Science.gov

Sample records for acid ala induced

  1. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey

    1996-04-01

    Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.

  2. Sensitization and photodynamic therapy of esophageal,duodenal, and colonic tumors with 5-aminolaevulinic acid (ALA) induced protoporphyrin IX (PPIX)

    NASA Astrophysics Data System (ADS)

    Mlkvy, Peter; Messmann, Helmut; Regula, Jaroslaw; Conio, M.; Pauer, M.; Millson, Charles E.; MacRobert, Alexander J.; Bown, Stephen G.

    1995-03-01

    Five aminolaevulinic acid (ALA) is a promising agent for PDT sensitization as it can be given orally and only causes skin photosensitivity for 1 - 2 days. In fluorescence and photodynamic studies 26 patients with benign and malignant gastrointestinal tumors (M 17, F 9; mean age 79) were given 30 - 60 mg ALA orally (single or divided doses) and biopsies taken of tumor and normal tissue at 1 - 24 hours for fluorescence microscopy. With 30 mg/kg, highest protoporphyrin IX (PPIX) levels were seen in oesophagus, duodenum and less in colon, but without tumor selectivity. Better tumor selectivity was seen in the colon after 60 mg/kg (5:1). Six patients had transient rises in transaminases and five mild nausea. Sixteen patients were later treated (after further ALA) with red light (628 nm, bare fiber or diffuser, 50 - 100 J at 50 mW at each site). All but two showed subsequent necrosis, but only 0.5 - 1.5 mm depth. PDT with ALA is simple, safe, and promising for tumors in the GI tract. Modification of treatment parameters may make it suitable for larger lesions.

  3. Photosensitization and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy

    PubMed Central

    Casas, A; Fukuda, H; Di Venosa, G; Batlle, A

    2001-01-01

    The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA methyl-ester, hexyl ester and a 2-sided derivative) regarding PPIX formation, efficiency in photosensitizing cells and mechanism of cellular death. The maximum amount of porphyrins synthesized from 0.6 mM ALA was 47 ± 8 ng/105 cells. The same amount was formed by a concentration 60-fold lower of hexyl-ALA and 2-fold higher of methyl-ALA. The 2-sided derivative failed to produce PPIX accumulation. Applying a 0.6 J cm−2 light dose, cell viability decreased to 50%. With the 1.5 J cm−2 light dose, less than 20% of the cells survive, and higher light doses produced nearly total cell killing. Comparing the PPIX production and the induced phototoxicity, the more the amount of porphyrins, the greater the cellular killing, and PPIX formed from either ALA or ALA-esters equally sensitize the cells to photoinactivation. ALA-PDT treated cells exhibited features of apoptosis, independently on the pro-photosensitizer employed. ALA-PDT can be improved with the use of ALA derivatives, reducing the amount of ALA necessary to induce efficient photosensitization. ©2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461090

  4. Hydroxylation and Epoxidation of Fatty Acids by Bacillus megaterium ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium ALA2 produces many new oxygenated fatty acids from linoleic acid. Strain ALA2 hydroxylated palmitic acid to omega-1, omega-2, and omega-3 hydroxy palmitate. Now we found that strain ALA2 also epoxidized linoleic acid to 12,13-epoxy-9(Z)-octadecenoic acid and 9,10-epoxy-12(Z)-oc...

  5. New developments in fluorescence detection of ALA-induced protoporphyrin IX for cancer localization

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Baumgartner, Reinhold; Betz, Christian; Bise, Karl; Brand, P.; Gamarra, Fernando; Haeussinger, Karl; Hillemanns, Peter; Huber, Rudolf M.; Knuechel, Ruth; Kriegmair, M.; Leunig, Andreas; Pichler, J.; Rick, Kai; Schulz, H.; Stanzel, F.; Stocker, Susanne; Wagner, Simon; Weigandt, H.

    1997-12-01

    After the very promising clinical results for the detection of bladder cancer in urology, preclinical and clinical studies on aminolevulinic acid (5-ALA) induced protoporphyrin IX (PPIX) are preformed in various disciplines now. This paper provides a brief overview of the progress on 5-ALA assisted fluorescence diagnosis in urology, pulmonology, neurosurgery, gynecology and ENT performed in collaboration with the Laser Research Laboratory at the Department of Urology of the Ludwig-Maximilians-University in Munich. Five-ALA can be applied either topically or systemically to induce an intracellular accumulation of fluorescing PPIX. With appropriate dosage of 5-ALA, malignant tissue can be stained selectively, and irradiation with violet light excites a bright red fluorescence of the tumor. Optical properties of the tissue tend to hamper the precise identification and demarcation of suspect areas in fluorescence images. Multicolor remission and fluorescence imaging, therefore, seems to be indispensable for a reliable tumor localization.

  6. Combination therapies in adjuvant with topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Fu; Hsu, Yih-Chih

    2012-03-01

    In Taiwan, oral cancer has becomes the fastest growth male cancer disease due to the betel nut chewing habit combing with smoking and alcohol-drinking lifestyle of people. In order to eliminate the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch precancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 10 to 12 weeks. Cancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when ALA reached its peak level in the lesional epithelial cells after topical application of ALA gel. We found that ALA reached its peak level in precancerous lesions about 2.5 hrs after topical application of ALA gel. The cancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 150 J/cm2 using LED 635 nm fiber-guided light device. Visual examination demonstrated that adjuvant topical ALA -mediated PDT group has shown better therapeutic results in compared to those of non-adjuvant topical ALA-mediated PDT group for DMBA-induced hamster buccal pouch precancerous lesions.

  7. ALA-induced PpIX fluorescence in epileptogenic tissue

    NASA Astrophysics Data System (ADS)

    Kleen, Jonathan K.; Valdes, Pablo A.; Harris, Brent T.; Holmes, Gregory L.; Paulsen, Keith D.; Roberts, David W.

    2011-03-01

    Astrogliotic tissue displays markedly increased levels of ALA-induced PpIX fluorescence, making it useful for fluorescence-guided resection in glioma surgery. In patients with temporal lobe epilepsy (TLE) and corresponding animal models, there are areas of astrogliosis that often co-localize with the epileptic focus, which can be resected to eliminate seizures in the majority of treated patients. If this epileptogenic tissue can exhibit PpIX fluorescence that is sufficiently localized, it could potentially help identify margins in epilepsy surgery. We tested the hypothesis that ALA-induced PpIX fluorescence could visually accentuate epileptogenic tissue, using an established animal model of chronic TLE. An acute dose of pilocarpine was used to induce chronic seizure activity in a rat. This rat and a normal control were given ALA, euthanized, and brains examined post-mortem for PpIX fluorescence and neuropathology. Preliminary evidence indicates increased PpIX fluorescence in areas associated with chronic epileptic changes and seizure generation in TLE, including the hippocampus and parahippocampal areas. In addition, strong PpIX fluorescence was clearly observed in layer II of the piriform cortex, a region known for epileptic reorganization and involvement in the generation of seizures in animal studies. We are further investigating whether ALA-induced PpIX fluorescence can consistently identify epileptogenic zones, which could warrant the extension of this technique to clinical studies for use as an adjuvant guidance technology in the resection of epileptic tissue.

  8. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA)

    SciTech Connect

    Tasmin, Saira; Furusawa, Hana; Ahmad, Sk. Akhtar; Watanabe, Chiho

    2015-01-15

    Background and objective: Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this study investigated whether the ALAD genotype influenced urinary excretion of delta-aminolevulinic acid (U-ALA) among children exposed to environmental lead in Bangladesh. Methods: Subjects were elementary schoolchildren from a semi-urban industrialized area in Bangladesh. A total of 222 children were studied. Blood and urine were collected to determine ALAD genotypes, blood lead levels and urinary aminolevulinic acid (U-ALA). Results: The mean BPb level was 9.7 µg/dl for the study children. BPb was significantly positively correlated with hemoglobin (p<0.01). In total, allele frequency for ALAD 1 and 2 was 0.83 and 0.17 respectively. The mean U-ALA concentration was lower in ALAD1-2/2-2 carriers than ALAD1-1 carriers for boys (p=0.001). But for girls, U-ALA did not differ significantly by genotype (p=0.26). When U-ALA was compared by genotype at the same exposure level in a multiple linear regression analysis, boys who were ALAD1-2/2-2 carriers still had a lower level of U-ALA compared to ALAD1-1carriers. Conclusion: This study provides information about the influence of ALAD polymorphism and its association with U-ALA in Bangladeshi children. Our results indicate that the ALAD1-2/2-2 genotype may have a protective effect in terms of U-ALA for environmentally lead exposed boys. - Highlights: • High blood lead level for the environmentally exposed schoolchildren. • BPb was significantly correlated with U-ALA and Hb. • Effect of ALAD genotype on U-ALA is differed by sex. • Lower U-ALA in ALAD2 than ALAD1 carriers only for boys at same exposure.

  9. Assessment of ALA-induced PpIX production in porcine skin pretreated with microneedles.

    PubMed

    Rodrigues, Phamilla Gracielli Sousa; Campos de Menezes, Priscila Fernanda; Fujita, Alessandra Keiko Lima; Escobar, André; Barboza de Nardi, Andrigo; Kurachi, Cristina; Bagnato, Vanderlei S

    2015-09-01

    Photodynamic therapy (PDT) is used for skin treatments of premalignant and cancer lesions and recognized as a non-invasive technique that combines tissue photosensitization and subsequent exposure to light to induce cell death. However, it is limited to the treatment of superficial lesions, mainly due to the low cream penetration. Therefore, the improvement of transdermal distribution of aminolevulinic acid (ALA) is needed. In this study, the kinetics and homogeneity of production of ALA-induced PpIX after the skin pre-treatment with microneedles rollers of 0.5, 1.0 and 1.5 mm length were investigated. An improvement in homogeneity and production of PpIX was shown in a porcine model. Widefield fluorescence imaging three hours after the topical application of ALA-cream in the combined treatment with microeedles rollers. PMID:25319567

  10. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca(2+) Levels in Guard Cells.

    PubMed

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca(2+) accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca(2+)-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca(2+) levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  11. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  12. Flourescence analysis of ALA-induced Protoporphyrin IX in psoriatic plaque

    NASA Astrophysics Data System (ADS)

    Stringer, Mark R.; Robinson, Dominic J.; Collins, P.

    1996-01-01

    The success reported for the treatment of superficial skin carcinomas by photodynamic therapy (PDT), following topical application of 5-aminolaevulinic acid (ALA), has therapeutic implications for the treatment of other skin disorders. This presentation describes the accumulation of the photosensitizing agent protoporphyrin IX (PpIX) in areas of psoriatic plaque, by monitoring the fluorescence emission induced by low-intensity laser excitation at 488 nm. We present the results from 15 patients, with a total of 42 plaques. These results show that PpIX fluorescence increases in intensity within the 6 hour period following application of ALA, which implies there is a potential for PDT. The emission is localized to the area of ALA application and the effect of occlusion appears insignificant. Also, the rate of increase, and maximum intensity of fluorescence emission, is not directly related to the applied quantity of ALA. The variability of the fluorescence intensity is as great between plaques at different sites on the same patient as between different patients. We also present measurements of the depletion in intensity of fluorescence emission during PDT treatment, using white light, at an irradiance of 25 mW cm-2, that is a consequence of the molecular photo-oxidation of PpIX. The use of fluorescence measurements in predicting the therapeutic effect of treating plaque psoriasis by ALA-PDT is discussed.

  13. Differentiation-specific increase in ALA-induced protoporphyrin IX accumulation in primary mouse keratinocytes.

    PubMed Central

    Ortel, B.; Chen, N.; Brissette, J.; Dotto, G. P.; Maytin, E.; Hasan, T.

    1998-01-01

    A treatment regimen that takes advantage of the induction of intracellular porphyrins such as protoporphyrin IX (PPIX) by exposure to exogenous 5-amino-laevulinic acid (ALA) followed by localized exposure to visible light represents a promising new approach to photodynamic therapy (PDT). Acting upon the suggestion that the effectiveness of ALA-dependent PDT may depend upon the state of cellular differentiation, we investigated the effect of terminal differentiation upon ALA-induced synthesis of and the subsequent phototoxicity attributable to PPIX in primary mouse keratinocytes. Induction of keratinocyte differentiation augmented intracellular PPIX accumulation in cells treated with ALA. These elevated PPIX levels resulted in an enhanced lethal photodynamic sensitization of differentiated cells. The differentiation-dependent increase in cellular PPIX levels resulted from several factors including: (a) increased ALA uptake, (b) enhanced PPIX production and (c) decreased PPIX export into the culture media. Simultaneously, steady-state levels of coproporphyrinogen oxidase mRNA increased but aminolaevulinic acid dehydratase mRNA levels remained unchanged. From experiments using 12-o-tetradecanoylphorbol-13-acetate, transforming growth factor beta 1 and calcimycin we demonstrated that the increase in PPIX concentration in terminally differentiating keratinocytes is calcium- and differentiation specific. Stimulation of the haem synthetic capacity is seen in primary keratinocytes, but not in PAM 212 cells that fail to undergo differentiation. Interestingly, increased PPIX formation and elevated coproporphyrinogen oxidase mRNA levels are not limited to differentiating keratinocytes; these were also elevated in the C2C12 myoblast and the PC12 adrenal cell lines upon induction of differentiation. Overall, the therapeutic implications of these results are that the effectiveness of ALA-dependent PDT depends on the differentiation status of the cell and that this may enable

  14. Photodynamic diagnosis following intravesical instillation of aminolevulinic acid (ALA): first clinical experiences in urology

    NASA Astrophysics Data System (ADS)

    Baumgartner, Reinhold; Kriegmair, M.; Stepp, Herbert G.; Lumper, W.; Heil, Peter; Riesenberg, Rainer; Stocker, Susanne; Hofstetter, Alfons G.

    1993-06-01

    Delta Aminolevulinic acid (ALA), a precursor of Protoporphyrin IX (PP IX) in hem biosynthesis has been topically applied in urinary bladders in order to study its potential as fluorescent tumor marker. Preclinical experiments have been performed on chemically induced tumors in rats, revealing a ratio of PP IX-fluorescence intensity up to 20:1 in tumors as compared to healthy urothelium. Synthesis of PP IX has been stimulated in 56 patients by intravesical instillation of a pH-neutral ALA-solution. After an incubation time of two to four hours strong red fluorescence was endoscopically observed even in tiny superficial tumors. Brightness and contrast allows visualization of early stage urothelial diseases with naked eyes and without the necessity suppressing background fluorescence or violet excitation light.

  15. Comparsion of light dose on topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Fu; Tseng, Meng-Ke; Liu, Chung-Ji; Hsu, Yih-Chih

    2012-03-01

    Oral cancer has becomes the most prominent male cancer disease due to the local betel nut chewing habit combing with smoking and alcohol-drinking lifestyle. In order to minimize the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch cancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 8 to 10 weeks. Precancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA -mediated PDT. We found that ALA reached its peak level in cancerous lesions about 2.5 hrs after topical application of ALA gel. The precancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 75 and 100 J/cm2 using LED 635 nm Wonderlight device. It is suggesting that optimization of the given light dose is critical to the success of PDT results.

  16. Improved diagnosis and therapy of superficial transitional cell carcinoma (TCC) of the urinary bladder by 5-aminolevulinic-acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence: a prospective study in 100 patients

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Ruecker, Frank

    2001-05-01

    The prognosis of superficial bladder cancer is strongly related to a high recurrence rate and the presence of concomitant plane tumor lesions such as severe dysplasia or carcinoma in situ. They are frequently overlooked on white light cystoscopy. Furthermore, the traditional transurethral tumor resection of superficial bladder tumor is frequently incomplete. This prospective study aimed to evaluate whether or not 5-ALA induced PPIX fluorescence cystoscopy could increase the detection of superficial bladder tumors and/or plane carcinoma in situ invisible on white light cystoscopy. 100 patients with superficial TCC of the urinary bladder underwent cystoscopy under white light and under blue fluorescence light. 2 hours (1-4 hours) prior to cystoscopy 50 ml 3 percent 5-ALA-solution were intravesically instilled into the empty bladder. All lesions visible on white light cystoscopy were compared with fluorescence findings and, vice versa, all fluorescence findings were compared with white light cystoscopy findings. All lesions visible under white light, and all lesions only visible under 5-ALA induced fluorescence were resected/biopsied and histologically examined.

  17. Effect of Surfactants on Production of Oxygenated Unsaturated Fatty Acids by Bacillus megaterium ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium ALA2 (NRRL B-21660) produces many oxygenated unsaturated fatty acids from linoleic acid. Its major product, 12,13,17-trihydroxy-9(Z)-octadecenoic acid (12,13,17-THOA), inhibits the growth of some plant pathogenic fungi. Because hydrophobic fatty acids need to be evenly disperse...

  18. Effective treatment of d-penicillamine induced elastosis perforans serpiginosa with ALA-PDT.

    PubMed

    Wang, Duoqin; Liang, Jun; Xu, Jinhua; Chen, Lianjun

    2015-03-01

    A case of D-penicillamine(DPA) induced elastosis perforans serpiginosa(EPS) in a 32-year-old Chinese man was reported. The presentation lasted two years and was refractory to traditional medical treatment. He was then commenced on 7.6% 5-aminolevulinic acid (ALA) induced photodynamic therapy(PDT) by a LED light of 633 nm at dose levels of 130J/ cm2 for each session with total 3 sessions at one week interval. The patient was tolerated and responded well to this new approach for DPA-induced EPS without any adverse events. The etiology, pathophysiology, natural history, and treatment options for DPA-induced EPS are reviewed, and the authors suggest this method of treatment to be effective and safe for patients of DPA-induced EPS refractory to conventional therapy. PMID:25463318

  19. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice

    PubMed Central

    Yasuda, Makiko; Gan, Lin; Chen, Brenden; Kadirvel, Senkottuvelan; Yu, Chunli; Phillips, John D.; New, Maria I.; Liebow, Abigail; Fitzgerald, Kevin; Querbes, William; Desnick, Robert J.

    2014-01-01

    The acute hepatic porphyrias are inherited disorders of heme biosynthesis characterized by life-threatening acute neurovisceral attacks. Factors that induce the expression of hepatic 5-aminolevulinic acid synthase 1 (ALAS1) result in the accumulation of the neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which recent studies indicate are primarily responsible for the acute attacks. Current treatment of these attacks involves i.v. administration of hemin, but a faster-acting, more effective, and safer therapy is needed. Here, we describe preclinical studies of liver-directed small interfering RNAs (siRNAs) targeting Alas1 (Alas1-siRNAs) in a mouse model of acute intermittent porphyria, the most common acute hepatic porphyria. A single i.v. dose of Alas1-siRNA prevented the phenobarbital-induced biochemical acute attacks for approximately 2 wk. Injection of Alas1-siRNA during an induced acute attack significantly decreased plasma ALA and PBG levels within 8 h, more rapidly and effectively than a single hemin infusion. Alas1-siRNA was well tolerated and a therapeutic dose did not cause hepatic heme deficiency. These studies provide proof-of-concept for the clinical development of RNA interference therapy for the prevention and treatment of the acute attacks of the acute hepatic porphyrias. PMID:24821812

  20. Design of PDT protocols using delta-aminolevulinic acid (5ALA)

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; He, Xiao-Yan; Gofstein, Gary

    1993-06-01

    The kinetics of protoporphyrin IX (PPIX) synthesis, bioconversion to other metabolic products, and photobleaching were measured in cell cultures after incubation in media containing the metabolic precursor for heme synthesis, (delta) -aminolevulinic acid (5 ALA). A compartmental model described the kinetics in terms of rate constants for the three processes. The maximum amount of PPIX that can be attained in the cells and the concentration of 5 ALA in the medium that obtains this maximum were determined. Using this information, two dosimetry protocols are outlined which both involve complete photobleaching of the PPIX: (1) the classical acute protocol using maximum 5 ALA to produce maximum PPIX and a light treatment of about 0.5 - 1 hr, and (2) a novel prolonged protocol using continuous low-level 5 ALA delivery to produce only slightly elevated PPIX and an extended light exposure time of over 24 hrs.

  1. Evaluation of ALA-induced PpIX as a photosensitizer for PDT in cats

    NASA Astrophysics Data System (ADS)

    Lucroy, Michael D.; Edwards, Benjamin F.; Peavy, George M.; Krasieva, Tatiana B.; Griffey, Stephen M.; Madewell, Bruce R.

    1998-07-01

    Given exogenously, ALA defeats intrinsic regulatory feedback mechanisms allowing intracellular accumulation of protoporphyrin IX (PpIX), a highly efficient photosensitizer. In vivo, PpIX synthesis in neoplastic mammary tissues averages 20-fold higher than in normal mammary tissues. PpIX is retained intracellularly, unlike perivascular localization of other photosensitizers, and it is then cleared quickly from the body. In vitro, ALA induced PpIX production in our laboratory in 6 cell lines tested, including an established feline kidney cell line and dermal fibroblasts from primary skin biopsy explant, resulting in photosensitization. Fluorescent microscopy confirmed PpIX production in skin adnexae following ALA administration in a normal cat. To evaluate toxicity, three cats were treated with a single i.v. dose of ALA (either 100, 200, of 400 mg/kg) and followed for 7 days. Cats receiving 100 or 200 mg/kg ALA i.v. had elevated liver enzymes and bilirubin within 24 hours. Histopathology revealed hydropic changes in the liver and renal fibrosis. The cat receiving 400 mg/kg ALA intravenously had cutaneous flush, bradycardia and apnea associated with ALA administration; within 24 hours the cat was lethargic, anorectic and icteric. ALT, AST and bilirubin concentrations had increased significantly. At necropsy the liver had a prominent lobular pattern; histopathology revealed severe periportal hepatitis and splenic necrosis. Systemically administered ALA induces PpIX production, but toxicity may preclude its clinical application in the cat. PpIX levels seem to be more time dependent than those dependent at these three ALA doses and they are well beyond the saturation point for adequate PpIX conversion. The literature is scant regarding toxicity associated with parenteral administration of ALA.

  2. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  3. Fluorescence endoscopy with 5-amino levulinic acid (ALA) reduces early recurrence rate in superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Koenig, Frank; Riedl, Claus R.; Daniltchenko, Dmitri; Schnorr, Dietmar

    2003-06-01

    Purpose: Several investigators have demonstrated an approximately 20% higher tumor detection rate by ALA (5-aminolevulinic acid) based fluorescence endoscopy (AFE) compared to standard white light cystoscopy. These data suggest a reduction of residual and recurrent tumor following fluorescence guided transurethral resection (TUR) of bladder carcinoma. The present study was performed to test this hypothesis. Materials and Methods: In a prospective randomized multi-center study, 2 x 51 patients underwent TUR of bladder tumor(s) either with white light (current standard) or assisted by ALA-induced fluorescence. A 2nd look TUR with AFE was performed 6 weeks after the initial operation. Control cystoscopies were performed 3 and 6 months after initial tumor resection. Results: At 2nd look TUR (6 weeks post op) and at control cystoscopies 3 and 6 months following initial TUR in the white light group residual and/or recurrent carcinoma was detected in 20 of 51, in 24 of 48 and in 28 of 48 patients, respectively, and in the AFE group in 8 of 51, in 10 of 47 and in 17 of 47 patients, respectively. The differences were statistically significant (p=0.005, p=0.002 and p=0.01, respectively). Three patients in the white light and four patients in the AFE group were lost to follow up. Conclusions: AFE is a minimally invasive and inexpensive diagnostic procedure that significantly improves bladder tumor detection rates compared to standard white light endoscopy. In the present study AFE reduced the residual/recurrent tumor rate 6 weeks, 3 and 6 months after initial TUR by 59%, 58% and 38%, respectively.

  4. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    NASA Astrophysics Data System (ADS)

    Costescu, Ruxandra M.; Deneke, Christoph; Thurmer, Dominic J.; Schmidt, Oliver G.

    2009-12-01

    The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  5. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model.

    PubMed Central

    Bedwell, J.; MacRobert, A. J.; Phillips, D.; Bown, S. G.

    1992-01-01

    Aminolaevulinic acid (ALA) is the first committed step in haem synthesis. In the presence of excess ALA the natural regulatory feedback system is disrupted allowing accumulation of protoporphyrin IX (PP IX) the last intermediate product before haem, and an effective sensitiser. This method of endogenous photosensitisation of cells has been exploited for photodynamic therapy (PDT). We have studied the fluorescence distribution and biological effect of induced PP IX in normal and tumour tissue in the rat colon. Fluorescence in normal colonic tissue was at a peak of 4 h with a rapid fall off by 6 h. The fluorescence had returned to background levels by 24 h. All normal tissue layers followed the same fluorescence profile but the mucosa showed fluorescent levels six times higher than the submucosa, with muscle barely above background values. At 6 h the ratio of fluorescence levels between normal mucosa and viable tumour was approximately 1:6. At this time laser treatment showed necrosis of normal mucosa and tumour with sparing of normal muscle. There was good correlation between the fluorescence distribution and the biological effect of ALA-induced photosensitisation on exposure to red light. ALA may be superior to conventional sensitisers for tumours that produce haem as the PP IX is synthesised in malignant cells while the other sensitisers mainly localise to the vascular stroma of tumours. There is also a greater concentration difference between the PP IX levels in tumours and in normal mucosa and normal muscle than with the other photosensitisers raising the possibility of more selective necrosis in tumours. Images p820-a Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 PMID:1616853

  6. A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis.

    PubMed

    Betz, Christian S; Stepp, Herbert; Janda, Philip; Arbogast, Susanne; Grevers, Gerhard; Baumgartner, Reinhold; Leunig, Andreas

    2002-01-10

    Fluorescence diagnosis aims to improve the management of oral cancer via early detection of the malignant lesions and better delimitation of the tumor margins. This paper presents a comparative study of normal inspection, combined fluorescence diagnosis (CFD) and its 2 main components, autofluorescence and 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence. Biopsy-controlled fluorescence imaging and spectral analysis were performed on a total of 85 patients with suspected or histologically proven oral carcinoma both before and after topical administration of 5-ALA (200 mg 5-ALA dissolved in 50 ml of H(2)0). Fluorescence excitation was accomplished using filtered light of a xenon short arc lamp (lambda = 375-440 nm). As for CFD, a "streetlight" contrast (red to green) was readily found between malignant and healthy tissue on the acquired images. In terms of tumor localization and delimitation properties, CFD was clearly favorable over either normal inspection or its 2 components in fluorescence imaging. The performance of CFD was found to be impeded by tumor keratinization but to be independent of either tumor staging, grading or localization. In spectral analysis, cancerous tissue showed significantly higher PPIX fluorescence intensities and lower autofluorescence intensities than normal mucosa. There is a great potential for CFD in early detection of oral neoplasms and exact delimitation of the tumors' superficial margins and an advantage over white light inspection and each of its 2 main components. The method is noninvasive, safe and easily reproducible. PMID:11774271

  7. Short-term supplementation of low-dose gamma-linolenic acid (GLA), alpha-linolenic acid (ALA), or GLA plus ALA does not augment LCP omega 3 status of Dutch vegans to an appreciable extent.

    PubMed

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Martini, I A; Muskiet, F A

    2000-11-01

    Vegans do not consume meat and fish and have therefore low intakes of long chain polyunsaturated fatty acids (LCP). They may consequently have little negative feedback inhibition from dietary LCP on conversion of alpha -linolenic acid (ALA) to the LCP omega 3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. We investigated whether supplementation of nine apparently healthy vegans with 2.01 g ALA (4 ml linseed oil), 1.17 g gamma-linolenic acid (GLA) (6 ml borage oil) or their combination increases the LCP omega 3 contents of erythrocytes (RBC) and platelets (PLT), and of plasma phospholipids (PL), cholesterol esters (CE) and triglycerides (TG). The supplements changed the dietary LA/ALA ratio (in g/g) from about 13.7 (baseline) to 6.8 (linseed oil), 14.3 (borage oil) and 6.4 (linseed + borage oil), respectively. ALA or GLA given as single supplements did not increase LCP omega 3 status, but their combination augmented LCP omega 3 (in CE) and EPA (in fasting TG) to a statistically significant, but nevertheless negligible, extent. We conclude that negative feedback inhibition by dietary LCP, if any, does not play an important role in the inability to augment notably DHA status by dietary ALA. The reach of a DHA plateau already at low dietary ALA intakes suggests that dietary DHA causes a non-functional DHA surplus, or is, alternatively, important for maintaining DHA status at a functionally relevant level. PMID:11090255

  8. Alpha linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat.

    PubMed

    Valenzuela B, Rodrigo; Barrera R, Cynthia; González-Astorga, Marcela; Sanhueza C, Julio; Valenzuela B, Alfonso

    2014-07-25

    Alpha-linolenic acid (ALA) is an essential n-3 PUFA; its n-3 LCPUFA derivatives EPA and DHA, which have diverse beneficial effects, are scarce in the human diet. In recent years nontraditional vegetable oils rich in ALA (up to 45%) have been developed as new alternatives to increase ALA consumption. This work evaluated the accretion of ALA, EPA and DHA into the phospholipids extracted from erythrocytes, liver, kidney, small intestine, heart, quadriceps and the brain in rats fed sunflower (SFO), canola (CO), Rosa canina (RCO), sacha inchi (Plukenetia volubilis, SIO) and chia (Salvia hispánica, ChO) oils. Five experimental groups (n = 12 per group) were fed for 21 days with SFO (1% ALA), CO (10% ALA), RCO (33% ALA), SIO (49% ALA), and ChO (64% ALA). SIO and ChO allowed higher ALA accretion in all tissues, except the brain, and a reduction in the content of arachidonic acid in all tissues except the brain. EPA was increased in erythrocytes, liver, kidney, small intestine, heart and quadriceps, but not in the brain. DHA was increased in the liver, small intestine and brain tissues. Our results demonstrate that ALA, when provided in significant amounts, can be converted into n-3 LCPUFA, mostly DHA in the liver and brain. It is suggested that oils rich in ALA, such as SIO and ChO, are good sources for obtaining higher tissue levels of ALA, also allowing its selective conversion into n-3 LCPUFA in some tissues of the rat. PMID:24855655

  9. ALA-Butyrate prodrugs for Photo-Dynamic Therapy

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2010-05-01

    The use of 5-aminolevulinic acid (ALA) administration has led to many applications of photodynamic therapy (PDT) in cancer. However, the hydrophilic nature of ALA limits its ability to penetrate the cells and tissues, and therefore the need for ALA derivatives became an urgent research target. In this study we investigated the activity of novel multifunctional acyloxyalkyl ester prodrugs of ALA that upon metabolic hydrolysis release active components such as, formaldehyde, and the histone deacetylase inhibitory moiety, butyric acid. Evaluation of these prodrugs under photo-irradiation conditions showed that butyryloxyethyl 5-amino-4-oxopentanoate (ALA-BAC) generated the most efficient photodynamic destruction compared to ALA. ALA-BAC stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells which resulted in generation of intracellular ROS, reduction of mitochondrial activity, leading to apoptotic and necrotic death of the cells. The apoptotic cell death induced by ALA / ALA-BAC followed by PDT equally activate intrinsic and extrinsic apoptotic signals and both pathways may occur simultaneously. The main advantage of ALA-BAC over ALA stems from its ability to induce photo-damage at a significantly lower dose than ALA.

  10. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker

    PubMed Central

    Valdés, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Fan, Xiaoyao; Tosteson, Tor D.; Hartov, Alex; Ji, Songbai; Erkmen, Kadir; Simmons, Nathan E.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. Methods The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board–approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. Results A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeon's visual perception were classified correctly in an analysis of all tumors. Conclusions These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of

  11. Aminolevulinic acid (ALA)-assisted photodynamic diagnosis of subclinical and latent HPV infection of external genital region.

    PubMed

    Wang, Hong-Wei; Wang, Xiu-Li; Zhang, Ling-Lin; Guo, Ming-Xia; Huang, Zheng

    2008-12-01

    The relatively high recurrence rate of genital warts can be attributed to the unsuccessful elimination of viruses in areas of subclinical and latent infection. Therefore, the identification and treatment of the subclinical and latent infection is a key to reduce the recurrence. The goal of this study is to investigate the usefulness of 5-aminolevulinic acid (ALA)-assisted in situ fluorescence diagnosis of subclinical lesion and latent HPV infection. A total of 30 patients with histologically confirmed genital warts (condylomata acuminata) were subjected to topical application of ALA, acetic acid test, histopathologic examination and HPV DNA subtyping. Topical application of ALA was performed by applying 20% ALA cream to the lesion plus 2-cm margin for 2h followed by fluorescence examination. Correlations between histopathologic examination, aceto-whitening test, HPV DNA subtyping and fluorescence were examined. All warty lesions and subclinical lesions (n=25) showed red fluorescence and harbored HPV DNA (HPV6 or 11). Latent HPV infections at 0.5-2 cm away from the warty lesion also showed red fluorescence. Nonspecific fluorescence was associated with mucosa, inflammatory infiltration and erosive lesion. ALA-assisted photodynamic diagnosis could be employed for the detection of the lesion and subclinical lesion of genital warts. It is also useful in detecting latent HPV infection. PMID:19356665

  12. Endoscopy imaging of 5-ALA-induced PPIX fluorescence for detecting early neoplasms in the oral cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Olivo, Malini; Sivanandan, Ranjiv; Karuman, Philip; Lim, Tuan-Kay; Soo, K. C.

    2001-10-01

    A digitized fluorescence endoscopy imaging system combined with 5-Aminolevulinic Acid (5-ALA) induced Protoporphyrin IX (PPIX) has been developed for the detection of neoplasms in oral cavity. It mainly consists of the illumination console, fluorescence detection unit, computer system for image acquisition, processing and analysis, and online image display system as well. The developed system can produce both the digital and video fluorescence images in real time, and can be used to quantify fluorescence images acquired. Preliminary results from the Head and Neck clinic show that high sensitivity and high specificity can be achieved. Furthermore, applying the intensity ratios at two different wavelength regions, the developed system shows the capability of differentiating between different histopathological stages of oral lesions, suggesting a significant potential for realizing the non-invasive optical biopsy for early cancer diagnosis.

  13. The β-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the d-Ala-d-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide*

    PubMed Central

    Vadlamani, Grishma; Thomas, Misty D.; Patel, Trushar R.; Donald, Lynda J.; Reeve, Thomas M.; Stetefeld, Jörg; Standing, Kenneth G.; Vocadlo, David J.; Mark, Brian L.

    2015-01-01

    Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal d-Ala-d-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the d-Ala-d-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function. PMID:25480792

  14. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.

    PubMed

    Vadlamani, Grishma; Thomas, Misty D; Patel, Trushar R; Donald, Lynda J; Reeve, Thomas M; Stetefeld, Jörg; Standing, Kenneth G; Vocadlo, David J; Mark, Brian L

    2015-01-30

    Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function. PMID:25480792

  15. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  16. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  17. Dietary polyunsaturated fatty acids and the Pro12Ala polymorphisms of PPARG regulate serum lipids through divergent pathways: a randomized crossover clinical trial.

    PubMed

    Pihlajamäki, Jussi; Schwab, Ursula; Kaminska, Dorota; Ågren, Jyrki; Kuusisto, Johanna; Kolehmainen, Marjukka; Paananen, Jussi; Laakso, Markku; Uusitupa, Matti

    2015-11-01

    Human and animal studies suggest an interaction between the Pro12Ala polymorphism of PPARG and dietary fat. In this randomized crossover clinical trial, we investigated whether subjects with the Pro12Pro and Ala12Ala genotypes of PPARG respond differently to a diet supplemented with high saturated (SAFA) or polyunsaturated fatty acid (PUFA).We recruited non-diabetic men from a population-based METSIM study (including 10,197 men) to obtain men with the Ala12Ala and the Pro12Pro genotypes matched for age and body mass index. Seventeen men with the Pro12Pro genotype and 14 with the Ala12Ala genotype were randomized to both a PUFA diet and a SAFA diet for 8 weeks in a crossover setting. Serum lipids and adipose tissue mRNA expression were measured during the diet intervention. At baseline, subjects with the Ala12Ala genotype had higher levels of HDL cholesterol and lower levels of LDL cholesterol, total triglycerides, and apolipoprotein B compared to those subjects with the Pro12Pro genotype (P < 0.05, FDR < 0.1). The Ala12Ala genotype also associated with higher mRNA expression of PPARG2, LPIN1, and SREBP-1c compared to participants with the Pro12Pro genotype (FDR < 0.001). On the other hand, PUFA diet resulted in lower levels of fasting glucose, total cholesterol, total triglycerides, and apolipoprotein B (P < 0.05, FDR < 0.1) but did not affect PPARG2 mRNA expression in adipose tissue. We conclude that individuals with the Pro12Pro genotype, with higher triglyceride levels at baseline, are more likely to benefit from the PUFA diet. However, the beneficial effects of dietary PUFA and the Ala12Ala genotype of PPARG on serum lipids are mediated through divergent mechanisms. PMID:26446033

  18. Optical detection of human urinary bladder carcinoma utilising tissue autoflurescence and protoporphyrin IX-induced fluorescence following low dose ALA instillation

    NASA Astrophysics Data System (ADS)

    Rokahr, Ingrid; Andersson-Engels, Stefan; Svanberg, Sune; D'Hallewin, Marie-Ange; Baert, Luc; Wang-Nordman, Ingrid; Svanberg, Katarina

    1995-12-01

    Laser-induced fluorescence spectra were recorded in patients undergoing urinary bladder cystoscopy. The measurements were performed in vivo and the spectra were collected from normal and diseased tissue. The patients were divided into two groups. An instillation of a 1% delta-amino-levulinic acid (ALA) solution was performed 2 - 4 hours prior to the investigation of one group of patients. A second group of patients was investigated without any tumor marking substance. The fluorescence was detected following laser excitation at 405 and 337 nm. Fluorescence emission related to ALA-induced protoporphyrin IX (PpIX) was detected in the ALA group for 405 nm excitation. The data were evaluated at the PpIX emission peak at 635 nm and at 490 nm, which approximately corresponds to the peak of the tissue autofluorescence. The data obtained with 337 nm excitation were evaluated at 400 and 460 nm as well as at 390 and 431 nm. The ratios of the respective wavelength pairs were formed in order to investigate the demarcation between tumor and normal tissue. The tumor demarcation results were better and more consistent utilizing the autofluorescence signal following excitation at 337 nm than the PpIX-related signal excited at 405 nm.

  19. Delta-aminolevulinic acid dehydratase activity (ALA-D) in red mullet (Mullus barbatus) from Mediterranean waters as biomarker of lead exposure.

    PubMed

    Fernández, B; Martínez-Gómez, C; Benedicto, J

    2015-05-01

    The enzyme delta-aminolevulinic acid dehydratase (ALA-D) has been investigated as biomarker of lead (Pb) exposure in red mullet (Mullus barbatus) from the Spanish continental shelf. Concentrations of Pb and Zn in muscle and organosomatic indices were also measured to explore causality. Blood ALA-D assay conditions were optimized; the optimum pH for this species has been set to 6.5. Results showed that ALA-D activity ranged from 3.2 to 16.9 nmol PBGmin(-1)mg(-1). No significant differences on ALA-D levels between genders have been detected. ALA-D Baseline level and Background Assessment Criteria (BAC) for this species have been set to 9.1 and 6.6 nmol PBGmin(-1)mg(-1), respectively. There have been detected significant differences on ALA-D activity levels among areas, though the markedly low levels of Pb measured in fish muscle seemed not to be able to produce a relevant suppression on ALA-D. In spite of this, a weak inverse relationship detected between ALA-D and Pb concentrations pointed out the potential of this biomarker in red mullet to reflect Pb bioavailability in marine environment. Nevertheless, subsequent research on ALA-D in marine fish species is recommended to be limited to areas where environmental Pb is effectively accumulated by fish. PMID:25706085

  20. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children

    PubMed Central

    Perng, Wei; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Baylin, Ana

    2015-01-01

    Background/Objectives Studies in adults indicate that dietary polyunsaturated fatty acid (PUFA) composition may play a role in development of adiposity. Because adipocyte quantity is established between late childhood and early adolescence, understanding the impact of PUFAs on weight gain during the school-age years is crucial to developing effective interventions. Subjects/Methods We quantified N-3 and N-6 PUFAs in serum samples of 668 Colombian schoolchildren aged 5–12 years at the time of recruitment into a cohort study, using gas-liquid chromatography. Serum concentrations of N-3 (ALA, EPA, DHA) and N-6 PUFAs (LA, GLA, DGLA, AA) were determined as % total fatty acids. Children’s anthropometry was measured annually for a median of 30 months. We used mixed-effects models with restricted cubic splines to construct population body mass index-for-age z-score (BAZ) growth curves for age-and sex-specific quartiles of each PUFA. Results N-3 ALA was inversely related to BAZ gain after adjustment for sex, baseline age and weight status, and household socioeconomic level. Estimated BAZ change between 6 and 14 years among children in the highest quartile of ALA compared to those in the lowest quartile was 0.45 (95% CI: 0.07, 0.83) lower (P-trend=0.006). Conclusions N-3 ALA may be protective against weight gain in school-age children. Whether improvement in PUFA status reduces adiposity in pediatric populations deserves evaluation in randomized trials. PMID:25271016

  1. Study of false positives in 5-ALA induced photodynamic diagnosis of bladder carcinoma

    NASA Astrophysics Data System (ADS)

    Draga, Ronald O. P.; Grimbergen, Matthijs C. M.; Kok, Esther T.; Jonges, Trudy G. N.; Bosch, J. L. H. R.

    2009-02-01

    Photodynamic diagnosis (PDD) is a technique that enhances the detection of tumors during cystoscopy using a photosensitizer which accumulates primarily in cancerous cells and will fluoresce when illuminated by violetblue light. A disadvantage of PDD is the relatively low specificity. In this retrospective study we aimed to identify predictors for false positive findings in PDD. Factors such as gender, age, recent transurethral resection of bladder tumors (TURBT), previous intravesical therapy (IVT) and urinary tract infections (UTIs) were examined for association with the false positive rates in a multivariate analysis. Data of 366 procedures and 200 patients were collected. Patients were instilled with 5-aminolevulinic acid (5-ALA) intravesically and 1253 biopsies were taken from tumors and suspicious lesions. Female gender and TURBT are independent predictors of false positives in PDD. However, previous intravesical therapy with Bacille Calmette-Guérin is also an important predictor of false positives. The false positive rate decreases during the first 9-12 weeks after the latest TURBT and the latest intravesical chemotherapy. Although shortly after IVT and TURBT false positives increase, PDD improves the diagnostic sensitivity and results in more adequate treatment strategies in a significant number of patients.

  2. Adsorption of Amino Acids (Ala, Cys, His, Met) on Zeolites: Fourier Transform Infrared and Raman Spectroscopy Investigations

    NASA Astrophysics Data System (ADS)

    Carneiro, Cristine E. A.; de Santana, Henrique; Casado, Clara; Coronas, Joaquin; Zaia, Dimas A. M.

    2011-06-01

    Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, p<0.05), and mordenite could be used for separation of amino acids from each other (Student-Newman-Keuls test, p<0.05). As shown by Fourier transform infrared (FT-IR) spectra, Ala interacts with zeolites through the group, and methionine-zeolite interactions involve the COO, , and CH3 groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine

  3. Monitoring ALA-induced PpIX photodynamic therapy in the rat esophagus using fluorescence and reflectance spectroscopy.

