Science.gov

Sample records for acid aerosol particles

  1. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  2. Fatty acids on continental sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Vaida, V.; Tuck, A. F.; Niemi, J. V.; Kupiainen, K.; Kulmala, M.; VehkamäKi, H.

    2005-03-01

    Surface analyses of atmospheric aerosols from different continental sources, such as forest fires and coal and straw burning, show that organic surfactants are found on such aerosols. The predominant organic species detected by time-of-flight secondary ion mass spectrometry on the sulfate aerosols are fatty acids of different carbon chain length up to the C32 acid. These observations are consistent with literature accounts of functional group analysis of bulk samples, but this is the first direct evidence of fatty acid films on the surface of sulfate aerosols. Surface analysis leads to the conclusion that fatty acid films on continental aerosols may be more common than has been previously suggested.

  3. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  4. A case study of urban particle acidity and its influence on secondary organic aerosol.

    PubMed

    Zhang, Qi; Jimenez, Jose L; Worsnop, Douglas R; Canagaratna, Manjula

    2007-05-01

    Size-resolved indicators of aerosol acidity, including H+ ion concentrations (H+Aer) and the ratio of stoichiometric neutralization are evaluated in submicrometer aerosols using highly time-resolved aerosol mass spectrometer (AMS) data from Pittsburgh. The pH and ionic strength within the aqueous particle phase are also estimated using the Aerosol Inorganics Model (AIM). Different mechanisms that contribute to the presence of acidic particles in Pittsburgh are discussed. The largest H+Aer loadings and lowest levels of stoichiometric neutralization were detected when PM1 loadings were high and dominated by SO4(2-). The average size distribution of H+Aer loading shows an accumulation mode at Dva approximately 600 nm and an enhanced smaller mode that centers at Dva approximately 200 nm and tails into smaller sizes. The acidity in the accumulation mode particles suggests that there is generally not enough gas-phase NH3 available on a regional scale to completely neutralize sulfate in Pittsburgh. The lack of stoichiometric neutralization in the 200 nm mode particles is likely caused by the relatively slow mixing of gas-phase NH3 into SO2-rich plumes containing younger particles. We examined the influence of particle acidity on secondary organic aerosol (SOA) formation by comparing the mass concentrations and size distributions of oxygenated organic aerosol (00A--surrogate for SOA in Pittsburgh) during periods when particles are, on average, acidic to those when particles are bulk neutralized. The average mass concentration of ODA during the acidic periods (3.1 +/- 1.7 microg m(-3)) is higher than that during the neutralized periods (2.5 +/- 1.3 microg m(-3)). Possible reasons for this enhancement include increased condensation of SOA species, acid-catalyzed SOA formation, and/or differences in air mass transport and history. However, even if the entire enhancement (approximately 0.6 microg m(-3)) can be attributed to acid catalysis, the upperbound increase of SOA mass

  5. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  6. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

    PubMed

    Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj; Kamens, Richard M

    2003-09-01

    Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers

  7. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  8. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  9. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles.

    PubMed

    Ault, Andrew P; Guasco, Timothy L; Baltrusaitis, Jonas; Ryder, Olivia S; Trueblood, Jonathan V; Collins, Douglas B; Ruppel, Matthew J; Cuadra-Rodriguez, Luis A; Prather, Kimberly A; Grassian, Vicki H

    2014-08-01

    Current climate and atmospheric chemistry models assume that all sea spray particles react as if they are pure NaCl. However, recent studies of sea spray aerosol particles have shown that distinct particle types exist (including sea salt, organic carbon, and biological particles) as well as mixtures of these and, within each particle type, there is a range of single-particle chemical compositions. Because of these differences, individual particles should display a range of reactivities with trace atmospheric gases. Herein, to address this, we study the composition of individual sea spray aerosol particles after heterogeneous reaction with nitric acid. As expected, a replacement reaction of chloride with nitrate is observed; however, there is a large range of reactivities spanning from no reaction to complete reaction between and within individual sea spray aerosol particles. These data clearly support the need for laboratory studies of individual, environmentally relevant particles to improve our fundamental understanding as to the properties that determine reactivity.

  10. Acidic species and chloride depletion in coarse aerosol particles in the US east coast.

    PubMed

    Zhao, Yunliang; Gao, Yuan

    2008-12-15

    To investigate the interactions of water-soluble acidic species associated with coarse mode aerosol particles (1.8-10 microm) and chlorine depletion, ten sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in Newark, New Jersey on the U.S. east coast. The samples were grouped into two categories according to the air-mass back trajectories and mass ratios of sodium to magnesium and calcium: Group I was primarily impacted by marine air mass and Group II was dominated by the continental air mass. In Group I, the concentrations of coarse mode nitrate and chloride depletion showed a strong correlation (R2=0.88). Without considering other cations, nitrate was found to account for all of the chloride depletion in coarse particles for most samples. The association of coarse mode nitrate with sea-salt particles is favored when the mass ratio of sodium to calcium is approximately equal to or greater than unity. Excess sulfate accounts for a maximum of 33% of chloride depletion in the coarse particles. Regarding chloride depletion in the different particle sizes, excess nitrate and sulfate account for 89% of the chloride depletion in the particle size range of 1.8-3.2 microm in the sample from July 13-14; all of the determined dicarboxylic acids and mono-carboxylic acids cannot compensate for the rest of the chloride depletion. In Group II, high percentages of chloride depletion were not observed. With nitrate being dominant in chlorine depletion observed at this location, N-containing species from pollution emissions may have profound impact on atmospheric composition through altering chlorine chemistry in this region. PMID:18973925

  11. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  12. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  13. Gas/particle partitioning behavior of perfluorocarboxylic acids with terrestrial aerosols.

    PubMed

    Arp, Hans Peter H; Goss, Kai-Uwe

    2009-11-15

    Experimentally determined gas/particle partitioning constants, K(ip), using inverse gas chromatography (IGC) are presented for perfluorocarboxylic acids (PFCAs), covering a diverse set of terrestrial aerosols over an ambient range of relative humidity (RH) and temperature. The results are compared to estimated K(ip) values using a recently developed model that has been validated for diverse neutral and ionizable organic compounds. The modeling results consistently underestimate the experimental results. This is likely due to additional partition mechanisms unique for surfactants not being accounted for in the model, namely aggregate formation and water surface adsorption. These processes likely also biased the IGC K(ip) measurements compared to ambient PFCA concentrations. Nevertheless, both the experimental and modeling results indicate that partitioning to terrestrial particles in ambient atmospheres is negligible, though sorption to condensed water can be substantial. This favors rain sequestration as a more important atmospheric removal mechanism than dry particle sequestration. PFCAs found on particle filters during ambient sampling are thus accountable to vapor-phase PFCAs or aqueous-phase PFCAs sorbing directly to the filters, or the trapping of perfluorocarboxylate-salt particles. Further work on understanding the partitioning and speciation of PFCAs in atmospheric water droplets is needed to further quantify and understand their atmospheric behavior. To aid in this, a general RH dependent K(ip) model for surfactants is presented.

  14. Ozonolysis of oleic acid adsorbed to polar and nonpolar aerosol particles.

    PubMed

    Rosen, Elias P; Garland, Eva R; Baer, Tomas

    2008-10-16

    Single-particle kinetic studies of the reaction between oleic acid and O 3 have been conducted on two different types of core particles: polystyrene latex (PSL) and silica. Oleic acid was found to adsorb to both particle types in multilayer islands that resulted in an adsorbed layer of a total volume estimated to be less than one monolayer. The rate of the surface reaction between surface-adsorbed oleic acid and O 3 has been shown for the first time to be influenced by the composition of the aerosol substrate in a mixed organic/inorganic particle. A Langmuir-Hinshelwood mechanism was applied to the observed dependence of the pseudo-first-order rate constant with [O 3], and the resulting fit parameters for the ozone partition coefficient ( K O 3 ) and maximum first order rate constant ( k 1,max ) suggest that the reaction proceeded faster on the less polar PSL core at lower [O 3] due to the increased residence time of O 3 on the PSL surface, but the reaction was ultimately more efficient on the silica surface at high [O 3]. Values for the uptake coefficient, gamma oleic , for reaction of oleic acid on PSL spheres decrease from 2.5 x 10 (-5) to 1 x 10 (-5) with increasing [O 3] from 4 to 25 ppm and overlap at high [O 3] with the estimated values for gamma oleic on silica, which decrease from 1.6 x 10 (-5) to 1.3 x 10 (-5). The relationship between gamma oleic and the more common expression for gamma O 3 is discussed.

  15. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  16. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles.

    PubMed

    Ziemann, Paul J

    2005-01-01

    Reactions of O3 with pure and mixed oleic acid particles and bulk solutions were investigated using a thermal desorption particle beam mass spectrometer. The results provide information on the effect of particle matrix on reaction products, mechanisms, and kinetics. The major aerosol products are alpha-acyloxyalkyl hydroperoxides, secondary ozonides, alpha-alkoxyalkyl hydroperoxides, and oxocarboxylic acids formed primarily through reactions of Criegee intermediates with products or with particle matrix compounds. For example, it is estimated that for the reaction of pure oleic acid particles with O3 the aerosol products consist of approximately 68% organic peroxides, 28% 9-oxononanoic acid, and 4% azelaic acid. Although the reaction rate of pure oleic acid particles corresponds to an atmospheric lifetime of minutes, reactions in liquid/solid particle matrices can be orders of magnitude slower. The peroxide products are relatively stable when exposed to matrices typical of atmospheric particles, indicating that the lifetimes of these compounds in the atmosphere may be long enough to allow for long-range transport.

  17. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  18. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3 (0.1 to 56 pptv), and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively

  19. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2014-05-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3, and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on

  20. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  1. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed.

  2. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  3. Sulfur speciation in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Neubauer, Kenneth R.; Sum, Stephen T.; Johnston, Murray V.; Wexler, Anthony S.

    1996-08-01

    Sulfur aerosols play an important role in acid deposition and the Earth's energy balance. Important species in these aerosols include methanesulfonates, hydroxymethanesulfonates, sulfates, and sulfites. Because the relative amounts of these species indicate different sources and atmospheric processes, it is important to distinguish them in single-aerosol particles. To accomplish this task, we use rapid single-particle mass spectrometry (RSMS), a technique that permits individual particles to be analyzed in an online mode. Each sulfur species produces a characteristic set of ions in the mass spectra. In simulated marine and urban aerosols the relative amounts of methanesulfonic acid (MSA) and sodium hydroxymethanesulfonate (NaHMSA) in a single particle can be determined from peak area ratios in the mass spectra. Improved quantitation is possible by application of the classification and regression tree (CART) algorithm to distinguish the mass spectra of particles having different compositions. Factors that influence speciation include particle size, morphology, and laser fluence.

  4. Observations of Sub-3 nm Particles and Sulfuric acid Concentrations during Aerosol Life Cycle Intensive Observation Period 2011 in Long Island, New York

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kanawade, V. P.; You, Y.; Hallar, A. G.; Mccubbin, I. B.; Chirokova, G.; Sedlacek, A. J.; Springston, S. R.; Wang, J.; Kuang, C.; Lee, Y.; McGraw, R. L.; Mikkila, J.; Lee, S.

    2012-12-01

    Atmospheric new particle formation (NPF) is an important source of aerosol particles. But the NPF processes are not well understood, in part because of our limited understanding of the formation of atmospheric sub-3 nm size aerosols and the limited number of simultaneous observations of particle size distributions and the aerosol nucleation precursors. During Aerosol Life Cycle Intensive Observation Period (July-August 2011) in Long Island, New York, we deployed a particle size magnifier (Airmodus A09) running at different working fluid saturation ratios and a TSI CPC3776 to extract the information of sub-3 nm particles formation. A scanning mobility particle spectrometer (SMPS), a chemical ionization mass spectrometer (CIMS), and a number of atmospheric trace gas analyzers were used to simultaneously measure aerosol size distributions, sulfuric acid, and other possible aerosol precursors, respectively. Our observation results show that sub-3 nm particles existed during both NPF and non-NPF events, indicating the formation of sub-3nm particle didn't always lead to NPF characterized by typical banana shaped aerosol size distributions measured by SMPS. However, sub-3 nm particles were much higher during NPF events. Sub-3 nm particles were well-correlated with sulfuric acid showing the same diurnal variations and noontime peaks, especially for NPF days. These results are consistent with laboratory studies showing that formation of sub-3 nm particles is very sensitive to sulfuric acid (than amines and ammonia) [Yu et al. GRL 2012]. HYSPLIT back trajectory analysis indicates that air masses from Great Lakes, containing more SO2, VOCs and secondary organics, may contribute to growth of sub-3 nm particles and NPF.

  5. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.

    PubMed

    Docherty, Kenneth S; Ziemann, Paul J

    2006-03-16

    The heterogeneous reaction of liquid oleic acid aerosol particles with NO3 radicals in the presence of NO2, N2O5, and O2 was investigated in an environmental chamber using a combination of on-line and off-line mass spectrometric techniques. The results indicate that the major reaction products, which are all carboxylic acids, consist of hydroxy nitrates, carbonyl nitrates, dinitrates, hydroxydinitrates, and possibly more highly nitrated products. The key intermediate in the reaction is the nitrooxyalkylperoxy radical, which is formed by the addition of NO3 to the carbon-carbon double bond and subsequent addition of O2. The nitrooxyalkylperoxy radicals undergo self-reactions to form hydroxy nitrates and carbonyl nitrates, and may also react with NO2 to form nitrooxy peroxynitrates. The latter compounds are unstable and decompose to carbonyl nitrates and dinitrates. It is noteworthy that in this reaction nitrooxyalkoxy radicals appear not to be formed, as indicated by the absence of the expected products of decomposition or isomerization of these species. This is different from gas-phase alkene-NO3 reactions, in which a large fraction of the products are formed through these pathways. The results may indicate that, for liquid organic aerosol particles in low NOx environments, the major products of the radical-initiated oxidation (including by OH radicals) of unsaturated and saturated organic compounds will be substituted forms of the parent compound rather than smaller decomposition products. These compounds will remain in the particle and can potentially enhance particle hygroscopicity and the ability of particles to act as cloud condensation nuclei. PMID:16526637

  6. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  7. On the factors governing the abundance of oxalic acid in tropospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusuess, C.; Brüggemann, E.; Gnauk, T.; Müller, K.; Herrmann, H.

    2010-12-01

    Oxalic acid is frequently observed as one of the most abundant single organic compounds in tropospheric particles. Its sources are commonly believed to be of secondary nature. In state-of-the-art multiphase chemistry models, different pathways exist, which can lead to oxalic acid as final product. Anthropogenic hydrocarbon emissions can be photochemically degraded to glyoxal and methyglyoxal, which - after partitioning into deliquescent particles or cloud droplets - are further oxidized via glyoxylic acid to oxalic acid [Herrmann et al., 2005]. A biogenic oxidation pathway starts with isoprene or monoterpene emissions and leads to glycolaldehyde and methylglyoxal via methacrolein and methylvinylketone, followed by aqueous phase oxalic acid formation [Lim et al., 2005]. As suggested by Warneck, 2003, a marine pathway might exist, starting from marine ethene emissions and leading via glycolaldehyde to oxalic acid. The aim of this study was to elucidate from field measurements the importance of each of these pathways. To this aim, oxalic acid concentrations from 144 size-resolved particle samples (5-stage Berner impactor) from different continental and coastal European sampling sites were statistically analyzed using principal component analysis (PCA). Hourly back trajectories were calculated for each sampling interval using the HYSPLIT model [Draxler and Rolph, 2003] and combined in a novel way with global land cover data to yield “residence times” of the sampled air masses above urban, agricultural, forested, and oceanic areas. These residence times served as quantitative proxies for different emission regimes (anthropogenic, biogenic, marine) in the statistical analysis. Additionally, meteorological parameters such as sunflux along the trajectories or mixing layer depth at the sampling site were retrieved from the HYSPLIT output. PCA of the continental dataset retrieved two factors that were connected to the oxalic acid concentrations. A first one showed high

  8. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  9. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  10. Photochemical Aging of Organic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Mang, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Secondary Organic Aerosol (SOA) particles are produced in the atmosphere as a result of oxidation of volatile organic compounds (VOC). Primary Organic Aerosol (POA) particles are directly emitted in the atmosphere by their sources. This research focuses on the mechanisms of direct photochemical processes taking place in model SOA and POA particles, the role of such processes in aging of organic aerosol particles, and the effect of photochemistry on particles' physicochemical properties. To address these questions, artificial SOA and POA particles are investigated with several laboratory-based approaches relying on cavity ring-down spectroscopy and mass-spectrometry. SOA particles generated by dark oxidation of d-Limonene, alpha-Pinene, and beta-Pinene by ozone are all found to absorb radiation in the tropospheric actinic window. The UV absorption photolyzes SOA constituents resulting in a release of small VOC molecules back in the gas-phase, and considerable change in SOA chemical composition. For terpenes featuring a terminal double bond, the main SOA photolysis products are invariably found to be formaldehyde and formic acid. Similar observations are obtained for products of ozonolysis of thin films of unsaturated fatty acids and self-assembled monolayers of unsaturated alkenes. For the case of fatty acids, a very detailed mechanism of ozonolysis and subsequent photolysis is proposed. The photolytic activity is primarily attributed to organic peroxides and aldehydes. These results convincingly demonstrate that photochemical processes occurring inside SOA and POA particles age the particles on time scales that are shorter than typical lifetimes of aerosol particles in the atmosphere.

  11. Laser-Assisted Analysis of Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Giffin, C. E.; Norris, D. D.; Friedlander, S. K.

    1985-01-01

    Proposed instrument makes rapid mass-spectrometric analyses of individual particles in aerosols. Each particle vaporized and ionized by intense laser pulse, which creates ions of minimum complexity. Ability to analyze single aerosol particles continuously makes technique suitable for detection of toxic aerosol particles on real-time basis and for identification of their sources.

  12. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  13. Sulfur speciation of single aerosol particles

    SciTech Connect

    Neubauer, K.R.; Sum, S.T.; Johnston, M.V.; Wexler, A.S.

    1995-12-31

    Sulfur enters the atmosphere as gaseous species emitted from both natural and anthropogenic sources. These species can undergo a variety of oxidation reactions that ultimately yield hexavalent sulfur aerosols. Since the final products play an important role in acid rain production and the earth`s energy balance, it is important to distinguish tetravalent and hexavalent sulfur aerosols, as well as differentiate those arising from natural and anthropogenic sources. To attain these goals the authors chose to examine five target compounds that are present in the atmosphere: sodium sulfate, ammonium sulfate, ammonium sulfite, methanesulfonic acid (MSA), and the sodium salt of hydroxymethanesulfonic acid (NaHMSA). Sodium sulfate is observed in oceanic aerosols, while both ammonium salts are observed over land. MSA is found only in the marine environment and originates solely from natural emissions, while HMSA is formed in urban hazes and primarily arises from anthropogenic sources. Thus, MSA and HMSA serve as tracers for distinguishing natural and anthropogenic sulfur emissions. To differentiate these compounds, the authors used Rapid Single-Particle Mass Spectrometry (RSMS), a method that allows single particles to be analyzed on-line and in real time. With RSMS, particles are drawn directly into the source region of a reflectron time-of-flight mass spectrometer where they are detected by light scattering of a continuous laser beam and then ablated by an excimer laser pulse. With this sequence of events, each mass spectrum results from a single laser pulse ablating a single particle.

  14. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  15. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  16. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  17. Glassy aerosols heterogeneously nucleate cirrus ice particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Murray, Benjamin J.; Dobbie, Steven; Cui, Zhiqiang; Al-Jumur, Sardar M. R. K.; Möhler, Ottmar; Schnaiter, Martin; Wagner, Robert; Benz, Stefan; Niemand, Monika; Saathoff, Harald; Ebert, Volker; Wagner, Steven; Kärcher, Bernd

    2010-05-01

    Ice clouds in the tropical tropopause layer (TTL, ~12-18 km, ~180-200 K) play a key role in dehydrating air entering the stratosphere. However, in-situ measurements show that air within these clouds is unexpectedly supersaturated(1); normally the growth of ice crystals rapidly quenches any supersaturation. A number of explanations for high in-cloud humidity have been put forward, but recent research suggests high humidity may be related to the low numbers of ice crystals found within these clouds(1). Low ice number densities can be produced through selective nucleation by a small subset of aerosol particles. This is inconsistent with homogeneous nucleation of ice in liquid aerosols. However, droplets rich in organic material, ubiquitous in the TTL, are known to become glassy (amorphous, non-crystalline solid) under TTL conditions(2,3). Here we show, using a large cloud simulation chamber, that glassy solution droplets nucleate ice heterogeneously at low supersaturations. Using a one-dimensional cirrus model we also show that nucleation by glassy aerosol in the TTL may explain low TTL ice number densities and high in-cloud humidity. Recent measurements of the composition of TTL cirrus residues are consistent with our findings(4). (1) Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atm. Chem. Phys. 9, 3505-3522 (2009). (2) Murray, B. J. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atm. Chem. Phys. 8, 5423-5433 (2008). (3) Zobrist, B., Marcolli, C., Pedernera, D. A. & Koop, T. Do atmospheric aerosols form glasses? Atm. Chem. Phys. 8, 5221-5244 (2008). (4) Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. & Herman, R. L. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10, 209-218 (2010).

  18. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  19. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    suggested that in NH4+ rich samples, NO3- and non-sea salt SO42- were almost entirely neutralized by NH4+. In NH4+ poor samples, in addition to NH4+ non-sea salt K+ played a role in acidity neutralization. These observations are unlike those reported for PM10 and total suspended particles (TSP) over other locations in India, where mineral aerosol species (specifically Ca2+) played an important role in neutralizing acidic species. Additionally, both during 2012 and 2013, the aerosol acidity showed a pronounced seasonality - the aerosol was alkaline or near-neutral during the winter and post-monsoon seasons, while during the pre-monsoon and monsoon seasons it was acidic.

  20. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  1. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  2. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  3. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  4. Standard aerosols for particle velocimeters

    NASA Technical Reports Server (NTRS)

    Deepark, A.; Ozarski, R.; Thomson, J. A. L.

    1976-01-01

    System consists of laser-scattering counter (LSC) and photographic system. Photographic system provides absolute method of measuring aerosol size-distribution independently of their light scattering properties. LSC comprises 1-mW He/Ne laser, input optics, collecting optics, photodetector, and signal-processing electronics.

  5. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  6. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  7. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols

  8. Particle size dependent response of aerosol counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions. The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the specific instrument was found. An enhanced detection efficiency for ultrafine hygroscopic sodium chloride aerosols was observed with water operated systems, an analogous trend was found for n-butanol operated systems with nonhygroscopic silver and tungsten oxide particles.

  9. The influence of meteoric smoke particles on stratospheric aerosol properties

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Brooke, James; Dhomse, Sandip; Plane, John; Feng, Wuhu; Neely, Ryan; Bardeen, Chuck; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin; Abraham, Luke

    2016-04-01

    The ablation of metors in the thermosphere and mesosphere introduces a signficant source of particulate matter into the polar upper stratosphere. These meteoric smoke particles (MSP) initially form at nanometre sizes but in the stratosphere have grown to larger sizes (tens of nanometres) following coagulation. The presence of these smoke particles may represent a significant mechanism for the nucleation of polar stratospheric clouds and are also known to influence the properties of the stratospheric aerosol or Junge layer. In this presentation we present findings from experiments to investigate the influence of the MSP on the Junge layer, carried out with the UM-UKCA composition-climate model. The UM-UKCA model is a high-top (up to 80km) version of the general circulation model with well-resolved stratospheric dynamics, includes the aerosol microphysics module GLOMAP and has interactive sulphur chemistry suitable for the stratosphere and troposphere (Dhomse et al., 2014). We have recently added to UM-UKCA a source of meteoric smoke particles, based on prescribing the variation of the smoke particles from previous simulations with the Whole Atmosphere Community Climate Model (WACCM). In UM-UKCA, the MSP particles are transported within the GLOMAP aerosol framework, alongside interactive stratospheric sulphuric acid aerosol. For the experiments presented here, we have activated the interaction between the MSP and the stratospheric sulphuric acid aerosol. The MSP provide an important sink term for the gas phase sulphuric acid simulated in the model, with subsequent effects on the formation, growth and temporal evolution of stratospheric sulphuric acid aerosol particles. By comparing simulations with and without the MSP-sulphur interactions we quantify the influence of the meteoric smoke on the properties of volcanically-quiescent Junge layer. We also investigate the extent to which the MSP may modulate the effects from SO2 injected into the stratosphere from volcanic

  10. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  11. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds.

  12. Aerosol particle analysis by Raman scattering technique

    SciTech Connect

    Fung, K.H.; Tang, I.N.

    1992-10-01

    Laser Raman spectroscopy is a very versatile tool for chemical characterization of micron-sized particles. Such particles are abundant in nature, and in numerous energy-related processes. In order to elucidate the formation mechanisms and understand the subsequent chemical transformation under a variety of reaction conditions, it is imperative to develop analytical measurement techniques for in situ monitoring of these suspended particles. In this report, we outline our recent work on spontaneous Raman, resonance Raman and non-linear Raman scattering as a novel technique for chemical analysis of aerosol particles as well as supersaturated solution droplets.

  13. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  14. The hygroscopicity of indoor aerosol particles

    SciTech Connect

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH{sub 4}){sub 2}SO{sub 4}, and (NH{sub 4})HS0{sub 4} particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components.

  15. Composition and formation of organic aerosol particles in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Wiedemann, K.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Artaxo, P.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R. C.; Smith, M.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O.

    2012-04-01

    We applied scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-NEXAFS) analysis to investigate the morphology and chemical composition of aerosol samples from a pristine tropical environment, the Amazon Basin. The samples were collected in the Amazonian rainforest during the rainy season and can be regarded as a natural background aerosol. The samples were found to be dominated by secondary organic aerosol (SOA) particles in the fine and primary biological aerosol particles (PBAP) in the coarse mode. Lab-generated SOA-samples from isoprene and terpene oxidation as well as pure organic compounds from spray-drying of aqueous solution were measured as reference samples. The aim of this study was to investigate the microphysical and chemical properties of a tropical background aerosol in the submicron size range and its internal mixing state. The lab-generated SOA and pure organic compounds occurred as spherical and mostly homogenous droplet-like particles, whereas the Amazonian SOA particles comprised a mixture of homogeneous droplets and droplets having internal structures due to atmospheric aging. In spite of the similar morphological appearance, the Amazon samples showed considerable differences in elemental and functional group composition. According to their NEXAFS spectra, three chemically distinct types of organic material were found and could be assigned to the following three categories: (1) particles with a pronounced carboxylic acid (COOH) peak similar to those of laboratory-generated SOA particles from terpene oxidation; (2) particles with a strong hydroxy (COH) signal similar to pure carbohydrate particles; and (3) particles with spectra resembling a mixture of the first two classes. In addition to the dominant organic component, the NEXAFS spectra revealed clearly resolved potassium (K) signals for all analyzed particles. During the rainy season and in the absence of anthropogenic influence, active biota is

  16. Investigating the Internal Structure of Individual Aerosol Particles Using Atomic Force and Raman Microscopies

    NASA Astrophysics Data System (ADS)

    Freedman, M. A.; Baustian, K. J.; Wise, M. E.; Tolbert, M. A.

    2009-12-01

    We have used Atomic Force Microscopy (AFM) and Raman Microscopy to probe aerosol internal structures in order to understand the optical properties of aerosols composed of mixtures of organic and inorganic components. While AFM gives only topographical information about the particles, indirect chemical information can be obtained by using substrates with different surface properties. With Raman microscopy, chemical signatures of the components of the aerosol are obtained, but we have limited spatial resolution. We have explored the use of these two techniques to look at aerosol internal structure using a range of different model aerosols composed of mixtures of ammonium sulfate with organic compounds of various solubilities such as sucrose, succinic acid, and palmitic acid. At the extremes of solubility, AFM provides suitable information for interpreting aerosol microstructure. For example, AFM clearly shows the presence of core-shell structures for aerosol particles composed of palmitic acid and ammonium sulfate, while the results for aerosol particles composed of succinic acid and ammonium sulfate are more difficult to interpret. Information about size and shape can be obtained when hydrophilic particles are impacted on hydrophobic substrates and vise versa. With Raman microscopy, core-shell structures were readily identified for ammonium sulfate with palmitic acid or succinic acid coatings. For the case of succinic acid and ammonium sulfate mixtures, we are using microscopy results to aid in interpreting the refractive indices we retrieved from cavity ring-down studies.

  17. Phase transitions and morphologies of aerosol particles

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U.; Zuend, A.; Peter, T.

    2012-12-01

    Tropospheric aerosol particles consisting of complex mixtures of organic compounds, ammonium sulfate (AS) and water undergo phase transitions such as liquid-liquid phase separation (LLPS), efflorescence and deliquescence as a consequence of changes in ambient relative humidity (RH). These phase transitions in the mixed aerosol particles may lead to different particle configurations such as core-shell or partially engulfed structures. However, the physical states and morphologies of these aerosol particles are still poorly understood. In this study, we investigate the phase transitions and morphological changes of various internally mixed organics/AS/water particles with different organic-to-inorganic ratios (OIR), namely OIR = 6:1, 2:1, 1:2 and 1:6 during humidity cycles using optical microscopy and Raman spectroscopy. Particularly, we explore how the properties of different organic functional groups and the compositional complexity of the organic aerosol fraction influence the occurrence of LLPS in the relationship with the organic oxygen-to-carbon (O:C) ratios. We found that LLPS occurred for all mixtures with O:C < 0.56, for none of the mixtures with O:C > 0.80, and depended on the specific types and compositions of organic functional groups for 0.56 < O:C < 0.80. Moreover, the number of mixture components and the spread of the O:C range did not notably influence the conditions for LLPS to occur. Since in ambient aerosols O:C and OIR range typically between 0.2 and 1.0, and between 4:1 and 1:5, respectively, LLPS is expected to be a common feature of tropospheric aerosols. AS in the mixed particles effloresced between 0 and 47 %RH and deliquesced between 71 and 80 %RH during humidity cycles. Compared to a deliquescence relative humidity (DRH) of 80 % for pure AS, the DRH in the mixed particles showed slightly lower values. A strong reduction or complete inhibition of efflorescence occurred for mixtures with high OIR that did not exhibit LLPS. Both core-shell and

  18. Sources and transformations of atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Cross, Eben Spencer

    Aerosol particles are an important component of the Earth-Atmosphere system because of their influence on the radiation budget both directly (through absorption and scattering) and indirectly (through cloud condensation nuclei (CCN) activity). The magnitude of the raditaive forcing attributed to the direct and indirect aerosol effects is highly uncertain, leading to large uncertainties in projections of global climate change. Real-time measurements of aerosol properties are a critical step toward constraining the uncertainties in current global climate modeling and understanding the influence that anthropogenic activities have on the climate. The objective of the work presented in this thesis is to gain a more complete understanding of the atmospheric transformations of aerosol particles and how such transformations influence the direct and indirect radiative effects of the particles. The work focuses on real-time measurements of aerosol particles made with the Aerodyne Aerosol Mass Spectrometer (AMS) developed in collaboration with the Boston College research group. A key feature of the work described is the development of a light scattering module for the AMS. Here we present the first results obtained with the integrated light scattering - AMS system. The unique and powerful capabilities of this new instrument combination are demonstrated through laboratory experiments and field deployments. Results from two field studies are presented: (1) The Northeast Air Quality Study (NEAQS), in the summer of 2004, conducted at Chebogue Point, Nova Scotia and (2) The Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in and around Mexico City, Mexico in March of 2006. Both field studies were designed to study the transformations that occur within pollution plumes as they are transported throughout the atmosphere. During the NEAQS campaign, the pollution plume from the Northeastern United States was intercepted as it was

  19. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  20. Glass formation processes in mixed inorganic/organic aerosol particles.

    PubMed

    Dette, Hans P; Koop, Thomas

    2015-05-14

    Recent experiments suggest that organic aerosol particles may transform into a glassy state at room temperature under dry conditions. Information on glass forming processes in mixed inorganic/organic aerosol particles is sparse, however, because inorganic crystal nucleation is usually very likely in such mixtures. Here we investigate the glass transition temperatures Tg of various organics (trehalose, sucrose, citric acid, sorbitol, and glycerol as well as 3-MBTCA) in binary mixtures with either NaNO3 or NH4HSO4 at different mass fractions. The glassy samples were prepared with the MARBLES technique by atomizing dilute aqueous solutions into aerosol particles and subsequent diffusion drying. The resulting aerosol particles were collected and their phase behavior was investigated using differential scanning calorimetry. At small and intermediate inorganic mass fractions salt crystallization did not occur. Instead, the single-phase mixtures remained in an amorphous state upon drying such that determination of their Tg was possible. From these measurements the Tg value of pure NaNO3 and pure NH4HSO4 could be inferred through extrapolation, resulting in values of Tg(NaNO3) ≈ 290 K and Tg(NH4HSO4) ≈ 220 K. Upon drying of NH4HSO4/3-MBTCA mixtures, phase-separated samples formed in which the inorganic-rich and organic-rich phases each show an independent glass transition. Our measurements provide a route toward establishing Tg values of inorganic salts that usually crystallize readily, and they may explain the reported contradicting observations of NaNO3 aerosol particles to either crystallize or remain amorphous upon drying at room temperature. PMID:25490407

  1. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  2. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  3. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  4. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis

  5. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  6. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  7. Opacity of monodisperse sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Pilat, Michael J.; Wilder, James M.

    The plume opacity and droplet diameters of a monodisperse sulfuric acid aerosol were calculated as a function of the initial H 2SO 4 concentration, initial H 2O concentration and final gas temperature after cooling from an original stack gas temperature of 300°C. Calculation assumptions include heterogeneous heteromolecular condensation of H 2SO 4 and H 2O onto monodisperse nuclei of 0.05 μm dia., three aerosol particle nuclei concentrations of 10 6, 10 7 and 10 8 cm -3 (at 300°C and 760 mm Hg); and a stack or plume diameter of 6 m. The calculated results show that for the conditions considered and with the stack temperatures in excess of 125°C, initial H 2SO 4 stack gas concentrations of 10ppm or less will result in calculated opacities of less than 20 % for a plume diameter of 6 m. The results show that the calculated opacity is significantly affected by the initial H 2SO 4 and initial H 2O concentrations and the final gas temperature. The increases in the calculated opacities upon cooling of the stack gases are similar in general to the increases in the measured opacities between instack and outstack reported by Nader and Conner (1978) for an oil-fired boiler.

  8. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  9. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  10. Glass transition measurements in mixed organic and organic/inorganic aerosol particles

    NASA Astrophysics Data System (ADS)

    Dette, Hans Peter; Qi, Mian; Schröder, David; Godt, Adelheid; Koop, Thomas

    2014-05-01

    The recent proposal of a semi-solid or glassy state of secondary organic aerosol (SOA) particles has sparked intense research in that area. In particular, potential effects of a glassy aerosol state such as incomplete gas-to-particle partitioning of semi-volatile organics, inhibited chemical reactions and water uptake, and the potential to act as heterogeneous ice nuclei have been identified so far. Many of these studies use well-studied proxies for oxidized organics such as sugars or other polyols. There are, however, few measurements on compounds that do exist in atmospheric aerosol particles. Here, we have performed studies on the phase state of organics that actually occur in natural SOA particles arising from the oxidation of alpha-pinene emitted in boreal forests. We have investigated the two marker compounds pinonic acid and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) and their mixtures. 3-MBCTA was synthesized from methyl isobutyrate and dimethyl maleate in two steps. In order to transfer these substances into a glassy state we have developed a novel aerosol spray drying technique. Dilute solutions of the relevant organics are atomized into aerosol particles which are dried subsequently by diffusion drying. The dried aerosol particles are then recollected in an impactor and studied by means of differential scanning calorimetry (DSC), which provides unambiguous information on the aerosols' phase state, i.e. whether the particles are crystalline or glassy. In the latter case DSC is used to determine the glass transition temperature Tg of the investigated samples. Using the above setup we were able to determine Tg of various mixtures of organic aerosol compounds as a function of their dry mass fraction, thus allowing to infer a relation between Tg and the O:C ratio of the aerosols. Moreover, we also studied the glass transition behavior of mixed organic/inorganic aerosol particles, including the effects of liquid-liquid phase separation upon drying.

  11. Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Manuela; Herrmann, Hartmut

    2014-05-01

    The two α-dicarbonyls glyoxal (CHOCHO; GLY) and methylglyoxal (CH3COCHO; MGLY) have attracted increasing attention over the past years because of their potential role in secondary organic aerosol formation. Recently Sinreich et al. (2010) suggested the open ocean as an important (so far unknown) source for GLY in the atmosphere. To date, there are few available field data of these compounds in the marine area. In this study we present measurements of GLY and MGLY in seawater and marine aerosol particles sampled during a transatlantic Polarstern cruise in spring 2011. In seawater we especially investigated the sea surface microlayer (sampled with the glass plate technique) as it is the direct interface between ocean and atmosphere. Analytical measurements were based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine reagent, solvent extraction and GC-MS (SIM) analysis. The results show that GLY and MGLY are present in the sea surface microlayer of the ocean and corresponding bulkwater with average concentrations of 228 ng L-1 (GLY) and 196 ng L-1 (MGLY). Significant enrichment (factor of 4) of GLY and MGLY in the sea surface microlayer was found implying photochemical production of the two carbonyls though a clear connection to global radiation was not observed. On aerosol particles, both carbonyls were detected (average concentration 0.2 ng m-3) and are strongly connected to each other, suggesting similar formation mechanisms. Both carbonyls show a very good correlation with particulate oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. A slight correlation of the two carbonyls in the sea surface microlayer and in the aerosol particles was found at co-located sampling areas. In summary, the results of GLY and MGLY in marine aerosol particles and in the oceanic water give first insights towards interaction processes of these alpha dicarbonyls between ocean and atmosphere (van Pinxteren and Herrmann (2013

  12. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  13. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol

    PubMed Central

    2015-01-01

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle–particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle–particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  14. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  15. Characteristics of Chinese aerosols determined by individual-particle analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Anderson, James R.

    2001-08-01

    Tropospheric aerosols that originate in China and are transported over the North Pacific Ocean have potentially significant impacts on regional and global climate. These aerosols are complex mixtures of soil dust and anthropogenic particles from a variety of sources, including fossil fuel combustion, biomass burning, mining, smelting, and other industrial processes, plus reaction products of heterogeneous processes that affect these particles during transport. In the coastal marine atmosphere, these particles could be further mixed with marine aerosols. To provide examples of the diversity of chemical and physical properties of east Asian aerosols in the spring, individual aerosol particle samples were collected in April and May 1999 in three different environments in China: Qingdao on the coast of the East China Sea, Beijing in the northeast interior, and Mount Waliguan in remote northwestern China. Results reveal that aerosols in this region are complex and heterogeneous. In addition to significant differences in aerosol composition and size distributions among the samples, each sample contains a large number of polyphase aggregates. Many of the particles also have irregular shapes; for a number of the particle types, the irregular shapes should persist even at high ambient RH. Because composition, degree and nature of polyphase aggregation, and shape all effect aerosol radiative properties, the complex state of east Asian aerosols presents a challenge for the modeling of aerosol radiative forcing in the region.

  16. Chemistry and Composition of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Kolb, Charles E.; Worsnop, Douglas R.

    2012-05-01

    For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

  17. Background on health effects of acid aerosols.

    PubMed

    Lippmann, M

    1989-02-01

    This introduction to the 1987 NIEHS-EPA Symposium on the Health Effects of Acid Aerosols reviews the state of our knowledge on this topic as of the close of the 1984 NIEHS Conference on the Health Effects of Acid Precipitation (Environmental Health Perspectives, Volume 63) and the results of some key studies completed since that time. These studies, together with the results of the studies presented in the papers that follow, provide a substantial increment in our knowledge of the health effects of acid aerosols.

  18. Background on health effects of acid aerosols.

    PubMed Central

    Lippmann, M

    1989-01-01

    This introduction to the 1987 NIEHS-EPA Symposium on the Health Effects of Acid Aerosols reviews the state of our knowledge on this topic as of the close of the 1984 NIEHS Conference on the Health Effects of Acid Precipitation (Environmental Health Perspectives, Volume 63) and the results of some key studies completed since that time. These studies, together with the results of the studies presented in the papers that follow, provide a substantial increment in our knowledge of the health effects of acid aerosols. PMID:2707208

  19. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  20. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  1. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    NASA Astrophysics Data System (ADS)

    Beaver, M. R.; Elrod, M. J.; Garland, R. M.; Tolbert, M. A.

    2006-03-01

    Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  2. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    NASA Astrophysics Data System (ADS)

    Beaver, M. R.; Elrod, M. J.; Garland, R. M.; Tolbert, M. A.

    2006-08-01

    Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C3 and C9) on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s) at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  3. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  4. Supercooling versus crystallization of nitric acid/water aerosols

    SciTech Connect

    Disselkamp, R.S.; Anthony, S.E.; Tolbert, M.A.

    1995-12-31

    Polar Stratospheric Clouds (PSCs) have been implicated in Antarctic and Arctic ozone loss. These clouds are comprised of small particles (diameter {approximately}1 {mu}m) and play two essential roles in perturbing the chemistry of ozone during winter. First, PSCs promote heterogeneous reactions which activate chlorine. Second, PSCs permanently remove nitrogen oxides from the stratosphere due to particle sedimentation. Both PSC reactivity and denitrification depend on the particle phase and composition. In my talk, I will discuss laboratory modeling of PSCs. FTIR spectroscopy was used to investigate the phase and composition of nitric acid/water aerosols at temperatures from 190 to 229 K. Static aerosol samples were generated and probed spectroscopically for time periods of up to 100 minutes. For aerosols containing a molar ratio of 1:1 and 3:1 H{sub 2}O:HNO{sub 3}, extensive supercooling was observed with no crystallization in 100 minutes. However, aerosols containing a molar ratio of 2:1 H{sub 2}O:HNO{sub 3} crystallized readily to nitric acid dehydrate (NAD). The rate of NAD crystallization was found to increase with increasing temperature and will be discussed.

  5. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  6. Identification of characteristic mass spectrometric markers for primary biological aerosol particles and comparison with field data from submicron pristine aerosol particles

    NASA Astrophysics Data System (ADS)

    Freutel, F.; Schneider, J.; Zorn, S. R.; Drewnick, F.; Borrmann, S.; Hoffmann, T.; Martin, S. T.

    2009-04-01

    The contribution of primary biological aerosol (PBA) to the total aerosol particle concentration is estimated to range between 25 and 80%, depending on location and season. Especially in the tropical rain forest it is expected that PBA is a major source of particles in the supermicron range, and is also an important fraction of the submicron aerosol. PBA particles like plant fragments, pollen, spores, fungi, viruses etc. contain chemical compounds as proteins, sugars, amino acids, chlorophyll, and cellular material as cellulose. For this reason we have performed mass spectrometric laboratory measurements (Aerodyne C-ToF and W-ToF AMS, single particle laser ablation instrument SPLAT) on pure submicron aerosol particles containing typical PBA compounds in order to identify typical mass spectral patterns of these compounds and to explain the observed fragmentation patterns on the basis of molecular structures. These laboratory data were compared to submicron particle mass spectra obtained during AMAZE-08 (Amazonian Aerosol CharacteriZation Experiment, Brazil, February/March 2008). The results indicate that characteristic m/z ratios for carbohydrates (e.g., glucose, saccharose, levoglucosan, mannitol) can be identified, for example m/z = 60(C2H4O2+) or m/z = 61(C2H5O2+). Certain characteristic peaks for amino acids were also identified in the laboratory experiments. In the field data from AMAZE-08, these characteristic peaks for carbohydrates and amino acids were found, and their contribution to the total organic mass was estimated to about 5%. Fragment ions from peptides and small proteins were also identified in laboratory experiments. Larger proteins, however, seem to become oxidized to CO2+ to a large extend in the vaporizing process of the AMS. Thus, detection of proteins in atmospheric aerosol particles with the AMS appears to be difficult.

  7. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  8. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  9. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  10. Acid aerosol measurements at a suburban Connecticut site

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Castillo, Raymond A.

    Atmospheric acidity data were gathered during a year-long field project investigating the possible health effects of acid aerosol in a rural community in southwestern Connecticut. This site was chosen because the air quality is frequently influenced by pollutants transported from the New York-New Jersey corridor as well as from the Midwest U.S. An annular denuder filter-pack system utilized to obtain daily measurements of gaseous HNO 3, HONO, SO 2, and NH 3; plus fine particle SO 42-, NO 3-, and H +. Fine particle mass ( d ⩽ 2.1 μm) and PM10 (particles d ⩽ 10 μm) were also measured. Ozone concentrations and basic meteorological data were also obtained continuously. The atmosphere was acidic with average concentrations of HONO (16 nmol m -3), HNO 3 (42 nmol m -3), and H + (42 nmol m -3), observed from May to September 1988. Atmospheric ammonia concentrations were fairly low averaging 34 nmol m -3 during the same period, and suggesting the neutralizing capacity of the air was significant to neutralize all the acidic species present. Neutralization of acidic particles by reactions on the filter media after collection resulted in a loss of approximately 10% of the measured particle strong acidity for the summertime period investigated. Concentrations of ozone and acidic gases tended to peak with mixed layer flow from the south-southwest while particulate acidity was highest with flow predominantly from the west-soutwest. Hourly ozone concentrations greater than 100 ppb were observed on 31 different days during the monitoring, and concentrations greater than 150 ppb measured on 14 days. HNO 3 and aerosol strong acidity (H +) concentrations reached 174 and 199 nmol m -3, respectively during the summer months.

  11. Aerosol stability of infectious and potentially infectious reovirus particles.

    PubMed Central

    Adams, D J; Spendlove, J C; Spendlove, R S; Barnett, B B

    1982-01-01

    The aerosol stability of two particle forms, infectious and potentially infectious, of reovirus were examined under static conditions for a range of relative humidities at 21 and 24 degrees C. Virus aerosolization efficiency was determined for two methods of dissemination: Collison nebulizer and Chicago atomizer. Suspensions of Bacillus subtilis var. niger spores were added to reovirus preparations that included both particle forms and disseminated into a dynamic aerosol toroid to estimate the physical decay of the aerosols. At 90 to 100% relative humidity, both reovirus particle forms showed less than 10-fold loss of infectivity after 12 h of aging. At lower relative humidities the aerosol decay curve showed rapid initial decay followed by a markedly lower decay rate. Our findings reveal that reovirus particles are relatively stable in the airborne state. PMID:7149719

  12. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  13. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  14. Exposure of acid aerosol for schoolchildren in metropolitan Taipei

    NASA Astrophysics Data System (ADS)

    Mao, I.-Fang; Lin, Chih-Hung; Lin, Chun-Ji; Chen, Yi-Ju; Sung, Fung-Chang; Chen, Mei-Lien

    Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO 2, SO 2, HNO 3, NO 3-, SO 42-, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m -3, 18.5 μg m -3, and 49.5 nmol m -3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m -3, 8.8 μg m -3 and 14.7 nmol m -3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO 2 levels were low (0.13-8.03 ppb) in the metropolitan Taipei. However, the SO 42- concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.

  15. Acidic sulfate aerosols: characterization and exposure.

    PubMed

    Lioy, P J; Waldman, J M

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes.

  16. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  17. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  18. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  19. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  20. Venus -Mesospheric hazes of ice, dust, and acid aerosols

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Keesee, R. G.

    1983-01-01

    Four distinct types of particles are suggested to be present in the upper atmosphere of Venus. The lowest and densest haze may consist of a submicron sulfuric acid aerosol which extends above the cloud tops, up to about 80 km, representing an extension of the upper cloud deck. Temperature structure measurements in the 70-120 km altitude range indicate the occasional appearance of two independent water ice layers, of which the lower may form between 80 and 100 km and is probably the detached haze layer noted in high contrast limb photography. A nucleation of this ice layer on sulfuric acid aerosols is hypothesized. Temperatures of the Venus mesopause, near 120 km altitude, are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions, yielding a haze (analogous to noctilucent clouds on earth) which is expected to be tenuous to the point of optical invisibility.

  1. Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhanshu

    2012-07-01

    {Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi } Tracing of aerosol sources is an important task helpful for making control strategy, and for climate change study. However, it is a difficult job as aerosols have several sources, involve in complex atmospheric processing, degradation and removal processes. Several approaches have been used for this task, e.g., models, which are based on the input of chemical species; stable- and radio-isotope compositions of certain species; chemical markers in which trace metals are the better options because they persist in atmosphere until the life of a particle. For example, K and Hg are used for biomass and coal burning tracings, respectively. Open waste burning has recently been believed to be a considerable source of aerosols in several mega cities in India and China. To better understand this source contribution in New Delhi aerosols, we have conducted aerosol sampling at a landfill site (Okhla), and in proximity (within 1 km distance) of this site. Aerosol filter samples were acid digested in microwave digestion system and analyzed using inductively coupled plasma -- high resolution mass spectrometry (ICP-HRMS) for getting metal signatures in particles. The metals, e.g., Sn, Sb and As those are found almost negligible in remote aerosols, are maximized in these waste burning aerosols. Sample collected in other location of New Delhi also shows the considerable presence of these metals in particles. Preliminary studies of isotopic ratios of these metals suggested that these metals, especially Sn can be used as marker for tracing the open waste burning sources of aerosols in New Delhi.

  2. Ambient aerosols remain highly acidic despite dramatic sulfate reductions

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead

    2016-04-01

    The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.

  3. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  4. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  5. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  6. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  7. On the growth of ternary system HNO{sub 3}/H{sub 2}SO{sub 4}/H{sub 2} aerosol particles in the stratosphere

    SciTech Connect

    Hamill, P.; Tabazadeh, A.; Kinne, S.; Toon, O.B.

    1996-04-01

    The authors present model study results on the formation of ternary aerosols of nitric acid, sulfuric acid, and water in the stratosphere. The aerosol particles grow by means of a heteromolecular condensation process. The authors assume the particles are in equilibrium with the background water vapor.

  8. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  9. Size, composition, and mixing state of individual aerosol particles in a South China coastal city.

    PubMed

    Li, Weijun; Shao, Longyi; Wang, Zhishi; Shen, Rongrong; Yang, Shusheng; Tang, Uwa

    2010-01-01

    Aerosol samples were collected in summer in Macao, a coastal city of the Pearl River Delta Region in China. Morphology, size, elemental composition, and mixing state of individual aerosol particles were determined by scanning electron microscopy coupled energy dispersive X-ray (SEM/EDX) and transmission electron microscopy (TEM). Based on the morphologies of 5711 aerosol particles, they consist of soot (32%), mineral (17%), secondary (22%), and unknown fine particles (29%). The sizes of these particles were mostly distributed between 0.1 and 0.4 microm. Compositions of 202 mineral particles were obtained by SEM/EDX. Mineral particles were mainly classified into three types: Si-rich, Ca-rich, and Na-rich. The compositions of typical mineral particles can indicate their sources in sampling location. For example, mineral particles, collected along the main street, were associated with trace amounts of heavy metals, such as Zn, Ti, Mn, Ba, Pb, and As. TEM observations indicate that most Na-rich particles were aged sea salt particles (e.g., Na2SO4 and NaNO3) which formed through heterogeneous chemical reactions between sea salt and acidic gases. Additionally, aging time of soot was short in Macao due to high humidity, high temperature, and high levels of sunlight in Macao. Most of soot and fine mineral dust particles were internally mixed with secondary particles.

  10. Health effects of acid aerosols formed by atmospheric mixtures

    SciTech Connect

    Kleinman, M.T.; Phalen, R.F.; Mautz, W.J.; Mannix, R.C.; McClure, T.R.; Crocker, T.T. )

    1989-02-01

    Under ambient conditions, sulfur and nitrogen oxides can react with photochemical products and airborne particles to form acidic vapors and aerosols. Inhalation toxicological studies were conducted, exposing laboratory animals, at rest and during exercise, to multicomponent atmospheric mixtures under conditions favorable to the formation of acidic reaction products. Effects of acid and ozone mixtures on early and late clearance of insoluble radioactive particles in the lungs of rats appeared to be dominated by the oxidant component (i.e., the mixture did cause effects that were significantly different from those of ozone alone). Histopathological evaluations showed that sulfuric acid particles alone did not cause inflammatory responses in centriacinar units of rat lung parenchyma (expressed in terms of percent lesion area) but did cause significant damage (cell killing followed by a wave of cell replication) in nasal respiratory epithelium, as measured by uptake of tritiated thymidine in the DNA of replicating cells. Mixtures of ozone and nitrogen dioxide, which form nitric acid, caused significant inflammatory responses in lung parenchyma (in excess of effects seen in rats exposed to ozone alone), but did not damage nasal epithelium. Mixtures containing acidic sulfate particles, ozone, and nitrogen dioxide damaged both lung parenchyma and nasal epithelia. In rats exposed at rest, the response of the lung appeared to be dominated by the oxidant gas-phase components, while responses in the nose were dominated by the acidic particles. In rats exposed at exercise, however, mixtures of ozone and sulfuric acid particles significantly (2.5-fold) elevated the degree of lung lesion formation over that seen in rats exposed to ozone alone under an identical exercise protocol.

  11. Health effects of acid aerosols formed by atmospheric mixtures.

    PubMed

    Kleinman, M T; Phalen, R F; Mautz, W J; Mannix, R C; McClure, T R; Crocker, T T

    1989-02-01

    Under ambient conditions, sulfur and nitrogen oxides can react with photochemical products and airborne particles to form acidic vapors and aerosols. Inhalation toxicological studies were conducted, exposing laboratory animals, at rest and during exercise, to multicomponent atmospheric mixtures under conditions favorable to the formation of acidic reaction products. Effects of acid and ozone mixtures on early and late clearance of insoluble radioactive particles in the lungs of rats appeared to be dominated by the oxidant component (i.e., the mixture did cause effects that were significantly different from those of ozone alone). Histopathological evaluations showed that sulfuric acid particles alone did not cause inflammatory responses in centriacinar units of rat lung parenchyma (expressed in terms of percent lesion area) but did cause significant damage (cell killing followed by a wave of cell replication) in nasal respiratory epithelium, as measured by uptake of tritiated thymidine in the DNA of replicating cells. Mixtures of ozone and nitrogen dioxide, which form nitric acid, caused significant inflammatory responses in lung parenchyma (in excess of effects seen in rats exposed to ozone alone), but did not damage nasal epithelium. Mixtures containing acidic sulfate particles, ozone, and nitrogen dioxide damaged both lung parenchyma and nasal epithelia. In rats exposed at rest, the response of the lung appeared to be dominated by the oxidant gas-phase components, while responses in the nose were dominated by the acidic particles. In rats exposed at exercise, however, mixtures of ozone and sulfuric acid particles significantly (2.5-fold) elevated the degree of lung lesion formation over that seen in rats exposed to ozone alone under an identical exercise protocol.

  12. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  13. Simultaneous In-Situ Measurement of Local Particle Size, Particle Concentration, and Velocity of Aerosols.

    PubMed

    Weber; Schweiger

    1999-02-01

    Photon correlation spectroscopy has been applied to the characterization of (quasi-)monodisperse aerosols. The experiments were carried out with an experimental standard pin hole setup on laminar flowing aerosols of the submicrometer particle size range. It is shown that beside local mean particle size and local aerosol velocity simultaneously the local particle number concentration may be obtained from a single measured autocorrelation function. The proposed procedure does not require calibration. It is pointed out that measurement conditions can be adapted to the properties of the aerosol to be characterized, thus allowing characterization of aerosols over a wide parameter range, e.g., it is not restricted to the case of low particle concentration. The experimental results are compared to data from literature, data from reference measurements and data from a theoretical model, respectively. The method can also be usefull for characterization of other fluid-particle systems as hydrosols. Copyright 1999 Academic Press.

  14. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  15. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  16. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    Ice particles are ubiquitous in the atmosphere existing as the sole constituents of glaciated cirrus clouds or coexisting with supercooled liquid droplets in mixed-phase clouds. Aerosol particles serving as heterogeneous ice nuclei for ice crystal formation impact the global radiative balance by modification of cloud radiative properties, and thus climate. Atmospheric ice formation is not a well understood process and represents great uncertainty for climate prediction. The oceans which cover the majority of the earth's surface host nearly half the total global primary productivity and contribute to the greatest aerosol production by mass. However, the effect of biological activity on particle aerosolization, particle composition, and ice nucleation is not well established. This dissertation investigates the link between marine biological activity, aerosol particle production, physical/chemical particle characteristics, and ice nucleation under controlled laboratory conditions. Dry and humidified aerosol size distributions of particles from bursting bubbles generated by plunging water jets and aeration through frits in a seawater mesocosm containing bacteria and/or phytoplankton cultures, were measured as a function of biological activity. Total particle production significantly increases primarily due to enhanced aerosolization of particles ≤100 nm in diameter attributable to the presence and growth of phytoplankton. Furthermore, hygroscopicity measurements indicate primary organic material associated with the sea salt particles, providing additional evidence for the importance of marine biological activity for ocean derived aerosol composition. Ice nucleation experiments show that these organic rich particles nucleate ice efficiently in the immersion and deposition modes, which underscores their importance in mixed-phase and cirrus cloud formation processes. In separate ice nucleation experiments employing pure cultures of Thalassiosira pseudonana, Nannochloris

  17. The on-line analysis of aerosol-delivered pharmaceuticals via single particle aerosol mass spectrometry.

    PubMed

    Morrical, Bradley D; Balaxi, Maria; Fergenson, David

    2015-07-15

    The use of single particle aerosol mass spectrometry (SPAMS) was evaluated for the analysis of inhaled pharmaceuticals to determine the mass distribution of the individual active pharmaceutical ingredients (API) in both single ingredient and combination drug products. SPAMS is an analytical technique where the individual aerodynamic diameters and chemical compositions of many aerosol particles are determined in real-time. The analysis was performed using a Livermore Instruments SPAMS 3.0, which allowed the efficient analysis of aerosol particles with broad size distributions and can acquire data even under a very large particle load. Data similar to what would normally require roughly three days of experimentation and analysis was collected in a five minute period and analyzed automatically. The results were computed to be comparable to those returned by a typical Next Generation Impactor (NGI) particle size distribution experiment.

  18. Ice Phase Transitions by Atmospheric Aerosol Particles of Varied Composition

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; Archuleta, C. A.; Kreidenweis, S. M.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.

    2001-12-01

    This paper describes laboratory and field study measurements of water uptake and ice nucleation by surrogate and real atmospheric aerosol particles. Laboratory measurements of water uptake are made using a humidified tandem differential mobility analyzer (HTDMA) and a cloud condensation nucleus (CCN) instrument operating at 20 to 30 \\deg C. Measurements of ice nucleation are made using a continuous flow ice-thermal diffusion chamber (CFDC) operated to -60 \\deg C for relevance toward understanding cirrus cloud formation. Extending earlier laboratory studies of single composition aerosols, we are investigating water uptake and ice nucleation rates and mechanisms by mixed aerosols of various types, including sulfate-nitrate, sulfate-organic, mineral oxide-sulfate and black carbon-sulfate types. Methodologies will be described and results will be summarized. Field measurements are planned to study heterogeneous and homogeneous ice nucleation by free tropospheric aerosols at a high altitude laboratory. The field study will include measurements of the compositions of aerosols that activate ice formation by homogeneous and heterogeneous ice nucleation mechanisms. This aspect of the study will be facilitated by interfacing the CFDC to the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. This combined instrument system was tested in the laboratory to quantify sampling efficiencies and validate specificity for sampling ice nucleus aerosol particles. Initial field data, if available at conference time, will be compared and contrasted with the results obtained for laboratory surrogate particles.

  19. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  20. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  1. Intercomparison of number concentration measurements by various aerosol particle counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; Mirme, A.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Tamm, E.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm -3. A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the

  2. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  3. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  4. Organic acids in continental background aerosols

    NASA Astrophysics Data System (ADS)

    Limbeck, Andreas; Puxbaum, Hans

    With a newly developed method aerosol samples from three distinctly different continental sites were analyzed: an urban site (Vienna), a savanna site in South Africa (Nylsvley Nature Reserve, NNR) and a free tropospheric continental background site (Sonnblick Observatory, SBO). In all samples a range of monocarboxylic acids (MCAs) and dicarboxylic acids (DCAs) has been identified and quantified. The three most abundant MCAs in Vienna were the C18, C16 and C14 acids with concentrations of 66, 45 and 36 ng m -3, respectively. At the mid tropospheric background site (SBO) the three most abundant MCAs were the C18, C16 and C12 acid. For the DCAs at all three sites oxalic, malonic and succinic acid were the dominant compounds. For some individual compounds an information about the sources could be obtained. For example the determined unsaturated MCAs in South Africa appear to result from biogenic sources whereas in Vienna those acids are considered to be derived from combustion processes. Oxalic and glyoxalic acid appear to have a free tropospheric air chemical source. The relative high amounts at SBO in comparison to Vienna can only be explained by secondary formation of oxalic acid in the atmosphere.

  5. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  6. Ultrafine aerosol size distributions and sulfuric acid vapor pressures: Implications for new particle formation in the atmosphere. Year 2 progress report

    SciTech Connect

    McMurry, P.H.

    1993-07-01

    This project has two components: (1) measurement of H{sub 2}SO{sub 4} vapor pressures in air under temperature/relative humidity conditions similar to atmospheric, and (2) measurement of ultrafine aerosol size distributions. During Year 2, more effort was put on size distribution measurements. 4 figs.

  7. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  8. Chemical characterization of aerosol particles by laser Raman spectroscopy. Revision

    SciTech Connect

    Fung, K.H.

    1999-12-01

    The importance of aerosol particles in many branches of science, such as atmospheric chemistry, combustion, interfacial science, and material processing, has been steadily growing during the past decades. One of the unique properties of these particles is the very high surface-to-volume ratios, thus making them readily serve as centers for gas-phase condensation and heterogeneous reactions. These particles must be characterized by size, shape, physical state, and chemical composition. Traditionally, optical elastic scattering has been applied to obtain the physical properties of these particle (e.g., particle size, size distribution, and particle density). These physical properties are particularly important in atmospheric science as they govern the distribution and transport of atmospheric aerosols.

  9. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  10. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  11. Influence of refractive index on the accuracy of size determination of aerosol particles with light-scattering aerosol counters.

    PubMed

    Quenzel, H

    1969-01-01

    The scattering properties of single aerosol particles with different indices of refraction have been computed from the Mie theory considering the spectral response of light-scattering aerosol counters commercially available. It is demonstrated that high resolution of the aerosol size distribution is impossible, particularly because of the different refractive indices of the atmospheric aerosol particles. By using other ranges of scattering angle for the measurement, one may, in some cases, obtain better results.

  12. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4particles/kgFUEL (for 75 and 675 ppmm fuel-S). The sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  13. Supercritical Fluid Extraction and Analysis of Tropospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Hansen, Kristen J.

    An integrated sampling and supercritical fluid extraction (SFE) cell has been designed for whole-sample analysis of organic compounds on tropospheric aerosol particles. The low-volume extraction cell has been interfaced with a sampling manifold for aerosol particle collection in the field. After sample collection, the entire SFE cell was coupled to a gas chromatograph; after on-line extraction, the cryogenically -focused sample was separated and the volatile compounds detected with either a mass spectrometer or a flame ionization detector. A 20-minute extraction at 450 atm and 90 ^circC with pure supercritical CO _2 is sufficient for quantitative extraction of most volatile compounds in aerosol particle samples. A comparison between SFE and thermal desorption, the traditional whole-sample technique for analyses of this type, was performed using ambient aerosol particle samples, as well as samples containing known amounts of standard analytes. The results of these studies indicate that SFE of atmospheric aerosol particles provides quantitative measurement of several classes of organic compounds. SFE provides information that is complementary to that gained by the thermal desorption analysis. The results also indicate that SFE with CO _2 can be validated as an alternative to thermal desorption for quantitative recovery of several organic compounds. In 1989, the organic constituents of atmospheric aerosol particles collected at Niwot Ridge, Colorado, along with various physical and meteorological data, were measured during a collaborative field study. Temporal changes in the composition of samples collected during summertime at the rural site were studied. Thermal desorption-GC/FID was used to quantify selected compounds in samples collected during the field study. The statistical analysis of the 1989 Niwot Ridge data set is presented in this work. Principal component analysis was performed on thirty-one variables selected from the data set in order to ascertain

  14. Acidic sulfate aerosols: characterization and exposure

    SciTech Connect

    Lioy, P.J.; Waldman, J.M.

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidicaerosol in excess of 20 to 40 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO/sub 4/(2)- levels. Exposures of 100 to 900 micrograms/m/sup 3//hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) was present in the atmosphere, and exposures less than 2000 micrograms/m/sup 3//hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H/sub 2/SO/sub 4/ and on what factors can be used to predict acidic sulfate episodes. 96 references.

  15. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  16. Gas-particle partitioning of semivolatile organic compounds (SOCs) on mixtures of aerosols in a smog chamber.

    PubMed

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M

    2003-09-15

    The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of

  17. Particle Property Data Quality Flags for the MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.; Garay, M. J.

    2013-12-01

    , extending over more than twelve years of MISR data, aid in the assessment. Comparisons with the limited available AERONET aerosol type data are also made and evaluated as appropriate. Seasons and regions that regularly show poorly constrained aerosol type results are identified, as are times and places where particle property information can be used with confidence. This work is performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and in part at the NASA Goddard Space Flight Center.

  18. Impeded ice nucleation in glassy and highly viscous aerosol particles: the role of water diffusion

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Pedernera, D. A.; Koop, T.

    2010-05-01

    In situ and remote observations in the upper troposphere have disclosed the existence of water vapor pressures up to and even above water saturation. Under such conditions ice particle formation by homogeneous nucleation is expected to set in followed by ice crystal growth until the supersaturation is consumed. While the highest measured water vapor values might not withstand rigorous quality checks, values up to water saturation seem to be occurring. Since air masses appear to contain sufficient numbers of aerosol particles for cloud formation, the question arises why these aerosols are not successful at nucleating ice. The atmospheric aerosol is a complex mixture of various inorganic and organic components, whereas the organic fraction can represent more than 50% of the total aerosol mass. The homogeneous ice nucleation threshold was established for atmospherically relevant salt solutions and sulfuric acid, but only for a few organic species. The organic aerosol fraction tends to remain liquid instead of crystallizing as the temperature is decreased and, thus, organic aerosol particles may form highly viscous liquids. When the viscosity of such liquids reaches values in the order of 1012 Pa s, the molecular motion becomes so slow, that the sample vitrifies at the glass transition temperature Tg. If aerosol particles were present as glasses, this would influence several physical and chemical processes in the atmosphere significantly: Water uptake from the gas phase would be drastically impeded and ice nucleation inhibited. We investigated the glass transition temperature of a series of aqueous organic solutions such as polyols, sugars and dicarboxylic acids as a function of the solute concentration using a differential scanning calorimeter (DSC). These measurements show that the higher the molar mass of the organic solutes, the higher Tg of their respective solutions at a given water activity. Aerosol particles containing larger (≥150 g mol-1) organic molecules

  19. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    NASA Astrophysics Data System (ADS)

    Curtis, J. H.; Michelotti, M. D.; Riemer, N.; Heath, M. T.; West, M.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.

  20. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    SciTech Connect

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. )

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  1. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  2. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  3. Single particle atmospheric aerosol analysis using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Mihailescu, Mona; Cojocaru, Ruxandra Elena; Kusko, C.; Toanca, Flori; Dinescu, A.; Schiopu, P.

    2011-06-01

    The aim of this research is to calculate the refractive index of transparent atmospheric aerosols, which have biological origin, using a digital holographic microscopy technique (DHM). The samples are collected on filters, using miniature impactors for particles with dimensions smaller than 10μm (on even one axis), from a height of over 20 meters, in Magurele, a rural location near the urban and industrial agglomeration of the capital city, Bucharest. Due to their organic or inorganic origin, each atmospheric aerosol particle has different size, shape and optical properties which have a determinant role in LIDAR measurements. We record on a CCD camera hundreds of holograms which contain the diffraction pattern from every aerosol particle superposed with the reference wave. Digitally, we scan the entire volume of one particle with nanometric resolution (using an algorithm based on the Fresnel approximation). The calibration was done using an object with known dimensions fabricated by e-beam lithography and some complementary measurements were done in confocal microscopy. Our analysis separates four main classes of atmospheric aerosols particles (wires, columns, spherical fragments, and irregular). The predominant class in the investigated period is the first one, which has biological origin and the refractive index was calculated starting from the phase shift introduced by them in the optical path and models for their cylindrical shape. The influence of spatial filtering in the reconstructed object images was investigated.

  4. Indoor exposures to fine aerosols and acid gases.

    PubMed

    Koutrakis, P; Brauer, M; Briggs, S L; Leaderer, B P

    1991-11-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions between pollutants and indoor surfaces. It is well established that fine particles (diameter less than or equal to 2.5 microns) originating from outdoor sources such as automobiles, oil and coal combustion, incineration, and diverse industrial activities can penetrate into the indoor environment. Indoor/outdoor ratios, usually varying between 0.4 and 0.8, depend on parameters such as particle size and density, air exchange rate, and the surface-to-volume ratio of the indoor environment. Determining fine particle elemental composition makes it possible to identify the contribution of different outdoor sources. This paper focuses on the origin and the concentration of indoor aerosols and acid gases by highlighting the results from two indoor air quality studies. PMID:1821374

  5. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  6. Water adsorption around oxalic acid aggregates: a molecular dynamics simulation of water nucleation on organic aerosols.

    PubMed

    Darvas, Maria; Picaud, Sylvain; Jedlovszky, Pál

    2011-11-28

    The phase behaviour of binary oxalic acid-water mixtures has been investigated by means of computer simulation techniques. Such mixtures play an important role in atmospheric processes, since the hydrogen bonding ability of oxalic acid molecules allows them to form aerosol particles. Water can in turn be readily adsorbed on the surface of such aerosol particles, which results in the formation of small ice grains. These grains are thus considered to be acting as cloud condensation nuclei, giving rise to the formation of ice clouds.

  7. Lake Spray Aerosol: A Chemical Signature from Individual Ambient Particles.

    PubMed

    Axson, Jessica L; May, Nathaniel W; Colón-Bernal, Isabel D; Pratt, Kerri A; Ault, Andrew P

    2016-09-20

    Aerosol production from wave breaking on freshwater lakes, including the Laurentian Great Lakes, is poorly understood in comparison to sea spray aerosol (SSA). Aerosols from freshwater have the potential to impact regional climate and public health. Herein, lake spray aerosol (LSA) is defined as aerosol generated from freshwater through bubble bursting, analogous to SSA from seawater. A chemical signature for LSA was determined from measurements of ambient particles collected on the southeastern shore of Lake Michigan during an event (July 6-8, 2015) with wave heights up to 3.1 m. For comparison, surface freshwater was collected, and LSA were generated in the laboratory. Single particle microscopy and mass spectrometry analysis of field and laboratory-generated samples show that LSA particles are primarily calcium (carbonate) with lower concentrations of other inorganic ions and organic material. Laboratory number size distributions show ultrafine and accumulation modes at 53 (±1) and 276 (±8) nm, respectively. This study provides the first chemical signature for LSA. LSA composition is shown to be coupled to Great Lakes water chemistry (Ca(2+) > Mg(2+) > Na(+) > K(+)) and distinct from SSA. Understanding LSA physicochemical properties will improve assessment of LSA impacts on regional air quality, climate, and health. PMID:27548099

  8. Lake Spray Aerosol: A Chemical Signature from Individual Ambient Particles.

    PubMed

    Axson, Jessica L; May, Nathaniel W; Colón-Bernal, Isabel D; Pratt, Kerri A; Ault, Andrew P

    2016-09-20

    Aerosol production from wave breaking on freshwater lakes, including the Laurentian Great Lakes, is poorly understood in comparison to sea spray aerosol (SSA). Aerosols from freshwater have the potential to impact regional climate and public health. Herein, lake spray aerosol (LSA) is defined as aerosol generated from freshwater through bubble bursting, analogous to SSA from seawater. A chemical signature for LSA was determined from measurements of ambient particles collected on the southeastern shore of Lake Michigan during an event (July 6-8, 2015) with wave heights up to 3.1 m. For comparison, surface freshwater was collected, and LSA were generated in the laboratory. Single particle microscopy and mass spectrometry analysis of field and laboratory-generated samples show that LSA particles are primarily calcium (carbonate) with lower concentrations of other inorganic ions and organic material. Laboratory number size distributions show ultrafine and accumulation modes at 53 (±1) and 276 (±8) nm, respectively. This study provides the first chemical signature for LSA. LSA composition is shown to be coupled to Great Lakes water chemistry (Ca(2+) > Mg(2+) > Na(+) > K(+)) and distinct from SSA. Understanding LSA physicochemical properties will improve assessment of LSA impacts on regional air quality, climate, and health.

  9. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  10. Mixing properties of individual submicrometer aerosol particles in Vienna

    NASA Astrophysics Data System (ADS)

    Okada, Kikuo; Hitzenberger, Regina M.

    Individual aerosol particles were collected on 5 days with different meteorological conditions in March, April and June 1991 in the urban atmosphere of Vienna in Austria. The samples collected with an impactor were examined by electron microscopy. The mixing properties of submicrometer aerosol particles with radii between 0.1 and 1 μm were studied by using the dialysis (extraction) of water-soluble material. The averaged results showed that more than 85% of particles with radii between 0.1 and 0.7 μm were hygroscopic. However, more than 50% of particles with radii larger than 0.2 μm were mixed particles (hygroscopic particles with water-insoluble inclusions), and they were dominant (80%) in the size range 0.5-0.7 μm radius. The results also showed that the number proportion of mixed particles increased with increasing radius and the abundance increased with increasing particle loading in the atmosphere. The volume fraction of water-soluble material ( ɛ) in mixed particles tended to decrease with increasing radius, implying the formation of mixed particles by heterogeneous processes such as condensation and/or surface reaction. Some results of elemental composition in individual particles analyzed with an energy-dispersive X-ray (EDX) analyzer equipped with an electron microscope are also presented in this paper.

  11. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Volkamer, R.

    2010-09-01

    This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA) in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a) oligomers, (b) nitrogen-containing products, (c) photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud) chemistry for the same conditions (liquid water content, particle size). The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated) process is the major SOA formation pathway forming ∼5 μg m-3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt). During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids) contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7). Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend on aerosol loading or water content, which indicates a

  12. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  13. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  14. Impact of aerosols and atmospheric particles on plant leaf proteins

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shi, Wen Z.; Zhao, Wen J.; Luo, Na N.

    2014-05-01

    Aerosols and atmospheric particles can diffuse and absorb solar radiation, and directly affect plant photosynthesis and related protein expression. In this study, for the first time, we performed an extensive investigation of the effects of aerosols and atmospheric particles on plant leaf proteins by combining Geographic Information System and proteomic approaches. Data on particles with diameters of 0.1-1.0 μm (PM1) from different locations across the city of Beijing and the aerosol optical depth (AOD) over the past 6 years (2007-2012) were collected. In order to make the study more reliable, we segregated the influence of soil pollution by measuring the heavy metal content. On the basis of AOD and PM1, two regions corresponding to strong and weak diffuse solar radiations were selected for analyzing the changes in the expression of plant proteins. Our results demonstrated that in areas with strong diffuse solar radiations, plant ribulose bisphosphate carboxylase was expressed at higher levels, but oxygen evolved in enhancer protein and light-harvesting complex II protein were expressed at lower levels. The expression of ATP synthase subunit beta and chlorophyll a-b binding protein were similar in both regions. By analyzing the changes in the expression of these leaf proteins and their functions, we conclude that aerosols and atmospheric particles stimulate plant photosynthesis facilitated by diffuse solar radiations.

  15. Light Absorption of Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.

    2014-12-01

    Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm

  16. Dominant Aerosol Particle Type/Mixture Identification at Worldwide Locations Using the Aerosol Robotic Network (AERONET)

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2011-12-01

    Aerosol absorption results in atmospheric heating for various forms of particulate matter - we address means of partitioning mineral dust, pollution (e.g., black and brown carbon), and mixtures of the two using remote sensing techniques. Remotely sensed spectral aerosol optical depth (AOD) and single scattering albedo (SSA) derived from Aerosol Robotic Network (AERONET) sun photometer measurements can be used to calculate the absorption aerosol optical depth (AAOD) at 440, 675, and 870 nm. The spectral change in AAOD with wavelength on logarithmic scales provides the absorption Angstrom exponent (AAE). Recently, a few studies have shown that the relationship between aerosol absorption (i.e., AAE or SSA) and aerosol size [i.e., Angstrom exponent (AE) or fine mode fraction (FMF) of the AOD] can estimate the dominant aerosol particle types/mixtures (i.e., dust, pollution, and dust and pollution mixtures) [Bergstrom et al., 2007; Russell et al., 2010; Lee et al. 2010; Giles et al., 2011]. To evaluate these methods, approximately 20 AERONET sites were grouped into various aerosol categories (i.e., dust, mixed, urban/industrial, and biomass burning) based on aerosol types/mixtures identified in previous studies. For data collected between 1999 and 2010, the long-term data set was analyzed to determine the magnitude of spectral AAOD, perform a sensitivity study on AAE by varying the spectral AOD and SSA, and identify dominant aerosol particle types/mixtures. An assessment of the spectral AAOD showed, on average, that the mixed (dust and pollution) category had the highest absorption (AAE ~1.5) followed by biomass burning (AAE~1.3), dust (AAE~1.7), and urban/industrial (AAE~1.2) categories with AAOD (440 nm) varying between 0.03 and 0.09 among these categories. Perturbing input parameters based on the expected uncertainties for AOD (±0.01) and SSA [±0.03; for cases where AOD(440 nm)>0.4], the sensitivity study showed the perturbed AAE mean varied from the unperturbed

  17. Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma.

    PubMed

    Mitchell, D M; Solomon, M A; Tolfree, S E; Short, M; Spiro, S G

    1987-06-01

    The particle size of bronchodilator aerosols may be important in determining the site of deposition in the lung and their therapeutic effect. The distribution of aerosols (labelled with technetium-99m diethylene triamine pentacetic acid) of two different particle sizes has been studied by gamma camera imaging. The particles had mass median aerodynamic diameters (geometric standard deviations) of 1.4 (1.4) and 5.5 (2.3) micron, and they were administered from a jet nebuliser to eight patients with chronic severe stable asthma. There was no significant difference in peripheral lung deposition with the two aerosols in any patient. The bronchodilator effect of the two aerosols was determined from cumulative dose-response studies. To avoid large doses that might mask possible differences in effect due to aerosol size, small, precisely determined incremental amounts of salbutamol (25-250 micrograms total lung dose) were used. The two doses were given via a nebuliser on separate occasions and the bronchodilator response was measured from FEV1, forced vital capacity, and peak expiratory flow 30 minutes after each dose. Bronchodilatation was similar with the two aerosols at each dose of salbutamol. There was therefore no difference in distribution within the lung or any difference in bronchodilator effect between an aerosol of small (1.4 micron) particle size and an aerosol of 5.5 microns in patients with severe but stable asthma. PMID:3660305

  18. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  19. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  20. Quantification of aerosol chemical composition using continuous single particle measurements

    NASA Astrophysics Data System (ADS)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-01-01

    Mass concentrations of particulate matter (PM) chemical components were determined from data for 0.3 to 3.0 μm particles measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) data at an urban and rural site. Hourly-averaged concentrations of nitrate, sulphate, ammonium, organic carbon, and elemental carbon, estimated based on scaled ATOFMS peak intensities of corresponding ion marker species, were compared with collocated chemical composition measurements by an Aerosol Mass Spectrometer (AMS), a Gas-Particle Ion Chromatograph (GPIC), and a Sunset Lab field OCEC analyzer. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 and 0.85 at the urban and rural sites, respectively. ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM chemical components at the rural site. Mass reconstruction using this ATOFMS based composition data agreed very well with the total PM mass measured at the rural site. Size distributions of the ten main types of particles were resolved for the rural site and the mass composition of each particle type was determined in terms of sulphate, nitrate, ammonium, organic carbon and elemental carbon. This is the first study to estimate hourly mass concentrations of individual aerosol components and the mass composition of individual particle-types based on ATOFMS single particle measurements.

  1. Single particle multichannel bio-aerosol fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Stanley, W. R.; Hirst, E.; Foot, E. V.; Baxter, K. L.; Barrington, S. J.

    2005-05-01

    We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1μm in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.

  2. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  3. Design of Aerosol Particle Coating: Thickness, Texture and Efficiency

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833

  4. Spatial and Temporal Variability of Aerosol Particles in Arctic Spring

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Liu, Peter; Earle, Michael; Zelenyuk, Alla

    2012-10-01

    The objective of this work is to investigate the variability in the particle number concentration that may affect climate change assessment for Arctic regions. The Indirect and Semi-Direct Aerosol Campaign (ISDAC) was conducted in April 2008, in the vicinities of Fairbanks and Barrow, Alaska. Measurements of particle number concentrations and size distributions were conducted using a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X) mounted under the Convair-580 aircraft wing. Total number concentration of particles (Na) with diameters in the range 0.12-3 μm was determined for polluted and clean air masses during times when the air was free of clouds and/or precipitation. Variability in Na was considered for both vertical profiles and constant altitude (horizontal) flight legs. This variability can have important implications for estimates of particle properties used in global climate model (GCM) simulations. When aerosol particle layers were encountered, Na rapidly increased from 25 cm-3 up to 550 cm-3 within relatively clean air masses, and reached up to 2200 cm-3 within polluted air masses, dominated by biomass burning pollution. When averaging Na over different distance scales, it was found that Na=140 cm-3 represent an average value for the majority of the encountered clean cases; while Na=720 cm-3 is a mean for polluted cases dominated by biomass burning plumes. These estimates, however, would not capture the details of particle layers encountered during most of the flights. Average aerosol particle characteristics can be difficult to interpret, especially during polluted cases, due to small-scale spatial and temporal variability.

  5. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  6. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  7. Studies of Ice Nucleating Aerosol Particles in Arctic Cloud Systems

    NASA Technical Reports Server (NTRS)

    Rogers, David C.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2001-01-01

    The focus of this research is to improve the understanding of ice nucleating aerosol particles (IN) and the role they play in ice formation in Arctic clouds. IN are important for global climate issues in a variety of ways. The primary effect is their role in determining the phase (liquid or solid) of cloud particles. The microscale impact is on cloud particle size, growth rate, shape, fall speed, concentration, radiative properties, and scavenging of gases and aerosols. On a larger scale, ice formation affects the development of precipitation (rate, amount, type, and distribution), latent heat release (rate and altitude), ambient humidity, the persistence of clouds, and cloud albedo. The overall goals of our FIRE 3 research are to characterize the concentrations and variability of Arctic IN during the winter-spring transition, to compare IN measurements with ice concentrations in Arctic clouds, and to examine selected IN samples for particle morphology and chemical there are distinguishable chemical signatures. The results can be combined with other measurements of aerosols, gaseous species, and cloud characteristics in order to understand the processes that determine the phase and concentration of cloud particles.

  8. The effect of phase partitioning of semivolatile compounds on the measured CCN activity of aerosol particles

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2013-09-01

    The effect of inorganic semivolatile aerosol compounds on the CCN activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big fraction of semivolatiles is evaporated from particles before activation in the CCN counter? (2) How much the CCN activity can be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? The results show that, to increase the CCN activity of aerosol particles, a very high gas phase concentration (as compared to typical ambient conditions) is needed. We used nitric acid as a test compound. A concentration of several ppb or higher is needed for measurable effect. In the case of particle evaporation, we used ammonium nitrate as a test compound and found that it partially evaporates before maximum supersaturation is reached in the CCN counter, thus causing an underestimation of CCN activity. The effect of evaporation is clearly visible in all supersaturations, leading to an underestimation of the critical dry diameter by 10 to 15 nanometres in the case of ammonium nitrate particles in different supersaturations. This result was also confirmed by measurements in supersaturations between 0.1 and 0.7%.

  9. Coagulation of monodisperse aerosol particles by isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Chun, J.; Koch, D. L.

    2005-02-01

    The rate of coagulation of initially monodisperse aerosols due to isotropic turbulence is studied with particular emphasis on the effects of noncontinuum hydrodynamics and particle inertia. The prevalence of these two factors distinguishes aerosol coagulation from the coagulation of colloidal particles. The turbulent flow seen by an interacting pair of particles is modelled as a stochastically varying flow field that is a linear function of position. This approximation is valid because the 1-10 micron diameter particles for which turbulence dominates coagulation are much smaller than the smallest eddies of a typical turbulent flow field. It is shown that the finite mean-free path of the gas enhances the rate of coagulation and leads to a finite coagulation rate even in the absence of van der Waals attractions. The coupled effects of turbulent shear and Brownian motion are treated. As in the case of laminar shear flows, it is found that Brownian motion plays an important role in the coagulation process even when the Peclet number is moderately large. It is shown that particle inertia increases the coagulation rate in two ways. First, preferential concentration increases the radial distribution function on length scales intermediate between the Kolmogorov length scale and the particle diameter. Second, the greater persistence of particles' relative motion during their local interaction leads to an increase in coagulation rate with increasing particle Stokes number.

  10. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  11. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    PubMed

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles. PMID:26820230

  12. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  13. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  14. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis. PMID:22739316

  15. Morphologies of aerosol particles consisting of two liquid phases

    NASA Astrophysics Data System (ADS)

    Song, Mijung; Marcolli, Claudia; Krieger, Ulrich; Peter, Thomas

    2013-04-01

    Recent studies have shown that liquid-liquid phase separation (LLPS) might be a common feature in mixed organic/ammonium sulfate (AS)/H2O particles. Song et al. (2012) observed that in atmospheric relevant organic/AS/H2O mixtures LLPS always occurred for organic aerosol compositions with O:C < 0.56, depended on the specific functional groups of organics in the range of 0.56 < O:C < 0.80 and never appeared for O:C > 0.80. The composition of the organic fraction and the mixing state of aerosol particles may influence deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of inorganic salts during RH cycles and also aerosol morphology. In order to determine how the deliquescence and efflorescence of AS in mixed organic/AS/H2O particles is influenced by LLPS and to identify the corresponding morphologies of the particles, we subjected organic/AS/H2O particles deposited on a hydrophobically coated substrate to RH cycles and observed the phase transitions using optical microscopy and Raman spectroscopy. In this study, we report results from 21 organic/AS/H2O systems with O:C ranging from 0.55 - 0.85 covering aliphatic and aromatic oxidized compounds. Eight systems did not show LLPS for all investigated organic-to-inorganic ratios, nine showed core-shell morphology when present in a two-liquid-phases state and four showed both, core-shell or partially engulfed configurations depending on the organic-to-inorganic ratio. While AS in aerosol particles with complete LLPS showed almost constant values of ERH = 44 ± 4 % and DRH = 77 ± 2 %, a strong reduction or complete inhibition of efflorescence occurred for mixtures that did not exhibit LLPS. To confirm these findings, we performed supplementary experiments on levitated particles in an electrodynamic balance and compared surface and interfacial tensions of the investigated mixtures. Reference Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter (2012), Liquid-liquid phase separation in

  16. Kinetic study of esterification of sulfuric acid with alcohols in aerosol bulk phase

    NASA Astrophysics Data System (ADS)

    Li, J.; Jang, M.

    2013-09-01

    In this study, we hypothesize that the formation of organosulfates through the reactions between sulfuric acid and alcohols in the aerosol bulk phase is more efficient than that in solution chemistry. To prove this hypothesis, the kinetics of the organosulfate formation was investigated for both aliphatic alcohol with single OH group (e.g., 1-heptanol) and the multialcohols ranging from semivolatiles (e.g., hydrated-glyoxal and glycerol) to nonvolatiles (e.g., sucrose) using analytical techniques directly monitoring aerosol bulk phase. Both the forward (k1) and the backward (k-1) reaction rate constants of organosulfate formation via the particle phase esterification of 1-heptanol with sulfuric acid were estimated using a Fourier Transform Infrared (FTIR) spectrometer equipped with a flow chamber under varying humidities. Both k1 and k-1 are in orders of 10-3 L mol-1 min-1, which are three orders of magnitude higher than the reported values obtained in solution chemistry. The formation of organosulfate in the H2SO4 aerosol internally mixed with multialcohols was studied by measuring the proton concentration of the aerosol collected on the filter using a newly developed Colorimetry integrated with a Reflectance UV-Visible spectrometer (C-RUV). The formation of organosulfate significantly decreases aerosol acidity due to the transformation of H2SO4 into dialkylsulfates. The forward reaction rate constants for the dialkylsulfate formation in the multialcohol-H2SO4 aerosols were also three orders of magnitude greater than the reported values in solution chemistry. The water content (MH2O) in the multialcohol-H2SO4 particle was monitored using the FTIR spectrometer. A large reduction of MH2O accords with the high yield of organosulfate in aerosol. Based on this study, we conclude that organosulfate formation in atmospheric aerosol, where both alcohols and sulfuric acid are found together, is significant.

  17. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles

    NASA Astrophysics Data System (ADS)

    Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.

    2016-09-01

    Aerosol growth dynamics may have implications for the steerability of stratospheric solar radiation management via sulfur particles. This paper derives a set of critical initial growth conditions that are analyzed as a function of two key parameters: the initial concentration of the injected sulfuric acid and its dilution rate with the surrounding air. Based upon this analysis, early aerosol growth dynamical regimes may be defined and classified in terms of their likelihood to serve as candidates for the controlled generation of a radiatively effective aerosol. Our results indicate that the regime that fulfills all critical conditions would require that airplane turbines be used to provide sufficient turbulence. The regime's parameter space is narrow and related to steep gradients, thus pointing to potential fine tuning requirements. More research, development, and testing would be required to refine our findings and determine their global-scale implications.

  18. Neural networks for aerosol particles characterization

    NASA Astrophysics Data System (ADS)

    Berdnik, V. V.; Loiko, V. A.

    2016-11-01

    Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.

  19. Ozone and secondary aerosol formation — Analysis of particle observations in the 2009 SHARP campaign

    NASA Astrophysics Data System (ADS)

    Cowin, J.; Yu, X.; Laulainen, N.; Iedema, M.; Lefer, B. L.; Anderson, D.; Pernia, D.; Flynn, J. H.

    2010-12-01

    Particulate matters (PM) play important roles in the formation and transformation of ozone. Although photooxidation of volatile organic compounds with respect to ozone formation in the gas phase is well understood, many unknowns still exist in heterogeneous mechanisms that process soot, secondary aerosols (both inorganic and organic), and key radical precursors such as formaldehyde and nitrous acid. Our main objective is to answer two key science questions: 1) will reduction of fine PM reduce ozone formation? 2) What sources of PM are most culpable? Are they from local chemistry or long-range transport? The field data collected in the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) by our group at the Moody Tower consist of 1) real-time photolysis rates of ozone precursors, 2) particle size distributions, 3) organic carbon and elemental carbon, and 4) an archive of single particle samples taken with the Time Resolved Aerosol Collector (TRAC) sampler. The time resolution of the TRAC sampler is 30 minutes for routine measurements, and 15 minutes during some identified “events” (usually in the mid-afternoon) of high ozone and secondary organic or sulfate particle formation. The latter events last typically about an hour. Five ozone exceedance days occurred during the 6 weeks of deployment. Strong correlation between photochemical activities and organic carbon was observed. Initial data analysis indicates that secondary organic aerosol is a major component of the carbonaceous aerosols observed in Houston. Soot, secondary sulfate, seal salt, and mineral dust particles are determined from single particle analysis using scanning electron microscope and transmission electron microcopy coupled with energy dispersive X-ray spectroscopy. Compared with observations in 2000, the mass percentage of organics is higher (60 vs. 30%), and lower for sulfate (20% vs. 32%). On-going data analysis will focus on the composition, sources, and transformation of primary and

  20. Aerosol acidity characterization of large metropolitan areas: Pilot and planning for Philadelphia

    SciTech Connect

    Waldman, J.M.; Koutrakis, P.; Burton, R.; Wilson, W.E.; Purdue, L.J.

    1993-01-01

    The report described the EPA's multi-year program to investigate the specific issues surrounding human exposures to aerosol activity. Philadelphia, a large metropolitan area in the heart of the northeastern seaboard afflicted with photochemical regional smog during the summertime, was chosen as the first city in the program. A pilot study of ambient concentrations was conducted in July 1991. An annular denuder system (ADS) sampler was operated for two weeks near downtown Philadelphia, with a second unit operated in central, suburban New Jersey, the same location of measurements in past years. The Philadelphia site was found to have higher concentrations of most major aerosol species, ammonia and acidic particles than in New Jersey, showing that aerosol neutralization within the urban center will not necessarily totally eliminate acidic particle exposures.

  1. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  2. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  3. Physical and chemical characterization of marine atmospheric aerosols over the North and South Pacific Oceans using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Jung, J.; Miura, K.; Uematsu, M.

    2010-12-01

    Physical and chemical properties of marine atmospheric aerosols were characterized and compared over the North and South Pacific Ocean during two trans-Pacific cruises (from Japan to Chile and Australia to Japan) during the period of January-June 2009, which cover broad region of Pacific Ocean from 40°N to 55°S and 140°E to 70°W. The measured parameters of aerosol properties were single particle size-resolved chemical composition (D = 100 ~ 1500 nm), cloud condensation nuclei (CCN) and condensation nuclei (CN) concentrations, size distribution from 10 nm to 5 μm, total aerosol nitrate and sulfate concentrations, and filter-based chemical composition. Trace gas concentrations of O3 and CO were also measured to aid air parcel categorization during the cruises. Reflecting larger anthropogenic emission in the Northern Hemisphere, pronounced concentration gradient between the North and South Pacific Ocean was observed for aerosol nitrate, CO, and O3. Aerosol sulfate also showed a similar concentration drop in the equatorial region, relatively higher sulfate concentration was observed in 30°S-40°S and 55°S regions, which was associated with increased aerosol methanesulfonic acid (MSA) concentration but little increase in local marine chlorophyll concentration, suggesting contribution of long-range transported marine biogenic sulfur from the high primary production area over the South Pacific high latitude region. Aerosol chemical classification by single particle chemical analysis revealed that certain aerosol types, such as biomass burning, elemental carbon, and elemental/organic carbon mixed type, were mainly observed in the North Pacific region, while several specific organic aerosol types with abundant aged organic and disulfur composition were identified in the South Pacific region. Further comparison of aerosol properties, aerosol sources, and atmospheric aerosol processing in the North and South Pacific Oceans will be discussed.

  4. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  5. Extractive Electrospray Ionization Mass Spectrometry of Heterogeneous Particles: Implications for Applications to Complex Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Longin, T.; Waring-Kidd, C.; Wingen, L. M.; Lyster, K.; Anderson, C.; Kumbhani, S.; Finlayson-Pitts, B. J.

    2015-12-01

    Extractive electrospray ionization mass spectrometry (EESI-MS) is a direct, real time technique for obtaining mass spectra of gases, liquid droplets, solid particles, and aerosols with little sample processing. EESI-MS involves the interaction of charged electrospray droplets with a separate spray containing the analyte of interest, but the exact mechanism by which the solvent droplets extract analyte from the sample is unclear. Possible mechanisms include complete coalescence of the sample particle with the solvent droplet in which all of the analyte is incorporated into the solvent or a more temporary interaction such that only some of the analyte is transferred to the solvent. Previous studies of the mechanism of EESI-MS on homogeneous particles indicate that both mechanisms are possible. We studied the behavior of EESI-MS toward heterogeneous particles created by coating NaCl particles with various thicknesses of organic diacids. Our results indicate that the signal strength depends on the solubility of the organic acid in the electrospray solvent, in agreement with previous studies, and also that the outer 10-15 nm of the particles are most susceptible to extraction into the electrospray droplets. Our results combined with those of previous studies suggest that the mass spectra obtained with EESI will not necessarily reflect the overall particle composition, especially for particles that are spatially inhomogeneous, and hence caution in interpretation of the data is advised for application to complex atmospheric aerosol.

  6. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.

  7. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem

  8. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  9. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  10. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer

  11. Hydrolysis of organonitrate functional groups in aerosol particles

    SciTech Connect

    Liu, Shang; Shilling, John E.; Song, Chen; Hiranuma, Naruki; Zaveri, Rahul A.; Russell, Lynn M.

    2012-10-19

    Organonitrate (ON) groups are important substituents in secondary organic aerosols. Model simulations and laboratory studies indicate a large fraction of ON groups in aerosol particles, but much lower quantities are observed in the atmosphere. Hydrolysis of ON groups in aerosol particles has been proposed recently. To test this hypothesis, we simulated formation of ON molecules in a reaction chamber under a wide range of relative humidity (0% to 90%). The mass fraction of ON groups (5% to 20% for high-NOx experiments) consistently decreased with increasing relative humidity, which was best explained by hydrolysis of ON groups at a rate of 4 day-1 (lifetime of 6 hours) for reactions under relative humidity greater than 20%. In addition, we found that secondary nitrogen-containing molecules absorb light, with greater absorption under dry and high-NOx conditions. This work provides the first evidence for particle-phase hydrolysis of ON groups, a process that could substantially reduce ON group concentration in the atmosphere.

  12. Composition and Particle Size Retrievals for Homogeneous Binary Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Argon, P.; Bejcek, L.

    2014-12-01

    Tropospheric aerosols have widely varying compositions, shapes, and sizes. The ability to measure these physical characteristics, coupled with knowledge about their optical properties, can provide insight as to how these particles might participate in atmospheric processes, including their interaction with light. Over the past several years, our laboratory has been involved in developing methods to determine basic physical properties of laboratory-generated particles based on the analysis of infrared extinction spectra of multi-component aerosols. Here we report the results of a complete study on the applicability of well-known refractive index mixing rules to homogeneous binary liquid organic aerosols in an effort to yield in situ measurements of particle size and composition. In particular, we present results for terpenoid (carvone/nopinone) and long-chain hydrocarbon (squalane/squalene) mixtures. The included image shows model carvone/nopinone extinction spectra that were computed using the Lorentz-Lorenz mixing rule on complex refractive index data for the pure components.

  13. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-08-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10-4-~ 3 × 10-3 depending on humidity (17-70 % RH). This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  14. Ion balances of size-resolved tropospheric aerosol samples: implications for the acidity and atmospheric processing of aerosols

    NASA Astrophysics Data System (ADS)

    Kerminen, Veli-Matti; Hillamo, Risto; Teinilä, Kimmo; Pakkanen, Tuomo; Allegrini, Ivo; Sparapani, Roberto

    A large set of size-resolved aerosol samples was inspected with regard to their ion balance to shed light on how the aerosol acidity changes with particle size in the lower troposphere and what implications this might have for the atmospheric processing of aerosols. Quite different behaviour between the remote and more polluted environments could be observed. At the remote sites, practically the whole accumulation mode had cation-to-anion ratios clearly below unity, indicating that these particles were quite acidic. The supermicron size range was considerably less acidic and may in some cases have been close to neutral or even alkaline. An interesting feature common to the remote sites was a clear jump in the cation-to-anion ratio when going from the accumulation to the Aitken mode. The most likely reason for this was cloud processing which, via in-cloud sulphate production, makes the smallest accumulation-mode particles more acidic than the non-activated Aitken-mode particles. A direct consequence of the less acidic nature of the Aitken mode is that it can take up semi-volatile, water-soluble gases much easier than the accumulation mode. This feature may have significant implications for atmospheric cloud condensation nuclei production in remote environments. In rural and urban locations, the cation-to-anion ratio was close to unity over most of the accumulation mode, but increased significantly when going to either larger or smaller particle sizes. The high cation-to-anion ratios in the supermicron size range were ascribed to carbonate associated with mineral dust. The ubiquitous presence of carbonate in these particles indicates that they were neutral or alkaline, making them good sites for heterogeneous reactions involving acidic trace gases. The high cation-to-anion ratios in the Aitken mode suggest that these particles contained some water-soluble anions not detected by our chemical analysis. This is worth keeping in mind when investigating the hygroscopic

  15. Graphical techniques for interpreting the composition of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Rahn, Kenneth A.; Zhuang, Guoshun

    A graphical technique that uses X- Y and ternary plots is presented for interpreting elemental data for individual aerosol particles. By revealing the multiple functional relationships between the elements, it offers more insight into the groups of particles and the transitions between them than traditional techniques such as factor analysis and cluster analysis alone are able to. For a sample of dust storm aerosol from Beijing in March 2002, X-Y plots revealed areas, lines, and "dots" that represented clays, smooth transitions to asymptotes of pure single-component minerals, and pure minor minerals or special particles, respectively. Ternary plots further revealed ratios of elements and potential minerals. Careful use of cluster analysis revealed subgroups of particles that were not separated by clear borders. The dust storm had three major components, clay/quartz (Al 2O 3, SiO 2, etc.), basic calcium (CaO, CaCO 3), and salts (sulfate, phosphate, chloride). Some sulfates, including CaSO 4 and (NH 4) xH 2-xSO 4, were mixed with the quartz and clay. A five-step sequence that combines graphics, basic statistics, cluster analysis, and SEM photography seems to extract the maximum information from suites of single particles.

  16. Cooling enhancement of aerosol particles due to surfactant precipitation.

    PubMed

    Beaver, Melinda R; Freedman, Miriam A; Hasenkopf, Christa A; Tolbert, Margaret A

    2010-07-01

    Light extinction by particles in Earth's atmosphere is strongly dependent on the particle size, chemical composition, and ability to take up water. In this work, we have measured the optical growth factors, fRH(ext)(RH, dry), for complex particles composed of an inorganic salt, sodium nitrate, and an anionic surfactant, sodium dodecyl sulfate. In contrast with previous studies using soluble and slightly soluble organic compounds, optical growth in excess to that expected based on the volume weighted water uptake of the individual components is observed. We explored the relationship between optical growth and concentration of surfactant by investigating the role of particle density, the effect of a surfactant monolayer, and increased light extinction by surfactant aggregates and precipitates. For our experimental conditions, it is likely that surfactant precipitates are responsible for the observed increase in light scattering. The contribution of surfactant precipitates to light scattering of aerosol particles has not been previously explored and has significant implications for characterizing the aerosol direct effect.

  17. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  18. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  19. The Arctic polar stratospheric cloud aerosol - Aircraft measurements of reactive nitrogen, total water, and particles

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Kelly, K. K.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1992-01-01

    In situ aircraft measurements in the lower stratosphere are used to investigate the reactive nitrogen, NO(y), total water, and particle components of the polar stratospheric cloud (PSC) aerosol in the Arctic. The results are compared to findings from the Antarctic derived using similar measurements and interpretive techniques. The Arctic data show that particle volume well above background values is present at temperatures above the frostpoint, confirming the result from the Antarctic that the observed PSCs are not water ice particles. NO(y) measurements inside a PSC are enhanced above ambient values consistent with anisokinetic sampling of particles containing NO(y). In the Arctic data over long segments of several flights, calculations show saturation with respect to nitric acid trihydrate without significant PSC particle growth above background.

  20. Particle Property Data Quality Flags for the MISR Aerosol Product

    NASA Astrophysics Data System (ADS)

    Gaitley, B. J.; Kahn, R. A.; Garay, M. J.

    2012-12-01

    The MISR instrument aboard the NASA Earth Observing System's Terra satellite has the unique capability to retrieve aerosol properties under favorable conditions. General aerosol type retrieval quality guidelines are provided in the MISR Data Quality Statement and related publications. Here we report on the steps we are taking to provide an aerosol-type data quality flag, to be provided with each individual retrieval result. Some factors affecting retrieval quality that can be assessed pre-retrieval are the number of cameras available, the range of scattering angles and surface conditions such as shallow water or seasonal coastal runoff. Factors that must be assessed post-retrieval include low values of retrieved optical depth and the number and type of mixtures successfully passing the MISR algorithm acceptance criteria. Regional monthly plots with MISR measurements binned at 0.5 degree resolution with color-coded stratification of one or more parameters is the main method for identifying locations and times where particle properties are retrieved. Individual MISR values such as mid-visible AOD, number and type of mixtures passing, number of cameras used, the range and maximum scattering angles are plotted individually or as joint distributions. Initially, thresholds and conditions are determined for each MISR parameter separately. Finally, MISR parameters are combined for a given month and region, with their thresholds, to show the overall quality of the retrieval for determining particle properties. Multi-month summaries for more than twelve years of MISR data will aid in assessing quality. Seasons and regions that regularly show poorly constrained aerosol type results are identified, as are times and places where particle property information can be used with confidence. This work is performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and in part at the NASA

  1. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    EPA Science Inventory

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  2. Heterogeneous conversion of calcite aerosol by nitric acid.

    PubMed

    Preszler Prince, A; Grassian, V H; Kleiber, P; Young, M A

    2007-02-01

    The reaction of nitric acid with calcite aerosol at varying relative humidities has been studied under suspended particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reactant concentration in the chamber, as well as the appearance of gas phase products and surface adsorbed species, was spectroscopically monitored before and after mixing with CaCO(3) (calcite) particles. The interaction with HNO(3) was found to lead to gas phase CO(2) evolution and increased water uptake due to heterogeneous conversion of the carbonate to particulate nitrate. The reaction was enhanced as the relative humidity of the system was increased, especially at relative humidities above the reported deliquescence point of particulate Ca(NO(3))(2). The measured reaction extent demonstrates that the total calcite particulate mass is available for reaction with HNO(3) and the conversion process is not limited to the particle surface. The spectroscopy of the surface formed nitrate suggests a highly concentrated solution environment with a significant degree of ion pairing. The implications of the HNO(3) loss and the formation of the particulate nitrate product for atmospheric chemistry are discussed. PMID:17242744

  3. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  4. A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Haenel, G.; Pruppacher, H. R.

    1980-01-01

    The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.

  5. Individual Aerosol Particle Types Produced by Savanna Burning

    NASA Astrophysics Data System (ADS)

    Posfai, M.; Simonics, R.; Li, J.; Hobbs, P. V.; Buseck, P. R.; Buseck, P. R.

    2001-12-01

    We used analytical transmission electron microscopy (TEM) to study individual aerosol particles that were collected on the University of Washington Convair-580 research aircraft over southern Africa during the Safari2000 Dry Season Experiment. Our goals were to study the compositions, morphologies, and mixing states of carbonaceous particles, in order to better understand the physical and chemical properties of biomass smoke on the individual-particle level. The compositions of single particles were determined using energy-dispersive x-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS). Energy-loss maps obtained with the TEM are useful for studying the spatial distribution of light elements such as carbon within the particles; thus, they provide a detailed picture of complex particles. Carbonaceous particles were assigned into three main groups on the basis of morphology and composition: "organic particles with inorganic inclusions," "tar balls," and "soot." Soot is recognized by its characteristic morphology and microstructure. The distinction between "organic particles with inorganic inclusions" and "tar balls" is somewhat arbitrary, since the two criteria that are used for their distinction (composition and aspect ratio) change continually. The relative concentrations of the three major particle types vary with the type of fire and distance from fire. In the plume of a smoldering fire west of Beria (August 31) the relative concentration of tar balls increased with aging of the plume. Tar balls have a fairly narrow size distribution with a maximum between 100 and 200 nm (diameter). The inorganic K-salt inclusions (KCl, K2SO4, KNO3) within "organic particles" should make these particles hygroscopic, regardless of the properties of the organic compounds. Aging causes the conversion of KCl into K2SO4, KNO3. Aerosol production from flaming and smoldering fires was compared over Kruger National Park on August 17; more soot and more Cl-rich inclusions

  6. A Robust Computational Method for Coupled Liquid-liquid Phase Separation and Gas-particle Partitioning Predictions of Multicomponent Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Di Stefano, A.

    2014-12-01

    Providing efficient and reliable model predictions for the partitioning of atmospheric aerosol components between different phases (gas, liquids, solids) is a challenging problem. The partitioning of water, various semivolatile organic components, inorganic acids, bases, and salts, depends simultaneously on the chemical properties and interaction effects among all constituents of a gas + aerosol system. The effects of hygroscopic particle growth on the water contents and physical states of potentially two or more liquid and/or solid aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. Considering the presence of a liquid-liquid phase separation in aerosol particles, which typically leads to one phase being enriched in rather hydrophobic compounds and the other phase enriched in water and dissolved electrolytes, adds a high degree of complexity to the goal of predicting the gas-particle partitioning of all components. Coupled gas-particle partitioning and phase separation methods are required to correctly account for the phase behaviour of aerosols exposed to varying environmental conditions, such as changes to relative humidity. We present new theoretical insights and a substantially improved algorithm for the reliable prediction of gas-particle partitioning at thermodynamic equilibrium based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. We introduce a new approach for the accurate prediction of the phase distribution of multiple inorganic ions between two liquid phases, constrained by charge balance, and the coupling of the liquid-liquid equilibrium model to a robust gas-particle partitioning algorithm. Such coupled models are useful for exploring the range of environmental conditions leading to complete or incomplete miscibility of aerosol constituents which will affect

  7. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  8. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles

    NASA Astrophysics Data System (ADS)

    Mochida, Michihiro; Kawamura, Kimitaka

    2004-11-01

    Biomass burning, which is characterized by pyrolysis as well as vaporization and condensation of biomass constituents, is a significant source of atmospheric organic aerosols. In this study, hygroscopic properties of five organic compounds (levoglucosan, D-glucose, and vanillic, syringic, and 4-hydroxybenozoic acids), which are major pyrolysis products of wood, were measured using a tandem differential mobility analyzer. Levoglucosan, which is typically the most abundant species in wood burning aerosols, showed a significant hygroscopic growth for particles with a diameter of 100 nm. No efflorescence was observed under the measured relative humidity, and a supersaturated condition of levoglucosan-water particles was observed. The growth factors of levoglucosan are 1.08, 1.18, 1.23, and 1.38 at relative humidity (RH) of 60, 80, 85, and 90%, respectively. The measured hygroscopic curves are in general consistent with those estimated from ideal solution theory and Uniquac Functional-Group Activity Coefficient (UNIFAC) and Conductor-Like Screening Model for Real Solvent (COSMO-RS) methods. Significant hygroscopic growth was also observed for D-glucose, whose growth factor is quite similar to that of levoglucosan. However, three model pyrolysis products of lignin (i.e., vanillic-, syringic-, and 4-hydroxybenzoic acids) did not show any hygroscopic growth under the RH conditions up to 95%. On the basis of the organic composition of wood burning aerosols, the water absorption attributed to levoglucosan in wood burning aerosols is calculated to be up to 30% of the organic mass at 90% RH. This study demonstrates that oxygenated organics emitted from biomass burning could significantly enhance the hygroscopic properties of atmospheric aerosols.

  9. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  10. Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets.

    PubMed

    Sassen, K; Zhao, H; Yu, B K

    1989-08-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 microm) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of delta approximately 0.02, but delta approximately 0.10-0.15 are generated from acid droplet crystallization effects associated with recycled aerosols and the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar delta approximately 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (delta approximately 0) or ice crystal (delta approximately 0.5) clouds.

  11. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  12. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    SciTech Connect

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  13. Composition of Stratospheric Aerosol Particles collected during the SOLVE campaign 2000

    NASA Astrophysics Data System (ADS)

    Schütze, Katharina; Nathalie, Benker; Martin, Ebert; Ralf, Weigel; Wilson James, C.; Stephan, Borrmann; Stephan, Weinbruch

    2016-04-01

    Stratospheric Aerosol particles were collected during the SAGE III Ozone loss and validation Experiment (SOLVE) in January-March 2000 in Kiruna/ Sweden onboard the scientific ER-2 aircraft with the Multi-Sample Aerosol Collection System. The particles are deposited on Cu transmission electron microscopy (TEM) grids. Particles of six samples from different flights (including one PSC sample) were analyzed by TEM and Energy Dispersive X-ray detection (EDX) regarding their size, chemical composition and morphology. Most particles are sulfates (formed from droplets of sulfuric acid) which are not resistant to the electron beam. In addition, refractory particles in the size range of 100-500 nm are found. They are either embedded in the sulfates or occur as single particles. The refractory particles are mainly carbonaceous showing only C and O as major peaks in their X-ray spectra. Some particles contain minor amounts of Si and Fe. Both, the O/C (median from 0.10-0.40), as well as Si/C (median from 0.05-0.32) ratios are increasing with time, from the middle of January to the end of February. The largest Fe/C ratio (median: 0.37) is found in a sample of the end of January. Based on the nanostructure and the absence of potassium as a tracer, biomass burning can be excluded as a source. Soot from diesel engines as well as from aircrafts show a nanostructure which is not found in the refractory particles. Due to the fact that large volcanic eruptions, which introduced material directly into the stratosphere, were missing since the eruption of Mt. Pinatubo in 1991, they are a very unlikely source of the refractory particles. The most likely source of the refractory particles is thus extraterrestrial material.

  14. Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Marlow, William H.

    1997-01-01

    The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

  15. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  16. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency.

    PubMed

    Fu, Huijing; Patel, Anand C; Holtzman, Michael J; Chen, Da-Ren

    2011-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed.

  17. A method to resolve the phase state of aerosol particles

    NASA Astrophysics Data System (ADS)

    Saukko, E.; Kuuluvainen, H.; Virtanen, A.

    2012-01-01

    The phase state of atmospheric aerosols has an impact on their chemical aging and their deliquescence and thus their ability to act as cloud condensation nuclei (CCN). The phase change of particles can be induced by the deliquescence or efflorescence of water or by chemical aging. Existing methods, such as tandem differential mobility analysis rely on the size change of particles related to the water uptake or release. To address the need to study the phase change induced by mass-preserving and nearly mass-preserving processes a new method has been developed. The method relies on the physical impaction of particles on a smooth substrate and subsequent counting of bounced particles by a condensation particle counter (CPC). The connection between the bounce probability and physical properties of particles is so far qualitative. To evaluate the performance of this method, the phase state of ammonium sulfate and levoglucosan, crystalline and amorphous solid, in the presence of water vapor was studied. The results show a marked difference in particle bouncing properties between substances - not only at the critical relative humidity level, but also on the slope of the bouncing probability with respect to humidity. This suggests that the method can be used to differentiate between amorphous and crystalline substances as well as to differentiate between liquid and solid phases.

  18. A method to resolve the phase state of aerosol particles

    NASA Astrophysics Data System (ADS)

    Saukko, E.; Kuuluvainen, H.; Virtanen, A.

    2011-10-01

    The phase state of atmospheric aerosols has impact on their chemical aging and their deliquescence and thus their ability to act as cloud condensation nuclei (CCN). The phase change of particles can be induced by the deliquescence or efflorescence of water or by chemical aging. Existing methods, such as tandem differential mobility analysis rely on the size change of particles related to the water uptake or release related to deliquescence and efflorescence. To address the need to study the phase change induced by mass-preserving and nearly mass-preserving processes a new method has been developed. The method relies on the physical impaction of particles on a smooth substrate and subsequent counting of bounced particles by condensation particle counter (CPC). The connection between the bounce probability and physical properties of particles is so far qualitative. To evaluate the performance of this method, the phase state of ammonium sulfate and levoglucosan, crystalline and amorphous solid, in the presence of water vapor was studied. The results show a marked difference in particle bouncing properties between substances - not only at the critical relative humidity level, but also on the slope of the bouncing probability with respect to humidity. This suggests that the method can be used to differentiate between amorphous and crystalline substances as well as to differentiate between liquid and solid phases.

  19. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  20. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency.

    PubMed

    Fu, Huijing; Patel, Anand C; Holtzman, Michael J; Chen, Da-Ren

    2011-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  1. Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri

    2011-09-01

    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.

  2. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a nonhuman-primate, head-only aerosol chamber

    PubMed Central

    Bohannon, J. Kyle; Lackemeyer, Matthew G.; Kuhn, Jens H.; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B.; Johnson, Reed F.

    2016-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05–500 μm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modelled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to nonhuman primates within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of nonhuman primate infectious disease models. Here we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  3. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber.

    PubMed

    Bohannon, J Kyle; Lackemeyer, Matthew G; Kuhn, Jens H; Wada, Jiro; Bollinger, Laura; Jahrling, Peter B; Johnson, Reed F

    2015-01-01

    Aerosol droplets or particles produced from infected respiratory secretions have the potential to infect another host through inhalation. These respiratory particles can be polydisperse and range from 0.05 to 500 µm in diameter. Animal models of infection are generally established to facilitate the potential licensure of candidate prophylactics and/or therapeutics. Consequently, aerosol-based animal infection models are needed to properly study and counter airborne infections. Ideally, experimental aerosol exposure should reliably result in animal disease that faithfully reproduces the modeled human disease. Few studies have been performed to explore the relationship between exposure particle size and induced disease course for infectious aerosol particles. The center flow tangential aerosol generator (CenTAG™) produces large-particle aerosols capable of safely delivering a variety of infectious aerosols to non-human primates (NHPs) within a Class III Biological Safety Cabinet (BSC) for establishment or refinement of NHP infectious disease models. Here, we report the adaptation of this technology to the Animal Biosafety Level 4 (ABSL-4) environment for the future study of high-consequence viral pathogens and the characterization of CenTAG™-created sham (no animal, no virus) aerosols using a variety of viral growth media and media supplements. PMID:25970823

  4. Gas uptake and chemical aging of semisolid organic aerosol particles.

    PubMed

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-07-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate.

  5. Furnace-generated acid aerosols: speciation and pulmonary effects.

    PubMed

    Amdur, M O; Chen, L C

    1989-02-01

    Guinea pigs were exposed to ultrafine aerosols (less than 0.1 micron) of zinc oxide with a surface layer of sulfuric acid. These acid-coated aerosols are typical of primary emissions from smelters and coal combustors. Repeated daily 3-hr exposures for 5 days produce decrements in lung volumes and pulmonary diffusing capacity and elevations of lung weight/body weight ratio, protein, and number of neutrophils in pulmonary lavage fluid at concentrations of 20 micrograms/m3. A single 1-hr exposure to 20 micrograms/m3 causes increased bronchial reactivity. Higher concentrations of conventionally generated sulfuric acid mist are required to produce responses of similar magnitude.

  6. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  7. Method for determining aerosol particle size device for determining aerosol particle size

    DOEpatents

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  8. Characterization and reconstruction of historical London, England, acidic aerosol concentrations

    SciTech Connect

    Ito, K.; Thurston, G.D.

    1989-02-01

    Several past studies of the historical London air pollution record have reported an association between daily mortality and British Smoke levels. However, this pollution index does not give direct information on particulate mass or its chemical composition. A more specific particulate matter index, aerosol acidity, was measured at a site in central London, and daily data are available for the period 1963-1972. British smoke and SO/sub 2/ were also measured at the same site. Also, meteorological parameters were routinely measured at a nearby British Meteorological Office. Thus, daily fluctuation of the acidic aerosols was characterized in terms of other environmental parameters. Each of the other parameters analyzed seems necessary, but not sufficient to explain a high level of acidic aerosol. Overall, about half of the variance of log-transformed daily fluctuations of acidic aerosols can be explained by a combination of parameters including SO/sub 2/ and British smoke concentrations, temperature, ventilation by wind, and humidity. The rest of the variance cannot be explained by the parameters included in this analysis. Potential factors responsible for this unique variance would be variations in the availability of basic gases to cause neutralization and variation in the availability of catalytic metal salts. Because the acidic aerosol has a unique component of variation, it may be possible to distinguish health effects due to this specific pollutant from other available pollution indices or environmental factors.

  9. Characterization and reconstruction of historical London, England, acidic aerosol concentrations.

    PubMed

    Ito, K; Thurston, G D

    1989-02-01

    Several past studies of the historical London air pollution record have reported an association between daily mortality and British Smoke levels. However, this pollution index does not give direct information on particulate mass or its chemical composition. A more specific particulate matter index, aerosol acidity, was measured at a site in central London, and daily data are available for the period 1963-1972. British Smoke and SO2 were also measured at the same site. Also, meteorological parameters were routinely measured at a nearby British Meteorological Office. Thus, daily fluctuation of the acidic aerosols was characterized in terms of other environmental parameters. Each of the other parameters analyzed seems necessary, but not sufficient to explain a high level of acidic aerosol. Overall, about half of the variance of log-transformed daily fluctuations of acidic aerosols can be explained by a combination of parameters including SO2 and British Smoke concentrations, temperature, ventilation by wind, and humidity. The rest of the variance cannot be explained by the parameters included in this analysis. Potential factors responsible for this unique variance would be variations in the availability of basic gases to cause neutralization and variation in the availability of catalytic metal salts. Because the acidic aerosol has a unique component of variation, it may be possible to distinguish health effects due to this specific pollutant from other available pollution indices or environmental factors.

  10. SAGE II aerosol validation: selected altitude measurements, including particle micromeasurements.

    PubMed

    Oberbeck, V R; Livingston, J M; Russell, P B; Pueschel, R F; Rosen, J N; Osborn, M T; Kritz, M A; Snetsinger, K G; Ferry, G V

    1989-06-20

    Correlative aerosol measurements taken at a limited number of altitudes during coordinated field experiments are used to test the validity of particulate extinction coefficients derived from limb path solar radiance measurements taken by the Stratospheric Aerosol and Gas Experiment (SAGE) II Sun photometer. In particular, results are presented from correlative measurement missions that were conducted during January 1985, August 1985, and July 1986. Correlative sensors included impactors, laser spectrometers, and filter samplers aboard an U-2-airplane, an upward pointing lidar aboard a P-3 airplane, and balloon-borne optical particle counters (dustsondes). The main body of this paper focuses on the July 29, 1986, validation experiment, which minimized the many difficulties (e.g., spatial and temporal inhomogeneities, imperfect coincidences) that can complicate the validation process. On this day, correlative aerosol measurements taken at an altitude of 20.5 km agreed with each other within their respective uncertainties, and particulate extinction values calculated at SAGE II wavelengths from these measurements validated corresponding SAGE II values. Additional validation efforts on days when measurement and logistical conditions were much less favorable for validation are discussed in an appendix.

  11. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  12. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period. PMID:23947016

  13. [Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)].

    PubMed

    Mu, Ying-Ying; Lou, Sheng-Rong; Chen, Chang-Hong; Zhou, Min; Wang, Hong-Li; Zhou, Zhen; Qiao, Li-Ping; Huang, Cheng; Li, Mei; Li, Li; Wang, Qian; Huang, Hai-Ying; Zou, Lan-Jun

    2013-06-01

    A single particle aerosol mass spectrometer (SPAMS) was applied to characterize the size distribution (200 nm-2.0 microm) and chemical compositions of ambient particles during a polluted event from 11th to 18th, November 2011. OCEC, METAL, EC, SECONDARY and K-Na types of particulates were the dominant groups observed in hazy day period, which were 27.4%, 3.4%, 7.3% , 45.6% and 5.4% of the overall measured particles, respectively. The observed five types of particles contained the secondary composition such as 18NH4(+), 80SO3(-), 96SO4(-), 97HSO4(-), 46NO2(-), 62NO3(-) and 125H (NO3) -, showing that they probably went through different aging processes, and the increasing of the SECONDARY particles during the event clearly indicated a secondary aerosol pollution. Heterogeneous reactions of SO2 and particles could be the reason of strong 97HSO4(-) signals in the mass spectrums of OCEC type particles while the existence of organic compounds might have an important influence on the aerosol formation with the gas-phase sulfuric acid. Fresh EC particles in the environment tended to be aging with above-mentioned secondary ions by the analysis of particle size distribution and eventually lead to a particle type conversion from EC to SECONDARY. Organic amine in marine environment was brought to the land by the warm, moist marine air mass that dramatically removed atmospheric SECONDARY and OCEC particles from the air with a heavy rain and leading to the observation of amine particles in the clean day period.

  14. Pulmonary function and clearance after prolonged sulfuric acid aerosol exposure

    SciTech Connect

    Ives, P.J. ); Gerrity, T.R.; DeWitt, P.; Folinsbee, L.J. )

    1991-03-15

    The authors studied pulmonary function and clearance responses after a 4 H exposure to 75-100 {mu}g/m{sup 3} sulfuric acid aerosol (SAA). Healthy subjects, who exercised for 30 min/H at ventilation of about 25 L/min, were exposed once to clean air and once to SAA. Oral hygiene and acidic juice gargle were used to minimize oral ammonia. Lung function tests, including spirometry, plethysmography, and partial flow-volume (PEFV) curves were performed before and after exposure. Clearance of 99m-Technetium labeled iron oxide was assessed after each exposure. The first moment of fractional tracheobronchial retention (M1TBR), after correcting for 24 H retention and normalizing to time zero, was used as an index of clearance. There were no significant changes in lung volumes, airways resistance, or maximum expiratory flows after SAA exposure. Flow at 40% of total lung capacity on PEFV curves decreased 17% (NS) after SAA exposure. Tracheobronchial clearance was accelerated after a single exposure to SAA; M1TBR decreased from 73 {plus minus} 5 min (air) to 69 {plus minus} 5 min (SAA). These results suggest that acute prolonged exposure to low levels of SAA has minimal effects on lung mechanics in healthy subjects but does produce a modest acceleration of particle clearance.

  15. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  16. Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2014-07-01

    In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  17. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3

    NASA Astrophysics Data System (ADS)

    Sipilä, Mikko; Sarnela, Nina; Jokinen, Tuija; Henschel, Henning; Junninen, Heikki; Kontkanen, Jenni; Richters, Stefanie; Kangasluoma, Juha; Franchin, Alessandro; Peräkylä, Otso; Rissanen, Matti P.; Ehn, Mikael; Vehkamäki, Hanna; Kurten, Theo; Berndt, Torsten; Petäjä, Tuukka; Worsnop, Douglas; Ceburnis, Darius; Kerminen, Veli-Matti; Kulmala, Markku; O'Dowd, Colin

    2016-09-01

    Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

  18. Method for determining aerosol particle size, device for determining aerosol particle size

    DOEpatents

    Novick, V.J.

    1998-10-06

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

  19. Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Collins, Lance R.; Meng, Hui

    2004-01-01

    A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.

  20. Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.

  1. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; Knopf, Daniel A.

    2014-07-01

    Organic aerosol can exhibit different phase states in response to changes in relative humidity (RH), thereby influencing heterogeneous reaction rates with trace gas species. OH radical uptake by laboratory-generated levoglucosan and methyl-nitrocatechol particles, serving as surrogates for biomass burning aerosol, is determined as a function of RH. Increasing RH lowers the viscosity of amorphous levoglucosan aerosol particles enabling enhanced OH uptake. Conversely, OH uptake by methyl-nitrocatechol aerosol particles is suppressed at higher RH as a result of competitive coadsorption of H2O that occupies reactive sites. This is shown to have substantial impacts on organic aerosol lifetimes with respect to OH oxidation. The results emphasize the importance of organic aerosol phase state to accurately describe the multiphase chemical kinetics and thus chemical aging process in atmospheric models to better represent the evolution of organic aerosol and its role in air quality and climate.

  2. Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols.

    PubMed

    Riva, Matthieu; Bell, David M; Hansen, Anne-Maria Kaldal; Drozd, Greg T; Zhang, Zhenfa; Gold, Avram; Imre, Dan; Surratt, Jason D; Glasius, Marianne; Zelenyuk, Alla

    2016-06-01

    Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size. PMID:27176464

  3. Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols.

    PubMed

    Riva, Matthieu; Bell, David M; Hansen, Anne-Maria Kaldal; Drozd, Greg T; Zhang, Zhenfa; Gold, Avram; Imre, Dan; Surratt, Jason D; Glasius, Marianne; Zelenyuk, Alla

    2016-06-01

    Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size.

  4. Water nucleation properties of chaparral fire aerosol particles

    SciTech Connect

    Hudson, J.G.; Rogers, C.F.; Hallett, J.

    1989-05-01

    In December, 1986, planned and prescribed forest management burns took place at Lodi Canyon, on the north side of the Los Angeles Basin, California. These fires involved a mixture of species of small trees and shrubs, including scrub oak, chamise, and mountain mahogany, known collectively as ''chaparral'' in the Western US. Over a period of about two weeks, about 200 hectares of chaparral were consumed. This prescribed burn presented an opportunity for three days of airborne measurements of aerosol properties including total particle or condensation nuclei (CN) concentrations and cloud condensation nuclei (CCN) concentrations. This study is in coordination with other efforts conducted simultaneously; here the emphasis will be on the airborne CN and CCN measurements and on related studies conducted on a laboratory scale. In this study, we distinguish between CCN and the total aerosol particle population as gauged by the CN count. CCN and CN concentrations and CCN/CN ratios will be presented for the airborne measurements and for laboratory measurements employing a similar fuel. Ancillary ion chromatography (IC) and scanning electron microscopy (SEM) information will also be presented for the laboratory-scale chaparral burn. 11 refs., 4 figs., 4 tabs.

  5. Real-Time Detection Method And System For Identifying Individual Aerosol Particles

    DOEpatents

    Gard, Eric Evan; Fergenson, David Philip

    2005-10-25

    A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.

  6. Quantitative ED-EPMA of Individual Particles and its Application for Characterization of Atmospheric Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Ro, C.

    2008-12-01

    An electron probe X-ray microanalysis (EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, named low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N, and O, as well as higher-Z elements that can be analyzed by conventional energy-dispersive EPMA (ED-EPMA). The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual environmental particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulfates, nitrates, ammonium, and carbonaceous particles, contain low-Z elements. In addition, an expert system that can perform chemical speciation from the elemental composition data obtained by the low-Z particle EPMA has been developed. The low-Z particle EPMA was applied to characterize K-feldspar particle samples of which the chemical compositions are well defined by the use of various bulk analytical methods. Chemical compositions of the K-feldspar samples obtained from the low-Z particle EPMA turn out to be very close to those from bulk analyses. The low-Z particle EPMA technique has been applied for the characterization of atmospheric aerosol particle samples, including Asian dust, urban, and indoor particulate samples: (1) The extent of chemical modification of Asian dust particles sampled in Chuncheon and Incheon, Korea, during several Asian dust storm events occurred in 2002-2006 was investigated. Mixing of Asian dust with air pollutants and sea-salts strongly depends on the characteristics of Asian dust storm events such as air-mass backward trajectories. For instance, no significant chemical modification of mineral dust corresponded to fast moving air-masses at high altitudes. Inversely, extensive chemical modification was

  7. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  8. Phosphorus-bearing Aerosol Particles From Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.; Caltabiano, T.

    2003-12-01

    Particles rich in P or bulk geochemical data of volcanic aerosol particles showing high P contents are known from many volcanic plumes (Stanton, 1994; Obenholzner et al., 2003). FESEM/EDS analysis of individual particles obtained from the passively degassing plume of Popocatepetl volcano, Mx. (1997) and from the plume of Stromboli (May 2003) show P frequently. Even at the high resolution of the FESEM, euhedral apatite crystals could not be observed. At Popocatepetl (1997) spherical Ca-P-O particles are common. Fluffy, fractal or botryoidal particles also can contain EDS-detectable amounts of P. The EDS spectrum of such particles can comprise various elements. However most particles show P, S and Cl. P-S and P-S-metal species are known in chemistry but do they occur in volcanic plumes? Stoichiometric considerations had been made in the past suggesting the existence of P-S species in plumes (Stanton 1994), gas sampling and remote gas monitoring systems have not detected yet such molecules in plumes. The particle spectrum of the reawakened Popocateptel volcano might be related to accumulation of volatiles at the top of a magma chamber during the phase of dormancy. P-Fe rich, Ca-free aggregates are also known from the eruption of El Chichon 1982 (SEM/EDS by M. Sheridan, per. comm. 08-24-2003). Persistently active volcanoes (i.e. Stromboli) represent a different category according to continuous degassing and aerosol particle formation. A particle collector ( ca. 90 ml/min) accompanied a COSPEC helicopter flight at Stromboli (May 15, 2003) after one of the rare types of sub-plinian events on April 5 2003. P-bearing particles are very common. For instance, an Fe oxide grain (diam. = 2 æm) is partially covered by fluffy and euhedral P-bearing matter. The elements detected are P, Cl, Na, Mg, Al, Si, K, Ca, Ti and (Fe). The fluffy and the euhedral (rhombohedral?) matter show in SE-BSE-mix image almost identical grey colors. At Stromboli and Popocatepetl particles on which

  9. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  10. Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions

    NASA Astrophysics Data System (ADS)

    Rissman, T. A.; Varutbangkul, V.; Surratt, J. D.; Topping, D. O.; McFiggans, G.; Flagan, R. C.; Seinfeld, J. H.

    2006-12-01

    Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11% 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before the methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements.

  11. Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions

    NASA Astrophysics Data System (ADS)

    Rissman, T. A.; Varutbangkul, V.; Surratt, J. D.; Topping, D. O.; McFiggans, G.; Flagan, R. C.; Seinfeld, J. H.

    2007-06-01

    Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11%, 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid, preventing confident interpretation of experimental data for these two compounds. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements.

  12. Single-particle speciation of alkylamines in ambient aerosol at five European sites.

    PubMed

    Healy, Robert M; Evans, Greg J; Murphy, Michael; Sierau, Berko; Arndt, Jovanna; McGillicuddy, Eoin; O'Connor, Ian P; Sodeau, John R; Wenger, John C

    2015-08-01

    Alkylamines are associated with both natural and anthropogenic sources and have been detected in ambient aerosol in a variety of environments. However, little is known about the ubiquity or relative abundance of these species in Europe. In this work, ambient single-particle mass spectra collected at five sampling sites across Europe have been analysed for their alkylamine content. The aerosol time-of-flight mass spectrometer (ATOFMS) data used were collected in Ireland (Cork), France (Paris, Dunkirk and Corsica) and Switzerland (Zurich) between 2008 and 2013. Each dataset was queried for mass spectral marker ions associated with the following ambient alkylamines: dimethylamine (DMA), trimethylamine (TMA), diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA) and tripropylamine (TPA). The fraction of ambient particles that contained detectable alkylamines ranged from 1 to 17 % depending on location, with the highest fractions observed in Paris and Zurich in the winter months. The lowest fractions were observed at coastal sites, where the influence of animal husbandry-related alkylamine emissions is also expected to be lowest. TMA was the most ubiquitous particle phase alkylamine detected and was observed at all locations. Alkylamines were found to be internally mixed with both sulphate and nitrate for each dataset, suggesting that aminium salt formation may be important at all sites investigated. Interestingly, in Corsica, all alkylamine particles detected were also found to be internally mixed with methanesulphonic acid (MSA), indicating that aminium methanesulphonate salts may represent a component of marine ambient aerosol in the summer months. Internal mixing of alkylamines with sea salt was not observed, however. Alkylamine-containing particle composition was found to be reasonably homogeneous at each location, with the exception of the Corsica and Dunkirk sites, where two and four distinct mixing states were observed, respectively.

  13. Surface Enhanced Raman Spectroscopy (SERS) of Atmospheric Particles and Single Particle pH from Raman Microspectroscopy: Tools to Provide Greater Chemical Detail about Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Craig, R. L.; Bondy, A. L.

    2015-12-01

    The ability to probe the chemical complexity and physicochemical properties of individual organic aerosols and organic-inorganic mixtures is needed to improve our understanding of their formation and evolution in the atmosphere, as well as their impacts on climate. This work will describe two new methods being developed to probe individual particles with Raman microspectroscopy: SERS provides unprecedented sensitivity regarding the functional groups present and single particle pH provide a direct probe of atmospheric particle acidity Surface enhanced Raman spectroscopy (SERS) generates enhanced Raman signal and has been applied to atmospheric aerosol particles and model systems in the laboratory, leading to enhancements of 101-102. This has allowed rich vibrational spectra to be observed for submicron particles, with detailed functional group and phase state information. Single particle pH is been developed to allow direct observation of individual particle pH through a combination of a spectral approach and an independent method based on changes in diameter at different relative humidities. Together these provide an independent check and an important improvement on indirect methods to allow detailed chemical studies. Together, the new SERS and single particle pH methods have the potential to improve our understanding of atmospheric organic aerosol mechanisms and evolution in the atmosphere.

  14. Aerosol particle properties in a South American megacity

    NASA Astrophysics Data System (ADS)

    Ulke, Ana; Torres-Brizuela, Marcela; Raga, Graciela; Baumgardner, Darrel; Cancelada, Marcela

    2015-04-01

    The subtropical city of Buenos Aires is located on the western shore of Río de la Plata, on the southeastern coast of Argentina. It is the second largest metropolitan area in South America, with a population density of around 14 thousand people per km2. When all 24 counties of the Great Buenos Aires Metropolitan Area are included it is the third-largest conurbation in Latin America, with a population of around fifteen million inhabitants. The generalized worldwide trend to concentrate human activities in urban regions that continue to expand in area, threatens the local and regional environment. Air pollution in the Buenos Aires airshed is due to local sources (mainly the mobile sources, followed by the electric power plants and some industries) and to distant sources (like biomass burning, dust, marine aerosols and occasionally volcanic ash) whose products arrive in the city area due to the regional transport patterns. Previous research suggests that ambient aerosol particle concentrations should be considered an air quality problem. A field campaign was conducted in Buenos Aires in 2011 in order to characterize some aerosol particles properties measured for the first time in the city. Measurements began in mid- April and continued until December. The field observations were done in a collaborative effort between the Universities of Mexico (UNAM) and Buenos Aires (UBA). A suite of instruments was installed on the roof of an UBA laboratory and classroom buildings (34.54° S, 58.44° W) at an altitude of approximately 30 m above sea level. The measurements included the number concentration of condensation nuclei (CN) larger than approximately 50 nm, the mass concentration of particle-bound polycyclic aromatic hydrocarbons (PPAH), the scattering (Bscat) and absorption (Babs) coefficients at 550 nm and the vertical profiles of backscattered light from aerosols at a wavelength of 910 nm using a ceilometer. In addition, a weather station recorded the meteorological

  15. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  16. Redistribution of black and brown carbon in aerosol particles undergoing liquid-liquid phase separation

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Brunamonti, S.; Marcolli, C.; Peter, T.

    2015-12-01

    Atmospheric black carbon (BC) and to a lesser degree brown carbon is a major anthropogenic greenhouse agent, yet substantial uncertainties obstruct understanding its radiative forcing. Particularly debated is the extent of the absorption enhancement by internally compared to externally mixed BC, which critically depends on the interior morphology of the BC-containing particles. Here we suggest that a currently unaccounted morphology, optically very different from the customary core shell and volume-mixing assumptions, likely occurs in aerosol particles undergoing liquid-liquid phase separation (LLPS). Using Raman spectroscopy on micrometer-sized droplets, we show that LLPS of an organic/inorganic model system drives redistribution of BC into the outer (organic) phase of the host particle. This results in an inverted core-shell structure, in which a transparent aqueous core is surrounded by a BC-containing absorbing shell. We also study the redistribution of a model proxy for brown carbon, carminic acid, in single, levitated aqueous aerosol particles undergoing LLPS and compare the measured absorption efficiency with corresponding Mie calculations.

  17. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  18. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  19. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  20. New aerosol particles formation in the Sao Paulo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    The Sao Paulo Metropolitan Area (SPMA), in the southeast region of Brazil, is considered a megalopolis comprised of Sao Paulo city and more 38 municipalities. The air pollutant emissions in the SPMA are related to the burning of the fuels: etanol, gasohol (gasoline with 25% ethanol) and diesel. According to CETESB (2013), the road vehicles contributed up to about 97, 87, and 80% of CO, VOCs and NOx emissions in 2012, respectively, being most of NOx associated to diesel combustion and most of CO and VOCs from gasohol and ethanol combustion. Studies conducted on ambient air pollution in the SPMA have shown that black carbon (BC) explains 21% of mass concentration of PM2.5 compared with 40% of organic carbon (OC), 20% of sulfates, and 12% of soil dust (Andrade et al., 2012). Most of the observed ambient PM2.5 mass concentration usually originates from precursors gases such as sulphur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx) and VOCs as well as through the physico-chemical processes such as the oxidation of low volatile hydrocarbons transferring to the condensed phase (McMurry et al., 2004). The Weather Research and Forecasting with Chemistry model (WRF-Chem; Grell et al. 2005), configured with three nested grid cells: 75, 15, and 3 km, is used as photochemical modeling to describe the physico-chemical processes leading to evolution of particles number and mass size distribution from a vehicular emission model developed by the IAG-USP laboratory of Atmospheric Processes and based on statistical information of vehicular activity. The spatial and temporal distributions of emissions in the finest grid cell are based on road density products compiled by the OpenStreetMap project and measurements performed inside tunnels in the SPMA, respectively. WRF-Chem simulation with coupled primary aerosol (dust and sea-salt) and biogenic emission modules and aerosol radiative effects turned on is conducted as the baseline simulation (Case_0) to evaluate the model

  1. Determination of dicarboxylic acids in tropospherical particles and cloudwater

    NASA Astrophysics Data System (ADS)

    v. Pinxteren, D.; Brüggemann, E.; Herrmann, H.

    2003-04-01

    During two FEBUKO (field investigations of budgets and conversions of particle phase organics in troposheric cloud processes) field campaigns aerosol particle and cloudwater samples were taken in a forestal region in Germany (Thüringer Wald). Particle collection took place in fall 2001 and 2002 at two valley sites (luff and lee) of the mountain Schmücke. On top of this mountain cloudwater was sampled. The aim was to collect and physically and chemically characterize air masses before, while and after passing an orographic cloud in order to provide information about possible multiphase interactions and chemical processing of the aerosol. In this campaign capillary electrophoresis (CE) has been used to determine the dicarboxylic acids. CE has some important advantages for the analysis of ions in aerosol particles compared to the commonly used ion chromatography or gas chromatography. The absolute detection limits are very low (below 1 pmole) and it has a large range of signal-to-concentration linearity. Thus it suits to difficult matrices with strongly changing concentrations and compositions such as aerosol samples. The separation efficiency is usually much higher than in liquid chromatography and the required sample amount is low (down to <1 µL). For sampling of the particles a five-stage low-pressure cascade impactor was used. A humidity-controlled tube bundle served as the inlet device. Tedlar foil was used as an impaction substrate then used for ion analysis. For cloudwater sampling four cloudwater collectors from the California Institute of Technology (CASCC2) were used, which collect droplets with a 50% cut off diameter of 3,5 µm by inertial impaction on several rows of teflon strands. Upcoming results of the measurements are presented.

  2. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the North China Plain.

    PubMed

    Wang, Xilong; Liu, Shuzhen; Zhao, Jingyu; Zuo, Qian; Liu, Wenxin; Li, Bengang; Tao, Shu

    2014-04-01

    The present study examined deposition fluxes of aerosol particles and 15 polycyclic aromatic hydrocarbons (PAHs) associated with the particles in the North China Plain. The annual mean deposition fluxes of aerosol particles and 15 PAHs were 0.69 ± 0.46 g/(m(2) ×d) and 8.5 ± 6.2 μg/(m(2) ×d), respectively. Phenanthrene, fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the dominant PAHs bound to deposited aerosol particles throughout the year. The total concentration of 15 PAHs in the deposited aerosol particles was the highest in winter but lowest in spring. The highest PAH concentration in the deposited aerosol particles in winter was because the heating processes highly increased the concentration in atmospheric aerosol particles. Low temperature and weak sunshine in winter reduced the degradation rate of deposited aerosol particle-bound PAHs, especially for those with low molecular weight. The lowest PAH concentration in deposited aerosol particles in spring resulted from the frequently occurring dust storms, which diluted PAH concentrations. The mean deposition flux of PAHs with aerosol particles in winter (16 μg/[m(2) ×d]) reached 3 times to 5 times that in other seasons (3.5-5.0 μg/[m(2) ×d]). The spatial variation of the deposition flux of PAHs with high molecular weight (e.g., benzo[a]pyrene) was consistent with their concentrations in the atmospheric aerosol particles, whereas such a phenomenon was not observed for those with low molecular weight (e.g., phenanthrene) because of their distinct hydrophobicity, Henry's law constant, and the spatially heterogeneous meteorological conditions.

  3. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  4. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ardon-Dryer, K.; Cziczo, D. J.

    2013-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed 'collection' or 'coagulation'. Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing at temperatures below 0 C. Theoretical studies have shown that for aerosol particles smaller than 0.1 micrometers, Brownian motion is important, and for particles with diameters larger than 1 micrometer, inertial force dominates. There is a collection efficiency minimum for particles between 0.1-2 micrometers, called the 'Greenfield Gap'. Experimental efforts, however, have been limited to very large drizzle and rain drops until recently, and constrained parameters necessary to describe particle collection efficiency by cloud droplets have not been available. One reason is that laboratory setups that allow for coagulation to be observed on a single-particle basis have been lacking. Collection efficiency is also an important parameter for studying and assessing contact ice nucleation. Contact ice nucleation is currently the least understood ice nucleation mechanism and can be potentially important for mixed-phase cloud formation. The significance of experimentally assessing collection efficiency is therefore two-fold: to first understand the frequency of contacts and to then understand the fraction that lead to ice nucleation. We have constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study collection efficiency of submicron aerosol particles by cloud droplets and contact freezing. A stream of 30-micron cloud droplets fall freely into the chamber and collide with aerosol particles. The outflow

  5. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  6. Use of analytical electron microscopy for the individual particle analysis of the Arctic haze aerosol

    SciTech Connect

    Sheridan, P.J.

    1986-01-01

    To explore the usefulness of the analytical electron microscope for the analysis and source apportionment of individual aerosol particles, aerosol samples amenable to individual particle analysis were collected from a remote region. These samples were from the Arctic haze aerosol, and were collected on board a research aircraft during the Arctic Gas and Aerosol Sampling Program in spring 1983. Before elemental analysis by analytical electron microscopy (AEM) could be performed, an extensive relative sensitivity factor study was undertaken to calibrate the microscope/detector system for quanitative x-ray microanalysis. Subsequently determined elemental data, along with morphological information, were used to group the particles into classes with similar characteristics. Forty-seven classes of particles were found in the Arctic samples, the most populous classes containing H/sub 2/SO/sub 4/ droplets, carbonaceous particles, lithophilic particles, CaSO/sub 4/ or NaCl. Several classes containing anthropogenic particles were also identified.

  7. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  8. Origin of nitrocatechols and alkylated-nitrocatechols in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Sylvestre, Alexandre; Ravier, Sylvain; Detournay, Anais; Bruns, Emily; Temime-Roussel, Brice; Slowik, Jay; El Haddad, Imad; Prevot, Andre

    2013-04-01

    Biomass burning constitutes one of the major sources of aerosol particles in most of the environments during winter. If a lot of information is available in the literature on the primary fraction of biomass burning aerosol particles, almost nothing is known regarding the formation of Secondary Organic Aerosol (SOA) from the chemical mixture emitted by this source. Recently methylated nitrocatechol have been identified in atmospheric particles collected in winter. These compounds are strongly associated with biomass burning tracers such as levoglucosan and are suspected to be of secondary origin since they can be formed through the oxidation of cresol significantly emitted by biomass burning. However, nitrocatechols are particularly difficult to analyze using classical techniques like HPLC-MS or GC-MS. In the present study, we adopt a new analytical approach. Direct analysis in real time (DART), introduced by Cody et al. (2005), allows direct analysis of gases, liquids, solids and materials on surfaces. Thus, for particles collected onto filters, the sample preparation step is simplified as much as possible, avoiding losses and reducing to the minimum the analytical procedure time. Two analytic modes can be used. In positive mode, [MH]+ ions are formed by proton transfer reaction ; whereas in negative ionization mode, [MH]-, M- and [MO2]- ions are formed. DART source enables soft ionization and produces simple mass spectra suitable for analysis of complex matrices, like organic aerosol, in only a few seconds. For this study, the DART source was coupled to a Q-ToF mass spectrometer (Synapt G2 HDMS, Waters), with a mass resolution up to 40 000. The analysis of atmospheric aerosol samples, collected in Marseille during winter 2011 (APICE project), with the DART/Q-ToF approach highlighted the abundance of nitrocatechols and alkylated nitrocatechols. Their temporal trends were also very similar to those of levoglucosan or dihydroabietic acid well known tracers of biomass

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  10. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  11. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  12. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-09-01

    New measurements of water diffusion in aerosol particles produced from secondary organic aerosol (SOA) material and from a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA droplets suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  13. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance

    NASA Astrophysics Data System (ADS)

    Liu, Qifan; Jing, Bo; Peng, Chao; Tong, Shengrui; Wang, Weigang; Ge, Maofa

    2016-01-01

    The hygroscopic properties of two water-soluble organic compounds (WSOCs) relevant to urban haze pollution (phthalic acid and levoglucosan) and their internally mixtures with inorganic salts (ammonium sulfate and ammonium nitrate) are investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA) system. The multi-component particles uptake water gradually in the range 5-90% relative humidity (RH). The experimental results are compared with the thermodynamic model predictions. For most mixtures, Extended Aerosol Inorganic Model (E-AIM) predictions agree well with the measured growth factors. The hygroscopic growth of mixed particles can be well described by the Zdanovskii-Stokes-Robinson (ZSR) relation as long as the mixed particles are completely liquid. ZSR calculations underestimate the water uptake of mixed particles at moderate RH due to the partial dissolution of ammonium sulfate in the organic and ammonium nitrate solution in this RH region. The phase of ammonium nitrate in the initial dry particles changes dramatically with the composition of mixtures. The presence of organics in the mixed particles can inhibit the crystallization of ammonium nitrate during the drying process and results in water uptake at low RH (RH < 60%). These results demonstrate that certain representative WSOCs can substantially influence the hygroscopicity of inorganic salts and overall water uptake of particles.

  14. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate

  15. Real-time detection method and system for identifying individual aerosol particles

    DOEpatents

    Gard, Eric E.; Coffee, Keith R.; Frank, Matthias; Tobias, Herbert J.; Fergenson, David P.; Madden, Norm; Riot, Vincent J.; Steele, Paul T.; Woods, Bruce W.

    2007-08-21

    An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.

  16. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  17. Complex refractive indices in the infrared of nitric acid trihydrate aerosols

    SciTech Connect

    Richwine, L.J.; Clapp, M.L.; Miller, R.E.

    1995-10-01

    The refractive indices of nitric acid trihydrate (NAT) have been determined from the infrared spectra of laboratory generated aerosols. The aerosols are formed via homogeneous nucleation in a flow cell with separate regions for nucleation and observation, allowing for independent control of the temperature conditions in these regions. A spectrum of small, non-scattering particles is recorded to determine the frequency dependent imaginary refractive index, within a scaling factor. A subtractive Kramers-Kronig routine is then used to calculate the real index. The scaling factor for the imaginary indices is determined by fitting a spectrum associated with larger, scattering particles, which depends on both the real and imaginary portions of the refractive indices. The complex refractive indices of NAT are reported over the range 700 cm{sup -1} to 4000 cm{sup -1}. While in good qualitative agreement with previously reported results, there are significant quantitative differences which are discussed. 21 refs., 3 figs.

  18. From Clusters to Atmospheric Aerosol Particles: Nucleation in the CLOUD Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Baltensperger, Urs

    2015-03-01

    Globally, a significant source of cloud condensation nuclei for cloud formation is thought to originate from new particle formation (aerosol nucleation). Despite extensive research, many questions remain about the dominant nucleation mechanisms. Specifically, a quantitative understanding of the dependence of the nucleation rate on the concentration of the nucleating substances such as gaseous sulfuric acid, ammonia, water vapor and others has not been reached. This is of relevance for climate as the atmospheric concentrations of sulfuric acid, ammonia and other nucleating agents are strongly influenced by anthropogenic emissions. By providing extremely well controlled and essentially contaminant free conditions in the CLOUD chamber, we were able to show that indeed sulfuric acid is an important component for such new particle formation, however, for the typical temperatures encountered in the planetary boundary layer the concentrations of sulfuric acid are not high enough to explain the atmospheric observations. Moreover, the effect of ammonia, amines and oxidized organic molecules on the nucleation rate of sulfuric acid has been investigated in CLOUD so far. Recent developments in instrument technology such as the Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometer have allowed us to investigate the chemical composition of charged as well as neutral clusters during such nucleation experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) collaboration consists of 20 institutions from Europe and the United States and is funded by national funding institutions as well as the EU training network CLOUD-TRAIN (http://www.cloud-train.eu/).

  19. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    EPA Science Inventory


    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  20. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  1. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  2. Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols

    SciTech Connect

    Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Ruchuan Peng; Linn, W.S.; Hackney, J.D. )

    1992-06-01

    Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, the authors exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber to four test atmospheres: (1) clean air; (2) 0.5-{mu}m H{sub 2}SO{sub 4} aerosol at {approx}100 {mu}g/m{sup 3}, generated from water solution; (3) 0.5-{mu}m carbon aerosol at {approx}250 {mu}g/m{sup 3}, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (4) carbon as in (3) plus {approx}100 {mu}g/m{sup 3} of ultrafine H{sub 2}SO{sub 4} aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (4) became attached to carbon particle surfaces, and that most particles remained in the sub-{mu}m size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation {approx}50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H{sub 2}SO{sub 4} or carbon, separate or interactive, on health measures.

  3. Possible nitric acid coating formation over Pinatubo aerosols inferred with a microphysical code: A case study during EASOE

    SciTech Connect

    Rizi, V. Univ. degli Studi, L'Aquila ); Redaelli, G.; Verdecchia, M.; Visconti, G. ); Stefanutti, L. ); Wolf, J.P. )

    1994-06-22

    The authors present a case study of observations made with ground based lidar from Sodankyla, Finland, of stratospheric particles. Their interest was in using lidar to distinguish ice particles from polar stratospheric clouds, but the large density of volcanic aerosols present from the Mt. Pinatubo eruption, made this task more difficult during the 1991-92 winter. The authors observed a major difference in the reflected signals coming from one region over a two day period in January 1992, and argue here the origin of this may have been due to condensation of nitric acid on the surface of volcanic aerosols present in this stratospheric layer. They support this argument with microphysical calculations.

  4. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  5. Resuspension of Aerosol Particles from Evaporated Rain Drops to the Coarse Mode

    NASA Astrophysics Data System (ADS)

    Wang, H.; Easter, R. C.; Ganguly, D.; Singh, B.; Rasch, P. J.

    2015-12-01

    Precipitation scavenging (i.e., wet removal) has long been recognized as one of the major removal processes for tropospheric aerosol particles, and the dominant one for accumulation-mode size particles. When rain drops evaporate, the aerosol material contained in drops is resuspended, and this process has received much less attention. Unlike the resuspension from evaporated cloud droplets, the aerosol particles resuspended from evaporated rain drops have much larger sizes than most of the aerosol particles that acted as cloud condensation nuclei (CCN), became cloud borne, and then were collected by rain drops, because each rain drop generally collects thousands of cloud droplets. Here we present some aspects of this resuspension process obtained from modeling studies. First, we investigate some details of the process using a simple drop-size resolved model of raindrop evaporation in sub-saturated air below cloud base. Using these results, we then investigate different treatments of this process in a global aerosol and climate model that employs a modal aerosol representation. Compared to the model's original treatment of this process in which rain-borne aerosol is resuspended to the mode that it came from with its original size, the new treatment that resuspends to the coarse mode produces notable reductions in global CCN concentrations, as well as sulfate, black carbon, and organic aerosol mass, because the resuspended aerosol particles have much shorter lifetimes due to their larger sizes. Somewhat surprisingly, there are also notable reductions in coarse-mode sea salt and mineral dust burdens. These species are resuspended to the coarse mode in both the original and new treatments, but these resuspended particles are fewer in number and larger in size in the new treatment. This finding highlights some issues of the modal aerosol treatment for coarse mode particles.

  6. Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions

    NASA Astrophysics Data System (ADS)

    Mason, R. H.; Si, M.; Li, J.; Chou, C.; Dickie, R.; Toom-Sauntry, D.; Pöhlker, C.; Yakobi-Hancock, J. D.; Ladino, L. A.; Jones, K.; Leaitch, W. R.; Schiller, C. L.; Abbatt, J. P. D.; Huffman, J. A.; Bertram, A. K.

    2015-11-01

    Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 °C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 °C at this site for the time period studied. At -30 °C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles ≥ 0.5 μm, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their

  7. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds.

    PubMed

    Malecha, Kurtis T; Nizkorodov, Sergey A

    2016-09-20

    We investigated the photodegradation of secondary organic aerosol (SOA) particles by near-UV radiation and photoproduction of oxygenated volatile organic compounds (OVOCs) from various types of SOA. We used a smog chamber to generate SOA from α-pinene, guaiacol, isoprene, tetradecane, and 1,3,5-trimethylbenzene under high-NOx, low-NOx, or ozone oxidation conditions. The SOA particles were collected on a substrate, and the resulting material was exposed to several mW of near-UV radiation (λ ∼ 300 nm) from a light-emitting diode. Various OVOCs, including acetic acid, formic acid, acetaldehyde, and acetone were observed during photodegradation, and their SOA-mass-normalized fluxes were estimated with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). All the SOA, with the exception of guaiacol SOA, emitted OVOCs upon irradiation. Based on the measured OVOC emission rates, we estimate that SOA particles would lose at least ∼1% of their mass over a 24 h period during summertime conditions in Los Angeles, California. This condensed-phase photochemical process may produce a few Tg/year of gaseous formic acid, the amount comparable to its primary sources. The condensed-phase SOA photodegradation processes could therefore measurably affect the budgets of both particulate and gaseous atmospheric organic compounds on a global scale. PMID:27547987

  8. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds.

    PubMed

    Malecha, Kurtis T; Nizkorodov, Sergey A

    2016-09-20

    We investigated the photodegradation of secondary organic aerosol (SOA) particles by near-UV radiation and photoproduction of oxygenated volatile organic compounds (OVOCs) from various types of SOA. We used a smog chamber to generate SOA from α-pinene, guaiacol, isoprene, tetradecane, and 1,3,5-trimethylbenzene under high-NOx, low-NOx, or ozone oxidation conditions. The SOA particles were collected on a substrate, and the resulting material was exposed to several mW of near-UV radiation (λ ∼ 300 nm) from a light-emitting diode. Various OVOCs, including acetic acid, formic acid, acetaldehyde, and acetone were observed during photodegradation, and their SOA-mass-normalized fluxes were estimated with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). All the SOA, with the exception of guaiacol SOA, emitted OVOCs upon irradiation. Based on the measured OVOC emission rates, we estimate that SOA particles would lose at least ∼1% of their mass over a 24 h period during summertime conditions in Los Angeles, California. This condensed-phase photochemical process may produce a few Tg/year of gaseous formic acid, the amount comparable to its primary sources. The condensed-phase SOA photodegradation processes could therefore measurably affect the budgets of both particulate and gaseous atmospheric organic compounds on a global scale.

  9. The appearance of carbon aerosol particles in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Chuan, R. L.; Woods, D. C.

    1984-01-01

    Very small carbonaceous particles, thought to be meteoritic, have been found in small quantities in the lower stratosphere during aircraft sampling flights. The sampling was accomplished using a quartz crystal microbalance (QCM) cascade impactor operating on a U-2 aircraft as it flew stratospheric sampling missions. Post flight analyses of the samples using scanning electron microscopy, X-ray energy spectroscopy and Auger electron spectroscopy have identified carbon particles 0.1 micron aerodynamic diameter and smaller in 16 of 28 sets of samples obtained between 1979 and 1983. The presence of such carbon particles in the stratosphere has implications relating to global climate, to the conversion of SO2 to sulfuric acid, and to the phenomenon of the Arctic haze.

  10. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  11. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  12. Vertical distribution of non-volatile species of upper tropospheric and lower stratospheric aerosol observed by balloon-borne optical particle counter above Ny-Aalesund, Norway in the winter of 2015

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Hayashi, M.; Shibata, T.; Neuber, R.; Ruhe, W.

    2015-12-01

    The polar lower stratosphere is the sink area of stratospheric global circulation. The composition, concentration and size distribution of aerosol in the polar stratosphere are considered to be strongly influenced by the transportations from mid-latitude to polar region and exchange of stratosphere to troposphere. In order to study the aerosol composition and size distribution in the Arctic stratosphere and the relationship between their aerosol microphysical properties and transport process, we carried out balloon-borne measurement of aerosol volatility above Ny-Aalesund, Norway in the winter of 2015. In our observation, two optical particle counters and a thermo denuder were suspended by one rubber balloon. A particle counter measured the heated aerosol size distribution (after heating at the temperature of 300 degree by the thermo denuder) and the other measured the ambient aerosol size distribution during the observation. The observation was carried out on 15 January, 2015. Balloon arrived at the height of 30km and detailed information of aerosol size distributions in upper troposphere and lower stratosphere for both heated aerosol and ambient aerosol were obtained. As a Result, the number ratio of non-volatile particles to ambient aerosol particles in lower stratosphere (11-15km) showed different feature in particle size range of fine mode (0.3particles to ambient aerosol particles were 1-3% in fine mode range and 7-20% in coarse mode range. They suggested that fine particles are composed dominantly of volatile species (probably sulfuric acid), and coarse particles are composed of non-volatile species such as minerals, sea-salts. In our presentation, we show the obtained aerosol size distribution and discuss the aerosol compositions and their transport process.

  13. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

    2015-03-01

    Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3-NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based

  14. Compound-specific carbon isotope analyses of individual long-chain alkanes and alkanoic acids in Harmattan aerosols

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.

    The higher molecular weight n-alkane, n-alkanol and n-alkanoic acid series from higher plant wax are ubiquitous components of aerosol particles in remote areas. The carbon isotopic compositions of individual n-alkanes and n-alkanoic acids have been determined in samples of Harmattan aerosol and composited vegetation wax from Nigeria. The data confirm the terrestrial origin of these compounds and support the distinction among the vegetation sources of C 4 plants (savannah) from C 3 and CAM plants (wet climate, mixed vegetation). The superimposed petroleum components from vehicular emissions in urban areas could not be differentiated from C 3 vegetation by compound-specific isotope analysis.

  15. Spectro-microscopy of Ambient Aerosol Particles: Observational Constraints on Mixing State Parameterization

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Laskin, A.; West, M.; Riemer, N. S.; Gilles, M. K.; Moffet, R.

    2014-12-01

    Individual aerosol particles are often mixtures of multiple components such as inorganic salts, soot or elemental carbon, and organic molecules. The amounts of the different components in each particle and the particle morphologies will impact the CCN activity and the radiative properties of the aerosol population. A recent parameterization of the mixing state developed by Nicole Riemer and Matthew West provides a clear transition between ambient measurements of aerosol components and particle mixing states employed in climate models. Single particle spectro-microscopy techniques including scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) and computer controlled scanning electron microscopy/energy dispersive x-ray spectroscopy (CCSEM/EDX) are used to measure the composition of aerosol particles from the CARES campaign at both T0 and T1. Here, we present results from the application of the per particle composition to a parameterization of the mixing state and provide constraints on the mixing state of ambient aerosol particles. The two microscopy techniques yield complementary information on the mixing state of the aerosol populations; STXM/NEXAFS provides information on the mixing state of the organic fraction while CCSEM/EDX provides information on the inorganic fraction.

  16. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Oo, K.; Brown, M. D.; Dhaniyala, S.; Cziczo, D. J.

    2012-12-01

    An experimental setup has been constructed to measure the collection efficiency of submicron aerosol particles by cloud droplets. The collection efficiency study is a prelude to studying contact nucleation, which is a potentially important ice nucleation mode that is not well-understood. This laboratory setup is a step closer to experimentally assessing the importance of contact nucleation. Water droplets with 20 micron diameter and submicron aerosol particles are brought into contact in an injector situated inside a chilled glass flow tube. The water droplets that collect aerosol particles are allowed to pass through a counterflow virtual impactor (CVI), which accepts large droplets and rejects aerosol particles that have not coagulated with the water droplets. The collected droplets are sent into the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument which performs in situ chemical analysis of a single particle. The number of aerosol particles collected by the single water droplet is quantified by calibrating the PALMS with known concentrations of aerosol particles. The water droplets contain a known amount of ammonium sulfate for identification purpose in the mass spectrometry. Preliminary results from the experiment will be discussed and compared with previous theoretical and experimental studies.

  17. Laboratory studies of nitric acid hydrate and sulfuric acid aerosols: Implications for polar stratospheric cloud formation

    SciTech Connect

    Miller, R.E.

    1995-12-31

    The optical properties of atmospheric aerosols are important in a number of modeling and remote sensing applications. We have devised a new approach for determining the frequency dependent real and imaginary refractive indices directly from the observation of the infrared spectra of the aerosols. We have applied this method to the study of water ice aerosols and comparisons with previous measurements confirm that the method is sound and accurate. The temperature dependence of the refractive index of ice has also been measured over the range 130 K to 210 K, which includes the region of interest for the study of Polar Stratospheric Clouds (PSC`s). The method has also been applied to the study of nitric acid dehydrate (NAD) and nitric acid trihydrate (NAT). Sulfuric acid/nitric acid/water ternary systems are also being studied with the aim of determining the nature of the phases formed and the associated freezing points as a function of the concentrations of the acids.

  18. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Bröske, R.; Kleffmann, J.; Wiesen, P.

    2003-05-01

    The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA) was investigated with the focus on a possible formation of nitrous acid (HONO). In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2 mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2 and the reactive uptake coefficients NO2 -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was <1013 cm-2 geometrical surface and <1017 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA) is unimportant for the atmosphere.

  19. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Bröske, R.; Kleffmann, J.; Wiesen, P.

    2003-02-01

    The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA) was investigated with the focus on a possible formation of nitrous acid (HONO). In one set of experiments different organic aerosols were produced in the reactions of O3 with α-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2 mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2 and the reactive uptake coefficients NO2 →HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was <1013 cm-2 geometrical surface and <1017 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with β-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 → HONO were in the range of 7×10-7 -9×10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA) is unimportant for the atmosphere.

  20. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    PubMed

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  1. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  2. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  3. Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles.

    PubMed

    David, Grégory; Esat, Kıvanç; Ritsch, Irina; Signorell, Ruth

    2016-02-21

    We describe a broadband light scattering setup for the characterization of size and refractive index of single submicron-to-micron sized aerosol particles. Individual particles are isolated in air by a quadruple Bessel beam optical trap or a counter-propagating optical tweezer. The use of very broadband radiation in the wavelength range from 320 to 700 nm covering the ultraviolet region allows to size submicron particles. We show that a broad wavelength range is required to determine the particle radius and the refractive index with an uncertainty of several nanometers and ∼ 0.01, respectively. The smallest particle radius that can be accurately determined lies around 300 nm. Wavelength-dependent refractive index data over a broad range are obtained, including the ultraviolet region where corresponding data are rare. Four different applications are discussed: (1) the sizing of submicron polystyrene latex spheres, (2) the evaporation of binary glycerol water droplets, (3) hydration/dehydration cycling of aqueous potassium carbonate droplets, and (4) photochemical reactions of oleic acid droplets. PMID:26863396

  4. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  5. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions.

  6. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions. PMID:19475956

  7. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  8. [Factors influencing particle measurement of aerosols and their retention in the lung].

    PubMed

    Le Bouffant, L

    1977-01-01

    The dimensional characteristics of the particles of an aerosol depend on the means used for producing them. Mechanical spray and ultrasonic dispersion give polydispersed particles. On the other hand, centrifugal atomization produces a monodispersed aerosol. Particle retention in the lung system depends on the particle diameter. In addition, retention varies according to the respiratory characteristics: it is minimal for about 15 inspirations per minute. Using iron-59 labeled particles, it was shown that the degree of retention varies considerably from one individual to the other and accessibility to the depths of the lungs is decreased under the effect of certain lesions. Bronchial retention appears to be increased in smokers.

  9. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  10. Glyoxal processing outside clouds: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Volkamer, R.

    2010-05-01

    This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions in aqueous aerosol particles that form secondary organic aerosol (SOA). Recent laboratory results on glyoxal reactions are reviewed and a consistent set of reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds to form (a) oligomers, (b) nitrogen-containing products, (c) photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles compared to cloud droplets and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud) chemistry. The application of this new module in a chemical box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the atmospheric relevance of SOA formation from glyoxal. During day time a photochemical (most likely radical-initiated) process is the major SOA formation pathway forming ~5 μg m-3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt). During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids) contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5

  11. Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Yu, Xiawei; Wang, Zhibin; Zhang, Minghui; Kuhn, Uwe; Xie, Zhouqing; Cheng, Yafang; Pöschl, Ulrich; Su, Hang

    2016-09-01

    Fluorescence characteristics of aerosol particles in a polluted atmosphere were studied using a wideband integrated bioaerosol spectrometer (WIBS-4A) in Nanjing, Yangtze River Delta area of China. We observed strong diurnal and day-to-day variations of fluorescent aerosol particles (FAPs). The average number concentrations of FAPs (1-15 µm) detected in the three WIBS measurement channels (FL1: 0.6 cm-3, FL2: 3.4 cm-3, FL3: 2.1 cm-3) were much higher than those observed in forests and rural areas, suggesting that FAPs other than bioaerosols were detected. We found that the number fractions of FAPs were positively correlated with the black carbon mass fraction, especially for the FL1 channel, indicating a large contribution of combustion-related aerosols. To distinguish bioaerosols from combustion-related FAPs, we investigated two classification schemes for use with WIBS data. Our analysis suggests a strong size dependence for the fractional contributions of different types of FAPs. In the FL3 channel, combustion-related particles seem to dominate the 1-2 µm size range while bioaerosols dominate the 2-5 µm range. The number fractions of combustion-related particles and non-combustion-related particles to total aerosol particles were ˜ 11 and ˜ 5 %, respectively.

  12. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  13. Contact nucleation of ice induced by biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Hoffmann, Nadine; Schaefer, Manfred; Duft, Denis; Leisner, Thomas

    2014-05-01

    contact freezing in an electrodynamic balance Atmos. Meas. Tech., 6, 2373-2382, 2013. [2] - Hoffmann, N., Duft, D., Kiselev, A., and Leisner, T.: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles, Faraday Discuss., 2013.

  14. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  15. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group

  16. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  17. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-12-01

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  18. Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, Huan; Chen, Zhongming; Huang, Liubin; Huang, Dao

    2016-02-01

    Organic peroxides, important species in the atmosphere, promote secondary organic aerosol (SOA) aging, affect HOx radicals cycling, and cause adverse health effects. However, the formation, gas-particle partitioning, and evolution of organic peroxides are complicated and still unclear. In this study, we investigated in the laboratory the production and gas-particle partitioning of peroxides from the ozonolysis of α-pinene, which is one of the major biogenic volatile organic compounds in the atmosphere and an important precursor for SOA at a global scale. We have determined the molar yields of hydrogen peroxide (H2O2), hydromethyl hydroperoxide (HMHP), peroxyformic acid (PFA), peroxyacetic acid (PAA), and total peroxides (TPOs, including unknown peroxides) and the fraction of peroxides in α-pinene/O3 SOA. Comparing the gas-phase peroxides with the particle-phase peroxides, we find that gas-particle partitioning coefficients of PFA and PAA are 104 times higher than the values from the theoretical prediction, indicating that organic peroxides play a more important role in SOA formation than previously expected. Here, the partitioning coefficients of TPO were determined to be as high as (2-3) × 10-4 m3 µg-1. Even so, more than 80 % of the peroxides formed in the reaction remain in the gas phase. Water changes the distribution of gaseous peroxides, while it does not affect the total amount of peroxides in either the gas or the particle phase. Approx. 18 % of gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of H2O2. This process can partially explain the unexpectedly high H2O2 yields under wet conditions. Transformation of organic peroxides to H2O2 also preserves OH in the atmosphere, helping to improve the understanding of OH cycling.

  19. Organic peroxides gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, H.; Chen, Z. M.; Huang, L. B.; Huang, D.

    2015-10-01

    Organic peroxides, important species in the atmosphere, will promote secondary organic aerosols (SOA) aging, affect HOx radicals cycling, and cause adverse health effects. However, the formation, gas-particle partitioning, and evolution of organic peroxides are extremely complicated and still unclear. In this study, we investigate in the laboratory the production and gas-particle partitioning of peroxides from the ozonolysis of α-pinene, which is one of the major biogenic volatile organic compounds in the atmosphere and is an important precursor for SOA at a global scale. We have determined the molar yields of hydrogen peroxide (H2O2), hydroxymethyl hydroperoxide (HMHP), peroxyformic acid (PFA), peroxyacetic acid (PAA) and total peroxides (TPO, including unknown peroxides) and the fraction of peroxides in SOA. Comparing the gas-phase and particle-phase peroxides, we find that gas-particle partitioning coefficients of PFA and PAA are 104 times higher than theoretical prediction, indicating that organic peroxides play a more important role in the SOA formation than expected previously. Here, we give the partitioning coefficients of TPO as (2-3) × 10-4 m3μg-1. Even so, more than 80 % of the peroxides formed in the reaction remain in the gas phase. Water does not affect the total amount of peroxides in either the gas or particle phase, but can change the distribution of gaseous peroxides. About 18 % gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of H2O2. This process can partially interpret the unexpected high H2O2 yield under wet conditions. Transformation of organic peroxides to H2O2 also saves OH in the atmosphere, helping to improve the understanding of OH cycling.

  20. Sulfuric acid aerosol exposure in humans assessed by bronchoalveolar lavage

    SciTech Connect

    Frampton, M.W.; Voter, K.Z.; Morrow, P.E.; Roberts, N.J. Jr.; Culp, D.J.; Cox, C.; Utell, M.J. )

    1992-09-01

    Epidemiologic and experimental evidence suggests that exposure to acidic aerosols may affect human health. Brief exposures to acidic aerosols alter mucociliary clearance and increase airway responsiveness, but effects on host defense mechanisms at the alveolar level have not been studied in humans. Twelve healthy, nonsmoking volunteers between 20 and 39 yr of age were exposed for 2 h to aerosols of approximately 1,000 micrograms/m3 sulfuric acid (H2SO4) or sodium chloride (NaCl (control)), with intermittent exercise, in a randomized, double-blind fashion. Each subject received both exposures, separated by at least 2 wk. Bronchoalveolar lavage (BAL) was performed 18 h after exposure in order to detect evidence of an inflammatory response, changes in alveolar cell subpopulations, or changes in alveolar macrophage (AM) function, which is important in host defense. When compared with NaCl, exposure to H2SO4 did not increase polymorphonuclear leukocytes in BAL fluid. The percentage of T lymphocytes decreased in association with H2SO4 exposure, but the difference was not statistically significant (14.9% after NaCl, 11.5% after H2SO4; p = 0.14). Antibody-mediated cytotoxicity of AM increased in association with H2SO4 exposure (percent lysis 19.1 after NaCl, 23.6 after H2SO4; p = 0.16). No significant change was seen in release of superoxide anion or inactivation of influenza virus in vitro. Brief exposures to H2SO4 aerosol at 1,000 micrograms/m3 do not cause an influx of inflammatory cells into the alveolar space, and no evidence was found for alteration in antimicrobial defense 18 h after exposure.

  1. Stratospheric Sulfuric Acid and Black Carbon Aerosol Measured During POLARIS and its Role in Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Pueschel, R. F.; Drdla, K.; Verma, S.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosol can affect the environment in three ways. Sulfuric acid aerosol have been shown to act as sites for the reduction of reactive nitrogen and chlorine and as condensation sites to form Polar Stratospheric Clouds, under very cold conditions, which facilitate ozone depletion. Recently, modeling studies have suggested a link between BCA (Black Carbon Aerosol) and ozone chemistry. These studies suggest that HNO3, NO2, and O3 may be reduced heterogeneously on BCA particles. The ozone reaction converts ozone to oxygen molecules, while HNO3 and NO2 react to form NOx. Finally, a buildup of BCA could reduce the single-scatter albedo of aerosol below a value of 0.98, a critical value that has been postulated to change the effect of stratospheric aerosol from cooling to warming. Correlations between measured BCA amounts and aircraft usage have been reported. Attempts to link BCA to ozone chemistry and other stratospheric processes have been hindered by questions concerning the amount of BCA that exists in the stratosphere, the magnitude of reaction probabilities, and the scarcity of BCA measurements. The Ames Wire Impactors (AWI) participated in POLARIS as part of the complement of experiments on the NASA ER-2. One of our main objectives was to determine the amount of aerosol surface area, particularly BCA, available for reaction with stratospheric constituents and assess if possible, the importance of these reactions. The AWI collects aerosol and BCA particles on thin Palladium wires that are exposed to the ambient air in a controlled manner. The samples are returned to the laboratory for subsequent analysis. The product of the AWI analysis is the size, surface area, and volume distributions, morphology and elemental composition of aerosol and BCA. This paper presents results from our experiments during POLARIS and puts these measurements in the context of POLARIS and other missions in which we have participated. It describes modifications to the AWI data

  2. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  3. Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Malinina, Elizaveta; Rozanov, Vladimir; Hommel, Rene; Burrows, John

    2016-04-01

    Stratospheric aerosols are of a great scientific interest because of their crucial role in the Earth's radiative budget as well as their contribution to chemical processes resulting in ozone depletion. While the permanent aerosol background in the stratosphere is determined by the tropical injection of SO2, COS and sulphate particles from the troposphere, major perturbations of the stratospheric aerosol layer result form an uplift of SO2 after strong volcanic eruptions. Satellite measurements in the visible spectral range represent one of the most important sources of information about the vertical distribution of the stratospheric aerosol on the global scale. This study employs measurements of the scattered solar light performed in the limb viewing geometry from the space borne spectrometer SCIAMACHY, which operated onboard the ENVISAT satellite, from August 2002 to April 2012. A retrieval approach to obtain parameters of the stratospheric aerosol particle size distribution will be reported along with the sensitivity studies and first results.

  4. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  5. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  6. The chemical composition of fine ambient aerosol particles in the Beijing area

    NASA Astrophysics Data System (ADS)

    Nekat, Bettina; van Pinxteren, Dominik; Iinuma, Yoshiteru; Gnauk, Thomas; Müller, Konrad; Herrmann, Hartmut

    2010-05-01

    The strong economical growth in China during the last few decades led to heavy air pollution caused by significantly increased particle emissions. The aerosol particles affect not only the regional air quality and visibility, but can also influence cloud formation processes and the radiative balance of the atmosphere by their optical and microphysical properties. The ability to act as Cloud Condensation Nuclei (CCN) is related to microphysical properties like the hygroscopic growth or the cloud droplet activation. The chemical composition of CCN plays an important role on these properties and varies strongly with the particle size and the time of day. Hygroscopic or surface active substances can increase the hygroscopicity and lower the surface tension of the particle liquid phase, respectively. The presence of such compounds may result in faster cloud droplet activation by faster water uptake. The DFG project HaChi (Haze in China) aimed at studying physical and chemical parameters of urban aerosol particles in the Beijing area in order to associate the chemical composition of aerosol particles with their ability to act as CCN. To this end, two measurement campaigns were performed at the Wuqing National Ordinary Meteorological Observing Station, which is a background site near Beijing. The winter campaign was realized in March 2009 and the summer campaign took place from mid July 2009 to mid August 2009. Fine particles with an aerodynamic diameter smaller than or equal 1 μm were continuously sampled for 24h over the two campaigns using a DIGITEL high volume sampler (DHA-80). The present contribution presents and discusses the results of the chemical characterization of the DIGITEL filters samples. The filters were analyzed for the mass concentration, inorganic ions and carbon sum parameters like elemental (EC), organic (OC) and water soluble organic carbon (WSOC). The WSOC fraction was further characterized for hygroscopic substances like low molecular

  7. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles <100 nm generated by means of jets

  8. Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.

  9. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  10. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Shao, Longyi

    2009-05-01

    Airborne aerosol collections were performed in urban areas of Beijing that were affected by regional brown haze episodes over northern China from 31 May to 12 June 2007. Morphologies, elemental compositions, and mixing states of 810 individual aerosol particles of different sizes were obtained by transmission electron microscopy coupled with energy-dispersive X-ray spectrometry. The phases of some particles were verified using selected-area electron diffraction. Aerosol particle types less than 10 μm in diameter include mineral, complex secondary (Ca-S, K-, and S-rich), organic, soot, fly ash, and metal (Fe-rich and Zn-bearing). Most soot, fly ash, and organic particles are less than 2 μm in diameter. Approximately 84% of the analyzed mineral particles have diameters between 2 and 10 μm, while 81% of the analyzed complex secondary and metal particles are much smaller, from 0.1 to 2 μm. Trajectory analysis with fire maps show that southerly air masses arriving at Beijing have been transported through many agricultural biomass burning sites and heavy industrial areas. Spherical fly ash and Fe-rich particles were from industrial emissions, and abundant K-rich and organic particles likely originated from field burning of crop residues. Abundant Zn-bearing particles are associated with industrial activities and local waste incinerators. On the basis of the detailed analysis of 443 analyzed aerosol particles, about 70% of these particles are internally mixed with two or more aerosol components from different sources. Most mineral particles are covered with visible coatings that contain N, O, Ca (or Mg), minor S, and Cl. K- and S-rich particles tend to be coagulated with fly ash, soot, metal, and fine-grained mineral particles. Organic materials internally mixed with K- and S-rich particles can be their inclusions and coatings.

  11. Single-particle measurements of phase partitioning between primary and secondary organic aerosols.

    PubMed

    Robinson, Ellis Shipley; Donahue, Neil M; Ahern, Adam T; Ye, Qing; Lipsky, Eric

    2016-07-18

    Organic aerosols provide a measure of complexity in the urban atmosphere. This is because the aerosols start as an external mixture, with many populations from varied local sources, that all interact with each other, with background aerosols, and with condensing vapors from secondary organic aerosol formation. The externally mixed particle populations start to evolve immediately after emission because the organic molecules constituting the particles also form thermodynamic mixtures - solutions - in which a large fraction of the constituents are semi-volatile. The external mixtures are thus well out of thermodynamic equilibrium, with very different activities for many constituents, and yet also have the capacity to relax toward equilibrium via gas-phase exchange of semi-volatile vapors. Here we describe experiments employing quantitative single-particle mass spectrometry designed to explore the extent to which various primary organic aerosol particle populations can interact with each other or with secondary organic aerosols representative of background aerosol populations. These methods allow us to determine when these populations will and when they will not mix with each other, and then to constrain the timescales for that mixing.

  12. Mass Spectra of Individual Aerosol Particles Acquired During Intercepts of a Space Shuttle Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    The WB-57 aircraft accomplished fourteen distinct stratospheric intercepts of the exhaust plume from a space shuttle during ACCENT 2000. Liftoff of the shuttle Atlantis for STS-106 occurred at 8:46 am local (12:46 UTC) with intercepts occurring from 5 to 90 minutes afterward. The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, mounted in the nose of the aircraft, was used to acquire individual mass spectra of over 2500 particles during these intercepts. The majority of positive mass spectra indicate the presence of the metals Al, Fe, Zn, Ga, and V, all components found in the solid rocket fuel. Organic material, presumably from binding and curing agents, was also present. Negative mass spectra showed Cl from the oxidizer, ammonium perchlorate, as well as water. Rare exotic particles, for example those containing Ti and Ag and possibly formed during engine or seal ablation, were also detected. Particles originating from shuttle exhaust but also containing significant sulfuric acid were common toward the outer edge of the plume, especially during late encounters, suggesting that deposition or aerosol collision had occurred.

  13. Reactive uptake of Isoprene-derived epoxydiols to submicron aerosol particles: implications for IEPOX lifetime and SOA formation

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Gaston, C.; Riedel, T.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2014-12-01

    The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-b-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times larger on ammonium bisulfate (γ ~ 0.05) than on ammonium sulfate (γ ≤ 1 x 10-4). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.6 x 108 M/atm). Suppression of γIEPOX was observed in particles containing both ammonium bisulfate and polyethylene glycol (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0), but is greater than a day on less acidic particles (pH > 3). We connect these net reactive uptake measurements to chamber studies of the SOA yield from IEPOX multiphase chemistry and discuss the implications of these findings for modeling the anthropogenic influence upon SOA formation from isoprene.

  14. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    NASA Astrophysics Data System (ADS)

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  15. Laboratory measurements of the angular light-scattering properties of internally mixed organic and sea-salt aerosol particles using polar nephelometry

    NASA Astrophysics Data System (ADS)

    Curtis, D. B.; Tinilau, S. S.

    2013-12-01

    Aerosol particles play an important, but relatively poorly understood, role in Earth's climate. Sea-salt aerosol is one of the most prevalent naturally occurring aerosols and is therefore expected to have a large effect on climate by scattering incoming solar radiation back to space. While sea-salt aerosol has been thought to be mainly composed of sodium chloride and other salts, measurements have shown the presence of biogenic organic compounds, such as glucose, in primary sea-salt aerosol particles. In addition, the sea-salt aerosol particles can become coated by secondary organics from anthropogenic activities. In order to better understand the potential climate effects of internally mixed organic and sea-salt particles, the angular scattering properties of laboratory-generated aerosols were measured at a wavelength of 532 nm using polar nephelometry. The polar nephelometer collected scattered light with an elliptical mirror and focused it across a linear CCD detector. The instrument was therefore capable of measuring the scattering intensity as a function of scattering angle (the phase function). Two incident polarizations were studied, parallel and perpendicular to the scattering plane, which were then used to calculate the degree of linear polarization. The scattering measurements along with size distribution measurements were used to retrieve the refractive index of the particles by comparison with Mie theory. Particles were generated from solutions of sodium chloride with varying concentrations of organics such as glucose and oxalic acid. In addition, particles generated from authentic sea-water were studied for comparison. Preliminary results indicate that the effective refractive indices of the mixed particles differ significantly from pure sodium chloride and do not follow simple mixing rules used to calculate refractive index from individual components.

  16. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

    PubMed Central

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. Results The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. Conclusions The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of

  17. Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Jia, Tianyu; Tanabe, Kiyoshi; Morino, Yu; Kajii, Yoshizumi; Imamura, Takashi

    2016-04-01

    Recent field and laboratory studies suggest that forest aerosol particles contain more highly functionalized organic molecules than pinonic acid, a traditional molecular maker of secondary organic aerosol (SOA) particles. To investigate the reaction mechanisms during the aging of biogenic SOAs, the gases and particles formed from the ozonolysis of β- and α-pinene were exposed to OH radicals in a laboratory chamber. The particle samples were collected before and after OH exposure for analysis by liquid chromatography-negative electrospray ionization time-of-flight mass spectrometry. Pinic acid and terpenylic acid were abundant products in both β- and α-pinene ozonolysis SOA particles. Terpenylic acid and products with m/z 201.08 present in β-pinene SOA particles increased upon exposing SOA to OH radicals, whereas 3-methyl-1,2,3-butanetricarboxylic acid present in α-pinene SOA particles increased upon exposing SOA to OH radicals. The products with m/z 201.08 were suggested to be C9H14O5 compounds. Similar C9H14O5 compounds and terpenylic acid were also detected in SOA particles formed from the photooxidation of nopinone, a major first-generation product of β-pinene ozonolysis. The OH-initiated oxidation of nopinone will contribute to the formation of terpenylic acid and C9H14O5 compounds during the aging of β-pinene SOA. A formation mechanism for terpenylic acid via gas-phase diaterpenylic acid formation followed by self-dehydration in the condensed phase was suggested.

  18. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles. PMID:19204485

  19. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  20. Low-temperature Bessel beam trap for single submicrometer aerosol particle studies

    SciTech Connect

    Lu, Jessica W.; Chasovskikh, Egor; Stapfer, David; Isenor, Merrill; Signorell, Ruth

    2014-09-01

    We report on a new instrument for single aerosol particle studies at low temperatures that combines an optical trap consisting of two counter-propagating Bessel beams (CPBBs) and temperature control down to 223 K (−50 °C). The apparatus is capable of capturing and stably trapping individual submicrometer- to micrometer-sized aerosol particles for up to several hours. First results from studies of hexadecane, dodecane, and water aerosols reveal that we can trap and freeze supercooled droplets ranging in size from ∼450 nm to 5500 nm (radius). We have conducted homogeneous and heterogeneous freezing experiments, freezing-melting cycles, and evaporation studies. To our knowledge, this is the first reported observation of the freezing process for levitated single submicrometer-sized droplets in air using optical trapping techniques. These results show that a temperature-controlled CPBB trap is an attractive new method for studying phase transitions of individual submicrometer aerosol particles.

  1. Single Particle Fluorescence & Mass Spectrometry for the Detection of Biological Aerosols

    SciTech Connect

    Coffee, K; Riot, V; Woods, B; Steele, P; Gard, E E

    2005-04-25

    Biological Aerosol Mass Spectrometry (BAMS) is an emerging technique for the detection of biological aerosols, which is being developed at Lawrence Livermore National Laboratory. The current system uses several orthogonal analytical methods to improve system selectivity, sensitivity and speed in order to maximize its utility as a biological aerosol detection system with extremely low probability of false alarm and high probability of detection. Our approach is to pre-select particles of interest by size and fluorescence prior to mass spectral analysis. The ability to distinguish biological aerosols from background and to discriminate bacterial spores, vegetative cells, viruses and toxins from one another will be shown. Data from particle standards of known chemical composition will be discussed. Analysis of ambient particles will also be presented.

  2. The scavenging of two different types of marine aerosol particles calculated using a two-dimensional detailed cloud model

    NASA Astrophysics Data System (ADS)

    Flossmann, Andrea I.

    1991-07-01

    Our 2-D dynamic model including spectral microphysics and scavenging has been evaluated for a warm precipitating convective cloud at Day 261 (18 September 1974) of the GATE campaign. Two different chemical species ((NH4)2SO4 and NaCl) of aerosol particles were followed in the air, inside the drops in the cloud, and inside the drops reaching the ground. Concerning the dynamics and microphysics, as well as the scavenging and wet deposition, the model results agree quite well with available observations. The cloud rained after 19min of cloud life time. For the considered aerosol loading of the atmosphere, rough estimates are derived for the total material processed by such a warm convective cloud as input for larger scale models. In particular, the following conclusions could be drawn for the situation considered. (1) If a drop spectrum forms on an aerosol spectrum where the small particles consist of (NH4)2SO4 and the large ones of NaCl, the resulting small drops also mainly consist of (NH4)2SO4 and the larger drops of NaCl. Collision and coalescence causes a redistribution of the chemical species such that the precipitation sized drops consist of NaCl to about 70%. (2) The mixing ratio of aerosol material in the drops is a function of the age of the drops and their history and therefore the variation of the mixing ratio with drop size depends on the entrainment and evoluion of the relative humidity. The mixing ratio decreased with increasing drop radius at almost all grid points due to continuous activation of fresh particles. (3) Assuming that the sulfate aerosol would not consist of (NH4)2SO4 particles but instead consist of NH4 HSO4 particles the acidic cloud water has a pH of 4.7 which agrees with observations of marine precipitation. (4) The scavenging efficiency of the cloud considered is closely related to its precipitation efficiency (both near 40%). About 90% of the total amount of aerosol material scavenged is incorporated into the cloud water through

  3. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4

  4. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-12-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  5. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  6. Measurement of acidic aerosol species in eastern Europe: implications for air pollution epidemiology.

    PubMed Central

    Brauer, M; Dumyahn, T S; Spengler, J D; Gutschmidt, K; Heinrich, J; Wichmann, H E

    1995-01-01

    A large number of studies have indicated associations between particulate air pollution and adverse health outcomes. Wintertime air pollution in particular has been associated with increased mortality. Identification of causal constituents of inhalable particulate matter has been elusive, although one candidate has been the acidity of the aerosol. Here we report measurements of acidic aerosol species made for approximately 1.5 years in Erfurt, Germany, and Sokolov, Czech Republic. In both locations, the burning of high-sulfur coal is the primary source of ambient air pollution. Twenty-four-hour average measurements were made for PM10, [particulate matter with an aerodynamic diameter (da) < or = 10 microns], as well as fine particle (da < 2.5 microns) H+ and SO4(2-) for the entire study. Additionally, separate day and night measurements of fine particle H+, SO4(2-), NO3-, and NH4+ and the gases, SO2, HNO3, HONO, and NH3 were collected with an annular denuder/filter pack system over a 7-month (late winter-summer) period with additional measurements during pollution episodes the following winter. At both sites, 24-hr SO2 (mean concentrations of 52 micrograms/m3, with peak levels of > 585 micrograms/m3) and PM10 (mean concentration 60 micrograms m3) concentrations were quite high. However, aerosol SO4(2-) concentrations (mean concentration of approximately 10 micrograms/m3) were not as great as expected given the high SO2 concentrations, and acidity was very low (mean concentration of < 1 microgram/m3, with peak levels of only 7 micrograms/m3). Low acidity is likely to be the result of NH3 neutralization and slow conversion of SO2 to SO4(2-).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7656878

  7. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-08-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas-phase Master Chemical Mechanism version 3.2 (MCMv3.2), an aerosol dynamics and particle-phase chemistry module (which considers acid-catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion-limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study (1) the evaporation of liquid dioctyl phthalate (DOP) particles, (2) the slow and almost particle-size-independent evaporation of α-pinene ozonolysis secondary organic aerosol (SOA) particles, (3) the mass-transfer-limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), and (4) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. In the smog chamber experiments, these salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar-like amorphous-phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if the concentration of low-volatility and viscous oligomerized SOA material at the particle surface increases upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass-transfer-limited uptake of condensable organic compounds

  8. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks.

    PubMed

    Milton, Donald K; Fabian, M Patricia; Cowling, Benjamin J; Grantham, Michael L; McDevitt, James J

    2013-03-01

    The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask) in two size fractions ("coarse">5 µm, "fine"≤5 µm) from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19) fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2) and in the coarse fraction by 25 fold (95% CI 3.5 to 180). Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3) reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction). Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans.

  9. Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign

    NASA Astrophysics Data System (ADS)

    Ye, Xingnan; Tang, Chen; Yin, Zi; Chen, Jianmin; Ma, Zhen; Kong, Lingdong; Yang, Xin; Gao, Wei; Geng, Fuhai

    2013-01-01

    The hygroscopic properties of submicrometer urban aerosol particles were studied during the 2009 Mirage-Shanghai Campaign. The urban aerosols were composed of more-hygroscopic and nearly-hydrophobic particles, together with a trace of less-hygroscopic particles. The mean hygroscopicity parameter κ of the more-hygroscopic mode varied in the range of 0.27-0.39 depending on particle size. The relative abundance of the more-hygroscopic particles at any size was ca. 70%, slightly increasing with particle size. The number fraction of the nearly-hydrophobic particles fluctuated between 0.1 and 0.4 daily, in accordance with traffic emissions and atmospheric diffusion. The results from relative humidity dependence on hygroscopic growth and chemical analysis of fine particles indicated that particulate nitrate formation through the homogenous gas-phase reaction was suppressed under ammonia-deficient atmosphere in summer whereas the equilibrium was broken by more available NH3 during adverse meteorological conditions.

  10. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  11. Modeling of microphysics and optics of aerosol particles in the marine environments

    NASA Astrophysics Data System (ADS)

    Kaloshin, Gennady

    2013-05-01

    We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0 - 25 m, U = 3 - 18 km s-1, X ≤ 120 km and RH = 40 - 98%. The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied for the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ = 0.2-12 μm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory. The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results. Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.

  12. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  13. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA.

  14. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  15. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  16. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments

    SciTech Connect

    Wei-Hsin Chen; Shan-Wen Du; Hsi-Hsien Yang; Jheng-Syun Wu

    2008-05-15

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400{sup o}C are considered. Experimental observations indicate that when the reaction temperature is 1000{sup o}C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400{sup o}C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000{sup o}C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400{sup o}C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000{sup o}C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400{sup o}C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases. 31 refs., 9 figs., 1 tab.

  17. Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions

    NASA Astrophysics Data System (ADS)

    Putkiranta, M.; Manninen, A.; Rostedt, A.; Saarela, J.; Sorvajärvi, T.; Marjamäki, M.; Hernberg, R.; Keskinen, J.

    2010-06-01

    Several fluorophores, such as tryptophan, NADH, NADPH, and riboflavin are found in airborne micro-organisms. In this work, the fluorescence properties of these biochemicals were studied both in dry NaCl composite aerosol particles and in saline solutions by means of laser-induced fluorescence. Fluorescence spectra were measured from individual, airborne aerosol particles and from solutions in cuvette. The excitation wavelength was varied in steps from 210 nm to 419 nm and the fluorescence was detected within a wavelength band of 310-670 nm. For each sample, the measured fluorescence emission spectra were combined into fluorescence maps. The fluorescence maximum of riboflavin in a dry NaCl composite particle is 20 nm red-shifted compared with the solution, whereas the maxima are blue-shifted by about 25 nm for tryptophan and 15 nm for NADH and NADPH. The molecular fluorescence cross sections have significant differences between the aerosol particles and the solutions, except for tryptophan. For NADH and NADPH the cross sections are over 20 times larger in the aerosol particles than in the solutions probably as a result of partial quenching of fluorescence in solution caused by the collision or stacking with the adenine moiety. The fluorescence cross section of riboflavin is almost 60 times larger in the solution than in the dry NaCl composite aerosol. This is probably caused by the different microenvironment around the fluorophore molecule and by the concentration quenching in the particles where the fluorescing molecules are relatively close to each other.

  18. [Hygroscopic Properties of Aerosol Particles in North Suburb of Nanjing in Spring].

    PubMed

    Xu, Bin; Zhang, Ze-feng; Li, Yan-weil; Qin, Xin; Miao, Qing; Shen, Yan

    2015-06-01

    The hygroscopic properties of submicron aerosol particles have significant effects on spectral distribution, CCN activation, climate forcing, human health and so on. A Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) was utilized to analyze the hygroscopic properties of aerosol particles in the northern suburb of Nanjing during 16 April to 21 May, 2014. At relative humidity (RH) of 90%, for particles with dry diameters 30-230 nm, the probability distribution of GF (GF-PDF) shows a distinct bimodal pattern, with a dominant more-hygroscopic group and a smaller less-hygroscopic group. A contrast analysis between day and night suggests that, aerosol particles during day time have a stronger hygroscopicity and a higher number fraction of more-hygroscopic group than that at night overall. Aerosol particles during night have a higher degree of externally mixed state. Backward trajectory analysis using HYSPLIT mode reveals that, the sampling site is mainly affected by three air masses. For aitken nuclei, northwest continental air masses experience a longer aging process and have a stronger hygroscopicity. For condensation nuclei, east air masses have a stronger hygroscopicity and have a higher number fraction of more-hygroscopic group. Aerosol particles in local air masses have a high number fraction of more-hygroscopic group in the whole diameter range.

  19. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  20. Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe

    NASA Astrophysics Data System (ADS)

    Hamburger, T.; McMeeking, G.; Minikin, A.; Petzold, A.; Coe, H.; Krejci, R.

    2012-08-01

    In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm-3 stp. Nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 °C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.

  1. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  2. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  3. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    NASA Astrophysics Data System (ADS)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  4. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  5. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  6. Mapping of soot particles in a weakly sooting diffusion flame by aerosol techniques

    SciTech Connect

    Hepp, H.; Siegmann, K.

    1998-10-01

    The evolution of detailed particle size distributions has been measured along the centerline of an axisymmetric diffusion flame of CH{sub 4} + Ar burning in air at 1 atm. Soot particles with mean diameters of 3--18 nm were observed. Changes in the size distribution exhibited zones where either nucleation, coagulation, or destruction of soot particles dominated. These highly sensitive measurements were made by microprobe sampling with an immediate dilution of 1:400, to quench the aerosol, and by subsequent application of aerosol measurement techniques. In parallel, the yield of photoemitted electrons from size-selected particles was determined. The yield shows a characteristic dependence on location in the flame, indicating changes of the particle`s surface. Multiphoton, time-of-flight mass spectrometry was used to investigate the correlation between polycyclic aromatic hydrocarbons in the flame and enhanced photoemission yield from the soot particles.

  7. Experimental Assessment of Collection Efficiency of Submicron Aerosol Particles by Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Ardon-Dryer, K.; Cziczo, D. J.

    2014-12-01

    The interplay between aerosol particles and water droplets in the atmosphere, especially in clouds, influences both aerosol and cloud properties. The major uncertainty in our understanding of climate arises in the indirect effect of aerosol and their ability to impact cloud formation and consequently alter the global radiative balance. The collision between a water droplet and aerosol particles that results in coalescence is termed "collection" or "coagulation". Coagulation can lead to aerosol removal from the atmosphere or induce ice nucleation via contact freezing. There is a theoretical collection efficiency minimum of particles with diameter between 0.1-2 µm, called the "Greenfield Gap". Experimental effort, however, was limited to drizzle and rain drops until recently, and has not constrained parameters that describe particle collection efficiency by cloud droplets. Collection efficiency is also an important parameter for assessing contact freezing, the least known ice nucleation mechanism today. Experimentally assessing collection efficiency can prove the existence of the "Greenfield Gap" and lay the foundation for studying contact freezing. We recently constructed the MIT-Contact Freezing Chamber (MIT-CFC) to study coagulation experimentally. A stream of 40 µm cloud droplets fall freely into the chamber and collide with aerosol particles with known size and concentration. The outflow goes through a series of dryers before entering the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument for chemical composition analysis. PALMS is a true single-particle instrument and gives information on the size and the chemical composition of each particle. Coagulated particles from the MIT-CFC have mass spectral signatures of both the aerosol particles and the droplet residuals, while the droplet residual contains no signature of the aerosol particles. To our knowledge, this is the first time coagulation has been seen on a single-particle basis. We will

  8. HUMIDITY EFFECTS ON THE MASS SPECTRA OF SINGLE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line laser desorption ionization mass spectrometry has developed into a widely used method for chemical characterization of individual aerosol particles. In the present study, the spectra of laboratory-generated particles were obtained as a function of relative humidity to elu...

  9. Discrimination and classification of bio-aerosol particles using optical spectroscopy and scattering

    NASA Astrophysics Data System (ADS)

    Eversole, Jay D.

    2011-03-01

    For more than a decade now, there has been significant emphasis for development of sensors of agent aerosols, especially for biological warfare (BW) agents. During this period, the Naval Research Laboratory (NRL) and other labs have explored the application of optical and spectroscopic methods relevant to biological composition discrimination to aerosol particle characterization. I will first briefly attempt to establish the connection between sensor performance metrics which are statistically determined, and aerosol particle measurements through the use of computational models, and also describe the challenge of ambient background characterization that would be needed to establish more reliable and deterministic sensor performance predictions. Greater attention will then be devoted to a discussion of basic particle properties and their measurement. The NRL effort has adopted an approach based on direct measurements on individual particles, principally of elastic scatter and laser-induced fluorescence (LIF), rather than populations of particles. The development of a LIF instrument using two sequential excitation wavelengths to detect fluorescence in discrete spectral bands will be described. Using this instrument, spectral characteristics of particles from a variety of biological materials including BW agent surrogates, as well as other ``calibration'' particles and some known ambient air constituents will be discussed in terms of the dependence of optical signatures on aerosol particle composition, size and incident laser fluence. Comparison of scattering and emission measurements from particles composed of widely different taxa, as well as from similar species under different growth conditions highlight the difficulties of establishing ground truth for complex biological material compositions. One aspect that is anticipated to provide greater insight to this type of particle classification capability is the development of a fundamental computational model of

  10. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Matisāns, M.; Krejci, R.; Nilsson, E. D.; Ström, J.

    2012-11-01

    Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85-90% of the total aerosol number to 10 °C, where they represent 60-70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg-1 and 35 g kg-1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L-1 to 94 μmol L-1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.

  11. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  12. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  13. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  14. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  15. Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles: Reaction Kinetics and Chemical Morphology

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Katrib, Y.; Biskos, G.; Buseck, P. R.; Davidovits, P.; Jayne, J. T.; Mochida, M.; Wise, M. E.; Worsnop, D. R.

    2005-12-01

    Atmospheric particles directly and indirectly affect global climate and have a primary role in regional issues of air pollution, visibility, and human health. Atmospheric particles have a variety of shapes, dimensions, and chemical compositions, and these physicochemical properties evolve (i.e., "age") during transport of the particles through the atmosphere, in part because of the chemical reactions of particle-phase organic molecules with gas-phase atmospheric oxidants. As a global average, hydroxyl radical (OH) and ozone (O3) are responsible quantitatively for most oxidant aging of atmospheric particles. The reactions of the hydroxyl radical occur in the surface region of a particle because of the nearly diffusion-limited bimolecular rate constant of OH with a variety of organic molecules. Ozone, on the other hand, is a selective agent for the unsaturated bonds of organic molecules and may diffuse a considerable distance into particles prior to reaction. The reaction of oleic acid with ozone has recently emerged as a model system to better understand the atmospheric chemical oxidation processes affecting organic particles. The ozonolysis of mixed oleic-acid/stearic-acid (OL/SA) aerosol particles from 0/100 to 100/0 weight percent composition is studied. The magnitude of the divergence of the particle beam inside an aerosol mass spectrometer shows that, in the concentration range 100/0 to 60/40, the mixed OL/SA particles are liquid prior to reaction. Upon ozonolysis, particles with SA composition greater than 25% change shape, indicating that they have solidified. Transmission electron micrographs show that SA(s) forms needles. For SA compositions greater than 10%, the reaction kinetics exhibit an initial fast decay of OL for low O3 exposure with no further loss of OL at higher O3 exposures. For compositions from 50/50 to 10/90, the residual OL concentration remains at 28+/-2% of its initial value. The initial reactive uptake coefficient for O3, as determined by

  16. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  17. Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra

    NASA Astrophysics Data System (ADS)

    Rieger, L. A.; Bourassa, A. E.; Degenstein, D. A.

    2014-02-01

    The Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite has now taken over a decade of limb scatter measurements that have been used to retrieve the version 5 stratospheric aerosol extinction product. This product is retrieved using a representative particle size distribution to calculate scattering cross sections and scattering phase functions for the forward model calculations. In this work the information content of OSIRIS measurements with respect to stratospheric aerosol is systematically examined for the purpose of retrieving particle size information along with the extinction coefficient. The benefit of using measurements at different wavelengths and scattering angles in the retrieval is studied, and it is found that incorporation of the 1530 nm radiance measurement is key for a robust retrieval of particle size information. It is also found that using OSIRIS measurements at the different solar geometries available on the Odin orbit simultaneously provides little additional benefit. Based on these results, an improved aerosol retrieval algorithm is developed that couples the retrieval of aerosol extinction and mode radius of a log-normal particle size distribution. Comparison of these results with coincident measurements from SAGE III shows agreement in retrieved extinction to within approximately 10% over the bulk of the aerosol layer, which is comparable to version 5. The retrieved particle size, when converted to Ångström coefficient, shows good qualitative agreement with SAGE II measurements made at somewhat shorter wavelengths.

  18. [Concentration and Particle Size Distribution of Microbiological Aerosol During Haze Days in Beijing].

    PubMed

    Hu, Ling-fei; Zhang, Ke; Wang, Hong-bao; Li, Na; Wang, Jie; Yang, Wen-hui; Yin, Zhe; Jiao, Zhou-guang; Wen, Zhan-bo; Li, Jin-song

    2015-09-01

    In this study, we evaluated the bacterial, fungal aerosol concentration, and particle size distribution using microbiological aerosol sampler, and analyzed the particles count concentration of PM1.0, PM2.5, PM5.0 and PM10.0 using aerodynamic particle sizer during clear and haze days in Beijing during Jan 8th, 2013 to Feb 4th, 2013. The concentration of bacterial, fungal aerosol, air particulate matter and aerosol distribution were compared between haze days and clear days. Our results indicated that the proportion of fungal particles smaller than 5 micron, which could deposit in lungs or deeper regions, was much higher than bacterial particles. The biological concentration of bacteria and fungi were higher in clear days than in haze days, and there was no statistic difference of the microbiological aerosol distribution. The concentration of air particulate matter were higher in haze days than in clear days, PM10 was the main particulate matters both in clear days and haze days.

  19. Limits of DPUI application associated with the number of particles within actinide aerosols.

    PubMed

    Fritsch, P; Raynaud, P; Blanchin, N; Mièle, A

    2007-01-01

    Dose per unit intake (DPUI) of radionuclides is obtained using International Commission on Radiological Protection (ICRP) models. After inhalation exposure, the first model calculates the fraction of activity deposited within the different regions of the respiratory tract, assuming that the aerosol contains an infinite number of particles. Using default parameters for workers, an exposure to one annual limit of intake (ALI) corresponds to an aerosol of 239PuO2 containing approximately 1 x 10(6) particles. To reach such an exposure, very low particle number might be involved especially for compounds having a high specific activity. This study provides examples of exposures to actinide aerosols for which the number of particles is too low for a standard application of the ICRP model. These examples, which involve physical studies of aerosols collected at the workplace and interpretation of bioassay data, show that the number of particles of the aerosol can be the main limit for the application of DPUI after inhalation exposure.

  20. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments

    NASA Astrophysics Data System (ADS)

    Drewnick, Frank; Dall'Osto, Manuel; Harrison, Roy

    During a measurement campaign at a semi-urban/industrial site a grass-cutting event was observed, when the lawn in the immediate surrounding of the measurement site was mowed. Using a wide variety of state-of-the-art aerosol measurement technology allowed a broad characterization of the aerosol generated by the lawn mowing. The instrumentation included two on-line aerosol mass spectrometers: an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) and a TSI Aerosol Time-of-Flight Mass Spectrometer (ATOFMS); in addition, a selection of on-line aerosol concentration and size distribution instruments (OPC, APS, SMPS, CPC, FDMS-TEOM, MAAP) was deployed. From comparison of background aerosol measurements during most of the day with the aerosol measured during the lawn mowing, the grass cutting was found to generate mainly two different types of aerosol particles: an intense ultrafine particle mode (1 h average: 4 μg m -3) of almost pure hydrocarbon-like organics and a distinct particle mode in the upper sub-micrometer size range containing particles with potassium and nitrogen-organic compounds. The ultrafine particles are probably lubricating oil particles from the lawn mower exhaust; the larger particles are swirled-up plant debris particles from the mowing process. While these particle types were identified in the data from the two mass spectrometers, the on-line aerosol concentration and size distribution data support these findings. The results presented here show that the combination of quantitative aerosol particle ensemble mass spectrometry (ToF-AMS) and single particle mass spectrometry (ATOFMS) provides much deeper insights into the nature of the aerosol properties than each of the instruments could do alone. Therefore a combined deployment of both types of instruments is strongly recommended.

  1. Chemometric analysis of multi-sensor hyperspectral images of coarse mode aerosol particles for the image-based investigation on aerosol particles

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kamilli, Katharina A.; Eitenberger, Elisabeth; Friedbacher, Gernot; Lendl, Bernhard; Held, Andreas; Lohninger, Hans

    2015-04-01

    Multi-sensor hyperspectral imaging is a novel technique, which allows the determination of composition, chemical structure and pure components of laterally resolved samples by chemometric analysis of different hyperspectral datasets. These hyperspectral datasets are obtained by different imaging methods, analysing the same sample spot and superimposing the hyperspectral data to create a single multi-sensor dataset. Within this study, scanning electron microscopy (SEM), Raman and energy-dispersive X-ray spectroscopy (EDX) images were obtained from size-segregated aerosol particles, sampled above Western Australian salt lakes. The particles were collected on aluminum foils inside a 2350 L Teflon chamber using a Sioutas impactor, sampling aerosol particles of sizes between 250 nm and 10 µm. The complex composition of the coarse-mode particles can be linked to primary emissions of inorganic species as well as to oxidized volatile organic carbon (VOC) emissions. The oxidation products of VOC emissions are supposed to form an ultra-fine nucleation mode, which was observed during several field campaigns between 2006 and 2013. The aluminum foils were analysed using chemical imaging and electron microscopy. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the foils at a resolution of about 1 µm. The same area was analysed using a Quanta FEI 200 electron microscope (about 250 nm resolution). In addition to the high-resolution image, the elemental composition could be investigated using energy-dispersive X-ray spectroscopy. The obtained hyperspectral images were combined into a multi-sensor dataset using the software package Imagelab (Epina Software Labs, www.imagelab.at). After pre-processing of the images, the multi-sensor hyperspectral dataset was analysed using several chemometric methods such as principal component analysis (PCA), hierarchical cluster analysis (HCA) and other multivariate methods. Vertex

  2. TEM Study of Aerosol Particles in Brown Haze Episodes over Northern China in Spring 2007

    NASA Astrophysics Data System (ADS)

    Li, W.; Shao, L.; Buseck, P. R.

    2008-12-01

    Airborne aerosol collections were performed in eight brown haze episodes from 31 May to 21 June 2007 in Beijing, China. Morphologies, compositions, and mixing states of individual aerosol particles having different sizes were obtained using transmission electron microscopy (TEM). Aerosol particle types less than 2 μ m in diameter include mineral dust, fly ash, soot, organic material, and K-rich, S-rich, and metal particles (Fe- and Zn-rich). Mineral dust particles dominate in the range of 2 to 10 μ m. In addition to finding contributions from vehicle emissions and soil dust in Beijing, TEM results from the study provide new insights into sources such as agricultural biomass burning, industrial activities, and waste incineration. These sources can contribute not only great amounts of K-rich and metal particles but also reactive gases such as NH3, NOx, SO2, and VOCs to the haze. More than 80% of the analyzed aerosol particles are internally mixed. K- and S-rich particles tend to be coagulated with fly ash, soot, metal, and fine-grained mineral dust particles. Organic materials can act as inclusions in the K- and S-rich particles and their coatings. Over 90% of the analyzed internally mixed mineral particles are covered with Ca-, Mg-, or Na-rich coatings, and only 8% are associated with K- or S-rich coatings. The compositions of Ca-, Mg-, and Na-rich coatings suggest that they are possibly nitrates mixed with minor sulfates and chlorides. Calcium sulfate particles with diameters from 10 to 500 nm were also detected within Ca(NO3)2 and Mg(NO3)2 coatings. These results indicate that mineral dust particles in the brown haze episodes participated in heterogeneous reactions in the atmosphere with one or more of SO2, NO2, HCl, and HNO3. The development of coatings altered some mineral dust particles from hydrophobic to hydrophilic.

  3. Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Zhang, Xi; Crisp, David; Bardeen, Charles G.; Yung, Yuk L.

    2014-03-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days and that it is populated by two particle modes. We use a one-dimensional microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two observed modes, and whether their observed variability are due in part to the action of vertical transient winds at the cloud tops. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets, which then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and therefore cannot reproduce the observed bimodal size distribution. By comparison, the mass transport enabled by transient winds at the cloud tops, possibly caused by sustained subsolar cloud top convection, are able to generate a bimodal size distribution in a time scale consistent with Venus Express observations. Below the altitude where the cloud particles are generated, sedimentation and vigorous convection causes the formation of large mode 2 and mode 3 particles in the middle and lower clouds. Evaporation of the particles below the clouds causes a local sulfuric acid vapor maximum that results in upwelling of sulfuric acid back into the clouds. In the case where the polysulfur condensation nuclei are small and their production rate is high, coagulation of small droplets onto larger droplets in the middle cloud may set up an oscillation in the size modes of the particles such that precipitation of sulfuric acid “rain” may be possible immediately below the clouds once every few Earth months. Reduction of the polysulfur condensation nuclei production

  4. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  5. Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2009-05-05

    The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.

  6. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  7. Two-dimensional Guinier analysis: application to single aerosol particles in-flight.

    PubMed

    Berg, Matthew J; Hill, Steve C; Pan, Yong-Le; Videen, Gorden

    2010-10-25

    This work presents an apparatus that measures near-forward two-dimensional elastic scattering patterns of single aerosol particles and proposes a two-angle extension of the Guinier law to analyze these patterns. The particles, which approximately range from 2 to 8 micrometers in size, flow through the apparatus in an aerosol stream. A spatial filtering technique separates the near-forward portion of the patterns from the illumination light. Contours intended to represent the geometrical profile of the particles are generated from the patterns using the extension of the Guinier law. The analysis is applied to spherical and nonspherical particles, and the resulting contours are found to be consistent with particle shape only for spherical particles.

  8. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  9. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    PubMed

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism.

  10. Ion composition of coarse and fine particles in Iasi, north-eastern Romania: Implications for aerosols chemistry in the area

    NASA Astrophysics Data System (ADS)

    Arsene, Cecilia; Olariu, Romeo Iulian; Zarmpas, Pavlos; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2011-02-01

    Atmospheric loadings of the aerosols coarse (particles of AED > 1.5 μm) and fine fractions (particles of AED < 1.5 μm) were determined in Iasi, north-eastern Romania from January 2007 to March 2008. Concentrations of water soluble ions (SO 42-, NO 3-, Cl -, C 2O 42-, NH 4+, K +, Na +, Ca 2+ and Mg 2+) were measured using ion chromatography (IC). In the coarse particles, calcium and carbonate are the main ionic constituents (˜65%), whereas in the fine particles SO 42-, NO 3-, Cl - and NH 4+ are the most abundant. Temperature and relative humidity (RH) associated with increased concentrations of specific ions might be the main factors controlling the aerosol chemistry at the investigated site. From August 2007 to March 2008 high RH (as high as 80% for about 82% of the investigated period) was prevailing in Iasi and the collected particles were expected to have deliquesced and form an internal mixture. We found that in fine particles ammonium nitrate (NH 4NO 3) is important especially under conditions of NH 4+/SO 42- ratio higher than 1.5 and high RH (RH above deliquescence of NH 4Cl, NH 4NO 3 and (NH 4) 2SO 4). At the investigated site large ammonium artifacts may occur due to inter-particle interaction especially under favorable meteorological conditions. A methodology for estimating the artifact free ambient ammonium concentration is proposed for filter pack sampling data of deliquesced particles. Nitrate and sulfate ions in coarse particles are probably formed via reactions of nitric and sulfuric acid with calcium carbonate and sodium chloride which during specific seasons are abundant at the investigated site. In the fine mode sulfate concentration maximized during summer (due to enhanced photochemistry) and winter (due to high concentration of SO 2 emitted from coal burning). Natural contributions, dust or sea-salt related, prevail mainly in the coarse particles. From May 2007 to August 2007, when air masses originated mainly from Black Sea, in the coarse

  11. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  12. Mass Analysis of Charged Aerosol Particles During the MASS/ECOMA Campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S.; Horanyi, M.; Sternovsky, Z.

    2008-12-01

    . The Mesospheric Aerosol Sampling Spectrometer (MASS) instrument was launched on two sounding rockets in August 2007 from Andoya, Norway to find the masses of charged aerosol particles in the polar mesosphere in NLC/PMSE conditions (3 August) and PMSE conditions alone (6 August). We compare and contrast the four data sets from the uplegs and downlegs. The MASS instrument collected ions, cluster ions, and charged nanometer-sized particles on four pairs of electrically-biased graphite plates that collect positive and negative particles separately. Electron collection was prevented by the negative potential on the rocket body. For the 3 August upleg, the data show charged particle collection on all channels with number densities of order several thousand per cubic centimeter in the four size ranges < 0.5 nm, 0.5-1 nm, 1-2 nm, and > 3 nm. The occurrence of positively charged aerosol particles in the smallest sizes suggests positive ions as the nucleation sites because the smallest particles have negligible probability of charging by photoionization. The signals were smaller on the 3 August downleg as a consequence of the spatial variability of the cloud. For the 6 August upleg into PMSE alone, only smaller particles (< 2 nm) were detected and these were both positive and negative with number densities of several thousand per cubic centimeter. On the downleg, 1-2 nm negatively charged particles were detected, but there were no positive particles in this mass range.

  13. Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site.

    PubMed

    Creamean, Jessie M; Ault, Andrew P; Ten Hoeve, John E; Jacobson, Mark Z; Roberts, Gregory C; Prather, Kimberly A

    2011-10-01

    Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.

  14. Thermal desorption single particle mass spectrometry of ambient aerosol in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Wang, Xinning; Li, Jingyan; Xu, Tingting; Chen, Hong; Yang, Xin; Chen, Jianmin

    2015-12-01

    Submicron aerosol volatility, chemical composition, and mixing state were simultaneously measured using a thermodenuder (TD) in-line with a single particle aerosol mass spectrometry (SPAMS) during Nov.12 to Dec. 11 of 2014 in Shanghai. By heating up to 250 °C, the signals of refractory species such as elemental carbon, metallic compounds, and mineral dust in aerosols were enhanced in the mass spectra. At 250 °C, the main particle types present in the size range of 0.2-1.0 μm were biomass burning (37% by number) and elemental carbon (20%). From 1.0 to 2.0 μm, biomass burning (30%), dust (19%) and metal-rich (18%) were the primary particle types. CN- signal remained in the mass spectra of the heated biomass burning particles suggests the existence of some extremely low-volatility nitrogen-containing organics. Laboratory experiments were conducted by burning rice straws, the main source material of biomass burning particles in Southern China, to confirm the less volatile composition contributed by biomass burning. Strong CN- with relative area >0.21 was observed in most of the laboratory-made biomass burning particles when heated above 200 °C and was selected as a new marker to identify the biomass burning particles in the field. The TD-SPAMS measured the size-resolved chemical composition of the individual particle residues at different temperatures and offered more information on the aging processes of primary particles and their sources.

  15. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  16. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    PubMed

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  17. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts.

    PubMed

    Babu, S Suresh; Kompalli, Sobhan Kumar; Moorthy, K Krishna

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  18. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  19. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles

  20. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    PubMed

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p < 0.05), raising a concern about applicability of the N95 filters performance obtained with the NaCl aerosol challenge to protection against combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p < 0.05) factors affecting the performance of the N95 FFR filter. In contrast to N95 filters, the penetration of combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles

  1. Heavy duty diesel engine exhaust aerosol particle and ion measurements.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Virtanen, Annele; Schuck, Tanja J; Pirjola, Liisa; Hämeri, Kaarle; Kulmala, Markku; Arnold, Frank; Rothe, Dieter; Keskinen, Jorma

    2009-01-01

    Heavy duty EURO 4 diesel engine exhaust particle and ion size distributions were measured atthetailpipe using dynamometer testing. Measurements of particle volatility and electrical charge were undertaken to clarify diesel exhaust nucleation mode characteristics with different exhaust after-treatment systems. Nucleation mode particle volatility and charging probability were dependent on exhaust after-treatment particles were volatile and uncharged when the engine was equipped with diesel particulate filter and partly volatile and partly charged in exhaust without any after-treatment or with an oxidation catalyst only. The absence of charged particles in the nucleation mode of diesel particulate filtered exhaust excludes the ion mediated process as a nucleation particle formation mechanism.

  2. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    PubMed

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. PMID:24607631

  3. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    PubMed

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China.

  4. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    NASA Astrophysics Data System (ADS)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  5. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products.

    PubMed

    Mostafa, A M A; Tamaki, K; Moriizumi, J; Yamazawa, H; Iida, T

    2011-07-01

    This study was performed to measure the activity size distribution of aerosol particles associated with short-lived radon decay products in indoor air at Nagoya University, Nagoya, Japan. The measurements were performed using a low pressure Andersen cascade impactor under variable meteorological conditions. The results showed that the greatest activity fraction was associated with aerosol particles in the accumulation size range (100-1000 nm) with a small fraction of nucleation mode (10-100 nm). Regarding the influence of the weather conditions, the decrease in the number of accumulation particles was observed clearly after rainfall without significant change in nucleation particles, which may be due to a washout process for the large particles.

  6. Measurement of particle size characteristics of metered dose inhaler (MDI) aerosols.

    PubMed

    Dolovich, M

    1991-01-01

    Measurement of the aerodynamic size of an aerosol allows a prediction of its deposition efficiency and behaviour in the lung. The dynamics of volatile or pressurized (MDI) aerosols presents problems not encountered in the characterization of solid or liquid particles alone. For example, the data obtained in real-time sampling as opposed to measuring an aged aerosol provide a truer representation of circumstances during actual clinical use, yet this may be difficult to achieve due to propellent evaporation. A number of particle sizing systems have been developed based upon light scattering techniques and aerodynamic principles. Each method has its limitations; in general, they successfully measure the aerodynamic size distributions of MDI aerosols. Cascade impactors, the "gold standard" of the industry have the advantage that they allow analysis of drug mass as well as other tracers within the aerosol, but the process as a whole is labour intensive, with limited resolution. Highly automated laser-based systems developed over the past 10 years measure the surface characteristics of the aerosol rather than the direct measurement of mass. Because of different values obtained from various sizing systems, it is suggested that all MDI drugs be sized using cascade impactors but that parallel data be obtained using an alternative sizing system.

  7. Measurements of mesospheric aerosol particles during the ECOMA/MASS campaign 2007.

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Latteck, Ralph; Baumgarten, Gerd; Brattli, Alvin; Friedrich, Martin; Gumbel, Jorg; Robertson, Scott

    In August 2007 the joint European-American ECOMA/MASS (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere/Dust MASS Analyzer) sounding rocket and ground-based campaign took place at the Andøya Rocket Range (ARR) (69° N). This campaign was devoted to the investigation of mesospheric aerosol particles. During this campaign, three instrumented sounding rockets were launched under the PMSE and NLC conditions. All rockets were carrying instruments to characterize mesospheric aerosol particles and their environment. The ECOMA rocket was launched during the first salvo shortly (30 min) after the MASS payload. At that time, the EISCAT (69° N, 19° E) VHF and ALWIN radars observed a double layered PMSE. Also an NLC layer was detected by lidar and photometers onboard each rocket. The main instrument of the ECOMA payload is the "ECOMA particle detector". This instrument comprises a classical Faraday cup with a xenon-flash lamp for the active photoionization/photodetachment of mesospheric smoke particles (MSPs) and the subsequent detection of corresponding photoelectrons. Comparing direct Faraday cup measurements and photocurrents we are able to derive particle properties like number densities and particle radii. We present the results of these measurements that show the presence of aerosol particles inside the NLC and PMSE layer, but not below or above these layers. These results are consistent with model predictions, which account for global transport of meteoric smoke. This implies that ice nucleation in the polar summer needs to be reconsidered.

  8. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles.

    PubMed

    Lim, Yong Bin; Ziemann, Paul J

    2009-09-28

    There is growing awareness that heterogeneous reactions may be important in the atmospheric formation of secondary organic aerosols (SOA). Here, we report on the investigation of a series of recently identified heterogeneous reactions that convert 1,4-hydroxycarbonyls, a major product of alkane oxidation, to cyclic hemiacetals and then dihydrofurans in the particle-phase. Through these reactions, saturated 1,4-hydroxycarbonyls are converted to more reactive, unsaturated dihydrofurans, which can evaporate and react rapidly with atmospheric oxidants such as OH radicals, NO3 radicals, or O3. In order to investigate the conversion process quantitatively, a model was developed based on a proposed mechanism that includes gas-phase and heterogeneous reactions, as well as gas-particle partitioning. This model was used to simulate the time profiles of products formed from OH radical-initiated reactions of C11-C17 n-alkanes in the presence of NOx, for comparison with profiles of particle-phase cyclic hemiacetals measured during environmental chamber reactions of the same alkanes using a thermal desorption particle beam mass spectrometer. Results showed that the particle-phase isomerization of 1,4-hydroxycarbonyls to cyclic hemiacetals was fast in dry air, with a reactive uptake coefficient of at least 0.5. The lifetime for the subsequent particle-phase dehydration of cyclic hemiacetals to dihydrofurans was approximately 15 min. The addition of water vapor (relative humidity approximately 50%) slowed the conversion process, apparently by neutralizing adsorbed HNO3 that is thought to catalyze the reactions. Simulations performed with model parameters obtained from the experiments indicate that for typical atmospheric aerosol mass and oxidant concentrations and sufficiently acidic particles, 1,4-hydroxycarbonyls will be almost entirely converted to dihydrofurans in less than a day in both clean and polluted areas, whereas in the presence of neutralized particles the conversion

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  10. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  11. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  12. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  13. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    The MEGAPOLI experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) giving detailed information of the non-refractory submicron aerosol species. The mass concentration of BC, measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), black carbon and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene,