} are found to be in both fine and coarse modes. Comparing two different denuder samplers, the average concentration of HNO{sub 3} measured by the HDS is found to be 40% higher than that of the ADS while the average concentrations of NO{sub 3}{sup {minus}} and Cl{sup {minus}} measured by the ADS are higher than those of the HDS by 12% and 14%, respectively. The concentrations of other species are found to be similar in both denuder samplers.

  6. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  7. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  8. Aerosol and Plasma Measurements in Noctilucent Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Scott

    2000-01-01

    The purpose of this project was to develop rocket-borne probes to detect charged aerosol layers in the mesosphere. These include sporadic E layers, which have their origin in meteoric dust, and noctilucent clouds, which form in the arctic summer and are composed of ice crystals. The probe being developed consists of a charge collecting patch connected to a sensitive electrometer which measures the charge deposited on the patch by impacting aerosols. The ambient electrons and light ions in the mesosphere are prevented from being collected by a magnetic field. The magnetic force causes these lighter particles to turn so that they miss the collecting patch.

  9. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  10. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  11. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds. PMID:17695910

  12. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-01-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols, particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3) and the coarse particles were found to be enriched with amino acids compared to the coastal site. The amino acid composition had also changed suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V talica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material in the sample.

  13. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  14. COMPARISON OF AEROSOL ACIDITY IN URBAN AND SEMI-RURAL ENVIRONMENTS

    EPA Science Inventory

    During the summer of 1990, acid aerosol, acid gas. and ammonia measurements were conducted simultaneously at three locations in central and western Pennsylvania where population levels were large (metropolitan Pittsburgh> and small (semi-rural communities of Uniontown and State C...

  15. Crowdsourced aerosol measurements using smartphone spectropolarimeters

    NASA Astrophysics Data System (ADS)

    Rietjens, J.; Snik, F.; Keller, C. U.; Heinsbroek, R.; van Harten, G.; Heikamp, S.; de Boer, J.; Zeegers, E.; Einarsen, L.; Hasekamp, O.; Smit, M.; di Noia, A.; Apituley, A.; Mijling, B.; Hendriks, E.; Stammes, P.; Volten, H.; Vonk, J.; Berkhout, S.; Haaima, M.; van der Hoff, R.; Stam, D.; Navarro, R.; Bettonvil, F.

    2013-12-01

    We present the development, organisation and results of a large citizen science project with the goal to measure and characterise atmospheric aerosols using a network of smartphone spectropolarimeters. The project, called ';iSPEX', was conceived and carried out in the Netherlands, and organised the first National iSPEX measurement day on July 8th 2013. During this day, more than 3000 people performed over 6000 measurements with their own smartphones using a special add-on and a dedicated app. These measurements were sent to a central database, processed and analysed using a vector-radiative transfer based inversion code in order to extract aerosol properties. The add-on that transforms the camera of the smartphone into a spectropolarimeter and thereby the smartphone into a scientific instrument, employs the method of spectral modulation [1]. The add-on is comprised of polymer parts and was mass-produced and distributed to almost 10000 people. A single measurement involves scanning the blue sky, thereby yielding the angular behaviour of the degree of linear polarisation as a function of wavelength. Although a single iSPEX measurement is not accurate enough, combining many measurements of a crowdsourced experiment with thousands of people should yield sufficiently accurate results that may be interpreted in terms of aerosol optical thickness and aerosol particle properties. By analysing not only the measured results, but also the motivation of the general public to participate, we learn about the possibilities to create a new kind of air quality measurement network. At the conference, we will demonstrate iSPEX and present the results of the first measurement day. We hope to convince you that iSPEX is not only a great outreach tool to engage the public in issues pertaining to atmospheric aerosols, but that it may also contribute to the solution of several urgent societal and scientific problems. [1] Snik, F., Karalidi, T., Keller, C.U.. Spectral modulation for full

  16. Aerosol measurements at the South Pole

    NASA Astrophysics Data System (ADS)

    Bodhaine, Barry A.; Deluisi, John J.; Harris, Joyce M.; Houmere, Pamela; Bauman, Sene

    1986-09-01

    Some results are given regarding the aerosol measurement program conducted by the NOAA at their atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. A time series of sodium, chlorine, and sulfur concentrations shows that the sulfur and CN records are similar and that the sodium, chlorine, and extinction coefficient records are similar. Large episodes of sodium are measured at the ground in the austral winter and are apparently caused by large-scale warming and weakening of the surface temperature inversion. The CN data show an annual cycle with a maximum exceeding 100 per cubic centimeter in the austral summer and a minimum of about 10 per cubic centimeter in the winter. The extinction coefficient data show an anual cycle markedly different from that of CN with a maximum in late winter, a secondary maximum in summer, and a minimum in May.

  17. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  18. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  19. Ambient aerosols remain highly acidic despite dramatic sulfate reductions

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead

    2016-04-01

    The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.

  20. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  1. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  2. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  3. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  4. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  5. Aerosol measurements in the IR: from limb to nadir?

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Gunson, M. R.

    2001-01-01

    Vertical profiles of aerosol concentration have been derived from the ATMOS solar occultation dataset. The EOS instrument TES has motivated studies of the feasibility of quantifying aerosols in nadir and limb emission measurements.

  6. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-01-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5-50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  7. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-09-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5 50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  8. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  9. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  10. Balloon measurements of aerosol in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Morita, Y.; Takagi, M.; Iwasaka, Y.; Ono, A.

    1985-01-01

    Three balloon soundings of aerosol were conducted from Syowa Station, Antarctica in April, June and October 1983. Number concentration and the size distribution of aerosol particles with diameter greater than 0.3 microns were measured by using a light scattering aerosol particle counter. The influence of the eruption of Mt. El Chichon on the aerosol concentration in the stratosphere was observed on October 16. Very high aerosol concentration at stratospheric heights was obtained from the first successful aerosol sounding in winter Antarctic stratosphere. The result gives direct evidence of winter enhancement in the Antarctic stratosphere.

  11. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  12. Contributions of Acid-Catalysed Processes to Secondary Organic Aerosol Mass - A Modelling pproach

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Feingold, G.; Kreidenweis, S. M.

    2005-12-01

    A significant fraction of secondary organic aerosol (SOA) mass is formed by chemical and/or physical processes. However, the amount of organic material found in ambient organic aerosols cannot be explained with current models. Recently, several laboratory studies have been published which suggest that also acid-catalyzed processes that occur either in particles or at their surfaces (heterogeneous) might contribute significantly to mass formation. However, to date there is no general conclusion about the efficiency of such processes due to the great diversity of species and experimental conditions. We present a compilation of literature data (thermodynamic and kinetic) of these processes. The aerosol yields of (i) additional species which are thought previously not contribute to SOA formation (e.g. isoprene, aliphatic aldehydes) and (ii) species which form apparently higher SOA masses on acidic seed aerosols are reported and compared to input data of previous SOA models. Available kinetic data clearly exclude aldol condensation as a significant process for SOA formation on a time scale of typical aerosol life times. Using aerosol size distributions and gas phase concentrations measured during NEAQS2002 as model input data, we show that (even under assumption of equilibrium conditions) these additional processes only contribute a minor fraction to the organic aerosol mass.

  13. Aerosol measurements in the stratocumulus project

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) and Condensation Nuclei (CN) were measured from the National Center for Atmospheric Research (NCAR) Electra throughout the marine stratocumulus project. The total particle concentration was measured with a condensation nucleus counter. The CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. This instrument simultaneously measures the concentration of aerosol active at up to 100 different critical supersaturations (Sc). This is accomplished by exposing the sample to a fixed supersaturation field and using the size of the droplets produced in this cloud chamber to deduce the Sc of the nuclei upon which they have grown. Droplet size is associated with Sc through a calibration which is accomplished by passing soluble aerosols of known size and composition through the cloud chamber. This procedure results in a calibration curve of Sc vs. droplet size. This then allows the channel number to be directly associated with Sc. Thus, number concentration vs. Sc is obtained and this is a CCN spectrum. Since the instrument operates continuously, the measurements at all Sc's are available simultaneously. Samples are drawn directly from the ambient air and data is displayed in nearly real time. Samples were integrated over times of about 10 seconds so that substantial spatial resolution is available. Calibrations were performed once or twice a day and were found to be consistent. Preliminary results are shown.

  14. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause. PMID:18357329

  15. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  16. SAGE II aerosol data validation based on retrieved aerosol model size distribution from SAGE II aerosol measurements.

    PubMed

    Wang, P H; McCormick, M P; McMaster, L R; Chu, W P; Swissler, T J; Osborn, M T; Russell, P B; Oberbeck, V R; Livingston, J; Rosen, J M; Hofmann, D J; Grams, G W; Fuller, W H; Yue, G K

    1989-06-20

    This paper describes an investigation of the comprehensive aerosol correlative measurement experiments conducted between November 1984 and July 1986 for satellite measurement program of the Stratospheric Aerosol and Gas Experiment (SAGE II). The correlative sensors involved in the experiments consist of the NASA Ames Research Center impactor/laser probe, the University of Wyoming dustsonde, and the NASA Langley Research Center airborne 14-inch (36 cm) lidar system. The approach of the analysis is to compare the primary aerosol quantities measured by the ground-based instruments with the calculated ones based on the aerosol size distributions retrieved from the SAGE II aerosol extinction measurements. The analysis shows that the aerosol size distributions derived from the SAGE II observations agree qualitatively with the in situ measurements made by the impactor/laser probe. The SAGE II-derived vertical distributions of the ratio N0.15/N0.25 (where Nr is the cumulative aerosol concentration for particle radii greater than r, in micrometers) and the aerosol backscatter profiles at 0.532- and 0.6943-micrometer lidar wavelengths are shown to agree with the dustsonde and the 14-inch (36-cm) lidar observations, with the differences being within the respective uncertainties of the SAGE II and the other instruments. PMID:11539801

  17. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  18. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  19. DEVELOPMENT OF A PORTABLE DEVICE TO COLLECT SULFURIC ACID AEROSOL

    EPA Science Inventory

    A quantitative, interference-free method for collecting sulfuric acid aerosol on a filter was developed and field tested. Since previous research found that severe losses of sulfuric aicd were caused by ammonia, ambient particulate material, and other interferents, a method was n...

  20. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  1. FTIR studies of low temperature sulfuric acid aerosols

    SciTech Connect

    Anthony, S.E.; Tisdale, R.T.; Disselkamp, R.S.

    1995-05-01

    Fourier transform infrared (FTIR) spectroscopy was used to study low temperature sulfuric acid aerosols representative of global stratospheric sulfate aerosols (SSAs). Sub-micrometer sized sulfuric acid (H{sub 2}SO{sub 4}) particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission FTIR spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to 5 hours. Binary H{sub 2}SO{sub 4}/H{sub 2}O aerosols with compositions from 35 to 95 wt % H{sub 2}SO{sub 4} remained liquid for over 3 hours at temperatures ranging from 189-240 K. These results suggest that it is very difficult to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H{sub 2}SO{sub 4} resulted in ice formation. 18 refs., 7 figs.

  2. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  3. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  4. Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Lea; Kostenidou, Evangelia; Mihalopoulos, Nikos; Worsnop, Douglas R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-12-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiments (FAME-08 and FAME-09), which were part of the EUCAARI intensive campaigns. Quadrupole aerosol mass spectrometers (Q-AMSs) were employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the OA. The experiments provide unique insights into ambient oxidation of aerosol by measuring at the same site but under different photochemical conditions. NR-PM1 concentrations were about a factor of three lower during FAME-09 (winter) than during FAME-08 (summer). The OA sampled was significantly less oxidized and more variable in composition during the winter than during the early summer. Lower OH concentrations in the winter were the main difference between the two campaigns, suggesting that atmospheric formation of highly oxygenated OA is associated with homogeneous photochemical aging.

  5. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  6. Aerosol acidity characterization of large metropolitan areas: Pilot and planning for Philadelphia

    SciTech Connect

    Waldman, J.M.; Koutrakis, P.; Burton, R.; Wilson, W.E.; Purdue, L.J.

    1993-01-01

    The report described the EPA's multi-year program to investigate the specific issues surrounding human exposures to aerosol activity. Philadelphia, a large metropolitan area in the heart of the northeastern seaboard afflicted with photochemical regional smog during the summertime, was chosen as the first city in the program. A pilot study of ambient concentrations was conducted in July 1991. An annular denuder system (ADS) sampler was operated for two weeks near downtown Philadelphia, with a second unit operated in central, suburban New Jersey, the same location of measurements in past years. The Philadelphia site was found to have higher concentrations of most major aerosol species, ammonia and acidic particles than in New Jersey, showing that aerosol neutralization within the urban center will not necessarily totally eliminate acidic particle exposures.

  7. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  8. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  9. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  10. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  11. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-07-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  12. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  13. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  14. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  15. The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Wang, Xin-Ming; Zheng, Mei

    2011-02-01

    At a rural site in the central Pearl River Delta (PRD) region in south China, fine particle (PM 2.5) samples were collected during fall-winter 2007 to measure biogenic secondary organic aerosol (SOA) tracers, including isoprene SOA tracers (3-methyl-2,3,4-trihydroxy-1-butene, 2-methylglyceric acid, 2-methylthreitol and 2-methylerythritol), α-pinene SOA tracers ( cis-pinonic acid, pinic acid, 3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and 3-hydroxy-4,4-dimethylglutaric acid) and a sesquiterpene SOA tracer (β-caryophyllinic acid). The isoprene-, α-pinene- and sesquiterpene-SOA tracers averaged 30.8 ± 15.9, 6.61 ± 4.39, and 0.54 ± 0.56 ng m -3, respectively; and 2-methyltetrols (sum of 2-methylthreitol and 2-methylerythritol, 27.6 ± 15.1 ng m -3) and cis-pinonic acid (3.60 ± 3.76 ng m -3) were the dominant isoprene- and α-pinene-SOA tracers, respectively. 2-Methyltetrols exhibited significantly positive correlations ( p < 0.05) with ambient temperature, probably resulting from the enhanced isoprene emission strength and tracer formation rate under higher temperature. The significantly positive correlation ( p < 0.05) between 2-methyltetrols and the estimated aerosol acidity with a slope of 59.4 ± 13.4 ng m -3 per μmol [H +] m -3 reflected the enhancement of isoprene SOA formation by aerosol acidity, and acid-catalyzed heterogeneous reaction was probably the major formation pathway for 2-methyltetrols in the PRD region. 2-Methylglyceric acid showed poor correlations with both temperature and aerosol acidity. The α-pinene SOA tracers showed poor correlations with temperature, probably due to the counteraction between temperature effects on the precursor emission/tracer formation and gas/particle partitioning. Among the α-pinene SOA tracers, only cis-pinonic acid and pinic acid exhibited significant correlations with aerosol acidity with slopes of -11.7 ± 3.7 and -2.2 ± 0.8 ng m -3 per μmol [H +] m -3, respectively. The negative

  16. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  17. Online Aerosol Size and Composition Measurements in Coastal Antarctica

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Giordano, M.; Kalnajs, L.; Johnson, A.; Davis, S. M.; Deshler, T.; Toohey, D. W.

    2014-12-01

    Aerosol particles play a critical role in the chemical and radiative balance of the Antarctic atmosphere. Aerosols are both a source and sink of gas phase constituents, as well as a transport mechanism for oceanic chemical species into the continental interior. The interaction between aerosols, the gas phase, sea ice and the snow pack is complex and not well understood. Recent observations of ozone depletion events coupled with submicron aerosol mass increase highlight the interaction between the gas and particle phases. These interactions can lead to aerosol formation as well as the deposition of trace elements to the snow pack. To determine the composition and source regions of aerosols in the coastal Antarctic atmosphere, a suite of instruments was deployed in the 2014 Antarctic measurement season including a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-AMS), Ultra High Sensitivity Aerosol Spectrometer (UHSAS), Ozone analyzer, Scanning Electrical Mobility Sizer (SEMS), and Particle-into-Liquid Sampler (PILS). Measurements of gas phase constituents and aerosol composition were interpreted in the context of back trajectories and local meteorological conditions to link the measured air masses to their source regions.

  18. Advances in Measurement of Carbonyls in Aerosols.

    NASA Astrophysics Data System (ADS)

    Charles, M.; Jakober, C.; Spaulding, R.; Green, P.; Destaillats, H.; Hughes, J. M.

    2002-12-01

    Chamber studies establish the formation of highly polar oxygenated species from the reaction of anthropogenic and biogenic hydrocarbons with hydroxyl radicals or ozone. A paucity of data exists however on the generation and fate of these organics in the ambient atmospheric environment. This is primarily due to the absence of suitable analytical methods. To address limitations of existing methods, we developed methods that rely on O-(2,3,4,5,6)-pentafluorobenzylhydroxylamine (PFBHA), and bis-(trimethylsilyl) trifluoroacetamide (BSTFA) in concert with GC/ion trap mass spectrometry (GC/ITMS) to identify and quantify carbonyl, dicarbonyl and hydroxy carbonyl photooxidation products in aerosols at part-per-trillion (pptv) levels. We also optimized and evaluated a mist chamber to sample carbonyls and multi-functional carbonyls with 10 minute sampling times. We applied the method to identify and quantify 2-hydroxy-2-methyl propanal (2-HMPR), a proposed photooxidation product of 2-methyl-3-buten-2-ol (MBO) in the Blodgett Forest, CA. The average 2-HMPR/MBO mixing ratio was 0.33ñ 0.25, which is reasonable since the expected yield of 2-HMPR from the hydroxyl radical oxidation of MBO is 0.19-0.35. Further method development in our laboratory is exploring the employment of HPLC/atmospheric pressure chemical ionization (APCI) mass spectra to identify model aliphatic and aromatic carbonyls (the major classes were aldehydes, ketones, dicarbonyls, and quinones) in aerosols. The data indicate the potential for pentafluorobenzyl derivatization in concert with GC/ITMS and HPLC/ITMS to measure a broad range of carbonyls.

  19. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  20. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  1. Semicontinuous automated measurement of organic carbon in atmospheric aerosol samples.

    PubMed

    Lu, Chao; Rashinkar, Shilpa M; Dasgupta, Purnendu K

    2010-02-15

    A fully automated measurement system for ambient aerosol organic carbon, capable of unattended operation over extended periods, is described. Particles are collected in a cyclone with water as the collection medium. The collected sample is periodically aspirated by a syringe pump into a holding loop and then delivered to a wet oxidation reactor (WOR). Acid is added, and the WOR is purged to measure dissolved CO(2) or inorganic carbonates (IC) as evolved CO(2). The IC background can often be small and sufficiently constant to be corrected for, without separate measurement, by a blank subtraction. The organic material is now oxidized stepwise or in one step to CO(2). The one-step oxidation involves UV-persulfate treatment in the presence of ozone. This treatment converts organic carbon (OC) to CO(2), but elemental carbon is not oxidized. The CO(2) is continuously purged from solution and collected by two sequential miniature diffusion scrubbers (DSs), a short DS preceding a longer one. Each DS consists of a LiOH-filled porous hydrophobic membrane tube with terminal stainless steel tubes that function as conductance-sensing electrodes. As CO(2) is collected by the LiOH-filled DSs, hydroxide is converted into carbonate and the resulting decrease in conductivity is monitored. The simultaneous use of the dual short and long DS units bearing different concentrations of LiOH permits both good sensitivity and a large dynamic range. The limit of detection (LOD, S/N = 3) is approximately 140 ng of C. With a typical sampling period of 30 min at a sampling rate of 30 L/min, this corresponds to an LOD of 160 ng/m(3). The approach also provides information on the ease of oxidation of the carbonaceous aerosol and hence the nature of the carbon contained therein. Ambient aerosol organic carbon data are presented. PMID:20092351

  2. Deriving simple empirical relationships between aerodynamic and optical aerosol measurements and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different measurement techniques for aerosol characterization and quantification either directly or indirectly measure different aerosol properties (i.e. count, mass, speciation, etc.). Comparisons and combinations of multiple measurement techniques sampling the same aerosol can provide insight into...

  3. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  4. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  5. A comparison of acid aerosol and ozone exposure patterns in a summertime study of metropolitan Philadelphia

    SciTech Connect

    Waldman, J.M.; Liang, C.S.K.; Koutrakis, P.; Suh, H.; Allen, G.; Burton, R.; Wilson, W.E.

    1994-12-31

    A study of acid aerosol and ozone exposure patterns was conducted for metropolitan Philadelphia between June and August 1992. Included in the study design were daily monitoring of particulate strong acidity (PSA), sulfate (SO{sub 4}{sup {minus}2}) and hourly ozone data (O{sub 3}) at a citywide network. A continuous sulfate thermal speciation analyzer at one site collected hourly concentration data for SO{sub 4}{sup {minus}2} aerosol. The current paper presents temporal patterns of continuous measurements for O{sub 3} and SO{sub 4}{sup {minus}2} aerosol. Both pollutants had similar daily peak periods in the mid-afternoon, although the range for O{sub 3} was much greater than for SO{sub 4}{sup {minus}2} aerosol. The daily peak values were also correlated for the two species during the study period. It seems that many of the same meteorological factors affect the spatial and temporal patterns for these lung irritants. Hence, the similarity in exposure patterns for O{sub 3} and SO{sub 4}{sup {minus}2} aerosol is reason for concern, regarding possible synergism from coincident doses.

  6. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  7. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  8. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  9. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  10. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  11. Estimating the contribution of organic acids to northern hemispheric continental organic aerosol

    NASA Astrophysics Data System (ADS)

    Yatavelli, Reddy L. N.; Mohr, Claudia; Stark, Harald; Day, Douglas A.; Thompson, Samantha L.; Lopez-Hilfiker, Felipe D.; Campuzano-Jost, Pedro; Palm, Brett B.; Vogel, Alexander L.; Hoffmann, Thorsten; Heikkinen, Liine; ńijälä, Mikko; Ng, Nga L.; Kimmel, Joel R.; Canagaratna, Manjula R.; Ehn, Mikael; Junninen, Heikki; Cubison, Michael J.; Petäjä, Tuukka; Kulmala, Markku; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose L.

    2015-07-01

    Using chemical ionization mass spectrometry to detect particle-phase acids and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiälä, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together with m/z 44 data from 29 continental northern hemispheric (NH) AMS data sets, we estimate that molecules containing carboxylic acid functionality constitute on average 28% (range 10-50%) of NH continental OA mass with typically higher values at rural/remote sites and during summer and lower values at urban sites and during winter.

  12. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  13. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  14. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  15. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  16. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  17. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  18. Measurements of aerosol chemical composition in boreal forest summer conditions

    NASA Astrophysics Data System (ADS)

    ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.

    2012-04-01

    Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI

  19. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  20. New ARM Measurements of Clouds, Aerosols, and the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Mather, J.

    2012-04-01

    The DOE Atmospheric Radiation Measurement (ARM) program has recently enhanced its observational capabilities at its fixed and mobile sites as well as its aerial facility. New capabilities include scanning radars, several types of lidars, an array of aerosol instruments, and in situ cloud probes. All ARM sites have been equipped with dual frequency scanning cloud radars that will provide three-dimensional observations of cloud fields for analysis of cloud field evolution. Sites in Oklahoma, Alaska, and Papua New Guinea have also received scanning centimeter wavelength radars for observing precipitation fields. This combination of radars will provide the means to study the interaction of clouds and precipitation. New lidars include a Raman lidar in Darwin, Australia and High Spectral Resolution Lidars in Barrow and with the second ARM Mobile Facility. Each of these lidars will provide profiles of aerosol extinction while the Raman will also measure profiles of water vapor. ARM has also expanded its capabilities in the realm of aerosol observations. ARM is adding Aerosol Observing Systems to its sites in Darwin and the second mobile facility. These aerosol systems principally provided measurements of aerosol optical properties. In addition, a new Mobile Aerosol Observing System has been developed that includes a variety of instruments to provide information about aerosol chemistry and size distributions. Many of these aerosol instruments are also available for the ARM Aerial Facility. The Aerial Facility also now includes a variety of cloud probes for measuring size distribution and water content. The new array of ARM instruments is intended to build upon the existing ARM capabilities to better study the interactions among aerosol, clouds, and precipitation. Data from these instruments are now available and development of advanced data products is underway.

  1. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  2. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    NASA Astrophysics Data System (ADS)

    Keck, L.; Pesch, M.; Grimm, H.

    2011-07-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeißenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  3. Aerosol classification using EARLINET measurements for an intensive observational period

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2016-04-01

    ACTRIS (Aerosols, Clouds and Trace gases Research Infrastructure Network) organized an intensive observation period during summer 2012. This campaign aimed at the provision of advanced observations of physical and chemical aerosol properties, at the delivery of information about the 3D distribution of European atmospheric aerosols, and at the monitoring of Saharan dust intrusions events. EARLINET (European Aerosol Research Lidar Network) participated in the ACTRIS campaign through the addition of measurements according to the EARLINET schedule as well as daily lidar-profiling measurements around sunset by 11 selected lidar stations for the period from 8 June - 17 July. EARLINET observations during this almost two-month period are used to characterize the optical properties and vertical distribution of long-range transported aerosol over the broader area of Mediterranean basin. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, Angstrom exponents) are shown to vary with location and aerosol type. A methodology based on EARLINET observations of frequently observed aerosol types is used to classify aerosols into seven separate types. The summertime Mediterranean basin is prone to African dust aerosols. Two major dust events were studied. The first episode occurred from the 18 to 21 of the June and the second one lasted from 28 June to 6 July. The lidar ratio within the dust layer was found to be wavelength independent with mean values of 58±14 sr at 355 nm and 57±11 sr at 532 nm. For the particle linear depolarization ratio, mean values of 0.27±0.04 at 532 nm have been found. Acknowledgements. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the Seventh Framework Programme (FP7/2007-2013) is gratefully acknowledged.

  4. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-05-01

    The high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements were first combined into positive matrix factorization (PMF) analysis to investigate the sources and evolution processes of atmospheric aerosols. The new approach is able to study the mixing of organic aerosols (OA) and inorganic species, the acidity of OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrices resolved 8 factors for the submicron aerosols measured at Queens College in New York City in summer 2009. The hydrocarbon-like OA (HOA) and cooking OA (COA) contain very minor inorganic species, indicating the different sources and mixing characteristics between primary OA and secondary species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized, of which the OA in SO4-OA shows the highest oxidation state (O/C = 0.69) among OA factors. The semi-volatile oxygenated OA comprises two components, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA). The MO-OOA represents a local photochemical product with the diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox (= O3+NO2). The much higher NO+/NO2+ fragment ion ratio in MO-OOA than that from ammonium nitrate alone provides evidence for the formation of organic nitrates. The amine-related nitrogen-enriched OA (NOA) contains ~25% of acidic inorganic salts, elucidating the formation of secondary OA from amines in acidic environments. The size distributions derived from 3-dimensional size-resolved mass spectra show distinct diurnal evolving behaviors for different OA factors, but overall a progressing evolution from smaller to larger particle mode as a function of oxidation states. Our results demonstrate that PMF analysis by incorporating inorganic aerosols is of importance for

  5. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  6. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  7. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Sun, Y. L.; Zhang, Q.; Schwab, J. J.; Yang, T.; Ng, N. L.; Demerjian, K. L.

    2012-09-01

    Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the

  8. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2015-07-01

    Four years of continuous aerosol number size distribution measurements from an Arctic Climate Observatory in Tiksi Russia are analyzed. Source region effects on particle modal features, and number and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June of 0.42 μg m-3 and in September-October of 0.36-0.57 μg m-3. These seasonal cycles in number and mass concentrations are related to isolated aerosol sources such as Arctic haze in early spring which increases accumulation and coarse mode numbers, and biogenic emissions in summer which affects the smaller, nucleation and Aitken mode particles. The impact of temperature dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant. Therefore, in addition to the precursor emissions of biogenic volatile organic compounds, the frequent Siberian forest fires, although far are suggested to play a role in Arctic aerosol composition during the warmest months. During calm and cold months aerosol concentrations were occasionally increased by nearby aerosol sources in trapping inversions. These results provide valuable information on inter-annual cycles and sources of Arctic aerosols.

  9. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008)

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Kostenidou, E.; Hildebrandt, L.; Riipinen, I.; Engelhart, G. J.; Mohr, C.; Decarlo, P. F.; Mihalopoulos, N.; Prevot, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2010-12-01

    A variable residence time thermodenuder (TD) was combined with an Aerodyne Aerosol Mass Spectrometer (AMS) and a Scanning Mobility Particle Sizer (SMPS) to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008). A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model. Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements. The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions) secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  10. The Cloud-Aerosol Transport System (CATS): Demonstrating New Techniques for Cloud and Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Nowottnick, E. P.; Selmer, P. A.

    2015-12-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that provides vertical profiles of cloud and aerosol properties. The CATS payload has been operating since early February 2015 from the International Space Station (ISS). CATS was designed to operate for six months, and up to three years, providing a combination of operational science, in-space technology demonstration, and technology risk reduction for future Earth Science missions. One of the primary project goals of CATS is to demonstrate technology in support of future space-based lidar mission development. The CATS instrument has been demonstrating the high repetition rate laser and photon counting detection approach to lidar observations, in contrast to the low repetition rate, high energy technique employed by CALIPSO. Due to this technique, cloud and aerosol profile data exhibit high spatial and temporal resolution, which was never before possible from a space-based platform. Another important science goal of the CATS-FO project is accurate determination of aerosol type on a global scale. CATS provided the first space-based depolarization measurements at multiple wavelengths (532 and 1064 nm), and first measurements at 1064 nm from space. The ratio of the depolarization measurements at these two wavelengths enables significant improvement in aerosol typing. The CATS retrievals at 1064 nm also provide improvements to detecting aerosols above clouds. The CATS layer identification algorithm is a threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio and also includes a routine to identify clouds embedded within aerosol layers. This technique allows CATS to detect the full extent of the aerosol layers above the cloud, and differentiate these two layers so that the optical properties can be more accurately determined.

  11. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  12. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  13. Kinetics and Products of Heterogeneous Oxidation of Oleic acid, Linoleic acid and Linolenic acid in Aerosol Particles by Hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Nah, T.; Leone, S. R.; Wilson, K. R.

    2010-12-01

    A significant mass fraction of atmospheric aerosols is composed of a variety of oxidized organic compounds with varying functional groups that may affect the rate at which they chemically age. Here we study the heterogeneous reaction of OH radicals with different sub-micron, alkenoic acid particles: Oleic acid (OA), Linoleic acid (LA), and Linolenic acid (LNA), in the presence of H2O2 and O2. This research explores how OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. Particles are chemically aged in a photochemical flow tube reactor where they are exposed to OH radicals (~ 1011 molecule cm-3 s) that are produced by the photolysis of H2O2 at 254 nm. The aerosols are then sized and their composition analyzed via Atmospheric Pressure Chemical Ionization (APCI). Detailed kinetic measurements show that the reactive uptake coefficient is larger than 1, indicating the presence of secondary chemistry occurring in the condensed phase. Reactive uptake coefficient is found to scale linearly with the number of double bonds present in the molecule. In addition, the reactive uptake coefficient is found to depend sensitively upon the concentrations of O2 in the photochemical flow tube reactor, indicating that O2 plays a role in secondary chemistry. In the absence of O2 the reactive uptake coefficient increases to ~ 8, 5 and 3 for LNA, LA, and OA, respectively. The reactive uptake coefficient approaches values of 6, 4 and 2 for LNA, LA, and OA respectively when 18% of the total nitrogen flow is replaced with O2. Mechanistic pathways and products will also be presented herein.

  14. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  15. Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations

    SciTech Connect

    Hanson, D.R.; Ravishankara, A.R.; Solomon, S. |

    1994-02-20

    A framework for applying rates of heterogeneous chemical reactions measured in the laboratory to small sulfuric acid aerosols found in the stratosphere is presented. The procedure for calculating the applicable reactive uptake coefficients using laboratory-measured parameters is developed, the necessary laboratory-measured quantities are discussed, and a set of equations for use in models are presented. This approach is demonstrated to be essential for obtaining uptake coefficients for the HOCl+HCl and ClONO{sub 2}+HCl reactions applicable to the stratosphere. In these cases the laboratory-measured uptake coefficients have to be substantially corrected for the small size of the atmospheric aerosol droplets. The measured uptake coefficients for N{sub 2}O{sub 5}+H{sub 2}O and ClONO{sub 2}+H{sub 2}O as well as those for other heterogeneous reactions are discussed in the context of this model. Finally, the derived uptake coefficients were incorporated in two-dimensional dynamical and photochemical model. Thus for the first time the HCl reactions in sulfuric acid have been included. Substantial direct chlorine activation and consequent ozone destruction is shown to occur due to heterogeneous reactions involving HCl for volcanically perturbed aerosol conditions at high latitudes. Smaller but significant chlorine activation also is predicted for background sulfuric acid aerosol in these regions. The coupling between homogeneous and heterogeneous chemistry is shown to lead to important changes in the concentrations of various reactive species. The basic physical and chemical quantities needed to better constrain the model input parameters are identified. 39 refs., 10 figs., 4 tabs.

  16. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  17. Aerosol Measurements from Current and Future EUMETSAT Satellites

    NASA Astrophysics Data System (ADS)

    Lang, Ruediger; Munro, Rosemary; Kokhanovsky, Alexander; Grzegorski, Michael; Poli, Gabriele; Holdak, Andriy; Retscher, Christian; Marbach, Thierry

    2014-05-01

    EUMETSAT supports the operational monitoring and forecasting of atmospheric composition including various aerosol optical properties through specific products from its geostationary and polar-orbiting satellites. Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic ash and dust storms at high temporal resolution, while the GOME-2, AVHRR and IASI and instruments on Metop observe aerosol optical properties from the UV/vis to the infra-red spectral region from a polar morning orbit. The role of EUMETSAT in observing aerosol optical properties will expand further towards the 2020 timeframe when EUMETSAT also becomes the operator of the Copernicus Sentinel-3, 4 and 5 missions. This expanding role will be realised through additional atmospheric composition sounding instruments such as the UVN/Sentinel-4 on the Meteosat Third Generation (MTG) geostationary platforms and the 3MI, METimage, and Sentinel-5 instruments on the EPS Second Generation (EPS-SG) satellites. The synergistic use of imager, spectrometer and interferometer data will, with the availability of this new generation of instrumentation and with the need for measuring aerosol optical properties at short-time scales, high spatial resolution and over a broad spectra region, play and increasingly important role in the field of aerosol remote sensing. With its new Polar Multi-mission Aerosol optical properties (PMAp) product, providing aerosol and cloud optical depth information, as well as fine mode, dust and volcanic ash characterisation over ocean and in the future also over land, EUMETSAT has recently been implementing the first framework for such synergistic retrievals for the remote sensing of aerosol optical properties from GOME-2, AVHRR and IASI instruments on Metop. We will present an overview of the ongoing and the future developments at EUMETSAT concerning aerosol remote sensing from Metop as well as from the current MSG geostationary platforms and from the future

  18. Airflow measurement inaccuracies in aerosol imaging

    SciTech Connect

    Sirr, S.A.; Miltz-Miller, S.; Notman, D.N.; Boyle, M.J.; Boudreau, R.J.; Loken, M.K.

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors.

  19. Airflow measurement inaccuracies in aerosol imaging.

    PubMed

    Sirr, S A; Miltz-Miller, S; Notman, D N; Boyle, M J; Boudreau, R J; Loken, M K

    1986-04-01

    Aerosol production using inclined compressed air tanks may be subject to error caused by airflow meter variability and by the degree of inclination of the air-flow meter. Since most of these tanks are used in an inclined position, it is important for clinicians to be aware of these errors. PMID:3952316

  20. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  1. Acute lung function responses to ambient acid aerosol exposures in children

    SciTech Connect

    Raizenne, M.E.; Burnett, R.T.; Stern, B.; Franklin, C.A.; Spengler, J.D.

    1989-02-01

    We examined the relationship between lung function changes and ambient acid aerosol episodes in children attending a residential summer camp. Young females (112) performed daily spirometry, and 96 were assessed on one occasion for airway hyperresponsiveness using a methacholine bronchoprovocation test. Air quality measurements were performed on site and four distinct acid aerosol episodes were observed during the 41-day study. The maximum values observed during the 41-day study were: O/sub 3/ at 143 ppb; H/sub 2/SO/sub 4/ at 47.7 micrograms/m/sup 3/; and (H+) at 550 nmole/m/sup 3/. Maximum decrements of 3.5 and 7% for FEV1 and PEF, respectively, were observed to be associated with the air pollution episodes. There was some evidence of a differential lung function response to the episodes where children with a positive response to a methacholine challenge had larger decrements compared to their nonresponsive counterparts.

  2. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  3. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  4. A Chamber Investigation of Nitric Acid-Soot Aerosol Chemistry at 298 K

    SciTech Connect

    Disselkamp, Robert S.; Carpenter, Michael A.; Cowin, James P.

    2000-10-02

    Long-pathlength infrared absorption spectroscopy was used to investigate nitric acid-soot aerosol chemistry at 298 K and 0.5 % relative humidity. Experiments were performed by introducing nitric acid vapor (PHNO3~3 Pa, Ptotal~40 kPa) into a teflon-coated chamber and initiating acquisition of infrared spectra at 3 minute time intervals. After 36 minutes of data collection, soot powder was rapidly expanded into nitric acid contained in the chamber to generate a soot-HNO3 aerosol. Infrared spectra collected before, and after, soot introduction to the chamber were used to characterize chamber wall reaction processes and soot aerosol chemistry, respectively. Three soot types were investigated (Degussa FW2, Cabot Monarch 1000, and crystalline graphite), each yielding similar chemistry. Upon soot introduction to the chamber both HNO3 uptake and NO2 production occurred, with the molar ratio of HNO3 uptake to NO2 production varying from 1.2 to 2.9 for the three soot types studied. Unreacted HNO3 was present at the conclusion of each of the aerosol experiments, indicating incomplete conversion of HNO3 into NO2. This observation suggested that "active" sites at the soot surface responsible for the reduction of HNO3 are not regenerated (i.e., formed) in the reaction process. In essence, a titration occurred between these active sites and HNO3. The NO2 concentrations produced, the soot mass concentrations used, and the BET measured specific surface area of the powders allowed computation of the surface density of active sites of ~4.0x10-18 m2/active site (describing all three powders studied). This is the first reported measurement of surface density of active sites for nitric acid chemistry on soot. Since atmospheric heterogeneous reactions that exhibit surface deactivation may, in principle, affect trace gas concentration, we perform an assessment in this regard.

  5. Measurements of Nitric Acid and Aerosol Species Aboard the NASA DC-8 Aircraft During the SASS Ozone and Nitrogen Oxide Experiment (SONEX)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the North Atlantic during October/November 1997 offered an excellent opportunity to examine the budget of total reactive nitrogen (NO(sub y)) in the upper troposphere (8 - 12 km altitude). The median measured NO(sub y) mixing ratio was 425 parts per trillion by volume (pptv). Two different methods were used to measure HNO3: (1) the mist chamber technique and, (2) chemical ionization mass spectrometry. Two merged data sets using these HNO3 measurements were used to calculate NO(sub y) by summing the reactive nitrogen species (a combination of measured plus modeled results) and comparing the resultant values to measured NO(sub y) (gold catalytic reduction method). Both comparisons showed good agreement in the two quantities (slope > 0.9 and r(exp 2) > 0.9). Thus, the total reactive nitrogen budget in the upper troposphere over the North Atlantic can be explained in a general manner as a simple mixture of NO(sub x). (NO + NO2), HNO3, and PAN. Median values of NO(sub x)/NO(sub y) were approximately equal to 0.25, HNO3/NO(sub y) were approximately equal to 0.35 and Peroxyacetyl Nitrate (PAN)/NO(sub y) were approximately equal to 0. 17. Particulate NO3 and alkyl nitrates together composed <10 % of NO(sub y), while model estimated HNO4 averaged 12%.

  6. Measurements of Nitric Acid and Aerosol Species Aboard the NASA DC-8 Aircraft During the SASS OZone and Nitrogen Oxide Experiment (SONEX)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    The SASS Ozone and Nitrogen Oxides Experiment (SONEX) over the north Atlantic during October/November 1997 offered an excellent opportunity to examine the budget of total reactive nitrogen (NO(y)) in the upper troposphere (8 - 12 km altitude). The median measured NO(y) mixing ratio was 425 parts per trillion by volume (pptv). Two different methods were used to measure HNO3: (1) the mist chamber technique and, (2) chemical ionization mass spectrometry. Two merged data sets using these HNO3 measurements were used to calculate NO(y) by summing the reactive nitrogen species (a combination of measured plus modeled results) and comparing the resultant values to measured NO(y) (gold catalytic reduction method). Both comparisons showed good agreement in the two quantities (slope greater than 0.9 and r(sup 2) greater than 0.9). Thus, the total reactive nitrogen budget in the upper troposphere over the North Atlantic can be explained in a general manner as a simple mixture of NO(x). (NO + NO2), HNO3, and PAN. Median values of NO(x)/NO(y) were approx. = 0.25, HNO3/NO(y) approx. = 0.35 and PAN/NO(y) approx. = 0.17. Particulate NO3 and alkyl nitrates together composed less than 10% of NO(y), while model estimated HNO4 averaged 12%.

  7. Aerosol effect on Umkehr ozone profiles using Stratospheric Aerosol and Gas Experiment II measurements

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, D. M.

    1994-01-01

    This study examines 1211 cases of coincident ozone profiles derived from 1164 Umkehrs and 928 Stratospheric Aerosol and Gas Experiment II (SAGE II) profiles within 1000 km and 12 hours between October 1984 and April 1989 to study the stratospheric-aerosol effect on Umkehr ozone profiles. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE II-measured 0.525-micrometer wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study we use the 0.525-micrometer data to determine the aerosol effect on Umkehr profiles. At the 95% confidence level, we find the following errors to the Umkehr ozone amounts: in Umkehr layer 9 (-2.9 +/- 2.1), layer 8 (-2.3 +/- 1.1), layer 7 (0.1 +/- 1.1), layer 6 (2.2 +/- 1.0), layer 5 (-1.5 +/- 0.8), and layer 4 (-2.4 +/- 1.7) in percent ozone amount per 0.01 stratospheric aerosol optical depth. These results agree with previous theoretical and empirical studies within their respective error bounds in layers 9, 8, and 7. The results in layers 6, 5, and 4 differ significantly from those in previous works. Using only those eight stations with more than 47 coincidences results in mean aerosol effects that are not significantly different from the 14-station results. Because SAGE II and Umkehr produce different ozone retrievals in layer 9 and because the intralayer correlation of SAGE II ozone and aerosol in layer 9 is nonzero, one must exercise some caution in attributing the entire SAGE II-Umkehr difference in this layer to an aerosol effect.

  8. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the

  9. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prévôt, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-07-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  10. The Finokalia Aerosol Measurement Experiment - 2008 (FAME-08): an overview

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Bougiatioti, A.; Hildebrandt, L.; Engelhart, G. J.; Kostenidou, E.; Mohr, C.; Prevot, A. S. H.; Kouvarakis, G.; Zarmpas, P.; Burkhart, J. F.; Lee, B.-H.; Psichoudaki, M.; Mihalopoulos, N.; Pilinis, C.; Stohl, A.; Baltensperger, U.; Kulmala, M.; Pandis, S. N.

    2010-03-01

    A month (4 May to 8 June 2008) of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08) was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption). Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1) and organics for 26%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%), sea salt (24%) and nitrates (16%). The organic carbon to elemental carbon (OC/EC) ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10) and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine), each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  11. Design and performance measurements of an airborne aerosol backscatter lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Tratt, David M.; Brothers, Alan M.; Dermenjian, Stephen H.; Esproles, Carlos

    1990-01-01

    The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of atmospheric aerosol backscatter at infrared wavelengths. An airborne backscatter lidar is discussed, which has been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. The instrument characteristics and representative flight measurement results are presented.

  12. Global distribution of stratospheric aerosols by satellite measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    1982-01-01

    A description is given of the first-ever global stratospheric aerosol climatology which is being developed by the earth-orbiting SAM II and SAGE satellite-based sensors. These sensors use the technique of solar occulation; that is, for every spacecraft sunrise and sunset, the modulation of solar intensity caused by the intervening earth-limb is measured. These data are mathematically inverted to yield vertical profiles of aerosol extinction coefficients with 1 km resolution. The data show seasonal variations which are similar in each hemisphere, with strong correlation between aerosol extinction and the corresponding temperature field. Typical values of extinction in the stratosphere are found to be about 0.0001 to 0.0002 per km at 1 micrometer; stratospheric optical depths at this wavelength are about 0.002. The peak extinction in the stratospheric aerosol layer follows the tropopause with altitude, with peak extinction ratios about 10 km above the local tropopause.

  13. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles. PMID:26820230

  14. EFFECTS OF ENDOGENOUS AMMONIA ON NEUTRALIZATION OF INHALED SULFURIC ACID AEROSOLS

    EPA Science Inventory

    Nine male beagle dogs were exposed by inhalation to 0, 6 and 10.5 mg/cu.m sulfuric acid aerosols with normal ammonia, increased blood ammonia, and increased inhaled ammonia to determine whether the addition of ammonia affected the toxicity of sulfuric acid aerosols. Exhaled conce...

  15. Optical Modeling and Interpretation of TRACE-P Aerosol Measurements

    NASA Astrophysics Data System (ADS)

    Grant, W. B.; Anderson, B. E.; Browell, E. V.; Butler, C. F.; Brackett, V. G.; Jordan, C. E.

    2002-12-01

    The NASA Langley airborne UV Differential Absorption Lidar (DIAL) system participated in the NASA-sponsored Transport and Atmospheric Chemistry near the Equator-Pacific (TRACE-P) mission, designed to study transport and transformation of emissions from Asia, from February 26 to April 9, 2001. The UV DIAL system measures backscatter in both nadir and zenith at 1064, 600, and 300 nm and depolarization ratio in the nadir at 600 nm. From the lidar backscatter measurement, the aerosol scattering ratio (ASR) is determined. The ASR is the ratio of aerosol backscatter to molecular backscatter and is derived by dividing the total backscatter by a standard atmosphere molecular density profile then normalizing in some low-aerosol region of the atmosphere. The wavelength dependence of aerosol backscatter, which is related to aerosol size, is determined from the ASRs at 1064 and 600 nm. The depolarization ratio, which is sensitive to irregularly shaped particles, is used to determine the presence of dust. Dust encountered during this mission originated primarily in China, but also in India and Africa. In situ instruments onboard the DC-8 provide additional information such as meteorological parameters, aerosol size distributions and chemical composition, and gas concentrations. These in situ data are being used along with the ASRs to help determine the aerosol optical properties. These optical properties will then enable the use of the extensive lidar profiles to achieve the goal of estimating the effects of aerosols on radiative forcing of the atmosphere over the western Pacific as well as over Asia near the coast.

  16. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements. PMID:19204483

  17. Aerosol characterization study using multi-spectrum remote sensing measurement techniques.

    SciTech Connect

    Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew Stephen; Servantes, Brandon Lee

    2013-09-01

    A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

  18. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  19. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  20. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    PubMed

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments. PMID:25522920

  1. Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements

    SciTech Connect

    Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

  2. RADIOCARBON MEASUREMENTS ON PM-2.5 AMBIENT AEROSOL

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. The methodology has been extensively used in past wintertime studies to quantify the contribution of wood smoke to ambient aerosol. In summertime such measurements can p...

  3. Indoor exposures to fine aerosols and acid gases.

    PubMed Central

    Koutrakis, P; Brauer, M; Briggs, S L; Leaderer, B P

    1991-01-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions between pollutants and indoor surfaces. It is well established that fine particles (diameter less than or equal to 2.5 microns) originating from outdoor sources such as automobiles, oil and coal combustion, incineration, and diverse industrial activities can penetrate into the indoor environment. Indoor/outdoor ratios, usually varying between 0.4 and 0.8, depend on parameters such as particle size and density, air exchange rate, and the surface-to-volume ratio of the indoor environment. Determining fine particle elemental composition makes it possible to identify the contribution of different outdoor sources. This paper focuses on the origin and the concentration of indoor aerosols and acid gases by highlighting the results from two indoor air quality studies. PMID:1821374

  4. Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols

    SciTech Connect

    Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Ruchuan Peng; Linn, W.S.; Hackney, J.D. )

    1992-06-01

    Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, the authors exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber to four test atmospheres: (1) clean air; (2) 0.5-{mu}m H{sub 2}SO{sub 4} aerosol at {approx}100 {mu}g/m{sup 3}, generated from water solution; (3) 0.5-{mu}m carbon aerosol at {approx}250 {mu}g/m{sup 3}, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (4) carbon as in (3) plus {approx}100 {mu}g/m{sup 3} of ultrafine H{sub 2}SO{sub 4} aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (4) became attached to carbon particle surfaces, and that most particles remained in the sub-{mu}m size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation {approx}50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H{sub 2}SO{sub 4} or carbon, separate or interactive, on health measures.

  5. A New Stratospheric Aerosol Product from CALIPSO Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Kar, J.; Vaughan, M.; Trepte, C. R.; Winker, D. M.; Vernier, J. P.; Pitts, M. C.; Young, S. A.; Liu, Z.; Lucker, P.; Tackett, J. L.; Omar, A. H.

    2014-12-01

    Stratospheric aerosols are derived from precursor SO2 and OCS gases transported from the lower troposphere. Volcanic injections can also enhance aerosol loadings far above background levels. The latter can exert a significant influence on the Earth's radiation budget for major and even minor eruptions. Careful measurements are needed, therefore, to monitor the distribution and evolution of stratospheric aerosols for climate related studies. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been acquiring profile measurements of clouds and aerosols since 2006, leading to major advances in our understanding of tropospheric aerosol and cloud properties and the processes that control them. The CALIPSO products have also enabled new insights into polar stratospheric clouds and stratospheric aerosols. Vernier et al (2009,JGR,114,D00H10) reported on the construction of a modified CALIPSO lidar product that corrected minor artifacts with the original lidar calibration that affected stratospheric aerosol investigations. A significantly improved CALIPSO Lidar Version 4 Level 1 product has been recently released addressing these calibration issues and has resulted in enhanced signal levels and a highly stable record over the span of the mission. Based on this product, a new 3D gridded stratospheric CALIPSO data product is under development and being targeted for release in 2015. A key emphasis of this new product is to bridge the measurement gap between the SAGE II and SAGE III data record (1984-2005) and the start of measurements from the new SAGE III instrument to be deployed on the International Space Station in 2016. The primary parameters delivered in the CALIPSO stratospheric data products will be attenuated scattering ratio and aerosol extinction profiles, both averaged over one month intervals and binned into an equal angle grid of constant latitude and longitude with a vertical resolution of 900m. We will present the overall

  6. AEROSOL MEASUREMENTS IN THE SUBMICRON SIZE RANGE, STUDIES WITH AN AEROSOL CENTRIFUGE, A NEW DIFFUSION BATTERY, A LOW PRESSURE IMPACTOR AND AN ADVANCED CONDENSATION NUCLEI COUNTER

    EPA Science Inventory

    The report summarizes the investigations of four aerosol classifiers which cover finite, but overlapping ranges of the aerosol particle size spectrum. The first part is concerned with a cylindrical aerosol centrifuge, which measures aerodynamic equivalent diameters precisely. Thi...

  7. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  8. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  9. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  10. Studies of acid aerosols in six cities and in a new multi-city investigation: design issues

    SciTech Connect

    Speizer, F.E.

    1989-02-01

    Techniques for measuring acid aerosols in the ambient environment have been developed only recently. As part of the on-going Harvard Study on the Health Effects of Sulfur Dioxide and Respirable Particulates, we have developed monitoring equipment for acidic particles that can be used in multiple field settings. Preliminary data suggest that these strong acid aerosol measurements may correlate with respiratory symptoms more closely than similar measurements of particulate matter less than 15 microns in size. These results have led to the beginning of a U.S.-Canadian cooperative study to assess the chronic effects of acid aerosols on the health of North American children. Communities are being selected on the basis of anticipated levels of H/sub 2/SO/sub 4/ in ambient air along with predicted levels of ozone and nitrates. Each community will undergo a 1-year period of every other day, 24-hr monitoring with newly developed monitoring equipment that will allow for quantification of H+ ion concentrations, as well as for specific measures of ozone and acid fractions. At the end of the 1-year period, while measurements are still being made, approximately 600 children aged 7 to 11 in each of up to 24 communities will be assessed with standardized questionnaires completed by parents, and pulmonary function will be measured in the children while in school. By estimating chronic exposure from the year-long measurement of acid aerosols and consideration of specific criteria for selecting communities to study, we hope to minimize potential confounding to allow us to assess the chronic impact of strong acid in the atmosphere on the respiratory health of these children.

  11. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  12. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions. PMID:19475956

  13. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  14. Towards an improved aerosol product from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Burrows, John; Hommel, Rene

    2015-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite from August 2002 to April 2012. A progress in the development of SCIAMACHY aerosol data product within the ROSA/ROMIC project including the improvements in the extinction coefficient data base and steps towards the retrieval of particle size distribution parameters is reported.

  15. DEPOSITION OF SULFATE ACID AEROSOLS IN THE DEVELOPING HUMAN LUNG

    EPA Science Inventory

    Computations of aerosol deposition as affected by (i) aerosol hygroscopicity, (ii) human age, and (iii) respiratory intensity are accomplished using a validated mathematical model. he interactive effects are very complicated but systematic. ew general observations can be made; ra...

  16. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  17. Measurements of the Aerosol Size Distribution Down to 1 Nanometer to Investigate Aerosol Nucleation and Initial Growth During the GoAmazon Campaign

    NASA Astrophysics Data System (ADS)

    Kuang, C.; Artaxo, P.; Backman, J.; Kim, S.; Kulmala, M. T.; Martin, S. T.; Petäjä, T.; Seco, R.; Smith, J. N.; Souza, R. A. F. D.

    2014-12-01

    Atmospheric particle nucleation is an important environmental nano-scale process, with field measurements and modeling studies indicating that freshly nucleated particles are a significant source of global cloud condensation nuclei. However, our understanding of atmospheric nucleation and its influence on climate is limited as few ambient measurements have been made of either the nucleation rate (at 1 nm) or the initial growth rate of newly formed clusters (from 1 to 3 nm), both of which are necessary to constrain and investigate the nucleation mechanism and to develop process-level models. Aerosol nucleation and initial growth were investigated during the Green Ocean Amazon (GoAmazon) campaign spanning the wet and dry seasons of 2014 downwind of the city of Manaus, Brazil. Aerosol measurement was accomplished through the deployment of a condensation particle counter-based electrical mobility spectrometer, optimized for the detection of aerosol down to 1 nm in diameter. An electrometer-based neutral air ion spectrometer was also deployed at the same location to measure the neutral and charged fraction of aerosol down to 1.5 nm in diameter. From these size distribution measurements, periods of nucleation will be identified, and the resulting nucleation rates and initial growth rates will be presented. Concurrent and co-located measurements of gas-phase sulfuric acid will provide the opportunity to investigate the functional contribution of sulfuric acid to the observed nucleation rate and initial growth rate.

  18. Hydrochloric acid aerosol formation by the interaction of hydrogen chloride with humid air

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The conditions in which hydrochloric acid aerosol is predicted by the interaction of hydrogen chloride gas with the water vapor in humid air are analyzed. The liquid gas phase equilibrium for the HCL-H2O system is expressed in terms of relative humidity and hydrogen chloride concentration as parts per million, units commonly used in pollution studies. Presented are the concentration (wt %) of HC1 in the aerosol and the concentration of aerosol (ppm) predicted.

  19. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  20. Balloonborne ozone and aerosol measurements in the antarctic ozone hole

    SciTech Connect

    Hofmann, D.J.; Harder, J.W.; Rolf, S.R.; Rosen, J.M. )

    1987-01-01

    The National Ozone Expedition (NOZE) was mounted in 1986 using winter fly-in flights to McMurdo Station in August, which is approximately the time the ozone reduction begins. The University of Wyoming Atmospheric Physics group participated in this expedition through balloonborne measurements of the vertical distribution of ozone and aerosol particles. Between 24 August and 6 November, 33 ozone soundings, 6 aerosol sounding, and 3 condensation nuclei soundings were conducted using polyethylene balloons which were able to penetrate the cold (< {minus}80C) antarctic stratosphere. The authors summarize these results here.

  1. FERMENTATION PROCESS MONITORING THROUGH MEASUREMENT OF AEROSOL RELEASE

    EPA Science Inventory

    Fermentation involves many complex biological processes some of which are sometimes difficult to monitor. n this study, aerosol measurement was explored as an additional technique for monitoring a batch aerobic fermentation process using Escherichia coli strain W3110. sing this t...

  2. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  3. Exposure assessment of oxidant gases and acidic aerosols

    SciTech Connect

    Lioy, P.J.

    1989-01-01

    Clearly the presence of high ozone and acidic species in North America is primarily dependent upon photochemical air pollution. Evidence shows, however, that high acid exposures may occur in specific types of areas of high sulfur fuel use during the winter. At the present time, our concerns about exposure to local populations and regional populations should be directed primarily toward the outdoor activity patterns of individuals in the summer, and how those activity patterns relate to the location, duration, and concentrations of ozone and acid aerosol in photochemical air pollution episodes. Lioy Dyba and Mage et al have examined the activity patterns of children in summer camps. Because they spend more time outside than the normal population, these children form an important group of exercising individuals subject to photochemical pollution exposures. The dose of ozone inhaled by the children in the two camps was within 50% and 25% of the dose inhaled by adults in controlled clinical situations that produced clinically significant decrements in pulmonary function and increased the symptoms after 6.6 hr exposure in a given day. The chamber studies have used only ozone, whereas in the environment this effect may be enhanced by the presence of a complex mixture. The work of Lioy et al in Mendham, New Jersey found that hydrogen ion seemed to play a role in the inability of the children to return immediately to their normal peak expiratory flow rate after exposure. The camp health study conducted in Dunsville, Ontario suggested that children participating in a summer camp where moderate levels of ozone (100 ppb) but high levels of acid (46 micrograms/m3) occurred during an episode had a similar response. Thus, for children or exercising adults who are outdoors for at least one hour or more during a given day, the presence and persistence of oxidants in the environment are of particular concern. 63 references.

  4. Coarse mode aerosol measurement using a Low Turbulence Inlet

    NASA Astrophysics Data System (ADS)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  5. Diffusion battery sampling of sulfuric acid aerosols formed in oleum spill experiments

    SciTech Connect

    Tang, I N; Wong, W T; Munkelwitz, H R

    1980-01-01

    Fuming sulfuric acid (oleum) is one of several hazardous chemicals routinely transported in bulk quantities on US waterways. In the event of a marine accident, a large amount of the cargo acid could suddenly be released into water, resulting in the formation of a dense sulfuric acid cloud. Experiments were carried out in the laboratory to study the factors controlling the extent of acid aerosol formation under conditions likely to occur in maritime spill accidents. A Sinclair-type diffusion battery was used for aerosol sizing. In this presentation, a brief discussion of an improved nonlinear iterative inversion method for the analysis of diffusion battery data is given. Experimental results obtained with monodisperse test aerosols and sulfuric acid aerosols formed during oleum spills are presented. It is shown that the diffusion battery, coupled with the inversion technique, is capable of sizing particles up to 0.8 ..mu..m in diameter.

  6. An investigation of Raman lidar aerosol measurements and their application to the study of the aerosol indirect effect

    NASA Astrophysics Data System (ADS)

    Russo, Felicita

    The problem of the increasing global atmospheric temperature has motivated a large interest in studying the mechanisms that can influence the radiative balance of the planet. Aerosols are responsible for several radiative effects in the atmosphere: an increase of aerosol loading in the atmosphere increases the reflectivity of the atmosphere and has an estimated cooling effect and is called the aerosol direct effect. Another process involving aerosols is the effect that an increase in their concentration in the atmosphere has on the formation of clouds and is called the aerosol indirect effect. In the latest IPCC report, the aerosol indirect effect was estimated to be responsible for a radiative forcing ranging between -0.3 W/m2 to -1.8 W/m2, which can be as large as, but opposite in sign to, the radiative forcing due to greenhouse gases. The main goal of this dissertation is to study the Raman lidar measurements of quantities relevant for the investigation of the aerosol indirect effect and ultimately to apply these measurements to a quantification of the aerosol indirect effect. In particular we explore measurements of the aerosol extinction from both the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) and the US Department of Energy (DOE) ARM Climate Research Facility Raman Lidar (CARL). An algorithm based on the chi-squared technique to calculate the aerosol extinction, which was introduced first by Whiteman (1999), is here validated using both simulated and experimental data. It has been found as part of this validation that the aerosol extinction uncertainty retrieved with this technique is on average smaller that the uncertainty calculated with the technique traditionally used. This algorithm was then used to assess the performance of the CARL aerosol extinction retrieval for low altitudes. Additionally, since CARL has been upgraded with a channel for measuring Raman liquid water scattering, measurements of cloud liquid water content, droplet

  7. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    NASA Astrophysics Data System (ADS)

    Petrenko, M.; Ichoku, C.

    2013-02-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS - altogether, a total of 11 different aerosol products - were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the

  8. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  9. Pulmonary function and clearance after prolonged sulfuric acid aerosol exposure

    SciTech Connect

    Ives, P.J. ); Gerrity, T.R.; DeWitt, P.; Folinsbee, L.J. )

    1991-03-15

    The authors studied pulmonary function and clearance responses after a 4 H exposure to 75-100 {mu}g/m{sup 3} sulfuric acid aerosol (SAA). Healthy subjects, who exercised for 30 min/H at ventilation of about 25 L/min, were exposed once to clean air and once to SAA. Oral hygiene and acidic juice gargle were used to minimize oral ammonia. Lung function tests, including spirometry, plethysmography, and partial flow-volume (PEFV) curves were performed before and after exposure. Clearance of 99m-Technetium labeled iron oxide was assessed after each exposure. The first moment of fractional tracheobronchial retention (M1TBR), after correcting for 24 H retention and normalizing to time zero, was used as an index of clearance. There were no significant changes in lung volumes, airways resistance, or maximum expiratory flows after SAA exposure. Flow at 40% of total lung capacity on PEFV curves decreased 17% (NS) after SAA exposure. Tracheobronchial clearance was accelerated after a single exposure to SAA; M1TBR decreased from 73 {plus minus} 5 min (air) to 69 {plus minus} 5 min (SAA). These results suggest that acute prolonged exposure to low levels of SAA has minimal effects on lung mechanics in healthy subjects but does produce a modest acceleration of particle clearance.

  10. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    PubMed

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  11. Retrieval of Aerosol Properties from Multi-Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.

    1999-01-01

    The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE II. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols. Paper presented at The '99 Kyoto Aerosol-Cloud Workshop, held Dec 1-3, 1999, Kyoto, Japan

  12. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  13. SAMPLING DURATION DEPENDENCE OF SEMI-CONTINUOUS ORGANIC CARBON MEASUREMENTS ON STEADY STATE SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Semi-continuous organic carbon concentrations were measured through several experiments of statically generated secondary organic aerosol formed by hydrocarbon + NOx irradiations. Repeated, randomized measurements of these steady state aerosols reveal decreases in the observed c...

  14. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Laurila, T.; Lihavainen, H.; Backman, J.; Vakkari, V.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Uttal, T.; Ivakhov, V.; Makshtas, A.

    2016-02-01

    Four years of continuous aerosol number size distribution measurements from the Arctic Climate Observatory in Tiksi, Russia, are analyzed. Tiksi is located in a region where in situ information on aerosol particle properties has not been previously available. Particle size distributions were measured with a differential mobility particle sizer (in the diameter range of 7-500 nm) and with an aerodynamic particle sizer (in the diameter range of 0.5-10 μm). Source region effects on particle modal features and number, and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July, with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February-March of 1.72-2.38 μg m-3 and two minimums in June (0.42 μg m-3) and in September-October (0.36-0.57 μg m-3). These seasonal cycles in number and mass concentrations are related to isolated processes and phenomena such as Arctic haze in early spring, which increases accumulation and coarse-mode numbers, and secondary particle formation in spring and summer, which affects the nucleation and Aitken mode particle concentrations. Secondary particle formation was frequently observed in Tiksi and was shown to be slightly more common in marine, in comparison to continental, air flows. Particle formation rates were the highest in spring, while the particle growth rates peaked in summer. These results suggest two different origins for secondary particles, anthropogenic pollution being the important source in spring and biogenic emissions being significant in summer. The impact of temperature-dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant: the increase in both the particle mass and the CCN (cloud condensation nuclei) number with temperature was found to be higher than in any previous study done over the boreal forest region. In addition

  15. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  16. Comparative studies of aerosol extinction measurements made by the SAM II and SAGE II satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Mccormick, M. P.; Chu, W. P.; Wang, P.; Osborn, M. T.

    1989-01-01

    Results from the Stratospheric Aerosol Measurement (SAM) II and Stratospheric Aerosol and Gas Experiment (SAGE) II are compared for measurement locations which are coincident in time and space. At 1.0 micron, the SAM II and SAGE II aerosol extinction profiles are similar within their measurement errors. In addition, sunrise and sunset aerosol extinction data at four different wavelengths are compared for occasions when the SAGE II and SAM II measurements are nearly coincident in space and about 12 hours apart.

  17. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-07-01

    Organosulfates are observed in studies of pinonaldehyde reactions with acidic sulfate aerosols using aerosol mass spectrometry, during which a significant fraction of the pinonaldehyde reaction products were found to consist of organosulfate compounds that account for 6-51% of the initial SO4= mass. Resultant aerosol mass spectra were consistent with proposed sulfate ester mechanisms, which likely form stable products. The existence of organosulfates was also confirmed in studies of the reaction system in bulk solution. The formation of organosulfates suggests that conventional inorganic SO4= chemical analysis may underestimate total SO4= mass in ambient aerosols.

  18. Measurements of ocean derived aerosol off the coast of California

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Frossard, A. A.; Russell, L. M.; Hakala, J.; PetäJä, T.; Kulmala, M.; Covert, D. S.; Cappa, C. D.; Li, S.-M.; Hayden, K. L.; Nuaaman, I.; McLaren, R.; Massoli, P.; Canagaratna, M. R.; Onasch, T. B.; Sueper, D.; Worsnop, D. R.; Keene, W. C.

    2012-06-01

    Reliable characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The number size distribution of the directly emitted, nascent particles had a dominant mode at 55-60 nm (dry diameter) and secondary modes at 30-40 nm and 200-300 nm. The nascent aerosol was not volatile at 230°C and was not enriched in SO4=, Ca++, K+, or Mg++above that found in surface seawater. The organic component of the nascent aerosol (7% of the dry submicrometer mass) volatilized at a temperature between 230 and 600°C. The submicrometer organic aerosol characterized by mass spectrometry was dominated by non-oxygenated hydrocarbons. The nascent aerosol at 50, 100, and 145 nm dry diameter behaved hygroscopically like an internal mixture of sea salt with a small organic component. The CCN/CN activation ratio for 60 nm Sea Sweep particles was near 1 for all supersaturations of 0.3 and higher indicating that all of the particles took up water and grew to cloud drop size. The nascent organic aerosol mass fraction did not increase in regions of higher surface seawater chlorophyll but did show a positive correlation with seawater dimethylsulfide (DMS).

  19. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    NASA Astrophysics Data System (ADS)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  20. In situ measurements of light extinction of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Metzig, Gunthard

    1991-01-01

    The extinction coefficient of ambient aerosol particles was measured using a multiple transverse cell (White Cell) with an effective path length of 100 m. Measurements were performed at seven fixed wavelengths in the visible region using a white light source and an interference filter set with 2 nm bandwidth and center wavelengths of 405.5, 450, 500, 550, 600, 650, and 692.5 nm. The total air flow in the system was 16.7 1/min; the volume of the chamber is close to 10 liters. It takes about one minute to fill the chamber with particles homogeneously, but it needs up to five minutes to get the chamber particle-free. Before measuring the aerosol, the transmission of the particle-free air is determined; then the aerosol passes through the chamber for a period of ten minutes; after this the transmission of particle-free ambient air is measured again for eight minutes. All times are subject to change. At present the measurements are done with a frequency of 1 Hz, but an increase of up to 30 Hz is possible. The lower detection limit of the used White Cell is 3.4 by 10(exp -06) per m. This is sufficient for measuring the extinction coefficient during most tropospheric and some stratospheric conditions. It will be necessary to increase the sensitivity by a factor of ten when measurements under the clearest stratospheric conditions take place.

  1. SAGE measurements of Mount St. Helens volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Kent, G. S.

    1982-01-01

    The SAGE satellite system was used to make measurements on the optical extinction produced by stratospheric aerosols from the Mount St. Helens eruption. Two periods of observation were analyzed. In the first period (May 21 to 31, 1980), SAGE moved southward from latitude 60 N, and crossed the United States approximately one week after the May 18th eruption. Enhancements in stratospheric extinction were confined to latitudes between about 55 N and 25 N and longitudes between 10 W and 140 W. Individual layers were observed up to altitudes of 23 km. The geographical location of these layers corresponded closely to that expected on the basis of high-altitude meteorological data. During June and much of July, SAGE was, by reason of its geographical position and other orbital characteristics, unable to make further measurements on the northern hemisphere. Between July 19th and August 12th a second southward pass over the northern hemisphere occurred and further observations were made. The volcanic aerosol in the stratosphere was now found to be widely distributed over the hemisphere, the maximum concentrations being north of 50 N. The aerosol showed considerable inhomogeneity and had reached as far south as 15 N but little, if any, had crossed the equator into the southern hemisphere. Individual layers at different heights were still distinguishable. The total stratospheric aerosol loading on this occasion appeared to be greater than in May and corresponded to an increase in global stratospheric mass of between 50 and 100 percent.

  2. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2006-03-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidities with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single-component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  3. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    NASA Astrophysics Data System (ADS)

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2005-10-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humdity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidites with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  4. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    NASA Astrophysics Data System (ADS)

    Kampf, C.; Waxman, E.; Slowik, J.; Dommen, J.; Prevot, A.; Baltensperger, U.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2012-04-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  5. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Waxman, E.; Slowik, J. G.; Dommen, J.; Prevot, A. S.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2011-12-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  6. Respiratory responses of exercising asthmatic volunteers exposed to sulfuric acid aerosol

    SciTech Connect

    Linn, W.S.; Avol, E.L.; Shamoo, D.A.; Whynot, J.D.; Anderson, K.R.; Hackney, J.D.

    1986-12-01

    Young asthmatic adult volunteers (N = 27) were exposed in an environmental chamber to sulfuric acid aerosol at concentrations near 0, 122, 242, and 410 ..mu..g/m/sup 3/, in purified background air at 22/sup 0/C and 50 percent relative humidity. The polydisperse aerosol had a mass median aerodynamic diameter near 0.6 ..mu..m. Exposures occurred in random order at one-week intervals. Each lasted 1 h, during which subjects exercised (mean ventilation 42 L/min) and rested during alternate 10-min periods. Specific airway resistance and forced expiratory function were measured pre-exposure, after the initial exercise, and at end-exposure. Bronchial reactivity was determined by challenge with cold air immediately post-exposure. Symptoms were monitored during exposure for one week afterward. Exercise-induced bronchospasm was observed under all conditions. Physiologic and symptom changes possibly attributable to sulfuric acid exposure were small and not statistically significant. Our largely negative results contrast with positive findings elsewhere at lower acid doses. Possible explanations include different clinical characteristics of subjects and different routes of breathing.

  7. Role of Acid Mobilization in Iron Solubility of Smaller Mineral Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2011-12-01

    Iron (Fe) is an essential element for phytoplankton. The majority of iron is transported from arid regions to the open ocean, but is mainly in an insoluble form. Since most aquatic organisms can take up iron only in the dissolved form, the amount of soluble iron is of key importance. Atmospheric processing of mineral aerosols by anthropogenic pollutants may transform insoluble iron into soluble forms. Compared to dust, combustion aerosols often contain iron with higher solubility. This paper discusses the factors that affect the iron solubility in mineral aerosols on a global scale using an aerosol chemistry transport model. Bioavailable iron is derived from atmospheric processing of relatively insoluble iron from desert sources and from direct emissions of soluble iron from combustion sources such as biomass and fossil fuels burning. The iron solubility from onboard cruise measurements over the Atlantic and the Pacific Oceans in 2001 is used to evaluate the model performance in simulating soluble iron. Sensitivity simulations from dust sources with no atmospheric processing by acidic species systematically underestimate the soluble iron concentration in fine particles. Improvement of the agreement between the model results and observations is achieved by the use of a faster iron dissolution rate in fine particles associated with anthropogenic pollutants (e.g., sulphate). Accurate simulation of the abundance of soluble iron in fine aerosols has important implications with regards to ocean fertilization because of the longer residence time of smaller particles, which supply nutrients to more remote ocean biomes. The model reveals a larger deposition of soluble iron for the fine mode than that for the coarse mode in northern oceans due to acid mobilization. The ratio of deposition rate of soluble iron in the fine mode to the total aerosols in the South Atlantic Ocean (40-60%) is less than that in northern oceans (70-100%). These results suggest that Patagonian dust

  8. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  9. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  10. Residual oil aerosol measurements on refrigerators and liquefiers

    NASA Astrophysics Data System (ADS)

    Pflueckhahn, D.; Anders, W.; Hellwig, A.; Knobloch, J.; Rotterdam, S.

    2014-01-01

    The purity of the process gas is essential for the reliability of refrigerators and liquefiers. Filtration and adsorption of impurities like water, nitrogen, and oil result in a major effort, cost, and maintenance in the helium process. Expensive impurity monitors for moisture, nitrogen, and hydrocarbon contents are required to identify filter failures and leakage immediately during the operation. While water and nitrogen contaminants can be detected reliably, the measurement of oil aerosols at the ppb-level is challenging. We present a novel diagnostic oil aerosol measurement system able to measure particles in the sub-μm range. This unit enabled us to evaluate and improve the oil separation system on a LINDE TCF 50 helium liquefier.

  11. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  12. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  13. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements.

    PubMed

    Yamada, Maromu; Takaya, Mitsutoshi; Ogura, Isamu

    2015-01-01

    Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), which measures particle size distribution between 10 and 420 nm and an optical particle sizer (OPS, TSI Inc.), which measures particle size distribution between 300 and 10,000 nm. We compared the data measured by these instruments to conventional instruments (i.e., a widely used laboratory SMPS and an optical particle counter (OPC)) using nano-TiO(2) powder as test aerosol particles. The results showed obvious differences in the size distributions between the new and old SMPSs. A possible reason for the differences is that the cyclone inlet of the new SMPS (NanoScan) acted as a disperser of the weakly agglomerated particles and consequently the concentration increased through the breakup of the agglomerates. On the other hand, the particle concentration and size distributions measured by the OPS were similar to the OPC. When indoor aerosol particles were measured, the size distribution measured by the NanoScan was similar to the laboratory SMPS. PMID:26320727

  14. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements

    PubMed Central

    YAMADA, Maromu; TAKAYA, Mitsutoshi; OGURA, Isamu

    2015-01-01

    Nanomaterial particles exhibit a wide range of sizes through the formation of agglomerates/aggregates. To assess nanomaterial exposure in the workplace, accurate measurements of particle concentration and size distribution are needed. In this study, we evaluated the performance of two recently commercialized instruments: a portable scanning mobility particle sizer (SMPS) (NanoScan, TSI Inc.), which measures particle size distribution between 10 and 420 nm and an optical particle sizer (OPS, TSI Inc.), which measures particle size distribution between 300 and 10,000 nm. We compared the data measured by these instruments to conventional instruments (i.e., a widely used laboratory SMPS and an optical particle counter (OPC)) using nano-TiO2 powder as test aerosol particles. The results showed obvious differences in the size distributions between the new and old SMPSs. A possible reason for the differences is that the cyclone inlet of the new SMPS (NanoScan) acted as a disperser of the weakly agglomerated particles and consequently the concentration increased through the breakup of the agglomerates. On the other hand, the particle concentration and size distributions measured by the OPS were similar to the OPC. When indoor aerosol particles were measured, the size distribution measured by the NanoScan was similar to the laboratory SMPS. PMID:26320727

  15. Confined Aerosol Jet in Fiber Classification and Dustiness Measurement

    NASA Astrophysics Data System (ADS)

    Dubey, Prahit

    The focus of this dissertation is the numerical analysis of confined aerosol jets used in fiber classification and dustiness measurement. Of relevance to the present work are two devices, namely, the Baron Fiber Classifier (BFC), and the Venturi Dustiness Tester (VDT). The BFC is a device used to length-separate fibers, important for toxicological research. The Flow Combination Section (FCS) of this device consists of an upstream region, where an aerosol of uncharged fibers is introduced in the form of an annular jet, in-between two sheath flows. Length-separation occurs by dielectrophoresis, downstream of the FCS in the Fiber Classification Section (FClS). In its standard operation, BFC processes only small quantities of fibers. In order to increase its throughput, higher aerosol flow rates must be considered. The goal of the present investigation is to understand the interaction of sheath and aerosol flows inside the FCS, and to identify possible limits to increasing aerosol flow rates using Computational Fluid Dynamics (CFD). Simulations involve solution of Navier-Stokes equations for axisymmetric and 3D models of the FCS for six different flow rates, and a pure aerodynamic treatment of the aerosol jet. The results show that the geometry of the FCS, and the two sheath flows, are successful in preventing the emergence of vortices in the FCS for aerosol-to-sheath flow inlet velocity ratios below ≈ 50. For larger aerosol-to-sheath flow inlet velocity ratios, two vortices are formed, one near the inner cylinder and one near the outer cylinder. The VDT is a novel device for measuring the dustiness of powders, relevant for dust management and controlling hazardous exposure. It uses just 10 mg of the test powder for its operation, during which the powder is aerosolized and turbulently dispersed (Re = 19,900) for 1.5s into a 5.7 liter chamber; the aerosol is then gently sampled (Re = 2050) for 240s through two filters located at the chamber top. Pump-driven suction at

  16. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  17. How Well Can Aerosol Measurements from the Terra Morning Polar Orbiting Satellite Represent the Daily Aerosol Abundance and Properties?

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Holben, B. N.; Tanre, D.; Slutzker, I.; Eck, T. F.; Smirnov, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Terra mission, launched at the dawn of 1999, and Aqua mission to be launched soon, will possess innovative measurements of the aerosol daily spatial distribution, distinguish between dust, smoke and regional pollution and measure aerosol radiative forcing of climate. Their polar orbit gives daily global coverage, however measurements are acquired at specific time of the day. To what degree can present measurements from Terra taken between 10:00 and 11:30 AM local time, represent the daily average aerosol forcing of climate? Here we answer this question using 7 years of data from the distributed ground based 50-70 instrument Aerosol Robotic Network (AERONET) This (AERONET) half a million measurement data set shows that Terra aerosol measurements represent the daily average values within 5%. The excellent representation is found for large dust particles or small aerosol particles from Fires or regional pollution and for any range of the optical thickness, a measure of the amount of aerosol in the atmosphere.

  18. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  19. The Unique Properties of Agricultural Aerosols Measured at a Cattle Feeding Operation

    SciTech Connect

    Hiranuma, Naruki; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-05-11

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 µm or less) were as high as 1200 μg/m3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.

  20. The unique properties of agricultural aerosols measured at a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-05-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant percentage of the organic particles, up to 28 %, were composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.

  1. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  2. Aerosol-cloud closure study using RPAS measurements

    NASA Astrophysics Data System (ADS)

    Calmer, R.; Roberts, G.; Sanchez, K. J.; Nicoll, K.; Preissler, J.; Ovadnevaite, J.; Sciare, J.; Bronz, M.; Hattenberger, G.; Rosenfeld, D.; Lauda, S.; Hashimshoni, E.

    2015-12-01

    Enhancements in Remotely Piloted Aircraft Systems (RPAS) have increased their possible uses in many fields for the past two decades. For atmospheric research, ultra-light RPAS (< 2.5kg) are now able to fly at altitudes greater than 3 km and even in cloud, which opens new opportunities to understand aerosol-cloud interactions. We are deploying the RPAS as part of the European project BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). Field experiments in Cyprus and Ireland have already been conducted to study aerosol-cloud interactions in climatically different environments. The RPAS are being utilized in this study with the purpose of complementing ground-based observations of cloud condensation nuclei (CCN) to conduct aerosol-cloud closure studies Cloud microphysical properties such as cloud drop number concentration and size can be predicted directly from the measured CCN spectrum and the observed updraft, the vertical component of the wind vector [e.g., Conant et al, 2004]. On the RPAS, updraft measurements are obtained from a 5-hole probe synchronized with an Inertial Measurement Unit (IMU). The RPA (remotely piloted aircraft) are programmed to fly at a level leg just below cloud base to measure updraft measurements while a scanning CCN counter is stationed at ground level. Vertical profiles confirm that CCN measurements on the ground are representative to those at cloud base. An aerosol-cloud parcel model is implemented to model the cloud droplet spectra associated with measured updraft velocities. The model represents the particle size domain with internally mixed chemical components, using a fixed-sectional approach [L. M. Russell and Seinfeld, 1998]. The model employs a dual moment (number and mass) algorithm to calculate growth of particles from one section to the next for non-evaporating species. Temperature profiles, cloud base, updraft velocities and aerosol size and composition, all

  3. Insitu measurements of laser-induced-fluorescence spectra of single atmospheric organic carbon aerosol particles for their partial classification. (Invited)

    NASA Astrophysics Data System (ADS)

    Pinnick, R. G.; Pan, Y.; Hill, S.; Rosen, J. M.; Chang, R. K.

    2009-12-01

    Aerosols are ubiquitous in the earth’s atmosphere. Within the last two decades, the importance of organic carbon aerosols (OCAs) has been widely recognized. OCAs have both natural and anthropogenic sources and have effects ranging from atmospheric radiative forcing to human health. Improved methods for measuring and classifying OCAs are needed for better understanding their sources, transformation, and fate. In this talk we focus on the use of a relatively new technique for characterization of single OCA particles in atmospheric aerosol: ultraviolet laser-induced-fluorescence (UV-LIF). UV-LIF spectra of atmospheric aerosols measured at multiple sites with different regional climate (Adelphi, MD, New Haven, CT, and Las Cruces, NM) are reported. A hierarchical clustering method was used to cluster (approximately 90%) of the single-particle UV-LIF spectra into 8-10 groups (clusters). Some of these clusters have spectra that are similar to spectra of some important classes of atmospheric aerosol, such as humic/fulvic acids and humic-like substances, bacteria, cellulose, marine aerosol, and polycyclic aromatic hydrocarbons. The most highly populated clusters, and some of the less populated ones, appear at all sites. On average, spectra characteristic of humic/fulvic acids and humic-like-substances (HULIS) comprise 28-43% of fluorescent particles at all three sites; whereas cellulose-like spectra contribute only 1-3%.

  4. Measurements of Ocean Derived Aerosol Over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P.; Frossard, A. A.; Russell, L. M.; Hakala, J. P.; Kieber, D. J.; Keene, W. C.

    2012-12-01

    Breaking waves on the ocean surface inject sea spray particles into the atmosphere which can act as CCN. Characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in-situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside RV Ronald H. Brown in the North Atlantic during August of 2012 in two contrasting regions; one in the eutrophic waters on Georges Bank and one in the oligotrophic waters near Bermuda. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The measured aerosol properties from the two regions will be compared.

  5. Preliminary Results from the Smoke Aerosol Measurement Experiment - Reflight

    NASA Astrophysics Data System (ADS)

    Urban, D. L.; Ruff, G. A.; Mulholland, G. W.; Yuan, Z.; Cleary, T.; Yang, J.; Meyer, M. E.; Bryg, V. M.

    2012-01-01

    Preliminary results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME- R) which was conducted during Expedition 24 (July- September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. Particle size determinations were made using aerosol instruments and by capturing particles for ground based examination in a Transmission Electron Microscope (TEM). Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the some of the quiescent cases producing substantially larger particles. When combined with particle morphology data from the TEM analysis, these results can be used to guide the design of future smoke detectors.

  6. Novel measurement technologies for ambient and combustion source aerosols

    EPA Science Inventory

    Thie presentaiton examines the chemical properties of atmospheric and combustion source aerosols. It describes the aerosol chemical fractions and the specific chemical constituents in these aerosols. The presentation will cover (i) the limitatins and benefits of hyphenated chroma...

  7. A portable optical particle counter system for measuring dust aerosols.

    PubMed

    Marple, V A; Rubow, K L

    1978-03-01

    A portable battery-operated optical particle counter/multichannel analyzer system has been developed for the numbers size distribution and number concentration measurement of light-absorbing irregular-shaped dust particles. An inertial impactor technique has been used to obtain calibration curves by relating the magnitude of the optical counter's signal to the particle's aerodynamic or Stokes' diameter. These calibrations have been made for aerosols of coal, potash, silica, rock (copper ore), and Arizona road dust particles. PMID:645547

  8. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2012-01-04

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (D{sub p} > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25 % of aerosol with D{sub p} > 100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the

  9. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE 2 and NMC temperature data

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; Wang, P.-H.; Chiou, E. W.

    1994-01-01

    Water vapor concentrations obtained by the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and collocated temperatures provided by the National Meteorological Center (NMC) from 1986 to 1990 are used to deduce seasonally and zonally averaged acidity, density, and refractive index of stratospheric aerosols. It is found that the weight percentage of sulfuric acid in the aerosols increases from about 60 just above the tropopause to about 86 at 35 km. The density increases from about 1.55 to 1.85 g/cu cm between the same altitude limits. Some seasonal variations of composition and density are evident at high latitudes. The refractive indices at 1.02, 0.694, and 0.532 micrometers increase, respectively, from about 1.425, 1.430, and 1.435 just above the tropopause to about 1.445, 1.455, and 1.458 at altitudes above 27 km, depending on the season and latitude. The aerosol properties presented can be used in models to study the effectiveness of heterogeneous chemistry, the mass loading of stratospheric aerosols, and the extinction and backscatter of aerosols at different wavelengths. Computed aerosol surface areas, rate coefficients for the heterogeneous reaction ClONO2 + H2O yields HOCl + HNO3 and aerosol mass concentrations before and after the Pinatubo eruption in June 1991 are shown as sample applications.

  10. Aerosols in the arid southwestern United States - Measurements of mass loading, volatility, size distribution, absorption characteristics, black carbon content, and vertical structure to 7 km above sea level

    NASA Astrophysics Data System (ADS)

    Pinnick, R. G.; Fernandez, G.; Martinez-Andazola, E.; Hinds, B. D.; Hansen, A. D. A.; Fuller, K.

    1993-02-01

    A variety of methods and sensors including quartz fiber filter samplers, hi-vol samplers, ground-based and aircraft-mounted light-scattering aerosol counters, an aerosol counter equipped with a heated inlet, and an aethalometer are used to determine near-surface and lower tropospheric aerosol characteristics at several remote sites near Orogrande, New Mexico. The results of these measurements, which were taken sporadically over the last 15 yr, suggest that regardless of season, aerosol consists of two modes - a submicron fraction composed primarily of ammonium/acid sulfates and elemental black carbon and a supermicron fraction composed mainly of quartz and clay minerals of soil origin. Limited aircraft measurements in the lowest few kilometers of the troposphere reveal a well-mixed aerosol for a neutral atmospheric condition, and a significant decrease in aerosol concentration with altitude for a stable atmospheric condition.

  11. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  12. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  13. Studies of acid aerosols in six cities and in a new multi-city investigation: Design issues

    SciTech Connect

    Speizer, F.E.

    1989-01-01

    As part of the on-going Harvard Study on the Health Effects of Sulfur Dioxide and Respirable Particulates, the authors have developed monitoring equipment for acidic particles that can be used in multiple field settings. Preliminary data suggest that these strong acid aerosol measurements may correlate with respiratory symptoms more closely than similar measurements of particulate matter less than 15 micro m in size. These results have led to the beginning of a U.S.-Canadian cooperative study to assess the chronic effects of acid aerosols on the health of North American children. Communities are being selected on the basis of anticipated levels of H2SO4 in ambient air along with predicted levels of ozone and nitrates. Each community will undergo a 1-year period of every other day, 24-hr monitoring with newly developed monitoring equipment that will allow for quantification of H ion concentrations, as well as for specific measures of ozone and acid fractions. At the end of the 1-year period, while measurements are still being made, approximately 600 children aged 7 to 11 in each of up to 24 communities will be assessed with standardized questionnaires completed by parents, and pulmonary function will be measured in the children while in school. By estimating chronic exposure from the year-long measurement of acid aerosols and consideration of specific criteria for selecting communities to study; the authors hope to minimize potential confounding to allow us to assess the chronic impact of strong acid in the atmosphere on the respiratory health of these children.

  14. Atmospheric measurements of pyruvic and formic acid

    NASA Technical Reports Server (NTRS)

    Andreae, Meinrat O.; Li, Shao-Meng; Talbot, Robert W.

    1987-01-01

    Pyruvic acid, a product of the atmospheric oxidation of cresols and probably of isoprene, has been determined together with formic acid in atmospheric aerosols and rain as well as in the vapor phase. Both acids are present predominantly as vapor; only about 10-20 percent of the total atmospheric pyruvate and 1-2 percent of the total formate are in the particulate phase. The concentrations of pyruvic and formic acid are highly correlated, with typical formic-to-pyruvic ratios of 10-30 in the gas phase, 20-30 in rain, and 2-10 in aerosols. The gas-phase and rain ratios are comparable to those predicted to result from isoprene oxidation. Pyruvic acid levels were similar in the eastern United States (during summer) and the Amazon Basin, suggesting that natural processes, particularly the photochemical oxidation of isoprene, could account for most of the pyruvic acid present in the atmosphere.

  15. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  16. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  17. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  18. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  19. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  20. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  1. The effect of phase partitioning of semivolatile compounds on the measured CCN activity of aerosol particles

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2013-09-01

    The effect of inorganic semivolatile aerosol compounds on the CCN activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big fraction of semivolatiles is evaporated from particles before activation in the CCN counter? (2) How much the CCN activity can be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? The results show that, to increase the CCN activity of aerosol particles, a very high gas phase concentration (as compared to typical ambient conditions) is needed. We used nitric acid as a test compound. A concentration of several ppb or higher is needed for measurable effect. In the case of particle evaporation, we used ammonium nitrate as a test compound and found that it partially evaporates before maximum supersaturation is reached in the CCN counter, thus causing an underestimation of CCN activity. The effect of evaporation is clearly visible in all supersaturations, leading to an underestimation of the critical dry diameter by 10 to 15 nanometres in the case of ammonium nitrate particles in different supersaturations. This result was also confirmed by measurements in supersaturations between 0.1 and 0.7%.

  2. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone

    SciTech Connect

    Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N.R.; Hjorth, J.; Kotzias, D.; Larsen, B.R.

    2000-03-15

    A series of smog chamber experiments have been conducted in which five cyclic monoterpenes were oxidized by ozone. The evolved secondary aerosol was analyzed by GC-MS and HPLC-MS for nonvolatile polar oxidation products with emphasis on the identification of carboxylic acids. Three classes of compounds were determined at concentration levels corresponding to low percentage molar yields: i.e., dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids. Carboxylic acids are highly polar and have lower vapor pressures than their corresponding aldehydes and may thus play an important role in secondary organic aerosol formation processes. The most abundant carboxylic acids were the following: cis-pinic acid AB1(cis-3-carboxy-2,2-dimethylcyclobutylethanoic acid) from {alpha} and {beta}-pinene; cis-pinonic acid A3 (cis-3-acetyl-2,2-dimethylcyclobutylethanoic acid) and cis-10-hydroxypinonic acid Ab6 (cis-2,2-dimethyl-3-hydroxyacetylcyclobutyl-ethanoic acid) from {alpha}-pinene and {beta}-pinene; cis-3-caric acid C1 (cis-2,2-dimethyl-1,3-cyclopropyldiethanoic acid), cis-3-caronic acid C3 (2,2-dimethyl-3-(2-oxopropyl)cyclopropanylethanoic acid), and cis-10-hydroxy-3-caronic acid C6 (cis-2,2-dimethyl-3(hydroxy-2-oxopropyl)cyclopropanylethanoic acid) from 3-carene; cis-sabinic acid S1 (cis-2-carboxy-1-isopropylcyclopropylethanoic acid) from sabinene; limonic acid L1 (3-isopropenylhexanedioic acid), limononic acid L3 (3-isopropenyl-6-oxo-heptanoic acid), 7-hydroxy-limononic acid L6 (3-isopropenyl-7-hydroxy-6-oxoheptanoic acid), and 7-hydroxylimononic acid Lg{prime} (7-hydroxy-3-isopropenyl-6-oxoheptanoic acid) from limonene.

  3. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  4. Quantifying aerosol mixing state with entropy and diversity measures

    NASA Astrophysics Data System (ADS)

    Riemer, N.; West, M.

    2013-11-01

    This paper presents the first quantitative metric for aerosol population mixing state, defined as the distribution of per-particle chemical species composition. This new metric, the mixing state index χ, is an affine ratio of the average per-particle species diversity Dα and the bulk population species diversity Dγ, both of which are based on information-theoretic entropy measures. The mixing state index χ enables the first rigorous definition of the spectrum of mixing states from so-called external mixture to internal mixture, which is significant for aerosol climate impacts, including aerosol optical properties and cloud condensation nuclei activity. We illustrate the usefulness of this new mixing state framework with model results from the stochastic particle-resolved model PartMC-MOSAIC. These results demonstrate how the mixing state metrics evolve with time for several archetypal cases, each of which isolates a specific process such as coagulation, emission, or condensation. Further, we present an analysis of the mixing state evolution for a complex urban plume case, for which these processes occur simultaneously. We additionally derive theoretical properties of the mixing state index and present a family of generalized mixing state indexes that vary in the importance assigned to low-mass-fraction species.

  5. Synergistic interaction between nitrogen dioxide and respirable aerosols of sulfuric acid or sodium chloride on rat lungs

    SciTech Connect

    Last, J.A.; Warren, D.L.

    1987-08-01

    We examined interactions in rats between NO/sub 2/ gas and respirable aerosols of sulfuric acid (H/sub 2/SO/sub 4/) or sodium chloride (NaCl). Rats were exposed for 1, 3, or 7 days to 5 ppm of NO/sub 2/ gas, alone or in combination with 1 mg/m3 of H/sub 2/SO/sub 4/ or NaCl aerosols. The apparent rate of collagen synthesis by lung minces was measured after 7 days of exposure, and the protein content of whole lung lavage fluid was measured after 1 or 3 days of exposure. Responses from rats exposed to 5 ppm of NO/sub 2/ alone were significantly different from controls by these assays. A synergistic interaction was demonstrated between 5 ppm of NO/sub 2/ and 1 mg/m3 of either H/sub 2/SO/sub 4/ or NaCl aerosol as evaluated by measurement of the rate of lung collagen synthesis. A synergistic interaction was also demonstrated by the criterion of increased protein content of lung lavage fluid in rats exposed to 5 ppm of NO/sub 2/ and 1 mg/m3 of H/sub 2/SO/sub 4/ aerosol after 1 day of exposure and between 5 ppm of NO/sub 2/ and 1 mg/m3 of NaCl aerosol after 3 days of exposure. These observations with 5 ppm of NO/sub 2/ alone and in combination with 1 mg/m3 of NaCl aerosol support the hypothesis that formation of nitrosyl chloride may contribute to a synergistic interaction between NO/sub 2/ gas and NaCl aerosol. These results suggest that, in general, combinations of oxidant gases with respirable acidic aerosols or with acidogenic gases will demonstrate interactive effects on rat lungs. Such a hypothesis is testable and makes specific predictions about effects of inhalation of pollutant mixtures.

  6. New algorithm to derive the microphysical properties of the aerosols from lidar measurements using OPAC aerosol classification schemes

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Labzovskii, Lev; Toanca, Florica

    2014-05-01

    This paper presents a new method to retrieve the aerosol complex refractive index and effective radius from multiwavelength lidar data, using an integrated model-measurement approach. In the model, aerosols are assumed to be a non-spherical ensemble of internally mixed components, with variable proportions. OPAC classification schemes and basic components are used to calculate the microphysical properties, which are then fed into the T-matrix calculation code to generate the corresponding optical parameters. Aerosol intensive parameters (lidar ratios, extinction and backscatter Angstrom coefficients, and linear particle depolarization ratios) are computed at the altitude of the aerosol layers determined from lidar measurements, and iteratively compared to the values obtained by simulation for a certain aerosol type, for which the critical component's proportion in the overall mixture is varied. Microphysical inversion based on the Truncated Singular Value Decomposition (TSVD) algorithm is performed for selected cases of spherical aerosols, and comparative results of the two methods are shown. Keywords: Lidar, aerosols, Data inversion, Optical parameters, Complex Refractive Index Acknowledgments: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project numbers 38/2012 - CAPESA and 55/2013 - CARESSE, and by the European Community's FP7-INFRASTRUCTURES-2010-1 under grant no. 262254 - ACTRIS and by the European Community's FP7-PEOPLE-2011-ITN under grant no. 289923 - ITARS

  7. Comparison of LIDAR and Cavity Ring-Down Measurements of Aerosol Extinction and Study of Inferred Aerosol Gradients

    NASA Astrophysics Data System (ADS)

    Eberhard, W. L.; Massoli, P.; McCarty, B. J.; Machol, J. L.; Tucker, S. C.

    2007-12-01

    A LIDAR and a Cavity Ring-Down Aerosol Extinction Spectrometer (CRD) instrument simultaneously measured aerosol extinction at 355-nm wavelength from aboard the Research Vessel Ronald H. Brown during the Texas Air Quality Study II campaign. The CRD measured air sampled from the top of the common mast used by several in situ aerosol optical and chemical instruments. The LIDAR's scan sequence included near-horizontal stares (2° elevation angle) with pointing corrected for ship's roll. Aerosol extinction was retrieved using a variant of the slope method. The LIDAR therefore sampled air over a short vertical extent with midpoint higher above the surface than the CRD intake and at a horizontal distance of as much as a few kilometers. The CRD measured aerosol extinction at dry and at high (near-ambient) relative humidity (RH) levels, which were used to scale the measurements to ambient RH for the comparisons. Data from the two instruments for well-mixed conditions (supported by turbulence and atmospheric stability data) are compared to evaluate the degree of agreement between the two methods and reasons for differences. For instances of larger differences, the aerosol gradient below approximately 100 m altitude is inferred and examined in context of low-level meteorological parameters and LIDAR measurements at higher angles.

  8. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  10. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  11. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  12. Development and first application of an Aerosol Collection Module (ACM) for quasi online compound specific aerosol measurements

    NASA Astrophysics Data System (ADS)

    Hohaus, Thorsten; Kiendler-Scharr, Astrid; Trimborn, Dagmar; Jayne, John; Wahner, Andreas; Worsnop, Doug

    2010-05-01

    Atmospheric aerosols influence climate and human health on regional and global scales (IPCC, 2007). In many environments organics are a major fraction of the aerosol influencing its properties. Due to the huge variety of organic compounds present in atmospheric aerosol current measurement techniques are far from providing a full speciation of organic aerosol (Hallquist et al., 2009). The development of new techniques for compound specific measurements with high time resolution is a timely issue in organic aerosol research. Here we present first laboratory characterisations of an aerosol collection module (ACM) which was developed to allow for the sampling and transfer of atmospheric PM1 aerosol. The system consists of an aerodynamic lens system focussing particles on a beam. This beam is directed to a 3.4 mm in diameter surface which is cooled to -30 °C with liquid nitrogen. After collection the aerosol sample can be evaporated from the surface by heating it to up to 270 °C. The sample is transferred through a 60cm long line with a carrier gas. In order to test the ACM for linearity and sensitivity we combined it with a GC-MS system. The tests were performed with octadecane aerosol. The octadecane mass as measured with the ACM-GC-MS was compared versus the mass as calculated from SMPS derived total volume. The data correlate well (R2 0.99, slope of linear fit 1.1) indicating 100 % collection efficiency. From 150 °C to 270 °C no effect of desorption temperature on transfer efficiency could be observed. The ACM-GC-MS system was proven to be linear over the mass range 2-100 ng and has a detection limit of ~ 2 ng. First experiments applying the ACM-GC-MS system were conducted at the Jülich Aerosol Chamber. Secondary organic aerosol (SOA) was formed from ozonolysis of 600 ppbv of b-pinene. The major oxidation product nopinone was detected in the aerosol and could be shown to decrease from 2 % of the total aerosol to 0.5 % of the aerosol over the 48 hours of

  13. A diagnostic stratospheric aerosol size distribution inferred from SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.

    1991-01-01

    An aerosol size distribution model for the stratosphere is inferred based on 5 years of Stratospheric Aerosol and Gas Experiment (SAGE) II measurements of multispectral aerosol and water vapor extinction. The SAGE II aerosol and water vapor extinction data strongly suggest that there is a critical particle radius below which there is a relatively weak dependence of particle number density with size and above which there are few, if any, particles. A segmented power law model, as a simple representation of this dependence, is used in theoretical calculations and intercomparisons with a variety of aerosol measurements including dustsondes, longwave lidar, and wire impactors and shows a consistently good agreement.

  14. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  15. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    SciTech Connect

    Kleinman, L.I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek III, A. J.; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-21

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O{sub 3} and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO{sub 2} from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of {approx}150 cm{sup -3}, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that {approx}25% of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50% of aerosol with D{sub p} > 110 nm were not activated, the difference between the two

  16. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Lewis, E. R.; Sedlacek, A. J., III; Senum, G. I.; Springston, S. R.; Wang, J.; Hubbe, J.; Jayne, J.; Min, Q.; Yum, S. S.; Allen, G.

    2011-06-01

    During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp > 100 nm) gives a linear relation up to a number concentration of ~150 cm-3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp > 110 nm were not activated, the difference between the two approaches possibly representing

  17. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  18. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  19. Arctic aerosol and cloud measurements performed during IAOOS 2014

    NASA Astrophysics Data System (ADS)

    Mariage, Vincent; Pelon, Jacques; Blouzon, Frédéric; Geyskens, Nicolas; Amarouche, Nadir; Drezen, Christine; Calzas, Michel; Victori, Stéphane; Garracio, Magali; Desautez, Alain; Pascal, Nicolas; Foujols, Thomas; Sarkissian, Alain; Pommereau, Jean-Pierre; Sennechael, Nathalie; Provost, Christine

    2015-04-01

    Better understanding of atmosphere-ice-ocean interactions and in particular of the role of aerosols and clouds in this Earth system is of prime importance in the Arctic. In the frame of the French IAOOS Equipex project, a new observational network is planned to be developed for ocean-ice-atmosphere climate survey over the Arctic, starting in 2015, to complement satellite observations. Eye-safe lidar measurements will allow us to profile aerosols and clouds for the atmospheric part, with the objective to perform regular measurements and characterize the vertical structure and optical properties. Radiation and meteorological parameters will be measured at the surface. A first buoy has been prototyped and deployed in April 2014 at the Barneo site set by the Russian teams at the North Pole. Measurements with the first autonomous backscatter lidar ever deployed in the arctic have been taken from April to end of November 2014 before the buoy was lost. Four profiles a day have been performed allowing a good sampling of cloud variability. Observations have shown that the occurrence of low level clouds was higher than 90% during summer. The project is presented, instrument performance is described and first results are discussed.

  20. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2011-07-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. Chemically speciated flux measurements were made at a height of 29 m at the same location between 19 July and 2 August, 2006 using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). The Q-AMS measured an average sulphate deposition velocity of 0.3 mm s-1 and an average nitrate deposition velocity of 4.8 mm s-1. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations from 3 to 410 nm diameter at a rate of 1 Hz. For the size range 18 < D < 452 nm, 60 % of fluxes were upward. The exchange velocity was between -0.5 and 2.0 mm s-1, with median values near 0.5 mm s-1 for all sizes between 22 and 310 nm. The size distribution of the apparent production rate of particles at 33 m peaked at a diameter of 75 nm. Results indicate a decoupling of the above and below canopy spaces, whereby particles are stored in the canopy space at night, and are then diluted with cleaner air above during the day.

  1. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  2. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  3. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  4. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  5. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  6. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  7. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation.

    PubMed

    Kirkby, Jasper; Curtius, Joachim; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M; Carslaw, Kenneth S; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku

    2011-08-25

    Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation. PMID:21866156

  8. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Li, Z.; Xu, H.; Chen, X.; Li, K.; Lv, Y.; Li, D.; Zhang, Y.

    2015-12-01

    The chemical composition and mixing status of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurement. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of aerosol or have some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it investigate aerosol information by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduce a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to real measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing states of aerosol particles on aerosol composition retrieval.

  9. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  10. A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Mccormick, M. P.; Chu, W. P.

    1984-01-01

    SAM II and SAGE are two satellite experiments designed to measure stratospheric aerosol extinction using the technique of solar occultation or limb extinction. Although each sensor is mounted aboard a different satellite, there are occasions when their measurement locations are nearly coincident, thereby providing opportunities for a measurement comparison. In this paper, the aerosol extinction profiles and daily contour plots for some of these events in 1979 are reported. The comparisons shown in this paper demonstrate that SAM II and SAGE are producing similar aerosol extinction profiles within their measurement errors and that since SAM II has been previously validated, these results show the validity of the SAGE aerosol measurements.

  11. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2010-10-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations for 3 to 410 nm at a rate of 1 Hz. For the size range 20measurements from a previous study at the same location using a Quadrupole Aerosol Mass Spectrometer (Q-AMS) demonstrate a tendency towards downward fluxes, which may be due to an organic particle component which can not be resolved by the flux mode of the Q-AMS.

  12. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  13. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  14. Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Murphy, B.; Riipinen, I.; Percival, C.; Booth, A.

    2014-12-01

    The growth, composition, and evolution of secondary organic aerosol (SOA) are governed by properties of individual compounds and ensemble mixtures that affect partitioning between the vapor and condensed phase. There has been considerable recent interest in the idea that SOA can form highly viscous particles where the diff usion of either water or semivolatile organics within the particle is suffi ciently hindered to aff ect evaporation and growth. Despite numerous indirect inferences of viscous behavior from SOA evaporation or " bounce" within aerosol instruments, there have been no bulk measurements of the viscosity of well-constrained model aerosol systems of atmospheric signifi cance. Here the viscous behavior of a well-defi ned model system of 9 dicarboxylic acids is investigated directly with complementary measurements and model predictions used to infer phase state. Results not only allow us to discuss the atmospheric implications for SOA formation through this representative mixture, but also the potential impact of current methodologies used for probing this aff ect in both the laboratory and from a modeling perspective. We show, quantitatively, that the physical state transformation from liquid-like to amorphous semisolid can substantially increase the importance of mass transfer limitations within particles by 7 orders of magnitude for 100 nm diameter particles. Recommendations for future research directions are given.

  15. Impact of Clouds and Aerosols on Photochemistry During the TexAQS II Radical and Aerosol Measurement Project

    NASA Astrophysics Data System (ADS)

    Flynn, J. H.; Lefer, B. L.; Rappenglueck, B.; Olson, J. R.; Chen, G.

    2007-12-01

    Photochemistry is responsible for the production of tropospheric ozone, the primary component of smog. In 2006, Houston, Texas experienced 20 days with a 1-hour ozone average in excess of 125 ppbv, and 36 days with an 8-hour average over 85 ppbv. Two models were used to assess the impact of clouds and aerosols on the photochemical production and loss of ozone and radicals in a polluted urban environment. The NASA Langley Research Center (LaRC) 0-D photochemical box model was used to assess the changes in the photochemical budgets due to varying cloud and aerosol conditions. The NCAR Tropospheric Ultraviolet and Visible (TUV) radiative transfer model was used to calculate photolysis frequencies for clear sky conditions with a variety of aerosol profiles. These tools were used to analyze the data set collected during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) with respect to ozone and radical budgets. Measurements of trace gasses, aerosols, meteorological parameters, and radiation were collected between mid-August and early October 2006 at the University of Houston. The photochemical model was run using various photolysis rates that reflect a range of atmospheric conditions impacting the actinic flux. Rates from real-time actinic flux measurements include the impact of both the clouds and aerosols that are present. Photolysis rates for clear-sky (cloud-free) conditions, both with and without aerosol profiles were calculated using the TUV radiative transfer model. A comparison of the photochemical ozone and radical budgets resulting from these different rates indicate those sensitivities to the presence of aerosols and clouds. Approximately seven of the 50 days during the campaign were cloud-free and were compared to LaRC-TUV results to show the effects of aerosols. The remaining days show the effects of both aerosols and cloud conditions that varied from partly cloudy to heavy overcast conditions. A cloud camera was used to

  16. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA. PMID:23448102

  17. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  18. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2013-01-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid - ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary

  19. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  20. Retrieval of CO2 Mixing Ratios from CLARS Measurements: Correcting Aerosol Induced Biases

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Natraj, V.; Shia, R. L.; Roehl, C. M.; Yung, Y. L.; Sander, S. P.

    2014-12-01

    A Fourier transform spectrometer at the California Laboratory for Atmospheric Remote Sensing (CLARS) on the top of Mt Wilson, California, measures greenhouse gas concentrations in the Los Angeles basin using reflected sun light. Observations include those with large viewing zenith angles (up to 83.1), making the measurements very sensitive to aerosol scattering. A previous study by the authors shows the ratioing of CO2 and O2 slant column densities (SCDs) can largely cancel the effect of aerosol scattering, but biases still exist due to the wavelength dependence of aerosol scattering.In this study, biases caused by different types of aerosols are analyzed. Preliminary results indicate that the information from CLARS-FTS spectra is not sufficient to constrain all the free parameters, including the aerosol single scattering albedo (SSA), aerosol optical depth, surface albedo, etc. In order to mitigate the influence of aerosol scattering, a few effective aerosol parameters are retrieved simultaneously with absorbing gas abundances. The corrected SCDs show reasonable variabilities from the morning to the afternoon in the presence of aerosols. The column-averaged dry air mole fraction of CO2 (XCO2) products are compared to measurements from the Total Carbon Column Observing Network (TCCON) at Caltech. By retrieving aerosol parameters in the CO2 and O2 absorption bands, biases in XCO2 caused by wavelength dependence of aerosol scattering can be considerably reduced.

  1. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  2. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  3. Laboratory studies of the reactive uptake of biogenic species: Evidence for the direct polymerization of isoprene, terpenes and sesquiterpenes on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Li, S.; Liggio, J.; Mihele, C.; Brook, J.

    2006-12-01

    Numerous studies on heterogeneous reactions have shown that polymerization of semi-volatile and volatile organic compounds occurs in aerosols. To date, most evidence suggests that gaseous hydrocarbon oxidation products containing carbonyl functionality are the prime candidates for these processes. Such processes involve primarily hydration, acetal formation, polymerization and aldol-condensation reactions, resulting in oligomer products of potential significance with respect to secondary organic aerosol formation (SOA). However, little information on the heterogeneous reactions of unsaturated hydrocarbons (olefins) is known. Given that biogenic species, many of them unsaturated, make up a considerable portion of hydrocarbons emitted globally, direct reactive uptake of these compounds on aerosols would also potentially be a major source of SOA. In the present study, individual biogenic hydrocarbons were exposed to pre-existing acidic sulfate aerosols within a 2 m3 Teflon reaction chamber under varying relative humidity conditions. An Aerosol Mass Spectrometer was used to quantify any subsequent increase in organic mass as a function of time, and to obtain information regarding the structure of products via aerosol mass spectra. A Proton Transfer Reaction Mass Spectrometer was used to measure the gas-phase concentrations of isoprene, terpenes (?-pinene, ?-pinene, limonene, and carene) and sesquiterpenes (?-caryophylene and humulene) in the reaction chamber. Results from these experiments show that a significant amount of these compounds are taken up by the acidic aerosols rapidly, in a polymerization process which was highly dependent on the particle acidity. This polymerization mechanism likely involves the oxygenation of the resulting polymers via acid catalyzed hydration. The uptake of the unsaturated hydrocarbons suggests that gas-phase oxidation of biogenics to condensable products is not the only route to SOA. Details of the polymerization and hydration

  4. Effects of ozone and sulfuric acid aerosol on gas trapping in the guinea pig lung

    SciTech Connect

    Silbaugh, S.A.; Mauderly, J.L.

    1986-01-01

    Four groups of 20 guinea pigs were sequentially exposed by inhalation to either air followed by sulfuric acid aerosol, ozone followed by sulfuric acid aerosol, ozone followed by air, or air followed by air to determine whether ozone preexposure sensitizes guinea pigs to the airway constrictive effects of sulfuric acid aerosol. All first exposures to ozone or air were 2 h in duration; all second exposures to sulfuric acid or air were for 1 h. All ozone and sulfuric acid exposures were 0.8 ppm and 12 mg/m3, respectively. Animals were observed for respiratory distress during exposure, and excised lungs were quantitated for trapped gas and wet/dry ratios. None of the guinea pigs developed dyspnea, and wet/dry ratios were not altered. Ozone significantly (p less than 0.05) increased trapped gas volumes, which were 44% (ozone-acid) to 68% (ozone-air) greater than in the air-air group. Trapped gas volume was 23% greater in the ozone-acid group than in the air-acid group, but the difference was not statistically significant (p less than 0.20). Thus, ozone increased gas trapping but did not significantly sensitize guinea pigs to the bronchoconstrictive action of sulfuric acid.

  5. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  6. On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1987-01-01

    The observed decay of the aerosol mixing ratio following the eruption of El Chichon appears to have been 20-30 percent slower than that following the eruption of Fuego in 1974, even though the sulfuric acid droplets were observed to grow to considerably larger sizes after El Chichon. This suggests the possible presence of a condensation nuclei and sulfuric acid vapor source and continued growth phenomena occurring well after the El Chichon eruption. It is proposed that the source of these nuclei and the associated vapor may be derived from annual evaporation and condensation of aerosol in the high polar regions during stratospheric warming events, with subsequent spreading to lower latitudes.

  7. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  8. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  9. Aerosol Acidity in the New England Coastal Atmosphere During Summer 2002

    NASA Astrophysics Data System (ADS)

    Pszenny, A. A.; Keene, W. C.; Maben, J. R.; Stevenson, E.; Wall, A.

    2003-12-01

    Aerosol pH controls important multiphase chemical pathways in the atmosphere but absolute values are poorly constrained. As part of the New England Air Quality Study, aerosol pH was quantified based on multiple independent approaches and results were intercompared for consistency. Soluble, reactive trace gases with pH-dependent solubilities (HNO3, NH3, HCl, HCOOH, and CH3COOH) were sampled with mist chambers. Size-segregated aerosols were sampled in parallel with cascade impactors and analyzed for major ionic constituents. H+ was measured directly in minimally diluted, 5-μ L spots on surfaces of impaction substrates with a flat-surface, field-effect transistor. Aerosol liquid water contents (LWCs) were calculated with hygrospocity models. Aerosol pHs required to sustain the measured phase partitioning of each analyte were inferred based on corresponding thermodynamic properties and direct pH measurements were extrapolated to ambient LWCs. The ensemble of approaches yielded coherent results. Sea-salt pHs ranged from about 2 to the mid 4s and sub-μ m aerosol pHs ranged from <1 to the mid 3s. The H+ + SO42-<-> HSO4- equilibrium strongly buffered aerosol pH in all size fractions.

  10. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols

    EPA Science Inventory

    Methodology for detection of native (underivitized) amino acids in atmospheric aerosols has been developed. This article describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southe...

  11. Polar stratospheric clouds in the 1998-2003 Antarctic vortex: Microphysical modeling and Polar Ozone and Aerosol Measurement (POAM) III observations

    NASA Astrophysics Data System (ADS)

    Benson, C. M.; Drdla, K.; Nedoluha, G. E.; Shettle, E. P.; Alfred, J.; Hoppel, K. W.

    2006-09-01

    The Integrated Microphysics and Aerosol Chemistry on Trajectories (IMPACT) model is used to study polar stratospheric cloud (PSC) formation and evolution in the Antarctic vortex. The model is applied to individual air parcel trajectories driven by UK Met Office (UKMO) wind and temperature fields. The IMPACT model calculates the parcel microphysics, including the formation and sedimentation of ice, nitric acid trihydrate (NAT), sulfuric acid tetrahydrate (SAT), and supercooled ternary solution (STS) aerosols. Model results are validated by comparison with data obtained by the Polar Ozone and Aerosol Measurement (POAM) III solar occultation instrument and are examined for 6 years of POAM data (1998-2003). Comparisons of POAM water vapor and aerosol extinction measurements to the model results help to constrain three microphysical parameters influencing the formation and growth of both type I and type II PSCs. Principally, measurements of aerosol extinction prove to be valuable in differentiating model runs; the relationship of aerosol extinction to temperature is determined by the various particle types as they form and grow. Comparison of IMPACT calculations of this relationship to POAM measurements suggests that the initial fraction of nuclei available for heterogeneous NAT freezing is approximately 0.02% of all aerosols. Constraints are also placed on the accommodation coefficient of ice and the NAT-ice lattice compatibility. However, these two parameters have similar effects on the extinction-temperature relationship, and thus a range of values are permissible for each.

  12. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  13. Southern Hemisphere Lidar Measurements of the Aerosol Clouds from Mt. Pinatubo and Mt. Hudson

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Manson, Peter J.; Patterson, Graeme R.

    1992-01-01

    On 19 Jul., 1991, during tests to determine the ability of the newly-modified CSIRO Ns:YAG lidar to measure signals from the stratosphere before the arrival of dust from the eruption of Mt. Pinatubo, a strongly scattering layer was detected at an altitude of 2 km. That evening, the spectacular sunset and twilight were typical of volcanically disturbed conditions. Lidar measurements at 532 nm were made between 1400 and 1500 EST (0400-0500 UT) on 19 Jul. through broken cloud. Approximately 3800 laser firings were averaged in 256 shot blocks. These and subsequent data have been analyzed to produce profiles of aerosol volume backscatter function and scattering ratio. Clouds again prevented a clear view of the twilights on the next two nights, although there was some evidence for an enhanced glow. The evidence suggested that the aerosol layer had disappeared. An explanation for this disappearance and the earlier than expected arrival of the layer over Melbourne was required. Nimbus 7 TOMS data for 23 Jun. showed that the SO2 from the eruption had extended at least 11000 km to the west and that the southern boundary of the cloud had reached 15 degrees S just 8 days after the climactic eruption. It can be assumed that this cloud also contained dust and sulphuric acid aerosol. It was proposed that a section had then been broken away from the main cloud and carried south by a large scale eddy between the low latitude easterlies and the strong mid-latitude westerlies which finally carried the aerosol cloud over southern Australia. Accompanying 30 mb wind data showed a counter clockwise circulation, responsible for the transport, located in the South Atlantic Ocean.

  14. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  15. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  16. Measuring the vertical distributions of the upper tropospheric and stratospheric dust with a LOAC aerosol counter under meteorological balloons

    NASA Astrophysics Data System (ADS)

    Vignelles, Damien; Renard, Jean-Baptiste; Berthet, Gwenael; Dulac, François; Coute, Benoit; Jeannot, Matthieu; Jegou, Fabrice; Olafsson, Haraldur; Dagsson Waldhauserova, Pavla

    2014-05-01

    The aerosol issue is in a constant growing. At ground, the airborne particles in boundary layer represent a real risk for population and must be control. In the middle troposphere, aerosols play an important role in the microphysics and meteorology, the heterogeneous chemistry is not well understood. In the stratosphere, several teams of researchers have shown that solid aerosols might exist, the question of the dynamic of these solid aerosol in the stratosphere is open. The aim was to develop an instrument that it can make measurements from the ground to the middle stratosphere. This instrument must be able to be put under meteorological balloons, which represent the worst conditions for the development of such instruments in terms of weight, resistance under large variations of temperature and pressure, autonomy and cost if we consider that something throw under a meteorological balloon can be lost after the fly. In the consideration of these conditions, we have developed a new instrument able to make such kind of measurements. This instrument is call LOAC for Light Optical Aerosol Counter. LOAC provides the concentration and size distribution of aerosols on 19 channels from 0.2 μm to 50.0 μm every ten seconds, and determine the main nature of particles (carbonaceous aerosol, mineral, droplets of water or sulfuric acid) in relation with a large range of samples in laboratory. The physical technique is based on the observation of the scattered light by particles at two angles. LOAC is light enough (1 kilogram) to be placed under a meteorological balloon that is very easy to launch such balloons. The goal is to perform a large number of flights to gather information about the dust distribution in stratosphere and to understand the various mechanisms controlling their spatial and temporal variability. About 25 flights with have been performed in the stratosphere with the LOAC above the Mediterranean Sea, from south of Paris, from Aire-Sur-l'Adour (South-West of

  17. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  18. Comparison of Lidar and In-Situ Measurements of Stratospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Northam, G. B.; Rosen, J. M.; Pepin, T. J.; Hofmann, D. H.; McCormick, M. P.

    1973-01-01

    This paper will present the results of a comparative study conducted in Laramie, Wyoming, during the summer and fall of 1972, as part of the Department of Transportation's Climatic Impact Assessment Program (ClAP). The study included independent, and nearly simultaneous, measurements of stratospheric aerosols using a LIDAR system and a balloon-borne in-situ particle counter. The LIDAR provides a remote measurement of volume backscatter (aerosols and molecules) in a narrow wavelength region centered at the ruby wavelength (6943R); whereas the balloon-borne in-situ counter measures aerosol concentration by counting aerosols greater than approx. 0.30 microns in diameter as they are pumped through a chamber and scatter white light forward into photo-detectors. The comparison of measurements that will be discussed using the two techniques involves formulating the LIDAR data so that it is compatible with the counter data. The formulation includes separation of the scattering due to aerosols from the total and displaying this in terms of aerosol scattering function. Aerosol scattering function is proportional to aerosol concentration if the aerosol parameters, such as size distribution and composition, are constant with altitude. In separating the aerosol scattering from the total, the need for real atmospheric number density over the Standard Atmosphere is also discussed.

  19. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  20. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  1. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  2. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 1; Methods and Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-01-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  3. Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Leifer, R.

    1998-08-01

    This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.

  4. Twilight sky brightness measurements as a useful tool for stratospheric aerosol investigations

    NASA Astrophysics Data System (ADS)

    Mateshvili, Nina; Fussen, Didier; Vanhellemont, Filip; Bingen, Christine; KyröLä, Erkki; Mateshvili, Iuri; Mateshvili, Giuli

    2005-05-01

    In this paper we demonstrate how twilight sky brightness measurements can be used to obtain information about stratospheric aerosols. Beside this, the measurements of the distribution and the variability of the twilight sky brightness may help to understand how the stratospheric aerosols affect the radiation field, which is important for correct calculations of photodissociation rates. Multispectral measurements of twilight sky brightness were carried out in Abastumani Observatory (41.8°N, 42.8°E), Georgia, South Caucasus, during the period (1991-1993) when the level of stratospheric aerosols was substantially enhanced after the 1991 Mount Pinatubo eruption. The twilight sky brightness was measured at 9 wavelengths (422, 474, 496, 542, 610, 642, 678, 713, and 820 nm) for solar zenith angles from 89° to 107°. There are clear indications of a growth of the stratospheric aerosol layer after the eruption of Mount Pinatubo that manifests itself by "humps" in twilight sky brightness dependences versus solar zenith angle. Similar features were obtained using a radiative transfer code constrained by the SAGE II aerosol optical thicknesses. It is shown how an enhancement of stratospheric aerosol loading perturbs the twilight sky brightness due to light scattering and absorption in the aerosol layer. The influence of ozone variations and background stratospheric aerosols on twilight sky brightness has also been analyzed. The optical thicknesses of the stratospheric aerosol layer obtained from the twilight measurements of 1990-1993 show a good agreement with SAGE II results. The spectral variations of the stratospheric aerosol extinction for pre-Pinatubo and post-Pinatubo measurements reflect the aerosol growth after the eruption. Finally, the utilization of twilight sky brightness measurements for validation of satellite-based measurements of the stratospheric aerosol is proposed.

  5. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  6. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGESBeta

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  7. Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Gili, Christopher; De Young, Russell

    2006-01-01

    A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

  8. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  9. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  10. Volatility and oxidative aging of aqueous maleic acid aerosol droplets and the dependence on relative humidity.

    PubMed

    Dennis-Smither, Benjamin J; Marshall, Frances H; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2014-07-31

    The microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.2) × 10(-3) Pa. Variation in the refractive index (RI) of an aqueous MA droplet with relative humidity (RH) allowed the subcooled liquid RI of MA to be estimated as 1.481 ± 0.001. Measurements of the hygroscopic growth are shown to be consistent with equilibrium model predictions from previous studies. Simultaneous measurements of the droplet composition, size, and refractive index have been made during ozonolysis at RHs in the range 50-80%, providing insight into the volatility of organic products, changes in the droplet hygroscopicity, and optical properties. Exposure of the aqueous droplets to ozone leads to the formation of products with a wide range of volatilities spanning from involatile to volatile. Reactive uptake coefficients show a weak dependence on ozone concentration, but no dependence on RH or salt concentration. The time evolving RI depends significantly on the RH at which the oxidation proceeds and can even show opposing trends; while the RI increases with ozone exposure at low relative humidity, the RI decreases when the oxidation proceeds at high relative humidity. The variations in RI are broadly consistent with a framework for predicting RIs for organic components published by Cappa et al. ( J. Geophys. Res. 2011 , 116 , D15204 ). Once oxidized, particles are shown to form amorphous phases on drying rather than crystallization, with slow evaporation kinetics of residual water. PMID:25003240

  11. Ion balances of size-resolved tropospheric aerosol samples: implications for the acidity and atmospheric processing of aerosols

    NASA Astrophysics Data System (ADS)

    Kerminen, Veli-Matti; Hillamo, Risto; Teinilä, Kimmo; Pakkanen, Tuomo; Allegrini, Ivo; Sparapani, Roberto

    A large set of size-resolved aerosol samples was inspected with regard to their ion balance to shed light on how the aerosol acidity changes with particle size in the lower troposphere and what implications this might have for the atmospheric processing of aerosols. Quite different behaviour between the remote and more polluted environments could be observed. At the remote sites, practically the whole accumulation mode had cation-to-anion ratios clearly below unity, indicating that these particles were quite acidic. The supermicron size range was considerably less acidic and may in some cases have been close to neutral or even alkaline. An interesting feature common to the remote sites was a clear jump in the cation-to-anion ratio when going from the accumulation to the Aitken mode. The most likely reason for this was cloud processing which, via in-cloud sulphate production, makes the smallest accumulation-mode particles more acidic than the non-activated Aitken-mode particles. A direct consequence of the less acidic nature of the Aitken mode is that it can take up semi-volatile, water-soluble gases much easier than the accumulation mode. This feature may have significant implications for atmospheric cloud condensation nuclei production in remote environments. In rural and urban locations, the cation-to-anion ratio was close to unity over most of the accumulation mode, but increased significantly when going to either larger or smaller particle sizes. The high cation-to-anion ratios in the supermicron size range were ascribed to carbonate associated with mineral dust. The ubiquitous presence of carbonate in these particles indicates that they were neutral or alkaline, making them good sites for heterogeneous reactions involving acidic trace gases. The high cation-to-anion ratios in the Aitken mode suggest that these particles contained some water-soluble anions not detected by our chemical analysis. This is worth keeping in mind when investigating the hygroscopic

  12. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  13. Jet and ultrasonic nebuliser output: use of a new method for direct measurement of aerosol output.

    PubMed Central

    Dennis, J H; Stenton, S C; Beach, J R; Avery, A J; Walters, E H; Hendrick, D J

    1990-01-01

    Output from jet nebulisers is calibrated traditionally by weighing them before and after nebulisation, but the assumption that the weight difference is a close measure of aerosol generation could be invalidated by the concomitant process of evaporation. A method has been developed for measuring aerosol output directly by using a solute (fluoride) tracer and aerosol impaction, and this has been compared with the traditional weight loss method for two Wright, six Turbo, and four Micro-Cirrus jet nebulisers and two Microinhaler ultrasonic nebulisers. The weight loss method overestimated true aerosol output for all jet nebulisers. The mean aerosol content, expressed as a percentage of the total weight loss, varied from as little as 15% for the Wright jet nebulisers to 54% (range 45-61%) for the Turbo and Micro-Cirrus jet nebulisers under the operating conditions used. In contrast, there was no discrepancy between weight loss and aerosol output for the ultrasonic nebulisers. These findings, along with evidence of both concentrating and cooling effects from jet nebulisation, confirm that total output from jet nebulisers contains two distinct fractions, vapour and aerosol. The vapour fraction, but not the aerosol fraction, was greatly influenced by reservoir temperature within the nebuliser; so the ratio of aerosol output to total weight loss varied considerably with temperature. It is concluded that weight loss is an inappropriate method of calibrating jet nebuliser aerosol output, and that this should be measured directly. PMID:2247862

  14. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fisseha, Rebeka; Saurer, Matthias; Jäggi, Maya; Siegwolf, Rolf T. W.; Dommen, Josef; Szidat, Sönke; Samburova, Vera; Baltensperger, Urs

    Stable carbon isotope ratio ( δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August-September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination ( r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning. The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).

  15. The variation of nitric acid vapor and nitrate aerosol concentrations near the island of Hawaii

    SciTech Connect

    Lee, G.

    1992-01-01

    Anthropogenic emissions of nitrogen oxides (NO + NO[sub 2]) are estimated to be half of the global emissions to the atmosphere. To understand the effect of increasing anthropogenic reactive nitrogen inputs to the global atmosphere, one needs to monitor their long-term variations. This dissertation examines the variations of total nitrate (nitric acid vapor and nitrate aerosol) at the Mauna Loa Observatory (MLO), Hawaii. During the Mauna Loa Observatory Photochemistry Experiment (MLOPEX) in May, 1988, six different air types were identified at MLO with statistical analysis. They were: (1) volcano influenced air, (2) stratosphere-like air, (3) boundary-layer air with recent anthropogenic influence, (4) photochemical haze, (5) marine boundary-layer air, (6) well-aged and modified marine air. Samples that might be influenced by marine air or human activity from local islands were eliminated with three meterological criteria (wind direction, condensation nuclei, and dew point). To examine the negative sampling artifacts of nitric acid vapor due to ground loss, mixing ratio gradients with height were measured during August of 1991. The observed gradients of nitric acid vapor indicated that the long-term samplers at 8 m at MLO may underestimate the free tropospheric nitric acid vapor mixing ratio by about 20%. The three year mean and median of free tropospheric total nitrate during long-term measurements were 113 pptv and 93 pptv, respectively. Each year, the total nitrate mixing ratios at MLO during the spring and summer were increased by more than a factor of two higher than fall and winter. NO[sub y] from remote continents (Asia and North America) are likely sources of these increased total nitrate at MLO during these seasons. However, other processes govern the total nitrate mixing ratios, e.g., degree of mixing between free tropospheric air and boundary air at source regions, stratospheric injection, and wet removal of total nitrate.

  16. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  17. THE EFFECTS OF INHALED OXIDANTS AND ACID AEROSOLS ON PULMONARY FUNCTION

    EPA Science Inventory

    Drs. Koenig and Utell each conducted studies in which human volunteers received either combined or sequential exposures to oxidant gases and acid aerosols. In each case, standard pulmonary function tests were performed and symptoms were recorded. Dr. Koenig exposed 28 adole...

  18. MORPHOLOGICAL EFFECTS OF PROLONGED EXPOSURE TO OZONE AND SULFURIC ACID AEROSOL ON THE RAT LUNG

    EPA Science Inventory

    The purpose of this study was to determine the pulmonary effects of a combination of ozone (0.5 ppm) and sulfuric acid aerosol (1 mg/cu. m.) and to assess the possibility of interactive effects. Groups of Sprague-Dawley rats were continously exposed to the pollutants, either indi...

  19. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  20. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

    NASA Astrophysics Data System (ADS)

    Chouza, F.; Reitebuch, O.; Groß, S.; Rahm, S.; Freudenthaler, V.; Toledano, C.; Weinzierl, B.

    2015-07-01

    A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm. The proposed method was applied to measurements from the SALTRACE experiment in June-July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

  1. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  2. Combined measurements of organic aerosol isotopic and chemical composition to investigate day-night differences in carbonaceous aerosol

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Holzinger, Rupert; Meijer, Harro A. J.; Röckmann, Thomas

    2014-05-01

    PM2.5 filter samples have been collected during the Pegasos (Mai, 2012) and Actris (June/July 2012) campaigns at the CESAR site near Cabauw, the Netherlands. This site lies in a rural location surrounded by major urban centers and highways and is a good location for measuring the regional aerosol contamination in the Netherlands. High volume filter samples were taken over several days, but the aerosol was collected on separate filters during day and night time periods. We analyzed these filters for carbon isotopes (14C and 13C) and detailed chemical composition of the organic fraction, which can be a powerful tool, for investigating sources and processing of the organic aerosol. Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. The stable carbon isotopes 12C and 13C can be used to get information about sources and processing of organic aerosol. We use a method to measure d13C values of OC desorbed from the filter samples in He at different temperature steps. The chemical composition of the organic fraction at the same temperature steps can be determined using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The PTR-MS method is applied to the filter samples as well to aerosol collected in situ by a impaction using a Collection-Thermal-Desorption Cell. First results show that the mass concentration of the carbonaceous aerosol is higher during night time than during day time, dominated by a strong increase of biogenic organic aerosol. This is at least partially caused by a shallow night time boundary layer combined with decreased traffic sources and increased condensation of semi-volatile biogenic gases during night-time. Evidence for the role of semi-volatile compounds in enhancing organic carbon (OC) night time concentrations comes from several observations: (1) semi-volatile OC with desorption temperatures lower than 250 °C increases

  3. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger

    SciTech Connect

    McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

    2009-03-18

    This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated

  4. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  5. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  6. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  7. TIME-OF-FLIGHT AEROSOL BEAM SPECTROMETER FOR PARTICLE SIZE MEASUREMENTS

    EPA Science Inventory

    A time-of-flight aerosol beam spectrometer (TOFABS) is described. The instrument has been designed and constructed to perform in situ real time measurements of the aerodynamic size of individual aerosol particles in the range 0.3 to 10 micrometers diameter. The measurement method...

  8. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  9. Near-highway aerosol and gas-phase measurements in a high-diesel environment

    NASA Astrophysics Data System (ADS)

    DeWitt, H. L.; Hellebust, S.; Temime-Roussel, B.; Ravier, S.; Polo, L.; Jacob, V.; Buisson, C.; Charron, A.; André, M.; Pasquier, A.; Besombes, J. L.; Jaffrezo, J. L.; Wortham, H.; Marchand, N.

    2015-04-01

    Diesel-powered passenger cars currently outnumber gasoline-powered cars in many countries, particularly in Europe. In France, diesel cars represented 61% of light duty vehicles in 2011 and this percentage is still increasing (French Environment and Energy Management Agency, ADEME). As part of the September 2011 joint PM-DRIVE (Particulate Matter - DiRect and Indirect on-road Vehicular Emissions) and MOCOPO (Measuring and mOdeling traffic COngestion and POllution) field campaign, the concentration and high-resolution chemical composition of aerosols and volatile organic carbon species were measured adjacent to a major urban highway south of Grenoble, France. Alongside these atmospheric measurements, detailed traffic data were collected from nearby traffic cameras and loop detectors, which allowed the vehicle type, traffic concentration, and traffic speed to be quantified. Six aerosol age and source profiles were resolved using the positive matrix factorization model on real-time high-resolution aerosol mass spectra. These six aerosol source/age categories included a hydrocarbon-like organic aerosol (HOA) commonly associated with primary vehicular emissions, a nitrogen-containing aerosol with a diurnal pattern similar to that of HOA, oxidized organic aerosol (OOA), and biomass burning aerosol. While quantitatively separating the influence of diesel from that of gasoline proved impossible, a low HOA : black carbon ratio, similar to that measured in other high-diesel environments, and high levels of NOx, also indicative of diesel emissions, were observed. Although the measurement site was located next to a large source of primary emissions, which are typically found to have low oxygen incorporation, OOA was found to comprise the majority of the measured organic aerosol, and isotopic analysis showed that the measured OOA contained mainly modern carbon, not fossil-derived carbon. Thus, even in this heavily vehicular-emission-impacted environment, photochemical processes

  10. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Corless, A.; Brechtel, F. J.; Stalin, S. E.; Meinig, C.; Burkhart, J. F.

    2013-08-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway, in April 2011 during the Cooperative Investigation of Climate-Cryosphere Interactions campaign (CICCI). Measurements were made of the particle number concentration and the aerosol light absorption coefficient at three wavelengths. A filter sample was collected on each flight at the altitude of maximum particle number concentration. The filters were analyzed for major anions and cations. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS). A total of 18 flights were flown during the campaign totaling 38 flight hours. The data show frequent aerosol layers aloft with high particle number concentration (1000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Air mass histories of these aerosol layers were assessed using FLEXPART particle dispersion modeling. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  11. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway using unmanned aerial systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Corless, A.; Brechtel, F. J.; Stalin, S. E.; Meinig, C.; Burkhart, J. F.

    2013-03-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2011 during the Cooperative Investigation of Climate-Cryosphere Interactions campaign (CICCI). Measurements were made of the particle number concentration and the aerosol light absorption coefficient at three wavelengths. A filter sample was collected on each flight at the altitude of maximum particle number concentration. The filters were analyzed for major anions and cations. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS). A total of 18 flights were flown during the campaign totaling 38 flight hours. The data show frequent aerosol layers aloft with high particle number concentration (1000 cm-3 and enhanced aerosol light absorption (1 Mm-1). Air mass histories of these aerosol layers were assessed using FLEXPART particle dispersion modeling. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  12. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  13. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  14. Organic aerosol composition measurements with advanced offline and in-situ techniques during the CalNex campaign

    NASA Astrophysics Data System (ADS)

    Timkovsky, J.; Chan, A. W. H.; Dorst, T.; Goldstein, A. H.; Oyama, B.; Holzinger, R.

    2014-12-01

    Our understanding of formation processes, physical properties and climate/health effects of organic aerosols is still limited in part due to limited knowledge of organic aerosol composition. We present speciated measurements of organic aerosol composition by two methods: in-situ thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) and offline two-dimensional gas chromatography with a time-of-flight mass spectrometer (GC×GC/TOF-MS). 153 compounds were identified using the GC×GC/TOF-MS, 123 of which were matched with 64 ions observed by the TD-PTR-MS. A reasonable overall correlation of 0.67 (r2) was found between the total matched TD-PTR-MS signal (sum of 64 ions) and the total matched GC×GC/TOF-MS signal (sum of 123 compounds). A reasonable quantitative agreement between the two methods was observed for most individual compounds with concentrations which were detected at levels above 2 ng m-3 using the GC×GC/TOF-MS. The analysis of monocarboxylic acids standards with TD-PTR-MS showed that alkanoic acids with molecular masses below 290 amu are detected well (recovery fractions above 60%). However, the concentrations of these acids were consistently higher on quartz filters (quantified offline by GC×GC/TOF-MS) than those suggested by in-situ TD-PTR-MS measurements, which is consistent with the semivolatile nature of the acids and corresponding positive filter sampling artifacts.

  15. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  16. No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Wollny, A. G.; Holloway, J. S.; Brock, C. A.; de Gouw, J. A.; Atlas, E. L.

    2007-03-01

    Aircraft-based measurements of the water-soluble fraction of fine PM organic carbon (WSOC) and inorganic salt composition in the Atlanta, GA region were conducted in the summer of 2004. Five notable plumes of SO2, apparently from coal-fired power plants, were intercepted, and had NH4 +/SO4 2- molar ratios ranging from approximately 0.8 to 1.4 compared to molar ratios near 2 outside of the plumes. Sulfate aerosol concentrations increased from a regional background of 5-8 μg m-3 to as high as 19.5 μg m-3 within these plumes. No increase in WSOC concentrations was observed in plumes compared to out-of-plumes within a WSOC measurement uncertainty of 8%. These measurements suggest that secondary organic aerosol formation via heterogeneous acid-catalyzed reactions within power plant plumes are not likely a significant contributor to the ambient aerosol mass loading in Atlanta and the surrounding region. Because this region is rich in both biogenic and anthropogenic volatile organic carbon (VOC), the results may be widely applicable.

  17. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  18. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  19. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  20. Observations of Sub-3 nm Particles and Sulfuric acid Concentrations during Aerosol Life Cycle Intensive Observation Period 2011 in Long Island, New York

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kanawade, V. P.; You, Y.; Hallar, A. G.; Mccubbin, I. B.; Chirokova, G.; Sedlacek, A. J.; Springston, S. R.; Wang, J.; Kuang, C.; Lee, Y.; McGraw, R. L.; Mikkila, J.; Lee, S.

    2012-12-01

    Atmospheric new particle formation (NPF) is an important source of aerosol particles. But the NPF processes are not well understood, in part because of our limited understanding of the formation of atmospheric sub-3 nm size aerosols and the limited number of simultaneous observations of particle size distributions and the aerosol nucleation precursors. During Aerosol Life Cycle Intensive Observation Period (July-August 2011) in Long Island, New York, we deployed a particle size magnifier (Airmodus A09) running at different working fluid saturation ratios and a TSI CPC3776 to extract the information of sub-3 nm particles formation. A scanning mobility particle spectrometer (SMPS), a chemical ionization mass spectrometer (CIMS), and a number of atmospheric trace gas analyzers were used to simultaneously measure aerosol size distributions, sulfuric acid, and other possible aerosol precursors, respectively. Our observation results show that sub-3 nm particles existed during both NPF and non-NPF events, indicating the formation of sub-3nm particle didn't always lead to NPF characterized by typical banana shaped aerosol size distributions measured by SMPS. However, sub-3 nm particles were much higher during NPF events. Sub-3 nm particles were well-correlated with sulfuric acid showing the same diurnal variations and noontime peaks, especially for NPF days. These results are consistent with laboratory studies showing that formation of sub-3 nm particles is very sensitive to sulfuric acid (than amines and ammonia) [Yu et al. GRL 2012]. HYSPLIT back trajectory analysis indicates that air masses from Great Lakes, containing more SO2, VOCs and secondary organics, may contribute to growth of sub-3 nm particles and NPF.

  1. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  2. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm-3) that were dominated by sulfate ions at concentrations of 0.9 ± 0.7 μg m-3 and organic mass at 0.6 ± 0.4 μg m-3, with no measurable nitrate and low ammonium ion concentrations. Measurements of submicron organic aerosol functional groups and trace elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41 ± 27% of OM. Carboxylic acid COOH (32 ± 23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO3 (4 ± 8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid epoxide hydrolysis for proposed surrogate compounds (e.g., isoprene oxidation products) or reactive glyoxal uptake mechanisms from laboratory studies. This correlation suggests that in high-sulfate, low-ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses). Organic hydroxyl C-OH composed 20 ± 12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source. A two-factor solution of positive matrix factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (>70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid

  3. Fast Airborne Size Distribution Measurements of an Aerosol Processes and Aging

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A. D.; Zhou, J.; Brekhovskikh, V.; McNaughton, C. S.; Howell, S.

    2009-12-01

    During MILAGRO/INTEX experiment the Hawaii Group for Environmental Aerosol Research (HIGEAR) deployed a wide range of aerosol instrumentation aboard NSF C-130 and NASA DC-8. These were designed to provide rapid information on aerosol composition, state of mixing (internal or external), spectral optical properties (scattering and absorption), the humidity dependence of light scattering - f(RH), and the role of condensed species in changing the absorption properties of black carbon (BC) and inferred properties of organic carbon (OC). We also flew the Fast Mobility Particle Spectrometer (FMPS, TSI Inc.) to measure aerosol size distributions in a range 5.6 - 560 nm. For all our flights around Mexico City, an aerosol number concentration usually was well above the nominal FMPS sensitivity (from ~100 particles/cc @ Dp = 5.6 nm to 1 part/cc @ 560nm), providing us with reliable size distributions even at 1 sec resolution. FMPS measurements revealed small scale structure of an aerosol and allowed us to examine size distributions varying over space and time associated with mixing processes previously unresolved. These 1-Hz measurements during aircraft profiles captured variations in size distributions within shallow layers. Other dynamic processes observed included orography induced aerosol layers and evolution of the nanoparticles formed by nucleation. We put FMPS high resolution size distribution data in a context of aerosol evolution and aging, using a range of established (for MIRAGE/INTEX) chemical, aerosol and transport aging parameters.

  4. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite

  5. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  6. Retrieval of Aerosol information from UV measurement by using optimal estimation method

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W. V.; Kim, S. K.; Lee, S. D.; Moon, K. J.

    2014-12-01

    An algorithm to retrieve aerosol optical depth (AOD), single scattering albedo (SSA), and aerosol loading height is developed for GEMS (Geostationary Environment Monitoring Spectrometer) measurement. The GEMS is planned to be launched in geostationary orbit in 2018, and employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol information such as AOD and SSA [Torres et al., 2007; Torres et al., 2013; Ahn et al., 2014]. However, the large contribution of atmospheric scattering results in the increase of the sensitivity of the backward radiance to aerosol loading height. Thus, the assumption of aerosol loading height becomes important issue to obtain accurate result. Accordingly, this study focused on the simultaneous retrieval of aerosol loading height with AOD and SSA by utilizing the optimal estimation method. For the RTM simulation, the aerosol optical properties were analyzed from AERONET inversion data (level 2.0) at 46 AERONET sites over ASIA. Also, 2-channel inversion method is applied to estimate a priori value of the aerosol information to solve the Lavenberg Marquardt equation. The GEMS aerosol algorithm is tested with OMI level-1B dataset, a provisional data for GEMS measurement, and the result is compared with OMI standard aerosol product and AERONET values. The retrieved AOD and SSA show reasonable distribution compared with OMI products, and are well correlated with the value measured from AERONET. However, retrieval uncertainty in aerosol loading height is relatively larger than other results.

  7. ACID-CATALYZED REACTIONS IN SULFURIC ACID AEROSOLS: CHARACTERIZATION AND IMPACT ON ICE NUCLEATION

    EPA Science Inventory

    Several different experimental results are possible. It may be that as long as the water content of the aerosol is known, ice nucleation conditions can be predicted using an accepted model for homogeneous ice nucleation. However, in aerosol systems where larger organics form...

  8. Effects of acid aerosol exposure on the surface properties of airway mucus

    SciTech Connect

    Lee, M.M.; Schuerch, S.; Roth, S.H.

    1995-12-31

    It was hypothesized that the mucous layer lining the tracheas of rats and guinea pigs contains surfactant material capable of lowering the air/mucus surface tension, {gamma}, and that exposure to an irritant aerosol would raise the {gamma}. The {gamma} of the surface film was measured directly by a spreading droplet technique and indirectly by displacement of polymethyl methacrylate particles into the aqueous layer. The morphology of the mucous film was examined by electron microscopy after nonaqueous fixation. {gamma} was 33.3 {plus_minus} 0.70 (SE) mN/m and 32.3 {plus_minus} 0.68 (SE) mN/m for the normal rat and guinea pig trachea, respectively. Exposure for 4 h to aerosols of sulfuric acid (94.1 {plus_minus} 18.68 (SD) and 43.3 {plus_minus} 4.57 (SD) mg/m{sup 3}) caused a several-fold increase in thickness of the mucous layer with exudation of protein-like material. The osmiophilic surfactant film at the air/mucus interface became irregularly thickened and multilayered. Despite these morphological changes {gamma} remained low, 33.2 {plus_minus} 0.43 (SE) mN/m and 32.6 {plus_minus} 0.60 (SE) mN/m for rats and guinea pigs, respectively, and displacement of particles into the subphase was not compromised. The results indicate that rodent tracheas are able to maintain a low surface tension in the presence of injury. 24 refs., 9 figs.

  9. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  10. A novel method to measure the ambient aerosol phase function based on dual ccd-camera

    NASA Astrophysics Data System (ADS)

    Bian, Yuxuan; Zhao, Chunsheng; Tao, Jiangchuan; Kuang, Ye; Zhao, Gang

    2016-04-01

    Aerosol scattering phase function is a measure of the light intensity scattered from particles as a function of scattering angles. It's important for understanding the aerosol climate effects and remote sensing inversion analysis. In this study, a novel method to measure the ambient aerosol phase function is developed based on a dual charge-coupled device(ccd) camera laser detective system. An integrating nephelometer is used to correct the inversion result. The instrument was validated by both field and laboratory measurements of atmospheric aerosols. A Mie theory model was used with the measurements of particle number size distribution and mass concentration of black carbon to simulate the aerosol phase function for comparison with the values from the instrument. The comparison shows a great consistency.

  11. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  12. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    NASA Astrophysics Data System (ADS)

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  13. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  14. Post-volcanic stratospheric aerosol decay as measured by lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Fuller, W. H., Jr.; Swissler, T. J.

    1978-01-01

    The paper summarizes and discusses results of lidar observations, at Hampton (Virginia), of the stratospheric aerosol vertical distribution for a period of 22 months (October 1974 to July 1976) after the volcanic eruption of the Volcan de Fuego in Guatemala. Data are presented in terms of lidar scattering ratio, vertically integrated aerosol backscattering, layer structure and location, and rawinsonde temperature profiles as a function of time. The results reveal a sudden increase in the stratospheric aerosol content after the volcanic eruption as well as its subsequent decline. There exists a high degree of correlation between the integrated aerosol backscattering and the tropopause height such that as one decreases the other increases and vice versa. Rapid decay of the stratospheric aerosol is found to occur over the late winter to early spring period.

  15. Variation in daytime troposphereic aerosol via LIDAR and sunphotometer measurements in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F. Y.; Hee, W. S.; Hwee, S. L.; Abdullah, K.; Tiem, L. Y.; Matjafri, M. Z.; Lolli, S.; Holben, B.; Welton, E. J.

    2014-03-01

    Aerosol is one of the important factors that will influence the air quality, visibility, clouds, and precipitation processes in the troposphere. In this work, we investigated the variation of aerosol during daytime in Penang, Malaysia in certain days within July 2013. Vertical LIDAR scattering ratio and backscattering profiles, and columnar optical properties (optical depth, Angström exponent) of aerosols were measured using Raymetrics LIDAR and a CIMEL sunphotometer respectively. Specifically, we have determined the daytime variation of intensity and distribution level of aerosol, as well as the planetary boundary layer (PBL) and cloud classification. Subsequently, the data of columnar aerosol optical depth (AOD) and size distribution in the atmospheric were used to quantify the properties of aerosol variation during daytime over Penang, Malaysia.

  16. Aerosol Composition and Variability in the San Joaquin Valley Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Crumeyrolle, S.; Ziemba, L. D.; Pusede, S. E.; Nowak, J. B.; Burton, S. P.; Chen, G.; Cohen, R. C.; Duffey, K.; Ferrare, R. A.; Hostetler, C. A.; Martin, R.; Moore, R.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    The composition of aerosol in the San Joaquin Valley (central California) is unique in comparison to most of the United States; dominated by ammonia nitrate as a result of high gas-phase precursor emissions. Remote sensing aerosol measurements in this region are hindered during the winter by the existence of a very shallow boundary layer (measured at less than 500 ft in many cases) and frequent fog events. The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the San Joaquin Valley was performed during ten flights in January and February 2013. Nearly identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Simultaneous sampling of aerosol properties was also performed at ground sites throughout the valley and from the NASA airborne high spectral-resolution lidar (HSRL-2). Measured aerosol mass was composed primarily of ammonium nitrate (campaign average of 62%) and water-soluble organics (32%). During most of the DISCOVER-AQ flights, the aerosol was primarily constrained to the very shallow boundary layer with a few cases of lofted layers towards the end of the campaign. The first five flights (over a seven day period) were performed during a period of increasing aerosol loading (aerosol optical depths of 0.04 to 0.08) due to an absence of wet scavenging. A concurrent increase in aerosol size during the week suggests an increase in aerosol age. After a period of heavy rainfall, a second set of five flights was flown over eight days. Aerosol loading was again low at the beginning (aerosol optical depths of 0.033) and increased during this period. Differences were measured between the two periods

  17. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  18. Post-Pinatubo`s aerosols: Comparison between balloon and satellite solar occultation measurements

    SciTech Connect

    Brogniez, C.; Lenoble, J.; Herman, M.

    1995-12-31

    The Stratospheric Aerosol and Gas Experiment II (SAGE II), that was launched in October 1984, has monitored the stratospheric aerosol layer after the Pinatubo`s eruption. Two flights of the balloon-borne experiment RADIBAL (RADIometre BALlon) were performed in June 1992 and May 1993 in coincidence with SAGE II events. Because of the large aerosol loading, the inversion of the balloon measurements (consisting in radiance and polarization diagrams) was impracticable. A code taking into account the multiple scatterings has then been used to calculate theoretical diagrams for an aerosol model deduced from SAGE II data. The obtained diagrams have been compared satisfactorily to the experimental ones.

  19. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  20. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  1. New capabilities for space-based cloud and aerosols measurements: The Cloud-Aerosol Transport System (CATS)

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Palm, S. P.; Hart, W. D.; Nowottnick, E. P.; Vaughan, M.; Rodier, S. D.; Colarco, P. R.; da Silva, A.; Buchard-Marchant, V.

    2013-12-01

    Current uncertainties in cloud and aerosol properties limit our ability to accurately model the Earth's climate system and predict climate change. These limitations are due primarily to difficulties in adequately measuring aerosols and clouds on a global scale. NASA's A-Train satellites provide an unprecedented opportunity to address these uncertainties. In particular, the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations (CALIPSO) satellite provides vertical profiles of cloud and aerosol properties. The CALIOP lidar onboard CALIPSO has reached its seventh year of operation, well past its expected lifetime. The ATLID lidar on EarthCARE is not expected to launch until 2016 or later. If the CALIOP lidar fails before a new mission is operational, there will be a gap in global lidar measurements. The Cloud-Aerosol Transport System (CATS), built at NASA Goddard Space Flight Center as a payload for the International Space Station (ISS), is set to launch in the summer of 2014. CATS is an elastic backscatter lidar with three wavelengths (1064, 532, 355 nm) and HSRL capability at 532 nm. Depolarization measurements will be made at all three wavelengths. The ISS orbit is a 51 degree inclination orbit at an altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three day repeat cycle. Thus, science applications of CATS include cloud and aerosol climate studies, air quality monitoring, and smoke/volcanic plume tracking. The primary science objectives of CATS include: continuing the CALIPSO aerosol and cloud vertical profile data record, providing near real time data to support operational applications such as air quality modeling, and advancing technology in support of future mission development using the HSRL channel. Furthermore, the vertical profiles of cloud and aerosol properties provided by CATS will complement current and future passive satellite

  2. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  3. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. PMID:26257345

  4. Effects fo sulfuric acid aerosol on respiratory mechanics and mucociliary particle clearance in healthy and asthmatic adults

    SciTech Connect

    Leikauf, G.D.

    1981-01-01

    The effects of submicrometer sulfuric acid (H/sub 2/SO/sub 4/) aerosol on human pulmonary physiology were investigated. Eighteen healthy and 10 asthmatic subjects inhaled H/sub 2/SO/sub 4/ via nasal mask for 1 hour at concentrations of 0, 100, 300 and 1000 ..mu..g/m/sup 3/ in a random sequence. The aerosol size (0.5 ..mu..m) and lower exposure level (100 ..mu..g/m/sup 3/) were selected to simulate peak ambient conditions, while the upper exposure concentration (1000 ..mu..g/m/sup 3/) is comparable to the current occupational limit for chronic exposure. Bronchial mucociliary clearance was markedly altered in all but one of the healthy subjects following one or more of the H/sub 2/SO/sub 4/ inhalations. The mucus was tagged by having each subject inhale either a 7.6 or 4.2 ..mu..m radiolabeled Fe/sub 2/O/sub 3/ aerosol. Exposure to 1000 ..mu..g/m/sup 3/ H/sub 2/SO/sub 4/ produced a delay in clearance which lasted longer in the group of eight inhaling the smaller 4.2 ..mu..m Fe/sub 2/O/sub 3/ aerosol than in the group of ten inhaling 7.6 ..mu..m Fe/sub 2/O/sub 3/. At 100 ..mu..g/m/sup 3/, the groups differed to a greater extent with clearance of the more centrally deposited larger aerosol being stimulated and that of the distally deposited smaller aerosol being transiently inhibited. Tracheal clearance remained unchanged in both groups. These findings, along with calculations of the various aerosols' deposition patterns, indicate that H/sub 2/SO/sub 4/ exerted a greater effect in the distal airways than in the proximal airways. Slight changes in ventilatory mechanics were noted in the asthmatic subjects following the 1000 ..mu..g/m/sup 3/ H/sub 2/SO/sub 4/ exposure, an effect not observed in the healthy subjects. However, the results obtained in the asthmatic group for tests of mucociliary clearance failed to reach significance, possible due to the large variability of such measurements in groups with respiratory disease.

  5. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  6. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  7. Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate.

    PubMed

    Badger, Claire L; Griffiths, Paul T; George, Ingrid; Abbatt, Jonathan P D; Cox, R Anthony

    2006-06-01

    The kinetics of reactive uptake of N2O5 on submicron aerosol particles containing humic acid and ammonium sulfate has been investigated as a function of relative humidity (RH) and aerosol composition using a laminar flow reactor coupled with a differential mobility analyzer (DMA) to characterize the aerosol. For single-component humic acid aerosol the uptake coefficient, gamma, was found to increase from 2 to 9 x 10(-4) over the range 25-75% RH. These values are 1-2 orders of magnitude below those typically observed for single-component sulfate aerosols (Phys. Chem. Chem. Phys. 2003, 5, 3453-3463;(1) Atmos. Environ. 2000, 34, 2131-2159(2)). For the mixed aerosols, gamma was found to decrease with increasing humic acid mass fraction and increase with increasing RH. For aerosols containing only 6% humic acid by dry mass, a decrease in reactivity of more than a factor of 2 was observed compared with the case for single-component ammonium sulfate. The concentration of liquid water in the aerosol droplets was calculated using the aerosol inorganic model (for the ammonium sulfate component) and a new combined FTIR-DMA system (for the humic acid component). Analysis of the uptake coefficients using the water concentration data shows that the change in reactivity cannot be explained by the change in water content alone. We suggest that, due to its surfactant properties, the main effect of the humic acid is to reduce the mass accommodation coefficient for N2O5 at the aerosol particle surface. This has implications for the use of particle hygroscopicity data for predictions of the rate of N2O5 hydrolysis. PMID:16722713

  8. Advanced high quality aerosol data: novel results from the EUSAAR in situ measurement network

    NASA Astrophysics Data System (ADS)

    Laj, P.; Philippin, S.; Putaud, J.-P.; Wiedensohler, A.; de Leeuw, G.; Fjaeraa, A. M.; Platt, U.; Baltensperger, U.; Fiebig, M.

    2009-04-01

    The EU-funded project EUSAAR (EUropean Supersites for Atmospheric Aerosol Research) aims at integrating measurements of atmospheric aerosol properties from a distributed network of 20 high-quality European ground-based stations. The objective is to ensure harmonization, validation and data diffusion of current measurements of particle optical, physical and chemical properties which are critical parameters for quantifying the key processes and the impact of aerosols on climate and air quality. We will present and discuss the results and highlights of the activities and achievements during the first 3 years of the project during which EUSAAR has contributed to improving the comparability of measurements for data users and to adopting best practices in aerosol monitoring procedures, and has started providing high quality aerosol data much needed in the atmospheric research community from the most advanced monitoring stations currently operational in Europe.

  9. SAGE II Measurements of Stratospheric Aerosol Properties at Non-Volcanic Levels

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Burton, Sharon P.; Luo, Bei-Ping; Peter, Thomas

    2008-01-01

    Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 during due to the lack of sensitivity to particles with radii less than 100 nm.

  10. Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements

    EPA Science Inventory

    In a region heavily influenced by anthropogenic and biogenic atmospheric emissions, recent field measurements have attributed one third of urban organic aerosol by mass to isoprene epoxydiols (IEPOX). These aerosols arise from the gas phase oxidation of isoprene, the formation of...

  11. Comparison of Predicted and Measured 2 Micron Aerosol Backscatter from the 1998 ACLAIM Flight Tests

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Hannon, Stephen M.; Bogue, Rodney K.

    1999-01-01

    The 1998 Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) flight tests were conducted aboard a well-instrumented research aircraft. This paper presents comparisons of 2 micrometer aerosol backscatter coefficient predictions from aerosol sampling data and mie scattering codes with those produced by the ACLAIM instrument.

  12. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  13. Fungal contribution to size-segregated aerosol measured through biomarkers

    NASA Astrophysics Data System (ADS)

    Di Filippo, Patrizia; Pomata, Donatella; Riccardi, Carmela; Buiarelli, Francesca; Perrino, Cinzia

    2013-01-01

    Fungal spores are the dominant biological component of air. Although ubiquitous in outdoor air, they are scarcely measured due to the inadequacy of measurement methods. The use of biomarkers as tools for the determination of fungal contribution to bioaerosol has often been suggested, and ergosterol, arabitol and mannitol have been associated to fungal spores as tracers. In the present paper, the fungal component of aerosol was studied at suburban/rural and at urban sites. Ergosterol, arabitol, and mannitol contents in airborne particulate matter, even at different sizes, were determined. Literature conversion factors and calculated conversion factors correlating ergosterol, arabitol, and mannitol masses to fungi mass were applied and compared to each other. The obtained fungal spore concentrations were different depending on the marker utilized both with the conversion factors found in literature and the calculated ones. Size-segregated marker distribution suggested different sources for the three tracers indicating ergosterol as the only reliable biomarker at our latitudes. The fungal spore concentrations were higher at the suburban/rural location and respectively inversely and directly proportional to temperature and relative humidity.

  14. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  15. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  16. The NH4--NO3--Cl--SO42--H2O Aerosol System and its Gas Phase Precursors at a Rural Site in the Amazon Basin: How Relevant are Mineral Cations and Soluble Organic Acids?

    NASA Astrophysics Data System (ADS)

    Helas, G.; Trebs, I.; Metzger, S.; Meixner, F. X.; Hoffer, A.; Moura, M. A.; da Silva, R. S.; Rudich, Y.; Falkovich, A.; Artaxo, P.; Slanina, J.; Andreae, M. O.

    2004-12-01

    We performed real-time measurements of ammonia (NH3), nitric acid (HNO3), hydrochloric acid (HCl), sulfur dioxide (SO2) and the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-) at a pasture site in the Amazon Basin (Rondônia, Brazil). The measurements were made during the closing of the dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions) (12 Sep. to 14 Nov. 2002, LBA-SMOCC*), using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC). Real-time data were combined with measurements of mineral cations (K+ , Ca2+ , Mg2+) and low-molecular weight (LMW) polar organic acids on 12-, 24- and 48-hours integrated filter samples. The contribution of inorganic species to the fine particulate mass (Dp < 2.5 um)was frequently below 20 % by mass, indicating the preponderance of organic matter. The high abundance of NH3 at the sampling site substantially influenced gas/aerosol partitioning processes, being responsible for complete acid neutralization through the aerosol phase forming aerosol NH4+. Balances of aerosol fine mode inorganic ionic charges indicated the role of dissociated low-molecular weight (LMW) polar organic acids, which were apparently neutralized by excess NH3. The measured concentration products of NH3 x HNO3 and NH3 x HCl persistently remained below the theoretical equilibrium dissociation constants of the NH3/HNO3/NH4NO3 and NH3/HCl/NH4Cl systems during daytime (RH < 90 %). The application of thermodynamic equilibrium models (EQMs), namely EQSAM, ISORROPIA, GEFMN and SCAPE2 indicated that balancing of aerosol NO3-, Cl- and SO42- preferentially proceeded via mineral cations (particularly pyrogenic K+) during daytime. At nighttime (RH > 90 %) NH4NO3 and NH4Cl were predicted to be formed in the aqueous aerosol phase. Cl- was largely driven out of the aerosol phase by reaction of KCl with HNO3 and H2SO4. As shown by an

  17. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

    PubMed

    Freedman, Miriam A; Hasenkopf, Christa A; Beaver, Melinda R; Tolbert, Margaret A

    2009-12-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed. PMID:19877658

  18. Effect of fatty acid coatings on ozone uptake to deliquesced KI/NaCl aerosol particles

    NASA Astrophysics Data System (ADS)

    Ammann, M.; Rouvière, A.

    2009-12-01

    Phase transfer kinetics of gas phase oxidants may limit oxidative aging of aerosol particles. The aim of this work is to study the role of amphiphilic organic aerosol constituents on the kinetics of phase transfer of gaseous species to the bulk aqueous phase. The effect of (C9-C20) fatty acid surfactants on the phase transfer of ozone to deliquesced potassium iodide and sodium chloride have been investigated. Some other experiments of ozone uptake have been performed with different mixtures and proportions of fatty acids. The kinetic experiments were performed in an aerosol flow tube at room temperature and atmospheric pressure. To obtain deliquesced inorganic particles, the relative humidity was adjusted in the range of 75% to 80%. It is shown that the fatty acids in monolayer quantities may substantially inhibit the phase transfer of ozone to deliquesced particles. The results showed that especially the C15-C20 limit the mass transfer of ozone to the aqueous phase, whereby the magnitude of this effect was following the monolayer properties of the fatty acids. It was also possible to determine a resistance of such films to the transfer of ozone to the bulk phase.

  19. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  20. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  1. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  2. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  3. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  4. Direct measurements of mass-specific optical cross sections of single-component aerosol mixtures.

    PubMed

    Radney, James G; Ma, Xiaofei; Gillis, Keith A; Zachariah, Michael R; Hodges, Joseph T; Zangmeister, Christopher D

    2013-09-01

    The optical properties of atmospheric aerosols vary widely, being dependent upon particle composition, morphology, and mixing state. This diversity and complexity of aerosols motivates measurement techniques that can discriminate and quantify a variety of single- and multicomponent aerosols that are both internally and externally mixed. Here, we present a new combination of techniques to directly measure the mass-specific extinction and absorption cross sections of laboratory-generated aerosols that are relevant to atmospheric studies. Our approach employs a tandem differential mobility analyzer, an aerosol particle mass analyzer, cavity ring-down and photoacoustic spectrometers, and a condensation particle counter. This suite of instruments enables measurement of aerosol particle size, mass, extinction and absorption coefficients, and aerosol number density, respectively. Taken together, these observables yield the mass-specific extinction and absorption cross sections without the need to model particle morphology or account for sample collection artifacts. Here we demonstrate the technique in a set of case studies which involve complete separation of aerosol by charge, separation of an external mixture by mass, and discrimination between particle types by effective density and single-scattering albedo. PMID:23875772

  5. Aerosol Daytime Variations over North and South America Derived from Multiyear AERONET Measurements

    NASA Technical Reports Server (NTRS)

    Zhang, Yan; Yu, Hongbin; Eck, Tom F.; Smirnov, Alexander; Chin, Mian; Remer, Lorraine A.; Bian, Huisheng; Tan, Qian; Levy, Roberrt; Holben, Brent N.

    2012-01-01

    This study analyzes the daytime variation of aerosol with seasonal distinction by using multi-year measurements from 54 of the Aerosol Robotic Network (AERONET) sites over North America, South America, and islands in surrounding oceans. The analysis shows a wide range of daily variability of aerosol optical depth (AOO) and Angstrom exponent depending on location and season. Possible reasons for daytime variations are given. The largest AOO daytime variation range at 440 nm, up to 75%, occurs in Mexico City, with maximum AOO in the afternoon. Large AOO daily variations are also observed in the polluted mid-Atlantic U.S. and U.S. West Coast with maximum AOO occurring in the afternoon in the mid-Atlantic U.S., but in the morning in the West Coast. In South American sites during the biomass burning season (August to October), maximum AOO generally occurs in the afternoon. But the daytime variation becomes smaller when sites are influenced more by long-range transported smoke than by local burning. Islands show minimum AOO in the morning and maximum AOO in the afternoon. The diverse patterns of aerosol daytime variation suggest that geostationary satellite measurements would be invaluable for characterizing aerosol temporal variations on regional and continental scales. In particular, simultaneous measurements of aerosols and aerosol precursors from a geostationary satellite would greatly aid in understanding the evolution of aerosol as determined by emissions, chemical transformations, and transport processes.

  6. Aerosol measurements in the winter/spring Antarctic stratosphere. I - Correlative measurements with ozone. II - Impact on polar stratospheric cloud theories

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Aerosol measurements collected from August 25-November 3, 1986 at McMurdo Station using balloon-borne optical particle counters are examined in order to study the relationship between aerosol and ozone distribution and the formation of polar stratospheric clouds (PSCs). Ozone, aerosol, and condensation nuclei profiles, and pressure, temperature, and humidity measurements are analyzed. It is observed that the height of the stratospheric sulfate layer decreases over the period of measurement suggesting that upwelling in the votex is not important in the zone depletion process. Three theories on PSC formation are described, and the effects of the aerosol measurements on the theories are considered. The three theories are: (1) the original theory of water vapor pressure over a solution of H2SO4 of Steele et al. (1983) and Hamill and Mc Master (1984); (2) the nitric acid theory of PSCs of Toon et al. (1986) and Hamill et al. (1986); and (3) the quasi-cirrus cloud theory of Heymsfield (1986).

  7. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Rozanov, Vladimir; Hommel, Rene; Burrows, John

    2016-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite, from August 2002 to April 2012. A retrieval approach to obtain parameters of the stratospheric aerosol particle size distribution will be reported along with the sensitivity studies and first results.

  8. The assessment of climatology of absorbing aerosol field with integration of aerosol-climate model, and ground-based and satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Wang, C.; Mahowald, N. M.; Rigby, M. L.; Martins, J.

    2009-12-01

    Absorbing aerosols play important roles in the Earth’s radiation budget and atmospheric circulation by absorbing sunlight and heating the atmosphere while cooling the surface. The strength of such effects depends on microphysical processes in the lifecycle of absorbing aerosols and their emissions to the atmosphere. Even though the knowledge of aerosol controlling processes and the techniques measuring aerosol properties have been greatly advanced, there are still significant gaps between model results and measurement data. The goal of this study is to minimize the model-observation discrepancy and to assess global 3-D absorbing aerosol fields. To achieve this goal, we investigate the errors related to aerosol models and measurements, and optimize the emissions of anthropogenic absorbing aerosols (BC) used in the models. In this study we first derive the aerosol optical depth (AOD) and absorbing aerosol optical depth (AAOD) of anthropogenic aerosols using the 3-D interactive aerosol-climate model [Kim et al., 2008] developed based on NCAR CAM3, running in an aerosol-transport-model (ATM) driven by NCEP/NCAR reanalysis data (2001~2003). Aerosol transformation in the atmosphere is fully considered in this model. We also derived the AOD and AAOD of dust aerosols based on the climatology from the Model of Atmospheric Transport and Chemistry (MATCH) driven by the NCEP/NCAR reanalysis data [Mahowald et al., 1997; Kistler et al., 2001]. In addition, the climatology (10-year mean) of the CAM3 sea salt model (Mahowald et al., 2006) is used to calculate the AOD of sea salt aerosols. An inverse modeling technique (Kalman filtering) is used to optimize the emissions of BC aerosols by minimizing the model-observation discrepancy of AAOD, and the emissions of anthropogenic organic carbon (OC) aerosols and SO2 by minimizing the model-observation discrepancy of AOD. Initial estimates of carbonaceous aerosol emission due to fossil fuel are taken from the MIT EPPA model and Bond

  9. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  10. The Ny-Alesund aerosol and ozone measurements intercomparison campaign 1997/1998 (NAOMI-1998)

    NASA Technical Reports Server (NTRS)

    Neuber, R.; Beyerle, G.; Beninga, I.; VonderGathen, P.; Rairoux, P.; Schrems, O.; Wahl, P.; Gross, M.; McGee, Th.; Iwasaka, Y.; Fujiwara, M.; Shibata, T.; Klein, U.; Steinbrecht, W.

    1998-01-01

    An intercomparison campaign for Lidar measurements of stratospheric ozone and aerosol has been conducted at the Primary Station of the Network for the Detection of Stratospheric Change (NDSC) in Ny-Alesund/Spitsbergen during January-February 1998. In addition to local instrumentation, the NDSC mobile ozone lidar from NASA/GSFC and the mobile aerosol lidar from Alfred Wegener Institute (AWI) participated. The aim is the validation of stratospheric ozone and aerosol profile measurements according to NDSC guidelines. This paper briefly presents the employed instruments and outlines the campaign. Results of the blind intercomparison of ozone profiles are given in a companion paper and temperature measurements are described in this issue.

  11. Aerosol-chamber study of the α-pinene/O 3 reaction: influence of particle acidity on aerosol yields and products

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Böge, Olaf; Gnauk, Thomas; Herrmann, Hartmut

    α-Pinene ozonolysis was carried out in the presence of ammonium sulfate or sulfuric acid seed particles in a 9 m 3 Teflon chamber at the mixing ratios of 100 ppbv for α-pinene and about 70 ppbv for ozone. The evolution of size distribution was measured by means of a differential mobility particle sizer (DMPS). The resulting secondary organic aerosol (SOA) was sampled by a denuder/quartz fiber filter combination for the determination of the total organic carbon concentration (TOC) in the particle phase, using a thermographic method and by a denuder/PTFE filter combination for the analysis of individual chemical species in the particle phase using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). cis-Pinic acid ( m/ z 185) and another species tentatively identified at m/ z 171 and 199 were the major particle phase species for both seed particles although the product yields were different, indicating the influence of seed particle acidity. A thermographic method for the determination of TOC showed an increase of particle phase organics by 40% for the experiments with higher acidity. CE-ESI-MS analysis showed a large increase in the concentration of compounds with Mw>300 from the experiments with sulfuric acid seed particles. These results suggest that the seed particle acidity enhances the yield of SOA and plays an important role in the formation of larger molecules in the particle phase. Our results from direct particle phase chemical analysis suggest for the first time that condensation of smaller organics takes place by polymerization or aldol condensation following the formation of aldehydes, such as pinonaldehyde from the terpene ozonolysis.

  12. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    DOE PAGESBeta

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-10

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. Themore » derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  13. Improvement on lidar data processing for stratospheric aerosol measurements.

    PubMed

    Likura, Y; Sugimoto, N; Sasano, Y; Shimzu, H

    1987-12-15

    For lidar measurements of stratospheric aerosols; signal-induced noise (SIN) from a photomultiplier (PMT) has been a problem of particular interest. In this paper, we succeed in simulating lidar signals affected by the PMT, after finding a long tail with a decay time of ~200 micros in the PMT's response to an impulselike light exposure. The PMT studied was an RCA 8852. Computer simulation quantitatively revealed that the SIN caused by the delayed response became greater than the real signal at high altitudes. Based on the results of simulation, a proposal was made to find a practical method for identifying and removing the SIN from the actual lidar signals. In addition, an improved method for the lidar signal calibration was proposed by taking into account the systematic noise component, including background light as well as SIN, in formulating the clean air calibration (the matching method). Validity of the proposed methods was demonstrated by using them both with an actual lidar signal and a simulated lidar signal with SIN. PMID:20523520

  14. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  15. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    NASA Astrophysics Data System (ADS)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  16. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414