    PubMed

    Kruijt, Bastiaan; de Bruijn, Henriette S; van der Ploeg-van den Heuvel, Angelique; de Bruin, Ron W F; Sterenborg, Henricus J C M; Amelink, Arjen; Robinson, Dominic J

    2008-01-01

    The presence of phased protoporphyrin IX (PpIX) bleach kinetics has been shown to correlate with esophageal response to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) in animal models. Here we confirm the existence of phased PpIX photobleaching by increasing the temporal resolution of the fluorescence measurements using the therapeutic illumination and long wavelength fluorescence detection. Furthermore fluorescence differential pathlength spectroscopy (FDPS) was incorporated to provide information on the effects of PpIX and tissue oxygenation distribution on the PpIX bleach kinetics during illumination. ALA at a dose of 200 mg kg(-1) was orally administered to 15 rats, five rats served as control animals. PDT was performed at an in situ measured fluence rate of 75 mW cm(-2) using a total fluence of 54 J cm(-2). Forty-eight hours after PDT the esophagus was excised and histologically examined for PDT-induced damage. Fluence rate and PpIX photobleaching at 705 nm were monitored during therapeutic illumination with the same isotropic probe. A new method, FDPS, was used for superficial measurement on saturation, blood volume, scattering characteristics and PpIX fluorescence. Results showed two-phased PpIX photobleaching that was not related to a (systematic) change in esophageal oxygenation but was associated with an increase in average blood volume. PpIX fluorescence photobleaching measured using FDPS, in which fluorescence signals are only acquired from the superficial layers of the esophagus, showed lower rates of photobleaching and no distinct phases. No clear correlation between two-phased photobleaching and histologic tissue response was found. This study demonstrates the feasibility of measuring fluence rate, PpIX fluorescence and FDPS during PDT in the esophagus. We conclude that the spatial distribution of PpIX significantly influences the kinetics of photobleaching and that there is a complex interrelationship between the distribution of PpIX and

  4. Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization: current clinical status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Golub, Allyn L.; Shulman, D. Geoffrey

    1995-03-01

    Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization (ALA PDT) via endogenous protoporphyrin IX (PpIX) synthesis has been reported as efficacious, using topical formulations, in the treatment of a variety of dermatologic diseases including superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses. Application of ALA PDT to the detection and treatment of both malignant and non-malignant diseases of internal organs has recently been reported. Local internal application of ALA has been used for the detection, via PpIX fluorescence, of pathological conditions of the human urinary bladder and for selective endometrial ablation in animal model systems. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer and of colorectal cancer. This paper reviews the current clinical status of ALA PDT.

  5. Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahito; Kaneko, Fusae; Koketsu, Toshiyuki; Nakagawa, Kazumichi; Yamada, Toru

    2008-10-01

    The chemical reaction of aliphatic amino acid, such as alanine (Ala) and leucine (Leu), in the solid phase induced by vacuum ultraviolet (VUV) irradiation was studied by high-performance liquid chromatography technique and mass spectroscopic method. Quantum efficiencies of dimerization of Ala in the solid phase obviously showed irradiated VUV wavelength dependence. The values of quantum efficiencies of formation of Ala dimer were determined to be 5.7×10-5, 1.3×10-3, and 2.4×10-4 for 208, 183, and 87 nm irradiation, respectively. VUV-induced fragment desorption from Ala and Leu films has also been examined by mass spectroscopic method. Observed mass spectra clearly indicated that both the deamination and decarboxylation reactions were common in both Ala and Leu films, and the dissociation of side chain occurred only in Leu film.

  6. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  7. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system.

    PubMed

    Kaplan, Kursat Ali; Odabasoglu, Fehmi; Halici, Zekai; Halici, Mesut; Cadirci, Elif; Atalay, Fadime; Aydin, Ozlem; Cakir, Ahmet

    2012-11-01

    Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems. PMID:23057764

  8. Alpha Lipoic Acid Attenuates Radiation-Induced Thyroid Injury in Rats

    PubMed Central

    Jung, Jung Hwa; Jung, Jaehoon; Kim, Soo Kyoung; Woo, Seung Hoon; Kang, Ki Mun; Jeong, Bae-Kwon; Jung, Myeong Hee; Kim, Jin Hyun; Hahm, Jong Ryeal

    2014-01-01

    Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury. PMID:25401725

  9. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition.

    PubMed

    Matravadia, Sarthak; Zabielski, Piotr; Chabowski, Adrian; Mutch, David M; Holloway, Graham P

    2016-04-01

    While the cause of Type 2 diabetes remains poorly defined, the accumulation of reactive lipids within white adipose tissue, skeletal muscle, and liver have been repeatedly implicated as underlying mechanisms. The ability of polyunsaturated fatty acids (PUFAs) to prevent the development of insulin resistance has gained considerable interest in recent years; however, the mechanisms-of-action remain poorly described. Therefore, we determined the efficacy of diets supplemented with either linoleic acid (LA) or α-linolenic acid (ALA) in preventing insulin resistance and reactive lipid accumulation in key metabolic tissues of the obese Zucker rat. Obese Zucker rats displayed impaired glucose homeostasis and reduced n-3 and n-6 PUFA content in the liver and epididymal white adipose tissue (EWAT). After the 12-wk feeding intervention, both LA- and ALA-supplemented diets prevented whole body glucose and insulin intolerance; however, ALA had a more pronounced effect. These changes occurred in association with n-3 and n-6 accumulation in all tissues studied, albeit to different extents (EWAT > liver > muscle). Triacylglycerol (TAG), diacylglycerol (DAG), ceramide, and sphingolipid accumulation were not attenuated in obese animals supplemented with either LA or ALA, suggesting that preservation of glucose homeostasis occurred independent of changes in reactive lipid content. However, PUFA-supplemented diets differentially altered the fatty acid composition of TAGs, DAGs, and PLs in a tissue-specific manner, suggesting essential fatty acid metabolism differs between tissues. Together, our results indicate that remodeling of the fatty acid composition of various lipid fractions may contribute to the improved glucose tolerance observed in obese rats fed PUFA-supplemented diets. PMID:26764053

  10. The Ala54Thr Polymorphism of the Fatty Acid Binding Protein 2 Gene Modulates HDL Cholesterol in Mexican-Americans with Type 2 Diabetes

    PubMed Central

    Salto, Lorena M.; Bu, Liming; Beeson, W. Lawrence; Firek, Anthony; Cordero-MacIntyre, Zaida; De Leon, Marino

    2015-01-01

    The alanine to threonine amino acid substitution at codon 54 (Ala54Thr) of the intestinal fatty acid binding protein (FABP2) has been associated with elevated levels of insulin and blood glucose as well as with dyslipidemia. The aim of this study was to characterize the effect of this FABP2 polymorphism in Mexican-Americans with type 2 diabetes (T2D) in the context of a three-month intervention to determine if the polymorphism differentially modulates selected clinical outcomes. For this study, we genotyped 43 participant samples and performed post-hoc outcome analysis of the profile changes in fasting blood glucose, HbA1c, insulin, lipid panel and body composition, stratified by the Ala54Thr polymorphism. Our results show that the Thr54 allele carriers (those who were heterozygous or homozygous for the threonine-encoding allele) had lower HDL cholesterol and higher triglyceride levels at baseline compared to the Ala54 homozygotes (those who were homozygous for the alanine-encoding allele). Both groups made clinically important improvements in lipid profiles and glycemic control as a response to the intervention. Whereas the Ala54 homozygotes decreased HDL cholesterol in the context of an overall total cholesterol decrease, Thr54 allele carriers increased HDL cholesterol as part of an overall total cholesterol decrease. We conclude that the Ala54Thr polymorphism of FABP2 modulates HDL cholesterol in Mexican-Americans with T2D and that Thr54 allele carriers may be responsive in interventions that include dietary changes. PMID:26703680

  11. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    PubMed

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR. PMID:26643803

  12. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  13. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  14. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    SciTech Connect

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-05-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.

  15. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  16. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression.

    PubMed

    de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; Vasconcelos, Germana Silva; Silva, Márcia Calheiros Chaves; da Silva, Jéssica Calheiros; Macêdo, Danielle; de Lucena, David Freitas; Vasconcelos, Silvânia Maria Mendes

    2015-12-15

    Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression. PMID:26350703

  17. Comparison of aminolevulinic acid and hexylester aminolevulinate induced protoporphyrin IX fluorescence for the detection of ovarian carcinoma metastases: an experimental study

    NASA Astrophysics Data System (ADS)

    Ascencio, Manuel; Regis, Claudia; Mordon, Serge; Collinet, Pierre

    2009-06-01

    The present study aimed at comparing the photo detection of peritoneal micrometastases in an ovarian cancer model following administration of two precursors of protoporphyrin IX (PpIX): aminolevulinic acid (ALA) and hexylester aminolevulinate (He-ALA). ALA or He-ALA (100mg/kg) was injected in the peritoneum cavity of 16 rats with induced peritoneal metastases of ovarian cancer. Two hours later, the tumours were visualized laparoscopically using both white light for standard exploration and blue light for fluorescence (D-light, Karl Storz, Tuttlingen, Germany). Peritoneal micrometastases were counted. The distribution of PpIX through the peritoneum was studied on frozen biopsies using fluorescence microscopy and correlated with pathological findings. The number of micrometastases detected by the fluorescence blue mode was significantly higher (p<0.05) than with standard white light for both ALA (235 versus 198) and He-ALA application (248 versus 199). The mean fluorescence intensity ratio between tumor and normal surrounding tissue was significantly (p< 0.05) higher for He-ALA (1.6+/-0.1) compared to ALA (1.4+/-0.1). Fluorescence microscopy confirmed that the fluorescence remained limited to cancer cells. Macroscopically fluorescing nodules were histopathology confirmed as malignant. In conclusion, He-ALA is an excellent precursor for PpIX synthesis giving the highest PpIX fluorescence contrast between normal and tumoral peritoneum. Imaging with He-ALA improves the detection of peritoneal metastases comparing to ALA.

  18. Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors

    NASA Astrophysics Data System (ADS)

    Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael

    1995-03-01

    A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.

  19. Fluorescence excitation and emission spectra of ALA-induced protoporphyrin IX in normal and tumoral tissue of the human bladder

    NASA Astrophysics Data System (ADS)

    Forrer, Martin; Glanzmann, Thomas M.; Mizeret, Jerome C.; Braichotte, Daniel; Wagnieres, Georges A.; van den Bergh, Hubert; Jichlinski, Patrice; Leisinger, Hans-Juerg

    1995-01-01

    In vivo spectrofluorometric analysis represents a tool to obtain information about fluorophore distribution in tissue. Based on a Peltier-cooled CCD we designed a fluorescence excitation and emission spectrograph which allows to obtain tissue spectra endoscopically and in a clinical environment. Clinical studies were performed on patients with positive cytology or tumor recurrence in the urinary bladder. Patients received a 50 ml instillation of 3% ALA solution at pH 5.5 during 3 to 4 hours and underwent a normal white light cystoscopic examination together with light induced fluorescence photodetection at 5 to 8 hours after the beginning of the instillation. Local fluorescence measurements with a single fiber were performed before photodetection. These showed fluorescence ratios between tumor and normal tissue of 1.5 to 20 with the strongest ratios for exophytic papillary tumors. Fluorescence excitation between 380 nm and 450 nm revealed that the higher Protoporphyrin IX (PPIX) signal on tumor tissue is accompanied by a decrease of the autofluorescence at the emission wavelength of 500 nm.

  20. Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects.

    PubMed

    Brito, Gerly A C; Carneiro-Filho, Benedito; Oriá, Reinaldo B; Destura, Raul V; Lima, Aldo A M; Guerrant, Richard L

    2005-07-01

    The aim of this study was to investigate the effect of Clostridium difficile toxin A (TxA) on intestinal epithelial cell migration, apoptosis, and transepithelial resistance and to evaluate the effect of glutamine (Gln) and its stable derivative, alanyl-glutamine (Ala-Gln), on TxA-induced damage. Migration was measured in rat intestinal epithelial cells (IEC-6) 6 and 24 hr after a razor scrape of the cell monolayer. Cell proliferation was indirectly measured utilizing the tetrazolium salt WST-1. The cells were incubated with TxA (1-100 ng/ml) in medium without Gln or medium containing Gln or Ala-Gln (1-30 mM). Apoptosis was quantified in IEC-6 cells using annexin V assay. Transepithelial resistance was measured using an epithelial voltohmmeter across T84 cells seeded on a transwell filter. TxA-induced a dose-dependent reduction of migration and also caused dose and time-dependent apoptosis in IEC-6 cells. Gln and Aln-Gln significantly enhanced IEC-6 cell migration and proliferation. Gln and Ala-Gln also prevented the inhibition of migration, apoptosis, and the initial drop in transepithelial resistance induced by TxA. In conclusion, both peptides reduced toxin-induced epithelial damage and thus might play an adjunctive role in C. difficile-induced colitis therapy. PMID:16047471

  1. Benchmark dose approach for low-level lead induced haematogenesis inhibition and associations of childhood intelligences with ALAD activity and ALA levels.

    PubMed

    Wang, Q; Ye, L X; Zhao, H H; Chen, J W; Zhou, Y K

    2011-04-15

    Lead (Pb) levels, delta-aminolevulinic acid dehydratase (ALAD) activities, zinc protoporphyrin (ZPP) levels in blood, and urinary delta-aminolevulinic acid (ALA) and coproporphyrin (CP) concentrations were measured for 318 environmental Pb exposed children recruited from an area of southeast China. The mean of blood lead (PbB) levels was 75.0μg/L among all subjects. Benchmark dose (BMD) method was conducted to present a lower PbB BMD (lower bound of BMD) of 32.4μg/L (22.7) based on ALAD activity than those based on the other three haematological indices, corresponding to a benchmark response of 1%. Childhood intelligence degrees were not associated significantly with ALAD activities or ALA levels. It was concluded that blood ALAD activity is a sensitive indicator of early haematological damage due to low-level Pb exposures for children. PMID:21334730

  2. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  3. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice

    PubMed Central

    Jeong, Bae Kwon; Song, Jin Ho; Jeong, Hojin; Choi, Hoon Sik; Jung, Jung Hwa; Hahm, Jong Ryeal; Woo, Seung Hoon; Jung, Myeong Hee; Choi, Bong-Hoi; Kim, Jin Hyun; Kang, Ki Mun

    2016-01-01

    Purpose Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and Methods Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappa B and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death. PMID:26943777

  4. Protective Effect of ALA in Crushed Optic Nerve Cat Retinal Ganglion Cells Using a New Marker RBPMS

    PubMed Central

    Wang, Yanling; Wang, Wenyao; Liu, Jessica; Huang, Xin; Liu, Ruixing; Xia, Huika; Brecha, Nicholas C.; Pu, Mingliang; Gao, Jie

    2016-01-01

    In this study we first sought to determine whether RNA-binding protein with multiple splicing (RBPMS) can serve as a specific marker for cat retina ganglion cells (RGCs) using retrograde labeling and immunohistochemistry staining. RBPM was then used as an RGC marker to study RGC survival after optic nerve crush (ONC) and alpha-lipoic acid (ALA) treatment in cats. ALA treatment yielded a peak density of RBPMS-alpha cells within the peak isodensity zone (>60/mm2) which did not differ from ONC retinas. The area within the zone was significantly enlarged (control: 2.3%, ONC: 0.06%, ONC+ALA: 0.1%). As for the 10-21/mm2 zone, ALA treatment resulted in a significant increase in area (control: 34.5%, ONC: 12.1%, ONC+ALA: 35.9%). ALA can alleviate crush-induced RGC injury. PMID:27504635

  5. Exogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress

    PubMed Central

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  6. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.

    PubMed

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  7. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis.

    PubMed

    Sugiyama, Yuta; Hagiya, Yuichiro; Nakajima, Motowo; Ishizuka, Masahiro; Tanaka, Tohru; Ogura, Shun-Ichiro

    2014-03-01

    Our previous study demonstrated that 5-aminolevulinic acid (ALA) administered to mice stimulates oxidative phosphorylation by upregulation of the mitochondrial respiratory chain complex IV enzyme cytochrome c oxidase (COX). The present study investigated whether ALA disrupts the Warburg effect, which represents a shift in ATP generation from oxidative phosphorylation to glycolysis, protecting tumor cells against oxidative stress-mediated apoptosis. The human lung carcinoma cell line A549 exposed to ALA exhibited enhanced oxidative phosphorylation, which was indicated by an increase in COX protein expression and oxygen consumption. Furthermore, ALA suppressed glycolysis-mediated acidosis. This normalization of the ATP metabolic pathways significantly increased the generation of superoxide anion radical (O2•-) and the functional expression of active caspase-3, leading to caspase-dependent apoptosis. These data demonstrate that ALA inhibits the Warburg effect and induces cancer cell death. Use of this endogenous compound might constitute a novel approach to cancer therapy. PMID:24366173

  8. A trilogy on. delta. -aminolevulinic acid biosynthesis in plants and algae: I. Glutamate is the sole precursor to protoheme and heme a in maize. II. The UUC glutamate anticodon is a general feature of the tRNA required for ALA biosynthesis. III. Protein and ALA biosynthesis use the same tRNA

    SciTech Connect

    Schneegurt, M.A.

    1989-01-01

    Specifically radiolabeled substrates can be used to determine whether the heme and chlorophyll precursor {delta}-aminolevulinic acid (ALA) is synthesized via the fife-carbon pathway (incorporation from L-1-({sup 14}C)glutamate) or ALA synthase (incorporation from 2-({sup 14}C)glycine). In etiolated maize epicotyl sections, highly purified total cellular protoheme was labeled 29.7 times more effectively by glutamate than by glycine. Mitochondrial heme {alpha} was labeled 4.1 times more effectively by glutamate than by glycine. Cell-free plant and algal preparations require tRNA for the enzymatic conversion of glutamate to ALA. The tRNA required for ALA biosynthesis ahs been shown to contain the UUC glutamate anticodon, as determined by its specific retention through anticodon:anticodon interactions by tRNA{sup Phe(GAA)}-acrylamide. A fraction that was highly enriched in the RNA which supported ALA formation was obtained by affinity chromatography of RNA extracts from Chlorella vulgaris, Euglena garcilis, Cyanidium caldarium, Synechocystis, sp. PCC 6803, pea, and spinach. Other glutamate-accepting RNAs that were not retained by the affinity column were ineffective in supporting ALA formation.

  9. Immobilization of ALA-Zn(II) Coordination Polymer Pro-photosensitizers on Magnetite Colloidal Supraparticles for Target Photodynamic Therapy of Bladder Cancer.

    PubMed

    Tan, Jing; Sun, Chuanyu; Xu, Ke; Wang, Changchun; Guo, Jia

    2015-12-16

    5-Aminolevulinic acid (ALA) is a widely used photodynamic therapy (PDT) prodrug in the clinic. It can be metalized to the photosensitizer PpIX, which produces toxic singlet oxygen to kill cancer cells upon visible light irradiation. Herein, a core/shell-structured vehicle is designed to comprise magnetite colloidal supraparticles (MCSPs) as cores and ALA-Zn(II) coordination polymers as shells (Fe3O4@ALA-Zn(II) ) for target pro-photosensitizer delivery. The coordination polymers with 2D layered structures are locally deposited on the MCSPs by the complexation of the ALA and Zn(II) ions, and are readily controlled by varying the feed precursors and reaction temperatures. The maximum conjugated ALA amount is up to 17%. The Fe3O4@ALA-Zn(II) microspheres exhibit pH-sensitive release of ALA in acidic environment and rapid magnetic responsiveness. Cytotoxicity results demonstrate that Fe3O4@ALA-Zn(II) shows a significant inhibitory effect to T24 cells and is nontoxic to 293T normal cells as exposed to the 630 nm visible light for a very short time, which may due to the selective accumulation of ALA-induced PpIX in T24 cancer cells. Compared to the ALA used alone, the coordination polymer form is more efficient because of the bioactivity of incorporated Zn ions despite underlying the same apoptosis mechanism as ALA agent. PMID:26514273

  10. Protective effect of alpha-lipoic acid on cypermethrin-induced oxidative stress in Wistar rats.

    PubMed

    Mignini, F; Nasuti, C; Fedeli, D; Mattioli, L; Cosenza, M; Artico, M; Gabbianelli, R

    2013-01-01

    Cypermethrin (CY), a class II pyrethroid pesticide, is globally used to control insects in the household and in agriculture. Despite beneficial roles, its uncontrolled and repetitive application leads to unintended effects in non-target organisms. In light of the relevant anti-oxidant properties of alpha-lipoic acid (ALA), in the work described herein we tested the effect of a commercially available ALA formulation on cypermethrin CY)-induced oxidative stress in Wistar rats. The rats were orally administered with 53.14 mg/kg of ALA and 35.71 mg/kg of CY for 60 days. The treatment with CY did not induce changes in either locomotor activities or in body weight. Differences were observed on superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation that were re-established by ALA treatment at similar levels of the placebo group. Furthermore, ALA formulation increased glutathione (GSH) level and glutathione peroxidase (GPx) activity. Because of the widespread use of CY, higher amounts of pesticide residues are present in food, and a diet supplementation with ALA could be an active free radical scavenger protecting against diseases associated with oxidative stress. PMID:24355222

  11. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice

    PubMed Central

    Li, Yongning; Zhou, Qi; Hu, Zheng; Yang, Bin; Li, Qingsong; Wang, Jianhua; Zheng, Jinhua; Cao, Wenwu

    2015-01-01

    Objective Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. Methods The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Results Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells (p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Conclusions The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway. PMID:26161801

  12. The role of DAMPS in ALA-PDT for skin squamous cell carcinoma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Wang, Xiaojie; Ji, Jie; Zhang, Haiyan; Shi, Lei

    2016-03-01

    5-Aminolevulinic acid mediated photodynamic therapy (ALA-PDT) is an established local approach for skin squamous cell carcinoma. It is believed that dangerous signals damage-associated molecular patterns (DAMPs) play an important role in ALA-PDT. In this study, we evaluated in vitro and in vivo expressions of major DAMPs, calreticulin (CRT), heat shock proteins 70 (HSP70), and high mobility group box 1 (HMGB1), induced by ALA-PDT using immunohistochemistry, western blot, and ELISA in a squamous cell carcinoma (SCC) mouse model. The role of DAMPs in the maturation of DCs potentiated by ALA-PDT-treated tumor cells was detected by FACS and ELISA. Our results showed that ALA-PDT enhanced the expression of CRT, HSP70, and HMGB1. These induced DAMPs played an important role in activating DCs by PDT-treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, CD80, and CD86) and functional maturation (enhanced capability to secrete IFN-γ and IL-12). Furthermore, injecting ALA-PDT-treated tumor cells into naïve mice resulted in complete protection against cancer cells of the same origin. Our findings indicate that ALA-PDT can upregulate DAMPs and enhance tumor immunogenicity, providing a promising strategy for inducing a systemic anticancer immune response.

  13. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  14. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    PubMed

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  15. Latest results of 5-ALA-based fluorescence diagnosis and other medical disciplines

    NASA Astrophysics Data System (ADS)

    Baumgartner, Reinhold

    1999-02-01

    Preclinical and clinical studies on 5-aminolevulinic acid (5- ALA) induced Protoporphyrin IX (PPIX) are performed in various departments now following promising clinical results for the detection of bladder cancer in urology. This paper provides an overview on the progress of 5-ALA assisted fluorescence diagnosis in urology, pulmonology, neurosurgery, gynecology and ENT coordinated by the Laser Research Laboratory of the Ludwig-Maximilians-University in Munich. 5-ALA can be applied either topically or systematically to induce an intracellular accumulation of fluorescing PPIX. With appropriate dosage of 5-ALA, malignant tissue can be stained selectively, and irradiation with violet light excites a bright red fluorescence of the tumor visible with naked eyes. Optical properties of the tissue tend to hamper the precise identification and demarcation of suspect areas in fluorescence images. Multicolor remission and fluorescence imaging, therefore, should improve tumor localization in future.

  16. Molecular mechanisms associated with ALA-PDT of brain tumor cells

    NASA Astrophysics Data System (ADS)

    Alqawi, Omar; Espiritu, Myrna; Singh, Gurmit

    2009-06-01

    Previous studies have shown that low-dose PDT using 5-aminolevulinic acid (ALA)-induced photoporphyrin IX (PpIX) can induce apoptosis in tumor cells without causing necrosis. In this study we investigated the molecular mechanisms associated with apoptosis after ALA-PDT treatment in two brain glioma cell lines: human U87, and rat CNS-1cells. We used high energy light at a short time (acute PDT) and low energy light at a long time of exposure (metronomic PDT) to treat both cell lines. The cells were treated with 0.25 mM ALA at 5 joules for energy. We found that CNS-1 cells were more resistant to ALA-PDT than U87 cells when treated by both acute and metronomic PDT. To screen possible apoptosis mechanisms associated with acute and metronomic PDT, microarray analysis of gene expression was performed on RNA from glioblastoma cells treated with either acute or metronomic ALA-PDT. Within the set of genes that were negatively or positively regulated by both treatments are tumor necrosis factor receptors. The expression of TNF receptors was investigated further by RT-PCR and western blotting. The apoptosis mechanism of the cell death occurred through different pathways including BCL-2 and TNF receptors, and in part caused by cleaving caspase 3. Interestingly, metronomic ALA-PDT inhibited the expression of LTβR and the transcription factor NFκB. This inhibition was ALA concentration dependent at low concentrations.

  17. Comparison between mALA- and ALA-PDT in the treatment of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    Schleier, Peter; Zenk, Witold; Hyckel, Peter; Berndt, Alexander

    2006-02-01

    Introduction: The external application of aminoleavulinic acid (ALA), which is a substrate of physiologic cell metabolism, represents a possible treatment option in superficial basal cell carcinomas (BCC). The development of new ALA-esters (mALA) with potential for higher penetration depths promises higher therapeutic success. This research aimed to prove the following hypothesis: The cytotoxic effect of the mALA- photodynamic therapy (mALA-PDT), when compared to the ALA-PDT, leads to a higher clinical success rate. Material and Methods: 24 patients with multiple facial tumors, after having received several local surgical excisions with known histology, were treated with either ALA- or mALA-PDT, during the past two years. In total, 89 basal cell carcinoma, 45 actinic keratoses, 6 keratoacanthoma, and 2 squamous cell carcinomas were treated. ALA-PDT: A thermo gel with 40 % mALA or ALA was applied from a cooled syringe. Three to five hours after gel application the skin was cleaned from any gel residues. Irradiation was done with a diode laser and was performed in two sessions, each 10 min long. After intervals of 2, 4 and 12 weeks, the patients were recalled to assess therapeutic efficacy. This was followed by photographic documentation. Results: More than 80% of the tumors treated primarily were resolved successfully. A recurrence rate of approximately 15% was observed. Three per cent of the tumors showed no reaction to therapy. There were no statistically significant differences between the two therapeutic groups. Discussion: The advantage of the use of ALA lies foremost in the fast metabolic use of the body's own photosensitizer PpIX. There are no known side effects of this therapy. Moreover, external application is superior to systemic application with regard to patient management. The method can be combined with other therapies. Although the mALA should have a better penetration in tumor tissue, the therapeutic outcome is similar to the use of ALA.

  18. Optical spectroscopy by 5-aminolevulinic acid hexylester induced photodynamic treatment in rat bladder cancer

    NASA Astrophysics Data System (ADS)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Gederaas, Odrun A.; Arum, Carl-Jørgen; Krokan, Hans E.; Hjelme, Dag R.; Svaasand, Lars O.

    2006-02-01

    Photodynamic therapy (PDT) is a treatment modality which has been shown to be effective for both malignant and non-malignant diseases. New photosensitizers such as 5-aminolevulinic acid hexylester (hALA) may increase the efficiency of PDT. Monitoring of the tissue response provides important information for optimizing factors such as drug and light dose for this treatment modality. Optical spectroscopy may be suited for this task. To test the efficacy of hALA induced PDT, a study on rats with a superficial bladder cancer model, in which a bladder cancer cell line (AY-27) is instilled, will be performed. Preliminary studies have included a PDT feasibility study on rats, fluorescence spectroscopy on AY-27 cell suspensions, and optical reflection and fluorescence spectroscopy in rat bladders in vivo. The results from the preliminary studies are promising, and the study on hALA induced PDT treatment of bladder cancer will be continued.

  19. The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) status in human adults: a systematic review and commentary.

    PubMed

    Wood, K E; Mantzioris, E; Gibson, R A; Ramsden, C E; Muhlhausler, B S

    2015-04-01

    This paper presents a systematic review of human studies investigating the effect of altering dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) alpha-linolenic acid (ALA) and omega-6 polyunsaturated fatty acid (n-6 PUFA) linoleic acid (LA) intakes on n-3 long-chain polyunsaturated fatty acid (LCPUFA) status in adult humans. The results suggest that it is possible to increase n-3 LCPUFA status by reducing LA and/or increasing ALA intake in humans, although decreasing LA intake to below 2.5%E may be required to specifically increase levels of the n-3 LCPUFA docosahexaenoic acid (DHA). The majority of studies in this area to date have been relatively poor in quality, which limits the ability to draw robust conclusions, and we present a series of recommendations to improve the quality of future studies in fatty acid nutrition in humans. PMID:25687496

  20. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  1. Polyglycolic acid induced inflammation

    PubMed Central

    Ceonzo, Kathleen; Gaynor, Anne; Shaffer, Lisa; Kojima, Koji; Vacanti, Charles A.; Stahl, Gregory L.

    2005-01-01

    Tissue and organ replacement have quickly outpaced available supply. Tissue bioengineering holds the promise for additional tissue availability. Various scaffolds are currently used, whereas polyglycolic acid (PGA), which is currently used in absorbable sutures and orthopedic pins, provides an excellent support for tissue development. Unfortunately, PGA can induce a local inflammatory response following implantation, so we investigated the molecular mechanism of inflammation in vitro and in vivo. Degraded PGA induced an acute peritonitis, characterized by neutrophil (PMN) infiltration following intraperitoneal injection in mice. Similar observations were observed using the metabolite of PGA, glycolide. Dissolved PGA or glycolide, but not native PGA, activated the classical complement pathway in human sera, as determined by classical complement pathway hemolytic assays, C3a and C5a production, C3 and immunoglobulin deposition. To investigate whether these in vitro observations translated to in vivo findings, we used genetically engineered mice. Intraperitoneal administration of glycolide or dissolved PGA in mice deficient in C1q, factor D, C1q and factor D or C2 and factor B demonstrated significantly reduced PMN infiltration compared to congenic controls (WT). Mice deficient in C6 also demonstrated acute peritonitis. However, treatment of WT or C6 deficient mice with a monoclonal antibody against C5 prevented the inflammatory response. These data suggest that the hydrolysis of PGA to glycolide activates the classical complement pathway. Further, complement is amplified via the alternative pathway and inflammation is induced by C5a generation. Inhibition of C5a may provide a potential therapeutic approach to limit the inflammation associated with PGA derived materials following implantation. PMID:16548688

  2. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms.

    PubMed

    Vasconcelos, Germana Silva; Ximenes, Naiara Coelho; de Sousa, Caren Nádia Soares; Oliveira, Tatiana de Queiroz; Lima, Laio Ladislau Lopes; de Lucena, David Freitas; Gama, Clarissa Severino; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2015-07-01

    Oxidative stress has important implications in schizophrenia. Alpha-lipoic acid (ALA) is a natural antioxidant synthesized in human tissues with clinical uses. We studied the effect of ALA or clozapine (CLZ) alone or in combination in the reversal of schizophrenia-like alterations induced by ketamine (KET). Adult male mice received saline or KET for 14 days. From 8th to 14th days mice were additionally administered saline, ALA (100 mg/kg), CLZ 2.5 or 5 mg/kg or the combinations ALA+CLZ2.5 or ALA+CLZ5. Schizophrenia-like symptoms were evaluated by prepulse inhibition of the startle (PPI) and locomotor activity (positive-like), social preference (negative-like) and Y maze (cognitive-like). Oxidative alterations (reduced glutathione - GSH and lipid peroxidation - LP) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) and BDNF in the PFC were also determined. KET caused deficits in PPI, working memory, social interaction and hyperlocomotion. Decreased levels of GSH, nitrite (HC) and BDNF and increased LP were also observed in KET-treated mice. ALA and CLZ alone reversed KET-induced behavioral alterations. These drugs also reversed the decreases in GSH (HC) and BDNF and increase in LP (PFC, HC and ST). The combination ALA+CLZ2.5 reversed behavioral and some neurochemical parameters. However, ALA+CLZ5 caused motor impairment. Therefore, ALA presented an antipsychotic-like profile reversing KET-induced positive- and negative-like symptoms. The mechanism partially involves antioxidant, neurotrophic and nitrergic pathways. The combination of ALA+CLZ2.5 improved most of the parameters evaluated in this study without causing motor impairment demonstrating, thus, that possibly when combined with ALA a lower dose of CLZ is required. PMID:25937462

  3. ALA Candidates: Presidential Timbre

    ERIC Educational Resources Information Center

    Berry, John N., III

    2010-01-01

    This article presents an interview with two effective spokespeople, notable school librarian Sara Kelly Johns and retired public library administrator Molly Raphael, who compete to be American Library Association (ALA) president. One of them will be elected president of ALA for a year's term beginning in July 2011. Each candidate comes from a…

  4. Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans.

    PubMed

    Shashikumar, S; Pradeep, H; Chinnu, Salim; Rajini, P S; Rajanikant, G K

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the specific and massive loss of dopamine (DA) containing neurons in the substantia nigra pars compacta (SNpc) and aggregation of protein α-synuclein. There are a few animal studies, which indirectly implicate the neuroprotective action of omega-3 polyunsaturated fatty acids in neurodegenerative diseases. In this study, we exposed Caenorhabditis elegans (both wild type N2, and transgenic strain, UA44) to 6-hydroxydopamine (6-OHDA, the model neurotoxicant) and evaluated the extent of protection offered by alpha-linolenic acid (ALA). Larval stage worms (L1/L2) of N2 and transgenic strains were exposed to 6-OHDA (25 mM) with or without ALA (10, 50 and 100 μM) for 48 h at 20 °C. After 48 h, while the N2 worms were assessed for their responses in terms of locomotion, pharyngeal pumping, lifespan and AChE activity, the transgenic worms were monitored for dopaminergic neuronal degeneration. Worms exposed to 6-OHDA exhibited a significant reduction (48%) in the locomotion rate. Interestingly, supplementation with ALA increased the locomotion rate in 6-OHDA treated worms. A marked decrease (45%) in thrashing was evident in worms exposed to 6-OHDA while thrashing was slightly improved in worms co-exposed to 6-OHDA and higher concentrations of ALA. Interestingly, worms co-exposed to 6-OHDA with ALA (100 μM) exhibited a significant increase in thrashing (66 ± 1.80 thrashes/30s). The pharyngeal pumping rate declined significantly in the case of worms exposed to 6-OHDA (35%). However, the worms co-treated with ALA exhibited significant recovery in pharyngeal pumping. The mean survival for the control worms was 26 days, while the worms exposed to 6-OHDA, showed a marked reduction in survival (21 days). Worms co-exposed to 6-OHDA and ALA showed a concentration-dependent increase in lifespan compared to those exposed to 6-OHDA alone (23, 25 and 26 days respectively). Transgenic worms

  5. Pressure-induced Γ-X electron-transfer rates in a (GaAs)15/(AlAs)5 superlattice

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, J.; Reimann, K.; Kuhl, J.; Ploog, K.

    1991-10-01

    Time-resolved measurements on pressure-induced type-II Γ-X electron transfer in a (GaAs)15/(AlAs)5 superlattice have been performed using the femtosecond pump-and-probe technique. In the case of type-II character, the measured transfer times τΓ-X depend on the energy separation ΔΓX of Γ and X states as τ-1Γ-X~(ΔΓX)1/2, showing that the transfer process consists of (1) relaxation and quasithermalization of the electrons and holes in the GaAs, and (2) transfer of the electrons to the AlAs layer. Well above the crossover pressure Pc the scattering rates are independent of the carrier density. Near Pc=1.2 GPa, a carrier-induced type-I-type-II crossover leads to a shift of Pc towards lower pressures, giving Pc~=0.9 GPa at 1.5×1012 cm-2. This value Pcdyn is explained in terms of the different band-gap renormalizations of the direct Γ and indirect X-point transitions. The renormalization of the X state is found to be twice as large as the Γ-state renormalization.

  6. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution.

    PubMed

    Gelato, Kathy A; Martin, Shelley S; Baldwin, Enoch P

    2005-11-25

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to

  7. Reversed DNA Strand Cleavage Specificity in Initiation of Cre–LoxP Recombination Induced by the His289Ala Active-site Substitution

    PubMed Central

    Gelato, Kathy A.; Martin, Shelley S.; Baldwin, Enoch P.

    2010-01-01

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8 bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5′(S1 nucleotide) or 3′(S1′nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1′substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the “conformational switch” isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289

  8. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    PubMed

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently. PMID:26395388

  9. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. PMID:27377964

  10. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  11. PDT of the endometrium using ALA

    NASA Astrophysics Data System (ADS)

    Gannon, Michael J.; Vernon, David I.; Holroyd, J. Andrew; Stringer, Mark R.; Johnson, Nick; Brown, Stanley B.

    1997-05-01

    There is a widely recognized need for new approaches to effect endometrial ablation as an alternative to hysterectomy for treatment of menorrhagia. Photodynamic therapy (PDT) offers one such approach. We have investigated the use of 5-aminolaevulinic acid (ALA)-based PDT of the endometrium in model systems and in a series of patients. In all of this work, the ALA was administrated directly into the uterine cavity to reduce any possibility of systemic photosensitization. In a series of experiments in perfused ex vivo uteri, ALA was introduced into the cavity and protoporphyrin formation was measured in the endometrium, the underlying myometrium and the perfusate. ALA transfer into the perfusate was also measured. This work demonstrated that protoporphyrin formation in the endometrium was approximately ten fold that in the underlying myometrium and that systemic photosensitization would be unlikely to result form transfer of administered ALA from the uterus into the circulation. Similar results were found in studies carried out in vivo, where ALA was administered to patients scheduled for hysterectomy. Using a specially designed light source, the first patients have now been treated by giving intrauterine ALA followed by laser light. Two series of treatments - 10 in all - have been carried out. Eight patients have one year follow up. A reduction in measured menstrual blood loss was demonstrated in all but one patient. Complete symptomatic relief was obtained in tow women who did not require further treatment.

  12. α-lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy

    PubMed Central

    ZHANG, JINGJING; DENG, HOULIANG; LIU, LI; LIU, XIAOXIA; ZUO, XIALIN; XU, QIAN; WU, ZHUOMIN; PENG, XIAOBIN; JI, AIMIN

    2015-01-01

    α-lipoic acid (ALA) is known as a powerful antioxidant, which has been reported to have protective effects against various cardiovascular diseases. The present study aimed to determine whether ALA pre- or post-treatment induced protective effects against hypoxia/reoxygenation-induced injury via inhibition of apoptosis and autophagy in human umbilical vein endothelial cells (HUVECs). In order to simulate the conditions of hypoxia/reoxygenation, HUVECs were subjected to 4 h of oxygen-glucose deprivation (OGD) followed by 12 h of reoxygenation. For the pre-treatment, ALA was added to the buffer 12 h prior to OGD, whereas for the post-treatment, ALA was added at the initiation of reoxygenation. The results demonstrated that ALA pre- or post-treatment significantly reduced lactate dehydrogenase (LDH) release induced through hypoxia/reoxygenation in HUVECs in a dose-dependent manner; of note, 1 mM ALA pre- or post-treatment exhibited the most potent protective effects. In addition, ALA significantly reduced hypoxia/reoxygenation-induced loss of mitochondrial membrane potential, apoptosis and the expression of cleaved caspase-3 in HUVECs. In the presence of the specific autophagy inhibitor 3-methyladenine, hypoxia/reoxygenation-induced apoptosis was significantly reduced. Furthermore, the formation of autophagosomes, cytosolic microtubule-associated protein 1A/1B-light chain 3 ratio and beclin1 levels significantly increased following hypoxia/reoxygenation injury; however, all of these effects were ameliorated following pre- or post-treatment with ALA. The results of the present study suggested that ALA may provide beneficial protection against hypoxia/reoxygenation-induced injury via attenuation of apoptosis and autophagy in HUVECs. PMID:25684163

  13. 5-ALA based photodynamic management of glioblastoma

    NASA Astrophysics Data System (ADS)

    Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm

    2014-03-01

    Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.

  14. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells

    PubMed Central

    Zhang, Haiyan; Fan, Zhixia; Zhang, Linglin; Shi, Lei; Zhou, Feifan; Chen, Wei R.; Wang, Hongwei; Wang, Xiuli

    2015-01-01

    Photodynamic therapy (PDT) not only kills tumor cells directly but also rapidly recruits and activates immune cells favoring the development of antitumor adaptive immunity. It is believed that Topical 5-aminolevulinic acid mediated photodynamic therapy (ALA-PDT) can induce anti-tumor immune responses through dangerous signals damage-associated molecular patterns (DAMPs). In this study, we investigated the effect of ALA-PDT induced DAMPs on immune cells. We focused on the stimulation of dendritic cells by major DAMPs, enhanced the expression of calreticulin (CRT), heat shock proteins 70 (HSP70), and high mobility group box 1 (HMGB1), either individually or in combination. We evaluated in vitro and in vivo expressions of DAMPs induced by ALA-PDT using immunohistochemistry, western blot, and ELISA in a squamous cell carcinoma (SCC) mouse model. The role of DAMPs in the maturation of DCs potentiated by ALA-PDT-treated tumor cells was detected by FACS and ELISA. Our results showed that ALA-PDT enhanced the expression of CRT, HSP70, and HMGB1. These induced DAMPs played an important part in activating DCs by PDT-treated tumor cells, including phenotypic maturation (increase of surface expression of MHC-II, CD80, and CD86) and functional maturation (enhanced capability to secrete IFN-γ and IL-12). Furthermore, injecting ALA-PDT-treated tumor cells into naïve mice resulted in complete protection against cancer cells of the same origin. Our findings indicate that ALA-PDT can increase DAMPs and enhance tumor immunogenicity, providing a promising strategy for inducing a systemic anticancer immune response. PMID:26625309

  15. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas

    PubMed Central

    Montcel, Bruno; Mahieu-Williame, Laurent; Armoiry, Xavier; Meyronet, David; Guyotat, Jacques

    2013-01-01

    5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas. PMID:23577290

  16. Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification.

    PubMed

    Chan, Amy; Liebow, Abigail; Yasuda, Makiko; Gan, Lin; Racie, Tim; Maier, Martin; Kuchimanchi, Satya; Foster, Don; Milstein, Stuart; Charisse, Klaus; Sehgal, Alfica; Manoharan, Muthiah; Meyers, Rachel; Fitzgerald, Kevin; Simon, Amy; Desnick, Robert J; Querbes, William

    2015-01-01

    The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology. PMID:26528940

  17. Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification

    PubMed Central

    Chan, Amy; Liebow, Abigail; Yasuda, Makiko; Gan, Lin; Racie, Tim; Maier, Martin; Kuchimanchi, Satya; Foster, Don; Milstein, Stuart; Charisse, Klaus; Sehgal, Alfica; Manoharan, Muthiah; Meyers, Rachel; Fitzgerald, Kevin; Simon, Amy; Desnick, Robert J; Querbes, William

    2015-01-01

    The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology. PMID:26528940

  18. Roles of G-protein beta gamma, arachidonic acid, and phosphorylation inconvergent activation of an S-like potassium conductance by dopamine, Ala-Pro-Gly-Trp-NH2, and Phe-Met-Arg-Phe-NH2.

    PubMed

    van Tol-Steye, H; Lodder, J C; Mansvelder, H D; Planta, R J; van Heerikhuizen, H; Kits, K S

    1999-05-15

    Dopamine and the neuropeptides Ala-Pro-Gly-Trp-NH2 (APGWamide or APGWa) and Phe-Met-Arg-Phe-NH2 (FMRFamide or FMRFa) all activate an S-like potassium channel in the light green cells of the mollusc Lymnaea stagnalis, neuroendocrine cells that release insulin-related peptides. We studied the signaling pathways underlying the responses, the role of the G-protein betagamma subunit, and the interference by phosphorylation pathways. All responses are blocked by an inhibitor of arachidonic acid (AA) release, 4-bromophenacylbromide, and by inhibitors of lipoxygenases (nordihydroguaiaretic acid and AA-861) but not by indomethacin, a cyclooxygenase inhibitor. AA and phospholipase A2 (PLA2) induced currents with similar I-V characteristics and potassium selectivity as dopamine, APGWa, and FMRFa. PLA2 occluded the response to FMRFa. We conclude that convergence of the actions of dopamine, APGWa, and FMRFa onto the S-like channel occurs at or upstream of the level of AA and that formation of lipoxygenase metabolites of AA is necessary to activate the channel. Injection of a synthetic peptide, which interferes with G-protein betagamma subunits, inhibited the agonist-induced potassium current. This suggests that betagamma subunits mediate the response, possibly by directly coupling to a phospholipase. Finally, the responses to dopamine, APGWa, and FMRFa were inhibited by activation of PKA and PKC, suggesting that the responses are counteracted by PKA- and PKC-dependent phosphorylation. The PLA2-activated potassium current was inhibited by 8-chlorophenylthio-cAMP but not by 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA did inhibit the potassium current induced by irreversible activation of the G-protein using GTP-gamma-S. Thus, it appears that PKA targets a site downstream of AA formation, e.g., the potassium channel, whereas PKC acts at the active G-protein or the phospholipase. PMID:10234006

  19. Basic principles of fluorescence detection with use of 5-ALA

    NASA Astrophysics Data System (ADS)

    Baumgartner, Reinhold; Stepp, Herbert G.

    2000-06-01

    5-Aminolevulinic acid (5-ALA) has been proven to induce selective accumulation of flourescent Protoporphyrin IX (PPIX) in many types of malignant tissue. According to the target to treatment different routes of topical and systemical application of 5-ALA can be chosen. They include techniques like inhalation, installation and rinsing. For fluorescence detection a lamp based system have been developed in the laser-Forschungslabor in Munich together with Storz company. By skillful balancing of excitation filter centered around 400 nm and the observation filter with transmission above 450 nm images with high color contrast can be obtained. The universal application of the D-LIGHT could be demonstrated in different clinical disciplines like urology, neurosurgery, ENT clinic, gynecology and others.

  20. ALA-based photodynamic therapy in epithelial tumors: in vivo and in vitro models

    NASA Astrophysics Data System (ADS)

    Casas, Adriana; Fukuda, Haydee; Batlle, Alcira

    2000-03-01

    PDT shows considerable potential as a treatment modality for superficial tumors. PDT is based on the accumulation of a photosensitizer in the target tissue. Subsequent illumination with light of an appropriate wavelength provokes a photochemical reaction that results in tumor destruction. Aminolevulinic acid (ALA) is a porphyrin precursor, and its administration result in the endogenous production of phototoxic porphyrins, which has been exploited for PDT. We assessed PDT efficacy employing both in vivo and in vitro models. We used papillomas, keratoacanthomas and in situ carcinomas chemically induced in the skin of SENCAR mice. Using ALA lotion and cream formulations, the maximal amount of porphyrin accumulation in papillomas was 5.52 (mu) g/g tissue. An energy of 150 of J/cm2 was delivered by a copper-dye laser tuned at 630 nm. Microscopically, we found several signs of tissue destruction, more markedly in the upper strata of the in situ carcinomas. Papillomas, characterized by hyperkeratinization, were resistant to PDT. In our in vitro studies, we used an epithelial adenocarcinoma cell line. We tested ALA and its hexyl and methyl derivatives with the aim of increasing porphyrin synthesis. We found that hexyl-ALA was the best compound. When cultures incubated 3 hours in 0.6 mM ALA and 0.1 mM hexyl-ALA respectively were irradiated with 3 J/cm2 only 5 percent of cells survived.

  1. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  2. The receptor binding affinity of monocyclic [Ala3,Xaa11]endothelin-1 analogs correlates with inducible helix length.

    PubMed

    Andersen, N H; Harris, S M; Lee, V G; Liu, E C; Moreland, S; Hunt, J T

    1995-02-01

    Endothelin-1, a bicyclic 21-amino acid peptide with disulfide bridges between cysteines 1 and 15 as well as between cysteines 3 and 11, has been reported to be partially helical based on both CD and NMR data. However, this remains an area of controversy with some claims that CD data indicate no alpha-helical structure (Calas, B.; Harricane, M.-C.; Gulmard, L.; Heitz, F.; Mendre, C.; Chabrier, P.E.; Bennes, R. Peptide Res. 1992, 5, 97) and a recent X-ray crystal structure placing the helix at a different locus (Janes, R.W.; Peapus, D.H.; Wallace, B.A. Structural Biology 1994, 1, 311). The CD studies reported herein indicate that the helical structures reported in NMR studies (e.g. Andersen, N.H.; Chen, C.; Marschner, T.M.; Krystek, Jr. S.R.; Bassolino, D.A. Biochemistry 1992, 31, 1280) apply to pure aqueous media as well. The helix located from Lys9 to the Cys15/His16 juncture is ca 75% populated in pH 4 aqueous buffer. Titration difference CDs reveal that the helix extent increases by one to two residues and that the 'helical conformation' is more completely populated upon addition of TFE to 50+ volume-%. Comparison with a more helical analog suggests that the helix propagates towards (but not to the end of) the C-terminus upon fluoroalcohol addition. A variety of monocyclic derivatives of [Nle7] ET-1 lacking the 3,11-disulfide were evaluated for biological activity and examined by TFE titration difference CD. The series included an Aib11 and a Pro11 analog. The helix promoting Aib analog was the most active while the Pro analog exhibited significantly lower vasoconstrictor activity and binding affinity for the ETA receptor. All of the monocyclic analogs became significantly more helical upon addition of fluoroalcohols. The inclusion of a proline residue at position 11 does not preclude helix formation upon addition of fluoroalcohols. Rather, helix formation is relatively easily induced but limited to a 5 residue span. Apparently this is insufficient to orient

  3. Photodynamic therapy with 5-aminoolevulinic acid-induced porphyrins and DMSO/EDTA for basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik

    1995-03-01

    Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.

  4. A Single Amino Acid Change (Asp 53→ Ala53) Converts Survivin from Anti-apoptotic to Pro-apoptotic

    PubMed Central

    Song, Zhiyin; Liu, Shixin; He, He; Hoti, Naser; Wang, Yi; Feng, Shanshan; Wu, Mian

    2004-01-01

    Survivin is a member of the inhibitor of apoptosis protein (IAP) family that has been implicated in both apoptosis inhibition and cell cycle control. Recently, Survivin has attracted growing attention because of its tumor-specific expression and potential applications in tumor therapy. However, its inhibitory mechanism and subcellular localization remain controversial. Here, we report a novel Survivin mutant Surv-D53A, which displays a function opposite to Survivin and a distinctive subcellular distribution compared with its wild-type counterpart. Surv-D53A was shown to induce apoptosis in a p53-independent manner, indicating that tumor suppressor p53 is not involved in its apoptosis pathway. Surv-D53A was shown to markedly sensitize apoptosis induced by TRAIL, doxorubicin, and RIP3. We also demonstrated that similar to wild-type Survivin, Surv-D53A was localized in cytoplasm in interphase and to midbody at telophase. However, it fails to colocalize in chromosomes with Aurora-B in metaphase as wt-Survivin. Surv-D53A mutant is less stable than wt-Survivin and is degraded more rapidly by ubiquitin-proteasome pathway. Additionally, we found that Surv-D53A interacts with wt-Survivin to form heterodimer or with itself to form mutant homodimer, which may account for the loss of its antiapoptotic function. Finally, unlike Survivin*Survivin, neither Surv-D53A*Survivin nor Surv-D53A*Surv-D53A is able to bind to Smac/DIABLO, which may explain the underlying mechanism for its abolishment of antiapoptotic activity of Survivin. PMID:14699067

  5. Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Alhawaj, Raed; Patel, Dhara; Kelly, Melissa R.; Sun, Dong

    2015-01-01

    This study examines how heme biosynthesis modulation with δ-aminolevulinic acid (ALA) potentially functions to prevent 21-day hypoxia (10% oxygen)-induced pulmonary hypertension in mice and the effects of 24-h organoid culture with bovine pulmonary arteries (BPA) with the hypoxia and pulmonary hypertension mediator endothelin-1 (ET-1), with a focus on changes in superoxide and regulation of micro-RNA 204 (miR204) expression by src kinase phosphorylation of signal transducer and activator of transcription-3 (STAT3). The treatment of mice with ALA attenuated pulmonary hypertension (assessed through echo Doppler flow of the pulmonary valve, and direct measurements of right ventricular systolic pressure and right ventricular hypertrophy), increases in pulmonary arterial superoxide (detected by lucigenin), and decreases in lung miR204 and mitochondrial superoxide dismutase (SOD2) expression. ALA treatment of BPA attenuated ET-1-induced increases in mitochondrial superoxide (detected by MitoSox), STAT3 phosphorylation, and decreases in miR204 and SOD2 expression. Because ALA increases BPA protoporphyrin IX (a stimulator of guanylate cyclase) and cGMP-mediated protein kinase G (PKG) activity, the effects of the PKG activator 8-bromo-cGMP were examined and found to also attenuate the ET-1-induced increase in superoxide. ET-1 increased superoxide production and the detection of protoporphyrin IX fluorescence, suggesting oxidant conditions might impair heme biosynthesis by ferrochelatase. However, chronic hypoxia actually increased ferrochelatase activity in mouse pulmonary arteries. Thus, a reversal of factors increasing mitochondrial superoxide and oxidant effects that potentially influence remodeling signaling related to miR204 expression and perhaps iron availability needed for the biosynthesis of heme by the ferrochelatase reaction could be factors in the beneficial actions of ALA in pulmonary hypertension. PMID:25659899

  6. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-06-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics. PMID:26818577

  7. Enhancement of 5-aminolevulinic-acid-induced photodynamic therapy using light-dose fractionation and iron-chelating agents

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Postle-Hacon, Matthew J.; MacRobert, Alexander J.; Bown, Stephen G.

    1998-05-01

    Preliminary clinical studies of 5-aminolaevulinic acid (ALA) induced photodynamic therapy (PDT) with the maximum tolerated oral dose (60 mg/kg), currently appear to only produce limited amounts of necrosis. We have studied ways of increasing this effect without increasing the drug dose. In normal, female, Wistar rats we have found it possible to increase the area of necrosis produced in the colon substantially by simply interrupting the light dose (25 J, 635 nm, 100 mW) for a short period of time, while all other variables are kept constant. It is possible to cause up to four times more necrosis with a dose of 200 mg/kg ALA i.v. by introducing a single 150 second interval which splits the light dose into two fractions after 5 J has been delivered. We have found these parameters to be optimal for this dose. Likewise, in the same model, the effect of the iron chelating agent, CP94, was also investigated and we have found it possible to produce three times the area of necrosis with the simultaneous administration of 100 mg/kg CP94 i.v. and 50 mg/kg ALA i.v. We have therefore shown, that it is possible to significantly increase the effects of ALA induced PDT without increasing the administered dose of ALA by utilizing these techniques.

  8. The effects of alpha-lipoic acid on nitric oxide synthetase dispersion in penile function in streptozotocin-induced diabetic rats.

    PubMed

    Hurdag, C; Ozkara, H; Citci, S; Uyaner, I; Demirci, C

    2005-01-01

    Diabetes-induced erectile dysfunction is one of the most prevalent complications of diabetes in males. alpha-Lipoic acid (ALA) and its reduced form, dihydrolipoic acid, are powerful antioxidants. Data strongly suggest that, because of its antioxidant properties, ALA is particularly suited to the prevention and/or treatment of diabetic complications that arise from overproduction of reactive oxygen and nitrogen. The aim of this study was to investigate the localization of nitric oxide synthetase (NOS) in normal and diabetic rat cavernous smooth muscles and to examine the effects of ALA on them. Rats were divided into four groups: control, diabetic, diabetic plus ALA, and ALA only. Penile tissues were taken 15 days after drug application and examined histochemically and immunohistochemically. Comparison of the control and diabetic groups revealed that the axons of nerve cells were not identified with Masson trichrome in the diabetic group, whereas in the control group NOS localization and immunostaining (endothelial NOS [eNOS]) were normal. Diabetic rats administered ALA showed improvement in Masson trichrome, nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and eNOS localization compared with untreated diabetic rats. Although there was no difference between the control group and the group administered ALA only, we observed an increase in NADPH-d and eNOS. In erection, eNOS and neuronal NOS (nNOS) may have a significant role. In pathologic conditions, erectile dysfunction may occur as a result of an increase in inducible macrophage-type NOS (iNOS). ALA plays an important role in treatment of erectile dysfunction by decreasing iNOS and increasing other isoforms of NOS. PMID:16372481

  9. Combination of 5-ALA and iMRI in re-resection of recurrent glioblastoma.

    PubMed

    Quick-Weller, Johanna; Lescher, Stephanie; Forster, Marie-Therese; Konczalla, Jürgen; Seifert, Volker; Senft, Christian

    2016-06-01

    Background Tumour resection plays a role in the initial treatment but also in the setting of recurrent glioblastoma (rGBM). To achieve maximum resection, 5-aminolevulinic acid (5-ALA) and intraoperative MRI (iMRI) are used as surgical tools. Aiming at complete tumour re-resection, we started combining iMRI with 5-ALA to find out if this leads to better surgical results. Methods We performed tumour resections in seven patients with rGBM, combining 5-ALA (20 mg/kg bodyweight) with iMRI (0.15 T). Radiologically complete resections were intended in all seven patients. We assessed intraoperative fluorescence findings and compared these with intraoperative imaging. All patients had early postoperative MRI (3 T) to verify final iMRI scans and received adjuvant treatment according to interdisciplinary tumour board decision. Results Median patient age was 63 years. Median KPS score was 90, and median tumour volume was 8.2 cm(3). In six of seven patients (85%), 5-ALA induced fluorescence of tumour-tissue was detected intraoperatively. All tumours were good to visualise with iMRI and contrast media. One patient received additional resection of residual contrast enhancing tissue on intraoperative imaging, which did not show fluorescence. Radiologically complete resections according to early postoperative MRI were achieved in all patients. Median survival since second surgery was 7.6 months and overall survival since diagnosis was 27.8 months. Conclusions 5-ALA and iMRI are important surgical tools to maximise tumour resection also in rGBM. However, not all rGBMs exhibit fluorescence after 5-ALA administration. We propose the combined use of 5-ALA and iMRI in the surgery of rGBM. PMID:26743016

  10. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    PubMed Central

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Background Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Materials and methods Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. PMID:25609949

  11. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin.

    PubMed Central

    Iinuma, S.; Farshi, S. S.; Ortel, B.; Hasan, T.

    1994-01-01

    5-Aminolaevulinic acid (ALA)-induced porphyrin biosynthesis and phototoxicity in vitro was investigated in five malignant and two normal cell lines. Intracellular protoporphyrin IX (PpIX) content was quantified by extraction and fluorescence spectroscopy. Cellular PpIX content did not always correlate with cell proliferation rate as measured by the doubling times of cell lines. Cellular efflux of PpIX was also investigated. In a bladder carcinoma cell line, the observed rapid efflux was not blocked by verapamil, an inhibitor of the P-glycoprotein efflux pump. These data support the view that cellular PpIX accumulation is a dynamic process that is determined by both the efflux of PpIX from the cells and enzyme activities in the haem biosynthesis pathway. Desferrioxamine (desferal), a modulator of PpIX biosynthesis, enhanced ALA-induced cellular PpIX content significantly in all carcinoma cell lines but not in non-malignant cell lines. The enhanced PpIX cellular accumulation is attributed to inhibition of ferrochelatase activity, the enzyme responsible for the conversion of PpIX to haem. PpIX-mediated cellular photodestruction following irradiation with an argon ion laser at 514.5 nm was determined by the 'MTT assay'. There appeared to be a 'threshold' effect of cellular PpIX content; cells that synthesised less than 140 ng/mg-1 protein exhibited very little phototoxic damage, while cell lines having greater than 140 ng PpIX/mg-1 protein [corrected] exhibited a consistent phototoxic response. Among the cell lines which did undergo phototoxic damage, there was not a strict correlation between PpIX cellular content and ALA-induced phototoxicity. Desferal enhanced the PpIX content and phototoxic effect in the responsive cells. Fluorescence microscopy of the ALA-treated cells revealed marked accumulation of PpIX in mitochondria (rhodamine 123 co-staining). That the primary site of phototoxic damage is also the mitochondria was confirmed by electron micrographs of cells

  12. Study of the efficacy of 5 ALA-mediated photodynamic therapy on human larynx squamous cell carcinoma (Hep2c) cell line

    NASA Astrophysics Data System (ADS)

    Khursid, A.; Atif, M.; Firdous, S.; Zaidi, S. S. Z.; Salman, R.; Ikram, M.

    2010-07-01

    5-aminolevulanic acid (ALA), a precursor of Protoporphyrin IX, was evaluated as an inducer of photodamage on Hep2c, human larynx squamous cell carcinoma, cell line. Porphyrins are used as active cytotoxic antitumor agents in photodynamic therapy (PDT). The present study evaluates the effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) using human larynx cells as experimental model. Hep2c cell line was irradiated with red light (a diode laser, λ = 635 nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of Hep2c cells were studied. The optimal uptake of photosensitizer ALA in Hep-2c cells was investigated by means of spectrometric measurement. Cells viability was determined by means of neutral red assay (NR). It was observed that sensitizer or light doses have no significant effect on cells viability when studied independently. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 7 h in vitro incubation. The photocytotoxic assay showed that light dose of 85 J/cm2 gives effective PDT outcome for Hep2c cell line incubated with 55 μg/ml of 5-ALA with a conclusion that Hep2c cell line is sensitive to ALA-mediated PDT.

  13. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons.

    PubMed

    Holtsberg, F W; Steiner, M R; Keller, J N; Mark, R J; Mattson, M P; Steiner, S M

    1998-01-01

    A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 microM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 microM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 microM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 microM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1beta converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 microM LPA. LPA (1 microM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders. PMID:9422348

  14. Photodynamic diagnosis (PDD) of bladder cancer with intravesical 5-aminolevulinic-acid-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Grimbergen, Matthijs C. M.; Jonges, T. G. N.; Lock, M. Tycho W.; van Swol, Christiaan F. P.; Boon, Tom A.; van Moorselaar, R. Jeroen A.

    2001-05-01

    Flat urothelial lesions as well as small papillary tumors are easily missed during transurethral resection (TUR). PDD is based on the detection of protoporphyrin-IX induced fluorescence after topical administration of 5- aminolevulinic acid (ALA). We report on our initial clinical results of 130 procedures in 98 patients. Two hours prior to TUR 1.5 g ALA dissolved in 50 ml 1.4% NaHCO3 solution was installed intravesically. For fluorescence excitation a blue light source (375-440 nm, Karl Storz) was used. In total 478 biopsies (2-9 per patient) were taken from fluorescent and nonfluorescent areas. Normal nonfluorescent bladder urothelium was blue, whereas cancer epithelium developed a brilliant red fluorescence. During white light cystoscopy, 143 bladder tumors were found. Sixty-three additional tumors were detected because of their positive fluorescence. The overall sensitivity of fluorescence cystoscopy (98%) was greater than that of white light cystoscopy (69%). Their specificities were 51% and 80% respectively.

  15. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  16. Comparative in vivo study of precursors of PpIX (ALA and MAL) used topically in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rego, Raquel F.; Inada, Natalia M.; Ferreira, Juliana; Araújo-Moreira, Fernando M.; Bagnato, Vanderlei S.

    2009-06-01

    The efficacy of Photodynamic Therapy (PDT) combined with aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) in treatment of cancer has been studied for over ten years. However, there is no established dose for the topical use of these drugs in PDT. The purpose of this study was the comparison of induced PDT response of ALAsense (5-aminolevulinic acid - ALA) and Metvix (methyl aminolevulinate - MAL). Depth of necrosis induced by PDT was analyzed in normal liver of male Wistar rats, using different light doses and topical application of both PpIX precursors - ALA and MAL. PDT was performed with a diode laser at 630 nm with different doses of light (20, 50, 100 and 200 J/cm2), and intensity of 250 mW/cm2. Depth of necrosis analysis was used to calculate the threshold dose for each drug. The results showed that MAL-PDT presented a better response than ALA-PDT, mainly due to formulation differences. Moreover, the ability of the ALA PpIX production was more efficient.

  17. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  18. Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA

    NASA Astrophysics Data System (ADS)

    Marrero, Allison; Sunar, Ulas; Sands, Theresa; Oseroff, Allan; Bellnier, David

    2009-06-01

    Photodynamic treatment of subcutaneously implanted Colon 26 tumors in BALB/c mice using the aminolevulinic acid (ALA)-induced photosensitizer protoporphyrin IX (PpIX) was shown to be enhanced by the addition of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA; Novartis ASA404). DMXAA increases vascular permeability and decreases blood flow in both murine and human tumors. Sufficiently high parenteral DMXAA doses can lead to tumor collapse and necrosis. We have previously reported marked enhancement of antitumor activity when PDT, using either Photofrin or HPPH, is combined with low-dose intraperitoneal DMXAA. We now describe the first attempt to combine topically-applied DMXAA with PDT. For this, DMXAA was applied two hours before PpIX-activating light delivery. PDT with ALA-PDT alone (ALA 20%; 80 J/cm2 delivered at 75 mW/cm2) caused a 39% decrease in tumor volume compared to unirradiated controls. Addition of topical DMXAA to ALA-PDT resulted in a 74% reduction in tumor volume. Diffuse correlation spectroscopy (DCS), a non-invasive blood flow imaging method, is being used to understand the mechanism of this effect and to aid in the proper design of the therapy. For instance, our most recent DCS data suggests that the 2-hour interval between the DMXAA and light applications may not be optimum. This preliminary study suggests a potential role for topical DMXAA in combination with PDT for dermatologic tumors.

  19. Influence of serum proteins on the accumulation of aminolaevulinic acid-induced protoporphyrin IX in cells in culture

    NASA Astrophysics Data System (ADS)

    Weir, M. M.; Vernon, David I.; Brown, Stanley B.

    1995-03-01

    Aminolaevulinic acid (ALA) induced porphyrin biosynthesis and the resulting in vitro phototoxicity have been determined in both SV40 transformed Swiss mouse 3T3 fibroblasts and PtK2 epithelial cells. Both cell lines respond to the addition of exogenous ALA, producing porphyrin linearly with ALA concentrations up to 0.3 mM. Notably the only accumulating porphyrin detected by HPLC was PpIX. Although the levels of PpIX are both dependent on the time and concentration used, the final intracellular porphyrin concentration is dictated by the presence of serum. When ALA is added in medium containing 10% new born calf serum, 90 - 95% of the induced porphyrin appears in the incubation medium. In the absence of serum, the intracellular PpIX levels are maintained and only under these conditions can successful in vitro PDT be performed. Gel permeation chromatography has indicated that the afflux of PpIX is promoted by the low density and high density lipoproteins, with an unknown protein (mw < 66000) contributing significantly to the effect seen. It appears that this protein is present at very low concentrations in both foetal and new born calf serum.

  20. Inhibitory Effects of α-Lipoic Acid on Oxidative Stress-Induced Adipogenesis in Orbital Fibroblasts From Patients With Graves Ophthalmopathy

    PubMed Central

    Hwang, Sena; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig

    2016-01-01

    Abstract A choice of the optimal treatment for Graves ophthalmopathy (GO) is a challenge due to the complexity of the pathogenesis. Alpha-lipoic acid (ALA) is well known as a multifunctional antioxidant, helping to protect cells against oxidative stress and inflammatory damage. The aim of this study was to investigate the effects of ALA on intracellular production of reactive oxygen species (ROS), inflammation, and adipogenesis using primary cultured orbital fibroblasts from patients with GO. Intracellular ROS levels and mRNA expressions of proinflammatory cytokines and chemokines including intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and regulated upon activation normal T cell expressed and presumably secreted (RANTES) were measured. After adipogenesis, the expressions of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT-enhancer-binding proteins (C/EBP)α and β, and heme oxygenase-1 (HO-1) were investigated. H2O2 dose-dependently stimulated ROS production and HO-1 expression. Addition of ALA strongly attenuated ROS production and further increased HO-1 expression. However, by pretreatment of zinc protoporphyrin (ZnPP), HO-1 inhibitor, ALA inhibition of ROS generation by H2O2 was abolished. Tumor necrosis factor (TNF)α-induced mRNA expressions of ICAM-1, IL-6, MCP-1, and RANTES were inhibited by ALA treatment. In this context, TNFα-induced phosphorylation of P65 was also inhibited. In addition, ALA dose-dependently inhibited H2O2-induced intracellular accumulation of lipid droplets. The expression of adipogenic transcription factors, including PPARγ, C/EBPα, and β, was also inhibited. ALA is a potential therapeutic agent for GO because of the inhibitory effects on ROS production and gene expression of proinflammatory cytokines and chemokines, resulting in prevention of adipose-tissue expansion. PMID:26765462

  1. Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images.

    PubMed

    Moon, Ju Hyung; Kim, Se Hoon; Shim, Jin-Kyoung; Roh, Tae-Hoon; Sung, Kyoung Su; Lee, Ji-Hyun; Park, Junseong; Choi, Junjeong; Kim, Eui-Hyun; Kim, Sun Ho; Kang, Seok-Gu; Chang, Jong Hee

    2016-08-01

    During 5-aminolevulinic acid (ALA)-guided glioblastoma multiforme (GBM) surgery, we encountered fluorescence in ventricular walls that lacked enhancement on magnetic resonance (MR) images and were free of macroscopic invasion of tumor cells. However, the meaning of ventricular wall fluorescence during 5-ALA-guided surgery is still unknown. The aim of this study was to investigate the relationship between intraoperative 5-ALA fluorescence and histopathological findings of ventricular walls free of enhancement on MR images. Nineteen patients with newly diagnosed GBM located near the lateral ventricle underwent 5‑ALA fluorescence‑guided surgery. During the surgery, the ventricle wall was opened and investigated with the aid of a surgical microscope equipped with optical filters to examine 5‑ALA fluorescence of the ventricular wall. Twenty‑five ventricular wall tissues that were apparently free of tumor involvement by MR imaging and macroscopic observation were obtained during surgery. Among the 19 cases with brightly fluorescing tumor masses, 11 patients (57.9%) exhibited 5‑ALA‑induced fluorescence in the ventricular wall. Of the 25 ventricular wall samples, 11 exhibited 5‑ALA‑induced fluorescence; upon pathologic examination, tumors were present in 5 samples (45.5%), but the remaining 6 (54.5%) were free of tumor cells. A pathologic examination revealed no tumor cells in the 14 samples that lacked 5‑ALA‑induced fluorescence. Our data suggest the possibility that glioma cells exhibiting 5‑ALA fluorescence are present in the ventricle wall, despite no signs of tumor involvement in MR images. Further investigation of non‑tumor cells from tissues with 5‑ALA fluorescence is needed to understand the nature of this unexpected ventricular wall fluorescence. PMID:27374931

  2. Inhibitory Effects of α-Lipoic Acid on Oxidative Stress-Induced Adipogenesis in Orbital Fibroblasts From Patients With Graves Ophthalmopathy.

    PubMed

    Hwang, Sena; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig

    2016-01-01

    A choice of the optimal treatment for Graves ophthalmopathy (GO) is a challenge due to the complexity of the pathogenesis. Alpha-lipoic acid (ALA) is well known as a multifunctional antioxidant, helping to protect cells against oxidative stress and inflammatory damage.The aim of this study was to investigate the effects of ALA on intracellular production of reactive oxygen species (ROS), inflammation, and adipogenesis using primary cultured orbital fibroblasts from patients with GO.Intracellular ROS levels and mRNA expressions of proinflammatory cytokines and chemokines including intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and regulated upon activation normal T cell expressed and presumably secreted (RANTES) were measured. After adipogenesis, the expressions of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT-enhancer-binding proteins (C/EBP)α and β, and heme oxygenase-1 (HO-1) were investigated.H2O2 dose-dependently stimulated ROS production and HO-1 expression. Addition of ALA strongly attenuated ROS production and further increased HO-1 expression. However, by pretreatment of zinc protoporphyrin (ZnPP), HO-1 inhibitor, ALA inhibition of ROS generation by H2O2 was abolished. Tumor necrosis factor (TNF)α-induced mRNA expressions of ICAM-1, IL-6, MCP-1, and RANTES were inhibited by ALA treatment. In this context, TNFα-induced phosphorylation of P65 was also inhibited. In addition, ALA dose-dependently inhibited H2O2-induced intracellular accumulation of lipid droplets. The expression of adipogenic transcription factors, including PPARγ, C/EBPα, and β, was also inhibited.ALA is a potential therapeutic agent for GO because of the inhibitory effects on ROS production and gene expression of proinflammatory cytokines and chemokines, resulting in prevention of adipose-tissue expansion. PMID:26765462

  3. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  4. Attenuation of uremia by orally feeding alpha-lipoic acid on acetaminophen induced uremic rats.

    PubMed

    Pradhan, Shrabani; Mandal, Shreya; Roy, Suchismita; Mandal, Arpita; Das, Koushik; Nandi, Dilip K

    2013-04-01

    Uremia means excess nitrogenous waste products in the blood & their toxic effects. An acute acetaminophen (paracetamol, N-acetyl p-aminophenol; APAP) overdose may result into potentially fatal hepatic and renal necrosis in humans and experimental animals. The aims of this present study were to investigate the protective effect of alpha-lipoic acid (ALA) on oxidative stress & uremia on male albino rats induced by acetaminophen. The study was performed by 24 albino male Wister strain rats which were randomly divided into four groups: Group I, control - receives normal food and water, Groups II, III & IV receive acetaminophen interperitoneally at the dose of 500 mg/kg/day for 10 days, from 11th day Groups III & IV were treated with ALA at the dose of 5 mg & 10 mg/100 g/day for 15 days, respectively. After 25 days of treatment, it was observed that there was a significant increase in plasma urea, creatinine, sodium and malondialdehyde (MDA) levels (p < 0.05) but a significant decrease in super oxide dismutase (SOD) & catalase activity & potassium level in uremic group is compared with control group & there was a significant increase in SOD & catalase (p < 0.05) & a significant decrease in serum urea, creatinine & Na and MDA (p < 0.05) in Group III & Group IV is compared with Group II & significant changes were observed in high ALA dose group. In conclusion it was observed that the ALA has nephroprotective activities by biochemical observations against acetaminophen induced uremic rats. PMID:23960834

  5. Importance of fluence rate in photodynamic therapy with ALA-induced PpIX and BPD-MA in a rat bladder tumor model

    NASA Astrophysics Data System (ADS)

    Iinuma, Seiichi; Wagnieres, Georges A.; Schomacker, Kevin T.; Bamberg, Mike; Hasan, Tayyaba

    1995-05-01

    Oxygen dependent phototoxicity was investigated in vivo in an orthotopic rat bladder tumor model. Two photosensitizers, benzoporphyrin derivative monoacid ring A and 5-aminolevulinic acid-induced protoporphyrin IX were studied. For a given cumulative light dose of 30 J/cm2, enhanced tumor destruction was obtained for both photosensitizers by either using a low fluence rate or fractionated light delivery mode. These observations may be attributed to rapid local oxygen consumption during photochemical reactions.

  6. [Accumulation of porphyrins in cells of system of blood induced by 5-aminolaevulinic acid].

    PubMed

    Lobanok, E S; Vasilevich, I B; Vorobeĭ, A V

    2011-01-01

    The levels and rates of accumulation of porphyrins in lymphoid cells and bone marrow cells treated with exogenous 5-aminolaevulinic acid (ALA) were studied. The dependence of the quantity of porphyrins accumulated in cell on ALA concentrations in the medium had maximum at 0.7-1.0 mM ALA for all the cell types studied (splenocytes, thymocytes, peripheral blood lymphocytes and bone marrow cells). The rate of accumulation of uro-, copro- and protoporphyrins depended on cell types. The lowest and the highest levels were found in splenocytes and highest in bone marrow cells respectively. It is suggested that photodynamic therapy employing ALA is potentially dangerous for blood cells. PMID:21870605

  7. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    SciTech Connect

    Fujiwara, Tohru; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  8. Aminolevulinic acid dendrimers in photodynamic treatment of cancer and atheromatous disease.

    PubMed

    Rodriguez, L; Vallecorsa, P; Battah, S; Di Venosa, G; Calvo, G; Mamone, L; Sáenz, D; Gonzalez, M C; Batlle, A; MacRobert, A J; Casas, A

    2015-09-26

    The use of endogenous protoporphyrin IX after administration of 5-aminolaevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). We have previously reported that the conjugation of ALA dendrimers enhances porphyrin synthesis. The first aim of this work was to evaluate the ability of ALA dendrimers carrying 6 and 9 ALA residues (6m-ALA and 9m-ALA) to photosensitise cancer cells. For this aim, we employed LM3 mammary carcinoma cells. In these tumour cells, at low concentrations porphyrin synthesis from dendrimers was higher compared to ALA, whereas at high concentrations, porphyrin synthesis was similar from both compounds. Topical application of ALA dendrimers on the skin overlying a subcutaneous LM3 implanted tumour showed no diffusion of the molecules either to distant skin sites or to the adjacent tumour, suggesting a promising use of the ALA macromolecules in superficial cancer models. As a second objective, we proposed the use of ALA-dendrimers in vascular PDT for the treatment of atherosclerosis. Thus, we focused our studies on ALA-dendrimer's selectivity towards macrophages in comparison with endothelial cells. For this aim we employed Raw 264.7 macrophages and HMEC-1 microvasculature cells. Porphyrin synthesis induced in macrophages by 6m-ALA and 9m-ALA (3 h, 0.025 mM) was 6 and 4.6 times higher respectively compared to the endothelial cell line, demonstrating the high affinity of ALA dendrimers for macrophages. On the other hand, ALA employed at low concentrations was slightly selective (1.7-fold) for macrophages. Inhibition studies suggested that ALA dendrimer uptake in macrophages is mainly mediated by caveloae-mediated endocytosis. Our main conclusion is that in addition to being promising molecules in PDT of superficial cancer, ALA dendrimers may also find applications in vascular PDT, since in vitro they showed selectivity to the macrophage component of the atheromatous plaque, as compared to the vascular endothelium. PMID

  9. Alpha lipoic acid possess dual antioxidant and lipid lowering properties in atherosclerotic-induced New Zealand White rabbit.

    PubMed

    Zulkhairi, A; Zaiton, Z; Jamaluddin, M; Sharida, F; Mohd, T H B; Hasnah, B; Nazmi, H M; Khairul, O; Zanariyah, A

    2008-12-01

    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet. PMID:18538528

  10. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats.

    PubMed

    Hara, Takeshi; Koda, Aya; Nozawa, Naoko; Ota, Urara; Kondo, Hikaru; Nakagawa, Hitoshi; Kamiya, Atsuko; Miyashita, Kazutoshi; Itoh, Hiroshi; Nakajima, Motowo; Tanaka, Tohru

    2016-06-01

    Mitochondrial dysfunction is associated with type 2 diabetes mellitus (T2DM). 5-Aminolevulinic acid (ALA), a natural amino acid produced only in the mitochondria, is a precursor of heme. Cytochromes that contain heme play an important role in aerobic energy metabolism. Thus, ALA may help reduce T2DM-associated hyperglycemia. In this study, we investigated the effect of ALA combined with sodium ferrous citrate (SFC) on hyperglycemia in Zucker diabetic fatty (ZDF) rats. We found that the gavage administration of ALA combined with SFC (ALA/SFC) for 6 weeks reduced plasma glucose and hemoglobin A1c (HbA1c) levels in rats without affecting plasma insulin levels. The glucose-lowering effect depended on the amount of ALA/SFC administered per day. Furthermore, the glucose tolerance was also significantly improved by ALA/SFC administration. Although food intake was slightly reduced in the rats administered ALA/SFC, there was no effect on their body weight. Importantly, ALA/SFC administration induced heme oxygenase-1 (HO-1) expression in white adipose tissue and liver, and the induced expression levels of HO-1 correlated with the glucose-lowering effects of ALA/SFC. Taken together, these results suggest that ALA combined with ferrous ion is effective in reducing hyperglycemia of T2DM without affecting plasma insulin levels. HO-1 induction may be involved in the mechanisms underlying the glucose-lowering effect of ALA/SFC. PMID:27239432

  11. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice.

    PubMed

    Silva, Márcia Calheiros Chaves; de Sousa, Caren Nádia Soares; Gomes, Patrícia Xavier Lima; de Oliveira, Gersilene Valente; Araújo, Fernanda Yvelize Ramos; Ximenes, Naiara Coelho; da Silva, Jéssica Calheiros; Vasconcelos, Germana Silva; Leal, Luzia Kalyne Almeida Moreira; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2016-01-01

    Oxidative stress is implicated in the neurobiology of depression. Here we investigated oxidative alterations in brain areas of animals submitted to the model of depression induced by corticosterone (CORT) and the effects of the antioxidant compound alpha-lipoic acid (ALA) alone or associated with the antidepressant desvenlafaxine (DVS) in these alterations. Female mice received vehicle or CORT (20 mg/kg) during 14 days. From the 15th to 21st days different animals received further administrations of: vehicle, DVS (10 or 20 mg/kg), ALA (100 or 200 mg/kg), or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Twenty-four hours after the last drug administration prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were dissected for the determination of the activity of superoxide dismutase (SOD), reduced glutathione (GSH) and lipid peroxidation (LP) levels. CORT significantly increased SOD activity in the PFC and HC, decreased GSH levels in the HC and increased LP in all brain areas studied when compared to saline-treated animals. Decrements of SOD activity were observed in all groups and brain areas studied when compared to controls and CORT. The hippocampal decrease in GSH was reversed by ALA100, DVS10+ALA100, DVS20+ALA100 and DVS20+ALA200. The same DVS+ALA combination groups presented increased levels of GSH in the PFC and ST. The greater GSH levels were observed in the PFC, HC and ST of DVS20+ALA200 mice. LP was reversed in the groups ALA200 (PFC), DVS10+ALA100, DVS20+ALA100 (PFC, HC and ST), and DVS20+ALA200 (PFC, HC). Our findings contribute to the previous preclinical evidences implicating ALA as a promising agent for augmentation therapy in depression. PMID:26265141

  12. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  13. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  14. Efficacy of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and diphenyl diselenide on cadmium induced testicular damage in mice.

    PubMed

    Santos, Francielli W; Zeni, Gilson; Rocha, Joao B T; do Nascimento, Paulo C; Marques, Marieli S; Nogueira, Cristina W

    2005-12-01

    The deleterious effect of acute cadmium-intoxication in mice testes was evaluated. Animals received a single dose of CdCl2 (2.5 or 5 mg/kg, intraperitoneally) and a number of toxicological parameters in mice testes were examined, such as delta-aminolevulinic acid dehydratase (delta-ALA-D) activity, lipid peroxidation, hemoglobin and ascorbic acid contents. Furthermore, the parameters that indicate tissue damage such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were also determined. Thus, a possible protective effect of 2,3-dimercapto-1-propane-sulfonic acid (DMPS) and diphenyl diselenide (PhSe)2 were studied. The results demonstrated an inhibition of delta-ALA-D activity, a reduction of ascorbic acid and an increase of lipid peroxidation induced by cadmium, indicating testes damage. Furthermore, we observed an increase of plasma LDH, AST and ALT activities. DMPS (400 mol/kg) and (PhSe)2 (100 micromol/kg) partially protected from the inhibitory effect of 2.5 mg/kg CdCl2 on delta-ALA-D and from the increase of TBARS (thiobarbituric acid reactive species) levels. (PhSe)2 therapy was effective in ameliorate ascorbic acid content when the cadmium dose was 2.5 mg/kg. Treatment with DMPS and (PhSe)2, individually or combined, was inefficient in reducing cadmium-induced plasma LDH and ALT activity increase. The use of combined therapy (DMPS plus (PhSe)2) proved to be efficient in decreasing cadmium levels in testes and in ameliorating plasma AST activity from animals that received the highest dose of cadmium. PMID:16000234

  15. The effects of visual fluorescence marking induced by 5-aminolevulinic acid for endoscopic diagnosis of urinary bladder cancer

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Koenig, Frank; Schnorr, Dietmar; Valdman, Alexander; Al-Shukri, Salman; Loening, Stefan A.

    2003-10-01

    During cystoscopy procedure, fluorescence diagnostics induced by 5-ALA improves visual detection of the bladder cancer. Macroscopic ALA-fluorescence allows visualizing of small flat tumors, carcinoma in situ, true neoplasm margins and dysplasias of the bladder. Following ALA instillation, cystoscopy has been performed under both standard and blue light illumination. Totally, 153 biopsies have been carried out at 53 patients with suspicion of bladder cancer. The results were compared to ALA-fluorescence data. In 13% of the patients, bladder cancer and dysplasia were found out in addition, due to red fluorescence. The sensitivity and specificity of ALA-fluorescence technique aggregated 96% and 52% respectively. The sensitivity and specificity of 5-ALA-fluorescent detection exceeded standard endoscopy under white light on 20%. The new method does not exclude a false positive and a false negative fluorescent luminescence. The ALA-based fluorescence detection system enhances the diagnosis of malignant/dysplastic bladder lesions significantly.

  16. Delta-ALA urine test

    MedlinePlus

    ... increased level of urinary delta-ALA may indicate: Lead poisoning Porphyria (several types) A decreased level may occur ... A.M. Editorial team. Related MedlinePlus Health Topics Lead Poisoning Porphyria Browse the Encyclopedia A.D.A.M., ...

  17. ALA 2010: The Costly Cornucopia

    ERIC Educational Resources Information Center

    Berry, John N., III

    2010-01-01

    Every librarian wants to go to the American Library Association (ALA) annual conference in Washington, DC, June 24-29. Despite that, more than half of those asked informally said they can't afford it. The good news is a cornucopia of programs aimed at nearly every need of librarians of all types and including every best practice in libraries. Many…

  18. Stick to the ALA Plan

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    One candidate for president-elect of the American Library Association (ALA) is a woman, the other is a man. One can tell them apart by looking at them. But Nancy Davenport and James Rettig are not that far apart on the issues that confront the old association and the profession it serves. They have selected slightly different emphases for their…

  19. ALA Conference 2009: Chicago Hope

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    There is joy among those who have the funds to go to Chicago for the American Library Association (ALA) annual conference, July 9-15. Every librarian knows there is nothing better than a Chicago gathering, with the city's wonderful haunts, museums, restaurants, and fine memories of past conferences. The conference program covers nearly every…

  20. ALA-PpIX variability quantitatively imaged in A431 epidermoid tumors using in vivo ultrasound fluorescence tomography and ex vivo assay

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Flynn, Brendan P.; Gunn, Jason R.; Samkoe, Kimberley S.; Anand, Sanjay; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Treatment monitoring of Aminolevunilic-acid (ALA) - Photodynamic Therapy (PDT) of basal-cell carcinoma (BCC) calls for superficial and subsurface imaging techniques. While superficial imagers exist for this purpose, their ability to assess PpIX levels in thick lesions is poor; additionally few treatment centers have the capability to measure ALA-induced PpIX production. An area of active research is to improve treatments to deeper and nodular BCCs, because treatment is least effective in these. The goal of this work was to understand the logistics and technical capabilities to quantify PpIX at depths over 1mm, using a novel hybrid ultrasound-guided, fiber-based fluorescence molecular spectroscopictomography system. This system utilizes a 633nm excitation laser and detection using filtered spectrometers. Source and detection fibers are collinear so that their imaging plane matches that of ultrasound transducer. Validation with phantoms and tumor-simulating fluorescent inclusions in mice showed sensitivity to fluorophore concentrations as low as 0.025μg/ml at 4mm depth from surface, as presented in previous years. Image-guided quantification of ALA-induced PpIX production was completed in subcutaneous xenograft epidermoid cancer tumor model A431 in nude mice. A total of 32 animals were imaged in-vivo, using several time points, including pre-ALA, 4-hours post-ALA, and 24-hours post-ALA administration. On average, PpIX production in tumors increased by over 10-fold, 4-hours post-ALA. Statistical analysis of PpIX fluorescence showed significant difference among all groups; p<0.05. Results were validated by exvivo imaging of resected tumors. Details of imaging, analysis and results will be presented to illustrate variability and the potential for imaging these values at depth.

  1. The Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Modifies the Association of Physical Activity and Body Mass Changes in Polish Women

    PubMed Central

    Zarebska, Aleksandra; Jastrzebski, Zbigniew; Cieszczyk, Pawel; Leonska-Duniec, Agata; Kotarska, Katarzyna; Kaczmarczyk, Mariusz; Sawczuk, Marek; Maciejewska-Karlowska, Agnieszka

    2014-01-01

    Peroxisome proliferator-activated receptor γ is a key regulator of adipogenesis, responsible for fatty acid storage and maintaining energy balance in the human body. Studies on the functional importance of the PPARG Pro12Ala polymorphic variants indicated that the observed alleles may influence body mass measurements; however, obtained results were inconsistent. We have decided to check if body mass changes observed in physically active participants will be modulated by the PPARG Pro12Ala genotype. The genotype distribution of the PPARG Pro12Ala allele was examined in a group of 201 Polish women measured for selected body mass variables before and after the completion of a 12-week training program. The results of our experiment suggest that PPARG genotype can modulate training-induced body mass measurements changes: after completion of the training program, Pro12/Pro12 homozygotes were characterised by a greater decrease of body fat mass measurements in comparison with 12Ala allele carriers. These results indicate that the PPARG 12Ala variant may impair the training-induced positive effects on body mass measurements; however, the detailed mechanism of such interaction remained unclear and observed correlation between PPARG genotype and body mass differential effects should be interpreted with caution. PMID:25371663

  2. Sunset at the ALaMO

    NASA Video Gallery

    A new color all-sky camera has opened its eyes at the ALaMO, or Automated Lunar and Meteor Observatory, at NASA's Marshall Space Flight Center in Huntsville, Ala. Watch its inaugural video below, s...

  3. Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling

    SciTech Connect

    Czarnecki, Olaf; Gläßer, Christine; Chen, Jin-Gui; Mayer, Klaus F. X.; Grimm, Bernhard

    2012-01-01

    The formation of 5-aminolevulinic acid (ALA) in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesized a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signaling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE) by using two different approaches. Firstly, the Arabidopsis gun1, hy1 (gun2), hy2 (gun3), gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesizing capacity is common to analyzed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB) that inactivates glutamate-1-semialdehyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF)-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The over-represented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localized ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signaling-mediated control of NGE.

  4. Amoxicillin/Clavulanic Acid-Induced Thrombocytopenia

    PubMed Central

    Saad, Aline; Azar, Marina; Khoueiry, Paul

    2014-01-01

    Introduction and Objective: Drug-induced thrombocytopenia is a common adverse effect reported in the literature. Typically patients present with a low platelet count with signs and symptoms ranging from bruising to bleeding, and major organ damage. Penicillin-induced thrombocytopenia previously reported in the literature is explained primarily through the hapten-dependent antibody process. The goal of this report is to present a case of an amoxicillin/clavulanic acid-induced thrombocytopenia. Case Presentation: A 23-year-old male presented to the emergency department with bruises on his arms and legs after completing a full course of amoxicillin/clavulanic acid of 625 mg twice a day for 5 days for tonsillitis. After several tests, the patient was diagnosed with thrombocytopenia induced by amoxicillin/clavulanic acid. The patient was treated with a corticosteroids taper regimen for 3 weeks. He was discharged after 3 days of inpatient treatment with instructions to avoid physical activity for 2 weeks. Two weeks post discharge, the follow-up showed that the platelet count had increased. Discussion: Penicillin-induced thrombocytopenia has been previously reported in the inpatient setting where bleeding was observed. However, the patient in this case report presented with bruises on his arms and legs. The diagnosis was made by the process of elimination; not all possible tests were conducted. The patient was prescribed corticosteroids that are not indicated for drug-induced thrombocytopenia. The Naranjo scale showed that this is a probable adverse event of amoxicillin/clavulanic acid. Conclusion: This is a unique case where amoxicillin/clavulanic acid was reported to be a probable cause of thrombocytopenia in an outpatient setting without signs of bleeding and without concomitant medications. PMID:25477568

  5. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA

    PubMed Central

    Kaneko, Sadahiro

    2016-01-01

    Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD). Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX) accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD. PMID:27429612

  6. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA.

    PubMed

    Kaneko, Sadahiro; Kaneko, Sadao

    2016-01-01

    Malignant gliomas are extremely difficult to treat with no specific curative treatment. On the other hand, photodynamic medicine represents a promising technique for neurosurgeons in the treatment of malignant glioma. The resection rate of malignant glioma has increased from 40% to 80% owing to 5-aminolevulinic acid-photodynamic diagnosis (ALA-PDD). Furthermore, ALA is very useful because it has no serious complications. Based on previous research, it is apparent that protoporphyrin IX (PpIX) accumulates abundantly in malignant glioma tissues after ALA administration. Moreover, it is evident that the mechanism underlying PpIX accumulation in malignant glioma tissues involves an abnormality in porphyrin-heme metabolism, specifically decreased ferrochelatase enzyme activity. During resection surgery, the macroscopic fluorescence of PpIX to the naked eye is more sensitive than magnetic resonance imaging, and the alert real time spectrum of PpIX is the most sensitive method. In the future, chemotherapy with new anticancer agents, immunotherapy, and new methods of radiotherapy and gene therapy will be developed; however, ALA will play a key role in malignant glioma treatment before the development of these new treatments. In this paper, we provide an overview and present the results of our clinical research on ALA-PDD. PMID:27429612

  7. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  8. Non-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch

    PubMed Central

    Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination. PMID:26426057

  9. Application of 5-ALA for differential diagnostics of stomach diseases

    NASA Astrophysics Data System (ADS)

    Okhotnikova, Natalja L.; Dadvany, Sergey A.; Kuszin, Michail I.; Kharnas, Sergey S.; Zavodnov, Victor Y.; Sklyanskaya, Olga A.; Loschenov, Victor B.; Volkova, Anna I.; Agafonov, Valery V.

    2001-01-01

    59 patients with stomach diseases including gastric cancer or polyp, gastritis, esofagus disease were investigated. Before gastroscopy all patients were given 5-ALA in doses 5mg, 10mg and 20mg per 1kg of body weight orally. Fluorescence diagnostics which estimates concentration of ALA-induced PPIX in regular and alternated tissues of gastric mucosa were carried out in 2-4 hours. Using of 5-ALA has shown high diagnostic effectiveness for differential diagnostics of stomach diseases. This technique has proved 10 diagnosis of cancer and revealed 15 malignant stomach diseases including 4 cancer in situ for patients with preliminary diagnosis of gastric ulcer. It also revealed 5 patients with enhanced fluorescence for which aimed biopsy has shown high degree of inflammation process. The latter were assigned as a risk group.

  10. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity dependent on photoactivation

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2009-06-01

    New approaches to PDT using multifunctional 5-aminolevulinic acid (ALA) based prodrugs activating mutual routes of toxicity are described. We investigated the mutual anti-cancer activity of ALA prodrugs which upon metabolic hydrolysis by unspecific esterases release ALA, formaldehyde or acetaldehye and the histone deacetylase inhibitor (HDACI) butyric acid. The most potent prodrug in this study was butyryloxyethyl 5-amino-4-oxopentanoate (AN-233) that stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells and generated an efficient photodynamic destruction. AN-233 induced a considerable high level of intracellular ROS in the cells following light irradiation, reduction of mitochondrial activity, dissipation of the mitochondrial membrane potential resulting in necrotic and apoptotic cell death. The main advantage of AN-233 over ALA stems from its ability to induce photodamage at a significantly lower dose than ALA.

  11. Enhancement of photodynamic therapy with 5-aminolaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies.

    PubMed Central

    Messmann, H.; Mlkvy, P.; Buonaccorsi, G.; Davies, C. L.; MacRobert, A. J.; Bown, S. G.

    1995-01-01

    5-Aminolaevulinic acid (ALA)-induced prophyrin photosensitisation is an attractive option for photodynamic therapy (PDT) since skin photosensitivity is limited to 1-2 days. However, early clinical results on colon tumours using the maximum tolerated oral dose of 60 mg kg-1 showed only superficial necrosis, presumably owing to insufficient intratumoral porphyrin levels, although inadequate light dosimetry may also be a factor. We undertook experiments using ALA, 25-400 mg kg-1 intravenously, to establish the threshold doses required for a PDT effect. Laser light at 630 nm (100 mW, 10-200 J) was delivered to a single site in the colon of photosensitised normal Wistar rats at laparotomy. The animals were killed 3 days later and the area of PDT-induced necrosis measured. No lesion was seen with 25 mg kg-1. The lesion size increased with larger ALA doses and with the light dose but little benefit was seen from increasing the ALA dose above 200 mg kg-1 or the light dose above 100 J. Thus there is a fairly narrow window for optimum doses of drug and light. Further experiments showed that the PDT effect can be markedly enhanced by fractionating the light dose. A series of animals was sensitized with 200 mg kg-1 ALA and then treated with 25 J. With continuous irradiation, the lesion area was 13 mm2, but with a single interruption of 150 s the area rose to 94 mm2 with the same total energy. Results were basically similar for different intervals between fractions (10-900 s) and different numbers of fractions (2-25). This suggests that a single short interruption in the light irradiation may dramatically reduce the net light dose required to achieve extensive necrosis. Images Figure 3 PMID:7669566

  12. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma

    NASA Astrophysics Data System (ADS)

    Shaker, Maryam N.; Ramadan, Heba S.; Mohamed, Moustafa M.; El khatib, Ahmed M.; Roston, Gamal D.

    2014-10-01

    Nanoparticles (NPs) fabricated from the biodegradable copolymer poly(lactic- co-glycolic acid) (PLGA) were investigated as a drug delivery system to enhance the photodynamic efficacy of 5-aminolevulinic acid (5-ALA) in mice bearing Ehrlich ascites carcinoma. The PLGA-encapsulated 5-ALA NPs were prepared using binary organic solvent diffusion method and characterized in terms of shape and particle size. The in vivo photodynamic efficiency in Ehrlich ascites-bearing mice was studied. The obtained particles were uniform in size with spherical shape of mean size of 249.5 nm as obtained by particle size analyzer and the in vitro release studies demonstrated a controlled release profile of 5-ALA. Tumor-bearing mice injected with PLGA-encapsulated 5-ALA NPs exhibited significantly smaller mean tumor volume, increased tumor growth delay compared with the control group and the group injected with free 5-ALA during the time course of the experiment. Histopathological examination of tumor from mice treated with PLGA-encapsulated 5-ALA NPs showed regression of tumor cells, in contrast to those obtained from mice treated with free 5-ALA. The results indicate that PLGA-encapsulated 5-ALA NPs are a successful delivery system for improving photodynamic activity in the target tissue.

  13. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    PubMed Central

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cells) and human melanocytes. Methods Melan-a cells and human melanocytes were cultured with fractional CO2 laser-treated keratinocyte-conditioned media. Melanin content and tyrosinase activity were evaluated in cells treated with or without tranexamic acid. Protein levels of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 were evaluated in melan-a cells. Signaling pathway molecules involved in melanogenesis in melanoma cells were also investigated. Results Tranexamic acid-treated melanocytes exhibited reduced melanin content and tyrosinase activity. Tranexamic acid also decreased tyrosinase, TRP-1, and TRP-2 protein levels. This inhibitory effect on melanogenesis was considered to be involved in extracellular signal-regulated kinase signaling pathways and subsequently microphthalmia-associated transcription factor degradation. Conclusion Tranexamic acid may be an attractive candidate for the treatment of PIH. PMID:26082580

  14. Enhancement of tumor responsiveness to aminolevulinate-photodynamic therapy (ALA-PDT) using differentiation-promoting agents in mouse models of skin carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Honari, Golara; Paliwal, Akshat; Hasan, Tayyaba; Maytin, Edward V.

    2009-06-01

    Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an emerging treatment for cancers. ALA, given as a prodrug, selectively accumulates and is metabolized in cancer cells to form protoporphyrin IX (PpIX). Targeted local irradiation with light induces cell death. Since the efficacy of ALA-PDT for large or deep tumors is currently limited, we are developing a new approach that combines differentiation-inducing agents with ALA-PDT to improve the clinical response. Here, we tested this new combination paradigm in the following two models of skin carcinoma in mice: 1) tumors generated by topical application of chemical carcinogens (DMBA-TPA); 2) human SCC cells (A431) implanted subcutaneously. To achieve a differentiated state of the tumors, pretreatment with a low concentration of methotrexate (MTX) or Vitamin D (Vit D) was administered for 72 h prior to exposure to ALA. Confocal images of histological sections were captured and digitally analyzed to determine relative PpIX levels. PpIX in the tumors was also monitored by real-time in vivo fluorescence dosimetry. In both models, a significant increase in levels of PpIX was observed following pretreatment with MTX or Vit D, as compared to no-pretreatment controls. This enhancing effect was observed at very low, non-cytotoxic concentrations, and was highly specific to cancer cells as compared to normal cells. These results suggest that use of differentiating agents such as MTX or Vit D, as a short-term combination therapy given prior to ALA-PDT, can increase the production of PpIX photosensitizer and enhance the therapeutic response of skin cancers.

  15. Photodynamic therapy using intravenous delta-aminolaevulinic acid-induced protoporphyrin IX sensitisation in experimental hepatic tumours in rats.

    PubMed Central

    Svanberg, K.; Liu, D. L.; Wang, I.; Andersson-Engels, S.; Stenram, U.; Svanberg, S.

    1996-01-01

    The efficacy of photodynamic therapy (PDT) using delta-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) sensitisation and laser light at 635 nm was investigated in the treatment of experimental hepatic tumours. The model of liver tumours was induced either by local inoculation or by administration of tumour cells through the portal vein in rats. ALA at a dose of 60 mg kg(-1) b.w. was intravenously administered 60 min before PDT. PpIX accumulation in tumour, normal liver and abdominal wall muscle was detected by means of laser-induced fluorescence (LIF). Laser Doppler imaging (LDI) was used to determine changes in the superficial blood flow in connection with PDT. Histopathological examinations were performed to evaluate the PDT effects on the tumour and the surrounding liver tissue, including pathological features in the microvascular system. The accumulation of PpIX, as monitored by LIF, showed high fluorescence intensities at about 635 nm in both the hepatic tumour tissue and normal liver and low values in the abdominal wall. LDI demonstrated that the blood flow in the treated tumour and its surrounding normal liver tissue decreased immediately after the PDT, indicating an effect on the vascular system. A large number of thrombi in the irradiated tumour were found microscopically 3 h after the PDT. The tumour growth rate showed a marked decrease when evaluated 3 and 6 days after the treatment. These results show that the ALA-PDT is effective in the inhibition of growth of experimental hepatic tumours. Images Figure 4 Figure 5 Figure 7 Figure 9 PMID:8932330

  16. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    PubMed

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage. PMID:27472495

  17. Temperature-induced intersite charge transfer involving Cr ions in A-site-ordered perovskites ACu(3)Cr(4)O(12) (A=La and Y).

    PubMed

    Zhang, Shoubao; Saito, Takashi; Mizumaki, Masaichiro; Shimakawa, Yuichi

    2014-07-28

    Changes in the valence state of transition-metal ions in oxides drastically modify the chemical and physical properties of the compounds. Intersite charge transfer (ISCT), which involves simultaneous changes in the valence states of two valence-variable transition-metal cations at different crystallographic sites, further expands opportunities to show multifunctional properties. To explore new ISCT materials, we focus on A-site-ordered perovskite-structure oxides with the chemical formula AA'3 B4 O12 , which contain different transition-metal cations at the square-planar A' and octahedral B sites. We have obtained new A-site-ordered perovskites LaCu3 Cr4 O12 and YCu3 Cr4 O12 by synthesis under high-pressure and high-temperature conditions and found that they showed temperature-induced ISCT between A'-site Cu and B-site Cr ions. The compounds are the first examples of those, in which Cr ions are involved in temperature-induced ISCT. In contrast to the previously reported ISCT compounds, LaCu3 Cr4 O12 and YCu3 Cr4 O12 showed positive-thermal-expansion-like volume changes at the ISCT transition. PMID:24975031

  18. Determination of free amino acids in African gourd seed milks by capillary electrophoresis with light-emitting diode induced fluorescence and laser-induced fluorescence detection.

    PubMed

    Enzonga, Josiane; Ong-Meang, Varravaddheay; Couderc, François; Boutonnet, Audrey; Poinsot, Véréna; Tsieri, Michel Mvoula; Silou, Thomas; Bouajila, Jalloul

    2013-09-01

    A CE technique coupled to LIF detection (488 nm) or LED-induced fluorescence detection (470 nm) has been evaluated to acquire a cheap way to analyze amino acids (AAs) whilst maintaining the best sensitivity. To quantitate AAs in milk of Cucurbitaceae of Sub-Saharan Africa, they were labeled with FITC. We used an optimized separation buffer composed of 30 mM boric acid buffer adjusted to pH 9.3 with NaOH (1 M) containing 12 mM SDS and 5% ethylene glycol v/v; prior to the injections, the derivatized samples are diluted 100 times. The LOQs in the sample are Arg: 1.1 μM, Ala: 3.5 μM, and Glu 8.9 μM. Cucumeropsis mannii (CM) Naudin and Citrullus lanatus (CL) are vegetable sources rich in proteins and AAs of high quality. Our analyses have led to the identification of 11 AAs in CL and CM milks. Phe, Trp, and Ala are predominant in the two types of lyophilized milks, while Asp and Val demonstrate very low contents. Six essential AAs (Phe, Thr, Val, Trp, Ile, and Leu) are present in both types of extracts, but lysine was not detected, indicating that this AA is missing in gourd milk. These results should be useful in efforts to complement or replace very expensive cow milk or the less-appreciated soya milk with milk from available local agroressources. PMID:23857426

  19. ALA Midwinter 2011 Preview: A Better Place

    ERIC Educational Resources Information Center

    Berry, John N., III

    2010-01-01

    There has been an effort to make the American Library Association (ALA) Midwinter Meeting "member-friendly," so that more ALA members will attend. Held January 7-11 in beautiful San Diego, the conference program is loaded with interesting events that look suspiciously like entertainment, plus learning opportunities, and the usual parties and…

  20. ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway.

    PubMed

    Qiao, Li; Mei, Zhusong; Yang, Zhiyong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    Previous studies suggest that apoptosis of carcinoma cells led by photodynamics is mainly intrinsic apoptosis, but whether the extrinsic pathway is involved in the treatment of carcinoma by photodynamic therapy is not confirmed. This research investigated the effect of ALA-PDT on the proliferation and apoptosis of SCC cell A431 and COLO-16, and discussed the role played by JAK/STAT3 signal pathway in this process. Our data showed that the expression levels STAT3 and p-STAT3 protein in the cancer tissue are higher than the corresponding adjacent tissue to carcinoma. The expression level of p-STAT3 in cancerous tissue has a correlation with the tumor size and tissue histopathological differentiation. ALA-PDT could inhibit proliferation of A431 and COLO-16 cells, STAT3 knock down could enhance ALA-PDT's inhibition of cell proliferation, and promote apoptosis induced by ALA-PDT. On the other hand, overexpression of STAT3 has the opposite effect. In addition, ALA-PDT can weaken the protein expression of STAT3 and its target gene Bcl-2 mRNA, and ALA-PDT can strengthen the protein expression of STAT3's target gene Bax mRNA. Overexpression of STAT3 can offset the effect on Bcl-2 and Bax by ALA-PDT; on the other hand, STAT3 knocking down can strengthen ALA-PDT's effect on Bcl-2 and Bax. PMID:26805005

  1. Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis

    PubMed Central

    Natarajan, Sathish Kumar; Ingham, Sally A.; Mohr, Ashley M.; Wehrkamp, Cody J.; Ray, Anuttoma; Roy, Sohini; Cazanave, Sophie C.; Phillippi, Mary Anne; Mott, Justin L.

    2015-01-01

    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. Conclusion Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients. PMID:24753158

  2. Intensified oxidative and nitrosative stress following combined ALA-based photodynamic therapy and local hyperthermia in rat tumors.

    PubMed

    Frank, Juergen; Lambert, Christine; Biesalski, Hans Konrad; Thews, Oliver; Vaupel, Peter; Kelleher, Debra K

    2003-12-20

    Oxidative stress-related changes in tumors upon localized hyperthermia (HT), 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) and their combination (ALA+HT) were examined after the observation that the antitumor effects of ALA-PDT could be significantly enhanced upon simultaneous application of HT. Rats bearing s.c. DS-sarcomas (0.6-1.0 ml) on the hind foot dorsum were anesthetized and underwent one of the following treatments: (i) ALA-PDT (375 mg/kg 5-ALA i.v.); (ii) localized HT, 43 degrees C for 60 min; (iii) combined ALA-PDT and HT [=ALA+HT]. Appropriate control experiments were also performed. After treatment, tumors were excised and rapidly frozen for later analysis of nitrosative stress (protein nitration), apoptotic events (TUNEL, caspase activation, DNA and RNA fragmentation), expression of heat shock proteins (hsp70 and HO-1), glutathione (GSH) levels and glutathione peroxidase (GPx) activity. Protein nitration was found to increase upon treatment, being especially pronounced in the ALA+HT group, and could partially be related to areas surrounding microvessels. The extent of nitrosative stress also correlated well with the appearance of the markers of apoptosis and the inhibition of in vivo tumor growth as seen in a previous study. GSH levels decreased upon treatment, the reduction being most prominent in the ALA-PDT and ALA+HT groups. GPx activity, however, showed a significant decrease only in the ALA-PDT group. Whereas hsp70 expression increased upon HT, ALA-PDT caused a decrease, and these opposing effects were nullified with ALA+HT. The results obtained point to a number of cellular mechanisms-including effects on cellular defense mechanisms and an abrogation of the heat shock defense mechanism-that may interact to achieve the potentiated tumor response rate seen in vivo upon combined treatment. PMID:14601053

  3. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway.

    PubMed

    Jing, Yuanyuan; Cai, Xingcai; Xu, Yaqiong; Zhu, Canjun; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-03-01

    Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2. PMID:26855124

  4. Novel long chain fatty acid derivatives of quercetin-3-O-glucoside reduce cytotoxicity induced by cigarette smoke toxicants in human fetal lung fibroblasts.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2016-06-15

    Smoking has become a global health concern due to its association with many disease conditions, such as chronic obstructive pulmonary disease (COPD), cardiovascular diseases (CVD) and cancer. Flavonoids are plant polyphenolic compounds, studied extensively for their antioxidant, anti-inflammatory, and anti-carcinogenic properties. Quercetin-3-O-glucoside (Q3G) is a flavonoid which is widely found in plants. Six novel long chain fatty acid [stearic acid, oleic acid, linoleic acid, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] derivatives of Q3G were evaluated for their potential in protecting human lung fibroblasts against cytotoxicity induced by selected cigarette smoke toxicants: 4-(methylnitrosoamino)-1-(3-pyridinyl)-1-butanone (NNK), benzo-α-pyrene (BaP), nicotine and chromium (Cr[VI]). Nicotine and Cr[VI] induced toxicity in fibroblasts and reduced the percentage of viable cells, while BaP and NNK did not affect cell viability. The fatty acid derivatives of Q3G provided protection against nicotine- and Cr[VI]-induced cell death and membrane lipid peroxidation. Based on the evaluation of inflammatory markers of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2), the fatty acid derivatives of Q3G were found to be effective in lowering the inflammatory response. Overall, these novel fatty acid esters of Q3G warrant further investigation as potential cytoprotective agents. PMID:27071958

  5. The novel dipeptide Tyr-Ala (TA) significantly enhances the lifespan and healthspan of Caenorhabditis elegans.

    PubMed

    Zhang, Z; Zhao, Y; Wang, X; Lin, R; Zhang, Y; Ma, H; Guo, Y; Xu, L; Zhao, B

    2016-04-20

    Food-derived bioactive peptides may have various physiological modulatory and regulatory functions and are now being studied extensively. Recently, the novel dipeptide Tyr-Ala was isolated from hydrolyzed maize protein. Tyr-Ala significantly prolonged the lifespan of wild-type Caenorhabditis elegans and extended the nematode healthspan and lifespan during heat/oxidative stress. Compared with its constituent amino acids, Tyr-Ala was more efficient in enhancing stress resistance. Further studies demonstrated that the significant longevity-extending effects of Tyr-Ala on Caenorhabditis elegans were attributed to its in vitro and in vivo free radical-scavenging effects, in addition to its ability to up-regulate stress resistance-related proteins, such as SOD (Superoxide Dismutase)-3 and HSP (Heat Shock Protein)-16.2. Real-time PCR results showed that the up-regulation of aging-associated genes, such as daf-16, sod-3, hsp-16.2 and skn-1, also contributed to the stress-resistance effect of Tyr-Ala. These results indicate that the novel dipeptide Tyr-Ala can protect against external stress and thus extend the lifespan and healthspan of Caenorhabditis elegans. Thereby, Tyr-Ala could be used as a potential medicine in anti-aging research. PMID:26987062

  6. Phonological activation in anaphoric lexical access (ALA).

    PubMed

    Simner, J; Smyth, R

    Simner and Smyth (1998) propose that anaphoric lexical access (ALA) occurs at an anaphor and targets the lexical entry (specifically, the lemma) of the antecedent. Since the word frequency effect (e.g., Rubenstein et al., 1970) resides at the lexeme (Jescheniak & Levelt, 1994) Simner and Smyth predict, and subsequently illustrate, that ALA exhibits no frequency effect. A problem arises, however: if ALA does not access the lexeme, how do we account for phonological priming at anaphor sites (e.g., Tanenhaus et al., 1985)? We claim that this is the result of "incidental" lemma-to-lexeme activation. Furthermore, we argue that since lexeme activation is not crucial to anaphor comprehension, anaphor reading times indicate lemma search times only (therefore there is no frequency effect). An experiment is presented demonstrating that lemma-access during ALA can cause incidental lexeme activation without invoking a frequency effect. PMID:10433737

  7. Using a modified nasotracheal tube to prevent nasal ala pressure sore during prolonged nasotracheal intubation.

    PubMed

    Cherng, Chen-Hwan; Chen, Yuan-Wu

    2010-12-01

    Nasotracheal tube induced nasal ala pressure sores or necrosis during prolonged nasotracheal intubation have been reported, and it is a serious but preventable complication. Here we introduce a modified nasotracheal tube to prevent this complication. This modified nasotracheal tube is composed of two parts, an oral endotracheal tube and a proximal part of a preformed nasotracheal tube, which are linked by a connector. The use of this modified nasotracheal tube can prevent nasal ala pressure sores during prolonged nasotracheal intubation. PMID:20809246

  8. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.

    PubMed

    Abhinand, P A; Shaikh, Faraz; Bhakat, Soumendranath; Radadiya, Ashish; Bhaskar, L V K S; Shah, Anamik; Ragunath, P K

    2016-04-01

    Methylenetetrahydrofolate reductase (MTHFR) protein catalyzes the only biochemical reaction which produces methyltetrahydrofolate, the active form of folic acid essential for several molecular functions. The Ala222Val polymorphism of human MTHFR encodes a thermolabile protein associated with increased risk of neural tube defects and cardiovascular disease. Experimental studies have shown that the mutation does not affect the kinetic properties of MTHFR, but inactivates the protein by increasing flavin adenine dinucleotide (FAD) loss. The lack of completely solved crystal structure of MTHFR is an impediment in understanding the structural perturbations caused by the Ala222Val mutation; computational modeling provides a suitable alternative. The three-dimensional structure of human MTHFR protein was obtained through homology modeling, by taking the MTHFR structures from Escherichia coli and Thermus thermophilus as templates. Subsequently, the modeled structure was docked with FAD using Glide, which revealed a very good binding affinity, authenticated by a Glide XP score of -10.3983 (kcal mol(-1)). The MTHFR was mutated by changing Alanine 222 to Valine. The wild-type MTHFR-FAD complex and the Ala222Val mutant MTHFR-FAD complex were subjected to molecular dynamics simulation over 50 ns period. The average difference in backbone root mean square deviation (RMSD) between wild and mutant variant was found to be ~.11 Å. The greater degree of fluctuations in the mutant protein translates to increased conformational stability as a result of mutation. The FAD-binding ability of the mutant MTHFR was also found to be significantly lowered as a result of decreased protein grip caused by increased conformational flexibility. The study provides insights into the Ala222Val mutation of human MTHFR that induces major conformational changes in the tertiary structure, causing a significant reduction in the FAD-binding affinity. PMID:26273990

  9. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction.

    PubMed

    Fujino, Masayuki; Nishio, Yoshiaki; Ito, Hidenori; Tanaka, Tohru; Li, Xiao-Kang

    2016-08-01

    5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy. PMID:26643355

  10. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes

    NASA Astrophysics Data System (ADS)

    Millon, Stacy R.; Ostrander, Julie H.; Yazdanfar, Siavash; Brown, J. Quincy; Bender, Janelle E.; Rajeha, Anita; Ramanujam, Nirmala

    2010-01-01

    We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer cell lines of varying estrogen receptor expression were quantitatively imaged with confocal microscopy. Percentage change in fluorescence intensity integrated over 610-700 nm (attributed to PpIX) of posttreated compared to pretreated cells showed statistically significant differences between four breast cancer and two normal mammary epithelial cell lines. However, a direct comparison of post-treatment PpIX fluorescence intensities showed no differences between breast cancer and normal mammary epithelial cell lines due to confounding effects by endogenous fluorescence from flavin adenine dinucleotide (FAD). Clinically, it is impractical to obtain pre- and post-treatment images. Thus, spectral imaging was demonstrated as a means to remove the effects of endogenous FAD fluorescence allowing for discrimination between post-treatment PpIX fluorescence of four breast cancer and two normal mammary epithelial cell lines. Fluorescence spectral imaging of ALA-treated breast cancer cells showed preferential PpIX accumulation regardless of malignant phenotype and suggests a useful contrast mechanism for discrimination of residual cancer at the surface of breast tumor margins.

  11. Light Fractionation Significantly Increases the Efficacy of Photodynamic Therapy Using BF-200 ALA in Normal Mouse Skin

    PubMed Central

    de Bruijn, Henriëtte S.; Brooks, Sander; van der Ploeg-van den Heuvel, Angélique; ten Hagen, Timo L. M.; de Haas, Ellen R. M.; Robinson, Dominic J.

    2016-01-01

    Background Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. Results In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. Discussion The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy. PMID:26872051

  12. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca2+-ATPase-Mediated Ca2+ Efflux

    PubMed Central

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100–200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca2+ concentration ([Ca2+]cyt) but also “tip-focused” [Ca2+]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca2+-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca2+-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca2+ efflux by activating Ca2+-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  13. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.

    PubMed

    He, Weiqing; Li, Congran; Lu, Chung-Dar

    2011-05-01

    D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essential for D- and L-Ala catabolism, and its expression requires a transcriptional regulator, DadR. In this study, purified recombinant DadA alone was sufficient to demonstrate the proposed enzymatic activity with very broad substrate specificity; it utilizes all D-amino acids tested as substrates except D-Glu and D-Gln. DadA also showed comparable k(cat) and K(m) values on D-Ala and several D-amino acids. dadRAX knockout mutants were constructed and subjected to analysis of their growth phenotypes on amino acids. The results revealed that utilization of L-Ala, L-Trp, D-Ala, and a specific set of D-amino acids as sole nitrogen sources was abolished in the dadA mutant and/or severely hampered in the dadR mutant while growth yield on D-amino acids was surprisingly improved in the dadX mutant. The dadA promoter was induced by several L-amino acids, most strongly by Ala, and only by D-Ala among all tested D-amino acids. Enhanced growth of the dadX mutant on D-amino acids is consistent with the finding that the dadA promoter was constitutively induced in the dadX mutant, where exogenous D-Ala but not L-Ala reduced the expression. Binding of DadR to the dadA regulatory region was demonstrated by electromobility shift assays, and the presence of L-Ala but not D-Ala increased affinity by 3-fold. The presence of multiple DadR-DNA complexes in the dadA regulatory region was demonstrated in vitro, and the formation of these nucleoprotein complexes exerted a complicated impact on promoter activation in vivo. In summary, the results from this study clearly demonstrate DadA to be the enzyme solely responsible for the proposed D-amino acid dehydrogenase activity of broad substrate

  14. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  15. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats.

    PubMed

    Poudyal, Hemant; Panchal, Sunil K; Waanders, Jennifer; Ward, Leigh; Brown, Lindsay

    2012-02-01

    Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection. PMID:21429727

  16. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  17. Zoledronic Acid-Induced Interface Dermatitis.

    PubMed

    Succaria, Farah; Collier, Mary; Mahalingam, Meera

    2015-12-01

    Zoledronic acid (ZA) is a bisphosphonate given intravenously, most commonly for the treatment of postmenopausal osteoporosis. Increase in usage of ZA because it was FDA-approved has resulted in increasing reports of side effects. For the most part, these are systemic. Cutaneous side effects associated with ZA are infrequent and limited to 2 reports of dermatomyositis to date. In both, patients presented with clinical and laboratory stigmata of dermatomyositis soon after initiation of therapy. In this report, we describe a 62-year-old woman who presented with diffuse, erythematous scaly plaques over the right thigh after 12 hours of infusion of ZA. Histopathologic examination of a skin biopsy from the right thigh revealed patchy scale crust containing neutrophils and inspissated serum, interface change with scattered individually necrotic keratinocytes, and a mild, superficial perivascular lymphocytic infiltrate with scattered eosinophils and pigment incontinence-findings consistent with an interface dermatitis. Given that the patient had no other systemic manifestations or laboratory abnormalities, to the best of our knowledge, ours is the first report of interface dermatitis secondary to ZA with the caveat that longer follow-up is required to definitively exclude the development of drug-induced connective tissue disease. PMID:26588338

  18. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women.

    PubMed

    Jin, Fuxia; Nieman, David C; Sha, Wei; Xie, Guoxiang; Qiu, Yunping; Jia, Wei

    2012-06-01

    Ten postmenopausal women (age 55.6 ± 0.8 years, BMI 24.6 ± 1.1 kg/m²) ingested 25 g/day milled chia seed during a 7-week period, with six plasma samples collected for measurement of α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Subjects operated as their own controls with overnight fasted blood samples taken at baseline (average of two samples), and then after 1, 2, 3, 5, and 7 weeks supplementation. Plasma ALA increased significantly after one week supplementation and was 138 % above baseline levels by the end of the study (overall time effect, P < 0.001). EPA increased 30 % above baseline (overall time effect, P = 0.019) and was correlated across time with ALA (r = 0.84, P = 0.02). No significant change in plasma DPA levels was measured (overall time effect, P = 0.067). Plasma DHA decreased slightly by the end of the study (overall time effect, P = 0.030) and was not correlated with change in ALA. In conclusion, ingestion of 25 g/day milled chia seeds for seven weeks by postmenopausal women resulted in significant increases in plasma ALA and EPA but not DPA and DHA. PMID:22538527

  19. Microneedles rollers as a potential device to increase ALA diffusion and PpIX production: evaluations by wide-field fluorescence imaging and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gracielli Sousa, R. Phamilla; de Menezes, Priscila F. C.; Fujita, Alessandra K. L.; Requena, Michelle B.; Govone, Angelo Biassi; Escobar, André; de Nardi, Andrigo B.; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2014-03-01

    One of the limitations of topical photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) is the poor ability to penetrate biological barriers of skin and the recurrence rates in treatments. This study aimed to identify possible signs of increased diffusion of ALA-induced PpIX by fluorescence images and fluorescence spectroscopy. The research was done using in vivo porcine skin model. Before the cream application, microholes was performed with microneedles rollers in only one direction, afterward the ALA cream was applied at a 2.5cm2 area in triplicate and an occlusive dressing was placed. PpIX production was monitored using fluorescence spectroscopy collected at skin surface after 70, 100, 140, and 180 minutes of ALA incubation. About 100 fluorescence spectra of each treatment were collected, distributed by about five points for each site. Wide-field fluorescence imaging was made after 70, 90, and 170 minutes after treatment. The results obtained by imaging analysis indicated increase of the PpIX diffusion in the skin surface using the microneedles rollers (MNs) before ALA application. Circular regions of red fluorescence around the microholes were observed. In addition, the fluorescence spectra showed a greater intensity (2 times as many) in groups microneedles rollers associated. In conclusion, our data shown greater homogeneity and PpIX production in the groups pre-treated with microneedles indicating that the technique can be used to greater uniformity of PpIX production throughout the area to be treated reducing the chances of recurrent tumor as well as has potential for decreasing the time of therapy. (FUNDING SUPPORT:CAPES, CNPq and FAPESP)

  20. The delta EEG (sleep)-inducing peptide (DSIP). XI. Amino-acid analysis, sequence, synthesis and activity of the nonapeptide.

    PubMed

    Schoenenberger, G A; Maier, P F; Tobler, H J; Wilson, K; Monnier, M

    1978-09-01

    A peptide which induces slow-wave EEG (sleep) after intraventricular infusion into the brain has been isolated from the extracorporeal dialysate of cerebral venous blood in rabbits submitted to hypnogenic electrical stimulation of the intralaminar thalamic area. It was shown by amino-acid analysis and sequence determination to be Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu and named "Delta Sleep-Inducing Peptide" (DSIP). This compound was synthesized as well as 5 possible metabolic products (1--8, 2--9, 2--8, 1--4 and 5--9), 2 nonapeptide analogues (with one and two amino-acids exchanged) and a related tripeptide (Trp-Ser-Glu). All 9 synthetic peptides were infused intraventricularly in rabbits (6 nmol/kg in 0.05 ml of CSF-like solution over 3.5 min) and tested under double-blind conditions. A total of 61 rabbits including controls were used. The EEG from the frontal neocortex and the limbic archicortex were subjected to direct fast-Fourier transformation and analyzed by an 1108 computer system. A highly specific delta and spindle EEG-enhancing effect of the synthetic DSIP could be demonstrated. The mean increase of EEG delta activity reached 35% in the neocortex and limbic cortex as compared to control animals receiving CSF-like solution or any of the other 8 peptides. The final chemical characterization of the synthetic DSIP revealed that only the pure alpha-aspartyl peptide is highly active in contrast to its beta-Asp isomer. A neurohumoral modulating and programming activity was suggested. PMID:568769

  1. Acanthoic acid ameliorates lipopolysaccharide-induced acute lung injury.

    PubMed

    Qiushi, Wang; Guanghua, Li; Guangquan, Xu

    2015-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effects of acanthoic acid on LPS-induced acute lung injury have not been reported. The purpose of this study was to investigate the protective effect of acanthoic acid on LPS-induced ALI and to clarify the possible anti-inflammatory mechanisms. In vivo, an LPS-induced ALI model in mice was used to assess the protective effects of acanthoic acid on ALI. Meanwhile, mouse alveolar macrophages MH-S were stimulated with LPS in the presence or absence of acanthoic acid. The expressions of TNF-α, IL-6 and IL-1β were measured by ELISA. LXRα and NF-κB expression were detected by Western blot analysis. The results showed that acanthoic acid downregulated LPS-induced TNF-α, IL-6 and IL-1β production in BALF. MPO activity and lung wet-to-dry ratio were also inhibited by acanthoic acid. In addition, acanthoic acid attenuated lung histopathologic changes. In vitro, acanthoic acid inhibited inflammatory cytokines TNF-α, IL-6 and IL-1β production and NF-κB activation in LPS-stimulated alveolar macrophages. Acanthoic acid was found to up-regulated the expression of LXRα. The inhibition of acanthoic acid on LPS-induced cytokines and NF-κB activation can be abolished by LXRα siRNA. In conclusion, our results suggested that the protective effect of acanthoic acid on LPS-induced ALI was due to its ability to activate LXRα, thereby inhibiting LPS-induced inflammatory response. PMID:25620130

  2. Effect of continuous and multiple doses of 5-aminolevulinic acid on protoporphyrin IX concentrations in the rat uterus.

    PubMed

    Roy, B N; Van Vugt, D A; Weagle, G E; Pottier, R H; Reid, R L

    1997-11-01

    The objective of the present study was to determine if the concentration of protoporphyrin IX (PpIX) in the rat endometrium could be increased by administering 5-aminolevulinic acid (ALA) in multiple doses or by continuous infusion. The effect of pH, temperature and time in solution on the stability of ALA were also investigated. Estrogen-filled silastic capsules were implanted subcutaneously into ovary intact female rats (200-225 g) (n = 66). On the third day of hormonal priming, ALA (10 mg or 25 mg) dissolved in saline and adjusted to a pH of 5-5.5 was administered intrauterine either as a single bolus or as two injections 3 hours apart (n = 10). A fifth group of rats was infused with 25 mg ALA over a 12 hour period using an osmotic minipump (n = 6). In a second experiment, ALA (25 mg) was injected immediately after being dissolved in saline (pH 2) (n = 16) or after incubation at 37 degrees C for 12 hour (pH 2) (n = 7). PpIX was then extracted from the endometrium and myometrium using a 1:1 methanol/perchloric acid solution and quantified spectrofluorometrically. A dose-response relationship was observed between 10 and 25 mg of ALA and endometrial PpIX concentrations. However, no differences in endometrial PpIX concentrations were detected between rats administered ALA either as a single bolus or as two doses. Continuous infusion of 25 mg of ALA resulted in statistically lower endometrial PpIX concentrations compared to 25 mg ALA injected either as a single bolus or as two injections. Neither pH, temperature, nor time in solution affected ALA-induced PpIX accumulation. We conclude that the simplest way of achieving the highest PpIX concentration in the rat endometrium in vivo is to administer a bolus injection of 25 mg of ALA. PMID:9440319

  3. Alpha Linolenic Acid-enriched Diacylglycerol Enhances Postprandial Fat Oxidation in Healthy Subjects: A Randomized Double-blind Controlled Trail.

    PubMed

    Ando, Yasutoshi; Saito, Shinichiro; Oishi, Sachiko; Yamanaka, Nami; Hibi, Masanobu; Osaki, Noriko; Katsuragi, Yoshihisa

    2016-08-01

    Alpha linolenic acid-enriched diacylglycerol (ALA-DAG) reduces visceral fat area and body fat in rodents and humans compared to conventional triacylglycerol (TAG). Although ALA-DAG increases dietary fat utilization as energy in rodents, its effects in humans are not known. The present study was a randomized, placebo-controlled, double-blind, crossover intervention trial performed to clarify the effect of ALA-DAG on postprandial energy metabolism in humans. Nineteen healthy subjects participated in this study, and postprandial energy metabolism was evaluated using indirect calorimetry followed by 14-d repeated pre-consumption of TAG (rapeseed oil) as a control or ALA-DAG. As a primary outcome, ALA-DAG induced significantly higher postprandial fat oxidation than TAG. As a secondary outcome, carbohydrate oxidation tended to be decreased. In addition, postprandial energy expenditure was significantly increased by ALA-DAG compared to TAG. These findings suggest that daily ALA-DAG consumption stimulates dietary fat utilization as energy after a meal, as well as greater diet induced thermogenesis in healthy humans. In conclusion, repeated consumption of ALA-DAG enhanced postprandial fat metabolism after a meal, which may partially explain its visceral fat area-reducing effect. PMID:27430386

  4. Distribution of protoporphyrin IX in Bowen's disease and basal cell carcinomas treated with topical 5-aminolaevulinic acid

    NASA Astrophysics Data System (ADS)

    Roberts, David J.; Stables, G. I.; Ash, D. V.; Brown, Stanley B.

    1995-03-01

    We have used ultra-low light level fluorescence microscopy to examine the suggestion that the relatively poor response of human basal cell carcinomas (BCC) to topical 5-aminolaevulinic acid (ALA)-based photodynamic therapy (PDT) arises from limited drug penetration into the lesion. The distribution of ALA-induced protoporphyrin IX (PpIX) in human BCC and Bowen's disease was examined and, in almost all cases, was found to be most intense in those regions of tumor immediately adjacent to the dermis. This distribution was independent of tumor type, and did not appear to be affected by tumor depth in the skin. It is suggested that ALA penetration may not limit the efficacy of ALA-PDT in the treatment of BCC. Failure of superficial ALA-based PDT in basal cell carcinoma may, instead, be related to the histological structure of this type of lesion.

  5. Topical application of ALA PDT for the treatment of moderate to severe acne vulgaris

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Wang, Hong-Wei; Zhang, Ling-Lin; Su, Lina; Guo, Ming-Xia; Huang, Zheng

    2009-06-01

    Objectives: To evaluate the effectiveness of topical 5-aminolevulinic acid (ALA)- medicated photodynamic therapy (ALA PDT) for the treatment of moderate to severe acne vulgaris. Methods: Sixteen Chinese patients with moderate to severe facial acne were treated with 1-3 courses of ALA PDT. ALA cream (3%) was freshly prepared and applied to acne lesions for 3-4 h. The lesions were irradiated by a 635 nm diode laser at dose levels of 60 - 80 J/cm2 at 100 mW/cm2. Clinical assessments were conducted before and after treatment up to 3 months. Results: All patents showed response to ALA PDT. Complete clearance was seen in 10 patients (62.5%) and partial clearance in 6 patients (37.5%). One case showed recurrence after complete clearance at 2 months and another two showed recurrence after complete clearance at 3 months. However, the number of new lesions were significantly reduced. Adverse effects were minimal. Conclusions: The results of this preliminary clinical study is encouraging. ALA PDT is a simple, safe and useful therapeutic option for the treatment of moderate to severe acne. Further studies to evaluate the treatment with a larger number of patients and for a longer period of follow-up are needed.

  6. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin.

    PubMed

    Osaki, Tomohiro; Ono, Misato; Uto, Yoshihiro; Ishizuka, Masahiro; Tanaka, Tohru; Yamanaka, Nobuyasu; Kurahashi, Tsukasa; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-04-01

    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound and a sonosensitizer agent. We examined whether 5-aminolevulinic acid (5-ALA)-based SDT at 1 or 3 MHz could enhance the cytotoxicity of bleomycin (BLM) toward mouse mammary tumor cells both in vitro and in vivo. At 1 MHz, cell viability in the 5-ALA-based SDT group at 1, 2, and 3 W/cm(2) was 34.30%, 50.90%, and 60.16%, respectively. Cell viability in the 5-ALA-based SDT+BLM group at 1, 2, and 3 W/cm(2) was 0.09%, 0.32%, and 0.17%, respectively. In contrast, at 3 MHz, 5-ALA-based SDT+BLM did not show pronounced cytotoxicity. In the in vivo study, 5-ALA-based SDT+BLM was significantly more cytotoxic than 5-ALA-based SDT at 1 MHz and 3 MHz. These findings suggest that the mechanism of tumor shrinkage induced by 5-ALA-based SDT+BLM might involve not only direct cell killing, but also vascular shutdown. Thus, we show here that 5-ALA-based SDT enhances the efficacy of BLM both in vitro and in vivo. PMID:26799128

  7. ALA-PDT of glioma cell micro-clusters in BD-IX rat brain

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Angell-Petersen, Even; Spetalen, Signe; Carper, Stephen W.; Ziegler, Sarah A.; Hirschberg, Henry

    2006-02-01

    A significant contributory factor to the poor prognosis of patients with glioblastoma multiforme is the inability of conventional treatments to eradicate infiltrating glioma cells. A syngeneic rat brain tumor model is used to investigate the effects of aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on small clusters of tumor cells sequestered in normal brain. The intrinsic sensitivity of rat glioma cells to PDT was investigated by exposing ALA-incubated cells to a range of radiant exposures and irradiances using 635 nm light. Biodistribution studies were undertaken on tumor-bearing animals in order to determine the tumor selectivity of the photosensitizer following systemic administration (i.p.) of ALA. Effects of ALA-PDT on normal brain and gross tumor were evaluated using histopathology. Effects of PDT on isolated glioma cells in normal brain were investigated by treating animals 48 h after tumor cell implantation: a time when the micro-clusters of cells are protected by an intact blood-brain-barrier (BBB). Rat glioma cells in monolayer are susceptible to ALA-PDT - lower irradiances are more effective than higher ones. Fluorescence microscopy of frozen tissue sections showed that photosensitizer is produced with better than 200:1 tumor-to-normal tissue selectivity following i.p. ALA administration. ALA-PDT resulted in significant damage to both gross tumor and normal brain, however, the treatment failed to prolong survival of animals with newly implanted glioma cells compared to non-treated controls if the drug was delivered either i.p. or directly into the brain. In contrast, animals inoculated with tumor cells pre-incubated in vitro with ALA showed a significant survival advantage in response to PDT.

  8. Some Properties of a Self-Sufficient Cytochrome P-450 Monooxygenase System from Bacillus megaterium Strain ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We reviewed the many interesting and related in vivo products derived from reactions of the B. megaterium strain ALA2 and various related polyunsaturated fatty acids (PUFA) substrates. Products obtained from the omega-6 PUFAs (linoleic acid, gamma-linolenic acid, and arachidonic acid) possessed die...

  9. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models. PMID:26452500

  10. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    PubMed

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Nair, Sean P; Xu, Jiru

    2016-04-01

    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae. PMID:26886586

  11. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2014-11-01

    This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment. Plants responded to OF by greatly decreasing the levels of Mg-protoporphyrin IX (MgProto IX), MgProto IX methyl ester, and protochlorophyllide to levels lower than control, whereas their levels drastically increased 1 day after ALA treatment and then disappeared 2 days after the treatment. Enzyme activity and transcript levels of HEMA1, GSA and ALAD for ALA synthesis greatly decreased in ALA- and OF-treated plants. Transcript levels of PPO1, CHLH, CHLI, and PORB genes involving Mg-porphyrin synthesis continuously decreased in ALA- and OF-treated plants, with greater decreases in ALA-treated plants. By contrast, up-regulation of FC2 and HO2 genes in Fe-porphyrin branch was noticeable in ALA and OF-treated plants 1 day and 2 days after the treatments, respectively. Decreased transcript levels of nuclear-encoded genes Lhcb1, Lhcb6, and RbcS were accompanied by disappearance of MgProto IX in ALA- and OF-treated plants after 2 days of the treatments. Under photodynamic stress imposed by ALA and OF, tight control of porphyrin biosynthesis prevents accumulation of toxic metabolic intermediates not only by down-regulation of their biosynthesis but also by photodynamic degradation. The up-regulation of FC2 and HO2 also appears to compensate for the photodynamic stress-induced damage. PMID:25454526

  12. Molecular structures of two crystalline forms of the cyclic heptapeptide antibiotic ternatin, cyclo[-beta-OH-D-Leu-D-Ile-(NMe)Ala-(NMe)Leu-Leu-(NMe)Ala-D-(NMe)Ala-].

    PubMed

    Miller, R; Galitsky, N M; Duax, W L; Langs, D A; Pletnev, V Z; Ivanov, V T

    1993-12-01

    The crystal structures of two solvated forms of ternatin, cyclo[-beta-OH-D-Leu-D-Ile-(NMe)Ala-(NMe)Leu-Leu-(NMe)Ala-D-(NMe)Ala-] are reported. The first crystallizes with two molecules of peptide and one of dioxane in the asymmetric unit: P2(1)2(1)2(1), a = 11.563(1), b = 21.863(2), c = 36.330(4) A. The second crystallizes with two molecules of peptide and one of water in the asymmetric unit: P2(1)2(1)2(1), a = 14.067(2), b = 16.695(1), c = 36.824(6) A. N-Methylation of four of the seven residues of ternatin appears to reduce the number of low-energy conformations the molecule can assume. The same H-bonded macrocyclic ring conformation is adopted by the backbone of each of the four molecules observed here. All the amino-acid side chains, with the exception of D-Ile2, have similar orientations in each of the four conformers. The heptapeptide macrocycle is characterized by: (i) a cis peptide between (NMe)Ala3 and (NMe)Leu4, (ii) a type II beta-bend, involving residues Leu5-(NMe)Ala6-D-(NMe)Ala7-beta-OH-D-Leu1, stabilized by two H-bonds, N1-->O5 and N5-->O1, between Leu5 and beta-OH-D-Leu1 residues, (iii) a third intramolecular H-bond, observed in each of the four molecules, between the hydroxyl group of beta-OH-D-Leu1 and the carbonyl oxygen of D-Ile2. PMID:8307686

  13. ALA 2010: Where to Eat in DC

    ERIC Educational Resources Information Center

    Library Journal, 2010

    2010-01-01

    As host to visitors and transplants from around the world, Washington, DC, benefits from the constant infusion of different cultures. Although most neighborhoods lack a unified culinary flavor, make no mistake: DC is a city of distinctive areas, each with its own style, ensuring that hungry American Library Association (ALA) 2010 conference…

  14. Use of 5-ALA fluorescence guided endoscopic biopsy of a deep-seated primary malignant brain tumor.

    PubMed

    Ritz, Rainer; Feigl, Guenther C; Schuhmann, Martin U; Ehrhardt, André; Danz, Soeren; Noell, Susan; Bornemann, Antje; Tatagiba, Marcos S

    2011-05-01

    The introduction of fluorescence-guided resection of primary malignant brain tumors was a milestone in neurosurgery. Deep-seated malignant brain tumors are often not approachable for microsurgical resection. For diagnosis and therapy, new strategies are recommended. The combination of endoscopy and 5-aminolevulinic acid-induced protoporphyrin IX (5-ALA-induced Pp IX) fluorescence-guided procedures supported by neuronavigation seems an interesting option. Here the authors report on a combined approach for 5-ALA fluorescence-guided biopsy in which they use an endoscopy system based on an Xe lamp (excitation approximately λ = 407 nm; dichroic filter system λ = 380-430 nm) to treat a malignant tumor of the thalamus and perform a ventriculostomy and septostomy. The excitation filter and emission filter are adapted to ensure that the remaining visible blue remission is sufficient to superimpose on or suppress the excited red fluorescence of the endogenous fluorochromes. The authors report that the lesion was easily detectable in the fluorescence mode and that biopsy led to histological diagnosis. PMID:21166571

  15. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  16. Acid fog-induced bronchoconstriction. The role of hydroxymethanesulfonic acid

    SciTech Connect

    Aris, R.; Christian, D.; Sheppard, D.; Balmes, J.R. )

    1990-03-01

    Hydroxymethanesulfonate (HMSA), the bisulfite (HSO3-) adduct of formaldehyde (CH2O), is a common constituent of California acid fogs. HMSA, most stable in a fog pH range of 3 to 5, dissociates at 6.6, the pH of the fluid lining human airways. The dissociation of inhaled HMSA should theoretically generate sulfur dioxide and CH2O, both of which have bronchoconstrictor potential. Thus, we hypothesized that HMSA may have a specific bronchoconstrictor effect independent of its strength as an acid. To determine whether HMSA has such an effect, 19 subjects with mild to moderate asthma were studied using two different protocols. Initially, a mouthpiece study was performed in which 9 subjects, on 2 separate days, inhaled five aerosols containing either sequentially increasing concentrations (0, 30, 100, 300, and 1000 microM) of HMSA in 50 microM sulfuric acid (H2SO4) or 50 microM H2SO4 alone. The subjects inhaled each aerosol for 3 min during tidal breathing at rest. Specific airway resistance (SRaw) was measured before and after each 3-min exposure. There were no significant differences in the mean changes in SRaw among the various aerosol exposures. To confirm this lack of bronchoconstrictor effect of HMSA, we then performed a chamber study in which 10 freely breathing, intermittently exercising subjects were exposed to fog containing either 1 mM HMSA in 5 mM H2SO4 or 5 mM H2SO4 alone for 1 h. SRaw was measured before, during, and at the end of the 1-h exposure.

  17. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  18. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  19. Collision induced dissociation of alpha hydroxy acids

    NASA Astrophysics Data System (ADS)

    Bandu, Mary L.; Grubbs, Thomas; Kater, Marcus; Desaire, Heather

    2006-03-01

    Alpha hydroxy acids typically dissociate in tandem mass spectrometric experiments to produce product ions representing a neutral loss of 46 Da (CH2O2) in negative ion mode. Although it is widely accepted that the carboxylate group is lost in the dissociation process, the origin of the remaining two hydrogens is unclear. The current study utilizes an alpha hydroxy acid chemical library and deuterium labeling experiments to identify the origin of the two hydrogens lost during dissociation. Secondly, this study investigates the lower m/z region of the CID spectrum, a region previously unexplored, to aid in characterizing the dissociation mechanism. Further experiments testing the energy requirements and time parameters of the dissociation also are consistent with criteria previously defined for ion-neutral complex formation. In addition to describing the mechanism for the loss of CH2O2, we have conducted experiments that demonstrate the important chemical features of molecules that can prevent alpha hydroxy acids from undergoing the loss of 46 Da. By understanding the chemical composition of the 46 Da loss, the dissociation mechanism responsible for the loss, and the factors that hinder this mechanistic pathway, chemical information about alpha hydroxy acids can be obtained from their CID data.

  20. Harnessing cellular differentiation to improve ALA-based photodynamic therapy in an artificial skin model

    NASA Astrophysics Data System (ADS)

    Maytin, Edward; Anand, Sanjay; Sato, Nobuyuki; Mack, Judith; Ortel, Bernhard

    2005-04-01

    During ALA-based photodynamic therapy (PDT), a pro-drug (aminolevulinic acid; ALA) is taken up by tumor cells and metabolically converted to a photosensitizing intermediate (protoporphyrin IX; PpIX). ALA-based PDT, while an emerging treatment modality, remains suboptimal for most cancers (e.g. squamous cell carcinoma of the skin). Many treatment failures may be largely due to insufficient conversion of ALA to PpIX within cells. We discovered a novel way to increase the conversion of ALA to PpIX, by administering agents that can drive terminal differentiation (i.e., accelerate cellular maturation). Terminally-differentiated epithelial cells show higher levels of intracellular PpIX, apparently via increased levels of a rate-limiting enzyme, coproporphyrinogen oxidase (CPO). To study these mechanisms in a three-dimensional tissue, we developed an organotypic model that mimics true epidermal physiology in a majority of respects. A line of rat epidermal keratinocytes (REKs), when grown in raft cultures, displays all the features of a fully-differentiated epidermis. Addition of ALA to the culture medium results in ALA uptake and PpIX synthesis, with subsequent death of keratinocytes upon exposure to blue light. Using this model, we can manipulate cellular differentiation via three different approaches. (1) Vitamin D, a hormone that enhances keratinocyte differentiation; (2) Hoxb13, a nuclear transcription factor that affects the genetically-controlled differentiation program of stratifying cells (3) Hyaluronan, an abundant extracellular matrix molecule that regulates epidermal differentiation. Because the raft cultures contain only a single cell type (no blood, fibroblasts, etc.) the effects of terminal differentiation upon CPO, PpIX, and keratinocyte cell death can be specifically defined.

  1. Some Properties of a Self-sufficient Cytochrome P-450 Monooxygenase from Bacillus megaterium NRRL B-21660, Strain ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium NRRL B-21660, strain ALA2, produces many new oxygenated unsaturated fatty acids from linoleic acid with potential applications such as specialty chemicals and biomedicals. In order to utilize the enzymes involved in this pathway for the production of these new fatty acid product...

  2. Reversal of Lead-Induced Acute Toxicity by Lipoic Acid with Nutritional Supplements in Male Wistar Rats.

    PubMed

    Shukla, Sangeeta; Sharma, Yamini; Shrivastava, Sadhana

    2016-01-01

    Lead (Pb) is a pleiotropic toxicant. The potential role of oxidative stress injury that is associated with Pb poisoning suggests that antioxidants may enhance the efficacy of treatment designed to mitigate Pb-induced toxicity. The aim of this study is to investigate the comparative ameliorative potential of lipoic acid (LA) alone or in combination with calcium (Ca) and zinc (Zn). Pb acetate (50 mg/kg, intraperitoneally) was administered for 3 d. After 24 h of the last toxicant dose, LA (100 mg/kg, orally [po]) alone or in conjuction with Ca (50 mg/kg, po) and Zn (10 mg/kg, po) was administered for 3 d. Significant alterations in the concentration of urea, uric acid, triglycerides, cholesterol, aspartate amino transferase, alanine amino transferase, lipid peroxidation, and reduced glutathione as well as alterations in enzyme activity of δ-aminolevulinic acid (ALA) dehydratase were observed following acute Pb exposure. These findings were also supported by elevated mean DNA damage and Pb body burden in blood and soft tissues compared to controls (p ≤ 0.05). Three d posttreatment with LA along with Zn and Ca could significantly restore the biochemical parameters and Pb body burden to near-normal status through antioxidant activity or by preventing bioaccumulation of Pb within the blood and tissues of experimental rats. PMID:27481494

  3. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  4. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  5. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  6. Skin laser treatments enhancing transdermal delivery of ALA.

    PubMed

    Gómez, Clara; Costela, Ángel; García-Moreno, Inmaculada; Llanes, Felipe; Teijón, José M; Blanco, M Dolores

    2011-01-01

    Drug delivery across skin has been limited due to barrier properties of the skin, especially those of the stratum corneum (SC). Use of the laser radiation has been suggested for the controlled removal of the SC. The purpose of this study was to study in vitro the influence of infrared radiation from the erbium:yttrium-aluminum-garnet (Er:YAG) laser (λ = 2940  nm), and visible from the 2nd harmonic of a neodymium:yttrium-aluminum-garnet (Nd:YAG) laser (λ = 532  nm) on transdermal delivery of 5-aminolevulinic acid (ALA). Pinna skin of the inner side of rabbit ear was used for skin permeation. The light sources were an Er:YAG laser (Key III Plus KaVo) and a Q-switched Nd:YAG laser (Lotis TII SL-2132). Permeation study, morphological and structural skin examination by histology and differential scanning calorimetry (DSC) were carried out. Permeation profiles and histological observations obtained after irradiation with infrared and visible laser radiation differed due to different biophysical effects on irradiated skin. Wavelength of 2940  nm required lower energy contribution to produce the same level of permeation than visible radiation at 532  nm. Structural analysis by DSC shows a selective impact on the lipidic structure. Laser pretreatment enhanced the delivery of ALA trough the skin by SC ablation. PMID:20589948

  7. An Inducible Fusaric Acid Tripartite Efflux Pump Contributes to the Fusaric Acid Resistance in Stenotrophomonas maltophilia

    PubMed Central

    Hu, Rouh-Mei; Liao, Sih-Ting; Huang, Chiang-Ching; Huang, Yi-Wei; Yang, Tsuey-Ching

    2012-01-01

    Background Fusaric acid (5-butylpicolinic acid), a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. Methodology A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. Results The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. Significance A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump. PMID:23236431

  8. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  9. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions.

    PubMed

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  10. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions

    PubMed Central

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  11. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    PubMed Central

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. Results: The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Conclusion: Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration. PMID:25126019

  12. Clearance of protoporphyrin IX induced by 5-aminolevulinic acid from WiDr human colon carcinoma cells

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Kaliszewski, Miron; Bugaj, Andrzej; Moan, Johan

    2009-06-01

    5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is the most widely practiced form of PDT in dermatology. One of the advantages of ALA-PDT is that undesirable photosensitization lasts only for 24-48 h. In order to optimize ALA-PDT it is necessary to understand the mechanisms controlling intracellular PpIX clearance (efflux and transformation into heme) in order to decrease protoporphyrin IX (PpIX) clearance rates in the early stages of its production. The aim of this study was to investigate the factors controlling the clearance of intracellular PpIX. Fluorescence spectroscopy was used to study PpIX kinetics in WiDr cells initially treated with ALA. The clearance rate of PpIX in WiDr cells was faster after application of a low concentration of ALA (0.1 mM) than after application of high concentration of ALA (1 mM). PpIX was cleared faster from cells which initially were seeded at low densities than cells seeded at higher densities. The presence of the iron chelator deferoxamine reduced the clearance rate of PpIX, while the presence of ferrous sulfate acted oppositely. The decay rate of PpIX in WiDr cells was faster at higher temperature than at lower. The ferrochelatase activity at pH 7.2 was significantly greater than that at pH 6.7. ALA concentration, application time, cell density, temperature, pH, intracellular iron content, intracellular amount and localization of PpIX are factors controlling PpIX clearance.

  13. Morphological Versatility in the Self-Assembly of Val-Ala and Ala-Val Dipeptides.

    PubMed

    Erdogan, Hakan; Babur, Esra; Yilmaz, Mehmet; Candas, Elif; Gordesel, Merve; Dede, Yavuz; Oren, Ersin Emre; Demirel, Gokcen Birlik; Ozturk, Mustafa Kemal; Yavuz, Mustafa Selman; Demirel, Gokhan

    2015-07-01

    Since the discovery of dipeptide self-assembly, diphenylalanine (Phe-Phe)-based dipeptides have been widely investigated in a variety of fields. Although various supramolecular Phe-Phe-based structures including tubes, vesicles, fibrils, sheets, necklaces, flakes, ribbons, and wires have been demonstrated by manipulating the external physical or chemical conditions applied, studies of the morphological diversity of dipeptides other than Phe-Phe are still required to understand both how these small molecules respond to external conditions such as the type of solvent and how the peptide sequence affects self-assembly and the corresponding molecular structures. In this work, we investigated the self-assembly of valine-alanine (Val-Ala) and alanine-valine (Ala-Val) dipeptides by varying the solvent medium. It was observed that Val-Ala dipeptide molecules may generate unique self-assembly-based morphologies in response to the solvent medium used. Interestingly, when Ala-Val dipeptides were utilized as a peptide source instead of Val-Ala, we observed distinct differences in the final dipeptide structures. We believe that such manipulation may not only provide us with a better understanding of the fundamentals of the dipeptide self-assembly process but also may enable us to generate novel peptide-based materials for various applications. PMID:26086903

  14. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  15. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. PMID:25533183

  16. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    PubMed

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-01-01

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  17. Mevalonates restore zoledronic acid-induced osteoclastogenesis inhibition.

    PubMed

    Nagaoka, Y; Kajiya, H; Ozeki, S; Ikebe, T; Okabe, K

    2015-04-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is likely to be caused by continuous imperfection of bone healing after surgical treatments in patients with long-term administration of nitrogen-containing bisphosphonates (NBPs). NBPs inhibit osteoclastic bone resorption by impairing the mevalonic acid sterol pathway in osteoclasts. Thus, we hypothesized that exogenous mevalonic acid metabolites restore the inhibitory effects of NBPs on osteoclastogenesis and bone remodeling. To clarify the effects of mevalonic acid metabolites, especially geranylgeranyl pyrophosphate (GGPP) and geranylgeranyl transferase substrate geranylgeranyl acid (GGOH), we examined the effects of zoledronic acid with or without GGOH or GGPP on osteoclast differentiation, multinucleation, and bone mineral deposition in tooth-extracted sockets. Zoledronic acid decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells derived from mouse osteoclast precursors treated with receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Zoledronic acid simultaneously suppressed not only the expressions of osteoclastic differentiation-related molecules such as TRAP, cathepsin K, calcitonin receptor, and vacuolar H-ATPase but also those of multinucleation-related molecules such as dendrocyte-expressed 7 transmembrane proteins and osteoclast stimulatory transmembrane protein. Treatment with GGOH or GGPP, but not farnesyl acid, restored the zoledronic acid-inhibited number of TRAP-positive multinuclear cells together with the expressions of these molecules. Although intraperitoneal administration of zoledronic acid and lipopolysaccharide into mice appeared to induce BRONJ-like lesions with empty bone lacunae and decreased mineral deposition in tooth-extracted socket, both GGOH and GGPP partially restored the inhibitory effects on zoledronic acid-related mineral deposition. These results suggest the potential of mevalonic acid

  18. Alpha-lipoic acid: an inhibitor of secretory phospholipase A2 with anti-inflammatory activity.

    PubMed

    Jameel, Noor Mohamed; Shekhar, Mysore A; Vishwanath, Bannikuppe S

    2006-12-14

    Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions. PMID:17011589

  19. Prophylactic and abundant intake of α-lipoic acid causes hepatic steatosis and should be reconsidered in usage as an anti-aging drug.

    PubMed

    Kuhla, Angela; Derbenev, Margarita; Shih, Hao Yu; Vollmar, Brigitte

    2016-01-01

    The majority of research has suggested that α-lipoic acid (ALA) is a potential therapeutic agent for chronic diseases associated with oxidative stress, including atherosclerosis, diabetes, and neurodegeneration. Therefore, a nutritional supplementation with ALA is recommended although the effects of a short- and long-term intake of ALA on central organs in healthy individuals are not studied in detail yet. Therefore, liver tissue of 4 and 74 weeks ALA-treated healthy C57BL6/J mice with respect to lipid metabolism was analyzed. In doing so, it was shown that short-term and long-term ALA treatment caused a marked increase of β-oxidation, as indicated by a significant rise of mRNA expression of fgf21, pparα, and its target genes, for example, acox1, cpt1α, and cpt2, as well as of Fgf21 plasma concentration. Glycolytic activity, as assessed by pklr1 mRNA expression and pyruvate kinase activity, was also found increased. In addition, it was shown that both short- and long-term ALA treatment increased cholesterol content, induced systemic triglyceridemia, and enhanced rxrα and lxrα mRNA expression. Despite the fact that short-term ALA intake reduced lipogenesis, as given by significant declines of fas and srebp1c mRNA expression, and that a long-term ALA intake induced a significant rise of these lipogenic genes, both treatment regimen caused fat accumulation. This, however, was more pronounced upon long-term ALA intake, leading to hepatic steatosis and liver injury, as indicated by increased inflammation and disruption of the general hepatic architecture. In summary, the prophylactic and abundant use of ALA under healthy conditions should be considered with caution. © 2016 BioFactors, 42(2):179-189, 2016. PMID:26876280

  20. Alpha-Lipoic Acid Promotes Osteoblastic Formation in H2O2 -Treated MC3T3-E1 Cells and Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Fu, Chao; Xu, Dong; Wang, Chang-Yuan; Jin, Yue; Liu, Qi; Meng, Qiang; Liu, Ke-Xin; Sun, Hui-Jun; Liu, Mo-Zhen

    2015-09-01

    Alpha-lipoic acid (ALA), a naturally occurring compound and dietary supplement, has been established as a potent antioxidant that is a strong scavenger of free radicals. Recently, accumulating evidences has indicated the relationship between oxidative stress and osteoporosis (OP). Some studies have investigated the possible beneficial effects of ALA on OP both in vivo and in vitro; however, the precise mechanism(s) underlying the bone-protective action of ALA remains unclear. Considering this, we focused on the anti-oxidative capacity of ALA to exert bone-protective effects in vitro and in vivo. In the present study, the effects of ALA on osteoblastic formation in H(2)O(2) -treated MC3T3-E1 pre-osteoblasts and ovariectomy (OVX)-induced bone loss in rats were investigated. The results showed that ALA promoted osteoblast differentiation, mineralization and maturation and inhibited osteoblast apoptosis, thus increasing the OPG/receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) ratio and leading to enhanced bone formation in vitro and inhibited bone loss in vivo. Further study revealed that ALA exerted its bone-protective effects by inhibiting reactive oxygen species (ROS) generation by down-regulating Nox4 gene expression and protein synthesis and attenuating the transcriptional activation of NF-κB. In addition, ALA might exert its bone-protective effects by activating the Wnt/Lrp5/β-catenin signaling pathway. Taken together, the present study indicated that ALA promoted osteoblastic formation in H(2)O(2) -treated MC3T3-E1 cells and prevented OVX-induced bone loss in rats by regulating Nox4/ROS/NF-κB and Wnt/Lrp5/β-catenin signaling pathways, which provided possible mechanisms of bone-protective effects in regulating osteoblastic formation and preventing bone loss. Taken together, the results suggest that ALA may be a candidate for clinical OP treatment. PMID:25655087

  1. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. PMID:24845645

  2. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia. PMID:27135739

  3. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  4. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  5. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  6. ALA PDT for high grade dysplasia in Barrett's oesophagus: review of a decade's experience

    NASA Astrophysics Data System (ADS)

    Bown, Stephen G.; Mackenzie, Gary D.; Dunn, Jason M.; Thorpe, Sally M.; Lovat, Laurence B.

    2009-06-01

    We have been investigating PDT with 5 aminolaevulinic acid (ALA) for the treatment of high grade dysplasia (HGD) in Barrett's oesophagus (BO) for over a decade. This drug has inherent advantages over porfimer sodium (Photofrin), the current approved photosensitiser in the UK and USA, which causes strictures in 18-50% and light sensitivity for up to three months. ALA has a lower rate of oesophageal strictures due to its preferential activity in the mucosa, sparing the underlying muscle, and patients are only light sensitive for 1-2 days. Within a randomised controlled trial, we demonstrated that an ALA dose of 60mg/kg activated by 1000J/cm red laser light is the most effective. Using these values we achieved complete reversal of HGD at 1 year in 89% of 27 patients. A randomised controlled trial of ALA vs porfimer sodium PDT for HGD is currently under way with end points of efficacy and safety. 50 of 66 patients have been recruited. Preliminary data suggest ALA PDT is safer with a trend to higher efficacy. Late relapse can occur in 20% of patients. New prognostic markers, in particular aneuploidy, are helping us to identify and target patients at risk of late relapse. Furthermore optical biopsy techniques such as elastic scattering spectroscopy (ESS) may allow detection of nuclear abnormalities in vivo and enable us to target areas of interest whilst reducing sampling error. PDT faces new challenges for the treatment of HGD in BO, with the recent introduction of balloon based radiofrequency ablation. This technique appears simpler and as effective as PDT, but follow up is currently short and long term safety data is lacking. In our experience ALA PDT is currently the most effective minimally invasive treatment for HGD in BO. This work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health's NIHR Biomedical Research Centres funding scheme.

  7. Distribution of ALA metabolic products in esophageal carcinoma cells using spectrally resolved confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Smolka, Jozef; Mateasik, Anton

    2006-08-01

    Aminolevulinic acid (ALA) is an efficient substance used in photodynamic therapy (PDT). It is a precursor of light-sensitive products that can selectively accumulate in malignant cells following the altered activity of the heme biosynthetic pathway enzymes in such cells. These products are synthesized in mitochondria and distributed to various cellular structures [1]. The localization of ALA products in subcellular structures depends on their chemical characteristics as well as on the properties of the intracellular environment [2]. Characterization of such properties is possible by means of fluorescent probes like JC-1 and carboxy SNARF-1. However, the emission spectra of these probes are overlapped with spectral pattern of typical ALA product -protoporphyrin IX (PpIX). Spectral overlap of fluorescence signals prevents to clearly separate a distribution of probes from PpIX distribution what can completely mess the applicability of these probes in characterization of cell properties. The spectrally resolved confocal laser microscopy can be used to overcome this problem. In this study, a distribution of ALA metabolic products in relation to the mitochondrial membrane potential and intracellular pH was examined. Human cell lines (KYSE-450, KYSE-70) from esophageal squamous cell carcinoma were used. Cells were incubated with 1mM solution of ALA for four hours. Two fluorescent probes, carboxy SNARF-1 and JC-1 , were used to monitor intracellular pH levels and to determine membrane potential changes, respectively. The samples were scanned by spectrally resolved laser scanning microscope. Spectral linear unmixing method was used to discriminate and separate regions of accumulation of ALA metabolic products of JC-1 and carboxy SNARF-1.

  8. Photodynamic damage study of HeLa cell line using ALA

    NASA Astrophysics Data System (ADS)

    AlSalhi, M. S.; Atif, M.; AlObiadi, A. A.; Aldwayyan, A. S.

    2011-04-01

    The present study evaluates the photodynamic damage with 5-aminolevulinic acid (5-ALA) using HeLa as experimental model. HeLa cell line was irradiated with red light (He-Ne laser, λ = 632.8 CW nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of HeLa cells were studied. The optimal uptake of photosensitizer ALA in HeLa cells was investigated by means of PpIX fluorescence intensity by exciting the HeLa cell suspension at 450 nm and a detection wavelength set at 690 nm. Cells viability was determined by means of trypan blue solution. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 4 h in vitro incubation. We found that the combination with 5-ALA and laser irradiation leads to time/concentration-dependent increase of cells death and also energy doses-dependent enlarge the cells death. The fluorescence intensity after PDD of carcinoma cells reduce when compared with the control group. The fluorescence emission spectral profiles after PDD of carcinoma cells showed a dip around 425-525 nm when compared with the control group. This may be due to the damage of mitochondria component of cells. The percentage of HeLa cells after PDD shows that the percentage of cells survival rate as function of laser dose (power). Hence it is clear that at 200 μg/ml ALA and 20 mW laser irradiation, more than 70% of HeLa cells were dead after 15 min.

  9. Tolerance to lead-induced porphyrin metabolic disorders following lead pretreatment in mice.

    PubMed

    Tomokuni, K; Ichiba, M

    1990-12-01

    The protective effect of pretreatment with lead on lead-induced toxicity was investigated in mice, using some biological parameters such as urinary excretion of delta-aminolevulinic acid (ALA) and coproporphyrin, accumulation of erythrocyte protoporphyrin and inhibition of erythrocyte delta-aminolevulinic acid dehydratase; these are useful indicators for evaluating the effects on health of lead. It was demonstrated that pretreatment with a single intraperitoneal dose of 2 mg Pb/kg, 7 days prior to the challenge dose, prevents in part the increasing excretion of urinary ALA induced by a challenge exposure to lead (200 ppm) in the drinking water for 7 days. PMID:2260119

  10. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  11. 5-ALA-assisted photodynamic therapy in canine prostates

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Muschter, Rolf; Knuechel, Ruth; Steinbach, Pia; Perlmutter, Aaron P.; Martin, Thomas; Baumgartner, Reinhold

    1996-05-01

    Photodynamic therapy (PDT) and interstitial thermotherapy are well known treatment modalities in urology. The approach of this study is to combine both to achieve a selective treatment procedure for benign prostatic hyperplasia (BPH) and prostate carcinoma. Measurements of thy in-vivo pharmacokinetics of 5-ALA induced porphyrins by means of fiber assisted ratiofluorometry showed a maximum fluorescence intensity at time intervals of 3 - 4 h post administration. Fluorescence microscopy at that time showed bright fluorescence in epithelial cells while in the stroma fluorescence could not be observed. Interstitial PDT using a 635-nm dye laser with an irradiation of 50 J/cm2 resulted in a nonthermic hemorrhagic lesion. The lesion size did not change significantly when an irradiation of 100 J/cm2 was used. The usefulness of PDT for treating BPH as well as prostate carcinoma has to be proven in further studies.

  12. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  13. Early apoptotic features of K562 cell death induced by 5-aminolaevulinic acid-based photodynamic therapy.

    PubMed

    Kuzelová, K; Grebenová, D; Pluskalová, M; Marinov, I; Hrkal, Z

    2004-01-23

    5-Aminolaevulinic acid-based photodynamic therapy (ALA-PDT) is used to eliminate cancerous cells through photoactivation of endogenously formed protoporphyrin IX (PPIX) following the administration of PPIX precursor, 5-aminolaevulinic acid (ALA). We report on the kinetics of PPIX accumulation and the mechanism of cytotoxic effects of ALA-PDT studied in the chronic myelogenous leukaemia derived cell line K562. The PPIX distribution and, consequently, cytotoxic effects were found to be heterogenous. A subpopulation of K562 cells accumulating PPIX to a lesser extent exhibits only transient cell cycle arrest. A fraction of cells, probably those with higher PPIX accumulation, are irreversibly damaged by ALA-PDT. We detected several signs of an early apoptosis: lowering of Bcl-xL expression, decrease of the mitochondrial and plasma membrane potential, the cytochrome c release into the cytoplasm, and the unmasking of the mitochondrial antigen 7A6. However, late apoptotic events were lacking: neither caspase-3 activation nor DNA fragmentation occurred. Instead, rapidly progressing cell necrosis resulting from plasma membrane damage was observed. We suggest that the high level of the antiapoptotic heat-shock proteins HSP70 and HSP27 found by us in the K562 cells is responsible for the inhibition of the apoptotic process upstream of caspases activation. PMID:14732253

  14. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  15. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  16. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  17. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  18. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, dimethylsulfoxide (DMSO), and edetic acid disodium salt (EDTA)

    NASA Astrophysics Data System (ADS)

    Orenstein, Arie; Kostenich, Gennady; Tsur, H.; Roitman, Leonid; Ehrenberg, Benjamin; Malik, Zvi

    1995-01-01

    The results of photodynamic therapy (PDT) in 48 patients bearing basal cell carcinoma (BCC) and 7 patients with squamous cell carcinoma (SCC) of the skin are described. Five- aminolevulinic acid (5-ALA) was applied topically in two formulations. The first formulation contained 20% of 5-ALA in a base cream, and the second formulation (5-ALA composite cream), contained an additional 2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium salt (EDTA). The creams were left on the skin for 2 - 5 hours. Production of protoporphyrin (PP) was measured in situ by a laser-induced fluorescence (LIF) method. The results of fluorescence measurement clearly indicate that PP accumulation in tumors induced by the 5-ALA composite cream was markedly higher than that induced by the 5-ALA cream. The tumors were light-irradiated (600 - 720 nm) after 4 - 5 hours of cream applications, using the light delivery system Versa-Light by a light dose of 100 J/cm2. The clinically superficial BCC tumors were highly responsive to PDT; the overall result in BCC patients was an 85.4% complete response. Histological examination showed an initial edematous reaction, followed by necrosis and complete disappearance of the tumor. The superficial SCC tumors showed a 100% complete response after PDT. The ulcerated nodular SCC showed partial responses.

  19. Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells.

    PubMed

    Chung, Chung-Wook; Kim, Cy Hyun; Lee, Hye Myeong; Kim, Do Hyung; Kwak, Tae-Won; Chung, Kyu-Don; Jeong, Young-Il; Kang, Dae Hwan

    2013-11-01

    Hexyl-aminolevulinic acid (HALA) was compared with aminolevulinic acid (ALA) in terms of improving ALA-based photodynamic therapy (PDT) for human intra- and extrahepatic cholangiocarcinoma (CCA) HuCC-T1 and SNU1196 cells. Because of the different uptake mechanisms of HALA, a relatively higher amount of protoporphyrin IX (PpIX) was induced in the both CCA cell types at low concentrations of HALA. Furthermore, higher expression of porphobilinogen deaminase, coproporphyrinogen III oxidase, and protoporphyrinogen oxidase, the key enzymes for synthesizing PpIX in the heme biosynthetic pathway, facilitated the exuberant generation of PpIX in HuCC-T1 cells. PpIX accumulation with ALA was markedly different between the two CCA cell types. Even at lower concentrations of ALA, SNU1196 cell successfully synthesized PpIX, due to the higher expression of the ALA transporter, mammalian H (+)/peptide co-transporter PEPT1. Considering the difference of PEPT1 or key enzyme expression, HALA could be a very effective substitute for ALA in doing PDT for cure of CCA. PMID:23429232

  20. Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of delta-aminolevulinic acid uptake.

    PubMed Central

    King, N D; O'Brian, M R

    1997-01-01

    The heme precursor delta-aminolevulinic acid (ALA) is taken up by the dipeptide permease (Dpp) system in Escherichia coli. In this study, we identified a Bradyrhizobium japonicum genomic library clone that complemented both ALA and dipeptide uptake activities in E. coli dpp mutants. The complementing B. japonicum DNA encoded a product with 58% identity to the E. coli global transcriptional regulator Lrp (leucine-responsive regulatory protein), implying the presence of Dpp-independent ALA uptake activity in those cells. Data support the conclusion that the Lrp homolog induced the oligopeptide permease system in the complemented cells by interfering with the repressor activity of the endogenous Lrp, thus conferring oligopeptide and ALA uptake activities. ALA uptake by B. japonicum was effectively inhibited by a tripeptide and, to a lesser extent, by a dipeptide, and a mutant strain that expressed the lrp homolog from a constitutive promoter was deficient in ALA uptake activity. The data show that Lrp negatively affects ALA uptake in E. coli and B. japonicum. Furthermore, the product of the isolated B. japonicum gene is both a functional and structural homolog of E. coli Lrp, and thus the regulator is not restricted to enteric bacteria. PMID:9045849

  1. Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance.

    PubMed

    Stivala, Simona; Reiner, Martin F; Lohmann, Christine; Lüscher, Thomas F; Matter, Christian M; Beer, Juerg H

    2013-08-01

    Previously we reported that dietary intake of alpha-linolenic acid (ALA) reduces atherogenesis and inhibits arterial thrombosis. Here, we analyze the substantial increase in platelet count induced by ALA and the mechanisms of reduced platelet clearance. Eight-week-old male apolipoprotein E knockout (ApoE(-/-)) mice were fed a 0.21g% cholesterol diet complemented by either a high- (7.3g%) or low-ALA (0.03g%) content. Platelet counts doubled after 16 weeks of ALA feeding, whereas the bleeding time remained similar. Plasma glycocalicin and glycocalicin index were reduced, while reticulated platelets, thrombopoietin, and bone marrow megakaryocyte colony-forming units remained unchanged. Platelet contents of liver and spleen were substantially reduced, without affecting macrophage function and number. Glycoprotein Ib (GPIb) shedding, exposure of P-selectin, and activated integrin αIIbβ3 upon activation with thrombin were reduced. Dietary ALA increased the platelet count by reducing platelet clearance in the reticulo-endothelial system. The latter appears to be mediated by reduced cleavage of GPIb by tumor necrosis factor-α-converting enzyme and reduced platelet activation/expression of procoagulant signaling. Ex vivo, there was less adhesion of human platelets to von Willebrand factor under high shear conditions after ALA treatment. Thus, ALA may be a promising tool in transfusion medicine and in high turnover/high activation platelet disorders. PMID:23801636

  2. Ebselen attenuates cadmium-induced testicular damage in mice.

    PubMed

    Ardais, Ana P; Santos, Francielli W; Nogueira, Cristina W

    2008-04-01

    This study was designed to examine if ebselen, an organoselenium compound with antioxidant and glutathione peroxidase-mimetic properties, attenuates testicular injury caused by intraperitoneal administration of CdCl(2). A number of toxicological parameters were evaluated in the testes of mice, such as delta-aminolevulinic acid dehydratase (delta-ALA-D) activity, lipid peroxidation, ascorbic acid levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Ebselen attenuated lipid peroxidation levels altered by CdCl(2). delta-ALA-D activity inhibited by the highest dose of CdCl(2) was attenuated by ebselen. A significant negative correlation between lipid peroxidation levels and delta-ALA-D activity was observed. Ebselen restored ascorbic acid levels reduced by CdCl(2). A significant negative correlation between ascorbic acid levels and delta-ALA-D activity reinforces the idea that ebselen attenuated the damage induced by CdCl(2) via its antioxidant property. The significant correlation between ALT and delta-ALA-D activity supports the assumption that ebselen prevented damage caused by CdCl(2). The results show that ebselen attenuated oxidative stress, a process important for CdCl(2) toxicity. PMID:17624921

  3. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  4. Oleanolic acid prevents glucocorticoid-induced hypertension in rats.

    PubMed

    Bachhav, Sagar S; Patil, Savita D; Bhutada, Mukesh S; Surana, Sanjay J

    2011-10-01

    The present study was designed to evaluate the antihypertensive activity of oleanolic acid isolated from Viscum articulatum, Burm. (Loranthaceae) in glucocorticoid (dexamethasone)-induced hypertension in rats and to propose a probable mechanism of action for this effect. Male Wistar rats (300-350 g) received dexamethasone (20 μg/kg/day s.c.) or saline (vehicle) for 10 days. In a prevention study, the rats received oleanolic acid (60 mg/kg i.p.) for 5 days, followed by dexamethasone or saline for 10 days. During this period the systolic blood pressure and body weight were evaluated on alternate days. At the end of the experiment, the weight of the thymus gland, plasma nitrate/nitrite (nitric oxide metabolites) concentration and cardiac lipid peroxidation value were determined. Oleanolic acid (60 mg/kg i.p.) significantly prevented a rise in the systolic blood pressure and cardiac lipid peroxidation level after administration of dexamethasone (p < 0.01 and p < 0.05, respectively) without showing any significant effect on the dexamethasone-induced change in body and thymus weights. The decrease in concentration of plasma nitrate/nitrite due to dexamethasone was prevented significantly in the group treated with oleanolic acid (p < 0.05). These findings suggest that oleanolic acid (60 mg/kg i.p.) prevents dexamethasone-induced hypertension in rats, which may be attributed to its antioxidant and nitric oxide releasing action. PMID:21953707

  5. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    PubMed Central

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M−1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  6. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-05-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M‑1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.

  7. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy.

    PubMed

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  8. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants.

    PubMed

    Rahman, Habibur; Singer, Stacy D; Weselake, Randall J

    2013-06-01

    Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops. PMID:23475317

  9. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes.

    PubMed

    Fujihara, Masatoshi; Obara, Hisato; Watanabe, Yusaku; Ono, Hisaya K; Sasaki, Jun; Goryo, Masanobu; Harasawa, Ryô

    2011-07-01

    Although swarmer morphotypes of Proteus mirabilis have long been considered to result from surfaced-induced differentiation, the present findings show that, in broth medium containing urea, acidic conditions transform some swimmer cells into elongated swarmer cells. This study has also demonstrates that P. mirabilis cells grown in acidic broth medium containing urea enhance virulence factors such as flagella production and cytotoxicity to human bladder carcinoma cell line T24, though no significant difference in urease activity under different pH conditions was found. Since there is little published data on the behavior of P. mirabilis at various hydrogen-ion concentrations, the present study may clarify aspects of cellular differentiation of P. mirabilis in patients at risk of struvite formation due to infection with urease-producing bacteria, as well as in some animals with acidic or alkaline urine. PMID:21707738

  10. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  11. 33 CFR 110.194 - Mobile Bay, Ala., at entrance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mobile Bay, Ala., at entrance. 110.194 Section 110.194 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.194 Mobile Bay, Ala., at entrance. (a) The...

  12. 33 CFR 110.194 - Mobile Bay, Ala., at entrance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mobile Bay, Ala., at entrance. 110.194 Section 110.194 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.194 Mobile Bay, Ala., at entrance. (a) The...

  13. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature

    PubMed Central

    Eljamel, Samy

    2015-01-01

    Background: Glioblastoma multiforme (GBM) is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR) was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA) induced FIGR. Materials: Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. Results: The mean gross total resection (GTR) rate was 75.4% (95% CI: 67.4–83.5, p < 0.001). The mean time to tumor progression (TTP) was 8.1 months (95% CI: 4.7–12, p < 0.001). The mean overall survival gain reported was 6.2 months (95% CI: −1–13, p < 0.001). The specificity was 88.9% (95% CI: 83.9–93.9, p < 0.001) and the sensitivity was 82.6% (95% CI: 73.9–91.9, p < 0.001). Conclusion: 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP. PMID:25961952

  14. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. PMID:26594836

  15. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats

    PubMed Central

    Akomolafe, Seun F.; Akinyemi, Ayodele J.; Anadozie, Scholarstical O.

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity. PMID:27382634

  16. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity.

    PubMed

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun; Choi, Yun-Sik

    2016-05-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  17. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  18. bZIP67 Regulates the Omega-3 Fatty Acid Content of Arabidopsis Seed Oil by Activating FATTY ACID DESATURASE3[W][OPEN

    PubMed Central

    Mendes, Ana; Kelly, Amélie A.; van Erp, Harrie; Shaw, Eve; Powers, Stephen J.; Kurup, Smita; Eastmond, Peter J.

    2013-01-01

    Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of FATTY ACID DESATURASE3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in LEAFY COTYLEDON1 (LEC1)–inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-LIKE (L1L) and NUCLEAR FACTOR-YC2 (NF-YC2). Although FUSCA3 and ABSCISIC ACID INSENSITIVE3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression. PMID:23995083

  19. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  20. ALA-mediated photodynamic therapy of experimental malignant glioma in the BD-IX rat model

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Peng, Qian; Sun, Chung-Ho; Sorensen, Dag R.; Carper, Steven W.; Madsen, Steen J.

    2005-04-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resec-tion indicating that a more aggressive form of local therapy could be of benefit. Photodynamic therapy (PDT) is a local form of treatment involving the administration of a tumor-localizing photosensitizing drug that is activated by light of a specific wavelength The results of in vitro experiments indicated that PDT, given at low fluence rates was substantially more effective at inhibiting glioma spheroid growth than short term high fluence rate regimes. This prompted the initia-tion of in vivo studies of low fluence rate 5-aminolevulinic acid (ALA) PDT in a rat glioma model. Methods:BT4C cell line tumors were established in the brains of inbred BD- IX rats. Eighteen days following tumor induction the animals were injected with 125 mg/kg ALA ip. and four hours later light treatment at various fluences and fluence rates were given after the introduction of an optical fiber. Tumor histology and animal survival were examined. Results: In vitro experiments verified that the cell line was sensitive to ALA PDT. Microfluorometry of frozen tissue sections showed that PpIX is produced with a greater than 20:1 tumor to normal tissue selectivity ratio four hours after ALA injection. Histological examination demonstrated neutrophil infiltration and tumor central necrosis in low fluence rate treated tumors. Conclusions: Low fluence rate long term ALA mediated PDT had a more pronounced effect on tumor histology than single shot short duration treatments at similar total fluence levels.

  1. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  2. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    PubMed Central

    Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat

    2014-01-01

    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549

  3. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    PubMed Central

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes

  4. delta. -aminolevulinic acid dehydratase deficiency can cause. delta. -aminolevulinate auxotrophy in Escherichia coli

    SciTech Connect

    O'Neill, G.P.; Michelsen, U.; Soll, D. ); Thorbjarnardottir, S.; Palsson, S.; Eggertsson, G. )

    1991-01-01

    Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar to a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.

  5. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  6. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  7. Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis.

    PubMed

    Ignatowicz, E; Vezzani, A M; Rizzi, M; D'Incalci, M

    1991-11-01

    We investigated whether in vivo excitotoxicity was mediated by a mechanism of programmed cell death called apoptosis. Neurotoxic doses of kainic acid (1.2 nmol) and quinolinic acid (120 nmol) were unilaterally injected in the dorsal hippocampus of anesthetized rats. Eight or 16 h later the animals were killed and DNA was extracted from the injected hippocampi. DNA from mouse thymocytes exposed to methylprednisolone (10(-5) M for 6 h at 37 degrees C) was used as a positive control of apoptotic cells. No typical 'ladder' of DNA fragments (multimers of approximately 200 Kb) which characterizes apoptosis was seen in hippocampal cells after toxic doses of kainic or quinolinic acid, as assessed by agarose gel electrophoresis. This suggests that hippocampal nerve cell death induced in vivo by the excitotoxins is not mediated by apoptosis. PMID:1839770

  8. Fluorosulfonic acid and chlorosulfonic acid: possible candidates for OH-stretching overtone-induced photodissociation.

    PubMed

    Lane, Joseph R; Kjaergaard, Henrik G

    2007-10-01

    We have calculated the stationary points and internal reaction coordinate pathway for the dissociation of fluorosulfonic acid (FSO3H) and chlorosulfonic acid (ClSO3H). These sulfonic acids dissociate to sulfur trioxide and hydrogen fluoride and chloride, respectively. We have calculated the frequencies and intensities of the OH-stretching transitions of FSO3H and ClSO3H with an anharmonic oscillator local mode model. We find that excitation of the fourth and third OH-stretching overtones provide adequate energy for photodissociation of FSO3H and ClSO3H, respectively. We propose that experimental detection of the products of OH-stretching overtone-induced photodissociation of FSO3H and ClSO3H would be easier than the sulfuric acid (H2SO4) equivalent. The photodissociation of H2SO4 is thought to be important in the stratosphere. The FSO3H and ClSO3H experiment could be used in proxy to support the recently proposed OH-stretching overtone-induced photodissociation mechanism of H2SO4. PMID:17764162

  9. Data in the activities of caspases and the levels of reactive oxygen species and cytochrome c in the •OH-induced fish erythrocytes treated with alanine, citrulline, proline and their combination

    PubMed Central

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-01-01

    The present study explored the effects of alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1) on the activities of caspases and levels of reactive oxygen species (ROS) and cytochrome c in hydroxyl radicals (•OH)-induced carp erythrocytes. The data displayed that •OH induced the increases in the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c in carp erythrocytes. However, Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed the •OH-induced increases in the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c in carp erythrocytes. Furthermore, the activities of caspase−3, caspase−8 and caspase−9 and the levels of ROS and cytochrome c were gradually decreased with increasing concentrations of Ala, Cit, Pro and Ala10Pro4Cit1 (0.175−1.400 mM) in the •OH-induced carp erythrocytes. These data demonstrated that the 50% inhibitory doses (ID50) of Ala10Pro4Cit1 on the activities of caspase−8, caspase−9 and caspase−3 and levels of ROS and cytochrome c were respectively estimated to be the minimum values among amino acids examined so far. The 5% inhibitory doses (ID5) of Ala, Cit, Pro and Ala10Pro4Cit1 on the activities of caspase−8, caspase−9 and caspase−3 and levels of ROS and cytochrome c were estimated to be at their physiological concentrations in mammalian. Our research article for further interpretation and discussion from these data in Li et al. (2016) [1]. PMID:26952131

  10. Data in the activities of caspases and the levels of reactive oxygen species and cytochrome c in the •OH-induced fish erythrocytes treated with alanine, citrulline, proline and their combination.

    PubMed

    Li, Huatao; Jiang, Weidan; Liu, Yang; Jiang, Jun; Zhang, Yongan; Wu, Pei; Zhao, Juan; Duan, Xudong; Zhou, Xiaoqiu; Feng, Lin

    2016-06-01

    The present study explored the effects of alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1) on the activities of caspases and levels of reactive oxygen species (ROS) and cytochrome c in hydroxyl radicals (•OH)-induced carp erythrocytes. The data displayed that •OH induced the increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. However, Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed the •OH-induced increases in the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c in carp erythrocytes. Furthermore, the activities of caspase-3, caspase-8 and caspase-9 and the levels of ROS and cytochrome c were gradually decreased with increasing concentrations of Ala, Cit, Pro and Ala10Pro4Cit1 (0.175-1.400 mM) in the •OH-induced carp erythrocytes. These data demonstrated that the 50% inhibitory doses (ID50) of Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were respectively estimated to be the minimum values among amino acids examined so far. The 5% inhibitory doses (ID5) of Ala, Cit, Pro and Ala10Pro4Cit1 on the activities of caspase-8, caspase-9 and caspase-3 and levels of ROS and cytochrome c were estimated to be at their physiological concentrations in mammalian. Our research article for further interpretation and discussion from these data in Li et al. (2016) [1]. PMID:26952131

  11. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  12. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  13. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-12-01

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  14. Potentiation of phenobarbital-induced anticonvulsant activity by pipecolic acid.

    PubMed

    Takahama, K; Miyata, T; Okano, Y; Kataoka, M; Hitoshi, T; Kasé, Y

    1982-07-01

    Pipecolic acid (PA) is an intermediate of lysine metabolism in the mammalian brain. Recent findings suggest a functional connection of PA as neuromodulator in GABAergic transmission. Since many drugs are postulated to produce their effects by interaction with the central GABA system, the influence of PA on the anticonvulsant activity of phenobarbital was examined. Pretreatment of mice with 50 mg . kg-1 of PA potentiated the suppressing effects of the barbiturate on electrically and chemically induced convulsions. However, there was no potentiation of the behavioral effects and hypothermia induced by phenobarbital. PA itself had no or only little effect on the convulsions, motor function and rectal temperature when given in i.p. doses up to 500 mg . kg-1. Intraventricular administration of 500 microgram of PA also did not suppress either type of convulsion, although it produced ptosis, hypotonia, sedation and hypothermia. The results are discussed in relation to GABA system. PMID:6288409

  15. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  16. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success. PMID:26548471

  17. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage. PMID:23063544

  18. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    NASA Astrophysics Data System (ADS)

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  19. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    PubMed

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  20. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF. PMID:12504106

  1. Acid aspiration-induced airways hyperresponsiveness in mice.

    PubMed

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  2. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  3. Delineating Normal from Diseased Brain by Aminolevulinic Acid-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Stummer, Walter

    5-Aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX (PpIX) has been established as an orally applied drug to guide surgical resection of malignant brain tumors by exciting the red fluorescence of PpIX. The accumulation of PpIX in glioblastoma multiforme (GBM) is highly selective and provides excellent contrast to normal brain when using surgical microscopes with appropriately filtered light sources and cameras. The positive predictive value of fluorescent tissue is very high, enabling safe gross total resection of GBM and other brain tumors and improving prognosis of patients. Compared to other intraoperative techniques that have been developed with the aim of increasing the rate of safe gross total resections of malignant gliomas, PpIX fluorescence is considerably simpler, more cost effective, and comparably reliable. We present the basics of 5-ALA-based fluorescence-guided resection, and discuss the clinical results obtained for GBM and the experience with the fluorescence staining of other primary brain tumors and metastases as well as the results for spinal cord tumors. The phototoxicity of PpIX, increasingly used for photodynamic therapy of brain tumors, is mentioned briefly in this chapter.

  4. Utilization of 5-aminolevulinic acid in the photodynamic therapy of tumors: biochemical and photobiological aspects

    NASA Astrophysics Data System (ADS)

    Pottier, Roy H.; Kennedy, James C.

    1994-03-01

    Inherent in both plants and animals is the natural porphyrin, Protoporphyrin IX (Pp). Although Pp does not appear to have any intrinsic biological activity, it is a potent natural photosensitizer. When activated with ultraviolet or visible light, this photosensitizer can induce significant photodynamic effects on tissues, cells, subcellular elements, and macromolecules via the production of singlet oxygen. The biosynthesis of endogenous Pp is under strict enzymatic control. It is possible to bypass a rate controlling step and induce large, transient concentrations of Pp by the addition of exogenous 5-aminolevulinic acid (ALA). ALA may be administered systemically or topically. Much larger amounts of Pp are produced in certain types of tumor tissue than in adjacent normal tissue. Topically applied ALA can be used to treat a variety of skin lesions, including actinic keratosis, basal cell carcinomas and psoriasis.

  5. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.

    PubMed

    Mahboob, Aamra; Farhat, Syeda Mehpara; Iqbal, Ghazala; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Nabavi, Seyed Mohammad; Ahmed, Touqeer

    2016-04-01

    Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders. PMID:26912408

  6. Dietary beta-carotene inhibits mammary carcinogenesis in rats depending on dietary alpha-linolenic acid content.

    PubMed

    Maillard, Virginie; Hoinard, Claude; Arab, Khelifa; Jourdan, Marie-Lise; Bougnoux, Philippe; Chajès, Véronique

    2006-07-01

    To investigate whether dietary alpha-linolenic acid (ALA) content alters the effect of beta-carotene on mammary carcinogenesis, we conducted a chemically induced mammary tumorigenesis experiment in rats randomly assigned to four nutritional groups (15 rats per group) varying in beta-carotene supplementation and ALA content. Two oil formula-enriched diets (15 %) were used: one with 6 g ALA/kg diet in an essential fatty acids (EFA) ratio of linoleic acid:ALA of 5:1 w/w (EFA 5 diet), the other with 24 g ALA/kg diet in an EFA ratio of 1:1 w/w (EFA 1 diet), both designed with a similar linoleic acid content. beta-Carotene was either added (10 mg/kg diet per d) or not added to these diets. beta-Carotene supplementation led to decreased tumour incidence and tumour growth when added to the EFA 5 diet, whereas it had no effect when added to the EFA 1 diet. The decreased tumour growth did not result from an involvement of lipoperoxidation (tumour malondialdehyde content being similar between the groups) or from an inhibition of tumour cell proliferation (as there was an unchanged S phase fraction in the tumours). We concluded that an adequate content of ALA in the diet is required to allow a protective effect of beta-carotene in mammary carcinogenesis. Whether such an interaction between ALA and beta-carotene influences the risk of breast cancer in women needs to be investigated. PMID:16869986

  7. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  8. Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy.

    PubMed

    Li, Zhitao; Sun, Xin; Guo, Shuyuan; Wang, Liping; Wang, Tengyu; Peng, Chenghai; Wang, Wei; Tian, Zhen; Zhao, Ruibo; Cao, Wenwu; Tian, Ye

    2015-10-01

    5-Aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) effectively induces the apoptosis of atherogenic macrophages, but whether it can stabilise atherosclerotic plaque in vivo is unclear. Here, we used an animal model to evaluate the effects of ALA-SDT on plaque stabilisation. Sixty rabbits were induced atherosclerotic plaques in the femoral artery with a combination of silastic tube placement with atherogenic diet, and randomly assigned into control (n = 12) and SDT (n = 48) groups. In the SDT group, after intravenous injected with ALA (60 mg/kg) animals underwent the treatment of ultrasound with intensities of 0.75, 1.00, 1.50 and 2.00 W/cm(²) (n = 12 for each intensity). Seven days after the treatment, the plaque disruption assay was performed to test plaque stability. We found that ALA-SDT with ultrasound intensity of 1.5 W/cm(²) showed the strongest efficacy to stabilise plaques. Under this condition, the frequency of plaque disruption decreased by 88% (p<0.01), positive area of macrophages reduced by 94% (p<0.001) and percentage content of lipids dropped by 60% (p < 0.001), while percentage content of collagens increased by 127% (p<0.001). We also found that the plaque stabilisation by ALA-SDT was associated with increased macrophage apoptosis and apoptotic cell clearance. Moreover, ALA-SDT decreased the contents and activities of matrix metalloproteinase-2,9 and increased the levels of tissue inhibitors of matrix metalloproteinase-1,2 in plaques. Our studies demonstrate that ALA-SDT promotes plaque stabilisation by inducing macrophage elimination and inhibiting matrix degradation. This method might be a promising regimen for atherosclerosis therapy. PMID:26179778

  9. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    PubMed

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  10. Structure of vancomycin and a vancomycin/D-Ala-D-Ala complex in solution

    SciTech Connect

    Molinari, H.; Pastore, A. ); Lian, Luyun ); Hawkes, G.E.; Sales, K. )

    1990-03-06

    Restrained molecular dynamics simulations were used to study the interactions between the glycopeptide antibiotic vancomycin and the dipeptide Ac-D-Ala-D-Ala. Restraints were obtained from a combination of homonuclear and heteronuclear two-dimensional NMR experiments (NOESY, ROESY, {sup 1}H-{sup 15}N inverse correlation). The comparison between the structures obtained for vancomycin alone and for the complex suggests a new hypothesis on the binding mode of this system. The numerical simulations were not straightforward because vancomycin is made of building blocks for which standard force-fields are not available. The representation of unusual chemical environments is also mandatory. The authors believe that the extension of the force-field parameters to their system could be of more general interest. Furthermore, they consider vancomycin and its complex a good example for exploring the more general problem of molecular recognition, a challenge that has been widely approached in the past few years but for which no unique and general methodology has, so far, been recognized.

  11. John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINTH FLOOR NORTH OFFICE WING SHOWING PARTITIONS, WINDOWS AND RADIATOR, FACING SOUTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  12. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  13. Comparison of shock wave therapy and nutraceutical composed of Echinacea angustifolia, alpha lipoic acid, conjugated linoleic acid and quercetin (perinerv) in patients with carpal tunnel syndrome.

    PubMed

    Notarnicola, Angela; Maccagnano, Giuseppe; Tafuri, Silvio; Fiore, Alessandra; Pesce, Vito; Moretti, Biagio

    2015-06-01

    Even though the initial treatment of carpal tunnel syndrome (CTS) is conservative, knowledge of the clinical effects of supplements and of some methods of physiotherapy is still preliminary. Many biological mechanisms can support the administration of shock wave therapy (ESWT) or of alpha lipoic acid (ALA) based nutraceutical, conjugated linoleic acid (GLA), anti-oxidants and Echinacea angustifolia for CTS. The shock waves reduce the nerve compression, produce an anti-inflammatory action, and accelerate the regeneration of neuropathy. ALA and GLA induce antioxidant protective actions, reduce inflammation, promote neuroregeneration, and decrease pain. The Echinacea modulates the endogenous cannabinoid system.The aim of study is to verify the efficiency of shock wave therapy versus nutraceutical composed of ALA, GLA, and Echinacea in CTS. Sixty patients were enrolled in this study and they were randomly assigned to one of two treatments. Both groups showed significant improvements in pain, symptoms' severity and functional scores, and electrodiagnostic results until the sixth month. We verified a trend to a better pain regression in the nutraceutical group. The presence of the medicinal Echinacea represents an added value to the antioxidant effect in ALA and GLA, which can justify this result. ESWT or the association of ALA, GLA, and Echinacea proved to be two effective treatments for controlling symptoms and improving the evolution of CTS. PMID:25953494

  14. Rotation of the Conduction Band Valleys in AlAs due to XX- XY Mixing

    NASA Astrophysics Data System (ADS)

    Im, Hyunsik; Klipstein, P. C.; Grey, R.; Hill, G.

    1999-11-01

    We report resonant magnetotunneling measurements of the energy dispersion near the third X symmetry subband edge in 60 and 70 Å thick AlAs quantum wells with GaAs barriers, grown along z = [001]. An elliptical constant energy surface is observed, oriented parallel to either [110] or [ 1¯10]. This rotation of 45° with respect to the bulk AlAs Fermi surface is explained by interface induced XX-XY mixing. Our results provide new insight into both γ-XZ and XX-XY mixing, showing conclusively that states with both X1 and X3 symmetry contribute. This contrasts with several recent theoretical studies in which the X1 contribution is zero.

  15. Dietary eritadenine suppresses guanidinoacetic Acid-induced hyperhomocysteinemia in rats.

    PubMed

    Fukada, Shin-ichiro; Setoue, Minoru; Morita, Tatsuya; Sugiyama, Kimio

    2006-11-01

    We assessed the effect of eritadenine, a hypocholesterolemic factor isolated from the edible mushroom Lentinus edodes, on plasma homocysteine concentration using methyl-group acceptor-induced hyperhomocysteinemic rats. Male Wistar rats were fed a control diet or diets supplemented with a methyl-group acceptor or a precursor of methyl-group acceptor. Diets were supplemented with guanidinoacetic acid (GAA) at 2.5, 5, 7.5, and 10 g/kg, nicotinic acid (NiA) or ethanolamine (EA) at 5 and 10 g/kg, or glycine at 25 and 50 g/kg, and the rats were fed for 10 d (Expt. 1). Plasma total homocysteine concentration was increased 255 and 421% by 5 and 10 g/kg GAA, respectively, and 39 and 58% by 5 and 10 g/kg NiA, respectively, but not by EA or glycine. GAA supplementation dose-dependently decreased the hepatic S-adenosylmethionine (SAM) concentration and the activity of cystathionine beta-synthase (CBS) and increased the hepatic S-adenosylhomocysteine (SAH) and homocysteine concentrations. In another study in which rats were fed 5 g/kg GAA-supplemented diet for 1-10 d, plasma homocysteine and the other variables affected in Expt. 1 were affected in rats fed the GAA-supplemented diet (Expt. 2). We investigated the effect of supplementation of 5 g/kg GAA-supplemented diet with eritadenine (50 mg/kg) on plasma homocysteine concentration (Expt. 3). Eritadenine supplementation significantly suppressed the GAA-induced increase in plasma homocysteine concentration. Eritadenine also restored the decreased SAM concentration and CBS activity in the liver, whereas it further increased hepatic SAH concentration, suggesting that eritadenine might elicit its effect by both slowing homocysteine production and increasing cystathionine formation. The results confirm that GAA is a useful compound to induce experimental hyperhomocysteinemia and indicate that eritadenine can effectively counteract the hyperhomocysteinemic effect of GAA. PMID:17056803

  16. Inflammatory cells’ role in acetic acid-induced colitis

    PubMed Central

    Sanei, Mohammad H.; Hadizadeh, Fatemeh; Adibi, Peyman; Alavi, Sayyed Ali

    2014-01-01

    Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD). Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1), ex vivo (group 3), and enema after immune suppression (group 5). Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H2O2, we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP) and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful. PMID:25337523

  17. Dihydrolipoic acid induces cytotoxicity in mouse blastocysts through apoptosis processes.

    PubMed

    Houng, Wei-Li; Lin, Cheng-An J; Shen, Ji-Lin; Yeh, Hung-I; Wang, Hsueh-Hsiao; Chang, Walter H; Chan, Wen-Hsiung

    2012-01-01

    α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity. PMID:22489194

  18. Effect of arachidonic and eicosapentaenoic acids on acute lung injury induced by hypochlorous acid

    PubMed Central

    Wahn, H; Ruenauver, N; Hammerschmidt, S

    2002-01-01

    Background: Hypochlorous acid (HOCl) is the main oxidant of activated polymorphonuclear neutrophil granulocytes (PMN) and generated by myeloperoxidase during respiratory burst. This study investigates the effects of HOCl on pulmonary artery pressure (PAP) and vascular permeability and characterises the influence of arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the observed effects. Methods: HOCl (500, 1000, 2000 nmol/min) was continuously infused into the perfusate (Krebs-Henseleit buffer solution, KHB). AA or EPA in subthreshold doses (both 2 nmol/min) or buffer were simultaneously infused using a separate port. PAP, pulmonary venous pressure (PVP), ventilation pressure, and lung weight gain were continuously recorded. The capillary filtration coefficient (Kf,c) was calculated before and 30, 60, and 90 minutes after starting the HOCl infusion. Results: HOCl application resulted in a dose dependent increase in PAP and Kf,c. The onset of these changes was inversely related to the HOCl dose used. The combined infusion of AA with HOCl resulted in a significant additional rise in pressure and oedema formation which forced premature termination of all experiments. The combination of EPA with HOCl did not result in an enhancement of the HOCl induced rise in pressure and oedema formation. Conclusions: Changes in the pulmonary microvasculature caused by HOCl are differently influenced by ω-6 and ω-3 polyunsaturated free fatty acids, suggesting a link between neutrophil derived oxidative stress and pulmonary eicosanoid metabolism. PMID:12454302

  19. l-Ala-γ-d-Glu-meso-diaminopimelic Acid (DAP) Interacts Directly with Leucine-rich Region Domain of Nucleotide-binding Oligomerization Domain 1, Increasing Phosphorylation Activity of Receptor-interacting Serine/Threonine-protein Kinase 2 and Its Interaction with Nucleotide-binding Oligomerization Domain 1*

    PubMed Central

    Laroui, Hamed; Yan, Yutao; Narui, Yoshie; Ingersoll, Sarah A.; Ayyadurai, Saravanan; Charania, Moiz A.; Zhou, Feimeng; Wang, Binghe; Salaita, Khalid; Sitaraman, Shanthi V.; Merlin, Didier

    2011-01-01

    The oligopeptide transporter PepT1 expressed in inflamed colonic epithelial cells transports small bacterial peptides, such as muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (Tri-DAP) into cells. The innate immune system uses various proteins to sense pathogen-associated molecular patterns. Nucleotide-binding oligomerization domain (NOD)-like receptors of which there are more than 20 related family members are present in the cytosol and recognize intracellular ligands. NOD proteins mediate NF-κB activation via receptor-interacting serine/threonine-protein kinase 2 (RICK or RIPK). The specific ligands for some NOD-like receptors have been identified. NOD type 1 (NOD1) is activated by peptides that contain a diaminophilic acid, such as the PepT1 substrate Tri-DAP. In other words, PepT1 transport activity plays an important role in controlling intracellular loading of ligands for NOD1 in turn determining the activation level of downstream inflammatory pathways. However, no direct interaction between Tri-DAP and NOD1 has been identified. In the present work, surface plasmon resonance and atomic force microscopy experiments showed direct binding between NOD1 and Tri-DAP with a Kd value of 34.5 μm. In contrast, no significant binding was evident between muramyl dipeptide and NOD1. Furthermore, leucine-rich region (LRR)-truncated NOD1 did not interact with Tri-DAP, indicating that Tri-DAP interacts with the LRR domain of NOD1. Next, we examined binding between RICK and NOD1 proteins and found that such binding was significant with a Kd value of 4.13 μm. However, NOD1/RICK binding was of higher affinity (Kd of 3.26 μm) when NOD1 was prebound to Tri-DAP. Furthermore, RICK phosphorylation activity was increased when NOD was prebound to Tri-DAP. In conclusion, we have shown that Tri-DAP interacts directly with the LRR domain of NOD1 and consequently increases RICK/NOD1 association and RICK phosphorylation activity. PMID:21757725

  20. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  1. The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon

    PubMed Central

    Grimm, Wesley A; Messer, Jeannette S; Murphy, Stephen F; Nero, Thomas; Lodolce, James P; Weber, Christopher R; Logsdon, Mark F; Bartulis, Sarah; Sylvester, Brooke E; Springer, Amanda; Dougherty, Urszula; Niewold, Timothy B; Kupfer, Sonia S; Ellis, Nathan; Huo, Dezheng; Bissonnette, Marc; Boone, David L

    2016-01-01

    Objective ATG16L1 is an autophagy gene known to control host immune responses to viruses and bacteria. Recently, a non-synonymous single-nucleotide polymorphism in ATG16L1 (Thr300Ala), previously identified as a risk factor in Crohn's disease (CD), was associated with more favourable clinical outcomes in thyroid cancer. Mechanisms underlying this observation have not been proposed, nor is it clear whether an association between Thr300Ala and clinical outcomes will be observed in other cancers. We hypothesised that Thr300Ala influences clinical outcome in human colorectal cancer (CRC) and controls innate antiviral pathways in colon cancer cells. Design We genotyped 460 patients with CRC and assessed for an association between ATG16L1 Thr300Ala and overall survival and clinical stage. Human CRC cell lines were targeted by homologous recombination to examine the functional consequence of loss of ATG16L1, or introduction of the Thr300Ala variant. Results We found an association between longer overall survival, reduced metastasis and the ATG16L1 Ala/Ala genotype. Tumour sections from ATG16L1 Ala/Ala patients expressed elevated type I interferons (IFN-I)-inducible, MxA, suggesting that differences in cytokine production may influence disease progression. When introduced into human CRC cells by homologous recombination, the Thr300Ala variant did not affect bulk autophagy, but increased basal production of type I IFN. Introduction of Thr300Ala resulted in increased sensitivity to the dsRNA mimic poly(I:C) through a mitochondrial antiviral signalling (MAVS)-dependent pathway. Conclusions The CD-risk allele, Thr300Ala, in ATG16L1 is associated with improved overall survival in human CRC, generating a rationale to genotype ATG16L1 Thr300Ala in patients with CRC. We found that Thr300A alters production of MAVS-dependent type I IFN in CRC cells, providing a mechanism that may influence clinical outcomes. PMID:25645662

  2. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose and muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation of 1.5% docosahexaenoic acid (22:6 n-3; DHA) with 0.5% t10, c12- conjugated linoleic acid (18:2 n-6; CLA) prevented the CLA-induced increase in expression of hepatic genes involved in fatty acid synthesis and the decrease in expression of genes involved in fat...

  3. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Reverses Trans-10, Cis-12 Conjugated Linoleic Acid Induced Insulin Resistance in Mice1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: t10, c12-Conjugated linoleic acid (CLA) induces insulin resistance and fatty liver in mice which can be reversed by fish oils. We determined if it is eicospentaenoic acid (20:5n-3, EPA) or docoshexaenoic acid (22:6n-3, DHA) that reverses these adverse effects of CLA. Research Design and M...

  4. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  5. PARP1 Val762Ala polymorphism reduces enzymatic activity

    SciTech Connect

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin . E-mail: tong@iarc.fr; Shen Yan

    2007-03-02

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K {sub m} of PARP1-Ala762 was increased to a 1.2-fold of the K {sub m} of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K {sub m}. This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism.

  6. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    PubMed

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation

  7. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    NASA Astrophysics Data System (ADS)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  8. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  9. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons

    PubMed Central

    Pusceddu, Matteo M.; Nolan, Yvonne M.; Green, Holly F.; Robertson, Ruairi C.; Stanton, Catherine; Kelly, Philip; Dinan, Timothy G.

    2016-01-01

    Background: Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. Methods: We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. Results: We found that glucocorticoid hormone corticosterone (100, 150, 200 μM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 μM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by βIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 μM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 μM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 μM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase–mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on βIII- tubulin-positive neurons. Conclusions: This work

  10. Apo-10’-lycopenoic acid induces Nrf2-mediated expression of phase II antioxidant genes and suppresses H2O2 induced oxidative damage in human bronchial epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous study has demonstrated that apo-10’-lycopenoic acid (ALA), an enzymatic metabolite of lycopene, can suppress lung carcinogenesis in an animal model. However, the potential mechanism(s) underlying this protection is not well defined. It has been suggested that lycopene or its hydrophilic...

  11. The Evidence for α-Linolenic Acid and Cardiovascular Disease Benefits: Comparisons with Eicosapentaenoic Acid and Docosahexaenoic Acid12

    PubMed Central

    Fleming, Jennifer A.; Kris-Etherton, Penny M.

    2014-01-01

    Our understanding of the cardiovascular disease (CVD) benefits of α-linolenic acid (ALA, 18:3n–3) has advanced markedly during the past decade. It is now evident that ALA benefits CVD risk. The expansion of the ALA evidence base has occurred in parallel with ongoing research on eicosapentaenoic acid (EPA, 20:5n–3) and docosahexaenoic acid (DHA, 22:6n–3) and CVD. The available evidence enables comparisons to be made for ALA vs. EPA + DHA for CVD risk reduction. The epidemiologic evidence suggests comparable benefits of plant-based and marine-derived n–3 (omega-3) PUFAs. The clinical trial evidence for ALA is not as extensive; however, there have been CVD event benefits reported. Those that have been reported for EPA + DHA are stronger because only EPA + DHA differed between the treatment and control groups, whereas in the ALA studies there were diet differences beyond ALA between the treatment and control groups. Despite this, the evidence suggests many comparable CVD benefits of ALA vs. EPA + DHA. Thus, we believe that it is time to revisit what the contemporary dietary recommendation should be for ALA to decrease the risk of CVD. Our perspective is that increasing dietary ALA will decrease CVD risk; however, randomized controlled clinical trials are necessary to confirm this and to determine what the recommendation should be. With a stronger evidence base, the nutrition community will be better positioned to revise the dietary recommendation for ALA for CVD risk reduction. PMID:25398754

  12. The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Fleming, Jennifer A; Kris-Etherton, Penny M

    2014-11-01

    Our understanding of the cardiovascular disease (CVD) benefits of α-linolenic acid (ALA, 18:3n-3) has advanced markedly during the past decade. It is now evident that ALA benefits CVD risk. The expansion of the ALA evidence base has occurred in parallel with ongoing research on eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) and CVD. The available evidence enables comparisons to be made for ALA vs. EPA + DHA for CVD risk reduction. The epidemiologic evidence suggests comparable benefits of plant-based and marine-derived n-3 (omega-3) PUFAs. The clinical trial evidence for ALA is not as extensive; however, there have been CVD event benefits reported. Those that have been reported for EPA + DHA are stronger because only EPA + DHA differed between the treatment and control groups, whereas in the ALA studies there were diet differences beyond ALA between the treatment and control groups. Despite this, the evidence suggests many comparable CVD benefits of ALA vs. EPA + DHA. Thus, we believe that it is time to revisit what the contemporary dietary recommendation should be for ALA to decrease the risk of CVD. Our perspective is that increasing dietary ALA will decrease CVD risk; however, randomized controlled clinical trials are necessary to confirm this and to determine what the recommendation should be. With a stronger evidence base, the nutrition community will be better positioned to revise the dietary recommendation for ALA for CVD risk reduction. PMID:25398754

  13. The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation.

    PubMed

    Fernández-Calero, Tamara; Astrada, Soledad; Alberti, Alvaro; Horjales, Sofía; Arnal, Jean Francois; Rovira, Carlos; Bollati-Fogolín, Mariela; Flouriot, Gilles; Marin, Mónica

    2014-09-01

    Until recently, synonymous mutations (which do not change amino acids) have been much neglected. Some evidence suggests that this kind of mutations could affect mRNA secondary structure or stability, translation kinetics and protein structure. To explore deeper the role of synonymous mutations, we studied their consequence on the functional activity of the estrogen receptor alpha (ERα). The ERα is a ligand-inducible transcription factor that orchestrates pleiotropic cellular effects, at both genomic and non-genomic levels in response to estrogens. In this work we analyzed in transient transfection experiments, the activity of ERα carrying the synonymous mutation Ala87, a polymorphism involving about 5-10% of the population. In comparison to the wild type receptor, our results show that ERαA87 mutation reduces the transactivation efficiency of ERα on an ERE reporter gene while its expression level remains similar. This mutation enhances 4-OHT-induced transactivation of ERα on an AP1 reporter gene. Finally, the mutation affects the subcellular localization of ERα in a cell type specific manner. It enhances the cytoplasmic location of ERα without significant changes in non-genomic effects of E2. The functional alteration of the ERαA87 determined in this work highlights the relevance of synonymous mutations for biomedical and pharmacological points of view. PMID:24607813

  14. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  15. Laser biospectroscopy and 5-ALA fluorescence navigation as a helpful tool in the meningioma resection.

    PubMed

    Potapov, A A; Goryaynov, S A; Okhlopkov, V A; Shishkina, L V; Loschenov, V B; Savelieva, T A; Golbin, D A; Chumakova, A P; Goldberg, M F; Varyukhina, M D; Spallone, A

    2016-07-01

    5-aminolevulinic acid (5-ALA) is a natural precursor of protoporphyrin IX (PP IX), which possesses fluorescent properties and is more intensively accumulated in tumor cells than in normal tissue. Therefore, the use of 5-ALA in the surgical treatment of intracranial tumors, particularly gliomas, has gained popularity in the last years, whereas its use in other intracranial pathological entities including meningiomas has been reported occasionally. This study describes a series of 28 patients with intracranial meningiomas, who were administered 5-ALA for a better visualization of tumor boundaries. Twelve patients underwent also laser spectroscopic analysis in order to confirm the visual impression of tumor tissue visualization. Bone infiltration was readily demonstrated. In one case, the tumor recurrence could have been prevented by removal of a tumor remnant, which would possibly have been better recognized if spectroscopic analysis had been used. Fluorescent navigation (FN) is a useful method for maximizing the radicality of meningioma surgery, particularly if the tumor infiltrates the bone, the skull base, and/or the surrounding structures. PMID:26887580

  16. Establishment of treatment parameters for ALA-PDT of plaque psoriasis

    NASA Astrophysics Data System (ADS)

    Stringer, Mark R.; Robinson, Dominic J.; Collins, P.

    1996-12-01

    We report an investigation into the use of photodynamic therapy (PDT), following topically applied 5-aminolaevulinic acid (ALA), as a treatment for plaque psoriasis. Treatment was performed 4 hours post-ALA, using white light doses of 2 - 16 J cm-2 delivered at 10 - 40 mW cm-2. The fluorescence emission of protoporphyrin IX was used as an indicator of the relative concentration of photosensitizer within each plaque before, during, and after therapy. Results show that the rate of sensitizer photo- oxidation is proportional to both pre-treatment fluorescence intensity and surface irradiance, consistent with a rate- equation analysis. A correlation of fluorescence measurements with clinical response of plaques indicates that the effectiveness of PDT is dominated by the level of PpIX at the onset of treatment, and is much less dependent upon light dose. Using these findings we have established a PDT treatment protocol that involves the delivery of 8 J cm-2 of white light, at a rate of 15 mW cm-2. The possibility of ALA-PDT being established as the therapy of choice is discussed.

  17. Synthesis, DNA recognition and cleavage studies of novel tetrapeptide complexes, Cu(II)/Zn(II)-Ala-Pro-Ala-Pro

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.; Mohapatra, D. K.

    2013-05-01

    New tetrapeptide complexes Cu(II)·Ala-Pro-Ala-Pro (1) and Zn(II)·Ala-Pro-Ala-Pro (2) were synthesized from the reaction of tetrapeptide, Ala-Pro-Ala-Pro and CuCl2/ZnCl2 and were thoroughly characterized by elemental analysis, IR,1H and 13C NMR (in case of 2), ESI-MS, UV and molar conductance measurements. The solution stability study was carried out employing UV-vis absorption titrations over a broad range of pH which suggested the stability of the complexes in solution. In vitro interaction of complexes 1 and 2 with CT-DNA was studied employing UV-vis, fluorescence, circular dichroic and viscometry studies. To throw insight into molecular binding event at the target site, UV-vis titrations of 1 and 2 with mononucleotides of interest viz.; 5'-GMP and 5'-TMP were carried out. Cleavage activity of the complexes with pBR322 plasmid DNA was evaluated by agarose gel electrophoresis and, the electrophoresis pattern demonstrated that both the complexes 1 and 2 are efficient cleavage agents. Further, the Cu(II) complex displayed efficient oxidative cleavage of supercoiled DNA while various reactive oxygen species are responsible for the cleavage in Zn(II) complex.

  18. γ-Hydroxybutyric acid-induced electrographic seizures.

    PubMed

    Cheung, Joseph; Lucey, Brendan P; Duntley, Stephen P; Darken, Rachel S

    2014-07-15

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. PMID:25024661

  19. Wavelength-dependent in-vitro and in-vivo photodynamic effects after sensitization with 5-aminolevulinic acid induced protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Szeimies, Rolf-Markus; Abels, Christoph; Fritsch, Clemens; Steinbach, Pia; Baeumler, Wolfgang; Messmann, Helmut; Goetz, Alwin E.; Goerz, Guenter; Landthaler, Michael

    1996-01-01

    Photodynamic therapy (PDT) with topically applied 5-aminolevulinic acid (ALA) is of growing interest, in particular in dermatology. Due to the fact that PDT with intravenously administered Photofrin is the only clinically approved sensitizer so far and is performed at a wavelength of 630 nm, this wavelength is also used in most experimental and clinical trials with ALA. In this study influence of irradiation with coherent light from a tunable dye laser at different wavelengths ranging from 625 to 649 nm was investigated. In in vitro experiments HaCaT immortalized human keratinocytes were sensitized with 30 (mu) g/ml ALA for 24 hrs. By determination of cell viability with the MTT test, best cell-killing effects were observed following irradiation at 635 nm. In an in vivo setting using an amelanotic melanoma (A-Mel-3) grown subcutaneously in Syrian Golden hamsters, these results were confirmed: tumor growth determined by measuring tumor volume increase after 28 days was less pronounced in animals treated with 100 mg/kg ALA i.v. and irradiated 2.5 hrs. later at 635 nm, as compared to animals receiving an equal dose and irradiated at 630 nm. This observation in vitro is probably due to large amounts of photosensitizing protoporphyrin IX (PP) localized in cell membranes which is visualized by confocal laser scanning microscopy (CLSM) and determined by HPLC analysis. These results suggest that in ALA-PDT when a coherent light source is used probably better results are achieved irradiating at 635 nm.

  20. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Smetana, Karel; Pluskalová, Michaela; Cajthamlová, Hana; Marinov, Iuri; Fuchs, Ota; Soucek, Josef; Jarolím, Petr; Hrkal, Zbynek

    2003-02-01

    We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation. These data suggest that ALA-PDT activates the mitochondrial apoptotic pathway. The level of endoplasmic reticulum Ca(2+)-binding chaperones ERp57 and ERp72 and of anti-apoptotic proteins Bcl-2 and Bcl-x(L) was decreased whereas that of Ca(2+)-binding protein calmodulin and the stress protein HSP60 was elevated following ALA-PDT. Inhibition of the initiator caspase 9, execution caspase 3 and Ca(2+)-dependent protease m-calpain, did not prevent DNA fragmentation. We conclude that, in our in vitro model, ALA-based photodynamic treatment initiates several signaling processes in HL60 cells that lead to rapidly progressing apoptosis, which is followed by slow necrosis. Two apoptotic processes proceed in parallel, one representing the mitochondrial pathway, the other involving disruption of calcium homeostasis and activation of the endoplasmic reticulum stress-mediated pathway. PMID:12633980

  1. Valproic Acid and Other HDAC Inhibitors Induce Microglial Apoptosis and Attenuate Lipopolysaccharide- induced Dopaminergic Neurotoxicity

    PubMed Central

    Chen, Po See; Wang, Chao-Chuan; Bortner, Carl D.; Peng, Giia-Sheun; Wu, Xuefei; Pang, Hao; Lu, Ru-Band; Gean, Po-Wu; Chuang, De-Maw; Hong, Jau-Shyong

    2009-01-01

    Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation. Other HDAC inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinson’s disease. PMID:17850978

  2. The radiation-induced degradation of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Deeble, D. J.; Phillips, G. O.; Bothe, E.; Schuchmann, H.-P.; von Sonntag, C.

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K +), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base (overall half-lives at pH values of 4.8, 7 and 10.2 were 0.6, 1 and 0.1 ms). It would seem that more than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N 2O/O 2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N 2O/O 2, pulse-irradiated), showed a marked dependence on pH, with G-values (molecules/100 eV) of 0.7, 2.5 and 4.7 at pH values of 7, 9.7 and 10.4, respectively. Steady-state radiolysis (N 2O/O 2) was used to determine G-values for oxygen consumption [ G(-O 2) ≈ 6], carbon dioxide formation [ G(CO 2) = 0.8 in the absence of O 2 and 1.3 in its presence] and peroxide formation [ G(H 2O 2) ≈ 2; G(organic hydroperoxide) < 0.15].

  3. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  4. Conformational preferences of heterochiral peptides. Crystal structures of heterochiral peptides Boc-(D) Val-(D) Ala-Leu-Ala-OMe and Boc-Val-Ala-Leu-(D) Ala-OMe--enhanced stability of beta-sheet through C-H...O hydrogen bonds.

    PubMed

    Fabiola, G F; Bobde, V; Damodharan, L; Pattabhi, V; Durani, S

    2001-02-01

    The crystal structures of Boc-(D) Val-(D) Ala-Leu-Ala-OMe (vaLA) and Boc-Val-Ala-Leu-(D) Ala-OMe (VALa) have been determined. vaLA crystallises in space group P2(1),2(1),2(1), with a = 9.401 (4), b = 17.253 (5), c = 36.276 (9)A. V = 5,884 (3) A3, Z = 8, R = 0.086. VALa crystallises in space group P2(1) with a = 9.683 (9), b = 17.355 (7), c = 18.187 (9) A, beta = 95.84 (8) degrees , V = 3,040(4) A3, Z = 4, R = 0.125. There are two molecules in the asymmetric unit in antiparallel beta-sheet arrangement in both the structures. Several of the Calpha hydrogens are in hydrogen bonding contact with the carbonyl oxygen in the adjacent strand. An analysis of the observed conformational feature of D-chiral amino acid residues in oligopeptides, using coordinates of 123 crystal structures selected from the 1998 release of CSD has been carried out. This shows that all the residues except D-isoleucine prefer both extended and alphaL conformation though the frequence of occurence may not be equal. In addition to this, D-leucine, valine, proline and phenylalanine have assumed alphaR conformations in solid state. D-leucine has a strong preference for helical conformation in linear peptides whereas they prefer an extended conformation in cyclic peptides. PMID:11245253

  5. Nuclear transcription factors: a new approach to enhancing cellular responses to ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Sato, Nobuyuki; Moore, Brian; Mack, Judith; Gasbarre, Christopher; Keevey, Samantha; Ortel, Bernhard; Sinha, Alok; Khachemoune, Amor

    2006-02-01

    Photodynamic therapy (PDT) using aminolevulinic acid (ALA) relies upon the uptake of ALA into cancer cells, where it is converted into a porphyrin intermediate, protoporphyrin IX (PpIX) that is highly photosensitizing. For large or resistant tumors, however, ALA/PDT is often not completely effective due to inadequate PpIX levels. Therefore, new approaches to enhance the intracellular production of PpIX are sought. Here, we describe a general approach to improve intracellular PpIX accumulation via manipulations that increase the expression of an enzyme, coproporphyrinogen oxidase (CPO), that is rate-determining for PpIX production. We show that nuclear hormones that promote terminal differentiation, e.g. vitamin D or androgens, can also increase the accumulation of PpIX and the amount of killing of the target cells upon exposure to light. These hormones bind to intracellular hormone receptors that translocate to the nucleus, where they act as transcription factors to increase the expression of target genes. We have found that several other transcription factors associated with terminal differentiation, including members of the CCAAT enhancer binding (C/EBP) family, and a homeobox protein named Hoxb13, are also capable of enhancing PpIX accumulation. These latter transcription factors appear to interact directly with the CPO gene promoter, resulting in enhanced CPO transcriptional activity. Our data in several different cell systems, including epithelial cells of the skin and prostate cancer cells, indicate that enhancement of CPO expression and PpIX accumulation represents a viable new approach toward improving the efficacy of ALA/PDT.

  6. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  7. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  8. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  9. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  10. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    PubMed Central

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  11. Effect of αlipoic acid and silymarin on bladder outlet obstruction.

    PubMed

    Yildirim, Abidin; Başeskioğlu, Barbaros; Temel, Halide E; Erkasap, Nilüfer; Yenilmez, Aydin; Uslu, Sema; Ozer, Caner; Ozkurt, Mete; Dönmez, Turgut

    2013-02-01

    The aim of the present study was to determine whether the treatment of obstructed rat bladders with αlipoic acid (ALA) and silymarin reverses the biochemical and physiological responses to bladder outlet obstruction (BOO). A total of 32 adult Sprague Dawley rats were divided into four groups (n=8 per group): sham (placebo surgery) animals with no treatment (group 1); control animals with surgically induced BOO (group 2); obstructed rats treated with ALA (group 3); and obstructed rats treated with silymarin (group 4). Histological evaluation, bladder weights, collagen structure, TdT-mediated biotin nick end-labeling (TUNEL), inducible nitric oxide sentase (iNOS) mRNA levels, malondialdehyde (MDA) levels and tumor necrosis factor (TNF) levels were investigated. The ALA-treated group had similar bladder weights, collagen levels and TUNEL positivity and decreased iNOS levels compared with the control group, while the silymarin group exhibited further differences. Serum MDA and TNF-α levels were both decreased in the ALA and silymarin groups. ALA treatment reduced the increased oxidative stress and bladder inflammation caused by BOO and may contribute to the protection of bladder function. PMID:23403734

  12. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review.

    PubMed

    Motekallemi, Arash; Jeltema, Hanne-Rinck; Metzemaekers, Jan D M; van Dam, Gooitzen M; Crane, Lucy M A; Groen, Rob J M

    2015-10-01

    Meningiomas are the second most common primary tumors affecting the central nervous system. Surgical treatment can be curative in case of complete resection. 5-aminolevulinic acid (5-ALA) has been established as an intraoperative tool in malignant glioma surgery. A number of studies have tried to outline the merits of 5-ALA for the resection of intracranial meningiomas. In the present paper, we review the existing literature about the application of 5-ALA as an intraoperative tool for the resection of intracranial meningiomas. PubMed was used as the database for search tasks. We included articles published in English without limitations regarding publication date. Tumor fluorescence can occur in benign meningiomas (WHO grade I) as well as in WHO grade II and WHO grade III meningiomas. Most of the reviewed studies report fluorescence of the main tumor mass with high sensitivity and specificity. However, different parts of the same tumor can present with a different fluorescent pattern (heterogenic fluorescence). Quantitative probe fluorescence can be superior, especially in meningiomas with difficult anatomical accessibility. However, only one study was able to consistently correlate resected tissue with histopathological results and nonspecific fluorescence of healthy brain tissue remains a confounder. The use of 5-ALA as a tool to guide resection of intracranial meningiomas remains experimental, especially in cases with tumor recurrence. The principle of intraoperative fluorescence as a real-time method to achieve complete resection is appealing, but the usefulness of 5-ALA is questionable. 5-ALA in intracranial meningioma surgery should only be used in a protocolled prospective and long-term study. PMID:25736455

  13. Stability, metabolism and transport of D-Asp(OBzl)-Ala--a model prodrug with affinity for the oligopeptide transporter.

    PubMed

    Steffansen, B; Lepist, E I; Taub, M E; Larsen, B D; Frokjaer, S; Lennernäs, H

    1999-04-01

    The model prodrug D-Asp(OBzl)-Ala has previously been shown to have affinity and to be transported by the oligopeptide transporter PepT1 expressed in Caco-2 cells. The main objective of the present study was to investigate the aqueous stability of D-Asp(OBzl)-Ala and its in vitro metabolism in different gastrointestinal media arising from rats and humans, as well as in human plasma. The second major aim of the study was to evaluate our previous study in Caco-2 cell culture, by determining the effective intestinal permeability (Peff) of D-Asp(OBzl)-Ala in situ using the single-pass rat perfusion model. The aqueous stability studies show water, general buffer, as well as specific acid and base catalysis of D-Asp(OBzl)-Ala. The degradation of the model prodrug was independent of ionic strength. The half-lives in rat jejunal fluid and homogenate were >3 h. In human gastric and intestinal fluids, the half-lives were >3 h and 2.3+/-0. 03 h, respectively. Using the rat single-pass perfusion technique, the effective jejunal permeability (Peff) of D-Asp(OBzl)-Ala was determined to be high (1.29+/-0.5.10-4 cm/s). The 32 times higher Peff value found in the perfusion model compared to Caco-2 cells is most likely due to a higher functional expression of the oligopeptide transporter. Rat jejuna Peff was reduced by approximately 50% in the presence of well known oligopeptide transporter substrates, such as Gly-Sar and cephalexin. It may be that D-Asp(OBzl)-Ala is primarily absorbed intact by the rat jejunal oligopeptide transporter, since the stability in the intestinal homogenate and fluids was rather high (t1/2>2.3 h). PMID:10072480

  14. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  16. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  17. The Carboxyl Terminus of Eremomycin Facilitates Binding to the Non-d-Ala-d-Ala Segment of the Peptidoglycan Pentapeptide Stem.

    PubMed

    Chang, James; Zhou, Hongyu; Preobrazhenskaya, Maria; Tao, Peng; Kim, Sung Joon

    2016-06-21

    Glycopeptide antibiotics inhibit cell wall biosynthesis in Gram-positive bacteria by targeting the peptidoglycan (PG) pentapeptide stem structure (l-Ala-d-iso-Gln-l-Lys-d-Ala-d-Ala). Structures of the glycopeptide complexed with a PG stem mimic have shown that the d-Ala-d-Ala segment is the primary drug binding site; however, biochemical evidence suggests that the glycopeptide-PG interaction involves more than d-Ala-d-Ala binding. Interactions of the glycopeptide with the non-d-Ala-d-Ala segment of the PG stem were investigated using solid-state nuclear magnetic resonance (NMR). LCTA-1421, a double (15)N-enriched eremomycin derivative with a C-terminal [(15)N]amide and [(15)N]Asn amide, was complexed with whole cells of Staphylococcus aureus grown in a defined medium containing l-[3-(13)C]Ala and d-[1-(13)C]Ala in the presence of alanine racemase inhibitor alaphosphin. (13)C{(15)N} and (15)N{(13)C} rotational-echo double-resonance (REDOR) NMR measurements determined the (13)C-(15)N internuclear distances between the [(15)N]Asn amide of LCTA-1421 and the (13)C atoms of the bound d-[1-(13)C]Ala-d-[1-(13)C]Ala to be 5.1 and 4.8 Å, respectively. These measurements also determined the distance from the C-terminal [(15)N]amide of LCTA-1421 to the l-[3-(13)C]Ala of PG to be 3.5 Å. The measured REDOR distance constraints position the C-terminus of the glycopeptide in the proximity of the l-Ala of the PG, suggesting that the C-terminus of the glycopeptide interacts near the l-Ala segment of the PG stem. In vivo REDOR measurements provided structural insight into how C-terminally modified glycopeptide antibiotics operate. PMID:27243469

  18. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling.

    PubMed

    Pereañez, Jaime Andrés; Patiño, Arley Camilo; Rey-Suarez, Paola; Núñez, Vitelbina; Henao Castañeda, Isabel Cristina; Rucavado, Alexandra

    2013-09-01

    Glycolic acid (GA) (2-Hydroxyethanoic acid) is widely used as chemical peeling agent in Dermatology and, more recently, as a therapeutic and cosmetic compound in the field of skin care and disease treatment. In this work we tested the inhibitory ability of glycolic acid on the enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper venom, which induces a variety of toxic actions. Glycolic acid inhibited the proteolytic activity of BaP1 on azocasein, with an IC₅₀ of 1.67 mM. The compound was also effective at inhibiting the hemorrhagic activity of BaP1 in skin and muscle in experiments involving preincubation of enzyme and inhibitor prior to injection. When BaP1 was injected i.m. and then, at the same site, different concentrations of glycolic acid were administered at either 0 or 5 min, 7 mM solutions of the inhibitor partially abrogated hemorrhagic activity when administered at 0 min. Moreover, glycolic acid inhibited, in a concentration-dependent manner, edema-forming activity of BaP1 in the footpad. In order to have insights on the mode of action of glycolic acid, UV-vis and intrinsic fluorescence studies were performed. Results of these assays suggest that glycolic acid interacts directly with BaP1 and chelates the Zn²⁺ ion at the active site. These findings were supported by molecular docking results, which suggested that glycolic acid forms hydrogen bonds with residues Glu143, Arg110 and Ala111 of the enzyme. Additionally, molecular modeling results suggest that the inhibitor chelates Zn²⁺, with a distance of 3.58 Å, and may occupy part of substrate binding cleft of BaP1. Our results suggest that glycolic acid is a candidate for the development of inhibitors to be used in snakebite envenomation. PMID:23726855

  19. Molecular Dynamics and QM/MM Calculations Predict the Substrate-Induced Gating of Cytochrome P450 BM3 and the Regio- and Stereoselectivity of Fatty Acid Hydroxylation.

    PubMed

    Dubey, Kshatresh Dutta; Wang, Binju; Shaik, Sason

    2016-01-27

    Theory predicts herein enzymatic activity from scratch. We show that molecular dynamics (MD) simulations and quantum-mechanical/molecular mechanics (QM/MM) calculations of the fatty acid hydroxylase P450 BM3 predict the binding mechanism of the fatty acid substrate and its enantio/regioselective hydroxylation by the active species of the enzyme, Compound I. The MD simulations show that the substrate's entrance involves hydrogen-bonding interactions with Pro25, Glu43, and Leu188, which induce a huge conformational rearrangement that closes the substrate channel by pulling together the A helix and the β1 sheet to the F/G loop. In turn, at the bottom of the substrate's channel, residue Phe87 controls the regioselectivity by causing the substrate's chain to curl up and juxtapose its CH2 positions ω-1/ω-2/ω-3 to Compound I while preventing access to the endmost position, ω-CH3. Phe87 also controls the stereoselectivity by the enantioselective steric blocking of the pro-S C-H bond, thus preferring R hydroxylation. Indeed, the MD simulations of the mutant Phe87Ala predict predominant ω hydroxylation. These findings, which go well beyond the X-ray structural data, demonstrate the predictive power of theory and its insight, which can potentially be used as a partner of experiment for eventual engineering of P450 BM3 with site-selective C-H functionalization capabilities. PMID:26716578

  20. Disruption of behavioral circadian rhythms induced by psychophysiological stress affects plasma free amino acid profiles without affecting peripheral clock gene expression in mice.

    PubMed

    Oishi, Katsutaka; Yamamoto, Saori; Itoh, Nanako; Miyazaki, Koyomi; Nemoto, Tadashi; Nakakita, Yasukazu; Kaneda, Hirotaka

    2014-07-18

    Disordered circadian rhythms are associated with various psychiatric conditions and metabolic diseases. We recently established a mouse model of a psychophysiological stress-induced chronic sleep disorder (CSD) characterized by reduced amplitude of circadian wheel-running activity and sleep-wake cycles, sleep fragmentation and hyperphagia. Here, we evaluate day-night fluctuations in plasma concentrations of free amino acids (FAA), appetite hormones and prolactin as well as the hepatic expression of circadian clock-related genes in mice with CSD (CSD mice). Nocturnal increases in wheel-running activity and circadian rhythms of plasma prolactin concentrations were significantly disrupted in CSD mice. Hyperphagia with a decreased leptin/ghrelin ratio was found in CSD mice. Day-night fluctuations in plasma FAA contents were severely disrupted without affecting total FAA levels in CSD mice. Nocturnal increases in branched-chain amino acids such as Ile, Leu, and Val were further augmented in CSD mice, while daytime increases in Gly, Ala, Ser, Thr, Lys, Arg, His, Tyr, Met, Cys, Glu, and Asn were significantly attenuated. Importantly, the circadian expression of hepatic clock genes was completely unaffected in CSD mice. These findings suggest that circadian clock gene expression does not always reflect disordered behavior and sleep rhythms and that plasma FFA profiles could serve as a potential biomarker of circadian rhythm disorders. PMID:24971530

  1. Characterization of a delta-electroencephalogram (-sleep)-inducing peptide.

    PubMed

    Schoenenberger, G A; Monnier, M

    1977-03-01

    A peptide that induces slow-wave (delta) and spindles electroencephalogram enhancement after intraventricular (brain) infusion has been isolated from rabbits and given the name delta-sleep-inducing peptide (DSIP). Amino acid seqeunce: Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu. This compound, five possible metabolic products (containing residues 1--8, 2--9, 2--8, 1--4, and 5--9), two nonapeptide analogues with two amino acids exchanged, and a related tripeptide (Trp-Ser-Glu) were synthesized. All nine synthetic peptides were infused intraventricularly in rabbits under double-blind conditions. A total of 58 rabbits including controls were evaluated. The electroencephalogram leads from the neocortex and the archicortex were directly fast-Fourier transformed and analyzed by a Univac 1108 computer system. Only the delta-sleep-inducing peptide (snythetic) showed significant and specific enhancement/induction of delta and spindle electroencephalogram patterns. PMID:265572

  2. Protoporphyrin IX fluorescence kinetics in C6 glioblastoma cells after delta-aminolevulinic acid incubation: effect of a protoporphyrinogen oxidase inhibitor.

    PubMed

    Carre, J; Eleouet, S; Rousset, N; Vonarx, V; Heyman, D; Lajat, Y; Patrice, T

    1999-06-01

    PpIX synthesis after incubation with delta-aminolevulinic acid (ALA) is highly variable from one cell to another within a single cell population and in human glioblastomas in vivo. To improve PpIX synthesis, we attempted to modify the PpIX synthesis pathway in a C6 glioma cell model. To perform this experiment we used confocal microspectrofluorometry to analyse the effects of a highly purified form of sulfentrazone (FP846) on the kinetics of PpIX synthesis after ALA administration to living C6 cells. Our results show that PpIX fluorescence was maximal (seven-fold higher than basal values) 3 to 4 hrs. after the beginning of incubation with ALA. FP846 depressed this increase in fluorescence nearly to basal levels not only in C6 cells but also in HT29 and HepG2 cells. Fluorescence spectra shape were not affected by FP846, except for intensity. ALA/PpIX-induced photocytoxicity was perfectly correlated with fluorescence intensity recorded in cell cytoplasm. ALA alone (100 microg/ml) did not induce a significant decrease in cell survival, but irradiation of 25 J/cm2 leading to an overall cell death of 60%. FP846 added together with ALA suppressed ALA/PpIX-induced phototoxicity. The fact that the FP846-induced decrease in PpIX synthesis was not the same in animal and plant cells suggests that the porphyrin metabolic pathway differs due to the relative amounts of substrate or the effect of inhibitor and that another chemical would be needed alone or in combination with FP846 to improve PpIX synthesis. PMID:10432190

  3. Lipid Lowering Effect of Antioxidant Alpha-Lipoic Acid in Experimental Atherosclerosis

    PubMed Central

    Amom, Zulkhairi; Zakaria, Zaiton; Mohamed, Jamaluddin; Azlan, Azrina; Bahari, Hasnah; Taufik Hidayat Baharuldin, Mohd; Aris Moklas, Mohd; Osman, Khairul; Asmawi, Zanariyah; Kamal Nik Hassan, Mohd

    2008-01-01

    Accumulating data demonstrated that hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group N, HCD and ALA (n = 6). Group N (normal control) was fed with normal chow, the rest (HCD and ALA) were fed with 100 g/head/day of 1% cholesterol rich diet to induce hypercholesterolemia. Four point two mg/body weight of alpha lipoic acid was concomintantly supplemented to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning, week 5 and week 10. Plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. At the end of the experiment, the animals were sacrificed and the aorta were excised for intimal lesion analysis. The plasma total cholesterol (TC) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the HCD group (p<0.05). Similarly, low level of MDA (p<0.05) in ALA group was observed compared to that of the HCD group showing a significant reduction of lipid peroxidation activity. Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to HCD group. These findings suggested that alpha lipoic acid posses a dual lipid lowering and anti-atherosclerotic properties indicated with low plasma TC and LDL levels and reduction of athero-lesion formation in hypercholesterolemic-induced rabbits. PMID:18818758

  4. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  5. A randomised controlled trial of ALA vs. Photofrin photodynamic therapy for high-grade dysplasia arising in Barrett's oesophagus.

    PubMed

    Dunn, J M; Mackenzie, G D; Banks, M R; Mosse, C A; Haidry, R; Green, S; Thorpe, S; Rodriguez-Justo, M; Winstanley, A; Novelli, M R; Bown, S G; Lovat, L B

    2013-05-01

    Photofrin photodynamic therapy (PDT) is a licenced treatment for Barrett's oesophagus (BE) with high-grade dysplasia (HGD) but causes strictures and photosensitivity and complete reversal of dysplasia (CR-HGD) by 50 % at 5 years. 5-Aminolaevulinic acid (ALA) is an alternative treatment with non-randomised data suggesting 85 % CR-HGD and a low risk of side effects. We aimed to compare efficacy and side effect profile between the drugs. A single-centre randomised controlled trial was conducted. Presence of HGD was confirmed on three occasions by two specialist GI pathologists. Stratification was by length of BE and extent of dysplasia. Standard protocols for ALA and Photofrin-PDT were followed. Endoscopic follow-up with 2-cm four-quadrant biopsy was at 6 weeks, 4 months, and then annually. All adverse event data were collected. Sixty four patients were randomised, 34 ALA and 30 Photofrin-PDT. Median follow-up is 24 months. On intention-to-treat analysis, CR-HGD was 16/34 (47 %) with ALA-PDT and 12/30 (40 %) with Photofrin-PDT. The overall cancer incidence was 14 % (9/64). On sub-group log-rank analysis, for BE ≤ 6 cm, CR-HGD was significantly higher with ALA-PDT than Photofrin-PDT (χ(2) =5.39, p=0.02). Strictures and skin photosensitivity were significantly more common after treatment with Photofrin-PDT than ALA-PDT (33 vs. 9 % and 43 vs. 6 %, respectively, p<0.05). The rate of buried glands with either drug was significantly higher post-PDT (48 % of patients) than pre-PDT (20 %). ALA-PDT has a better risk profile than Photofrin-PDT. In patients with BE length ≤ 6 cm, preliminary results show ALA-PDT is associated with significantly higher CR-HGD. In longer segments of BE, neither PDT drug is sufficiently efficacious to warrant routine use. PMID:22699800

  6. Uric acid protects erythrocytes from ozone-induced changes

    SciTech Connect

    Meadows, J.; Smith, R.C.

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  7. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  8. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  9. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  10. Valproic acid-induced pancreatitis in a 15-year-old boy with juvenile myoclonic epilepsy.

    PubMed

    Veri, Kadi; Uibo, Oivi; Talvik, Inga; Talvik, Tiina

    2013-01-01

    Drug-induced acute pancreatitis is a rare condition in childhood, and information about the incidence of valproic acid-induced acute pancreatitis in the pediatric population is scarce. In this clinical case, we report a first documented pediatric case of valproic acid-induced pancreatitis in Estonia. A 15-year-old boy with juvenile myoclonic epilepsy developed acute pancreatitis after 2-month therapy with valproic acid. The symptoms of pancreatitis subsided within 1 week after the discontinuation of treatment with valproic acid. Acute pancreatitis should be suspected in any pediatric patient with gastrointestinal symptoms during valproate treatment. PMID:24823930

  11. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia.

    PubMed

    Dos Santos, Carlucio Rocha; Cavalcante, Ana Luiza Michel; Hauser-Davis, Rachel Ann; Lopes, Renato Matos; Da Costa Mattos, Rita De Cássia Oliveira

    2016-07-01

    Liver and blood δ-aminolevulinic acid dehydratase (ALA-D) inhibition by exposure to sub-lethal lead concentrations over time in Nile tilapia (Oreochromis niloticus) were investigated. All three lead concentrations (1mgkg(-1), 10mgkg(-1) and 100mgkg(-1)) significantly inhibited ALA-D activity in blood (319±29.2; 180±14.6 and 172±19µmols(-1)h(-1)L(-1) respectively) and liver (302±5.84; 201±41.4 and 93±22.1µmols(-1)h(-1)L(-1)) 24h after injection relative to controls (blood: 597±37.0µmols(-1)h(-1)L(-1); liver: 376±23.1µmols(-1)h(-1)L(-1)). Blood ALA-D was greatly inhibited in all but the highest lead dose. Fish were then exposed to 1mgkg(-1) lead for 9 days, and presented short-term hyperglycemia, decreased hemoglobin and hematocrit values and time-dependent blood ALA-D activity inhibition, corroborating blood ALA-D activity as being more suitable for investigating lead effects, showing dose and time-dependent ALA-D inhibition after lead exposure. The results of the present study also demonstrated that fish size affects blood ALA-D activity, as fish from the 24-h assay, which were slightly smaller (approximately 200g), showed higher ALA-D inhibition in response to lead exposure when compared to the fish from the 9-day assay (approximately 500g). Thus, fish size should always be taken into account both in the field and in laboratory settings, and efforts should be made to obtain uniform fish size samples for biomarker studies. PMID:27054706

  12. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  13. Aminolevulinic Acid-Photodynamic Therapy Combined with Topically Applied Vascular Disrupting Agent Vadimezan Led to Enhanced Antitumor Responses

    PubMed Central

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor-vascular disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a non-invasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. Additionally, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA assays to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared to ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. PMID:21575001

  14. [Epigenetic variability induced by nicotinic acid in Triticum aestivum L].

    PubMed

    Bogdanova, E D

    2003-09-01

    The effect of nicotinic acid (NA) on hereditary traits of spring common wheat cultivar Kazakhstanskaya 126 (K.126) were studied under the laboratory and field conditions. Treatment of seeds and vegetating plants with 0.01-0.1% NA (aqueous solution) induced heritable epigenetic changes in wheat. As a result, strong tall plants with the long productive spike, large seeds, and several quantitative and qualitative characters other than in the original cultivar were obtained in the second and further generations after treatment. Crosses of changed plants with each other did not result in segregation with respect to leaf downiness or anthocyan stem color in F2-F4, suggesting the same epigenetic state of genes responsible for changed characters. In crosses with the original cultivar, characters of the changed plants always dominated in F1. Basing on the current views, the changes were attributed to a transition of the hl1 and pc recessive marker genes into new, dominant epiallelic states Hl1 and Pc, which respectively determine downy leaves and the colored stem. The NA effect was specific, since only one type of the variation was observed. The changed characters were stable, and no reversion to the original phenotype was detected in 57 generations. PMID:14582391

  15. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3. PMID:25868813

  16. Albumin-associated free fatty acids induce macropinocytosis in podocytes

    PubMed Central

    Chung, Jun-Jae; Huber, Tobias B.; Gödel, Markus; Jarad, George; Hartleben, Björn; Kwoh, Christopher; Keil, Alexander; Karpitskiy, Aleksey; Hu, Jiancheng; Huh, Christine J.; Cella, Marina; Gross, Richard W.; Miner, Jeffrey H.; Shaw, Andrey S.

    2015-01-01

    Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria. PMID:25915582

  17. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    PubMed

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  18. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology.

    PubMed

    Piermartiri, Tetsade; Pan, Hongna; Figueiredo, Taiza H; Marini, Ann M

    2015-01-01

    α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders. PMID:26569216

  19. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment

    PubMed Central

    Li, Pei-Tzu; Tsai, Yi-Jane; Lee, Ming-Jen; Chen, Chin-Tin

    2015-01-01

    Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ0 cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation. PMID:26473836

  20. Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications

    PubMed Central

    Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh

    2016-01-01

    Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263

  1. The effect of ALA/PpIX PDT on putative cancer stem cells in tumor side populations

    NASA Astrophysics Data System (ADS)

    Morgan, Janet; Petrucci, Cara M.

    2009-06-01

    Protoporphyrin IX (PpIX) synthesized endogenously from 5-aminolevulinic acid (ALA), is effluxed from cells expressing the ATP-dependent transporter ABCG2. Side population (SP) cells (named for their low red/blue fluorescence distribution in flow cytometry plots with ABCG2 substrates such as Hoechst) are postulated to contain cancer stem cells (CSC). The SP in U87 (human gliblastoma cell line) were more resistant to ALA-PDT than NON-SP cells. Inhibiting ABCG2 activity with the tyrosine kinase inhibitor imatinib mesylate (IM, Gleevec) during incubation with ALA increased PpIX in the SP by preventing its efflux and decreased the SP after subsequent PDT, enhancing phototoxicity. Evasion of SP cells from ALA-PDT could cause tumor recurrence from CSC. Manipulation of ABCG2 levels on the SP with small molecule modulators may be a potential strategy for enhancing PDT by decreasing the amount of substrate photosensitizer extruded from cells and lowering the threshold for phototoxicity.

  2. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm.

    PubMed

    Yang, Jungil; Kim, Sung-Ryul; Lee, Sang-Kyu; Choi, Heebak; Jeon, Jong-Seong; An, Gynheung

    2015-11-01

    Alteration of storage substances, in particular the major storage form starch, leads to floury endosperm. Because floury mutants have physical attributes for milling processes, identification and characterization of those mutants are valuable. In this study we identified a floury endosperm mutant caused by a T-DNA insertion in Oryza sativa alanine-aminotransferase1 (OsAlaAT1). OsAlaAT1 is localized in the cytosol and has aminotransferase enzyme activity. The osalaat1 mutant has less amylose and its amylopectin is structurally altered. OsAlaAT1 is predominantly expressed in developing seeds during active starch synthesis. AlaAT catalyzes the interconversion of pyruvate to alanine, and this pathway is activated under low-oxygen conditions. Consistently, OsAlaAT1 is induced by such conditions. Expression of the starch synthesis genes AGPases, OsSSI, OsSSIIa, and OsPPDKB is decreased in the mutant. Thus, our observations suggest that OsAlaAT1 plays an essential role in starch synthesis in developing seeds that are exposed to low concentrations of oxygen. PMID:26475189

  3. The role of D1-Ala344 in charge stabilization and recombination in Photosystem II.

    PubMed

    Cser, Krisztián; Diner, Bruce A; Nixon, Peter J; Vass, Imre

    2005-12-01

    The Ala344 residue of the D1 protein has been identified as a crucial residue of the catalytic cluster of the water-oxidizing complex, however, its function has not been fully clarified. Here we have used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-Ala344stop mutation on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutant cannot grow photoautotrophically it shows flash-induced thermoluminescence and chlorophyll fluorescence signals reflecting the stabilization of negative and positive charges on the Q(A) and Q(B) quinone electron acceptors, and stable Photosystem II donors, respectively. Decay of flash induced chlorophyll fluorescence yield is multiphasic in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with 6 ms, 350 ms, and 26 s time constants. When cells are illuminated with repetitive flashes, fired at 1 ms intervals, the 6 ms phase is gradually decreased with the concomitant increase of the 350 ms phase. After 45 min dark adaptation of mutant cells the 6 ms and 350 ms phases were significantly decreased and a very slow decaying component was formed. Flash induced oscillation of the thermoluminescence B band, which reflects the redox cycling of the water-oxidizing complex in the wild-type cells, was completely abolished in the D1-Ala344stop mutant. The results demonstrate that low efficiency photooxidation of Mn occurs in about 60% of the PSII centers. The photooxidizable Mn is unstable in the dark, and formation of higher S states is inhibited. In addition, the Q(A) to Q(B) electron transfer step is slowed down as an indirect consequence of the donor side modification. Our data indicate that the stabilization of a Mn ion by the alpha-carboxylate chain of the D1-Ala344 residue might represent one of the final steps in the assembly of functional catalytic sites for water oxidation. PMID:16307121

  4. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    PubMed

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  5. Silk gland-specific tRNA(Ala) genes interact more weakly than constitutive tRNA(Ala) genes with silkworm TFIIIB and polymerase III fractions.

    PubMed Central

    Sullivan, H S; Young, L S; White, C N; Sprague, K U

    1994-01-01

    Constitutive and silk gland-specific tRNA(Ala) genes from silkworms have very different transcriptional properties in vitro. Typically, the constitutive type, which encodes tRNA(AlaC), directs transcription much more efficiently than does the silk gland-specific type, which encodes tRNA(AlaSG). We think that the inefficiency of the tRNA(AlaCG) gene underlies its capacity to be turned off in non-silk gland cells. An economical model is that the tRNA(AlaSG) promoter interacts poorly, relative to the tRNA(AlaC) promoter, with one or more components of the basal transcription machinery. As a consequence, the tRNA(AlaSG) gene directs the formation of fewer transcription complexes or of complexes with reduced cycling ability. Here we show that the difference in the number of active transcription complexes accounts for the difference in tRNA(AlaC) and tRNA(AlaSG) transcription rates. To determine whether a particular component of the silkworm transcription machinery is responsible for reduced complex formation on the tRNA(AlaSG) gene, we measured competition by templates for defined fractions of this machinery. We find that the tRNA(AlaSG) gene is greatly impaired, in comparison with the tRNA(AlaC) gene, in competition for either TFIIIB or RNA polymerase III. Competition for each of these fractions is also strongly influenced by the nature of the 5' flanking sequence, the promoter element responsible for the distinctive transcriptional properties of tRNA(AlaSG) and tRNA(AlaC) genes. These results suggest that differential interaction with TFIIIB or RNA polymerase III is a critical functional distinction between these genes. Images PMID:8114713

  6. Fluorescence photodetection of head and neck cancer following topical or systemic application of 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Leunig, Andreas; Rick, Kai; Stepp, Herbert G.; Gutmann, Ralph; Goetz, Alwin E.; Baumgartner, Reinhold; Feyh, Jens

    1996-12-01

    The aim of photodynamic diagnosis is the complete visualization of all neoplastic lesions in a tumorous organ after topical or systemic application of a tumor selective photosensitizer. In this investigation we performed quantitative fluorescence measurements following topical and systemic application of 5-aminolevulinic acid to head and neck tumors. We investigated 15 patients with neoplastic lesions of the oral cavity and 5 patients with carcinoma of the larynx after rinsing a 0.4 percent-5-ALA solution or inhalation 5 percent-5-ALA. One patient was given 5-ALA systemically p.o. in a concentration of 10mg/kg b.w. Time course and type of porphyrin accumulation were analyzed in neoplastic and surrounding normal tissue by measuring emission spectra of ALA-induced protoporphyrin IX fluorescence at regular intervals for up to 3 hours following 15 minutes of continuous rinsing of a 0.4 percent- ALA-solution, 1 hour of continuous inhalation and 3 hours after p.o. application. After excitation with violet light of a high pressure xenon arc lamp, fluorescence images in the red spectral range from the tumor tissue and the corresponding macroscopic visible tumor were recorded with a CCD-camera. A quantitative analysis of the fluorescence contrast in neoplastic and surrounding tissue was performed using an optical multichannel analyzer.

  7. Efficacy of intravenous delta-aminolaevulinic acid photodynamic therapy on rabbit papillomas.

    PubMed Central

    Lofgren, L. A.; Ronn, A. M.; Nouri, M.; Lee, C. J.; Yoo, D.; Steinberg, B. M.

    1995-01-01

    Endogenously induced protoporphyrin IX (PPIX), a metabolite of delta-aminolaevulinic acid (ALA), has been evaluated as a photosensitising agent for destruction of papillomas in cottontail rabbit papillomavirus-infected Dutch belted and New Zealand rabbits. Three factors were evaluated: (1) relative retention ratio of drug in normal tissue, papilloma and plasma over time; (2) tissue tolerance to treatment factors; and (3) efficacy of treatment protocol. Three drug doses of ALA were examined: 50, 100 and 200 mg kg-1. Actual PPIX concentrations in tissue and plasma were determined spectrophotofluorometrically. The optimal treatment time occurred 3-6 h post ALA injection. The highest PPIX concentration ratio between papilloma and normal skin was 6:1. Different light doses were investigated, using an injection to exposure interval of 3 h and an irradiance of 100 mW cm-2 at a wavelength of 630 nm. Efficacy without risk of significant damage to normal skin was obtained using 100-200 mg kg-1 ALA and 40-60 J cm-2. A long-term (3 months) cure rate of 82% was obtained with a single treatment, provided that papilloma depth did not exceed 8 mm, volume was not more than 1000 mm3 and the plasma concentration of PPIX immediately before exposure was above 500 micrograms ml-1. The short time between injection and treatment and high efficacy, together with PPIX disappearance from plasma and tissue within 24 h, make injected ALA a highly attractive drug for photodynamic therapy. PMID:7547231

  8. ALA 2010 Midwinter Meeting: The Price to Participate

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    While the library economy continues its downward slide, the cost of attending the American Library Association (ALA) Midwinter Meeting seems as high as ever. That is the price of professional participation. These days it seems a bit too high and tends to limit involvement in the old association to librarians in the higher echelons of the field.…

  9. ALAM and ALAS: Questioning Error Assignments in Unidimensional Guttman Scaling

    ERIC Educational Resources Information Center

    Wimberley, Ronald C.

    1976-01-01

    When researchers use the Guttman scalogram rather than multidimensional techniques, scalogram error assignment techniques should be questioned. An alternative to the customary minimizing error rule is suggested through ALAM and ALAS criteria which use ordinal information in scalable item marginals. (Author)

  10. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  11. ALA-mediated fluorescence-guided resection (FGR) and PDT of glioma

    NASA Astrophysics Data System (ADS)

    Johansson, Ann; Stepp, Herbert; Beck, Tobias; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Meinel, Thomas; Stummer, Walter; Kreth, Friedrich-Wilhelm; Tonn, Jörg-Christian; Baumgartner, Reinhold

    2009-06-01

    A summary of clinical trials employing photodynamic diagnosis (PDD) and photodynamic therapy (PDT) for the diagnosis and treatment of brain malignancies is presented. Intra-cavity PDT has been performed within the surgical cavity following FGR, employing oral administration of 5-aminolevulinic acid (5-ALA), either targeting fluorescing tissue regions that were not removed during FGR due to safety reasons (referred to as focal PDT, n=20) or illuminating the entire resection cavity (referred to as integral PDT, n=9). Both approaches proved technically feasible and safe. Spectroscopic measurements performed pre-, during and post-PDT revealed Protoporphyrin IX (PpIX)-photobleaching of more than 95% after the delivery of 200 J/cm2. This light dose did not induce any side effects. Furthermore, interstitial PDT (iPDT) has been employed within one feasibility trial (n=10) and one Phase I/II trial (n=15). Here, three to six cylindrical light diffusors (20-30 mm length, 200 mW/cm, 720 J/cm) were positioned within the target tissue under stereotactic guidance. Pre-treatment planning was performed with the intent to target the entire tumour volume with a sufficient light dose while also minimising the risk of any light-induced temperature increase. For the feasibility trial patients with small, recurrent gliomas were included, resulting in a median survival of 15 months as well as some unexpected longterm survivals (up to 5 years). The Phase I/II trial employed the same clinical procedures. Here, the 12-month survival was 35% and the median progression-free survival was 6 months. In summary, stereotactic iPDT in combination with treatment-planning could be shown to be a safe and feasible treatment modality. These trials are presently being extended to also include on-line monitoring of PpIX fluorescence and photobleaching kinetics. Preliminary data has revealed dramatically different PpIX levels and photobleaching kinetics. Such data could possibly be employed for realtime

  12. Transcriptomic changes induced by mycophenolic acid in gastric cancer cells

    PubMed Central

    Dun, Boying; Sharma, Ashok; Xu, Heng; Liu, Haitao; Bai, Shan; Zeng, Lingwen; She, Jin-Xiong

    2014-01-01

    Background: Inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA) can inhibit proliferation and induce apoptosis in cancer cells. This study investigated the underlying molecular mechanisms of MPA’s anticancer activity. Methods: A gastric cancer cell line (AGS) was treated with MPA and gene expression at different time points was analyzed using Illumina whole genome microarrays and selected genes were confirmed by real-time RT-PCR. Results: Transcriptomic profiling identified 1070 genes with ≥2 fold changes and 85 genes with >4 fold alterations. The most significantly altered biological processes by MPA treatment include cell cycle, apoptosis, cell proliferation and migration. MPA treatment altered at least ten KEGG pathways, of which eight (p53 signaling, cell cycle, pathways in cancer, PPAR signaling, bladder cancer, protein processing in ER, small cell lung cancer and MAPK signaling) are cancer-related. Among the earliest cellular events induced by MPA is cell cycle arrest which may be caused by six molecular pathways: 1) up-regulation of cyclins (CCND1 and CCNE2) and down-regulation of CCNA2 and CCNB1, 2) down-regulation of cyclin-dependent kinases (CDK4 and CDK5); 3) inhibition of cell division related genes (CDC20, CDC25B and CDC25C) and other cell cycle related genes (MCM2, CENPE and PSRC1), 4) activation of p53, which activates the cyclin-dependent kinase inhibitors (CDKN1A), 5) impaired spindle checkpoint function and chromosome segregation (BUB1, BUB1B, BOP1, AURKA, AURKB, and FOXM1); and 6) reduction of availability of deoxyribonucleotides and therefore DNA synthesis through down-regulation of the RRM1 enzyme. Cell cycle arrest is followed by inhibition of cell proliferation, which is mainly attributable to the inhibition of the PI3K/AKT/mTOR pathway, and caspase-dependent apoptosis due to up-regulation of the p53 and FAS pathways. Conclusions: These results suggest that MPA has beneficial anticancer activity through

  13. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  14. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide.

    PubMed

    Dillert, Ralf; Bahnemann, Detlef; Hidaka, Hisao

    2007-03-01

    The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time. PMID:17126882

  15. Induced Protoporphyrin IX Accumulation by the δ-Aminolevulinic Acid in Bacteria and its Potential Use in the Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Brígido-Aparicio, Cyntiha; Ramón-Gallegos, Eva; Arenas-Huertero, Francisco Jesús; Uribe-Hernández, Raúl

    2008-08-01

    The increasing incident of resistant strains to antibiotic has encouraged the search of new antibacterial treatments, such as the photodynamic therapy. In recent years, photodynamic therapy has demonstrated being a good technology for the treatment of recurrent bacteria infection. PDT presents a hopeful approach to eliminate Gram positive and negative bacteria in immunological compromised patients. This therapy uses a laser in combination with a photosensibilizer in presence of intracellular molecular oxygen. The process generates an effect of phototoxicity in bacterial cells. The aim of this work was to determine the in vitro conditions to accumulate PpIX in effective concentrations in Staphylococcus aureus ATCC25923 and Streptococcus pyogenes, which are responsible of human cutaneous diseases. A cellular suspension of both strains was prepared in TSB to obtain growth in Log-phase, then, the suspensions were adjusted to a final concentration of 2.61×108 cells/mL. The strains were exposed to increasing concentrations from 0 to 160μg/mL of δ-ALA in order to determinate the concentration that induces the biggest accumulation of PpIX. PpIX was measured using the Piomelli method modified for bacteria. The concentration selected was 40 mg/mL of ALA. It was found that in basal concentration of δ-ALA (0 μg/mL) both strains accumulated similar amount of PpIX. In concentrations of 5 mg/mL of δ-ALA it was observed a significant (p<0.001) increment in PpIX concentration. Finally it was realized a kinetic to determinate the optimal accumulation over the time at 0, 5, 10, 15 and 30 min, and 1, 2, 4, 8, 16 and 32 h. It was found that the ideal time for PDT application, in both strains, was 24 h because in smaller times there was not statistically significant difference. The S. aureus ATCC25923 accumulated significantly the biggest concentration of PpIX with regard to S. pyogenes. In conclusion, it was found that the optimal conditions to apply PDT will be to expose both

  16. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    PubMed

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse. PMID:19288974

  17. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    PubMed Central

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  18. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures.

    PubMed

    Lego, Denise; Plaumann, Markus; Trantzschel, Thomas; Bargon, Joachim; Scheich, Henning; Buntkowsky, Gerd; Gutmann, Torsten; Sauer, Grit; Bernarding, Johannes; Bommerich, Ute

    2014-07-01

    Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration. PMID:24812006

  19. Endogenous Docosahexaenoic Acid (DHA) Prevents Aβ1-42 Oligomer-Induced Neuronal Injury.

    PubMed

    Tan, Yuan; Ren, Huixia; Shi, Zhe; Yao, Xiaoli; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Li, Peng; Yuan, Ti-Fei; Su, Huanxing

    2016-07-01

    The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) or n-3 fatty acid has been associated with reduced risk of Alzheimer's disease (AD) in epidemiological reports. However, the underlying mechanism remains to be elucidated. Here, we report that exogenous DHA administration could protect neurons against Aβ oligomer-induced injury both in vitro and in vivo, partly through reducing the endoplasmic reticulum (ER) stress, and preventing cell apoptosis. In transgenic fat-1 mice with enriched ω-3 fatty acids, Aβ oligomers induced fewer neuronal losses, when compared to wild-type (WT) mice. We conclude that endogenous DHA are neuroprotective in pathogenesis processes of AD. PMID:26021747

  20. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  1. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    PubMed

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  2. Modulation by APGW-amide, an Achatina endogenous inhibitory tetrapeptide, of currents induced by neuroactive compounds on Achatina neurons: amines and amino acids.

    PubMed

    Han, X Y; Salunga, T L; Zhang, W; Takeuchi, H; Matsunami, K

    1997-10-01

    1. Modulatory effects of APGW-amide (Ala-Pro-Gly-Trp-NH2), proposed as an inhibitory neurotransmitter of Achatina neurons, perfused at 3 x 10(-6) M on the currents induced by small-molecule putative neurotransmitters were examined by using Achatina giant neuron types, v-RCDN (ventral-right cerebral distinct neuron), TAN (tonically autoactive neuron) and RAPN (right anterior pallial nerve neuron), under voltage clamp. These putative neurotransmitters were ejected locally to the neuron by brief pneumatic pressure. 2. Outward current (Iout) induced by erythro-beta-hydroxy-L-glutamic acid (erythro-L-BHGA) on v-RCDN, which was probably K+ dependent, was enhanced with membrane conductance (g) increase under APGW-amide. From dose (pressure duration)-response curves of erythro-L-BHGA measured in physiological solution (control curve) and with APGW-amide (drug curve), ED50 values of the two curves were nearly comparable, whereas Emax of the drug curve was significantly larger than that of the other. From a Lineweaver-Burk plot of these data, the cross point of the control line and the drug line was on the abscissa. 3. K(+)-dependent Iout caused by dopamine (DA) on v-RCDN was inhibited with a g increase by APGW-amide. The inhibition of this current caused by APGW-amide was mainly in a noncompetitive and partly uncompetitive manner. 4. 5-Hydroxytryptamine (5-HT) produced an inward current (Iin) with two (fast and slow) components on TAN, which was probably Na+ dependent. The fast component of the Iin was inhibited by APGW-amide. The inhibition was mainly in a noncompetitive manner. 5. The currents induced by acetylcholine, gamma-aminobutyric acid and L-glutamic acid on Achatina neuron types were not affected by APGW-amide. 6. The inhibitory effects of APGW-amide on the Iin (fast component) induced by 5-HT were nearly equipotent or a bit stronger than those on the Iout caused by DA. 7. The g increase produced by APGW-amide would be a cause for inhibiting the Iout induced by DA

  3. Imiquimod immunotherapy and ALA photodynamic therapy combination for the treatment of genital bowenoid papulosis

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Wang, Hong-Wei; Guo, Ming-Xia; Huang, Zheng

    2007-02-01

    To investigate the feasibility and efficacy of combination of imiquimod immunotherapy and 5- aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) for the treatment of genital bowenoid papulosis (BP). A total of twenty seven BP patients were randomized into two groups: (I) fifteen patients (12 male and 3 female, age 22-56 years old) were treated with topical application of 5% imiquimod cream (three times a week) and ALA-PDT (100 J/cm2 at 100 mW/cm2, once a week) for 1-4 times in one week interval. (II) Twelve patients (6 male and 6 female, age 29-58 years old) were treated with CO II laser vaporization as a control. Patients were followed up for 3 to 12 months. Results: In combined therapy group, 60% (9/15) patients showed complete remission and only one recurred (11.1%) during follow up. Local side effects included mild erythema, edema, erosion and burning and/or stinging sensation. No systemic side effect was found. In CO II laser vaporization group, 83.3% (10/12) patients showed complete remission. However, recurrence occurred in 6 patients (60.0%). Local side effects included mild to moderate edema, erosion, ulceration, delayed healing, prolonged pain and scarring. The difference of recurrence rate between two groups was statistically significant (P < 0.05). Topical application of imiquimod cream and ALA-PDT is safe, effective and associated with low recurrence and less side effect. Its true clinical value needs to be further investigated by a long-term follow-up of large scale trial.

  4. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    PubMed Central

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes. PMID:25050113

  5. Liprotides made of α-lactalbumin and cis fatty acids form core-shell and multi-layer structures with a common membrane-targeting mechanism.

    PubMed

    Frislev, Henriette S; Jessen, Christian M; Oliveira, Cristiano L P; Pedersen, Jan Skov; Otzen, Daniel E

    2016-07-01

    α-Lactalbumin (aLA) has been shown to form complexes with oleic acid (OA), which may target cancer cells. We recently showed that aLA and several other proteins all form protein-OA complexes called liprotides with a generic structure consisting of a micellar OA core surrounded by a shell of partially denatured protein. Here we report that a heat treatment and an alkaline treatment method both allow us to prepare liprotide complexes composed of aLA and a range of unsaturated fatty acids (FA), provided the FAs contain cis (but not trans) double bonds. All liprotides containing cis-FA form both small and large species, which all consist of partially denatured aLA, though the overall shape of the species differs. Small liprotides have a simple core-shell structure while the larger liprotides are multi-layered, i.e. they have an additional layer of both FA and aLA surrounding the outside of the core-shell structure. All liprotides can transfer their entire FA content to vesicles, releasing aLA as monomers and softening the lipid membrane. The more similar to OA, the more efficiently the different FAs induce hemolysis. We conclude that aLA can take up and transfer a wide variety of FA to membranes, provided they contain a cis-bond. This highlights liprotides as a general class of complexes where both protein and cis-FA component can be varied without departing from a generic (though sometimes multi-layered) core-shell structure. PMID:27068540

  6. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  7. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis

    PubMed Central

    Wu, Chen-Chi; Singh, Prashant; Chen, Mao-Chuain; Zimmerli, Laurent

    2010-01-01

    The non-protein amino acid beta-aminobutyric acid (BABA) enhances Arabidopsis resistance to microbial pathogens and abiotic stresses through potentiation of the Arabidopsis defence responses. In this study, it is shown that BABA induces the stress-induced morphogenic response (SIMR). SIMR is observed in plants exposed to sub-lethal stress conditions. Anthocyanin, a known modulator of stress signalling, was also found to accumulate in BABA-treated Arabidopsis. These data and a previous microarray study indicate that BABA induces a stress response in Arabidopsis. High concentrations of amino acids, except for L-glutamine, cause a general amino acid stress inhibition. General amino acid inhibition is prevented by the addition of L-glutamine. L-Glutamine was found to inhibit the BABA-mediated SIMR and anthocyanin accumulation, suggesting that the non-protein amino acid BABA causes a general amino acid stress inhibition in Arabidopsis. L-Glutamine also blocked BABA-induced resistance to heat stress and to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. During bacterial infection, priming of the salicylic acid-dependent defence marker PR1 was abolished by L-glutamine treatment. These results indicate that L-glutamine removal of the BABA-mediated stress response is concomitant with L-glutamine inhibition of BABA priming and BABA-induced resistance. PMID:20007686

  8. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.

    PubMed

    Benyó, Zoltán; Gille, Andreas; Kero, Jukka; Csiky, Marion; Suchánková, Marie Catherine; Nüsing, Rolf M; Moers, Alexandra; Pfeffer, Klaus; Offermanns, Stefan

    2005-12-01

    Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein-coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nicotinic acid-induced antilipolytic effects in adipocytes. One of the major problems of the pharmacotherapeutical use of nicotinic acid is a strong flushing response. This side effect, although harmless, strongly affects patient compliance. In the present study, we show that mice lacking PUMA-G did not show nicotinic acid-induced flushing. In addition, flushing in response to nicotinic acid was also abrogated in the absence of cyclooxygenase type 1, and mice lacking prostaglandin D(2) (PGD(2)) and prostaglandin E(2) (PGE(2)) receptors had reduced flushing responses. The mouse orthologue of GPR109A, PUMA-G, is highly expressed in macrophages and other immune cells, and transplantation of wild-type bone marrow into irradiated PUMA-G-deficient mice restored the nicotinic acid-induced flushing response. Our data clearly indicate that GPR109A mediates nicotinic acid-induced flushing and that this effect involves release of PGE(2) and PGD(2), most likely from immune cells of the skin. PMID:16322797

  9. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  10. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane.

    PubMed

    McDowell, Stephen C; López-Marqués, Rosa L; Cohen, Taylor; Brown, Elizabeth; Rosenberg, Alexa; Palmgren, Michael G; Harper, Jeffrey F

    2015-01-01

    Members of the P4 subfamily of P-type ATPases are thought to create and maintain lipid asymmetry in biological membranes by flipping specific lipids between membrane leaflets. In Arabidopsis, 7 of the 12 Aminophospholipid ATPase (ALA) family members are expressed in pollen. Here we show that double knockout of ALA6 and ALA7 (ala6/7) results in siliques with a ~2-fold reduction in seed set with a high frequency of empty seed positions near the bottom. Seed set was reduced to near zero when plants were grown under a hot/cold temperature stress. Reciprocal crosses indicate that the ala6/7 reproductive deficiencies are due to a defect related to pollen transmission. In-vitro growth assays provide evidence that ala6/7 pollen tubes are short and slow, with ~2-fold reductions in both maximal growth rate and overall length relative to wild-type. Outcrosses show that when ala6/7 pollen are in competition with wild-type pollen, they have a near 0% success rate in fertilizing ovules near the bottom of the pistil, consistent with ala6/7 pollen having short and slow growth defects. The ala6/7 phenotypes were rescued by the expression of either an ALA6-YFP or GFP-ALA6 fusion protein, which showed localization to both the plasma membrane and highly-mobile endomembrane structures. A mass spectrometry analysis of mature pollen grains revealed significant differences between ala6/7 and wild-type, both in the relative abundance of lipid classes and in the average number of double bonds present in acyl side chains. A change in the properties of the ala6/7 plasma membrane was also indicated by a ~10-fold reduction of labeling by lipophilic FM-dyes relative to wild-type. Together, these results indicate that ALA6 and ALA7 provide redundant activities that function to directly or indirectly change the distribution and abundance of lipids in pollen, and support a model in which ALA6 and ALA7 are critical for pollen fitness under normal and temperature-stress conditions. PMID:25954280

  11. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane

    PubMed Central

    McDowell, Stephen C.; López-Marqués, Rosa L.; Cohen, Taylor; Brown, Elizabeth; Rosenberg, Alexa; Palmgren, Michael G.; Harper, Jeffrey F.

    2015-01-01

    Members of the P4 subfamily of P-type ATPases are thought to create and maintain lipid asymmetry in biological membranes by flipping specific lipids between membrane leaflets. In Arabidopsis, 7 of the 12 Aminophospholipid ATPase (ALA) family members are expressed in pollen. Here we show that double knockout of ALA6 and ALA7 (ala6/7) results in siliques with a ~2-fold reduction in seed set with a high frequency of empty seed positions near the bottom. Seed set was reduced to near zero when plants were grown under a hot/cold temperature stress. Reciprocal crosses indicate that the ala6/7 reproductive deficiencies are due to a defect related to pollen transmission. In-vitro growth assays provide evidence that ala6/7 pollen tubes are short and slow, with ~2-fold reductions in both maximal growth rate and overall length relative to wild-type. Outcrosses show that when ala6/7 pollen are in competition with wild-type pollen, they have a near 0% success rate in fertilizing ovules near the bottom of the pistil, consistent with ala6/7 pollen having short and slow growth defects. The ala6/7 phenotypes were rescued by the expression of either an ALA6-YFP or GFP-ALA6 fusion protein, which showed localization to both the plasma membrane and highly-mobile endomembrane structures. A mass spectrometry analysis of mature pollen grains revealed significant differences between ala6/7 and wild-type, both in the relative abundance of lipid classes and in the average number of double bonds present in acyl side chains. A change in the properties of the ala6/7 plasma membrane was also indicated by a ~10-fold reduction of labeling by lipophilic FM-dyes relative to wild-type. Together, these results indicate that ALA6 and ALA7 provide redundant activities that function to directly or indirectly change the distribution and abundance of lipids in pollen, and support a model in which ALA6 and ALA7 are critical for pollen fitness under normal and temperature-stress conditions. PMID:25954280

  12. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice

    PubMed Central

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-01-01

    AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2

  13. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  14. Epidemiological, clinical and biochemical characterization of the p.(Ala359Asp) SMPD1 variant causing Niemann-Pick disease type B.

    PubMed

    Acuña, Mariana; Martínez, Pablo; Moraga, Carol; He, Xingxuan; Moraga, Mauricio; Hunter, Bessie; Nuernberg, Peter; Gutiérrez, Rodrigo A; González, Mauricio; Schuchman, Edward H; Santos, José Luis; Miquel, Juan Francisco; Mabe, Paulina; Zanlungo, Silvana

    2016-02-01

    Niemann-Pick disease type B (NPDB) is a rare, inherited lysosomal storage disorder that occurs due to variants in the sphingomyelin phosphodiesterase 1 (SMPD1) gene and the resultant deficiency of acid sphingomyelinase (ASM) activity. While numerous variants causing NPDB have been described, only a small number have been studied in any detail. Herein, we describe the frequency of the p.(Ala359Asp) variant in the healthy Chilean population, and determine the haplotype background of homozygous patients to establish if this variant originated from a common founder. Genomic DNA samples from 1691 healthy individuals were analyzed for the p.(Ala359Asp) variant. The frequency of p.(Ala359Asp) was found to be 1/105.7, predicting a disease incidence of 1/44 960 in Chile, higher than the incidence estimated by the number of confirmed NPDB cases. We also describe the clinical characteristics of 13 patients homozygous for p.(Ala359Asp) and all of them had moderate to severe NPDB disease. In addition, a conserved haplotype and shared 280 Kb region around the SMPD1 gene was observed in the patients analyzed, indicating that the variant originated from a common ancestor. The haplotype frequency and mitochondrial DNA analysis suggest an Amerindian origin for the variant. To assess the effect of the p.(Ala359Asp) variant, we transfected cells with the ASM-p.(Ala359Asp) cDNA and the activity was only 4.2% compared with the wild-type cDNA, definitively demonstrating the causative effect of the variant on ASM function. Information on common variants such as p.(Ala359Asp) is essential to guide the successful implementation for future therapies and benefit to patients. PMID:25920558

  15. 75 FR 12254 - Official Trail Marker for the Ala Kahakai National Historic Trail

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... National Park Service Official Trail Marker for the Ala Kahakai National Historic Trail AGENCY: National.... SUMMARY: This notice issues the official trail marker insignia of the Ala Kahakai National Historic Trail... P. Arakaki, Superintendent, Ala Kahakai National Historic Trail. The insignia depicted below...

  16. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30. PMID:16086245

  17. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  18. Electrogenic responses induced by neutral amino acids in endoderm cells from Xenopus embryo.

    PubMed Central

    Bergman, C; Bergman, J

    1981-01-01

    1. Membrane potential measurements were carried out on endoderm cells from early Xenopus embryos in order to study neutral amino acid transport in non-excitable cells. 2. The electrical properties of the cell membrane were studied under normal conditions, then in the presence of various Na/K-pump inhibitors and at different Na, K and Cl concentrations in Ringer solution. Blockade of the Na/K-pump by ouabain, Li, cooling to 10 degrees C or low [Na]0 induces similar depolarizations of about 40 mV. 3. External application of various neutral L-amino acids induces reversible membrane depolarizations. The D-isomeric forms are found to be ineffective. The amino acid induced depolarizations are not accompanied by changes in membrane resistance. They do not show voltage dependence for potential changes of less than 40 mV. 4. The amino acid depolarization increases with increasing concentration and follows first order Michaëlian kinetics. Both the size and the time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, prolonged exposure to pump inhibitors or marked alteration of the Na

  19. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells

    PubMed Central

    Tian, Fang; Yao, Jianting; Yan, Meng; Sun, Xin; Wang, Wei; Gao, Weiwei; Tian, Zhen; Guo, Shuyuan; Dong, Zengxiang; Li, Bicheng; Gao, Tielei; Shan, Peng; Liu, Bing; Wang, Haiyang; Cheng, Jiali; Gao, Qianping; Zhang, Zhiguo; Cao, Wenwu; Tian, Ye

    2016-01-01

    Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis. PMID:26911899

  20. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms.

    PubMed Central

    Folkesson, H G; Matthay, M A; Hébert, C A; Broaddus, V C

    1995-01-01

    Acid aspiration lung injury may be mediated primarily by neutrophils recruited to the lung by acid-induced cytokines. We hypothesized that a major acid-induced cytokine was IL-8 and that a neutralizing anti-rabbit-IL-8 monoclonal antibody (ARIL8.2) would attenuate acid-induced lung injury in rabbits. Hydrochloric acid (pH = 1.5 in 1/3 normal saline) or 1/3 normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetized rabbits. The rabbits were studied for 6 or 24 h. In acid-instilled rabbits without the anti-IL-8 monoclonal antibody, severe lung injury developed in the first 6 h; in the long-term experiments, all rabbits died with lung injury between 12 and 14 h. In acid-instilled rabbits given the anti-IL-8 monoclonal antibody (2 mg/kg, intravenously) either as pretreatment (5 min before the acid) or as treatment (1 h after the acid), acid-induced abnormalities in oxygenation and extravascular lung water were prevented and extravascular protein accumulation was reduced by 70%; in the long-term experiments, anti-IL-8 treatment similarly protected lung function throughout the 24-h period. The anti-IL-8 monoclonal antibody also significantly reduced air space neutrophil counts and IL-8 concentrations. This study establishes IL-8 as a critical cytokine for the development of acid-induced lung injury. Neutralization of IL-8 may provide the first useful therapy for this clinically important form of acute lung injury. Images PMID:7615779

  1. AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids*

    PubMed Central

    Schmidt, Daniel R.; Schmidt, Samuel; Holmstrom, Sam R.; Makishima, Makoto; Yu, Ruth T.; Cummins, Carolyn L.; Mangelsdorf, David J.; Kliewer, Steven A.

    2011-01-01

    Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids. PMID:21081494

  2. Papain reduces gastric acid secretion induced by histamine and other secretagogues in anesthetized rats.

    PubMed

    Cho, C H; Han, P W

    1984-04-01

    We studied the effect of papain on rats' gastric acid secretion and found that: 1. Feeding of latex of unripe papaya fruit significantly reduced gastric acid secretion induced by methacholine; 2. Feeding of crystalline papain in doses of 3.2 mg/kg reduced gastric acid secretion induced by histamine, methacholine and tetragastrin; 3. The reduction of gastric acid secretion was observed as early as 2 hours after papain feeding, lasted up to 48 hours, and waned within 96 hours; 4. Intraperitoneal injection of papain had no effect on acid secretion. These results led us to believe tha the effect of papain on gastric acid secretion is a local one acting directly on the gastric mucosa, and this local effect of a single dose of papain is reversible, causing no permanent damage to the mucosa. PMID:6400589

  3. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  4. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  5. Protective effect of oleanolic acid on gentamicin induced nephrotoxicity in rats.

    PubMed

    Patil, Chandragouda R; Jadhav, Ramchandra B; Singh, Pushparaj K; Mundada, Sneha; Patil, Prabhakar R

    2010-01-01

    Oleanolic acid is a molecule of current therapeutic interest. In the present study, oleanolic acid isolated from the cuticular epithelium of Viscum articulatum Burm. f. (Viscaceae) was investigated for its protective effects on gentamicin-induced renal damage in rats. Nephrotoxicity was induced in rats by intraperitoneal injection of gentamicin at a dose of 100 mg/kg/day for 8 days. The effect of Oleanolic acid administered orally at doses 40, 60 and 80 mg/kg/day was assessed biochemically by determination of albumin, urea and creatinine in serum and urine samples and also through histopathological examination of the kidneys. Oleanolic acid protected the rat kidneys from gentamicin-induced nephrotoxicity as evident from a decrease in the serum and urine levels of creatinine, albumin and urea. Oleanolic acid also protected the rat kidneys from histological alterations induced by gentamicin and also improved the glomerular filtration rate. Compared with an earlier report on intraperitoneal administration of oleanolic acid in paracetamol-induced nephrotoxicity in rats, the data show that orally administered oleanolic acid also exerted a nephroprotective effect even in the case of a nephrotoxicant such as gentamicin, which directly deteriorates the kidney function without prior metabolism. PMID:19548288

  6. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  7. Healthy reduced-fat Bologna sausages enriched in ALA and DHA and stabilized with Melissa officinalis extract.

    PubMed

    Berasategi, Izaskun; Navarro-Blasco, Iñigo; Calvo, Maria Isabel; Cavero, Rita Yolanda; Astiasarán, Iciar; Ansorena, Diana

    2014-03-01

    Reduced-energy and reduced-fat Bologna products enriched with ω-3 polyunsaturated fatty acids were formulated by replacing the pork back-fat by an oil-in-water emulsion containing a mixture of linseed-algae oil stabilized with a lyophilized Melissa officinalis extract. Healthier composition and lipid profile was obtained: 85 kcal/100 g, 3.6% fat, 0.6 g ALA and 0.44 g DHA per 100 g of product and ω-6/ω-3 ratio of 0.4. Technological and sensory problems were not detected in the new formulations. Reformulation did not cause oxidation problems during 32 days of storage under refrigeration. The results suggest that it is possible to obtain reduced-fat Bologna-type sausages rich in ALA and DHA and stabilized with natural antioxidants, applying the appropriate technology without significant effects on the sensory quality, yielding interesting products from a nutritional point of view. PMID:24334039

  8. Intraoperative 5-aminolevulinic acid-induced fluorescence in primary central nervous system lymphoma.

    PubMed

    Grossman, Rachel; Nossek, Erez; Shimony, Nir; Raz, Michal; Ram, Zvi

    2014-01-01

    The authors report a case of primary CNS lymphoma located in the floor of the fourth ventricle that showed intense fluorescence after preoperative administration of 5-aminolevulinic acid. The authors believe that this is the first demonstration of a 5-aminolevulinic acid-induced fluorescence pattern in primary CNS lymphoma. PMID:24138204

  9. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  10. Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise

    SciTech Connect

    Finnegan, S.; Orville, A.; Yuan, H.; Wang, Y.-F.; Weber, I. T.; Gadda, G.

    2010-09-15

    The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction. Each reductive half-reaction is followed by an oxidative half-reaction where the reduced flavin is oxidized by oxygen. Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme. The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of a hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme. Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions. This is accompanied by a significant decrease in the overall rate of turnover with choline. Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid.

  11. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection. PMID:27214306

  12. The complex filling of alae crater, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Swanson, D.A.; Duffield, W.A.; Jackson, D.B.; Peterson, D.W.

    1972-01-01

    Since February 1969 Alae Crater, a 165-m-deep pit crater on the east rift of Kilauea Volcano, has been completely filled with about 18 million m3 of lava. The filling was episodic and complex. It involved 13 major periods of addition of lava to the crater, including spectacular lava falls as high as 100 m, and three major periods of draining of lava from the crater. Alae was nearly filled by August 3, 1969, largely drained during a violent ground-cracking event on August 4, 1969, and then filled to the low point on its rim on October 10, 1969. From August 1970 to May 1971, the crater acted as a reservoir for lava that entered through subsurface tubes leading from the vent fissure 150 m away. Another tube system drained the crater and carried lava as far as the sea, 11 km to the south. Much of the lava entered Alae by invading the lava lake beneath its crust and buoying the crust upward. This process, together with the overall complexity of the filling, results in a highly complicated lava lake that would doubtless be misinterpreted if found in the fossil record. ?? 1972 Stabilimento Tipografico Francesco Giannini & Figli.

  13. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  14. The potential applications of ZnO nanoparticles conjugated with ALA and photofrin as a biomarker in HepG2 cells

    NASA Astrophysics Data System (ADS)

    Fakhar-E-Alam, M.; Firdous, S.; Atif, M.; Khan, Y.; Zaidi, S. S. Z.; Suleman, R.; Rehman, A.; Khan, R. U.; Nawaz, M.; Ikram, M.

    2011-12-01

    Drug delivery into the malignant cell is a basic requirement for effectiveness of photosensitizing systems for photodynamic therapy (PDT). For anticancer tumoricidal drugs, e.g., 5-aminolevulinic acid (ALA), zinc oxide (ZnO) nanoparticles (NPs) are used as efficient intracellular photosensitizer carriers. Apoptotic effect of tumoricidal drugs (ALA and Photofrin cells in the presence and absence of ZnO NPs using confocal microscopy as well as Neutral Red Assay (NRA). In dark, ZnO NPs conjugated with ALA or Photofrinhas been found to have a remarkable fluorescence in Hepatucellular carcinoma (HepG2) cells. This fact illustrates the great potential of ZnO NPs as biomarker in relevant clinical and biomedical applications.

  15. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  17. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. PMID:27133035

  18. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  19. Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

    PubMed Central

    Ahn, Joung Hoon; Kim, Min Hye; Kwon, Hyung Joo; Choi, Soo Young

    2013-01-01

    Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial β-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apoptotic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM. PMID:23440052

  20. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  1. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  2. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  3. Effects of ascorbic acid supplementation on copper-induced oxidative changes in human erythrocytes

    SciTech Connect

    Calabrese, E.J.; Kemp, J.

    1985-01-01

    A previously reported study indicated that ascorbic acid reduces the occurrence of copper acetate-induced methemoglobin (METHB) formation in vitro. The present study was designed to evaluate these findings in an in vivo exposure of ascorbic acid (1 gm/day) for up to four weeks with an in vitro copper acetate incubation stress at baseline (just prior to supplementation) and at two and four weeks after initiation of treatment. The results indicated that the ascorbic acid supplementation had no significant effects on the occurrence of copper acetate induced oxidant stress (i.e. METHB increase and GSH decrease). Possible explanations for this apparent discrepancy are provided.

  4. The effects of acute-phase inducers and dimethyl sulphoxide on delta-aminolaevulinate synthase activity in human HepG2 hepatoma cells.

    PubMed Central

    Iwasa, F; Sassa, S; Kappas, A

    1989-01-01

    The effects of acute-phase inducers and dimethyl sulphoxide (Me2SO) on delta-aminolaevulinate (ALA) synthase in HepG2 cells were examined. Treatment of cells with Me2SO resulted in a significant increase in ALA synthase activity. Interleukin-6 increased ALA synthase activity only slightly, but it substantially potentiated the induction of ALA synthase by Me2SO. These data suggest that ALA synthase activity in liver is altered during acute-phase reactions. PMID:2541694

  5. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  6. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction.

    PubMed

    Beggs, Kevin M; McGreal, Steven R; McCarthy, Alex; Gunewardena, Sumedha; Lampe, Jed N; Lau, Christoper; Apte, Udayan

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. PMID:27153767

  7. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    PubMed

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient. PMID:15469756

  8. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  9. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  10. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  11. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.

    PubMed

    Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim

    2009-07-01

    The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells. PMID:19480565

  12. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  13. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated uc(l)-Alanine Peptides

    NASA Astrophysics Data System (ADS)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2016-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of uc(l)-alanine peptides (uc(l)-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala n ) and homochiral H+(uc(l)-Trp)(uc(l)-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+(uc(l)-Trp)(uc(l)-Ala3), indicating that the proton is attached to the uc(l)-alanine peptide, and H2O loss occurs from H+(uc(l)-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), the protonation site is the amino group of uc(d)-Trp, and NH3 loss and (H2O + CO) loss occur from H+(uc(d)-Trp). uc(l)-Ala peptides recognize uc(d)-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+(uc(d)-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala3) at room temperature, whereas uc(l)-Trp dissociation was not observed in homochiral H+(uc(l)-Trp)(uc(l)-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of uc(l)-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  14. Anomalous spin polarization in the photoreduction of chromone-2-carboxylic acid with alcohol induced by hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Ohara, Keishi; Mukai, Kazuo

    2000-02-01

    The addition effect of hydrochloric acid (HCl) on the photoreduction of chromone-2-carboxylic acid (CRCA) is studied by time-resolved EPR. The EPR lines of CRCA ketyl radical show an enhanced absorption in the presence of HCl, while without HCl these show an emissive character. On the other hand, the lines of the CRCA alkyl type radical show an emissive character whether HCl is included or not. The simultaneous reactions of the closely-lying two excited triplet states (T 1 and T 2) of CRCA may induce the above anomalous CIDEP behavior.

  15. Folic acid reverses uric acid crystal-induced surface OAT1 internalization by inhibiting RhoA activity in uric acid nephropathy

    PubMed Central

    WU, XINLIN; LIU, JIANXIANG; ZHANG, JIANQING; LIU, HENG; YAN, MIANSHENG; LIANG, BIRONG; XIE, HONGBO; ZHANG, SHIJUN; SUN, BAOGUO; ZHOU, HOUMING

    2016-01-01

    To investigate how organic anion transporter (OAT)-1 is involved in uric acid nephropathy (UAN), a rat model for UAN was established and the serum uric acid, blood urea nitrogen and serum creatinine levels were all measured, and observed to be increased. It was additionally identified that in UAN rats the surface OAT1 expression levels were reduced. By treating HEK cells with monosodium urate (MSU) crystals, it was observed that the cells exhibited a reduction in OAT1 levels. Furthermore, MSU crystals were observed to recruit Ras homolog family member A (RhoA), a small guanosine triphosphatase, to the membrane and activate it. Following RhoA activation, the OAT1 internalization rate was identified to be increased. The dominant-negative RhoA N19 mutation was able to block MSU-induced OAT1 internalization, indicating that the process was RhoA-dependent. Finally, the results indicated that folic acid, a daily nutritional supplement, was capable of rescuing MSU-induced nephropathy and OAT1 internalization. These observations indicated that uric acid crystals were able to reduce the OAT1 membrane distribution through activating RhoA, and that folic acid was capable of preventing MSU-induced OAT1 relocation by inhibiting the RhoA signaling pathway. PMID:26846716

  16. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases.

    PubMed

    Lin, Yu-Ting; Yu, Ya-Mei; Chang, Weng-Cheng; Chiang, Su-Yin; Chan, Hsu-Chin; Lee, Ming-Fen

    2016-06-01

    The metabolic disturbance of obesity is one of the most common risk factors of atherosclerosis. Resistin, an obesity-induced adipokine, can induce the expression of cell adhesion molecules and the attachment of monocytes to endothelial cells, which play an important role in the development of atherosclerosis. Ursolic acid, a pentacyclic triterpenoid found in fruits and many herbs, exhibits an array of biological effects such as anti-inflammatory and antioxidative properties. The aim of this study was to investigate the potential underlying mechanisms of the effect of ursolic acid on resistin-induced adhesion of U937 cells to human umbilical vein endothelial cells (HUVECs). Our data indicated that ursolic acid suppressed the adhesion of U937 to HUVECs and downregulated the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1), and E-selectin, in resistin-induced HUVECs by decreasing the production of intracellular reaction oxygen species (ROS) and attenuating the nuclear translocation of NFκB. Ursolic acid appeared to inhibit resistin-induced atherosclerosis, suggesting that ursolic acid may play a protective role in obesity-induced cardiovascular diseases. PMID:26991492

  17. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  18. Fatty Acid-Induced T Cell Loss Greases Liver Carcinogenesis.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2016-05-10

    A new study has added loss of CD4(+) T cells caused by aberrant lipid metabolism to the list of mechanisms promoting nonalcoholic steatohepatitis progression to liver cancer (Ma et al., 2016). Exposure of CD4(+) T cells to free linoleic acid causes their ROS-mediated depletion, thereby favoring liver cancer growth. PMID:27166937

  19. ASCORBID ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    ABSTRACT
    Evidence suggests that the antioxidant ascorbic acid (AA), plays an essential role in defending against oxidant attack in the airways. Decreased levels of AA have been reported in asthmatics but not at the site directly proximal to asthma pathology, i.e. the bronchial...

  20. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    PubMed

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways. PMID:25641731

  1. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  2. Nephroprotective Effect of Ursolic Acid in a Murine Model of Gentamicin-Induced Renal Damage

    PubMed Central

    Pai, Preethi G.; Chamari Nawarathna, Savindika; Kulkarni, Avdhooth; Habeeba, Umma; Reddy C., Sudarshan; Teerthanath, Srinivas; Shenoy, Jnaneshwara P.

    2012-01-01

    The present study evaluates the nephroprotective effects of ursolic acid in a murine model of gentamicin induced renal damage. Wistar albino rats of either sex, weighing 150–200 g were divided into 5 groups; normal saline, gentamicin 80 mg/kg, intraperitoneally for 8 days, ursolic acid at 2, 5, and 10 mg/kg, per oral for 8 days, ursolic acid administered 3 days prior and concurrently with gentamicin for 5 days. Blood urea, serum creatinine, uric acid and blood urea nitrogen analyses and microscopic examination of kidney were performed. Gentamicin treatment caused nephrotoxicity as evidenced by marked elevation in serum urea, serum uric acid, serum creatinine and blood urea nitrogen (162.33 ± 9.92 mg/dL, 3.13 ± 0.12 mg/dL, 6.85 ± 0.35 mg/dL and 75.86 ± 4.64 mg/dL; resp.) when compared to the saline treated groups. Co-administration of ursolic acid with gentamicin decreased the rise in these parameters in a dose dependent manner. Histopathological analysis revealed epithelial loss with intense granular degeneration in gentamicin treated rats, whereas ursolic acid mitigated the severity of gentamicin-induced renal damage. To conclude, our data suggest that ursolic acid exhibits renoprotective effect in gentamicin induced renal damage and further studies on its mechanis of action are warranted. PMID:22811930

  3. Jasmonic acid induced resistance in grapevines to a root and leaf feeder.

    PubMed

    Omer, A D; Thaler, J S; Granett, J; Karban, R

    2000-06-01

    We investigated the effects of induced resistance to the folivore Pacific spider mite, Tetranychus pacificus McGregor (Acari: Tetranychidae), as well as the root-feeding grape phylloxera Daktulosphaira vitifoliae (Fitch) (Homoptera: Phylloxeridae) in grapevines using exogenous applications of the natural plant inducer, jasmonic acid. Foliar jasmonic acid application at concentrations that caused no phytotoxicity significantly reduced the performance of both herbivores. There were less than half as many eggs produced by spider mites feeding on the induced leaves compared with control grapevine leaves. Induction reduced the numbers of phylloxera eggs and nymphal instars by approximately threefold and twofold, respectively, on induced compared with control grapevine roots. The negative demographic effects of jasmonic acid application appeared to be caused by changes in fecundity for the Pacific spider mite, and possibly changes in development rate and fecundity for grape phylloxera. PMID:10902339

  4. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  5. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    PubMed Central

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  6. Light-induced expression of fatty acid desaturase genes

    PubMed Central

    Kis, Mihály; Zsiros, Otto; Farkas, Tibor; Wada, Hajime; Nagy, Ferenc; Gombos, Zoltán

    1998-01-01

    In cyanobacterial cells, fatty acid desaturation is one of the crucial steps in the acclimation processes to low-temperature conditions. The expression of all the four acyl lipid desaturase genes of Synechocystis PCC 6803 was studied as a function of temperature and separately as a function of light. We used cells grown at 25°C in light-activated heterotrophic growth conditions. In these cells, the production of α-linolenic acid and 18:4 fatty acids was negligible and the synthesis of γ-linolenic acid was remarkably suppressed compared with those of the cells grown photoautotrophically. The cells grown in the light in the presence of glucose showed no difference in fatty acid composition compared with cells grown photoautotrophically. The level of desC mRNA for Δ9 desaturase was not affected by either the temperature or the light. It was constitutively expressed at 25°C with and without illumination. The level of desB transcripts was negligible in the dark-grown cells and was enhanced about 10-fold by exposure of the cells to light. The maximum level of expression occurred within 15 min. The level of desA and desD mRNAs was higher in dark-grown cells than that of desB mRNA for ω3 desaturase. However, the induction of both desA and desD mRNAs for Δ12 and Δ6 desaturases, respectively, was enhanced by light about 10-fold. Rifampicin, chloramphenicol, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea completely blocked the induction of the expression of desA, desB, and desD. Consequently, we suggest the regulatory role of light via photosynthetic processes in the induction of the expression of acyl lipid desaturases. PMID:9539715

  7. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging.

    PubMed

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  8. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    PubMed Central

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  9. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  10. Microbial production and applications of 5-aminolevulinic acid.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Zhang, Jie

    2014-09-01

    5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived. PMID:25022665

  11. In vitro evidence that phosphatidylcholine protects against indomethacin/bile acid-induced injury to cells

    PubMed Central

    Dial, Elizabeth J.; Dawson, Paul A.

    2014-01-01

    Indomethacin is a powerful analgesic nonsteroidal anti-inflammatory drug (NSAID), but is limited in use by its primary side effect to cause gastrointestinal bleeding and serious injury. One factor important for exacerbating NSAID injury is the presence of bile acids, which may interact with indomethacin to form toxic mixed micelles in the gut. The development of a safer gastrointestinal formulation of indomethacin that is chemically complexed with phosphatidylcholine (PC-indomethacin) may offer an improved therapeutic agent, particularly in the presence of bile acid, but its potential protective mechanism is incompletely understood. Intestinal epithelial cells (IEC-6) were tested for injury with indomethacin (alone and plus various bile acids) compared with PC-indomethacin (alone and plus bile acids). To explore a role for bile acid uptake into cells as a requirement for NSAID injury, studies were performed using Madin-Darby canine kidney cells transfected with the apical sodium-dependent bile acid transporter (ASBT). Indomethacin, but not PC-indomethacin, was directly and dose-dependently injurious to IEC-6 cells. Similarly, the combination of any bile acid plus indomethacin, but not PC-indomethacin, induced cell injury. The expression of ASBT had a modest effect on the acute cytotoxicity of indomethacin in the presence of some conjugated bile acids. Complexing PC with indomethacin protected against the acute intestinal epithelial injury caused by indomethacin regardless of the presence of bile acids. The presence of luminal bile acid, but not its carrier-mediated uptake into the enterocyte, is required for acute indomethacin-induced cell injury. It is likely that initial cell damage induced by indomethacin occurs at or near the cell membrane, an effect exacerbated by bile acids and attenuated by PC. PMID:25477376

  12. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  13. Ala(0)-actagardine, a new lantibiotic from cultures of Actinoplanes liguriae ATCC 31048.

    PubMed

    Vértesy, L; Aretz, W; Bonnefoy, A; Ehlers, E; Kurz, M; Markus, A; Schiell, M; Vogel, M; Wink, J; Kogler, H

    1999-08-01

    The actagardine-producing strain Actinoplanes liguriae ATCC 31048, forms an additional lantibiotic when it is cultured on mannitol and soya meal. The new compound, Ala(0)-actagardine (1), has been isolated by solid-phase extraction followed by a two-step chromatographic separation. The molecular formula of 1 is C84H129N21O25S4. Its chemical structure was determined by 2D-NMR analysis and was further confirmed by an amino acid analysis, Edman degradation, and partial synthesis from actagardine. 1 exhibits a slightly higher biological activity than the parent compound actagardine. The synthetic analogs Lys(0)-actagardine (2) and Ile(0)-actagardine (3) demonstrate also antibacterial activities and emphasize the importance of the N-terminus for further derivatization. PMID:10580386

  14. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Zhen; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-11-01

    Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes. PMID:22569276

  15. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice