Science.gov

Sample records for acid all-trans-retinoic acid

  1. All-Trans-Retinoic-Acid Unmasking Hypercalcemia of Hyperparathyroidism.

    PubMed

    Yanamandra, Uday; Sahu, Kamal Kant; Khadwal, Alka; Prakash, Gaurav; Varma, Subhash Chander; Malhotra, Pankaj

    2016-06-01

    We present a patient of acute promyelocytic leukaemia managed with all-trans-retinoic-acid and arsenic trioxide who developed hypercalcemia with target organ damage. The patient also was simultaneously discovered to be symptomatic from hyperparathyroidism, which was unmasked after ATRA administration. Patient was successfully managed without any interruption of ATRA therapy and parathyroidectomy. We discuss the mechanisms of ATRA in causing hypercalcemia and its possible role in index case in unmasking hyperparathyroidism. Present case refutes Occam's razor and emphasise that known adverse effects shouldn't withhold clinicians from working up for other common causes for a given condition. PMID:27408352

  2. Physiological insights into all-trans-retinoic acid biosynthesis

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data supports a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. PMID:21621639

  3. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    EPA Science Inventory

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  4. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  5. Have all-trans retinoic acid and arsenic trioxide replaced all-trans retinoic acid and anthracyclines in APL as standard of care.

    PubMed

    Iland, Harry J; Wei, Andrew; Seymour, John F

    2014-03-01

    Until recently, the standard of care in the treatment of APL has involved the combination of all-trans retinoic acid with anthracycline-based chemotherapy during both induction and consolidation. Additionally, the intensity of consolidation chemotherapy has evolved according to a universally accepted relapse-risk stratification algorithm based on the white cell and platelet counts at presentation. That standard of care is being challenged by the increasing incorporation of arsenic trioxide into front-line treatment protocols, based on two complementary observations. The first is the undoubted anti-leukaemic activity of arsenic trioxide as shown in the relapsed and refractory setting, and in the initial management of low- and intermediate-risk patients. The second is an improved understanding of the action of both all-trans retinoic acid and arsenic trioxide in mediating APL cell eradication, with increasing recognition that PML-RARA fusion protein degradation rather than direct induction of terminal differentiation is the primary mechanism for their ability to eliminate leukaemia initiating cells. As a result, we believe the standard of care for initial therapy in APL is shifting towards an all-trans retinoic acid plus arsenic trioxide-based approach, with additional chemotherapy reserved for patients with high-risk disease. PMID:24907016

  6. [All-trans retinoic acid syndrome. Case report and a review of the literature].

    PubMed

    Carrillo-Esper, Raúl; Carvajal-Ramos, Roberto; Contreras-Domínguez, Vladimir; Hernández-Aguilar, César; Romano-Estrada, Lorena; Melo-Martínez, Carlos

    2004-01-01

    We described a patient with acute promyelocytic leukemia (APL) who developed all-trans retinoic acid syndrome (ATRAS) and reviewed the literature. ATRAS presents in patients with APL treated with all-trans retinoic acid (ATRA). It has an incidence from 5%-27% with mortality of 29%. It is secondary to ATRA effect on promyelocyte differentiation, which causes systemic inflammatory response syndrome, endothelium damage with increase in capillary permeability, microcirculation obstruction, and tissue infiltration. ATRAS clinical manifestations are fever, hypotension, respiratory, renal and hepatic insufficiency, lung infiltrates, pleural and pericardic effusion, and generalized edema. Treatment is based on ATRA suspension, support measures, and steroids. PMID:15559237

  7. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    EPA Science Inventory

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  8. Acute effects of all-trans-retinoic acid in ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All-trans-retinoic acid (ATRA) is a vitamin A derivative that is important in neuronal patterning, survival, and neurite outgrowth. We investigated the relatively acute effects of ATRA (100 nM and 1 µM) on cell swelling in ischemic injury and on key features hypothesized to contribute to cell swelli...

  9. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype

    PubMed Central

    Pellegrini, Camilla; Columbaro, Marta; Capanni, Cristina; D'Apice, Maria Rosaria; Cavallo, Carola; Murdocca, Michela; Lattanzi, Giovanna; Squarzoni, Stefano

    2015-01-01

    Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders. PMID:26359359

  10. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype.

    PubMed

    Pellegrini, Camilla; Columbaro, Marta; Capanni, Cristina; D'Apice, Maria Rosaria; Cavallo, Carola; Murdocca, Michela; Lattanzi, Giovanna; Squarzoni, Stefano

    2015-10-01

    Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders. PMID:26359359

  11. Enhancement of fludarabine sensitivity by all-trans-retinoic acid in chronic lymphocytic leukemia cells

    PubMed Central

    Fernández-Calotti, Paula X.; Lopez-Guerra, Mónica; Colomer, Dolors; Pastor-Anglada, Marçal

    2012-01-01

    Background A subset of patients with fludarabine-resistant chronic lymphocytic leukemia has previously been shown to express elevated intracellular levels of the concentrative high-affinity fludarabine transporter hCNT3, without any detectable related activity. We have recently shown that all-trans-retinoic acid is capable of inducing hCNT3 trafficking to plasma membrane in the MEC1 cell line. We, therefore, evaluated the effect of all-trans-retinoic acid on hCNT3 in primary chronic lymphocytic leukemia cells as a suitable mechanism to improve fludarabine-based therapy of chronic lymphocytic leukemia. Design and Methods Cells from 23 chronic lymphocytic leukemia patients wild-type for P53 were analyzed for ex vivo sensitivity to fludarabine. hCNT3 activity in chronic lymphocytic leukemia cell samples was evaluated by measuring the uptake of [8-3H]-fludarabine. The amounts of transforming growth factor-β1 and hCNT3 messenger RNA were analyzed by real-time polymerase chain reaction. The effect of all-trans-retinoic acid on hCNT3 subcellular localization was analyzed by confocal microscopy and its effect on fludarabine-induced apoptosis was evaluated by flow cytometry analysis using annexin V staining. Results Chronic lymphocytic leukemia cases showing higher ex vivo basal sensitivity to fludarabine also had a greater basal hCNT3-associated fludarabine uptake capacity compared to the subset of patients showing ex vivo resistance to the drug. hCNT3 transporter activity in chronic lymphocytic leukemia cells from the latter patients was either negligible or absent. Treatment of the fludarabine-resistant subset of chronic lymphocytic leukemia cells with all-trans-retinoic acid induced increased fludarabine transport via hCNT3 which was associated with a significant increase in fludarabine sensitivity. Conclusions Improvement of ex vivo fludarabine sensitivity in chronic lymphocytic leukemia cells is associated with increased hCNT3 activity after all-trans-retinoic acid

  12. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    EPA Science Inventory

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  13. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  14. Modulation of human stratum corneum properties by salicylic acid and all-trans-retinoic acid.

    PubMed

    Piérard-Franchimont, C; Goffin, V; Piérard, G E

    1998-01-01

    Topical all-trans-retinoic acid (RA) has been reported to decrease the in vivo skin response to sodium lauryl sulfate (SLS). The converse was also shown with a synergistic effect of RA following prior applications of SLS. The reason for such effects is not clear. We employed measures of transepidermal water loss (TEWL), squamometry and sequential corneosurfametry to explore the protective activity of a 0.05% RA cream at the level of the stratum corneum. Nonionic oil-in-water emulsions with or without 5% salicylic acid (SA) served as test product references. Data indicated that the RA formulation was responsible for a stochastic impairment in the TEWL and for an increased intercorneocyte cohesion. SA and the unmedicated emulsion did not lead to similar TEWL changes. The squamometry test proved to be very sensitive to disclose the effects of SA and RA without, however, allowing to distinguish the difference in the physiological processes involved. The corneosurfametry bioassay did not show any protection or synergistic effect between RA or SA and SLS challenge on the stratum corneum. This is in contrast to a previous work showing a positive protective effect afforded by retinol against SLS. The combined effects of irritant compounds affecting the stratum corneum are complex. The precise reason for some of their biological consequences remains a conundrum. On balance, products such as SA and RA do not appear to afford protection or impairment to a surfactant challenge at the level of the stratum corneum. PMID:9885411

  15. All-Trans Retinoic Acid plus Arsenic Trioxide versus All-Trans Retinoic Acid plus Chemotherapy for Newly Diagnosed Acute Promyelocytic Leukemia: A Meta-Analysis

    PubMed Central

    Ma, Yafang; Liu, Lu; Jin, Jie; Lou, Yinjun

    2016-01-01

    Background Recently, the all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO) protocol has become a promising first-line therapeutic approach in patients with newly diagnosed acute promyelocytic leukemia (APL), but its benefits compared with standard ATRA plus chemotherapy regimen needs to be proven. Herein, we conducted a meta-analysis comparing the efficacy of ATRA plus ATO with ATRA plus chemotherapy for adult patients with newly diagnosed APL. Methods We systematically searched biomedical electronic databases and conference proceedings through February 2016. Two reviewers independently assessed all studies for relevance and validity. Results Overall, three studies were eligible for inclusion in this meta-analysis, which included a total of 585 patients, with 317 in ATRA plus ATO group and 268 in ATRA plus chemotherapy group. Compared with patients who received ATRA and chemotherapy, patients who received ATRA plus ATO had a significantly better event-free survival (hazard ratio [HR] = 0.38, 95% confidence interval [CI]: 0.22–0.67, p = 0.009), overall survival (HR = 0.44, 95% CI: 0.24–0.82, p = 0.009), complete remission rate (relative risk [RR] = 1.05; 95% CI: 1.01–1.10; p = 0.03). There were no significant differences in early mortality (RR = 0.48; 95% CI: 0.22–1.05; p = 0.07). Conclusion Thus, this analysis indicated that ATRA plus ATO protocol may be preferred to standard ATRA plus chemotherapy protocol, particularly in low-to-intermediate risk APL patients. Further larger trials were needed to provide more evidence in high-risk APL patients. PMID:27391027

  16. Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis.

    PubMed

    Gaemers, I C; Van Pelt, A M; Themmen, A P; De Rooij, D G

    1998-05-01

    By way of differential screening of testis cDNA libraries from vitamin A-deficient (VAD) rats before and after administration of all-trans retinoic acid (ATRA), genes, the transcription of which was influenced by ATRA, were isolated. Most clones with an increased transcription encoded different subunits of the same mitochondrial protein complex, cytochrome c oxidase (COX). The mRNA expression of COX increased by a factor 3.9 +/- 1.5 (mean +/- SD, n = 4). This increased expression seems to reflect an increased energy demand in the ATRA-supplemented VAD testis. Also, one gene was isolated, the transcription of which was reduced to about 70% by ATRA. This gene, sulfated glycoprotein 2 (Sgp-2), is a major secretion product of Sertoli cells, the function of which is still unknown. The effect of ATRA on Sgp-2 expression may be direct, since the promoter of Sgp-2 contains a putative ATRA-responsive element (RARE). PMID:9547504

  17. Preparation of All-Trans Retinoic Acid nanosuspensions using a modified precipitation method.

    PubMed

    Zhang, X; Xia, Q; Gu, N

    2006-08-01

    All-Trans Retinoic Acid (ATRA) nanosuspensions were prepared with a modified precipitation method. The ATRA solution in acetone was injected into pure water by an air compressor under the action of ultrasonication. Photon correlation spectroscopy results showed that the mean particle size of ATRA nanoparticles in nanosuspensions reduced from 337 nm to 155 nm as the injection velocity increased and the polydispersity index was 0.45-0.50. The morphology of ATRA nanoparticles varied with the different concentration of ATRA solution in acetone. ATRA nanoparticles showed an amorphous state and stable in 6 months. It could be concluded that this modified precipitation method could produce stable and controllable ATRA nanosuspension to a certain extent, thus benefit for higher saturation solubility. PMID:16908423

  18. The effect of all-trans-retinoic acid on the synthesis of epidermal cell-surface-associated carbohydrates

    PubMed Central

    King, Ian A.; Tabiowo, Anne

    1981-01-01

    1. all-trans-Retinoic acid at concentrations greater than 10−7m stimulated the incorporation of d-[3H]glucosamine into 8m-urea/5% (w/v) sodium dodecyl sulphate extracts of 1m-CaCl2-separated epidermis from pig ear skin slices cultured for 18h. The incorporation of 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected. 2. Electrophoresis of the solubilized epidermis showed increased incorporation of d-[3H]glucosamine into a high-molecular-weight glycosaminoglycan-containing peak when skin slices were cultured in the presence of 10−5m-all-trans-retinoic acid. The labelling of other epidermal components with d-[3H]glucosamine, 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected by 10−5m-all-trans-retinoic acid. 3. Trypsinization dispersed the epidermal cells and released 75–85% of the total d-[3H]glucosamine-labelled material in the glycosaminoglycan peak. Thus most of this material was extracellular in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 4. Increased labelling of extracellular epidermal glycosaminoglycans was also observed when human skin slices were treated with all-trans-retinoic acid, indicating a similar mechanism in both tissues. Increased labelling was also found when the epidermis was cultured in the absence of the dermis, suggesting a direct effect of all-trans-retinoic acid on the epidermis. 5. Increased incorporation of d-[3H]-glucosamine into extracellular epidermal glycosaminoglycans in 10−5m-all-trans-retinoic acid-treated skin slices was apparent after 4–8h in culture and continued up to 48h. all-trans-Retinoic acid (10−5m) did not affect the rate of degradation of this material in cultures `chased' with 5mm-unlabelled glucosamine after 4 or 18h. 6. Cellulose acetate electrophoresis at pH7.2 revealed that hyaluronic acid was the major labelled glycosaminoglycan (80–90%) in both control and 10−5m-all-trans-retinoic acid

  19. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier.

    PubMed

    Charoenputtakhun, Ponwanit; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-03-01

    The objective of this study was to investigate the effects of drug amounts (0.1%, 0.2% and 0.3% w/w), amounts of the oil (10%, 15% and 20% w/w of lipid matrix) and types of the oil (soybean oil (S), medium chain triglycerides (M), oleic acids (O) and linoleic acids (L)) in lipid matrix of all-trans retinoic acid (ATRA)-loaded nanostructured lipid carriers (NLCs) for transdermal drug delivery. The ATRA-loaded solid lipid nanoparticles (SLNs) were formulated with 30% w/w cetyl palmitate. All lipid nanoparticles had average sizes between 130 and 241 nm and had negative zeta potentials. The drug loading of all formulations was higher than 95%. The release of drug from all lipid nanoparticles followed zero-order kinetics. The amount of drug released from all the NLCs and SLNs was significantly greater than the drug released from the ATRA suspension. The ATRA flux of the SLNs was higher than the NLCs. The flux of the NLCs containing oleic acid was significantly higher than the other types of oils. The chemical stability at 4 °C, the percentage of ATRA remaining in all the lipid nanoparticles tested was higher than 80%. It can be concluded that both the SLNs and NLCs are promising dermal drug delivery systems for ATRA. PMID:23356887

  20. All-Trans Retinoic Acid Modulates ORMDL3 Expression via Transcriptional Regulation

    PubMed Central

    Zhuang, Li-Li; Huang, Bo-Xian; Feng, Jie; Zhu, Liang-Hua; Jin, Rui; Qiu, Ling-Zhi; Zhou, Guo-Ping

    2013-01-01

    All-trans retinoic acid (ATRA) is an active metabolite of Vitamin A, it shows protective effects on asthma, including maintains airway epithelial integrity, inhibits asthma effector cells differentiation, modulates immune response, et al. However, the promoting effect of ATRA on Th2 response has restricted the clinical application of ATRA in asthma treatment. ORMDL3 is a candidate gene of childhood onset asthma, and high-transcript of ORMDL3 is associated with the development of asthma. Here we show that ATRA increases ORMDL3 production in vitro via inducing PKA-dependent CREB phosphorylation which in turn binds to the CRE element in promoter region of ORMDL3 and initiates ORMDL3 transcription. This finding is in consistent with the previous reports that ATRA could regulate target genes without the presence of retinoic acid response element (RARE) in promoter region but through other signals such as PKA/CREB. Nevertheless, in the present study, the traditional signal pathway of ATRA, retinoic acid receptor (RAR) signal transduction pathway, indirectly modulated ORMDL3 expression. RAR-α agonist (Am-80) increased ORMDL3 production even though there was no RARE in ORMDL3 promoter, introns or 3′-downstream region. Besides, the signal of RAR might differ from that of ATRA since Am-80 failed to induce CREB activation. In conclusion, our data indicate that ATRA facilitates ORMDL3 production probable through PKA/CREB, and this may be a starting point for more detailed mechanism researches on ATRA and asthma. PMID:24204796

  1. All-trans retinoic acid modulates ORMDL3 expression via transcriptional regulation.

    PubMed

    Zhuang, Li-Li; Huang, Bo-Xian; Feng, Jie; Zhu, Liang-Hua; Jin, Rui; Qiu, Ling-Zhi; Zhou, Guo-Ping

    2013-01-01

    All-trans retinoic acid (ATRA) is an active metabolite of Vitamin A, it shows protective effects on asthma, including maintains airway epithelial integrity, inhibits asthma effector cells differentiation, modulates immune response, et al. However, the promoting effect of ATRA on Th2 response has restricted the clinical application of ATRA in asthma treatment. ORMDL3 is a candidate gene of childhood onset asthma, and high-transcript of ORMDL3 is associated with the development of asthma. Here we show that ATRA increases ORMDL3 production in vitro via inducing PKA-dependent CREB phosphorylation which in turn binds to the CRE element in promoter region of ORMDL3 and initiates ORMDL3 transcription. This finding is in consistent with the previous reports that ATRA could regulate target genes without the presence of retinoic acid response element (RARE) in promoter region but through other signals such as PKA/CREB. Nevertheless, in the present study, the traditional signal pathway of ATRA, retinoic acid receptor (RAR) signal transduction pathway, indirectly modulated ORMDL3 expression. RAR-α agonist (Am-80) increased ORMDL3 production even though there was no RARE in ORMDL3 promoter, introns or 3'-downstream region. Besides, the signal of RAR might differ from that of ATRA since Am-80 failed to induce CREB activation. In conclusion, our data indicate that ATRA facilitates ORMDL3 production probable through PKA/CREB, and this may be a starting point for more detailed mechanism researches on ATRA and asthma. PMID:24204796

  2. Pathophysiology, clinical features and radiological findings of differentiation syndrome/all-trans-retinoic acid syndrome.

    PubMed

    Cardinale, Luciano; Asteggiano, Francesco; Moretti, Federica; Torre, Federico; Ulisciani, Stefano; Fava, Carmen; Rege-Cambrin, Giovanna

    2014-08-28

    In acute promyelocytic leukemia, differentiation therapy based on all-trans-retinoic acid can be complicated by the development of a differentiation syndrome (DS). DS is a life-threatening complication, characterized by respiratory distress, unexplained fever, weight gain, interstitial lung infiltrates, pleural or pericardial effusions, hypotension and acute renal failure. The diagnosis of DS is made on clinical grounds and has proven to be difficult, because none of the symptoms is pathognomonic for the syndrome without any definitive diagnostic criteria. As DS can have subtle signs and symptoms at presentation but progress rapidly, end-stage DS clinical picture resembles the acute respiratory distress syndrome with extremely poor prognosis; so it is of absolute importance to be conscious of these complications and initiate therapy as soon as it was suspected. The radiologic appearance resembles the typical features of cardiogenic pulmonary edema. Diagnosis of DS remains a great skill for radiologists and haematologist but it is of an utmost importance the cooperation in suspect DS, detect the early signs of DS, examine the patients' behaviour and rapidly detect the complications. PMID:25170395

  3. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    SciTech Connect

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa . E-mail: tmampel@ub.edu

    2006-06-10

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.

  4. Fungistatic activity of all-trans retinoic acid against Aspergillus fumigatus and Candida albicans

    PubMed Central

    Campione, Elena; Gaziano, Roberta; Marino, Daniele; Orlandi, Augusto

    2016-01-01

    Purpose Fungal infections are a major complication in hematologic and neoplastic patients causing severe morbidity and mortality. Aspergillus fumigatus and Candida albicans are among the most invasive opportunistic pathogens in immunocompromised patients, and classic antifungal drugs are frequently unsuccessful in these patients. Recent reports hypothesize that the antifungal efficacy of all-trans retinoic acid (ATRA) is mainly related to its strong capacity to stimulate monocyte-mediated immunity, but no consideration was given to its potential direct fungistatic activity. Moreover, ATRA offers the opportunity for systemic therapy. Methods and results We investigated the efficacy of ATRA at different concentrations for its antifungal activity against opportunistic A. fumigatus and C. albicans obtained from clinical samples according to standard protocols. A fungistatic activity of ATRA on A. fumigatus and C. albicans at 0.5–1 mM concentration was documented up to 7 days. Conclusion This is the first evidence of a direct and strong fungistatic activity of ATRA against A. fumigatus and C. albicans. The potential adjuvant therapeutic application of ATRA might be useful in the treatment and/or prevention of systemic mycoses in immunocompromised patients. The discovery of a direct fungistatic activity, in association with its reported immunomodulatory properties, makes ATRA an excellent candidate for new combined antifungal strategies for systemic mycoses in immunocompromised and cancer patients. PMID:27199548

  5. The effects of all-trans retinoic acid on blood cells in rat's embryo.

    PubMed

    Yousefi, Behpour

    2009-01-01

    All-trans retinoic acid (ATRA) has beneficial and teratogenicity effects when used in a variety conditions. The objectives of this study were to determine the effects of ATRA on the Progenitors of red blood cell and platelets in rat's embryo. Single oral dose (100 mg/kg) of ATRA was administered to rat on gestation day (GD) 10 and fetuses were observed on GD 18 and compared with untreated group. In the experimental embryos of GD 18, the mean number of red blood cells (RBC, 10.5%) and platelets number (15%) were decreased. There was a significant relationship in RBC and platelets count. The mean diameter of RBC and nucleated red blood (NRBC) were compared in two groups. There was no significant relationship between experimental and control groups, except in NRBC diameter. Thus, the present data shows that ATRA may have negative effects on proliferation, differentiation and maturation of erythroid cells and platelets, without having any deleterious effects on the dimenation of RBC. PMID:19168415

  6. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    SciTech Connect

    Li Ang . E-mail: liang3829@sina.com.cn; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-05

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-{alpha}, IFN-{gamma}), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-{kappa}B pathways related with immune response. Our results demonstrated that ATRA suppressed NF-{kappa}B activity and prevented I{kappa}B{alpha} degradation in a dose-dependent way, inhibited IFN-{gamma} production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.

  7. Dexamethasone, all trans retinoic acid and interferon alpha 2a in patients with refractory multiple myeloma.

    PubMed

    Avilés, A; Rosas, A; Huerta-Guzmán, J; Talavera, A; Cleto, S

    1999-02-01

    Few effective regimen are available for patients with refractory multiple myeloma (RMM). Generally, responses are scarce and disease free survival is very short. We developed a new therapeutic option in these patients using dexamethasone (40 mg/m2, i.v., daily, days 1 to 4), all-trans retinoic acid (45 mg/m2, po, daily, days 5 to 14) and interferon alpha 2a (9.0 MU, daily, subcutaneously, days 5 to 14). The treatment was administered every 21 days for 6 cycles. In a pilot study, 12 patients, heavily treated with chemotherapy and radiotherapy and in some cases with interferon, were allocated to receive the afore mentioned treatment. Response was observed in 10 patients (83%). With a median follow-up of 36.1 months (range 27 to 41), seven patients remain alive and disease-free without any treatment. Two patients were failures and have died due to tumor progression. Toxicity was mild and all patients received treatment according to the planned doses of drugs. The use of biological modifiers in combination with dexamethasone offer a safe and effective therapeutic option in patients with refractory multiple myeloma. More studies are warranted to define the role of this type of treatment. PMID:10850283

  8. Combination of Zinc and All-Trans Retinoic Acid Promotes Protection against Listeria monocytogenes Infection

    PubMed Central

    Nakatsu, Yukiko; Watanabe, Kenta; Shimizu, Takashi; Watarai, Masahisa

    2015-01-01

    Zinc (Zn) is the second most abundant transition metal after iron. It plays a vital role in living organisms and affects multiple aspects of the immune system. All-trans retinoic acid (atRA) is an isomeric form of the vitamin A or retinol. It possesses the greatest biological activity of Vitamin A. Vitamin A and related retinoids influence many aspects of immunity. In this study, we demonstrated that treatment with a combination of Zn and atRA contributes to host resistance against infection by Listeria monocytogenes. Pretreatment with Zn and atRA enhanced resistance against L. monocytogenes infection in mice and treatment with both Zn and atRA showed a higher protective effect than treatment with either alone. Supplementation with Zn, atRA or their combination decreased the number of L. monocytogenes present in target organs. In vitro, supplementation increased the bacterial uptake by macrophage cells and reduced the replication of L. monocytogenes. Our results suggest that the combination of Zn and atRA has a great bacteriostatic impact on L. monocytogenes and its infection. PMID:26351852

  9. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  10. Nebulization of niosomal all-trans-retinoic acid: an inexpensive alternative to conventional liposomes.

    PubMed

    Desai, Tejas R; Finlay, Warren H

    2002-07-25

    In this study we have demonstrated the potential of encapsulating all-trans-retinoic acid (ATRA) in niosomes and delivering it as an inhaled aerosol. Niosomes may provide a means to reduce the toxicity of ATRA and alter the pharmacokinetics in a manner similar to liposomes. In addition, the low cost of the surfactants used for preparing niosomes and their greater stability compared with liposomes makes them an attractive alternative. Various nonionic surfactants were used to achieve optimum encapsulation and nebulization efficiencies, and the best formulations were obtained with combinations of (Span 20 + Tween 80) and (Span 60 + Tween 80) using an ATRA concentration of 1 mg/ml. The aerosol produced with the selected niosomal formulations upon nebulization in PARI LC STAR nebulizers driven by a Pulmo-Aide compressor was subsequently analyzed for the determination of size distribution and entrapment efficiencies on each stage of an Anderson cascade impactor operated in a manner that avoids spurious sizing due to droplet evaporation. Mass median aerodynamic diameters (MMADs) of 3.7+/-0.3 and 3.58+/-0.03 microm, geometric standard deviation (GSD) values of 1.59+/-0.17 and 1.51+/-0.01 and entrapment efficiencies well above 50% were obtained for the optimized formulations. The results are very encouraging and offer an alternative approach to the respiratory delivery of ATRA by aerosolization. PMID:12100858

  11. Matrine cooperates with all-trans retinoic acid on differentiation induction of all-trans retinoic acid-resistant acute promyelocytic leukemia cells (NB4-LR1): possible mechanisms.

    PubMed

    Wu, Dijiong; Shao, Keding; Sun, Jie; Zhu, Fuyun; Ye, Baodong; Liu, Tingting; Shen, Yiping; Huang, He; Zhou, Yuhong

    2014-03-01

    Retinoic acid resistance results in refractory disease, and recovery in acute promyelocytic leukemia remains a challenge in clinical practice, with no ideal chemotherapeutic drug currently available. Here we report on the effect of an active compound of Sophora flavescens called matrine (0.1 mmol/L) combined with all-trans retinoic acid (1 µmol/L) in alleviating retinoic acid resistance in acute promyelocytic leukemia-derived NB4-LR1 cells by differentiation induction, as can be seen by an induced morphology change, increased CD11b expression, and nitro blue tetrazolium reduction activity, and a decreased expression of the promyelocytic leukemia-retinoic acid receptor α fusion gene and protein product. We further explored the probable mechanism of how matrine promotes the recovery of differentiation ability in NB4-LR1 cells when exposed to all-trans retinoic acid. We observed that the combination of all-trans retinoic acid and matrine can increase the level of cyclic adenosine monophosphate and protein kinase A activity, reduce telomerase activity, and downregulate the protein expression of topoisomerase II beta in NB4-LR1 cells. The results of this study suggest the possible clinical utility of matrine in the treatment of retinoic acid-resistant acute promyelocytic leukemia. PMID:24619838

  12. All-Trans-Retinoic Acid Enhances Mitochondrial Function in Models of Human Liver.

    PubMed

    Tripathy, Sasmita; Chapman, John D; Han, Chang Y; Hogarth, Cathryn A; Arnold, Samuel L M; Onken, Jennifer; Kent, Travis; Goodlett, David R; Isoherranen, Nina

    2016-05-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialβ-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1βand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedβ-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARβ, and PPARδrevealed that the enhancement of mitochondrial biogenesis andβ-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidβ-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction. PMID:26921399

  13. Topical all-trans retinoic acid stimulates collagen synthesis in vivo.

    PubMed

    Schwartz, E; Cruickshank, F A; Mezick, J A; Kligman, L H

    1991-06-01

    Histochemical and ultrastructural studies demonstrate that topical all-trans retinoic acid (RA) stimulates the deposition of a subepidermal band of collagen in photoaged hairless mice. The aim of this study was to examine the effect of RA treatment on collagen synthesis using biochemical and immunochemical techniques. Albino hairless mice were irradiated three times a week for 10 weeks with four minimal erythema doses of UVB from Westinghouse FS-40 bulbs. In the post-UV period, mice were either nontreated or treated with 0.05% RA or the ethanol-propylene glycol vehicle for up to 10 weeks. Antibodies against the aminopropeptide (AP) of type III procollagen were used in immunofluorescence microscopy and radioimmunoassay techniques. The AP of type III collagen is normally present throughout the dermis and in areas of active collagen synthesis (i.e., the dermal-epidermal junction). In this study, a similar distribution was seen in all untreated and vehicle-treated mice, and in mice treated with RA for 2, 4, and 6 weeks. However, increased staining, in a subepidermal band, was detected in the 8-week RA-treated skin. This region became intensely fluorescent to a depth of 100 mu in the 10-week RA-treated skins. As determined by radioimmunoassay, the content of the AP of type III procollagen increased twofold with 10-week RA treatment. Because the ratio of type I to type III collagens remained constant in treated and untreated skins, it is reasonable to assume that the content of type I collagen increased in proportion to type III collagen in RA-treated skins. PMID:2045685

  14. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat.

    PubMed

    Eltony, Sohair A; Elmottaleb, Nashwa A; Gomaa, Asmaa M; Anwar, Mamdouh M; El-Metwally, Tarek H

    2016-03-01

    All-trans Retinoic acid (atRA) is instructive for the development of endocrine pancreas and is an integral component of β-cell induction protocols. We showed that atRA induces glucose-responsive endocrine transdifferentiation of pleomorphic pancreatic ductal adenocarcinoma cells in vitro. This study aimed to detect the role of atRA in improving the histological changes of the pancreas in diabetic rats. Forty young male Wistar rats were used and divided into three groups. Group I: normal vehicle control (N = 5). Group II: streptozotocin-induced diabetic rats (N = 20) were followed up at 0.0, 1, 2, and 4 weeks. Group III: streptozotocin-induced diabetic rats (N = 15) treated with atRA (2.5 mg/kg/day), were followed up at 1, 2, and 4 weeks. Specimens from the pancreas were processed for light, electron microscopy and pancreatic insulin mRNA expression. Blood samples were assayed for the levels of glucose, insulin, and total peroxides. In the atRA-treated group, the number of the islets and the islet area significantly increased. Strong insulin-immunoreactive endocrine-like cells were observed nearby the pancreatic acini and the interlobular ducts. Interestingly, insulin-positive cells seemed to arise from pancreatic acinar and ductal epithelium. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. Pancreatic insulin mRNA and blood indices were almost normalized. AtRA improved the histological changes of the pancreas and the blood indices in diabetic rats. PMID:26704900

  15. All-trans retinoic acid triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2

    PubMed Central

    Inkeles, Megan S.; De Leon, Avelino; Pellegrini, Matteo; Krutzik, Stephan R.; Liu, Philip T.

    2014-01-01

    A role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the mechanism is unclear. Here, we demonstrate that vitamin A-triggered antimicrobial activity against M. tuberculosis requires expression of Niemann-Pick disease type C2 (NPC2). Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D3), the biologically active forms of vitamin A and vitamin D, respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Stimulation of primary human monocytes with ATRA did not result in expression of the antimicrobial peptide cathelicidin, which is required for 1,25D3 antimicrobial activity. In contrast, ATRA triggers a reduction in the total cellular cholesterol concentration, whereas 1,25D3 did not. Blocking ATRA-induced cellular cholesterol reduction inhibits antimicrobial activity as well. Bioinformatic analysis of ATRA and 1,25D3 induced gene profiles suggests Niemann-Pick disease type C2 (NPC2) is a key gene in ATRA-induced cholesterol regulation. Knockdown experiments demonstrate that ATRA-mediated decrease of total cellular cholesterol content and increase in lysosomal acidification are both dependent upon expression of NPC2. Expression of NPC2 was lower in caseous tuberculosis granulomas and M. tuberculosis-infected monocytes compared to normal lung and uninfected cells, respectively. Loss of NPC2 expression ablated ATRA-induced antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated antimicrobial mechanism against M. tuberculosis requires NPC2-dependent expression and function, indicating a key role for cellular cholesterol regulation in the innate immune response. PMID:24501203

  16. Comparative molecular pathology of cadmium- and all-trans-retinoic acid-induced postaxial forelimb ectrodactyly

    SciTech Connect

    Liao Xiaoyan; Lee, Grace S.; Shimizu, Hirohito; Collins, Michael D.

    2007-11-15

    Cadmium chloride (CdCl{sub 2}) and all-trans-retinoic acid (RA) induce postaxial forelimb ectrodactyly in C57BL/6N mice when administered during early limb development, and co-administration yields a synergistic response suggesting a common final pathway to the defect. In the current study, forelimb buds from embryos given high maternal teratogenic doses of CdCl{sub 2} or RA, or the combination of both agents at low doses were collected at various time points after treatment on GD 9.5 and examined for cellular apoptosis, proliferation, and patterning genes. Some cellular perturbations detected in the developing limb bud were similar for both teratogens, whereas other alterations were unique to each agent. For example, at 12 and 18 h, CdCl{sub 2} treatment increased apoptotic cells in the mesenchyme underneath the apical ectodermal ridge (AER), whereas RA caused apoptosis in the AER and proximal mesenchyme. Further, the combined low-dose treatment increased cell death synergistically in all three regions. CdCl{sub 2} and the low-dose combined treatment inhibited mesenchymal proliferation at 12 h, which was associated with induction of p21{sup cip1} and inhibition of phospho-c-Jun. In contrast, RA did not inhibit mesenchymal proliferation and did not induce p21{sup cip1} expression or change c-Jun phosphorylation. All three treatment groups showed a delay in the patterning of distal chondrogenesis centers as indicated by Sox9 expression. There was also common inhibition in the expression of AER markers, Fgf8 and Fgf4, and the mesenchymal marker Msx1 involved in the maintenance of epithelial-mesenchymal interactions. Collectively, a model is hypothesized where limb patterning can be perturbed by insults to both ectoderm and mesoderm.

  17. Effects of all-trans retinoic acid and Ca++ on human skin in organ culture.

    PubMed Central

    Varani, J.; Fligiel, S. E.; Schuger, L.; Perone, P.; Inman, D.; Griffiths, C. E.; Voorhees, J. J.

    1993-01-01

    In this study, we have established an organ culture model of human skin and examined the effects of both all-trans retinoic acid (RA) and extracellular Ca++ on the epidermal and dermal components of the organ-cultured skin. Our data show that while organ cultures maintained in serum-free, growth factor-free culture medium containing 0.15 mM Ca++ degenerated rapidly, those treated with concentrations of RA that have been shown previously to stimulate fibroblast and keratinocyte proliferation in monolayer culture (J Invest Dermatol 1989, 93:449; 1990, 94:717; Am J Pathol 1990, 136:1275) demonstrated a healthy appearance for up to 12 days. Degeneration of the control cultures was characterized by separation of the epidermis from the underlying dermis, progressive cell necrosis leading to a complete absence of viable cells from both the dermal and epidermal compartments, disintegration and fibrillation of the dermal connective tissue, and a cessation of protein synthesis. RA-treated organ cultures contained large numbers of healthy-appearing cells in both the epidermal and dermal compartments. One or several layers of viable basal cells in the epidermis could be seen at least through day 12. However, the upper layers of the epidermis frequently separated from the cells in the basal layer. The dermal connective tissue was histologically well-preserved. Furthermore, the level of protein synthesis was higher in the RA-treated cultures than in the control cultures. In addition to treating organ cultures with RA, other cultures were exposed to serum-free, growth factor-free culture medium containing 1.4 mM Ca++. The presence of the elevated Ca++ concentration also preserved cellular and connective tissue structures in the dermal and epidermal compartments. In comparison to RA there was better preservation of the overall epidermal structure. The upper layers of epidermal cells did not separate from the basal cells, and the various stages of epithelial differentiation could

  18. Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid

    PubMed Central

    Silvis, Anne M.; McCormick, Michael L.; Spitz, Douglas R.; Kiningham, Kinsley K.

    2015-01-01

    Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal differentiation marker [neurofilament M (NF-M)] in human SK-N-SH neuroblastoma cells treated with 10 μM all-trans retinoic acid (ATRA) showed significantly increased expression in accordance with reduced cell number. This was accompanied by an increase in MitoSOX and DCFH2 oxidation that could be indicative of increased steady-state levels of reactive oxygen species (ROS) such as O2•− and H2O2, which correlated with increased levels of MnSOD activity and immuno-reactive protein. Furthermore PEG-catalase inhibited the DCFH2 oxidation signal to a greater extent in the ATRA-treated cells (relative to controls) at 96 h indicating that as the cells became more differentiated, steady-state levels of H2O2 increased in the absence of increases in peroxide-scavenging antioxidants (i.e., glutathione, glutathione peroxidase, and catalase). In addition, ATRA-induced stimulation of NF-M at 48 and 72 h was enhanced by decreasing SOD activity using siRNA directed at MnSOD. Finally, treatment with ATRA for 96 h in the presence of MnSOD siRNA or PEG-catalase inhibited ATRA induced increases in NF-M expression. These results provide strong support for the hypothesis that changes in steady-state levels of O2•− and H2O2 significantly contribute to the process of ATRA-induced differentiation in neuroblastoma, and suggest that retinoid therapy for neuroblastoma could potentially be enhanced by redox-based manipulations of superoxide metabolism to improve patient outcome. PMID:26678800

  19. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients.

    PubMed

    Tassara, Michela; Döhner, Konstanze; Brossart, Peter; Held, Gerhard; Götze, Katharina; Horst, Heinz-A; Ringhoffer, Mark; Köhne, Claus-Henning; Kremers, Stephan; Raghavachar, Aruna; Wulf, Gerald; Kirchen, Heinz; Nachbaur, David; Derigs, Hans Günter; Wattad, Mohammed; Koller, Elisabeth; Brugger, Wolfram; Matzdorff, Axel; Greil, Richard; Heil, Gerhard; Paschka, Peter; Gaidzik, Verena I; Göttlicher, Martin; Döhner, Hartmut; Schlenk, Richard F

    2014-06-26

    The outcome of patients with acute myeloid leukemia who are older than 60 years has remained poor because of unfavorable disease characteristics and patient-related factors. The randomized German-Austrian AML Study Group 06-04 protocol was designed on the basis of in vitro synergistic effects of valproic acid (VPA) and all-trans retinoic acid with chemotherapy. Between 2004 and 2006, 186 patients were randomly assigned to receive 2 induction cycles with idarubicin, cytarabine, and all-trans retinoic acid either with VPA or without (STANDARD). In all patients, consolidation therapy was intended. Complete remission rates after induction tended to be lower in VPA compared with STANDARD (40% vs 52%; P = .14) as a result of a higher early death rate (26% vs 14%; P = .06). The main toxicities attributed to VPA were delayed hematologic recovery and grade 3/4 infections, observed predominantly during the second induction cycle. After restricting VPA to the first induction cycle and reducing the dose of idarubicin, these toxicities dropped to rates observed in STANDARD. After a median follow-up time of 84 months, event-free and overall survival were not different between the 2 groups (P = .95 and P = .57, respectively). However, relapse-free-survival was significantly superior in VPA compared with STANDARD (24.4% vs 6.4% at 5 years; P = .02). Explorative subset analyses revealed that AML with mutated Nucleophosmin 1 (NPM1) may particularly benefit from VPA. This trial was registered at www.clinicaltrials.gov as #NCT00151255. PMID:24797300

  20. Prophylaxis of symptoms of hyperhistaminemia after the treatment of acute promyelocytic leukemia with all-trans retinoic acid.

    PubMed

    Shimamoto, Y; Suga, K; Yamaguchi, M; Kuriyama, K; Tomonaga, M

    1994-01-01

    A 61-year-old man with acute promyelocytic leukemia (APL) is described in whom some leukemic promyelocytes contained granules similar to those of basophils, and hyperhistaminemia developed after treatment with all-trans retinoic acid. The symptoms of hyperhistaminemia, mediated via H2 receptors, were prevented by the administration of an H2-blocker, famotidine, but wheezing due to bronchospasms, mediated via H1 receptors, developed and was improved by administration of chlorpheniramine. In APL, it is generally thought that the maturation of neutrophilic leukocytes is arrested at the level of abnormal promyelocytes. However, heterogeneity of leukemic promyelocytes has been described and in a few patients some leukemic promyelocytes have been known to show basophilic features. Marked basophilia and severe symptoms due to hyperhistaminemia have recently been reported after the treatment of APL with all-trans retinoic acid. Our case presented similar basophilic features, but indicated that the symptoms of hyperhistaminemia after administration of retinoic acid can be prevented with antihistaminic drugs and suggested that both H1- and H2-blockers should be administered to such APL patients with basophilia. PMID:7817703

  1. Sivelestat relieves respiratory distress refractory to dexamethasone in all-trans retinoic acid syndrome: a report of two cases

    PubMed Central

    Kawasaki, Kozo; Akaike, Hiroto; Miyauchi, Ayaka; Ouchi, Kazunobu

    2006-01-01

    Kawasaki K, Akaike H, Miyauchi A, Ouchi K. Sivelestat relieves respiratory distress refractory to dexamethasone in all-trans retinoic acid syndrome: a report of two cases. Treatment with all-trans retinoic acid (ATRA) improves the prognosis of patients with acute promyelocytic leukemia (APL), but ATRA syndrome may occur as a possible fatal side effect, especially in cases refractory to medication or involving pulmonary hemorrhage. We describe two patients with APL who suffered from intracranial hemorrhage. The first patient was a 16-yr-old girl who was treated with ATRA and then developed respiratory distress refractory to treatment with dexamethasone combined with anthracycline-cytarabine cytoreduction therapy. Treatment with Sivelestat, a small molecule inhibitor of neutrophil elastase, achieved rapid improvement in oxygenation and chest radiograph findings, and the patient has been in complete remission for 24 months. The second patient was a 10-yr-old boy in whom pulmonary hemorrhage developed following administration of ATRA, dexamethasone and cytoreduction therapy. Aspiration and administration of Sivelestat improved oxygenation and he remained stable. Hematological improvement was also achieved, but the patient died of brain dysfunction because of cerebral edema accompanied by intracranial bleeding. The two cases suggest that Sivelestat may be effective as an additional agent in the treatment of refractory ATRA syndrome, and, therefore, prospective randomized studies of treatment protocols are warranted. PMID:16930140

  2. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    PubMed Central

    Zhou, Hong-Yan; Zhong, Wei; Zhang, Hong; Bi, Miao-Miao; Wang, Shuang; Zhang, Wen-Song

    2015-01-01

    Fungal keratitis (FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA) have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α), retinoic acid receptor γ (RAR γ), and retinoid X receptor α (RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK. PMID:26309886

  3. Sorafenib plus all-trans retinoic acid for AML patients with FLT3-ITD and NPM1 mutations.

    PubMed

    Guenounou, Sarah; Delabesse, Eric; Récher, Christian

    2014-12-01

    Knowledge of the molecular basis of acute myeloid leukaemia has increased considerably in the past few years, and therapies targeting specific molecular defects of this disease are intensively investigated. Patients with both NPM1 and FLT3-ITD mutations encompass 20% of cytogenetically normal AML. The multikinase and FLT3 inhibitor, sorafenib, has shown some efficacy in patients with relapsed FLT3-ITD(+) AML. In addition, it is suggested that all-trans retinoic acid (ATRA) used in combination with chemotherapy has shown to improve outcome of patients harbouring NPM1 mutations. We report here the clinical course of three patients with refractory or relapsed FLT3-ITD(+) /NPM1(+) AML who achieved significant response upon sorafenib and ATRA combination. PMID:24689895

  4. Continuation of all-trans retinoic acid despite the development of scrotal ulcerations in a black male.

    PubMed

    Sutherland, Jennifer; Kempton, Christine L; Curry, Marjorie Adams

    2015-10-01

    Acute promyelocytic leukemia, an aggressive subtype of acute myeloid leukemia, is characterized by the t(15;17) translocation. Standard induction chemotherapy consists of (ATRA) in combination with anthracycline-based chemotherapy with or without the addition of cytarabine. Rare and serious side effects of ATRA have been reported including painful lip and scrotal ulcerations. Of 20 previous reports of genital ulceration, 17 patients had ATRA discontinued and corticosteroids initiated; however, the corticosteroid regimens and duration of therapy were not well described. Herein we present the first known case of a Black male with ATRA-associated scrotal ulcerations who was successfully managed with corticosteroids without cessation of all-trans retinoic acid. We report this case to highlight its rarity and to note that ATRA can be continued in combination with corticosteroids throughout induction. PMID:24876163

  5. The dual nature of retinoic acid in pemphigus and its therapeutic potential: Special focus on all-trans Retinoic Acid.

    PubMed

    Tavakolpour, Soheil; Daneshpazhooh, Maryam; Mahmoudi, Hamid Reza; Balighi, Kamran

    2016-07-01

    The efficient treatment of pemphigus with no certain side effect remained a controversial issue. Although there are various options for controlling disease severity, the majority of them may cause serious side effects. Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune functions. Effects of RA, especially all-trans-Retinoic Acid (ATRA) on different types of cells involved in immune responses were analyzed in vitro and in vivo. RAs could affect the differentiation of T helper (Th) cells, B cells responses, stabilization of both natural regulatory T cells (nTregs) and regulatory B cells (Bregs) populations, and regulating the expression of critical genes in immune responses. The role of RA, based on major immune cells involved in pemphigus has not been addressed so far. In this study, we sought to determine the possible effects of RA, with a special focus on ATRA in pemphigus. All the evidences of ATRA effects on the immune system were collected and their association with the pemphigus was analyzed. According to the previous results, ATRA causes a decline in Th17 populations; increase in CD4+ induced regulatory T cells (iTregs), stabilization of nTregs, and promotion of suppressive B cells, which are critical in the improvement of pemphigus. Nevertheless, it also causes shifting of the Th1:Th2 balance toward Th2 cells, which is not favorable for pemphigus patients. In conclusion, ATRA acts via different ways in pemphigus. Due to increase in the suppressive function via iTregs, nTregs, and Bregs, it is suggested that patients with pemphigus may benefit from systemic ATRA therapy. To clarify this issue, further studies, such as clinical trials are needed. PMID:27156125

  6. All-trans retinoic acid mitigates methotrexate-induced liver injury in rats; relevance of retinoic acid signaling pathway.

    PubMed

    Ewees, Mohamed G; Abdelghany, Tamer M; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2015-09-01

    Methotrexate (MTX) is a widely used drug for treatment of rheumatic and autoimmune diseases as well as different types of cancer. One of the major side effects of MTX is hepatotoxicity. Retinoid receptors, including retinoid X receptor (RXR), and retinoic acid receptor (RAR) are vitamin A receptors that are highly expressed in the liver and regulate important physiological processes through regulation of different genes. In this study, we investigated the effect of MTX on RXR-α and RAR-α expression in the liver and the potential protective effects of all-trans retinoic acid (ATRA) in MTX-induced hepatotoxicity. Rats were randomly divided into five groups: The rates were treated with saline, DMSO, MTX (20 mg/kg/IP; single dose), ATRA (7.5 mg/kg/day, I.P), or MTX and ATRA. Rats were killed 24 h after the last ATRA injection. The liver tissues were dissected out, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Our results demonstrated that treatment with MTX resulted in significant decrease in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity, with concomitant increase in ALT, AST, and MDA levels. In addition, MTX markedly downregulated the expression of both RXR-α and RAR-α, and changed the appearance of RXR-α to be very small speckled droplets. Treatment with ATRA significantly ameliorated MTX-induced effects on GSH, ALT, and MDA. Moreover, ATRA administration increased the expression and nuclear translocation of RXR-α in rat hepatocytes. In conclusion, our study revealed, for the first time, that retinoid receptors may play an important role in the MTX-induced hepatotoxicity. PMID:25971792

  7. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway.

    PubMed

    Elsayed, Abdelrahman M; Abdelghany, Tamer M; Akool, El-Sayed; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2016-03-01

    Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on

  8. Chronic topical application of all-trans-retinoic acid in man does not affect corneocyte surface area.

    PubMed

    Robinson, S M; Poncet, M; Ferracin, J; Czernielewski, J; Verschoore, M

    1994-01-01

    The potential therapeutic activity of topically applied novel analogues of retinoic acid is currently measured in many different animal models. In most cases, the technique used is invasive and biopsy specimens are required. Furthermore, efficacy in these models is not a guarantee of success in treatment of humans. Therefore, predictive human pharmacology tests are required in order to quantify a retinoid effect on human skin before conducting large clinical trials. The aim of this study was to determine whether changes in corneocyte surface area could be used as a predictive measure for the efficacy of topical retinoids in man. Topical applications of all-trans retinoic acid gel (Aberel), salicylic acid gel and the gel vehicle were made once daily for 4 weeks to skin of the lumbar region of healthy human volunteers. Corneocytes were recovered from these three treated zones as well as from one zone of untreated skin, and their surface areas were measured by image analysis using a MOP-Videoplan. The results showed that at no point during the 4 weeks of daily application to healthy human skin was there a statistically significant difference in the surface area of corneocytes recovered from Aberel, salicylic acid-, vehicle-treated or untreated sites. No specific effect of retinoic acid could be detected. However, although no between-treatment differences were found, significant cyclical changes in the mean surface areas with respect to baseline were observed. PMID:8024798

  9. Contrasting Roles For All-Trans Retinoic Acid in TGF-ß-mediated Induction of Foxp3 and Il10 Genes in Developing Regulatory T Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrathymic induction of regulatory T cells (Treg) is essential to the regulation of effector T cell responses in the periphery. TGF-ß has been shown to induce Foxp3-expressing Tregs both in vitro and in vivo. More recently, the vitamin A metabolite, all-trans retinoic acid (at-RA), has been found t...

  10. Csn3 Gene Is Regulated by All-Trans Retinoic Acid during Neural Differentiation in Mouse P19 Cells

    PubMed Central

    Komori, Rie; Kobayashi, Takanobu; Matsuo, Hikaru; Kino, Katsuhito; Miyazawa, Hiroshi

    2013-01-01

    κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation. PMID:23613978

  11. Nanostructured lipid carriers loaded with tributyrin as an alternative to improve anticancer activity of all-trans retinoic acid

    PubMed Central

    Silva, Elton Luiz; Carneiro, Guilherme; Caetano, Priscila Albuquerque; Costa, Daniel Ferreira; de Souza-Fagundes, Elaine Maria; Gomes, Dawidson Assis; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Objectives All-trans retinoic acid (ATRA) is one of the most successful examples of differentiation agents and histone deacetylase inhibitors, such as tributyrin (TB), are known for their antitumor activity and potentiating action of drugs such as ATRA. Nanostructured lipid carriers (NLC) represent a promising alternative to the encapsulation of lipophilic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of ATRA-TB-loaded nanostructured lipid carriers (NLC) for cancer treatment. Methods The influence of in situ formation of an ion pairing between ATRA and a lipophilic amine (benethamine; BNT) on the characteristics of NLC (size, zeta potential, encapsulation efficiency) was evaluated. Tributyrin (TB), a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for MCF-7, MDA-MB-231, HL-60, and Jurkat cell lines. Results The presence of the amine significantly increased the encapsulation efficiency of ATRA in NLC. Inhibition of cell viability by TB-ATRA-loaded NLC was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for TB-ATRA-loaded NLC, with the clear effect of cell cycle arrest in G0/G1 phase transition. The presence of TB played an important role in the activity of the formulation. Conclusion Taken together, these findings suggest that TB-ATRA-loaded NLC represent a promising alternative to intravenous administration of ATRA in cancer treatment. PMID:25611812

  12. The possibility of simvastatin as a chemotherapeutic agent for all-trans retinoic acid-resistant promyelocytic leukemia.

    PubMed

    Tomiyama, Naoki; Matzno, Sumio; Kitada, Chihiro; Nishiguchi, Eri; Okamura, Noboru; Matsuyama, Kenji

    2008-03-01

    In this study, the authors evaluated the possible use of 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) in anti-leukemic chemotherapy. Cytotoxic potency against HL-60 was as follows; simvastatin (SV)>atorvastatin>cerivastatin>fluvastatin. Interestingly, HL-60-R2, an all-trans retinoic acid (ATRA)-resistant HL-60 variant, was twice as sensitive to SV than HL-60. Further studies revealed the particular mechanism of action of SV-induced apoptosis in leukemia. SV directly and rapidly disordered mitochondria with a loss of its membrane potential, reactive oxygen species (ROS) generation and subsequent irreversible damage with cytochrome c leakage and, finally, SV induced apoptosis through caspase-9 activation, whereas several studies have shown that other statins induced apoptosis to leukemia by the depletion of isoprenoids used for the prenylation of small GTPases, which are essential for cellular signal transduction. Our findings suggest that the mitochondrial pathway plays an important role in the higher potency of SV as a new class of agents for anti-leukemic therapy alone and/or in combination with agents. PMID:18310894

  13. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid

    PubMed Central

    Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud

    2014-01-01

    The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed. PMID:25486480

  14. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment

    PubMed Central

    Su, Meng; Alonso, Salvador; Jones, Jace W.; Yu, Jianshi; Kane, Maureen A.; Jones, Richard J.; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  15. All-trans retinoic acid reduces membrane fluidity of human dermal fibroblasts. Assessment by fluorescence redistribution after photobleaching.

    PubMed Central

    Varani, J.; Burmeister, W.; Bleavins, M. R.; Johnson, K.

    1996-01-01

    All-trans retinoic acid (RA) preserves human dermal fibroblast viability and stimulates proliferation in vitro. These effects are mediated, at least in part, by reducing the extracellular Ca2+ requirement. The same concentrations of RA that reduce the extracellular Ca2+ requirement also interrupt movement of Ca 2+ across the fibroblast plasma membrane. Based on these observations, we have examined the effects of RA on membrane properties that could influence Ca2+ movement. Fibroblasts were labeled with 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3 diazole)-amino-caproyl phosphatidyl-choline (a fluorescent phospholipid analogue) and examined for fluorescence redistribution after photobleaching (FRAP) with a pulse of intense light as a measure of membrane fluidity. Using this approach, we observed that membrane fluidity was higher when the cells were incubated in medium containing a low (sub-optimal) level of extracellular Ca2+ (0.15 mmol/L) than in a medium containing an optimal concentration (1.4 mmol/L). Treatment of the cells with 3 micromol/L RA reduced membrane fluidity of the cells under both high- and low-Ca2+ conditions. These findings demonstrate that RA has a direct effect on the plasma membrane of human dermal fibroblasts. This provides a possible mechanism for the previously identified inhibition of Ca2+ movement across the membrane of the same cells and for the previously identified protective effects against lysis under low-Ca2+ conditions. PMID:8644871

  16. All-Trans Retinoic Acid Induces Expression of a Novel Intergenic Long Noncoding RNA in Adult rat Primary Hippocampal Neurons.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-02-01

    Around 90% of the mammalian genome undergoes pervasive transcription into various types of small and long regulatory noncoding RNAs, whereas only ∼ 1.5% codes for proteins. Long noncoding RNAs (lncRNAs) constitute diverse classes of sense- and antisense transcripts that are abundantly expressed in the mammalian central nervous system (CNS) in cell type- and developmental stage-specific manners. They are implicated in brain development, differentiation, neuronal plasticity, and other cognitive functions. Mammalian brain requires the vitamin A metabolite all-trans retinoic acid (atRA) for its normal development, differentiation, and cell-fate determination. However, its role in adult brain function is less understood. Here, we report atRA-mediated transcriptional upregulation of endogenous expression of a novel long intergenic noncoding RNA-rat brain expressed (LINC-RBE) in cultured primary hippocampal neurons from adult rat. We have previously reported LINC-RBE as an intergenic, simple repeat sequence containing lncRNA highly expressed in the rat brain. This is a first-time report of involvement of atRA in transcriptional upregulation of lncRNA expression in rat hippocampal neurons. Therefore, it may be involved in regulation of brain function and disease. PMID:26572536

  17. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    PubMed Central

    Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J.; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M.; LoCoco, Francesco; Cantley, Lewis; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors. PMID:25849135

  18. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.

    PubMed

    Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud

    2014-01-01

    The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed. PMID:25486480

  19. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells

    PubMed Central

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  20. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells.

    PubMed

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  1. Development and characterization of polymer-oil nanostructured carrier (PONC) for controlled delivery of all-trans retinoic acid (ATRA)

    NASA Astrophysics Data System (ADS)

    Narvekar, Mayuri M.

    The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer.

  2. NIR and visible investigation of some potential SERS-active substrates for studying antitumour agent all- trans retinoic acid

    NASA Astrophysics Data System (ADS)

    Beljebbar, A.; Sockalingum, G. D.; Morjani, H.; Angiboust, J. F.; Manfait, M.

    1997-01-01

    Red and near-infrared excited Fourier transform surface-enhanced Raman spectra of an anticancer agent, all- trans retinoic acid (ATRA), adsorbed on gold island films are reported. Best results have been obtained with plates 80 Å and 40 Å thick respectively in the red and near-infrared and at concentrations of 10 -5 and 5 × 10 -6 M with a spinning system. The use of near-infrared laser excitation with low photon energy, allows us to overcome the problems of isomerisation when the sample is exposed for a long time to the laser radiation. Comparison between the Raman and SERS spectra in the visible shows that the adsorption on the surface does not perturb the structure of ATRA and confirms the long range enhancement of the island films with this type of molecule. Spectral data show that while gold island films and colloids are appropriate substrates for use with red excitation, silver and gold colloids as well as gold island films exhibit satisfactory enhancement levels in the near-infrared. This study will in the future allow us to choose the appropriate system that will serve to investigate the interaction of ATRA with its target in vitro and the effect of this differentiating agent in human leukaemia cell lines such as K562 and HL60.

  3. Elevated TrkA receptor expression is associated with all-trans retinoic acid-induced neuroblastoma differentiation.

    PubMed

    Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y

    2015-01-01

    Neuroblastoma is the most common and one of the deadliest among pediatric tumors; however, a subset of infants with neuroblastoma display spontaneous regression. The mechanism of spontaneous regression remains to be elucidated. TrkA plays an essential role in the differentiation and functionality of neurons; abundant TrkA expression is associated with favorable prognosis of neuroblastoma. All-trans retinoic acid (ATRA), a first-line drug for acute promyelocytic leukemia (APL) treatment, has been shown to induce differentiation and inhibit cell growth. Neuroblastoma tissues in our hospital inpatient were collected, primary cell culture was performed, and the cells were separated and purified to be cell line. Trypan blue exclusion was used to count the numbers of cells alive, morphological changes were observed under the phase-contrast microscope. RT-PCR was used to determine the expression level of TrkA. In this study, a human neuroblastoma cell line was successfully established; in addition, we demonstrated that ATRA induces growth arrest and promotes the differentiation of neuroblastoma cells. In addition, ATRA was shown to significantly increase the levels of TrkA mRNA expression. Therefore, we concluded that the elevated expression of the TrkA receptor is associated with ATRA-induced growth arrest and differentiation o neuroblastoma cells. The results of this study provide a theoretical basis for the clinical application of differentiation-inducing ATRA for neuroblastoma therapy. PMID:26535632

  4. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel.

    PubMed

    Zhang, Jing; Han, Jian; Zhang, Xiuli; Jiang, Jing; Xu, Maolei; Zhang, Daolai; Han, Jingtian

    2015-09-20

    An amphiphilic all-trans-retinoic acid (ATRA)-chitooligosaccharide (RCOS) conjugate was synthesized to form self-assembled polymeric nanoparticles to facilitate the co-delivery of ATRA and paclitaxel (PTX). The blank RCOS nanoparticles possessed low hemolytic activity and cytotoxicity, and could efficiently load PTX with a drug loading of 22.2% and a high encapsulation efficiency of 71.3%. PTX-loaded RCOS nanoparticles displayed a higher cytotoxicity to HepG2 cells compared to PTX plus ATRA solution when corrected by the accumulated drug release. Cellular uptake profiles of RCOS nanoparticles were evaluated via confocal laser scanning microscope and flow cytometry with FITC as a fluorescent mark. The RCOS nanoparticles could be rapidly and continuously taken up by HepG2 cells via endocytosis and transported into the nucleus, and the uptake rates increased with particle concentration. These results revealed the promising potential of RCOS nanoparticles as drug carriers for co-delivery of ATRA and PTX or other hydrophobic therapeutic agents. PMID:26050884

  5. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab.

    PubMed

    Nijhof, I S; Groen, R W J; Lokhorst, H M; van Kessel, B; Bloem, A C; van Velzen, J; de Jong-Korlaar, R; Yuan, H; Noort, W A; Klein, S K; Martens, A C M; Doshi, P; Sasser, K; Mutis, T; van de Donk, N W C J

    2015-10-01

    Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients. PMID:25975191

  6. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment.

    PubMed

    Su, Meng; Alonso, Salvador; Jones, Jace W; Yu, Jianshi; Kane, Maureen A; Jones, Richard J; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  7. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells

    PubMed Central

    Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; Reitano, Rita; Saccone, Salvatore; Federico, Concetta; Parenti, Rosalba; Magro, Gaetano; D'Agata, Velia

    2016-01-01

    Wilms tumor 1 gene (WT1) is a tumor suppressor gene originally identified in nephroblastoma. It is also expressed in neuroblastoma which represents the most aggressive extracranial pediatric tumor. Many evidences have shown that neuroblastoma may undergo maturation, by transforming itself in a more differentiated tumors such as ganglioneuroblastoma and ganglioneuroma, or progressing into a highly aggressive metastatic malignancy. To date, 13 WT1 mRNA alternative splice variants have been identified. However, most of the studies have focused their attention only on isoform of ∼49 kDa. In the present study, it has been investigated the expression pattern of WT1 isoforms in an in vitro model of neuroblastoma consisting in undifferentiated or all-trans retinoic acid (RA) differentiated cells. These latter representing the less malignant phenotype of this tumor. Results have demonstrated that WT1.1-WT1.5, WT1.6-WT1.9, WT1.10 WT1.11-WT1.12 and WT1.13 isoforms are expressed in both groups of cells, but their levels are significantly increased after RA treatment. These data have also been confirmed by immunofluorescence analysis. Moreover, the inhibition of PI3K/Akt and MAPK/ERK, that represent two signalling pathway specifically involved in NB differentiation, induces an overexpression of WT1 isoforms. These data suggest that WT1 isoforms might be involved in differentiation of neuroblastic into mature ganglion cells. PMID:27014421

  8. All-trans retinoic acid inhibits vascular endothelial growth factor expression in a cell model of neutrophil activation.

    PubMed

    Tee, Meng Kian; Vigne, Jean-Louis; Taylor, Robert N

    2006-03-01

    Infiltrating neutrophil granulocytes are a particularly rich source of vascular endothelial growth factor (VEGF) in the endometrium and may contribute to the angiogenesis of endometriosis lesions. The objective of this study is to evaluate the expression and regulation of VEGF in endometrial neutrophils and in a model of neutrophil differentiation relevant to endometriosis. Immunohistochemistry was performed on endometriosis patient biopsies and cultured neutrophil-like HL-60 cells were assessed. The study was set in a reproductive biology division within an academic medical center. Endometrial biopsies were performed on women with endometriosis and HL-60 cells were treated with all-trans retinoic acid (atRA) and dimethyl sulfoxide in vitro. Immunofluorescence histochemistry, VEGF mRNA and protein quantification, and transfection studies of VEGF gene promoter-luciferase constructs were all main outcome measures. Immunofluorescence studies verified the presence of neutrophils in eutopic endometrium from women with endometriosis. Examination of the regulation of VEGF using differentiated HL-60 cells as a model, revealed that atRA induced a dose- and time-dependent suppression of VEGF mRNA and protein. Transient transfection, truncation, EMSA, and site-directed mutagenesis of human VEGF promoter-luciferase constructs in HL-60 cells indicated that atRA repressed VEGF gene transcription via a direct repeat 1 element located between -443 and -431 bp relative to the transcription initiation site. Because retinoic acid is synthesized de novo in endometrial cells under the influence of progesterone, our findings suggest that the up-regulated VEGF and angiogenesis in tissue from women with endometriosis may reflect failure of neutrophil differentiation in these cases, and provide a rationale for retinoid therapy in this condition. PMID:16322068

  9. Biological activity of all-trans retinol requires metabolic conversion to all-trans retinoic acid and is mediated through activation of nuclear retinoid receptors in human keratinocytes.

    PubMed

    Kurlandsky, S B; Xiao, J H; Duell, E A; Voorhees, J J; Fisher, G J

    1994-12-30

    The biological activity of all-trans retinol, in human keratinocytes, was investigated through metabolic and functional analyses that assessed the capacity for retinol uptake and metabolism and the mechanism of retinol-induced activation of gene transcription. Human keratinocytes converted all-trans retinol predominantly to retinyl esters, which accounted for 60 and 90% of cell-associated radiolabel after a 90-min pulse and a 48-h chase, respectively. Human keratinocytes also metabolized all-trans retinol to low levels of all-trans retinoic acid (11.47-131.3 ng/mg of protein) in a dose-dependent manner, between 0.3 and 10 microM added retinol. Small amounts of 13-cis retinoic acid (5.47-8.62 ng/mg of protein) were detected, but 9-cis retinoic acid was detected only when keratinocytes were incubated with radiolabeled retinol. There was no accumulation of the oxidized catabolic metabolites 4-hydroxy- or 4-oxoretinoic acid; however, 5,6-epoxy retinoic acid was detected at pharmacological levels (10 and 30 microM) of added retinol. Biological activity of retinol was assessed through analysis of two known retinoic acid-mediated responses: 1) reduction of type I epidermal transglutaminase and 2) activation of a retinoic acid receptor-dependent reporter gene, beta RARE3-tk-CAT. Both all-trans retinol and all-trans retinoic acid reduced type I epidermal transglutaminase in a dose-dependent manner; however, the ED50 for all-trans retinol (10 nM) was 10 times greater than for all-trans retinoic acid (1 nM). All-trans retinol also stimulated beta RARE3-tk-CAT reporter gene activity in a dose-dependent manner. Half-maximal induction was observed at 30 nM retinol, which was again 10-fold greater than observed with all-trans retinoic acid. Cotransfection of human keratinocytes with expression vectors for dominant negative mutant retinoic acid and retinoid X receptors reduced retinol-induced beta RARE3-tk-CAT reporter gene activation by 80%. Inhibition of conversion of all

  10. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide.

    PubMed

    Sanford, David; Lo-Coco, Francesco; Sanz, Miguel A; Di Bona, Eros; Coutre, Steven; Altman, Jessica K; Wetzler, Meir; Allen, Steven L; Ravandi, Farhad; Kantarjian, Hagop; Cortes, Jorge E

    2015-11-01

    Treatment of acute promyelocytic leukaemia (APL) with arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) is highly effective first-line therapy, although approximately 5-10% of patients relapse. Tamibarotene is a synthetic retinoid with activity in APL patients who relapse after chemotherapy and ATRA, but has not been studied in relapse after treatment with ATO and ATRA. We report on a phase II study of tamibarotene in adult patients with relapsed or refractory APL after treatment with ATRA and ATO (n = 14). Participants were treated with tamibarotene (6 mg/m(2) /d) during induction and for up to six cycles of consolidation. The overall response rate was 64% (n = 9), the rate of complete cytogenetic response was 43% (n = 6) and the rate of complete molecular response was 21% (n = 3). Relapse was frequent with 7 of 9 responders relapsing after a median of 4·6 months (range 1·6-26·8 months). The median event-free survival (EFS) was 3·5 months [95% confidence interval (CI) 0-8·6 months] and the median overall survival (OS) was 9·5 months (95% CI 5·9-13·1 months). These results demonstrate that tamibarotene has activity in relapsed APL after treatment with ATO and ATRA and further studies using tamibarotene as initial therapy and in combination with ATO are warranted. PMID:26205361

  11. Effective Treatment of Acute Promyelocytic Leukemia With All-Trans-Retinoic Acid, Arsenic Trioxide, and Gemtuzumab Ozogamicin

    PubMed Central

    Ravandi, Farhad; Estey, Eli; Jones, Dan; Faderl, Stefan; O'Brien, Susan; Fiorentino, Jackie; Pierce, Sherry; Blamble, Deborah; Estrov, Zeev; Wierda, William; Ferrajoli, Alessandra; Verstovsek, Srdan; Garcia-Manero, Guillermo; Cortes, Jorge; Kantarjian, Hagop

    2009-01-01

    Purpose We examined the outcome of patients with newly diagnosed acute promyelocytic leukemia (APL) treated with all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) with or without gemtuzumab ozogamicin (GO) but without traditional cytotoxic chemotherapy. Patients and Methods From February 2002 to March 2008, 82 patients with APL were treated with a combination of ATRA plus ATO. The first cohort of 65 patients received ATRA and ATO (beginning on day 10 of ATRA). High-risk patients (WBCs ≥ 10 × 109/L) received GO on the first day. From July 2007, the second cohort of 17 patients received ATRA and ATO concomitantly on day 1. They also received GO on day 1, if high risk, and if their WBC increased to more than 30 × 109/L during induction. Monitoring for PML-RARA fusion gene was conducted after induction and throughout consolidation and follow-up. Results Overall, 74 patients achieved complete remission (CR) and one achieved CR without full platelet recovery after the induction, for a response rate of 92%. Seven patients died at a median of 4 days (range, 1 to 24 days) after inclusion in the study from disease-related complications. The median follow-up is 99 weeks (range, 2 to 282 weeks). Among the responding patients, three experienced relapse at 39, 52, and 53 weeks. Three patients died after being in CR for 14, 21, and 71 weeks, all from a second malignancy. The estimated 3-year survival rate is 85%. Conclusion The combination of ATRA and ATO (with or without GO) as initial therapy for APL was effective and safe and can substitute chemotherapy-containing regimens. PMID:19075265

  12. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis.

    PubMed

    Wu, Lizhi; Chaudhary, Sandeep C; Atigadda, Venkatram R; Belyaeva, Olga V; Harville, Steven R; Elmets, Craig A; Muccio, Donald D; Athar, Mohammad; Kedishvili, Natalia Y

    2016-01-01

    UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations. PMID:27078158

  13. All-Trans Retinoic Acid Directs Urothelial Specification of Murine Embryonic Stem Cells via GATA4/6 Signaling Mechanisms

    PubMed Central

    Mauney, Joshua R.; Ramachandran, Aruna; Yu, Richard N.; Daley, George Q.

    2010-01-01

    The urinary bladder and associated tract are lined by the urothelium, a transitional epithelium that acts as a specialized permeability barrier that protects the underlying tissue from urine via expression of a highly specific group of proteins known as the uroplakins (UP). To date, our understanding of the developmental processes responsible for urothelial differentiation has been hampered due to the lack of suitable models. In this study, we describe a novel in vitro cell culture system for derivation of urothelial cells from murine embryonic stem cells (ESCs) following cultivation on collagen matrices in the presence all trans retinoic acid (RA). Upon stimulation with micromolar concentrations of RA, ESCs significantly downregulated the pluripotency factor OCT-4 but markedly upregulated UP1A, UP1B, UP2, UP3A, and UP3B mRNA levels in comparison to naïve ESCs and spontaneously differentiating controls. Pan-UP protein expression was associated with both p63- and cytokeratin 20-positive cells in discrete aggregating populations of ESCs following 9 and 14 days of RA stimulation. Analysis of endodermal transcription factors such as GATA4 and GATA6 revealed significant upregulation and nuclear enrichment in RA-treated UP2-GFP+ populations. GATA4−/− and GATA6−/− transgenic ESC lines revealed substantial attenuation of RA-mediated UP expression in comparison to wild type controls. In addition, EMSA analysis revealed that RA treatment induced formation of transcriptional complexes containing GATA4/6 on both UP1B and UP2 promoter fragments containing putative GATA factor binding sites. Collectively, these data suggest that RA mediates ESC specification toward a urothelial lineage via GATA4/6–dependent processes. PMID:20644631

  14. Liposome encapsulated all trans retinoic acid (ATRA) has enhanced immunomodulatory and inflammation reducing activities in mice model.

    PubMed

    Grace, V M Berlin; Siddikuzzaman; Rimashree, B

    2015-01-01

    The all trans retinoic acid (ATRA) is found to have a promising regulatory effect on immune system and inflammatory responses in experimental research. The purpose of this study was to investigate whether this therapeutic efficiency of ATRA could be enhanced by encapsulating into a liposome formulation composed of Distearoyl-L-phosphatidylcholine (DSPC) and cholesterol utilizing a well-established mice model. The humoral antibody titer (HA), delayed-type hypersensitivity (DTH), bone marrow cellularity, hematology, and levels of α- esterase-positive cells, were taken as parameters to assess the level of immunomodulation in the sheep red blood cells (SRBC) immunized and challenged BALB/c mice. The anti-inflammatory effect of encapsulated ATRA was evaluated by the size changes in the induced inflammation edema in the mice paw as well as its histopathology. The results showed a significant immunostimulatory effect for both the free and encapsulated ATRA as indicated by the increase in the levels of total leukocyte, bone marrow and α-esterase positive cells and decreased Hb level respectively. We have also observed an enhanced specific antibody hemagglutinin titre value and the DTH response developed in response to SRBC challenge in these treatments. Both the immunostimulatory as well as inflammation reducing property were significantly higher in encapsulated ATRA treated group of mice over that of in free ATRA treated group of mice. Based on these results, we conclude that the encapsulated ATRA has a higher potency over free ATRA in its immunomodulatory activity and also has a significant impact on reducing inflammation in BALB/c mice model. PMID:25594892

  15. Evaluation of immunomodulatory and antitumor activity of all trans retinoic acid (ATRA) in solid tumor bearing mice.

    PubMed

    Siddikuzzaman; Berlin, Grace V M

    2013-02-01

    Natural or synthetic agents can modify the immune system and, in some cases, impart a therapeutic benefit. Cancer, a disease of uncontrolled growth and spread of abnormal cells, is a major cause of death. The Vitamin A metabolite all-trans retinoic acid (ATRA) and its other active derivatives are potent modulators of cell growth and differentiation, and because it has an influence on cancer, it can be used as a chemotherapeutic and -preventive agent. To evaluate the immunomodulatory activity of ATRA, the impact of treatment on various parameters, e.g. delayed-type hypersensitivity (DTH), bone marrow cellularity, hematology, and levels of esterase-positive cells, was assessed in Balb/c mice. To evaluate antitumor effects of ATRA, tumor volume and host survival rate were monitored in B16F10 melanoma cell-injected mice. The results showed that administration of ATRA (0.60 mg/kg/dose, IP) caused a decrease in DTH (footpad thickness) in response to challenge with sheep red blood cells (SRBC) in SRBC-sensitized hosts. ATRA also caused increases in WBC counts and bone marrow cell numbers. In tumor-inoculated mice, ATRA caused tumor growth suppression and gave rise to a heightened survival rate. It was also found that ATRA had differential effects on serum levels of reduced glutathione (GSH) and nitric oxide (NO) was reduced in serum. Based on these results, we conclude that ATRA has a potent immunomodulatory potential but also could significantly impact upon solid tumor growth and prolong host survival. PMID:22900644

  16. All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2.

    PubMed

    Wheelwright, Matthew; Kim, Elliot W; Inkeles, Megan S; De Leon, Avelino; Pellegrini, Matteo; Krutzik, Stephan R; Liu, Philip T

    2014-03-01

    A role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the mechanism is unclear. In this study, we demonstrate that vitamin A-triggered antimicrobial activity against M. tuberculosis requires expression of NPC2. Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D3), the biologically active forms of vitamin A and vitamin D, respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Stimulation of primary human monocytes with ATRA did not result in expression of the antimicrobial peptide cathelicidin, which is required for 1,25D3 antimicrobial activity. In contrast, ATRA triggered a reduction in the total cellular cholesterol concentration, whereas 1,25D3 did not. Blocking ATRA-induced cellular cholesterol reduction inhibits antimicrobial activity as well. Bioinformatic analysis of ATRA- and 1,25D3-induced gene profiles suggests that NPC2 is a key gene in ATRA-induced cholesterol regulation. Knockdown experiments demonstrate that ATRA-mediated decrease in total cellular cholesterol content and increase in lysosomal acidification are both dependent upon expression of NPC2. Expression of NPC2 was lower in caseous tuberculosis granulomas and M. tuberculosis-infected monocytes compared with normal lung and uninfected cells, respectively. Loss of NPC2 expression ablated ATRA-induced antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated antimicrobial mechanism against M. tuberculosis requires NPC2-dependent expression and function, indicating a key role for cellular cholesterol regulation in the innate immune response. PMID:24501203

  17. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    PubMed Central

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Background Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma. PMID:18522733

  18. Paradoxical Effects of All-Trans-Retinoic Acid on Lupus-Like Disease in the MRL/lpr Mouse Model

    PubMed Central

    Liao, Xiaofeng; Ren, Jingjing; Wei, Cheng-Hsin; Ross, A. Catharine; Cecere, Thomas E.; Jortner, Bernard S.; Ahmed, S. Ansar; Luo, Xin M.

    2015-01-01

    Roles of all-trans-retinoic acid (tRA), a metabolite of vitamin A (VA), in both tolerogenic and immunogenic responses are documented. However, how tRA affects the development of systemic autoimmunity is poorly understood. Here we demonstrate that tRA have paradoxical effects on the development of autoimmune lupus in the MRL/lpr mouse model. We administered, orally, tRA or VA mixed with 10% of tRA (referred to as VARA) to female mice starting from 6 weeks of age. At this age, the mice do not exhibit overt clinical signs of lupus. However, the immunogenic environment preceding disease onset has been established as evidenced by an increase of total IgM/IgG in the plasma and expansion of lymphocytes and dendritic cells in secondary lymphoid organs. After 8 weeks of tRA, but not VARA treatment, significantly higher pathological scores in the skin, brain and lung were observed. These were accompanied by a marked increase in B-cell responses that included autoantibody production and enhanced expression of plasma cell-promoting cytokines. Paradoxically, the number of lymphocytes in the mesenteric lymph node decreased with tRA that led to significantly reduced lymphadenopathy. In addition, tRA differentially affected renal pathology, increasing leukocyte infiltration of renal tubulointerstitium while restoring the size of glomeruli in the kidney cortex. In contrast, minimal induction of inflammation with tRA in the absence of an immunogenic environment in the control mice was observed. Altogether, our results suggest that under a predisposed immunogenic environment in autoimmune lupus, tRA may decrease inflammation in some organs while generating more severe disease in others. PMID:25775135

  19. Assessment of all-trans retinoic acid (ATRA) efficacy as a single agent in primary lymphoid neoplasia.

    PubMed

    Swaminathan, N; Lopez-Berestein, G; Rudikoff, S

    1999-07-01

    All-trans retinoic acid (ATRA) is currently widely used in the therapy of acute promyelocytic leukemia and is being tested in vitro and in vivo on several other malignancies. Previously ATRA has been shown to inhibit the growth in vitro, of established human myeloma cell lines as well as cultured primary myeloma cells from patients. ATRA acts by down-regulating IL-6-receptor-alpha or gp130 on the surface of the myeloma cells. However, despite its in vitro effects on myeloma cells, ATRA therapy on advanced stage multiple myeloma (MM) patients has so far largely been ineffective. In current studies, we have assessed the efficacy of ATRA therapy against primary murine plasma cell tumors, which are an animal model for human MM. These tumors are induced at about 50% incidence in pristane-primed BALB/c mice by injection of v-raf/v-myc- containing retroviruses and are IL-6 dependent. Using this animal model, we assessed the effect of ATRA as a therapeutic agent against primary tumors at two early time points in disease development. ATRA was administered in liposomal vesicles (ATRAGEN), since liposomal-ATRA has been shown to circumvent clearance mechanisms by hepatic microsomes, which normally occur with free ATRA. In addition, ATRAGEN was previously shown to be less toxic in mice than free ATRA. ATRAGEN was administered beginning on day 25 or day 45 after virus injection and continued twice weekly for 8-11 weeks. ATRAGEN administration begun at either time point did not alter the incidence or the latency of plasma cell tumors compared with control animals. These results suggest that ATRA may not be an effective sole therapy against early MM. PMID:10456660

  20. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    PubMed Central

    Cervera, José; Montesinos, Pau; Hernández-Rivas, Jesús M.; Calasanz, María J.; Aventín, Anna; Ferro, María T.; Luño, Elisa; Sánchez, Javier; Vellenga, Edo; Rayón, Chelo; Milone, Gustavo; de la Serna, Javier; Rivas, Concha; González, José D.; Tormo, Mar; Amutio, Elena; González, Marcos; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2010-01-01

    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found. PMID:19903674

  1. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis

    PubMed Central

    Wu, Lizhi; Chaudhary, Sandeep C.; Atigadda, Venkatram R.; Belyaeva, Olga V.; Harville, Steven R.; Elmets, Craig A.; Muccio, Donald D.; Athar, Mohammad; Kedishvili, Natalia Y.

    2016-01-01

    UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations. PMID:27078158

  2. Activation of protein phosphatase 2A is responsible for increased content and inactivation of respiratory chain complex i induced by all-trans retinoic acid in human keratinocytes.

    PubMed

    Papa, F; Sardaro, N; Lippolis, R; Panelli, D; Scacco, S

    2016-01-01

    This study presents the effect of all-trans retinoic acid (ATRA) on cell growth and respiratory chain complex I in human keratinocyte cultures. Keratinocyte treatment results in increased level of GRIM-19 and other subunits of complex I, in particular of their carbonylated forms, associated with inhibition of its enzymatic activity. The results show that in keratinocytes ATRA-promoted phosphatase activity controls the proteostasis and activity of complex I. PMID:27358125

  3. Altered sensitivity to ellagic acid in neuroblastoma cells undergoing differentiation with 12-O-tetradecanoylphorbol-13-acetate and all-trans retinoic acid.

    PubMed

    Alfredsson, Christina Fjæraa; Rendel, Filip; Liang, Qui-Li; Sundström, Birgitta E; Nånberg, Eewa

    2015-12-01

    Ellagic acid has previously been reported to induce reduced proliferation and activation of apoptosis in several tumor cell lines including our own previous data from non-differentiated human neuroblastoma SH-SY5Y cells. The aim of this study was now to investigate if in vitro differentiation with the phorbol ester 12-O- tetradecanoylphorbol-13-acetate or the vitamin A derivative all-trans retinoic acid altered the sensitivity to ellagic acid in SH-SY5Y cells. The methods used were cell counting and LDH-assay for evaluation of cell number and cell death, flow cytometric analysis of SubG1- and TUNEL-analysis for apoptosis and western blot for expression of apoptosis-associated proteins. In vitro differentiation was shown to reduce the sensitivity to ellagic acid with respect to cell detachment, loss of viability and activation of apoptosis. The protective effect was phenotype-specific and most prominent in all-trans retinoic acid-differentiated cultures. Differentiation-dependent up-regulation of Bcl-2 and integrin expression is introduced as possible protective mechanisms. The presented data also point to a positive correlation between proliferative activity and sensitivity to ellagic-acid-induced cell detachment. In conclusion, the presented data emphasize the need to consider degree of neuronal differentiation and phenotype of neuroblastoma cells when discussing a potential pharmaceutical application of ellagic acid in tumor treatment. PMID:26653548

  4. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification

    PubMed Central

    Kumar, Prerna; Periyasamy, Ramu; Das, Subhankar; Neerukonda, Smitha; Mani, Indra

    2014-01-01

    The objective of the present study was to delineate the mechanisms of GC-A/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) expression in vivo. We used all-trans retinoic acid (ATRA) and histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu) to examine the expression and function of Npr1 using gene-disrupted heterozygous (1-copy; +/−), wild-type (2-copy; +/+), and gene-duplicated heterozygous (3-copy; ++/+) mice. Npr1+/− mice exhibited increased renal HDAC and reduced histone acetyltransferase (HAT) activity; on the contrary, Npr1++/+ mice showed decreased HDAC and enhanced HAT activity compared with Npr1+/+ mice. ATRA and NaBu promoted global acetylation of histones H3-K9/14 and H4-K12, reduced methylation of H3-K9 and H3-K27, and enriched accumulation of active chromatin marks at the Npr1 promoter. A combination of ATRA-NaBu promoted recruitment of activator-complex containing E26 transformation–specific 1, retinoic acid receptor α, and HATs (p300 and p300/cAMP response element–binding protein-binding protein–associated factor) at the Npr1 promoter, and significantly increased renal NPRA expression, GC activity, and cGMP levels. Untreated 1-copy mice showed significantly increased systolic blood pressure and renal expression of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) compared with 2- and 3-copy mice. Treatment with ATRA and NaBu synergistically attenuated the expression of α-SMA and PCNA and reduced systolic blood pressure in Npr1+/− mice. Our findings demonstrate that epigenetic upregulation of Npr1 gene transcription by ATRA and NaBu leads to attenuation of renal fibrotic markers and systolic blood pressure in mice with reduced Npr1 gene copy number, which will have important implications in prevention and treatment of hypertension-related renal pathophysiological conditions. PMID:24714214

  5. All-trans retinoic acid decreases susceptibility of a gastric cancer cell line to lymphokine-activated killer cytotoxicity.

    PubMed Central

    Chao, T. Y.; Jiang, S. Y.; Shyu, R. Y.; Yeh, M. Y.; Chu, T. M.

    1997-01-01

    All-trans retinoic acid (RA) was previously shown to regulate the growth of gastric cancer cells derived from the cell line SC-M1. This study was designed to investigate the effect of RA on the sensitivity of SC-M1 cells to lymphokine-activated killer (LAK) activity. RA at the concentration range of 0.001-10 microM was shown to induce SC-M1 cells to exhibit resistance to LAK activity in a dose-dependent manner. A kinetics study indicated that a significantly increased resistance was detected after 2 days of co-culturing SC-M1 cells with RA and reached a maximum after 6 days of culture. Similar results were obtained from two other cancer cell lines: promyelocytic leukaemia HL-60 and hepatic cancer Hep 3B. A binding assay demonstrated that the binding efficacy between target SC-M1 cells and effector LAK cells was not altered by RA. Flow cytometric analyses revealed that RA exhibited no effect on the expression of cell surface molecules, including HLA class I and class II antigens, intercellular adhesion molecule-1 and -2, and lymphocyte function antigen-3. Cell cycle analysis revealed that culture of SC-M1 cells with RA resulted in an increase in G0/G1 phase and a decrease in S phase, accompanied by a decrease in cyclin A and cyclin B1 mRNA as determined by Northern blot analysis. Additionally, RA was shown to enhance the expression of retinoic acid receptor alpha (RAR alpha) in SC-M1 cells, and to have no effect on the expression of RARbeta or RARgamma. Taken together, these results indicate that RA can significantly increase gastric cancer cells SC-M1 to resist LAK cytotoxicity by means of a cytostatic effect through a mechanism relating to cell cycle regulation. The prevailing ideas, such as a decrease in effector to target cell binding, a reduced MHC class I antigen expression or an altered RARbeta expression, are not involved. Images Figure 4 Figure 5 PMID:9155047

  6. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression. PMID:16033993

  7. All-trans-retinoic acid inhibits chondrogenesis of rat embryo hindlimb bud mesenchymal cells by downregulating p53 expression.

    PubMed

    Zhang, Tao-Gen; Li, Xue-Dong; Yu, Guo-Yong; Xie, Peng; Wang, Yun-Guo; Liu, Zhao-Yong; Hong, Quan; Liu, De-Zhong; Du, Shi-Xin

    2015-07-01

    Despite the well-established role of all-trans-retinoic acid (ATRA) in congenital clubfoot (CCF)-like deformities in in vivo models, the essential cellular and molecular targets and the signaling mechanisms for ATRA-induced CCF-like deformities remain to be elucidated. Recent studies have demonstrated that p53 and p21, expressed in the hindlimb bud mesenchyme, regulate cellular proliferation and differentiation, contributing to a significant proportion of embryonic CCF-like abnormalities. The objective of the present study was to investigate the mechanisms for ATRA-induced CCF, by assessing ATRA-regulated chondrogenesis in rat embryo hindlimb bud mesenchymal cells (rEHBMCs) in vitro. The experimental study was based on varying concentrations of ATRA exposure on embryonic day 12.5 rEHBMCs in vitro. The present study demonstrated that ATRA inhibited the proliferation of cells by stimulating apoptotic cell death of rEHBMCs. It was also observed that ATRA induced a dose-dependent reduction of cartilage nodules compared with the control group. Reverse transcription-polymerase chain reaction and western blotting assays revealed that the mRNA and protein expression of cartilage-specific molecules, including aggrecan, Sox9 and collagen, type II, α 1 (Col2a1), were downregulated by ATRA in a dose-dependent manner; the mRNA levels of p53 and p21 were dose-dependently upregulated from 16 to 20 h of incubation with ATRA, but dose-dependently downregulated from 24 to 48 h. Of note, p53 and p21 were regulated at the translational level in parallel with the transcription with rEHBMCs treated with ATRA. Furthermore, the immunofluorescent microscopy assays indicated that proteins of p53 and p21 were predominantly expressed in the cartilage nodules. The present study demonstrated that ATRA decreases the chondrogenesis of rEHBMCs by inhibiting cartilage-specific molecules, including aggrecan, Sox9 and Col2al, via regulating the expression of p53 and p21. PMID:25738595

  8. All-trans-retinoic acid inhibits chondrogenesis of rat embryo hindlimb bud mesenchymal cells by downregulating p53 expression

    PubMed Central

    ZHANG, TAO-GEN; LI, XUE-DONG; YU, GUO-YONG; XIE, PENG; WANG, YUN-GUO; LIU, ZHAO-YONG; HONG, QUAN; LIU, DE-ZHONG; DU, SHI-XIN

    2015-01-01

    Despite the well-established role of all-trans-retinoic acid (ATRA) in congenital clubfoot (CCF)-like deformities in in vivo models, the essential cellular and molecular targets and the signaling mechanisms for ATRA-induced CCF-like deformities remain to be elucidated. Recent studies have demonstrated that p53 and p21, expressed in the hindlimb bud mesenchyme, regulate cellular proliferation and differentiation, contributing to a significant proportion of embryonic CCF-like abnormalities. The objective of the present study was to investigate the mechanisms for ATRA-induced CCF, by assessing ATRA-regulated chondrogenesis in rat embryo hindlimb bud mesenchymal cells (rEHBMCs) in vitro. The experimental study was based on varying concentrations of ATRA exposure on embryonic day 12.5 rEHBMCs in vitro. The present study demonstrated that ATRA inhibited the proliferation of cells by stimulating apoptotic cell death of rEHBMCs. It was also observed that ATRA induced a dose-dependent reduction of cartilage nodules compared with the control group. Reverse transcription-polymerase chain reaction and western blotting assays revealed that the mRNA and protein expression of cartilage-specific molecules, including aggrecan, Sox9 and collagen, type II, α 1 (Col2a1), were downregulated by ATRA in a dose-dependent manner; the mRNA levels of p53 and p21 were dose-dependently upregulated from 16 to 20 h of incubation with ATRA, but dose-dependently downregulated from 24 to 48 h. Of note, p53 and p21 were regulated at the translational level in parallel with the transcription with rEHBMCs treated with ATRA. Furthermore, the immunofluorescent microscopy assays indicated that proteins of p53 and p21 were predominantly expressed in the cartilage nodules. The present study demonstrated that ATRA decreases the chondrogenesis of rEHBMCs by inhibiting cartilage-specific molecules, including aggrecan, Sox9 and Col2al, via regulating the expression of p53 and p21. PMID:25738595

  9. All-trans retinoic acid regulates the expression of apolipoprotein E in rats with glomerulosclerosis induced by Adriamycin.

    PubMed

    Zhou, Tian-Biao; Qin, Yuan-Han; Lei, Feng-Ying; Su, Li-Na; Zhao, Yan-Jun; Huang, Wei-Fang

    2011-06-01

    Apolipoprotein E (apoE) is an important plasma protein in cholesterol homeostasis and plays a key role in the progression of glomerulosclerosis (GS). We conducted this investigation to explore whether all-trans retinoic acid (ATRA) could regulate the apoE expression in the pathological process of GS. 120 Wistar rats were divided into three groups at random: sham operation group (SHO), glomerulosclerosis model group without treatment (GS), GS model group treated with ATRA (GA); n=40, respectively. The disease of GS in rat was established by uninephrectomy and adriamycin (5mg/kg) injection. At the end of 9 and 13 weeks, 20 rats in each group were killed and the relevant samples were collected. 24-hour urine total protein (24UTP), 24-hour urine excretion for albumin (24Ualb), serum total protein (TP) and serum albumin (Alb), blood urea nitrogen (BUN), serum creatinine (Scr), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), serum and urine apoE and glomerulosclerosis index (GSI) were measured. The protein expressions of collagen IV (Col-IV), fibronectin (FN) and apoE in glomeruli were determined by immunohistochemistry. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to detect the expression of apoE mRNA in kidney. TP and Alb in GA group in 9/13-week were increased than those of GS group, however, the differences were not statistically significant. Compared with group GS at 9/13 weeks, values of 24UTP, 24Ualb, BUN, Scr, TC, TG, HDL, LDL, serum and urine apoE, and GSI in GA group that were significantly reduced, and protein expressions of Col-IV, FN and apoE in glomeruli and expression of apoE mRNA in renal tissue were significantly down-regulated by ATRA (P<0.01). In conclusion, ATRA can regulate the expression of apoE, reduce the accumulation of extracellular matrix (ECM) and step down the progression of GS. PMID:21385580

  10. All-trans retinoic acid and extracellular Ca2+ differentially influence extracellular matrix production by human skin in organ culture.

    PubMed Central

    Varani, J.; Larson, B. K.; Perone, P.; Inman, D. R.; Fligiel, S. E.; Voorhees, J. J.

    1993-01-01

    Two-mm full-thickness punch biopsies of human skin were placed in organ culture in a serum-free, growth factor-free basal medium. Under conditions of low extracellular Ca2+ (0.15 mmol/L), the tissue quickly degenerated. However, degeneration was prevented when the extracellular Ca2+ concentration was increased to 1.4 mmol/L. The tissue remained histologically normal in appearance and biochemically active for up to 12 days. The addition of 3 mumol/L all-trans retinoic acid (RA) to the low-Ca2+ culture medium also prevented tissue degeneration. However, in contrast to what was seen in the presence of 1.4 mmol/L Ca2+, epidermal differentiation did not occur normally in the presence of RA. Rather, the upper layers of the epidermis routinely separated from the underlying basal cells. Fibronectin production by the organ cultured skin was examined. Biosynthetic labeling/immunoprecipitation studies demonstrated that incubation of the tissue in basal medium containing 1.4 mmol/L Ca2+ resulted in a high level of fibronectin production relative to the amount produced in basal medium containing 0.15 mmol/L Ca2+. In contrast, the addition of 3 mumol/L RA to the low Ca2+ basal medium did not stimulate fibronectin production. Similar results were observed in enzyme-linked immunosorbent assays where the addition of Ca2+ to a final concentration of 1.4 mmol/L stimulated fibronectin and thrombospondin production whereas RA (3 mumol/L) did not. Although RA by itself failed to stimulate extracellular matrix production, the addition of 3 mumol/L RA to basal medium containing 1.4 mmol/L Ca2+ led to a further increase in fibronectin production over that seen in the presence of 1.4 mmol/L Ca2+ alone. Taken together, these data indicate that although either 1.4 mmol/L Ca2+ or 3 mumol/L RA facilitates survival of organ-cultured skin in basal medium, they have very different effects on extracellular matrix production. This supports the view, based on histological appearance, that the two

  11. Low-dose decitabine plus all-trans retinoic acid in patients with myeloid neoplasms ineligible for intensive chemotherapy.

    PubMed

    Wu, Wei; Lin, Yan; Xiang, Lili; Dong, Weimin; Hua, Xiaoying; Ling, Yun; Li, Haiqian; Yan, Feng; Xie, Xiaobao; Gu, Weiying

    2016-06-01

    In our previous in vitro trials, decitabine and all-trans retinoic acid (ATRA) demonstrated synergistic effects on growth inhibition, differentiation, and apoptosis in SHI-1 cells; in K562 cells, ATRA enhanced the effect of decitabine on p16 demethylation, and the combination of the two drugs was found to activate RAR-β expression (p16 and RAR-β are two tumor suppressor genes). On the rationale of our in vitro trials, we used low-dose decitabine and ATRA to treat 31 myeloid neoplasms deemed ineligible for intensive chemotherapy. The regimen consisted of decitabine at the dose of 15 mg/m(2) intravenously over 1 h daily for consecutive 5 days and ATRA at the dose of 20 mg/m(2) orally from day 1 to 28 except day 4 to 28 in the first cycle, and the regimen was repeated every 28 days. After 6 cycles, decitabine treatment was stopped, and ATRA treatment was continued for maintenance treatment. Treated with a median of 2 cycles (range 1-6), 7 patients (22.6 %) achieved complete remission (CR), 7 (22.6 %) marrow CR (mCR), and 4 (12.9 %) partial remission (PR). The overall remission (CR, mCR, and PR) rate was 58.1 %, and the best response (CR and mCR) rate was 45.2 %. The median overall survival (OS) was 11.0 months, the 1-year OS rate was 41.9 %, and the 2-year OS rate was 26.6 %. In univariate analyses, age, performance status, comorbidities, white blood cell counts and platelets at diagnosis, percentage of bone marrow blasts, karyotype, and treatment efficacy demonstrated no impacts on OS (P > 0.05, each). Main side effects were tolerable hematologic toxicities. In conclusion, low-dose decitabine plus ATRA is a promising treatment for patients with myeloid neoplasms judged ineligible for intensive chemotherapy. PMID:27116384

  12. All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats

    SciTech Connect

    Chatterjee, A.; Chatterji, U.

    2011-12-15

    Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ER{alpha}), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ER{alpha}, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: Black-Right-Pointing-Pointer Arsenic

  13. Central nervous system involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without intrathecal prophylaxis

    PubMed Central

    Montesinos, Pau; Díaz-Mediavilla, Joaquín; Debén, Guillermo; Prates, Virginia; Tormo, Mar; Rubio, Vicente; Pérez, Inmaculada; Fernández, Isolda; Viguria, Maricruz; Rayón, Chelo; González, José; de la Serna, Javier; Esteve, Jordi; Bergua, Juan M.; Rivas, Concha; González, Marcos; González, Jose D.; Negri, Silvia; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2009-01-01

    Background The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. Design and Methods Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. Results Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. Conclusions This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors. PMID:19608685

  14. Pseudotumour cerebri in acute promyelocytic leukemia on treatment with all-trans-retinoic acid (ATRA) - an experience from a tertiary care centre.

    PubMed

    Ahmad Tali, Manzoor; Bashir, Yasir; Bhat, Shuaeb; Manzoor, Fahim; Bashir, Nusrat; Geelani, Sajad; Rasool, Javid; Waheed Mir, Abdul

    2015-08-01

    Acute promyelocytic leukemia (APML) is considered to be sensitive to all-trans-retinoic acid (ATRA) which acts as a differentiating agent. ATRA is considered to be a well-tolerated agent and is known to achieve complete remission in acute promyelocytic leukemia. However, a few cases on long term all-trans-retinoic acid (ATRA) use can develop pseudotumor cerebri. Out of 32 patients with APML who were treated in our Centre over a 4-year-period, we encountered 6 patients who developed ATRA-related pseudotumor cerebri while on maintenance treatment. The patients ranged from 12 to 40 years of age. 3 patients complained of unbearable headache, 2 of diplopia and 1 of gross reduction in visual acuity. CT scans and MRI did not reveal any intracranial lesions. Cerebrospinal fluid (CSF) examination was normal with CSF manometry revealing a high CSF pressure (average of 345mmH2O). Fundoscopy revealed papilledema in 5 patients and optic atrophy in 1 patient. The patients were successfully managed with decrease dose/discontinuation of ATRA, use of acetazolamide, corticosteroids and therapeutic CSF drainage. PMID:26277671

  15. MDI 301 suppresses myeloid leukemia cell growth in vitro and in vivo without the toxicity associated with all-trans retinoic acid therapy.

    PubMed

    Aslam, Muhammad N; McClintock, Shannon; Khan, Shazli P; Perone, Patricia; Allen, Ronald; Ouillette, Peter D; Dame, Michael K; Cheng, Jason X; Kunkel, Steven L; Varani, James

    2015-08-01

    MDI 301 is a novel 9-cis retinoic acid derivative in which the terminal carboxylic acid group has been replaced by a picolinate ester. MDI 301, a retinoic acid receptor-α - agonist, suppressed the growth of several human myeloid leukemia cell lines (HL60, NB4, OCI-M2, and K562) in vitro and induced cell-substrate adhesion in conjunction with upregulation of CD11b. Tumor growth in HL60-injected athymic nude mice was reduced. In vitro, MDI 301 was comparable to all-trans retinoic acid (ATRA) whereas in vivo, MDI 301 was slightly more efficacious than ATRA. Most importantly, unlike what was found with ATRA treatment, MDI 301 did not induce a cytokine response in the treated animals and the severe inflammatory changes and systemic toxicity seen with ATRA did not occur. A retinoid with these characteristics might be valuable in the treatment of promyelocytic leukemia, or, perhaps, other forms of myeloid leukemia. PMID:26010252

  16. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation.

    PubMed

    Zhu, Xinfeng; Wang, Wenxue; Zhang, Xia; Bai, Jianhua; Chen, Gang; Li, Li; Li, Meizhang

    2015-01-01

    Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients. PMID:26571119

  17. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation

    PubMed Central

    Zhang, Xia; Bai, Jianhua; Chen, Gang; Li, Li; Li, Meizhang

    2015-01-01

    Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients. PMID:26571119

  18. All-trans retinoic acid induces cellular senescence by up-regulating levels of p16 and p21 via promoter hypomethylation.

    PubMed

    Lim, Joo Song; Park, Sun-Hye; Jang, Kyung Lib

    2011-09-01

    All-trans retinoic acid (ATRA) induces cellular senescence via up-regulation of p16 and p21; however, the action mechanism of ATRA is unknown. Here, we show that ATRA induces promoter hypomethylation of p16 and p21 via down-regulation of DNA methyltransferases 1, 3a, and 3b to facilitate binding of Ets1/2 to the p16 promoter and p53 to the p21 promoter, resulting in up-regulation of their expression and subsequent induction of cellular senescence in HepG2 cells. These effects were mediated by retinoic acid receptor β₂ whose promoter was also hypomethylated in the presence of ATRA. Therefore, ATRA can be considered as an epi-drug in cancer therapy. PMID:21843507

  19. Human B-cell lymphoma cell lines are highly sensitive to apoptosis induced by all-trans retinoic acid and interferon-gamma.

    PubMed

    Niitsu, Nozomi; Higashihara, Masaaki; Honma, Yoshio

    2002-08-01

    When cells were incubated in the presence of both interferon-gamma (IFN-gamma) and all-trans retinoic acid (ATRA), the concentration of IFN-gamma required to induce apoptosis of B-cell lymphoma cells was much lower than that required for myeloid or erythroid cell lines. The concentration of IFN-gamma that effectively inhibited the proliferation of BALM-3 cells was 1/40 of that required for BALM-1 cells. STAT-1 phosphorylation, IRF-1 mRNA and protein expression and RAR-beta expression were enhanced to a greater degree in BALM-3 cells treated with IFN-gamma and ATRA than in BALM-1 cells treated with IFN-gamma and ATRA, suggesting that these IFN-gamma related genes were involved in the induction of apoptosis of BALM-3 cells. PMID:12191570

  20. The combination of the antiestrogen endoxifen with all-trans-retinoic acid has anti-proliferative and anti-migration effects on melanoma cells without inducing significant toxicity in non-neoplasic cells.

    PubMed

    Ribeiro, Mariana P C; Silva, Filomena S G; Paixão, Joana; Santos, Armanda E; Custódio, José B A

    2013-09-01

    Melanoma incidence is dramatically increasing and the available treatments beyond partial efficacy have severe side effects. Retinoids are promising anticancer agents, but their clinical use has been limited by their toxicity, although a combination with other agents can possibly generate a therapeutic action at lower dosage. Thus, we investigated the effects of all-trans-retinoic acid combined with the antiestrogen endoxifen on melanoma cell proliferation and the effects were compared with its pro-drug tamoxifen. Moreover, we evaluated the effects of these combinations on non-neoplasic cells and assessed mitochondrial bioenergetic functions, to predict their potential toxicity. Individually, all-trans-retinoic acid and the antiestrogens endoxifen and tamoxifen decreased melanoma cell biomass, cell viability and DNA synthesis, without increased cell death, suggesting that the compounds inhibited cell proliferation. Noteworthy, endoxifen decreased cell proliferation more efficiently than tamoxifen. The combination of endoxifen with all-trans-retinoic acid enhanced the antiproliferative effects of the compounds individually more potently than tamoxifen, which did not enhance the effects induced by all-trans-retinoic acid alone, and blocked cell cycle progression in G1. Moreover, the combination of all-trans-retinoic acid with endoxifen significantly decreased melanoma cells migration, whereas the combination with tamoxifen did not present significant effects. At the concentrations used the compounds did not induce cytotoxicity in non-neoplasic cells and liver mitochondrial bioenergetic function was not affected. Altogether, our results show for the first time that a combined treatment of all-trans-retinoic acid with endoxifen may provide an anti-proliferative and anti-migration effect upon melanoma cells without major toxicity, offering a powerful therapeutic strategy for malignant melanoma. PMID:23712006

  1. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    SciTech Connect

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.; Wang, C.-J.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.

  2. Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome

    PubMed Central

    Raffoux, Emmanuel; Cras, Audrey; Recher, Christian; Boëlle, Pierre-Yves; de Labarthe, Adrienne; Turlure, Pascal; Marolleau, Jean-Pierre; Reman, Oumedaly; Gardin, Claude; Victor, Maud; Maury, Sébastien; Rousselot, Philippe; Malfuson, Jean-Valère; Maarek, Odile; Daniel, Marie-Thérèse; Fenaux, Pierre; Degos, Laurent; Chomienne, Christine; Chevret, Sylvie; Dombret, Hervé

    2010-01-01

    In this Phase 2 study, we evaluated the efficacy of combination of 5-azacitidine (AZA), valproic acid (VPA), and all-trans retinoic acid (ATRA) in patients with high-risk acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Treatment consisted of six cycles of AZA and VPA for 7 days, followed by ATRA for 21 days. Sixty-five patients were enrolled (median age, 72 years; 55 AML including 13 relapsed/refractory patients, 10 MDS; 30 unfavorable karyotypes). Best responses included 14 CR and 3 PR (26%), 75% of the responders and 36% of the non-responders achieving an erythroid response. Median overall survival (OS) was 12.4 months. Untreated patients had a longer OS than relapsed/refractory patients. In patients who fulfilled the 6 planned cycles, OS did not appear to depend on CR/PR achievement, suggesting that stable disease while on-treatment would be a surrogate for survival with this approach. During therapy, early platelet response and demethylation of the FZD9, ALOX12, HPN, and CALCA genes were associated with clinical response. Finally, there was no evidence for the restoration of an ATRA-induced differentiation during therapy. Epigenetic modulation deserves prospective comparisons to conventional care in patients with high-risk AML, at least in those presenting previously untreated disease and low blast count. PMID:21293051

  3. Metabolic Characterization of All-Trans-Retinoic Acid (ATRA)–Induced Craniofacial Development of Murine Embryos Using In Vivo Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Peng, Lihong; Wu, Renhua; Hu, Xiao; Zhang, Guishan; Tang, Shijie

    2014-01-01

    Aim To characterize the abnormal metabolic profile of all-trans-retinoic acid (ATRA)–induced craniofacial development in mouse embryos using proton magnetic resonance spectroscopy (1H-MRS). Methods Timed-pregnant mice were treated by oral gavage on the morning of embryonic gestation day 11 (E11) with all-trans-retinoic acid (ATRA). Dosing solutions were adjusted by maternal body weight to provide 30, 70, or 100 mg/kg RA. The control group was given an equivalent volume of the carrier alone. Using an Agilent 7.0 T MR system and a combination of surface coil coils, a 3 mm×3 mm×3 mm 1H-MRS voxel was selected along the embryonic craniofacial tissue. 1H-MRS was performed with a single-voxel method using PRESS sequence and analyzed using LCModel software. Hematoxylin and eosin was used to detect and confirm cleft palate. Result 1H-MRS revealed elevated choline levels in embryonic craniofacial tissue in the RA70 and RA100 groups compared to controls (P<0.05). Increased choline levels were also found in the RA70 and RA100 groups compared with the RA30 group (P<0.01). High intra-myocellular lipids at 1.30 ppm (IMCL13) in the RA100 group compared to the RA30 group were found (P<0.01). There were no significant changes in taurine, intra-myocellular lipids at 2.10 ppm (IMCL21), and extra-myocellular lipids at 2.30 ppm (EMCL23). Cleft palate formation was observed in all fetuses carried by mice administered 70 and 100 mg/kg RA. Conclusions This novel study suggests that the elevated choline and lipid levels found by 1H-MRS may represent early biomarkers of craniofacial defects. Further studies will determine performance of this test and pathogenetic mechanisms of craniofacial malformation. PMID:24816763

  4. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy

    PubMed Central

    Barragán, Eva; Montesinos, Pau; Camos, Mireia; González, Marcos; Calasanz, Maria J.; Román-Gómez, José; Gómez-Casares, Maria T.; Ayala, Rosa; López, Javier; Fuster, Óscar; Colomer, Dolors; Chillón, Carmen; Larrayoz, María J.; Sánchez-Godoy, Pedro; González-Campos, José; Manso, Félix; Amador, Maria L.; Vellenga, Edo; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    Background Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established. Design and Methods We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and anthracycline-based chemotherapy enrolled in two subsequent trials of the Programa de Estudio y Tratamiento de las Hemopatías Malignas (PETHEMA) and Hemato-Oncologie voor Volwassenen Nederland (HOVON) groups between 1996 and 2005. Results FLT3-internal tandem duplication and FLT3-D835 mutation status was available for 306 (41%) and 213 (29%) patients, respectively. Sixty-eight (22%) and 20 (9%) patients had internal tandem duplication and D835 mutations, respectively. Internal tandem duplication was correlated with higher white blood cell and blast counts, lactate dehydrogenase, relapse-risk score, fever, hemorrhage, coagulopathy, BCR3 isoform, M3 variant subtype, and expression of CD2, CD34, human leukocyte antigen-DR, and CD11b surface antigens. The FLT3-D835 mutation was not significantly associated with any clinical or biological characteristic. Univariate analysis showed higher relapse and lower survival rates in patients with a FLT3-internal tandem duplication, while no impact was observed in relation to FLT3-D835. The prognostic value of the FLT3-internal tandem duplication was not retained in the multivariate analysis. Conclusions FLT3-internal tandem duplication mutations are associated with several hematologic features in acute promyelocytic leukemia, in particular with high white blood cell counts, but we were unable to demonstrate an independent prognostic value in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. PMID:21685470

  5. Retinoic Acid Receptor α Mediates All-trans-retinoic Acid-induced Klf4 Gene Expression by Regulating Klf4 Promoter Activity in Vascular Smooth Muscle Cells*

    PubMed Central

    Shi, Jian-hong; Zheng, Bin; Chen, Si; Ma, Guo-yan; Wen, Jin-kun

    2012-01-01

    The transcription factor Krüppel-like factor 4 (KLF4) plays a critical role in vascular smooth muscle cell (VSMC) differentiation induced by all-trans-retinoic acid (ATRA). Although it has been demonstrated that ATRA stimulation augments both KLF4 protein and mRNA levels in VSMCs, the molecular mechanisms by which ATRA regulates Klf4 transcription are unknown. In this study, we examined the roles of ATRA-selective nuclear retinoic acid receptors (RARs) in the transcriptional regulation of Klf4. The introduction of small interfering RNA and an RAR antagonist demonstrated that RARα, but not RARβ or RARγ, mediated ATRA-induced Klf4 expression. A luciferase assay for the Klf4 promoter showed that three GC boxes in the proximal Klf4 promoter were indispensible for ATRA-induced Klf4 transcription and that RARα enhanced Klf4 promoter activity in a GC box-dependent manner. Furthermore, chromatin immunoprecipitation and oligonucleotide pulldown assays demonstrated that the transcription factors KLF4, Sp1, and YB1 directly bound to the GC boxes of the proximal Klf4 promoter. Upon RARα agonist stimulation, RARα was recruited to the Klf4 promoter through its interaction with KLF4, Sp1, and YB1 to form a transcriptional activation complex on the three GC boxes of the Klf4 promoter. These results suggest that RARα serves as an essential co-activator for ATRA signaling and that the recruitment of RARα to the KLF4-Sp1-YB1 complex, which leads to Klf4 expression in VSMCs, is independent of a retinoic acid response element. PMID:22337869

  6. All-trans retinoic acid modulates mitogen-activated protein kinase pathway activation in human scleral fibroblasts through retinoic acid receptor beta

    PubMed Central

    Huo, Lijun; Cui, Dongmei; Yang, Xiao; Gao, Zhenya; Trier, Klaus

    2013-01-01

    Purpose All-trans retinoic acid (ATRA) is known to inhibit the proliferation of human scleral fibroblasts (HSFs) and to modulate the scleral intercellular matrix composition, and may therefore serve as a mediator for controlling eye growth. Cell proliferation is regulated by the mitogen-activated protein kinase (MAPK) pathway. The aim of the current study was to investigate whether changed activation of the MAPK pathway could be involved in the response of HSFs exposed to ATRA. Methods HSFs were cultured in Dulbecco Modified Eagle's Medium/F12 (DMEM/F12) and exposed to 1 μmol/l ATRA for 10 min, 30 min, 1 h, 8 h, or 24 h. The activation of extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK) in HSFs was assessed with western blot analysis and immunocytofluorescence. Results After exposure to ATRA for 24 h, the HSFs appeared shrunken and thinner than the control cells. The intercellular spaces were wider, and the HSFs appeared less numerous than in the control culture. Western blot showed decreased activation of ERK 1/2 in the HSFs from 30 min (p=0.01) to 24 h (p<0.01) after the start of exposure to ATRA, and increased activation of the JNK protein from 10 to 30 min (p<0.01) after the start of exposure to ATRA. Indirect immunofluorescence confirmed changes in activation of ERK 1/2 and JNK in HSFs exposed to ATRA. No change in activation of p38 in HSFs was observed after exposure to ATRA. Pretreatment of the HSFs with LE135, an antagonist of retinoic acid receptor beta (RARβ), abolished the ATRA-induced changes inactivation of ERK 1/2 and JNK. Conclusions ATRA inhibits HSF proliferation by a mechanism associated with modulation of ERK 1/2 and JNK activation and depends on stimulation of retinoic acid receptor beta. PMID:23946634

  7. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed Central

    Chen, H; Juchau, M R

    1997-01-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs. PMID:9581548

  8. Poly (D,L-lactic-co-glycolide) nanoparticles for the improved therapeutic efficacy of all-trans-retinoic acid: a study of acute myeloid leukemia (AML) cell differentiation in vitro.

    PubMed

    Simon, Aswathy Mary; Jagadeeshan, Sankar; Abraham, Emimol; Akhilandeshwaran, Ashalatha; Pillai, Jisha J; Kumar, Nisha Asok; Sivakumari, Asha Nair; Kumar, Gopalakrishnapillai Sankaramangalam Vinod

    2012-09-01

    All-trans-retinoic acid reverses malignant cell growth and induces cell differentiation and apoptosis. Poor aqueous solubility and uncertain bioavailability are the limiting factors for using all-trans-retinoic acid for tumor therapy. The objective of present study was to encapsulate the hydrophobic drug all-trans-retinoic acid in the polymer poly (lactide-coglycolide). The encapsulation was expected to improve the bioavailability and solubility of the drug. Oil in water single emulsion solvent evaporation technique used for the preparation efficiently encapsulated about 60% of the drug. The drug release profile showed a biphasic pattern with 70% of the drug being released in first 48 hrs and the residual drug showing a slow controlled release reaching up to 8 days. The particle size of 150-200 nm as determined with TEM was ideal for tumor targeting. All-trans-retinoic acid loaded nanoparticles were efficient to induce differentiation and blocked the proliferation of HL-60 cells invitro. These studies also revealed that the dosage of drug required for the therapeutic effects have been reduced efficiently. Our studies thereby demonstrate that Poly (lactide-co-glycolide) based nanoparticles may be efficient for parenteral administration of the drug. PMID:22741806

  9. NLS-RARα Inhibits the Effects of All-trans Retinoic Acid on NB4 Cells by Interacting with P38α MAPK

    PubMed Central

    Xiao, Chunlan; Zhong, Liang; Shan, Zhiling; Xu, Ting; Gan, Liugen; Song, Hao; Yang, Rong; Li, Liu; Liu, Beizhong

    2016-01-01

    Nuclear localization signal retinoic acid receptor alpha(NLS-RARα), which forms from the cleavage of promyelocytic leukemia-retinoic acid receptor alpha(PML-RARα) protein by neutrophil elastase(NE), possesses an important role in the occurrence and development of acute promyelocytic leukemia(APL). However, the potential mechanism underlying the effects of NLS-RARα on APL is still not entirely clear. Here, we investigated the effects of NLS-RARα on APL NB4 cells and its mechanism. We found that all-trans retinoic acid(ATRA) could promote differentiation while inhibit proliferation of APL NB4 cells via upregulating the expression of phosphorylated p38α mitogen-activated protein kinase(p-p38α MAPK). We also found that NLS-RARα could inhibit differentiation while accelerate proliferation of NB4 cells via downregulating the expression of p-p38α protein in the presence of ATRA. Furthermore, immunofluorescence and co-immunoprecipitation assays confirmed NLS-RARα interacted with p38α protein directly. Finally, application of PD169316, an inhibitor of p38α protein, suggested that recruitment p38α-combinded NLS-RARα by ATRA eventually caused activation of p38α protein. In summary, our study demonstrated that ATRA cound promote differentiation while inhibit proliferation of APL NB4 cells via activating p38α protein after recruiting p38α-combinded NLS-RARα, while NLS-RARα could inhibit the effects of ATRA in the process. PMID:27499693

  10. Oral Delivery of Particulate Transforming Growth Factor Beta 1 and All-Trans Retinoic Acid Reduces Gut Inflammation in Murine Models of Inflammatory Bowel Disease

    PubMed Central

    Conway, Thomas F.; Hammer, Laura; Furtado, Stacia; Mathiowitz, Edith; Nicoletti, Ferdinando; Mangano, Katia; Auci, Dominick L.

    2015-01-01

    Background and aims: We investigated oral delivery of transforming growth factor beta 1 [TGFβ]- and all-trans retinoic acid [ATRA]-loaded microspheres as therapy for gut inflammation in murine models of inflammatory bowel disease [IBD]. Methods: ATRA and TGFβ were separately encapsulated in poly [lactic-co-glycolic] acid or polylactic acid microspheres [respectively]. TGFβ was encapsulated using proprietary phase-inversion nanoencapsulation [PIN®] technology. Results: PIN® particles provided sustained release of bioactive protein for at least 4 days and were stable for up to 52 weeks when stored at either 40C or -200C. In the SCID mouse CD4 + CD25- T cell transfer model of IBD, oral treatment starting at disease onset prevented weight loss, significantly reduced average disease score [~ 50%], serum amyloid A levels [~ 5-fold], colon weight-to-length ratio [~ 50%], and histological score [~ 5-fold]. Conclusions: Both agents given together outperformed either separately. Highest TGFβ doses and most frequent dose schedule were most effective. Activity was associated with a significant increase [45%] in Foxp3 expression by colonic lamina propria CD4+ CD25+ T-cells. Activity was also demonstrated in dextran sulphate sodium-induced colitis. The data support development of the combination product as a novel, targeted immune based therapy for treatment for IBD. PMID:25987350

  11. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα.

    PubMed

    Ying, M; Zhang, L; Zhou, Q; Shao, X; Cao, J; Zhang, N; Li, W; Zhu, H; Yang, B; He, Q

    2016-08-18

    Retinoic acid receptor alpha (RARα) has a critical role in the differentiation process of osteosarcoma cells induced by all-trans retinoic acid (ATRA). However, degradation of RARα through ubiquitin proteasome pathway weakens the differentiation efficiency of osteosarcoma cells. In this study, we discover that murine double minute-2 (MDM2) acts as an E3 ubiquitin ligase to target RARα for degradation. We observe that MDM2 is required for RARα polyubiquitination and proteasomal degradation because downregulation of MDM2 by short hairpin RNA results in the accumulation of RARα, and MDM2 overexpression promotes the degradation of RARα. We also demonstrate that the N-terminal domain of MDM2 (amino acids 1-109) is the major RARα-binding site. Importantly, endogenous MDM2 levels are not only upregulated in human primary osteosarcoma blasts but are also inversely correlated with the level of osteopontin, which is a marker of bone differentiation. Moreover, MDM2 impairs the ATRA-induced osteoblastic differentiation of osteosarcoma cells, whereas an inhibitor of the MDM2 ubiquitin ligase synergizes with ATRA to enhance the differentiation of osteosarcoma cells and primary osteosarcoma blasts. Therefore, our study indicates that MDM2 serves as an E3 ubiquitin ligase to regulate the degradation of RARα and suggests that MDM2 is a novel therapeutic target for ATRA-based differentiation therapeutic approaches in osteosarcoma. PMID:26776160

  12. CHARACTERIZATION OF CYPS IN THE METABOLISM OF ALL TRANS RETINOIC ACID BY LIVER MICROSOMES FROM MICE TREATED WITH CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may involve in conazole-...

  13. LIFE-STAGE SPECIFIC EFFECTS OF ALL-TRANS RETINOIC ACID ON GREEN FROG (RANA CLAMITANS) EMBRYOS AND TADPOLES

    EPA Science Inventory

    It has been suggested that the large number of malformed frogs recently observed in North America may be occurring as a result of disruptions in developmental pathways regulated by retinoic acid. Therefore, a series...

  14. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    PubMed Central

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated

  15. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    PubMed Central

    LING, GENG-QIANG; LIU, YI-JING; KE, YI-QUAN; CHEN, LEI; JIANG, XIAO-DAN; JIANG, CHUAN-LU; YE, WEI

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SLCs. The expression of cancer SLC markers CD133 and nestin was detected using immunocytochemistry in order to identify U87 SLCs. In addition, the differentiation of these SLCs was observed through detecting the expression of glial fibrillary acidic protein (GFAP), β-tubulin III and galactosylceramidase (Galc) using immunofluorescent staining. The results showed that the expression levels of GFAP, β-tubulin III and Galc were upregulated following treatment with ATRA in a dose-dependent manner. Furthermore, ATRA significantly reduced the proliferation, invasiveness, tube formation and vascular endothelial growth factor (VEGF) secretion of U87 SLCs. In conclusion, the VM formation ability of SLCs was found to be negatively correlated with differentiation. These results therefore suggested that ATRA may serve as a promising novel agent for the treatment of GBM due to its role in reducing VM formation. PMID:25760394

  16. The oncofusion protein FUS–ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia

    PubMed Central

    Sotoca, A M; Prange, K H M; Reijnders, B; Mandoli, A; Nguyen, L N; Stunnenberg, H G; Martens, J H A

    2016-01-01

    The ETS transcription factor ERG has been implicated as a major regulator of both normal and aberrant hematopoiesis. In acute myeloid leukemias harboring t(16;21), ERG function is deregulated due to a fusion with FUS/TLS resulting in the expression of a FUS–ERG oncofusion protein. How this oncofusion protein deregulates the normal ERG transcription program is unclear. Here, we show that FUS–ERG acts in the context of a heptad of proteins (ERG, FLI1, GATA2, LYL1, LMO2, RUNX1 and TAL1) central to proper expression of genes involved in maintaining a stem cell hematopoietic phenotype. Moreover, in t(16;21) FUS–ERG co-occupies genomic regions bound by the nuclear receptor heterodimer RXR:RARA inhibiting target gene expression and interfering with hematopoietic differentiation. All-trans retinoic acid treatment of t(16;21) cells as well as FUS–ERG knockdown alleviate the myeloid-differentiation block. Together, the results suggest that FUS–ERG acts as a transcriptional repressor of the retinoic acid signaling pathway. PMID:26148230

  17. All-trans retinoic acid ameliorates glycemic control in diabetic mice via modulating pancreatic islet production of vascular endothelial growth factor-A.

    PubMed

    Chien, Chiao-Yun; Yuan, Tze-An; Cho, Candy Hsin-Hua; Chang, Fang-Pei; Mao, Wan-Yu; Wu, Ruei-Ren; Lee, Hsuan-Shu; Shen, Chia-Ning

    2016-09-01

    Patients with type 1 diabetes mellitus are associated with impairment in vitamin A metabolism. This study evaluated whether treatment with retinoic acid, the biologically active metabolite of vitamin A, can ameliorate diabetes. All-trans retinoic acid (atRA) was used to treat streptozotocin (STZ)-induced diabetic mice which revealed atRA administration ameliorated blood glucose levels of diabetic mice. This hyperglycemic amelioration was accompanied by an increase in the amount of β cells co-expressed Pdx1 and insulin and by restoration of the vascular laminin expression. The atRA-induced production of vascular endothelial growth factor-A from the pancreatic islets was possibly the key factor that mediated the restoration of islet vascularity and recovery of β-cell mass. Furthermore, the combination of islet transplantation and atRA administration significantly rescued hyperglycemia in diabetic mice. These findings suggest that vitamin A derivatives can potentially be used as a supplementary treatment to improve diabetes management and glycemic control. PMID:27381866

  18. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia.

    PubMed

    Sotoca, A M; Prange, K H M; Reijnders, B; Mandoli, A; Nguyen, L N; Stunnenberg, H G; Martens, J H A

    2016-04-14

    The ETS transcription factor ERG has been implicated as a major regulator of both normal and aberrant hematopoiesis. In acute myeloid leukemias harboring t(16;21), ERG function is deregulated due to a fusion with FUS/TLS resulting in the expression of a FUS-ERG oncofusion protein. How this oncofusion protein deregulates the normal ERG transcription program is unclear. Here, we show that FUS-ERG acts in the context of a heptad of proteins (ERG, FLI1, GATA2, LYL1, LMO2, RUNX1 and TAL1) central to proper expression of genes involved in maintaining a stem cell hematopoietic phenotype. Moreover, in t(16;21) FUS-ERG co-occupies genomic regions bound by the nuclear receptor heterodimer RXR:RARA inhibiting target gene expression and interfering with hematopoietic differentiation. All-trans retinoic acid treatment of t(16;21) cells as well as FUS-ERG knockdown alleviate the myeloid-differentiation block. Together, the results suggest that FUS-ERG acts as a transcriptional repressor of the retinoic acid signaling pathway. PMID:26148230

  19. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation

    PubMed Central

    Persaud, Shawna D.; Park, Sung Wook; Ishigami-Yuasa, Mari; Koyano-Nakagawa, Naoko; Kagechika, Hiroyuki; Wei, Li-Na

    2016-01-01

    All trans retinoic acid (atRA) is one of the most potent therapeutic agents, but extensive toxicity caused by nuclear RA receptors (RARs) limits its clinical application in treating cancer. AtRA also exerts non-genomic activities for which the mechanism remains poorly understood. We determine that cellular retinoic acid binding protein 1 (Crabp1) mediates the non-genomic activity of atRA, and identify two compounds as the ligands of Crabp1 to rapidly and RAR-independently activate extracellular signal regulated kinase 1/2 (ERK1/2). Non-canonically activated ERK activates protein phosphatase 2A (PP2A) and lengthens cell cycle duration in embryonic stem cells (ESC). This is abolished in Crabp1-null ESCs. Re-expressing Crabp1 in Crabp1-negative cancer cells also sensitizes their apoptotic induction by atRA. This study reveals a physiological relevance of the non-genomic action of atRA, mediated by Crabp1, in modulating cell cycle progression and apoptosis induction, and provides a new cancer therapeutic strategy whereby compounds specifically targeting Crabp1 can modulate cell cycle and cancer cell apoptosis in a RAR-independent fashion, thereby avoiding atRA’s toxicity caused by its genomic effects. PMID:26935534

  20. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid

    SciTech Connect

    Tang, X.-H.; Vivero, Marina; Gudas, Lorraine J.

    2008-01-01

    We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 {mu}M, 400 {mu}l for 4 days) by 1.59 {+-} 0.2-fold (p < 0.05). ATRA treatment (10 {mu}M) resulted in a 59.9 {+-} 9.8% increase (p < 0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.

  1. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells.

    PubMed

    Martelli, Maria Paola; Gionfriddo, Ilaria; Mezzasoma, Federica; Milano, Francesca; Pierangeli, Sara; Mulas, Floriana; Pacini, Roberta; Tabarrini, Alessia; Pettirossi, Valentina; Rossi, Roberta; Vetro, Calogero; Brunetti, Lorenzo; Sportoletti, Paolo; Tiacci, Enrico; Di Raimondo, Francesco; Falini, Brunangelo

    2015-05-28

    Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics. PMID:25795919

  2. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    PubMed Central

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  3. All-trans retinoic acid increases expression of aquaporin-5 and plasma membrane water permeability via transactivation of Sp1 in mouse lung epithelial cells.

    PubMed

    Nomura, Johji; Horie, Ichiro; Seto, Mayumi; Nagai, Kazufumi; Hisatsune, Akinori; Miyata, Takeshi; Isohama, Yoichiro

    2006-12-29

    Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability. PMID:17097063

  4. Combination of all-trans-retinoic acid and gemtuzumab ozogamicin in an elderly patient with acute promyelocytic leukemia and severe cardiac failure.

    PubMed

    Finizio, O; Pezzullo, L; Rocco, S; Bene, L; De Rosa, C; Nunziata, G R; Mettivier, V

    2007-01-01

    All-trans-retinoic acid (ATRA) combined with anthracyclines is currently the standard treatment for acute promyelocytic leukemia (APL). In elderly patients the presence of comorbidities, such as cardiomyopathy or different organ failures, often represents an absolute contraindication to standard chemotherapy. In this particular setting of patients, alternative front-line approaches are needed. Here we report the use of gemtuzumab ozogamicin as consolidation therapy in a 68-year-old patient not eligible for standard dose anthracycline due to severe cardiac failure and chronic anticoagulant therapy, affected by low-risk APL. Induction therapy was started with ATRA alone, at a dose of 45 mg/m2 for 80 days. The patient obtained a complete hematological and molecular remission. At day +170 the patient was treated with 6 mg/m2 gemtuzumab ozogamicin monthly for two months (2 total doses) as a consolidation therapy and then started a maintenance program with ATRA 45 mg/m2 for 15 days every three months, for a total time of two years. No adverse events were observed in every phase of treatment and the patient is still in complete continuous hematological and molecular remission 29 months from diagnosis. This approach represents an intriguing therapeutic option to be investigated in randomized studies in low- and intermediate-risk elderly patients (older than 65 years), aiming to minimize or to eliminate standard chemotherapy in advantage of new non-conventional agents, including ATO. PMID:17167240

  5. Function of all-trans retinoic acid observation on similar myopia changes in cultivated rabbit retinal pigment epithelium and relation with myopia relevant factors.

    PubMed

    Xing, Bin

    2016-03-01

    To observe the role of all-trans retinoic acid (ATRA) during the similar myopia changes of cultured rabbit retinal pigment epithelium (RPE) cells, as well as the variation changes and relationships with myopic correlation factors such as hepatocyte growth factor (HGF) and matrix metalloprateinase-2 (MMP-2). Rabbit RPE cells of primary generation were selected and cultured to fifth generation by subculture. Then the morphology of RPE cells were observed and cell vitality was analyzed by using the Trypan blue reject test. The expressions of HGF and MMP-2 in RPE cells were tested by using an immunobistochemistry method. The HGF concentration in RPE cell culture fluid was detected by applying enzyme-linked immunosorbnent assay (ELISA). As the ATRA concentration enhanced and action time prolonged, the survival rate of RPE cells was reduced, but the expressions of HGF and MMP-2 increased, so did the secretion of HGF. ATRA concentration with no less than 5 nM/ml was able to induce the growth inhibition of RPE cells and the decrease in survival rate, which was similar to the changes in RPE cells in myopia. With the actin of ATRA, the expressions of HGF and MMP-2 increased in RPE cells, with more distinct in HGF increase. PMID:27113312

  6. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Adachi, Koji; Honma, Yoshio; Miyake, Takaaki; Kawakami, Koshi; Takahashi, Tsutomu; Suzumiya, Junji

    2016-03-01

    All-trans retinoic acid (ATRA) is valuable in differentiation therapy for acute promyelocytic leukemia (APL). However, ATRA has had limited success as a single agent, due to the development of resistance. We found that tamoxifen effectively enhanced the differentiation-inducing effect of ATRA. Tamoxifen alone inhibited the proliferation of myeloid leukemia cell lines while only slightly increasing morphologic differentiation. Tamoxifen effectively enhanced the growth-inhibiting actions of various differentiation-inducing agents. ATRA in the presence of tamoxifen increased NBT reduction and the expression of CD11b in HL-60 cells more effectively than ATRA alone. Tamoxifen also enhanced the differentiation induced by the other inducers tested. ATRA induced the differentiation of APL cell lines NB4 and HT93 and APL cells in primary culture, and this differentiation was also enhanced by tamoxifen. Tamoxifen is one of the most widely used drugs for the treatment of cancer and has few side effects. The combination of ATRA and tamoxifen might be considered for the treatment of APL patients in whom it can be difficult to apply arsenic trioxide or anthracyclines. PMID:26797574

  7. Long-term follow-up of homoharringtonine plus all-trans retinoic acid-based induction and consolidation therapy in newly diagnosed acute promyelocytic leukemia.

    PubMed

    Wang, Ying; Lin, Dong; Wei, Hui; Li, Wei; Liu, Bingcheng; Zhou, Chunlin; Liu, Kaiqi; Mi, Yingchang; Wang, Jianxiang

    2015-03-01

    We conducted a retrospective study to evaluate the efficacy of combining homoharringtonine (HHT) with all-trans-retinoic acid (ATRA)-based induction therapy, followed by three courses of consolidation chemotherapy and 2-year sequential maintenance therapy in acute promyelocytic leukemia (APL). Fifty-three patients were enrolled in the study. The complete remission (CR) rate was 100 %. No patient died during induction therapy. The 9-year event-free survival (EFS) and 9-year overall survival (OS) for all patients were 79.0 and 83.0 %, respectively. Outcome estimates according to the body mass index (BMI) were carried out. Twenty-three (43.4 %) were underweight/normal (BMI < 23.0 kg/m(2)), whereas 30 patients (56.6 %) were overweight/obese (BMI ≥ 23.0 kg/m(2)). Underweight/normal-weight patients had a 9-year OS of 100 %, compared with 73.0 % for overweight/obese patients (P = 0.044). These results indicate that HHT plus ATRA-based induction and consolidation therapy may be a highly efficacious treatment option for newly diagnosed APL. Increased BMI had an adverse prognostic impact in APL. PMID:25563706

  8. Multifactorial mechanism for the potentiation of cisplatin (CDDP) cytotoxicity by all-trans retinoic acid (ATRA) in human ovarian carcinoma cell lines.

    PubMed Central

    Caliaro, M. J.; Vitaux, P.; Lafon, C.; Lochon, I.; Néhmé, A.; Valette, A.; Canal, P.; Bugat, R.; Jozan, S.

    1997-01-01

    All-trans retinoic acid (ATRA) has been previously shown to inhibit the proliferation of some human ovarian carcinoma cell lines, and this inhibition was accompanied by cellular changes that were indicative of differentiation (Caliaro et al, 1994). In this work, a pretreatment of these adenocarcinoma cells with ATRA, for their respective doubling time, enhanced cisplatin (CDDP) cytotoxicity in the cell ines that were sensitive to its antiproliferative effect, but not in the ATRA-resistant ones. Results were assessed using median effect analysis in two ATRA-sensitive cell lines (OVCCR1 and NIHOVCAR3 cells) and in one ATRA-insensitive cell line (IGROV1 cells). Synergy between these two agents was observed only in cells sensitive to ATRA, regardless of their relative sensitivity to CDDP. Potential mechanisms for this synergy were investigated. ATRA did not increase the cellular platinum content, did not decrease the cellular glutathione and had no influence on the metallothionein IIA mRNA levels in NIHOVCAR3 cells. Moreover, the protein kinase C (PKC) activity was modulated by this differentiating agent in all cell lines tested, indicating that this activity was not directly involved in this potentiation. However, an ATRA inhibition of glutathione-S-transferase activity associated with an increase in the total DNA adducts formation could explain the potentiation of the CDDP cytotoxicity observed in NIHOVCAR3 cells. Finally, the ATRA modulation of the epidermal growth factor (EGF) receptor mRNA level could also be implicated in this synergy. Images Figure 7 PMID:9020476

  9. Acute promyelocytic leukemia with isochromosome 17q and cryptic PML-RARA successfully treated with all-trans retinoic acid and arsenic trioxide.

    PubMed

    Shepshelovich, Daniel; Oniashvili, Nino; Parnes, Doris; Klein, Alina; Muchtar, Eli; Yeshaya, Josepha; Aviram, Adina; Rabizadeh, Esther; Raanani, Pia

    2015-11-01

    Acute promyelocytic leukemia (APL) is a subtype of acute leukemia that is characterized by typical morphology, bleeding events and distinct chromosomal aberrations, usually the t(15;17)(q22;q21) translocation. Approximately 9% of APL patients harbor other translocations involving chromosome 17, such as the t(11;17)(q23;q21), t(5;17)(q35;q12-21), t(11;17)(q13;q21), and der(17). All-trans retinoic acid (ATRA) and arsenic trioxide (ATO) have specific targeted activities against the PML-RARA fusion protein. The combination of ATRA and ATO is reportedly superior to chemotherapy and ATRA as induction therapy for APL. The clinical significance of non-t(15:17) APL-related aberrations is controversial, with conflicting reports regarding sensitivity to modern, targeted therapy. Isochromosome 17q (iso(17q)) is rarely associated with APL and usually occurs concurrently with the t(15:17) translocation. No published data is available regarding the efficacy of ATO-based therapy for APL patients who harbor iso(17q). We report on an APL patient with iso(17q) as the sole cytogenetic aberration and a cryptic PML-RARA transcript, who was treated with ATRA and ATO after failure of chemotherapy and achieved complete remission. To our knowledge, this is the first published report of APL associated with iso(17q) as the sole cytogenetic aberration, which was successfully treated with an ATO containing regimen. PMID:26471811

  10. Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation.

    PubMed

    Orfali, Nina; O'Donovan, Tracey R; Nyhan, Michelle J; Britschgi, Adrian; Tschan, Mario P; Cahill, Mary R; Mongan, Nigel P; Gudas, Lorraine J; McKenna, Sharon L

    2015-09-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML. PMID:25986473

  11. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice.

    PubMed

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning; Wang, Miao; Chen, Mu; Hou, Jinsong; Huang, Hongzhang

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. PMID:27343556

  12. Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines.

    PubMed Central

    Braakhuis, B. J.; Klaassen, I.; van der Leede, B. M.; Cloos, J.; Brakenhoff, R. H.; Copper, M. P.; Teerlink, T.; Hendriks, H. F.; van der Saag, P. T.; Snow, G. B.

    1997-01-01

    Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition. Images Figure 6 PMID:9231918

  13. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling.

    PubMed

    Wang, Ruishan; Chen, Shaoya; Liu, Yingchun; Diao, Shiyong; Xue, Yueqiang; You, Xiaoqing; Park, Edwards A; Liao, Francesca-Fang

    2015-09-11

    Insulin resistance and neuroinflammation have emerged as two likely key contributors in the pathogenesis of Alzheimer disease (AD), especially in those sporadic AD cases compromised by diabetes or cardiovascular disease. Amyloid-β (Aβ) deposition and its associated inflammatory response are hallmarks in sporadic AD brains. Elevated expression and activity of β-secretase 1 (BACE1), the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides, are also observed in sporadic AD brains. Previous studies have suggested that there is therapeutic potential for retinoic acid in treating neurodegeneration based on decreased Aβ. Here we discovered that BACE1 expression is elevated in the brains of both Tg2576 transgenic mice and mice on high fat diets. These conditions are associated with a neuroinflammatory response. We found that administration of all-trans-retinoic acid (atRA) down-regulated the expression of BACE1 in the brains of Tg2576 mice and in mice fed a high fat diet. Moreover, in LPS-treated mice and cultured neurons, BACE1 expression was repressed by the addition of atRA, correlating with the anti-inflammatory efficacy of atRA. Mutations of the NFκB binding site in BACE1 promoter abolished the suppressive effect of atRA. Furthermore, atRA disrupted LPS-induced nuclear translocation of NFκB and its binding to BACE1 promoter as well as promoting the recruitment of the corepressor NCoR. Our findings indicate that atRA represses BACE1 gene expression under inflammatory conditions via the modulation of NFκB signaling. PMID:26240147

  14. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  15. All-trans-retinoic Acid Increases SLC26A3 DRA (Down-regulated in Adenoma) Expression in Intestinal Epithelial Cells via HNF-1β*

    PubMed Central

    Priyamvada, Shubha; Anbazhagan, Arivarasu N.; Gujral, Tarunmeet; Borthakur, Alip; Saksena, Seema; Gill, Ravinder K.; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2015-01-01

    All-trans-retinoic acid (ATRA) is an active vitamin A derivative known to modulate a number of physiological processes, including growth and development, differentiation, and gene transcription. The protective effect of ATRA in gut inflammation and diarrheal diseases has been documented. In this regard, down-regulated in adenoma (DRA, a key luminal membrane Cl− transporter involved in NaCl absorption) has been shown to be suppressed in intestinal inflammation. This suppression of DRA is associated with diarrheal phenotype. Therefore, current studies were undertaken to examine the effects of ATRA on DRA expression. DRA mRNA levels were significantly elevated (∼4-fold) in response to ATRA with induction starting as early as 8 h of incubation. Similarly, ATRA increased DRA protein expression by ∼50%. Furthermore, DRA promoter activity was significantly increased in response to ATRA indicating transcriptional activation. ATRA effects on DRA expression appeared to be mediated via the RAR-β receptor subtype, as ATRA remarkably induced RAR-β mRNA levels, whereas RAR-β knockdown substantially attenuated the ability of ATRA to increase DRA expression. Results obtained from agonist (CH-55) and antagonist (LE-135) studies further confirmed that ATRA exerts its effects through RAR-β. Furthermore, ATRA treatment resulted in a significant increase in HNF-1β mRNA levels. The ability of ATRA to induce DRA expression was inhibited in the presence of HNF-1β siRNA indicative of its involvement in ATRA-induced effects on DRA expression. In conclusion, ATRA may act as an antidiarrheal agent by increasing DRA expression via the RAR-β/HNF-1β-dependent pathway. PMID:25887398

  16. All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function.

    PubMed

    Bhatt, Sumantha; Qin, Jie; Bennett, Carole; Qian, Shiguang; Fung, John J; Hamilton, Thomas A; Lu, Lina

    2014-06-01

    Hepatic stellate cells (HSC) are a major source of the immunoregulatory metabolite all-trans retinoic acid (ATRA), which may contribute to the generation of tolerogenic dendritic cells (DCs) in the liver. The present study seeks to clarify the mechanism(s) through which ATRA promotes the development of tolerogenic DCs. Although bone marrow-derived ATRA-treated DCs (RA-DCs) and conventional DCs had comparable surface phenotype, RA-DCs had diminished stimulatory capacity and could directly inhibit the expansion of DC/OVA-stimulated OT-II T cells. Arginase-1 (Arg-1) was found promote suppression because 1) ATRA was a potent inducer of Arg-1 protein and activity, 2) the Arg-1 inhibitor N(w)-hydroxy nor-l-arginine partially reversed suppression, and 3) the suppressive function of RA-DCs was partially compromised using OT-II T cells from GCN2(-/-) mice, which are insensitive to Arg-1. Inducible NO synthase (iNOS), however, was found to be a more significant contributor to RA-DC function because 1) ATRA potentiated the expression of IFN-γ-induced iNOS, 2) suppressive function in RA-DCs was blocked by the iNOS inhibitor N(G)-monomethyl-l-arginine, monoacetate salt, and 3) RA-DCs derived from iNOS(-/-) mice exhibited near complete loss of tolerogenic function, despite sustained Arg-1 activity. The expression of iNOS and the suppressive function of RA-DCs were dependent on both IFN-γ and ATRA. Furthermore, the in vivo behavior of RA-DCs proved to be consistent with their in vitro behavior. Thus, we conclude that ATRA enhances both Arg-1 and iNOS expression in IFN-γ-treated DCs, resulting in a tolerogenic phenotype. These findings elucidate mechanisms through which ATRA may contribute to liver immune tolerance. PMID:24790153

  17. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    SciTech Connect

    Kishi, Minoru; Yasuda, Hisafumi; Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  18. MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells

    PubMed Central

    Kurosaki, Mami; Paroni, Gabriela; Zanetti, Adriana; Gianni, Maurizio; Bolis, Marco; Lupi, Monica; Tsykin, Anna; Goodall, Gregory J.; Garattini, Enrico

    2015-01-01

    SKBR3-cells, characterized by ERBB2/RARA co-amplification, represent a subgroup of HER2+ breast-cancers sensitive to all-trans retinoic acid (ATRA) and Lapatinib. In this model, the two agents alone or in combination modulate the expression of 174 microRNAs (miRs). These miRs and predicted target-transcripts are organized in four interconnected modules (Module-1 to -4). Module-1 and Module-3 consist of ATRA/Lapatinib up-regulated and potentially anti-oncogenic miRs, while Module-2 contains ATRA/Lapatinib down-regulated and potentially pro-oncogenic miRs. Consistent with this, the expression levels of Module-1/-3 and Module-2 miRs are higher and lower, respectively, in normal mammary tissues relative to ductal-carcinoma-in-situ, invasive-ductal-carcinoma and metastases. This indicates associations between tumor-progression and the expression profiles of Module-1 to -3 miRs. Similar associations are observed with tumor proliferation-scores, staging, size and overall-survival using TCGA (The Cancer Genome Atlas) data. Forced expression of Module-1 miRs, (miR-29a-3p; miR-874-3p) inhibit SKBR3-cell growth and Module-3 miRs (miR-575; miR-1225-5p) reduce growth and motility. Module-2 miRs (miR-125a; miR-193; miR-210) increase SKBR3 cell growth, survival and motility. Some of these effects are of general significance, being replicated in other breast cancer cell lines representing the heterogeneity of this disease. Finally, our study demonstrates that HIPK2-kinase and the PLCXD1-phospholipase-C are novel targets of miR-193a-5p/miR-210-3p and miR-575/miR-1225-5p, respectively. PMID:25961594

  19. Stress-induced NF-κB activation differentiates promyelocytic leukemia cells to macrophages in response to all-trans-retinoic acid.

    PubMed

    Imran, Muhammad; Park, Joon Seong; Lim, In Kyoung

    2015-03-01

    All-trans-retinoic acid (ATRA) has been known as a choice of treatment for inducing differentiation of promyelocytic leukemia cells to granulocytes. NF-κB plays a crucial role in inflammation and immunity and its activation is an important event for macrophage differentiation both in vivo and in vitro. We report here that NF-κB activation is critical for determining ATRA-induced lineage specific differentiation of myeloid leukemia cells. Our data revealed that ATRA treatment to HL-60 cells enhanced IκBα degradation and NF-κB nuclear translocation and the activated NF-κB potentiated the ability of ATRA for differentiation and switched differentiation to macrophages instead of granulocytes. Serum withdrawal and LPS treatment dampened IκBα expression via MAPK activation and reactive oxygen species generation leading to NF-κB nuclear translocation and ATRA treatment further corroborated these effects in myeloid leukemia cells. Activated NF-κB enhanced the degree of ATRA-induced differentiation of HL-60 cells to macrophages, rather than granulocytes, as assessed by morphologic examination and expressions of differentiation markers such as CD11b, CD38, CD68, MMP9 and Btg2. Employing LLnL or dominant negative IκBα attenuated NF-κB associated enhanced cell maturation and differentiation switch thus suggesting NF-κB as one of the factors that determines ATRA induced lineage specificity of myeloid leukemia cells. Furthermore, MAPK activation was observed to be central both for the differentiation of promyelocytic cells to macrophages or granulocytes regulating NF-κB or C/EBPα expressions, respectively; however, MAPK-mediated signals are modulated under various conditions affecting lineage specificity. In summary, our present data demonstrate that activation of NF-κB directly affects differentiation program of promyelocytes to macrophages, rather than granulocyte, in response to ATRA treatment. PMID:25435432

  20. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles.

    PubMed

    Zhang, Ting; Xiong, Hui; Dahmani, Fatima Zohra; Sun, Li; Li, Yuanke; Yao, Li; Zhou, Jianping; Yao, Jing

    2015-04-10

    Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects. PMID:25771790

  1. Prediction of in vivo developmental toxicity of all-trans-retinoic acid based on in vitro toxicity data and in silico physiologically based kinetic modeling.

    PubMed

    Louisse, Jochem; Bosgra, Sieto; Blaauboer, Bas J; Rietjens, Ivonne M C M; Verwei, Miriam

    2015-07-01

    The use of laboratory animals for toxicity testing in chemical safety assessment meets increasing ethical, economic and legislative constraints. The development, validation and application of reliable alternatives for in vivo toxicity testing are therefore urgently needed. In order to use toxicity data obtained from in vitro assays for risk assessment, in vitro concentration-response data need to be translated into in vivo dose-response data that are needed to obtain points of departure for risk assessment, like a benchmark dose (BMD). In the present study, we translated in vitro concentration-response data of the retinoid all-trans-retinoic acid (ATRA), obtained in the differentiation assay of the embryonic stem cell test, into in vivo dose-response data using a physiologically based kinetic model for rat and human that is mainly based on kinetic model parameter values derived using in vitro techniques. The predicted in vivo dose-response data were used for BMD modeling, and the obtained BMDL10 values [lower limit of the 95 % confidence interval on the BMD at which a benchmark response equivalent to a 10 % effect size (BMR10) is reached (BMD10)] for rat were compared with BMDL10 values derived from in vivo developmental toxicity data in rats reported in the literature. The results show that the BMDL10 values from predicted dose-response data differ about sixfold from the BMDL10 values obtained from in vivo data, pointing at the feasibility of using a combined in vitro-in silico approach for defining a point of departure for toxicological risk assessment. PMID:24935252

  2. Modulation of Dishevelled and Vangl2 by all-trans-retinoic acid in the developing mouse central nervous system and its relationship to teratogenesis.

    PubMed

    Zhang, Yanping; Liu, Kai; Gao, Yingmao; Li, Shaoling

    2007-09-01

    The response to exposure to all-trans-retinoic acid (RA) during embryogenesis varies from physiologic to severe teratogenic effects and is dependent upon the dose and the stage of development in all species. Vangl2 and Dishevelled genes play key roles in establishing planar cell polarity and regulating convergent extension movements during the neurula period. The effects of RA-mediated teratogenesis might be due to its misregulation of Vangl2 and Dishevelled genes. The aim of this study is to monitor the modulation of Vangl2 and Dishevelled in Kunming mouse embryos following maternal treatment with a single oral dose of 30 mg/(kg body weight) of RA during the neurula period. Exposure of 7.75 d embryos to RA induced characteristic morphological changes. The most obvious external effect was the failure of neural tube closure in the midbrain and forebrain regions in 10 d embryos, resulting in exencephaly in later embryos. RA treatment also led to a pronounced decrease of Vangl2 mRNA at 4 and 18 h and a pronounced increase at 66 h after maternal treatment, as detected by reverse transcription-polymerase chain reaction. Western blot analysis showed a marked decrease of Vangl2 protein at 18 and 42 h and a marked increase at 66 and 90 h after maternal treatment. Dishevelled1/2/3 mRNA was significantly down-regulated at 4 and 18 h and up-regulated at 42 h in the fetus after RA treatment, except for an up-regulation of Dishevelled3 at 66 h. The Dishevelled2 mRNA and its protein matched each other. These results hinted that Vangl2 and Dishevelled genes might take part in RA teratogenesis of mouse embryos. PMID:17805463

  3. Regulation of dHAND protein expression by all-trans retinoic acid through ET-1/ETAR signaling in H9c2 cells.

    PubMed

    Li, Weixin; Li, Yong

    2006-10-01

    dHAND is thought to be a cardiac-restricted transcription factor during embryonic development. Vertebrate heart development involves many transcription factors such as Nkx2.5, GATA, and tbx5. All-trans retinoic acid (AtRA), the oxidative metabolite of vitamin A, can regulate the expression of these factors to affect embryonic heart development. However, the action of atRA on the expression of dHAND is rarely reported. To clarify whether atRA regulate the dHAND expression, we exposed cultured H9c2 cells (rat embryonic cardiomyocytes) to atRA and detected the protein expression of dHAND by Western blot analysis. We observed atRA can regulate the dHAND expression in a dose- and time-dependent manner. AtRA also inhibited endothelin-1 (ET-1) expression in a time-dependent manner. Further studies revealed that pretreatment with 10 microM BQ-123, a selective endothelin-1 receptor (ETAR) antagonist, for 2 h can significantly counteract the inhibition of 5 microM atRA treatment for 2 h of dHAND mRNA and protein expression. Taken together, these results suggest that atRA regulates dHAND expression by ET-1/ETAR signal transduction pathway in H9c2 cells. The mechanism of ET-1/ETAR signaling in controlling the level of dHAND protein is to reduce the levels of dHAND mRNA. It is possible for atRA to exert its cardiac teratogenesis during vertebrate embryonic development in this way. PMID:16619265

  4. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo.

    PubMed

    Ma, Hayley S; Greenblatt, Sarah M; Shirley, Courtney M; Duffield, Amy S; Bruner, J Kyle; Li, Li; Nguyen, Bao; Jung, Eric; Aplan, Peter D; Ghiaur, Gabriel; Jones, Richard J; Small, Donald

    2016-06-01

    FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)(+) LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD(+) cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD(+) cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD(+) LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD(+) patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drug's apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD(+) LSCs and reduce the rate of relapse in AML patients with FLT3 mutations. PMID:27103744

  5. All Trans-Retinoic Acid Mediates MED28/HMG Box-Containing Protein 1 (HBP1)/β-Catenin Signaling in Human Colorectal Cancer Cells.

    PubMed

    Lee, Ming-Fen; Hsieh, Nien-Tsu; Huang, Chun-Yin; Li, Chun-I

    2016-08-01

    Vitamin A is required for normal body function, including vision, epithelial integrity, growth, and differentiation. All trans-retinoic acid (ATRA), a family member of vitamin A, has been explored in treating acute promyelocytic leukemia and other types of cancer. Dysregulated Wnt/β-catenin signaling and disrupted cadherin-catenin complex often contribute to colorectal malignancy. MED28, a mammalian Mediator subunit, is found highly expressed in breast and colorectal cancers. Our laboratory has also reported that MED28 regulates cell growth, migration, and invasion in human breast cancer cells. In the current study we investigated the effect of ATRA on MED28 and Wnt/β-catenin signaling in colorectal cancer. HCT116, HT29, SW480, and SW620, four human colorectal cancer cell lines representing different stages of carcinogenesis and harboring critical genetic changes, were employed. Our data indicated that regardless of genetic variations among these cells, suppression of MED28 reduced the expression of cyclin D1, c-Myc, and nuclear β-catenin, but increased the expression of E-cadherin and HMG box-containing protein 1 (HBP1) where HBP1 has been described as a negative regulator of the Wnt/β-catenin signaling. The reporter activity of an HBP1 promoter increased upon MED28 knockdown, but decreased upon MED28 overexpression. ATRA reduced the expression of MED28 and mimicked the effect of MED28 suppression in down-regulating Wnt/β-catenin signaling. Taken together, ATRA can reverse the suppressive effect of MED28 on HBP1 and E-cadherin and inactivate the Wnt/β-catenin pathway in colorectal cancer, suggesting a protective effect of ATRA against colorectal cancer. J. Cell. Physiol. 231: 1796-1803, 2016. © 2015 Wiley Periodicals, Inc. PMID:26660958

  6. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ).

    PubMed

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-07-17

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. PMID:26018078

  7. Effect of all-trans retinoic acid on procoagulant and fibrinolytic activities of cultured blast cells from patients with acute promyelocytic leukemia.

    PubMed

    De Stefano, V; Teofili, L; Sica, S; Mastrangelo, S; Di Mario, A; Rutella, S; Salutari, P; Rumi, C; d'Onofrio, G; Leone, G

    1995-11-01

    The mechanisms underlying acute promyelocytic leukemia (APL) coagulopathy and its reversal by administration of all-trans retinoic acid (ATRA) have been investigated. Bone marrow promyelocytic blasts from nine patients with APL were cultured with or without ATRA 1 mumol/L. Cultured blasts (days 0, 3, 6, and 9) were washed, resuspended in phosphate buffer, lysed by freezing and thawing, and then assayed for procoagulant activity (PCA), elastase activity, tissue factor (TF) antigen, tissue-type plasminogen activator (t-PA) antigen and urokinase-type plasminogen activator (u-PA) antigen. PCA was determined by a recalcification assay. Elastase was measured by an amidolytic assay (S-2484). TF, t-PA, and u-PA antigens were measured by an enzyme-linked immunosorbent assay (ELISA). Malignant promyelocytes isolated from the patients had increased levels of PCA and TF as compared with the control polymorphonucleates, and low levels of elastase, t-PA, and u-PA; the patient blast PCA level was significantly related to the degree of hypofibrinogenemia. In this system, blast PCA depended on the tissue factor and was significantly correlated to the TF antigen values. In the cultures without ATRA, PCA, TF, and u-PA progressively increased, whereas elastase and t-PA levels remained essentially unchanged. In the presence of ATRA, all parameters (except u-PA) decreased during the culture time. Thus, a major role of the promyelocytic blast cell PCA in the pathogenesis of M3-related coagulopathy is suggested; the ATRA effect on coagulopathy seems mainly mediated by a downregulation of the PCA. PMID:7579461

  8. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo.

    PubMed

    Li, Bing; Gao, Mei-Hua; Chu, Xian-Ming; Teng, Lei; Lv, Cong-Yi; Yang, Peng; Yin, Qi-Feng

    2015-02-15

    The anticancer effects and mechanism of all-trans retinoic acid (ATRA), C-phycocyanin (C-PC) or ATRA+C-PC on the growth of A549 cells were studied in in vitro and in vivo experiments. The effects of C-PC and ATRA on the growth of A549 cells were determined. The expression of CDK-4 and caspase-3, and the cellular apoptosis levels were detected. The tumor model was established by subcutaneous injection of A549 cells to the left axilla of the NU/NU mice. The weights of tumor and the spleen were tested. The viabilities of T-cells and spleen cells, TNF levels, the expression of Bcl-2 protein and Cyclin D1 gene were examined. Results showed both C-PC and ATRA could inhibit the growth of tumor cells in vivo and in vitro. ATRA+C-PC cooperatively showed a higher antitumor activity. The dosage of ATRA was reduced when it was administered with C-PC together, and the toxicity was reduced as well. ATRA+C-PC could decrease CDK-4 but increase caspase-3 protein expression level and induce cell apoptosis. ATRA alone could lower the activities of T lymphocytes and spleen weights, but the combination with C-PC could effectively promote viability of T cells and spleen. C-PC+ATRA could up-regulate TNF, and down-regulate Bcl-2 and Cyclin D1 gene. The combination might inhibit tumor growth by inhibiting the progress of cell cycle, inducing cell apoptosis and enhancing the body immunity. PMID:25617793

  9. Ex vivo immunomodulatory effect of all-trans-retinoic acid during Behçet's disease: a study in Algerian patients.

    PubMed

    Djeraba, Zineb; Boumedine, Karim; Arroul-Lammali, Amina; Otmani, Fifi; Belguendouz, Houda; Touil-Boukoffa, Chafia

    2014-02-01

    Uveitis, recurrent oral and genital ulcerations associated with skin lesions are the major symptoms of a chronic multisystemic inflammatory disorder known as Behçet's disease (BD). High prevalence of this dreaded disease has been observed in the Mediterranean basin, including Algeria and along the Silk Road. Although the etiologic agent of this disease remains uncertain, many hypotheses have been advanced in its pathogenesis. Our team has previously reported high levels of nitric oxide (NO) in sera of BD patients, suggesting its deleterious effect during chronic inflammation. In our current study, the aim is to investigate the ex vivo immunomodulatory effect of all-trans-retinoic acid (ATRA) on NO pathway in Algerian BD patients. First, peripheral blood mononuclear cells isolated from active and inactive BD patients and healthy controls were cultured with different concentrations of ATRA. NO production was estimated with the Griess method. To elucidate the underlying mechanisms of ATRA effect on NO production, we analyze inducible nitric oxide synthase expression and nuclear factor-κB (NF-κB) activity by immunofluorescence test. Our results revealed a higher production of NO in active BD compared with the inactive stage and healthy controls. We observed that ATRA inhibits NO production in BD both in active and inactive stages and inhibits NF-κB translocation. In conclusion, we report a relationship between NO production and the disease activity. ATRA down-regulates NO production in BD patients. This immunomodulatory effect seems to be mediated through NF-κB pathway. All these findings suggest that ATRA could be considered as a promising therapy for BD. PMID:24369064

  10. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  11. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2015-01-01

    The MHC class-I like molecule CD1d presents glycolipid antigens and thereby activates invariant natural killer-T (NKT) cells. However, little is understood regarding the regulation of its expression. All-trans-retinoic acid (RA) and CD38, which is itself a target of RA, both independently regulate the differentiation of antigen presenting cells. In the current study, we treated human THP-1 cells and murine splenic cells with RA, with and without antibody-mediated ligation of cell-surface CD38. Whereas a physiological concentration (20 nM) of RA alone rapidly and markedly increased CD1d protein in THP-1 cells, there was a marked synergy between RA and ligation of CD38 with antibody to CD38. Moreover, RA and CD38 ligation differentially regulated CD1d protein distribution between the cell surface and intracellular compartments, as, whereas RA mainly increased intracellular CD1d protein, ligation of CD38 increased CD1d protein both at the cell surface and intracellularly. By confocal microscopy, CD1d was located close to the plasma membrane but only partially overlapped with LAMP1, a late endosomes/lysosomal marker. Furthermore, RA and/or CD38 ligation increased splenocyte proliferation and differentiation after treatment with the CD1 ligand α-galactosylceramide (αGalCer), evidenced by an increase in the number of splenic dendritic cells, NKT cells, and germinal center plasmacytes. RA also differentially regulated αGalCer-induced cytokine expression, increasing IL-4 and decreasing IFNγ production by total spleen cells and the NKT cell population. Our results indicate a previously unknown mechanism in which RA and CD38 differentially yet cooperatively regulate CD1d expression and antigen-presenting function, which could be important for the enhancement of immunity. PMID:25248321

  12. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition.

    PubMed

    Yang, Yan; Qin, Shu-Kui; Wu, Qiong; Wang, Zi-Shu; Zheng, Rong-Sheng; Tong, Xu-Hui; Liu, Hao; Tao, Liang; He, Xian-Di

    2014-02-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 µM) or ATRA (0.1 or 10 µM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC. PMID:24317203

  13. The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

    PubMed Central

    Van heusden, J.; Wouters, W.; Ramaekers, F. C.; Krekels, M. D.; Dillen, L.; Borgers, M.; Smets, G.

    1998-01-01

    The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity. PMID:9579827

  14. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Xiong, Hui; Zohra Dahmani, Fatima; Sun, Li; Li, Yuanke; Yao, Li; Zhou, Jianping; Yao, Jing

    2015-04-01

    Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.

  15. Contrasting roles for all-trans retinoic acid in TGF-β–mediated induction of Foxp3 and Il10 genes in developing regulatory T cells

    PubMed Central

    Maynard, Craig L.; Hatton, Robin D.; Helms, Whitney S.; Oliver, James R.; Stephensen, Charles B.

    2009-01-01

    Extrathymic induction of regulatory T (T reg) cells is essential to the regulation of effector T cell responses in the periphery. In addition to Foxp3, T reg cell expression of suppressive cytokines, such as IL-10, is essential for peripheral tolerance, particularly in the intestines. TGF-β has been shown to induce expression of Foxp3 as well as IL10 and the vitamin A metabolite; all-trans retinoic acid (RA [at-RA]) has been found to enhance the former. We report that in contrast to its enhancement of TGF-β–mediated Foxp3 induction, at-RA potently inhibits the TGF-β–mediated induction of Il10 in naive CD4 T cells. Thus, mucosal DC subsets that are active producers of at-RA inhibit induction of Il10 in naive CD4 T cells while promoting induction of Foxp3. Accordingly, mice with vitamin A deficiency have increased numbers of IL-10–competent T reg cells. Activation of DCs by certain Toll-like receptors (TLRs), particularly TLR9, suppresses T cell induction of Foxp3 and enables induction of Il10. Collectively, our data indicate that at-RA has reciprocal effects on the induction of Foxp3 and Il10 in developing CD4+ T reg cells and suggest that TLR9-dependent inhibition of at-RA production by antigen-presenting cells might represent one mechanism to promote the development of IL-10–expressing T cells. PMID:19204112

  16. All-trans retinoic acid regulates the expression of the extracellular matrix protein fibulin-1 in the guinea pig sclera and human scleral fibroblasts

    PubMed Central

    Li, Chuanxu; McFadden, Sally A.; Morgan, Ian; Cui, Dongmei; Hu, Jianmin; Wan, Wenjuan

    2010-01-01

    Purpose Fibulin-1 (FBLN1) mRNA is expressed in human sclera and is an important adhesion modulatory protein that can affect cell–matrix interactions and tissue remodeling. Scleral remodeling is influenced by all-trans retinoic acid (RA). Our purpose was to confirm the presence of fibulin-1 protein in guinea pig sclera and investigate the effect of RA on the expression of fibulin-1 in guinea pig sclera in vivo and in cultured human scleral fibroblasts (HSFs). Methods Confocal fluorescence microscopy was used to study fibulin-1 and aggrecan expression and localization in sclera from control guinea pigs and in animals given RA by daily gavage from 4 to 8 days of age. The effects of RA (from 10−9 to 10−5 M) on fibulin-1 expression in HSFs were observed by immunohistochemistry and assayed by real-time PCR and western blot analysis. Results Fibulin-1 protein expression was detected by confocal fluorescence microscopy in guinea pig sclera and in cultured HSFs. Upregulation of fibulin-1 in scleral tissue was observed after feeding with RA. In vitro, the level of Fbln1 mRNA was increased after treatment of HSFs with RA (at concentrations of 10−8 to 10−6 M; p<0.001), with a maximum effect at 10−7 M. Fibulin-1 protein levels were significantly increased after treatment of HSFs with 10−7 M of RA for 24 or 48 h (p<0.05). Conclusions Fibulin-1 protein was expressed in guinea pig sclera and cultured HSFs. Expression was regulated by RA, a molecule known to be involved in the regulation of eye growth. Further studies on the role of fibulin-1 in the regulation of eye growth, including during the development of myopia, are therefore warranted. PMID:20405022

  17. Effects of ethanol on biotransformation of all-trans-retinol and all-trans-retinal to all-trans-retinoic acid in rat conceptal cytosol.

    PubMed

    Chen, H; Namkung, M J; Juchau, M R

    1996-08-01

    Enzymatic catalysis of the oxidations of ethanol, all-trans-retinol (tretinol) and all-trans-retinal (t-retinal) were demonstrated in the cytosolic fractions of rat conceptal homogenates at day 12 of gestation. Products of the retinoid oxidation reactions were identified with HPLC by comparing elution times with those of authentic standard retinoids. NAD-dependent oxidations of each of the three substrates were demonstrable with assay conditions used; t-retinol and t-retinal each were converted to readily detectable quantities of all-trans-retinoic acid (t-RA). At 1.0 mM or higher concentrations, ethanol effectively inhibited the synthesis of t-RA from both t-retinol and t-retinal when adult hepatic cytosol was used as enzyme source. Approximately 70% and 40% inhibitions, respectively, were observed at 10 mM ethanol concentrations. By contrast, for the reactions catalyzed by rat conceptal cytosol (RCC) under the same experimental conditions, ethanol falled to inhibit significantly the conversion of either t-retinol or t-retinal to t-RA at concentrations up to 1,000 mM. For the RCC-catalyzed conversion of t-retinal to t-RA, increasing concentrations of ethanol (0 to 1.0 M) resulted in linear increases rather than decreases in quantities of t-RA generated. At a 2.0 M concentration of ethanol, the quantity of t-RA increased by > 50%. Significant inhibition of t-RA generation from t-retinal occurred only at extremely high (> 4.0 M) concentrations. The results indicated that ethanol was a very ineffective inhibitor of RCC-catalyzed synthesis of t-RA from either t-retinol or t-retinal. This contrasted strongly with effective inhibitory effects with adult hepatic cytosol as enzyme source. The results supported the concept that competitive inhibition of conversion of t-retinol to t-RA in conceptal tissues is not a significant factor in ethanol-elicited embryotoxicity and dysmorphogenesis, at least in rodents. Mechanisms for the ethanol-induced increases in conversion of t

  18. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site.

    PubMed

    Chen, G; Radominska-Pandya, A

    2000-10-17

    Cellular retinoic acid-binding proteins I and II (CRABP-I and -II, respectively) are transport proteins for all-trans-retinoic acid (RA), an active metabolite of vitamin A (retinol), and have been reported to be directly involved in the metabolism of RA. In this study, direct photoaffinity labeling with [11,12-(3)H]RA was used to identify amino acids comprising the ligand binding site of CRABP-I. Photoaffinity labeling of CRABP-I with [(3)H]RA was light- and concentration-dependent and was protected by unlabeled RA and various retinoids, indicating that the labeling was directed to the RA-binding site. Photolabeled CRABP-I was hydrolyzed with endoproteinase Lys-C to yield radioactive peptides, which were separated by reversed-phase HPLC for analysis by Edman degradation peptide sequencing. This method identified five modified amino acids from five separate HPLC fractions: Trp7, Lys20, Arg29, Lys38, and Trp109. All five amino acids are located within one side of the "barrel" structure in the area indicated by the reported crystal structure as the ligand binding site. This is the first direct identification of specific amino acids in the RA-binding site of CRABPs by photoaffinity labeling. These results provide significant information about the ligand binding site of the CRABP-I molecule in solution. PMID:11027136

  19. Design and synthesis of novel derivatives of all-trans retinoic acid demonstrate the combined importance of acid moiety and conjugated double bonds in its binding to PML–RAR-α oncogene in acute promyelocytic leukemia

    PubMed Central

    Schinke, Carolina; Goel, Swati; Bhagat, Tushar D.; Zhou, Li; Mo, Yongkai; Gallagher, Robert; Kabalka, George W.; Platanias, Leonidas C.; Verma, Amit; Das, Bhaskar

    2014-01-01

    The binding of all-trans retinoic acid (ATRA) to retinoid receptor-α (RAR-α) relieves transcriptional repression induced by the promyelocytic leukemia–retinoic acid receptor (PML–RAR) oncoprotein. The ATRA molecule contains a cyclohexenyl ring, a polyene chain containing conjugated double alkene bonds, and a terminal carboxyl group. To determine the contributions of these structural components of ATRA to its clinical efficacy, we synthesized three novel retinoids. These consisted of either a modified conjugated alkene backbone with an intact acid moiety (13a) or a modified conjugated alkene backbone and conversion of the acid group to either an ester (13b) or an aromatic amide (13c). Reporter assays demonstrated that compound 13a successfully relieved transcriptional repression by RAR-α, while 13b and 13c could not, demonstrating the critical role of the acid moiety in this binding. However, only ATRA was able to significantly inhibit the proliferation of APL cells while 13a, 13b, or 13c was not. Furthermore, only 13a led to partial non-significant differentiation of NB4 cells, demonstrating the importance of C9–C10 double bonds in differentiation induced CD11 expression. Our results demonstrate that both the acid moiety and conjugated double bonds present in the ATRA molecule are important for its biological activity in APL and have important implications for the design of future novel retinoids. PMID:20536349

  20. Acute Coronary Syndrome Manifesting as an Adverse Effect of All-trans-Retinoic Acid in Acute Promyelocytic Leukemia: A Case Report with Review of the Literature and a Spotlight on Management

    PubMed Central

    Govind Babu, K.; Lokesh, K. N.; Suresh Babu, M. C.; Bhat, Gita R.

    2016-01-01

    Background. Acute promyelocytic leukemia is characterized by t(15;17). This leads to the formation of PML/RARα which blocks the differentiation of blasts at the stage of promyelocytes. This is reversed by all-trans-retinoic acid (ATRA), a vitamin A derivative. Acute myocardial ischemia is a rare side effect of ATRA. Case Report. We report a case of acute coronary syndrome manifesting as an adverse effect of ATRA in a lady with APL who had no other risk factors for cardiovascular disease. Conclusions. We emphasize the need for high index of suspicion for the diagnosis of this entity. In the light of this case, the rare instances of ATRA associated acute myocardial ischemia recorded in the literature and the options available for treatment of acute promyelocytic leukemia sans ATRA have been reviewed. PMID:26981297

  1. All-trans retinoic acid combined with 5-Aza-2 Prime -deoxycitidine induces C/EBP{alpha} expression and growth inhibition in MLL-AF9-positive leukemic cells

    SciTech Connect

    Fujiki, Atsushi; Imamura, Toshihiko; Sakamoto, Kenichi; Kawashima, Sachiko; Yoshida, Hideki; Hirashima, Yoshifumi; Miyachi, Mitsuru; Yagyu, Shigeki; Nakatani, Takuya; Sugita, Kanji; Hosoi, Hajime

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer We tested whether ATRA and 5-Aza affect AML cell differentiation and growth. Black-Right-Pointing-Pointer Cell differentiation and growth arrest were induced in MLL-AF9-expressing cells. Black-Right-Pointing-Pointer Increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1 were also observed. Black-Right-Pointing-Pointer MLL-AF4/AF5q31-expressing cells are less sensitive to ATRA and 5-Aza. Black-Right-Pointing-Pointer Different MLL fusion has distinct epigenetic properties related to RA pathway. -- Abstract: The present study tested whether all-trans retinoic acid (ATRA) and 5-Aza-2 Prime -deoxycitidine (5-Aza) affect AML cell differentiation and growth in vitro by acting on the CCAAT/enhancer binding protein {alpha} (C/EBP{alpha}) and c-Myc axis. After exposure to a combination of these agents, cell differentiation and growth arrest were significantly higher in human and murine MLL-AF9-expressing cells than in MLL-AF4/AF5q31-expressing cells, which were partly associated with increased expression of C/EBP{alpha}, C/EBP{epsilon}, and PU.1, and decreased expression of c-Myc. These findings indicate that MLL-AF9-expressing cells are more sensitive to ATRA and 5-Aza, indicating that different MLL fusion proteins possess different epigenetic properties associated with retinoic acid pathway inactivation.

  2. Myeloid neoplasm demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay.

    PubMed

    Kluk, Michael J; Abo, Ryan P; Brown, Ronald D; Kuo, Frank C; Dal Cin, Paola; Pozdnyakova, Olga; Morgan, Elizabeth A; Lindeman, Neal I; DeAngelo, Daniel J; Aster, Jon C

    2015-10-01

    We describe the case of a patient presenting with several weeks of symptoms related to pancytopenia associated with a maturation arrest at the late promyelocyte/early myelocyte stage of granulocyte differentiation. A diagnosis of acute promyelocytic leukemia was considered, but the morphologic features were atypical for this entity and conventional tests for the presence of a PML-RARA fusion gene were negative. Additional analysis using a custom next-generation sequencing assay revealed a rearrangement producing a STAT5B-RARA fusion gene, which was confirmed by reverse transcription polymerase chain reaction (RT-PCR) and supplementary cytogenetic studies, allowing the diagnosis of a morphologically atypical form of acute promyelocytic leukemia to be made. Analysis of the sequencing data permitted characterization of both chromosomal breakpoints and revealed two additional alterations, a small deletion in RARA exon 9 and a RARA R276W substitution, that have been linked to resistance to all-trans retinoic acid. This case highlights how next-generation sequencing can augment currently standard testing to establish diagnoses in difficult cases, and in doing so help guide selection of therapy. PMID:27148563

  3. ICAT as a potential enhancer of monocytic differentiation: implications from the comparative proteome analysis of the HL60 cell line stimulated by all-trans retinoic acid and NSC67657.

    PubMed

    Wang, Weijia; Zhang, Xiuming; Deng, Kaiying; Huang, Shifeng; Mao, Xiaoqin; Fu, Yurong; Yi, Zhengjun; Yan, Yurong; Qiu, Zongyin

    2009-08-01

    A novel sterol mesylate compound (NSC67657) was recently identified and reported by National Cancer Institute that could efficiently induce the differentiation of HL60 cells into monocytes in vitro and in vivo. The expression of many proteins would have been changed during the differentiation process, and some proteins may have played key roles in the differentiation of HL60 cell line induced by this drug. Therefore, we treated HL60 cells with NSC67657 and all-trans retinoic acid (ATRA) to identify the differentially expressed proteins and determine their functions in cellular differentiation. Of the 45 differentially expressed protein spots investigated, 24 were either elevated or decreased in both the monocytic and granulocytic differentiating HL60 cells, 8 showed significant changes only when induced by NSC67657, and 13 showed significant changes only when induced by ATRA. After verification by RT-PCR, Western blotting, and immunocytochemistry, only the protein ICAT was found to be elevated by NSC67657 treatment alone. Although the over-expression of ICAT is not sufficient to induce the differentiation of HL60 cells into monocytes, it did increase the proportion of CD14+ cells in cells pretreated with NSC67657. Successful application of multiple techniques including two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, Western blotting, and eukaryotic electroporation revealed that proteomic and molecular biological analyses provide valuable tools in drug development research. PMID:19569129

  4. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8.

    PubMed

    Adhikary, Santanu; Sanyal, Sulagna; Basu, Moitri; Sengupta, Isha; Sen, Sabyasachi; Srivastava, Dushyant Kumar; Roy, Siddhartha; Das, Chandrima

    2016-02-01

    ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability. PMID:26655721

  5. All-trans-retinoic Acid Promotes Trafficking of Human Concentrative Nucleoside Transporter-3 (hCNT3) to the Plasma Membrane by a TGF-β1-mediated Mechanism*

    PubMed Central

    Fernández-Calotti, Paula; Pastor-Anglada, Marçal

    2010-01-01

    Human concentrative nucleoside transporter-3 (hCNT3) is a sodium-coupled nucleoside transporter that exhibits high affinity and broad substrate selectivity, making it the most suitable candidate for mediating the uptake and cytotoxic action of most nucleoside-derived drugs. The drug of this class most commonly used in the treatment of chronic lymphocytic leukemia (CLL) is the pro-apoptotic nucleoside analog fludarabine (Flu), which enters CLL cells primarily through human equilibrative nucleoside transporters (hENTs). Although CLL cells lack hCNT3 activity, they do express this transporter protein, which is located mostly in the cytosol. The aim of our study was to identify agents and mechanisms capable of promoting hCNT3 trafficking to the plasma membrane. Here, we report that all-trans-retinoic acid (ATRA), currently used in the treatment of acute promyelocytic leukemia (APL), increases hCNT3-related activity through a mechanism that involves trafficking of pre-existing hCNT3 proteins to the plasma membrane. This effect is mediated by the autocrine action of transforming growth factor (TGF)-β1, which is transcriptionally activated by ATRA in a p38-dependent manner. TGF-β1 acts through activation of ERK1/2 and the small GTPase RhoA to promote plasma membrane trafficking of the hCNT3 protein. PMID:20172853

  6. Myeloid neoplasm demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay

    PubMed Central

    Kluk, Michael J.; Abo, Ryan P.; Brown, Ronald D.; Kuo, Frank C.; Dal Cin, Paola; Pozdnyakova, Olga; Morgan, Elizabeth A.; Lindeman, Neal I.; DeAngelo, Daniel J.; Aster, Jon C.

    2015-01-01

    We describe the case of a patient presenting with several weeks of symptoms related to pancytopenia associated with a maturation arrest at the late promyelocyte/early myelocyte stage of granulocyte differentiation. A diagnosis of acute promyelocytic leukemia was considered, but the morphologic features were atypical for this entity and conventional tests for the presence of a PML-RARA fusion gene were negative. Additional analysis using a custom next-generation sequencing assay revealed a rearrangement producing a STAT5B-RARA fusion gene, which was confirmed by reverse transcription polymerase chain reaction (RT-PCR) and supplementary cytogenetic studies, allowing the diagnosis of a morphologically atypical form of acute promyelocytic leukemia to be made. Analysis of the sequencing data permitted characterization of both chromosomal breakpoints and revealed two additional alterations, a small deletion in RARA exon 9 and a RARA R276W substitution, that have been linked to resistance to all-trans retinoic acid. This case highlights how next-generation sequencing can augment currently standard testing to establish diagnoses in difficult cases, and in doing so help guide selection of therapy. PMID:27148563

  7. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells.

    PubMed

    Zhang, Wenling; Zeng, Zhaoyang; Wei, Fang; Chen, Pan; Schmitt, David C; Fan, Songqing; Guo, Xiaofang; Liang, Fang; Shi, Lei; Liu, Zixin; Zhang, Zuping; Xiang, Bo; Zhou, Ming; Huang, Donghai; Tang, Ke; Li, Xiaoling; Xiong, Wei; Tan, Ming; Li, Guiyuan; Li, Xiayu

    2014-11-01

    Human SPLUNC1 can suppress nasopharyngeal carcinoma (NPC) tumor formation; however, the correlation between SPLUNC1expression and NPC patient prognosis has not been reported. In the present study, we used a large-scale sample of 1015 tissue cores to detect SPLUNC1 expression and its association with patient prognosis. SPLUNC1 expression was reduced in NPC samples compared to nontumor nasopharyngeal epithelium tissues. Positive expression of SPLUNC1 in NPC predicted a better prognosis (disease-free survival, P = 0.034; overall survival, P = 0.048). Cox's proportional hazards model revealed that SPLUNC1 could be a significant prognostic factor affecting disease-free survival (P = 0.027). A cDNA micro-array analyzed by significant analysis of micro-array (SAM) and ingenuity pathway analysis (IPA) revealed that an indirect interaction existed between SPLUNC1 and retinoic acid (RA) in the cancer regulatory network. To further investigate the molecular mechanisms involved, we utilized several bioinformatics tools and identified 12 retinoid X receptors heterodimer binding sites in the promoter region of the SPLUNC1 gene. The transcriptional activity of the SPLUNC1 promoter was up-regulated significantly by all-trans-retinoic acid (ATRA). SPLUNC1 and retinoic acid receptor expression were induced significantly by ATRA, and removal of ATRA led to a progressive loss of SPLUNC1 and retinoic acid receptor expression. ATRA inhibited proliferation and induced the differentiation of NPC cells. Interestingly, over-expression of SPLUNC1 sensitized NPC cells to ATRA, whereas knockdown of SPLUNC1 in HNE1 cells increased cell viability. Under SPLUNC1 knockdown conditions, differentiation was reversed by ATRA treatment. We concluded that SPLUNC1 could potentially predict prognosis for NPC patients and play an important role in ATRA-induced growth inhibition and differentiation in NPC cells. PMID:25161098

  8. Arsenic Trioxide (ATO) cooperates with All Trans Retinoic Acid (ATRA) to enhance MAPK activation and differentiation in Human Myeloblastic Leukemia (HL-60) cells

    PubMed Central

    Nayak, Satyaprakash; Shen, Miaoqing; Varner, Jeffrey D.; Yen, Andrew

    2016-01-01

    Arsenic trioxide (ATO) synergistically promotes retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells, a PML-RARα negative cell line. In PML-RARα positive myeloid leukemia cells, ATO is known to cause degradation of PML-RARα with subsequent induced myeloid differentiation. We find now that ATO by itself does not cause differentiation of the PML-RARα negative HL-60 cells, but enhances RA’s capability to cause differentiation. RA-induced differentiation of HL-60 cells is known to be propelled by an induced hyperactive/persistent MAPK signal. ATO augmented RA induced RAF/MEK/ERK axis signaling and expression of CD11b, an integrin receptor that is a myeloid differentiation marker. p47PHOX, a component of the respiratory burst machinery and inducible oxidative metabolism, functional differentiation marker were also enhanced. However, ATO did not enhance RA-induced CD38 expression, an early cell surface differentiation marker. ATO enhanced RA-induced population growth retardation without evidence of apoptosis or an enhanced G1/0 growth arrest. But compared to RA, ATO plus RA showed reduced pAKT, suggesting that an overall biosynthetic/metabolic retardation was seminal to the apparent enhanced growth retardation due to ATO. In sum, our results indicate that ATO can augment action of RA in causing differentiation of myeloid leukemia cells through promoting MAPK signaling and independent of PML-RARα. PMID:20615082

  9. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice.

    PubMed

    Manolescu, Daniel-Constantin; Jankowski, Marek; Danalache, Bogdan A; Wang, Donghao; Broderick, Tom L; Chiasson, Jean-Louis; Gutkowska, Jolanta

    2014-10-01

    In hypertensive rodents, retinoic acid (RA) prevents adverse cardiac remodelling and improves myocardial infarction outcome, but its role in obesity-related changes of cardiac tissue are unclear. We hypothesized that all-trans RA (ATRA) treatment will improve the cardioprotective oxytocin-natriuretic peptides (OT-NP) system, preventing apoptosis and collagen accumulation in hearts of ob/ob mice, a mouse model of obesity and insulin resistance. Female 9-week-old B6.V-Lep/J ob/ob mice (n = 16) were divided into 2 groups: 1 group (n = 8) treated with 100 μg of ATRA dissolved in 100 μL of corn oil (vehicle) delivered daily (∼2 μg·g body weight(-1)·day(-1)) by stomach intubation for 16 days, and 1 group (n = 8) that received the vehicle alone. A group of nonobese littermate mice (n = 9) served as controls. Ob/ob mice exhibited obesity, hyperglycaemia, and downregulation of the cardiac OT-NP system, including the mRNA for the transcription factor GATA4, OT receptor and brain NP, and the protein expression for endothelial nitric oxide synthase. Hearts from ob/ob mice also demonstrated increased apoptosis and collagen accumulation. ATRA treatment induced weight loss and decreased adipocytes diameter in the visceral fat, thus reducing visceral obesity, which is associated with a high risk for cardiovascular disease. RA treatment was associated with a reduction in hyperglycemia and a normalization of the OT-NP system's expression in the hearts of ob/ob mice. Furthermore, ATRA treatment prevented apoptosis and collagen accumulation in hearts of ob/ob mice. The present study indicates that ATRA treatment was effective in restoring the cardioprotective OT-NP system and in preventing abnormal cardiac remodelling in the ob/ob mice. PMID:25017112

  10. Combination of nanoparticle-delivered siRNA for Astrocyte elevated gene-1 (AEG-1) and all-trans retinoic acid (ATRA): an effective therapeutic strategy for hepatocellular carcinoma (HCC)

    PubMed Central

    Rajasekaran, Devaraja; Srivastava, Jyoti; Ebeid, Kareem; Gredler, Rachel; Akiel, Maaged; Jariwala, Nidhi; Robertson, Chadia L.; Shen, Xue-Ning; Siddiq, Ayesha; Fisher, Paul B.; Salem, Aliasger K.; Sarkar, Devanand

    2016-01-01

    Hepatocellular carcinoma (HCC) is a fatal cancer with no effective therapy. Astrocyte elevated gene-1 (AEG-1) plays a pivotal role in hepatocarcinogenesis and inhibits retinoic acid-induced gene expression and cell death. Combination of a lentivirus expressing AEG-1 shRNA and all-trans retinoic acid (ATRA) profoundly and synergistically inhibited subcutaneous human HCC xenografts in nude mice. We now have developed liver-targeted nanoplexes by conjugating poly(amidoamine) (PAMAM) dendrimers with polyethylene glycol (PEG) and lactobionic acid (Gal) (PAMAM-PEG-Gal) which were complexed with AEG-1 siRNA (PAMAM-AEG-1si). The polymer conjugate was characterized by 1H-NMR, MALDI and mass spectrometry, and optimal nanoplex formulations were characterized for surface charge, size and morphology. Orthotopic xenografts of human HCC cell QGY-7703 expressing luciferase (QGY-luc) were established in the livers of athymic nude mice and tumor development was monitored by bioluminescence imaging (BLI). Tumor-bearing mice were treated with PAMAM-siCon, PAMAM-siCon+ATRA, PAMAM-AEG-1si and PAMAM-AEG-1si+ATRA. In the control group the tumor developed aggressively. ATRA showed little effect due to high AEG-1 levels in QGY-luc cells. PAMAM-AEG-1si showed significant reduction in tumor growth and the combination of PAMAM-AEG-1si+ATRA showed profound and synergistic inhibition so that the tumors were almost undetectable by BLI. A marked decrease in AEG-1 level was observed in tumor samples treated with PAMAM-AEG-1si. The group treated with PAMAM-AEG-1si+ATRA nanoplexes showed increased necrosis, inhibition of proliferation and increased apoptosis when compared to other groups. Liver is an ideal organ for RNAi therapy and ATRA is an approved anti-cancer agent. Our exciting observations suggest that the combinatorial approach might be an effective way to combat HCC. PMID:26079152

  11. Combination of Nanoparticle-Delivered siRNA for Astrocyte Elevated Gene-1 (AEG-1) and All-trans Retinoic Acid (ATRA): An Effective Therapeutic Strategy for Hepatocellular Carcinoma (HCC).

    PubMed

    Rajasekaran, Devaraja; Srivastava, Jyoti; Ebeid, Kareem; Gredler, Rachel; Akiel, Maaged; Jariwala, Nidhi; Robertson, Chadia L; Shen, Xue-Ning; Siddiq, Ayesha; Fisher, Paul B; Salem, Aliasger K; Sarkar, Devanand

    2015-08-19

    Hepatocellular carcinoma (HCC) is a fatal cancer with no effective therapy. Astrocyte elevated gene-1 (AEG-1) plays a pivotal role in hepatocarcinogenesis and inhibits retinoic acid-induced gene expression and cell death. The combination of a lentivirus expressing AEG-1 shRNA and all-trans retinoic acid (ATRA) profoundly and synergistically inhibited subcutaneous human HCC xenografts in nude mice. We have now developed liver-targeted nanoplexes by conjugating poly(amidoamine) (PAMAM) dendrimers with polyethylene glycol (PEG) and lactobionic acid (Gal) (PAMAM-PEG-Gal) which were complexed with AEG-1 siRNA (PAMAM-AEG-1si). The polymer conjugate was characterized by (1)H-NMR, MALDI, and mass spectrometry; and optimal nanoplex formulations were characterized for surface charge, size, and morphology. Orthotopic xenografts of human HCC cell QGY-7703 expressing luciferase (QGY-luc) were established in the livers of athymic nude mice and tumor development was monitored by bioluminescence imaging (BLI). Tumor-bearing mice were treated with PAMAM-siCon, PAMAM-siCon+ATRA, PAMAM-AEG-1si, and PAMAM-AEG-1si+ATRA. In the control group the tumor developed aggressively. ATRA showed little effect due to high AEG-1 levels in QGY-luc cells. PAMAM-AEG-1si showed significant reduction in tumor growth, and the combination of PAMAM-AEG-1si+ATRA showed profound and synergistic inhibition so that the tumors were almost undetectable by BLI. A marked decrease in AEG-1 level was observed in tumor samples treated with PAMAM-AEG-1si. The group treated with PAMAM-AEG-1si+ATRA nanoplexes showed increased necrosis, inhibition of proliferation, and increased apoptosis when compared to other groups. Liver is an ideal organ for RNAi therapy and ATRA is an approved anticancer agent. Our exciting observations suggest that the combinatorial approach might be an effective way to combat HCC. PMID:26079152

  12. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    SciTech Connect

    Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. Black-Right-Pointing-Pointer We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. Black-Right-Pointing-Pointer RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. Black-Right-Pointing-Pointer It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RAR{alpha}. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1-100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  13. The action of all-trans-retinoic acid (ATRA) and synthetic retinoid analogues (EC19 and EC23) on human pluripotent stem cells differentiation investigated using single cell infrared microspectroscopy.

    PubMed

    Clemens, Graeme; Flower, Kevin R; Henderson, Andrew P; Whiting, Andrew; Przyborski, Stefan A; Jimenez-Hernandez, Melody; Ball, Francis; Bassan, Paul; Cinque, Gianfelice; Gardner, Peter

    2013-04-01

    All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We have previously generated synthetic analogues of retinoic acid (EC23 and EC19) which also induce the differentiation of EC cells. Even though EC23 and EC19 have similar chemical structures, they have differing biochemical effects in terms of EC cell differentiation. EC23 induces neuronal differentiation in a manner similar to ATRA, whereas EC19 directs the cells to form epithelial-like derivatives. Previous MALDI-TOF MS analysis examined the response of TERA2.cl.SP12 cells after exposure to ATRA, EC23 and EC19 and further demonstrated the similarly in the effect of ATRA and EC23 activity whilst responses to EC19 were very different. In this study, we show that Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with appropriate scatter correction and multivariate analysis can be used as an effective tool to further investigate the differentiation of human pluripotent stem cells and monitor the alternative affects different retinoid compounds have on the induction of differentiation. FT-IRMS detected differences between cell populations as early as 3 days of compound treatment. Populations of cells treated with different retinoid compounds could easily be distinguished from one another during the early stages of cell differentiation. These data demonstrate that FT-IRMS technology can be used as a sensitive screening technique to monitor the status of the stem cell phenotype and progression of differentiation along alternative pathways in response to different compounds. PMID:23364809

  14. All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress

    PubMed Central

    Tokarz, Paulina; Piastowska-Ciesielska, Agnieszka Wanda; Kaarniranta, Kai; Blasiak, Janusz

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids—which regulates cell proliferation, differentiation, and the visual cycle in the retina—was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD. PMID:27314326

  15. Loss-of-Function of HtrA1 Abrogates All-Trans Retinoic Acid-Induced Osteogenic Differentiation of Mouse Adipose-Derived Stromal Cells Through Deficiencies in p70S6K Activation.

    PubMed

    Glanz, Stephan; Mirsaidi, Ali; López-Fagundo, Cristina; Filliat, Gladys; Tiaden, André N; Richards, Peter J

    2016-05-01

    All-trans retinoic acid (ATRA) is a potent inducer of osteogenic differentiation in mouse adipose-derived stromal cells (mASCs), although the underlying mechanisms responsible for its mode of action have yet to be completely elucidated. High temperature requirement protease A1 (HtrA1) is a newly recognized modulator of human multipotent stromal cell (MSC) osteogenesis and as such, may play a role in regulating ATRA-dependent osteogenic differentiation of mASCs. In this study, we assessed the influence of small interfering RNA (siRNA)-induced repression of HtrA1 production on mASC osteogenesis and examined its effects on ATRA-mediated mammalian target of rapamycin (mTOR) signaling. Inhibition of HtrA1 production in osteogenic mASCs resulted in a significant reduction of alkaline phosphatase activity and mineralized matrix formation. Western blot analyses revealed the rapid activation of Akt (Ser473) and p70S6K (Thr389) in ATRA-treated mASCs, and that levels of phosphorylated p70S6K were noticeably reduced in HtrA1-deficient mASCs. Further studies using mTOR inhibitor rapamycin and siRNA specific for the p70S6K gene Rps6kb1 confirmed ATRA-mediated mASC osteogenesis as being dependent on p70S6K activation. Finally, transfection of cells with a constitutively active rapamycin-resistant p70S6K mutant could restore the mineralizing capacity of HtrA1-deficient mASCs. These findings therefore lend further support for HtrA1 as a positive mediator of MSC osteogenesis and provide new insights into the molecular mode of action of ATRA in regulating mASC lineage commitment. PMID:26950191

  16. All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress.

    PubMed

    Tokarz, Paulina; Piastowska-Ciesielska, Agnieszka Wanda; Kaarniranta, Kai; Blasiak, Janusz

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids-which regulates cell proliferation, differentiation, and the visual cycle in the retina-was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD. PMID:27314326

  17. Changes of Apolipoprotein M Gene Expression During the Cell Differentiation and Apoptosis Induced by Simvastatin in Combination with All-Trans Retinoic Acid in Human Promyelocytic Leukemia Cell Line NB4.

    PubMed

    Gu, Weiying; Xiang, Lili; Jiang, Tingxiu; Luo, Guanghua; Wei, Jiang; Cen, Jiannong; Chen, Zixing; Qiu, Guoqiang; Zeng, Mei; Zhang, Xiaoying

    2016-03-01

    We examined the effect of simvastatin (SV) alone and in combination with all-trans retinoic acid (ATRA) on proliferation, differentiation, apoptosis and apolipoprotein M (apoM) expression in the human promyelocytic leukemia cell line NB4. The NB4 cells were incubated with 10 μM Simvastatin (10SV) and 0.5 μM ATRA alone or in combination, taking NB4 cells without any treatment as normal controls. The cells of different groups were collected at 24, 48 and 72 h post-incubation for further detection. Their morphological changes were observed after Wright stain. MTT method was used to assay the growth inhibition rate and flow cytometry to detect CD11b expression level and the early stage apoptosis ratio. Real-time quantitative reverse transcriptase-polymerase chain reaction was used to detect the apoM gene expression levels. As expected 0.5 μM ATRA did not affect proliferation or apoptosis, strongly induced differentiation and decreased apoM expression. 10SV inhibited proliferation, increased apoptosis, induced differentiation and increased apoM expression in a time-dependent manner. The addition of ATRA to SV did not increase the effect of SV on proliferation and apoptosis, but increased the effect of SV on differentiation. And completely abrogated the effect of SV on apoM expression. Together these results show that SV has anti-leukemic properties by itself and that combined therapy may have a place in the current anti-leukemic arsenal. PMID:26855507

  18. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2

    PubMed Central

    Namachivayam, Kopperuncholan; MohanKumar, Krishnan; Arbach, Dima; Jagadeeswaran, Ramasamy; Jain, Sunil K.; Natarajan, Viswanathan; Mehta, Dolly; Jankov, Robert P.; Maheshwari, Akhil

    2015-01-01

    Objective We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks’ gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms. Methods AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors. Results AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation. Conclusions AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation. PMID:26225425

  19. All-trans retinoic acid prevents the development of type 1 diabetes by affecting the levels of interferon gamma and interleukin 4 in streptozotocin-induced murine diabetes model.

    PubMed

    Wang, Y; Zhong, Y J; Wang, Y Y; Xing, J; Wang, Z M

    2016-01-01

    The aim of this study was to explore the molecular mechanism by which all-trans retinoic acid (ATRA) prevents type 1 diabetes mellitus (T1DM). Fifty ICR mice were randomly assigned to three groups: prevention group [N = 20; mice received 10 mg/kg ATRA daily for 5 days and then 60 mg/kg streptozotocin (STZ) for 5 days]; diabetic group (N = 20, mice received 95% sterile peanut oil and 5% dimethyl sulfoxide for 5 days and then 60 mg/kg STZ for 5 days); and control group (N = 10, mice received 95% sterile peanut oil and 5% dimethyl sulfoxide for 5 days and then citrate buffer for 5 days). Blood glucose was measured using blood glucose test strips and serum insulin was measured by radioimmunoassay. Islets cell morphology was assessed by microscopy and ELISA was used to measure the serum levels of interferon gamma (IFN-γ) and interleukin 4 (IL- 4). In the prevention group, blood sugar levels were found to be reduced and serum insulin levels increased compared with the levels in the diabetic group (P < 0.05), indicating that ATRA prevented the STZ-induced damage to islet cells. Meanwhile, ATRA was shown to decrease the levels of IFN-γ and increase the levels of IL-4 as well as the IFN-γ/IL-4 ratio in STZ-treated animals (P < 0.05). These findings suggest that ATRA prevents the recurrence of autoimmune insulitis. This study demonstrated that ATRA effectively prevents the progression of T1DM in a murine model of the disease by reducing IFN-γ levels and increasing IL-4 levels. PMID:27050967

  20. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  1. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy

    PubMed Central

    Hütter-Krönke, Marie-Luise; Benner, Axel; Döhner, Konstanze; Krauter, Jürgen; Weber, Daniela; Moessner, Margit; Köhne, Claus-Henning; Horst, Heinz A.; Schmidt-Wolf, Ingo G.H.; Rummel, Mathias; Götze, Katharina; Koller, Elisabeth; Petzer, Andreas L.; Salwender, Hans; Fiedler, Walter; Kirchen, Heinz; Haase, Detlef; Kremers, Stephan; Theobald, Matthias; Matzdorff, Axel C.; Ganser, Arnold; Döhner, Hartmut; Schlenk, Richard F.

    2016-01-01

    Outcome of patients with primary refractory acute myeloid leukemia remains unsatisfactory. We conducted a prospective phase II clinical trial with gemtuzumab ozogamicin (3 mg/m2 intravenously on day 1), all-trans retinoic acid (45 mg/m2 orally on days 4–6 and 15 mg/m2 orally on days 7–28), high-dose cytarabine (3 g/m2/12 h intravenously on days 1–3) and mitoxantrone (12 mg/m2 intravenously on days 2–3) in 93 patients aged 18–60 years refractory to one cycle of induction therapy. Primary end point of the study was response to therapy; secondary end points included evaluation of toxicities, in particular, rate of sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Complete remission or complete remission with incomplete blood count recovery was achieved in 47 (51%) and partial remission in 10 (11%) patients resulting in an overall response rate of 61.5%; 33 (35.5%) patients had refractory disease and 3 patients (3%) died. Allogeneic hematopoietic cell transplantation was performed in 71 (76%) patients; 6 of the 71 (8.5%) patients developed moderate or severe sinusoidal obstruction syndrome after transplantation. Four-year overall survival rate was 32% (95% confidence interval 24%-43%). Patients responding to salvage therapy and undergoing allogeneic hematopoietic cell transplantation (n=51) had a 4-year survival rate of 49% (95% confidence intervaI 37%-64%). Patients with fms-like tyrosine kinase internal tandem duplication positive acute myeloid leukemia had a poor outcome despite transplantation. In conclusion, the described regimen is an effective and tolerable salvage therapy for patients who are primary refractory to one cycle of conventional intensive induction therapy. (clinicaltrials.gov identifier: 00143975) PMID:27036160

  2. Development of a validated UPLC method for simultaneous estimation of both free and entrapped (in solid lipid nanoparticles) all-trans retinoic acid and cholecalciferol (vitamin D3) and its pharmacokinetic applicability in rats.

    PubMed

    Kumar, Manoj; Sharma, Gaurav; Singla, Dinesh; Singh, Sukhjeet; Sahwney, Sudhir; Chauhan, Anurag S; Singh, Gagandeep; Kaur, Indu Pal

    2014-03-01

    A sensitive ultra-performance liquid chromatography (UPLC) method was developed for simultaneous estimation of all-trans retinoic acid (ATRA) and cholecalciferol (vitamin D3) in rat plasma. The method was validated over the linear range of 1.0-5000ng/ml (r(2)=0.999) for both vitamins with a limit of detection of 0.5ng/ml. Chromatographic separation was achieved using liquid-liquid extraction (LLE) on an Acquity BEH RP 18 column (2.1mm×50mm, I.D. 1.7μm), with mobile phase comprising of acetonitrile:methanol:water (90:8:2, v/v/v), at a flow rate of 0.20ml/min and a total run time of 5min. Intra and inter-day variability (RSD) was ≤3.1%, and the accuracy varied between 95.4-99.9% and 95.3-101.1% respectively, for ATRA and 98.5-100.8% and 99.3-101.7%, respectively for vitamin D3. High recovery of ≥96.0% for ATRA and ≥87.80% for vitamin D3 was achieved. ATRA and vitamin D3 were stable in plasma under different storage and processing conditions. The method was applied to estimate the total drug content and entrapment efficiency of ATRA and vitamin D3 loaded solid lipid nanoparticles (SLNs). Concentration of these two agents was determined in rat plasma after simultaneous subcutaneous administration in free form or when loaded into SLNs thus establishing pharmacokinetic application of the developed procedure. Results indicated an improvement in AUC0-∞ by 5.4 times and 29.4 times for ATRA and vitamin D3, respectively, upon their incorporation into SLNs. Simultaneous administration of these two vitamins and their improved and prolonged bioavailability has scope for their use in treatment and control of tuberculosis. PMID:24440824

  3. All-trans retinoic acid with daunorubicin or idarubicin for risk-adapted treatment of acute promyelocytic leukaemia: a matched-pair analysis of the PETHEMA LPA-2005 and IC-APL studies.

    PubMed

    Sanz, Miguel A; Montesinos, Pau; Kim, Haesook T; Ruiz-Argüelles, Guillermo J; Undurraga, María S; Uriarte, María R; Martínez, Lem; Jacomo, Rafael H; Gutiérrez-Aguirre, Homero; Melo, Raul A M; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Fagundes, Evandro M; Vellenga, Edo; Holowiecka, Alexandra; González-Huerta, Ana J; Fernández, Pascual; De la Serna, Javier; Brunet, Salut; De Lisa, Elena; González-Campos, José; Ribera, José M; Krsnik, Isabel; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C; Lo-Coco, Francesco; Löwenberg, Bob; Rego, Eduardo M

    2015-08-01

    Front-line treatment of acute promyelocytic leukaemia (APL) consists of all-trans retinoic acid (ATRA) and anthracycline-based chemotherapy. In this setting, a comparison of idarubicin and daunorubicin has never been carried out. Two similar clinical trials using ATRA and chemotherapy for newly diagnosed APL were compared using matched-pair analysis. One was conducted by the PETHEMA/HOVON group with idarubicin and the other by the International Consortium on APL (IC-APL) using daunorubicin. Three hundred and fifty patients from the PETHEMA/HOVON cohort were matched with 175 patients in the IC-APL cohort, adjusting for the significantly unbalanced presenting features of the two entire cohorts. Complete remission (CR) rate was significantly higher in the PETHEMA/HOVON (94 %) than in the IC-APL cohort (85 %) (P = 0.002). The distribution of causes of induction failure and the time to achieve CR were similar in both cohorts. Patients who achieved CR had comparable cumulative incidence of relapse and disease-free survival rates, but lower overall and event-free survivals were observed in the IC-APL cohort, which was mainly due to a higher death rate during induction therapy. A higher death rate during consolidation therapy was also observed in the IC-APL. These results show that daunorubicin and idarubicin have similar antileukaemic efficacy in terms of primary resistance, molecular persistence, as well as molecular and haematological relapse rates when combined with ATRA in treatment of APL. However, a higher toxic death rate during induction and consolidation therapy was observed in the IC-APL cohort. This trial was registered at www.clinicaltrials.gov as #NCT00408278 [ClinicalTrials.gov]. PMID:25975975

  4. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy.

    PubMed

    Hütter-Krönke, Marie-Luise; Benner, Axel; Döhner, Konstanze; Krauter, Jürgen; Weber, Daniela; Moessner, Margit; Köhne, Claus-Henning; Horst, Heinz A; Schmidt-Wolf, Ingo G H; Rummel, Mathias; Götze, Katharina; Koller, Elisabeth; Petzer, Andreas L; Salwender, Hans; Fiedler, Walter; Kirchen, Heinz; Haase, Detlef; Kremers, Stephan; Theobald, Matthias; Matzdorff, Axel C; Ganser, Arnold; Döhner, Hartmut; Schlenk, Richard F

    2016-07-01

    Outcome of patients with primary refractory acute myeloid leukemia remains unsatisfactory. We conducted a prospective phase II clinical trial with gemtuzumab ozogamicin (3 mg/m(2) intravenously on day 1), all-trans retinoic acid (45 mg/m(2) orally on days 4-6 and 15 mg/m(2) orally on days 7-28), high-dose cytarabine (3 g/m(2)/12 h intravenously on days 1-3) and mitoxantrone (12 mg/m(2) intravenously on days 2-3) in 93 patients aged 18-60 years refractory to one cycle of induction therapy. Primary end point of the study was response to therapy; secondary end points included evaluation of toxicities, in particular, rate of sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Complete remission or complete remission with incomplete blood count recovery was achieved in 47 (51%) and partial remission in 10 (11%) patients resulting in an overall response rate of 61.5%; 33 (35.5%) patients had refractory disease and 3 patients (3%) died. Allogeneic hematopoietic cell transplantation was performed in 71 (76%) patients; 6 of the 71 (8.5%) patients developed moderate or severe sinusoidal obstruction syndrome after transplantation. Four-year overall survival rate was 32% (95% confidence interval 24%-43%). Patients responding to salvage therapy and undergoing allogeneic hematopoietic cell transplantation (n=51) had a 4-year survival rate of 49% (95% confidence intervaI 37%-64%). Patients with fms-like tyrosine kinase internal tandem duplication positive acute myeloid leukemia had a poor outcome despite transplantation. In conclusion, the described regimen is an effective and tolerable salvage therapy for patients who are primary refractory to one cycle of conventional intensive induction therapy. (clinicaltrials.gov identifier: 00143975). PMID:27036160

  5. Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway

    PubMed Central

    Lee, Hye Ja; Park, Mi Kyung; Bae, Hyun Cheol; Yoon, Hee Jung; Kim, Soo Youl; Lee, Chang Hoon

    2012-01-01

    All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase-9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-κB. Therefore the relationship of Tgase-2 and NF-κB in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-κB in the SH-SY5Y cells and CTM suppressed the activation of NF-κB. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs. PMID:24130925

  6. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells

    PubMed Central

    WANG, LIMENGMENG; XIAO, HAOWEN; ZHANG, XING; LIAO, WEICHAO; FU, SHAN; HUANG, HE

    2015-01-01

    All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C

  7. Anti-inflammatory and anti-hyperalgesic effect of all-trans retinoic acid in carrageenan-induced paw edema in Wistar rats: Involvement of peroxisome proliferator-activated receptor-β/δ receptors

    PubMed Central

    Gill, Navneet; Bijjem, Krishna Reddy V.; Sharma, Pyare L.

    2013-01-01

    Objective: In this study, we investigated the role of peroxisome proliferator-activated receptors (PPAR)-β/δ receptors in carrageenan-induced inflammation and in the anti-inflammatory effects of all-trans retinoic acid (ATRA). Materials and Methods: The λ-carrageenan (0.1 ml of 1% w/v) was injected into intra-plantar (i.pl.) region of the hind paw to produce acute inflammation. Paw volume was measured by using the mercury plethysmography. Further, mechanical and thermal hyperalgesia (TH) were assessed by using the dynamic plantar aesthesiometer and plantar test apparatus, respectively. In addition, markers of oxido-nitrosative stress were assessed spectrophotometrically in the hind paw tissue 5 h post-carrageenan. Results: An i.pl injection of carrageenan has produced a marked mechanical hyperalgesia (MH) and TH in ipsilateral paw, which was associated with significant elevated oxido-nitrosative stress. Treatment with ATRA (5 mg/kg/p.o/4 days) and GW0742, a selective PPAR-β/δ receptor agonist (0.1 mg/kg/i.p/4 days), significantly decreased the paw volume, mechanical and TH as compared to vehicle control. Administration of GSK0660, selective PPAR-β/δ receptor antagonist, at a dose of (0.3 mg/kg/i.p/4 days), did not produce a significant effect on carrageenan-induced paw edema, MH and TH. However, co-administration of GSK0660 (0.3 mg/kg/i.p/4 days) along with both ATRA (5 mg/kg/p.o/4 days) and GW0742 (0.1 mg/kg/i.p/4 days), significantly reverse the decreased paw edema, MH, and TH. These observed ameliorative effects on inflammatory pain symptoms are correlated with the extent of reduction of oxido-nitrosative stress. Conclusion: From above findings, it can be concluded that ATRA exerts anti-inflammatory and anti-hyperalgesic effect, possibly through activation of PPAR-β/δ and subsequent reduction of oxido-nitrosative stress. PMID:23833373

  8. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA.

    PubMed

    Burnett, Alan K; Hills, Robert K; Green, Claire; Jenkinson, Sarah; Koo, Kenneth; Patel, Yashma; Guy, Carol; Gilkes, Amanda; Milligan, Donald W; Goldstone, Anthony H; Prentice, Archibald G; Wheatley, Keith; Linch, David C; Gale, Rosemary E

    2010-02-01

    We investigated the benefit of adding all-trans retinoic acid (ATRA) to chemotherapy for younger patients with nonacute promyelocytic acute myeloid leukemia and high-risk myelodysplastic syndrome, and considered interactions between treatment and molecular markers. Overall, 1075 patients less than 60 years of age were randomized to receive or not receive ATRA in addition to daunorubicin/Ara-C/thioguanine chemotherapy with Ara-C at standard or double standard dose. There were data on FLT3 internal tandem duplications and NPM1 mutations (n = 592), CEBPA mutations (n = 423), and MN1 expression (n = 195). The complete remission rate was 68% with complete remission with incomplete count recovery in an additional 16%; 8-year overall survival was 32%. There was no significant treatment effect for any outcome, with no significant interactions between treatment and demographics, or cytarabine randomization. Importantly, there were no interactions by FLT3/internal tandem duplications, NPM1, or CEBPA mutation. There was a suggestion that ATRA reduced relapse in patients with lower MN1 levels, but no significant effect on overall survival. Results were consistent when restricted to patients with normal karyotype. ATRA has no overall effect on treatment outcomes in this group of patients. The study did not identify any subgroup of patients likely to derive a significant survival benefit from the addition of ATRA to chemotherapy. PMID:19965647

  9. All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal.

    PubMed

    Ye, Yuan; Dan, Zili

    2010-12-01

    Following acute and chronic liver injury, hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content, but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood. The influence of retinoids on HSCs and hepatic fibrosis remains controversial. The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation, mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), fibrolytic genes (MMP-3, MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G). Cell proliferation was evaluated by measuring BrdU incorporation. The mRNA expression levels of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and fibrolytic genes (MMP-3, MMP-13) were quantitatively detected by using real-time PCR. The mRNA expression of JNK and AP-1 was quantified by RT-PCR. The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)] and profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1. These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal, then decrease the mRNAs expression of profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly induce the mRNA expression of MMP-3 and MMP-13. PMID:21181362

  10. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions.

    PubMed

    Lu, Ling; Lan, Qin; Li, Zhiyuan; Zhou, Xiaohui; Gu, Jian; Li, Qiang; Wang, Julie; Chen, Maogen; Liu, Ya; Shen, Yi; Brand, David D; Ryffel, Bernhard; Horwitz, David A; Quismorio, Francisco P; Liu, Zhongmin; Li, Bin; Olsen, Nancy J; Zheng, Song Guo

    2014-08-19

    Recent studies have demonstrated that thymus-derived naturally occurring CD4(+)Foxp3(+) regulatory T cells (Tregs) in human and mouse may be unstable and dysfunctional in the presence of proinflammatory cytokines. All-trans RA (atRA), the active derivative of vitamin A, has been shown to regulate Treg and T effector cell differentiation. We hypothesize atRA stabilizes human natural Tregs (nTregs) under inflammatory conditions. atRA prevents human nTregs from converting to Th1 and/or Th17 cells and sustains their Foxp3 expression and suppressive function in vitro or in vivo following encounters with IL-1 and IL-6. Interestingly, adoptive transfer of human nTregs pretreated with atRA significantly enhanced their suppressive effects on xenograft-vs.-host diseases (xGVHDs), and atRA- but not rapamycin-pretreated nTregs sustained the functional activity against xGVHD after stimulation with IL-1/IL-6. atRA suppresses IL-1 receptor (IL-1R) up-regulation, accelerates IL-6R down-regulation, and diminishes their signaling events as well as prevents the up-regulation of STIP1 homology and U-Box containing protein 1 on Foxp3(+) cells following IL-1/IL-6 stimulation. atRA also increases histone acetylation on Foxp3 gene promoter and CpG demethylation in the region of Foxp3 locus (i.e., Treg-specific demethylated region). These results strongly implicate that nTregs primed with atRA may represent a novel treatment strategy to control established chronic immune-mediated autoimmune and inflammatory diseases. PMID:25099355

  11. Tolerability and Efficacy of Retinoic Acid Given after Full-face Peel Treatment of Photodamaged Skin

    PubMed Central

    Hu, Judy Y.; Biron, Julie A.; Yatskayer, Margarita; Dahl, Amanda; Oresajo, Christian

    2011-01-01

    Objective: All-trans retinoic acid is a well-established topical treatment of photodamaged skin. This study assessed the tolerance and efficacy of all-trans retinoic acid after full-face treatment with a chemical peel. Design: This was a split-face, randomized study. One side of each face was treated with peel and the other side with peel and all-trans retinoic acid (3%). Four treatments were given during the 10-week study period. Setting: Physician office. Participants: Fifteen female subjects 39 to 55 years of age. Measurements: Results were evaluated at Baseline; Weeks 4, 7, and 10; and at a 13-week follow-up visit by dermal grading of visual symptoms of irritation, subjective experiences of irritation, clinical grading of skin condition, and self-assessment questionnaires. Results: Both peel and peel plus all-trans retinoic acid treatments achieved significant improvement in fine lines, radiance, roughness, skin tone clarity, skin tone evenness, and hyperpigmentation appearance. Improvement in wrinkles and firmness was not observed in the peel plus all-trans retinoic acid arm, while pore appearance failed to improve in either treatment arm. Improvement in overall facial appearance was greater in the peel alone arm. Peel alone and the addition of all-trans retinoic acid did not cause dryness, edema, or peeling, and the frequency of peel-induced erythema did not increase with the addition of all-trans retinoic acid. Subject-perceived improvements with the peel treatment did not differ significantly from subject-perceived improvements of the peel plus all-trans retinoic acid treatment. Adverse events requiring intervention or discontinuing treatment were not observed in either treatment arm. Conclusion: The addition of all-trans retinoic acid after peel treatment does not significantly enhance peel-induced improvement in photoaging parameters, peel-induced adverse effects, and subject-perceived improvements. PMID:22010055

  12. Changes in microrheology of acute promyelocytic leukemia cells during all-trans retinoic acid (ATRA) differentiation therapy: a mechanism for ATRA-induced hyperleukocytosis?

    PubMed

    Dombret, H; Geiger, S; Daniel, M T; Glaisner, S; Micléa, J M; Castaigne, S; Merle-Beral, H; Lacombe, C; Chomienne, C; Degos, L

    1995-09-01

    According to French and European experience, hyperleukocytosis occurs during ATRA differentiation therapy in about 70% of de novo and 25% of relapsed APL cases. The most frequently suggested cause for this side-effect is an ATRA-induced proliferation of APL cells. However, no definite explanation for such a proliferative effect has been clearly established. Another mechanism directly related to the differentiation of marrow leukemic cells could be a change in their microrheology, allowing their release from the bone marrow and their transfer toward peripheral blood (PB) and tissues. Using a single cell aspiration assay into a glass restrictive channel, we measured APL cell viscosity values in five de novo APL patients. A deformability index (DI) was defined as the ratio of mean normal neutrophil viscosity x 100/mean APL cell viscosity. Results were the following: (1) at diagnosis, two patients had high marrow DI (96 and 250%) and three patients had low marrow DI (16, 17, and 40%); (2) when PB and marrow APL cells were simultaneously tested, PB APL cells display higher DI than marrow APL-cells; (3) the two patients with high initial marrow DI experienced an ATRA-induced hyperleukocytosis after only 1 day of treatment; (4) in the three patients with low initial marrow DI, the DI was increasing during ATRA therapy and hyperleukocytosis seemed to occur when a large amount of maturing APL cells reached a viscosity value similar to that of mature neutrophils. These results suggest that an asynchronism between rheological and morphological maturation in each APL cell might explain the occurrence of hyperleukocytosis in some patients during ATRA differentiation therapy. PMID:7658714

  13. STAGE-AND SPECIES-SPECIFIC DEVELOPMENTAL TOXICITY OF ALL-TRANS RETINOIC ACID IN FOUR NATIVE NORTH AMERICAN RANIDS AND XENOPUS LAEVIS

    EPA Science Inventory

    Within the last decase there have been increasing reports of malformed amphibians across North America. Recently, it has been suggested that hindlimb malformations are a consequence of xenobiotic disruption of developmental pathways regulated by retinoids. To assess the validity ...

  14. STAGE- AND SPECIES- SPECIFIC DEVELOPMENTAL TOXICITY OF ALL-TRANS RETINOIC ACID IN FOUR NATIVE NORTH AMERICAN RANIDS AND XENOPUS LAEVIS

    EPA Science Inventory

    Within the last decade there have been increasing reports of malformed amphibians across North America. Recently, it has been suggested that hindlimb malformations are a consequence of xenobiotic disruption of developmental pathways regulated by retinoids. To assess the validity ...

  15. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  16. The Retinoic Acid Receptor-a Mediates Human T-Cell Activation and Th2 Cytokine Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-g and TNF-a expression by activated human T cells and reducing the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated ...

  17. Localized Th1-, Th2-,and inflamation-associated hepatic and pulmonary immune responses in Ascaris-infected swine are increased by retinoic acid.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs infected with Ascaris suum were treated with all-trans retinoic acid (ATRA) on d–1, d+1, d+3 of infection. Control or infected pigs were given 100 (LD-ATRA) or 1,000 (HD-ATRA) µg/kg ATRA in corn oil, or corn oil alone, and sacrificed at 7 and 14 days after inoculation (DAI) with infective eggs...

  18. TERATOGENIC EFFECTS OF RETINOIC ACID ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-ALPHA

    EPA Science Inventory

    Background: EGF and TGF regulate cell proliferation and differentiation in the embryo. The induction of cleft palate (CP) by all trans retinoic acid (RA) was associated with altered expression of TGF, EGF receptor and binding of EGF. The present study uses knockout (KO) mice to e...

  19. Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+CD25+FOXP3+ T regulatory cell subpopulations

    PubMed Central

    Scottà, Cristiano; Esposito, Marianna; Fazekasova, Henrieta; Fanelli, Giorgia; Edozie, Francis C.; Ali, Niwa; Xiao, Fang; Peakman, Mark; Afzali, Behdad; Sagoo, Pervinder; Lechler, Robert I.; Lombardi, Giovanna

    2013-01-01

    Adoptive transfer of ex vivo expanded CD4+CD25+FOXP3+ regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocols for the expansion of clinically useful numbers of functionally suppressive and stable human regulatory T cells were investigated. Regulatory T cells were expanded in vitro with rapamycin and/or all-trans retinoic acid and then characterized under inflammatory conditions in vitro and in vivo in a humanized mouse model of graft-versus-host disease. Addition of rapamycin to regulatory T-cell cultures confirms the generation of high numbers of suppressive regulatory T cells. Their stability was demonstrated in vitro and substantiated in vivo. In contrast, all-trans retinoic acid treatment generates regulatory T cells that retain the capacity to secrete IL-17. However, combined use of rapamycin and all-trans retinoic acid abolishes IL-17 production and confers a specific chemokine receptor homing profile upon regulatory T cells. The use of purified regulatory T-cell subpopulations provided direct evidence that rapamycin can confer an early selective advantage to CD45RA+ regulatory T cells, while all-trans retinoic acid favors CD45RA− regulatory T-cell subset. Expansion of regulatory T cells using rapamycin and all-trans retinoic acid drug combinations provides a new and refined approach for large-scale generation of functionally potent and phenotypically stable human regulatory T cells, rendering them safe for clinical use in settings associated with inflammation. PMID:23242600

  20. All-trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-delta.

    PubMed

    Uruno, Akira; Noguchi, Naoya; Matsuda, Ken; Nata, Koji; Yoshikawa, Takeo; Chikamatsu, Youichiro; Kagechika, Hiroyuki; Harigae, Hideo; Ito, Sadayoshi; Okamoto, Hiroshi; Sugawara, Akira

    2011-08-01

    ATRA and a synthetic RAR agonist tamibarotene (Am80) induce granulocytic differentiation of human acute leukemia HL-60 cells and have been used in antineoplastic therapy. ATRA induces CD38 antigen during HL-60 cell differentiation, which interacts with CD31 antigen on the vascular EC surface and may induce disadvantages in the therapy. We here examined the mechanisms of the ATRA-mediated CD38 induction and compared the difference between ATRA- and tamibarotene-mediated induction. Tamibarotene-induced HL-60 cell adhesion to ECs was 38% lower than ATRA, and NB4 cell adhesion to ECs by tamibarotene was equivalent to ATRA, which induced CD38 gene transcription biphasically in HL-60 cells, the early-phase induction via DR-RARE containing intron 1, and the delayed-phase induction via RARE lacking the 5'-flanking region. In contrast to ATRA, tamibarotene induced only the early-phase induction, resulting in its lower CD38 induction than ATRA. A PKCδ inhibitor, rottlerin, and siRNA-mediated PKCδ knockdown suppressed the ATRA-induced CD38 promoter activity of the 5'-flanking region, whereas a RAR antagonist, LE540, or RAR knockdown did not affect it. Cycloheximide and rottlerin suppressed the delayed-phase induction of CD38 expression by ATRA but did not affect the early-phase induction. Moreover, ATRA, but not tamibarotene, induced PKCδ expression without affecting its mRNA stability. The diminished effect of tamibarotene on CD38-mediated HL-60 cell adhesion to ECs compared with ATRA is likely a result of the lack of its delayed-phase induction of CD38 expression, which may be advantageous in antineoplastic therapy. PMID:21393419

  1. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  2. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β.

    PubMed

    Fernández-Martínez, Ana B; Jiménez, María I Arenas; Manzano, Victoria Moreno; Lucio-Cazaña, Francisco J

    2012-12-01

    We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production

  3. Influence of retinoic acid on mesenchymal stem cell differentiation in amyloid hydrogels

    PubMed Central

    Jacob, Reeba Susan; Das, Subhadeep; Ghosh, Dhiman; Maji, Samir K.

    2015-01-01

    This paper presents data related to the research article “Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation” [1]. Here we probed the collective influence of all-trans retinoic acid (RA) and substrate properties (amyloid hydrogel) on human mesenchymal stem cell (hMSC) differentiation. Stem cells were cultured on soft amyloid hydrogels [1], [2] in the presence and absence of matrix encapsulated RA. The cell morphology was imaged and assessed via quantification of circularity. Further immunostaining and quantitative real time PCR was used to quantify various markers of differentiation in the neuronal lineage. PMID:26740966

  4. Unbinding of Retinoic Acid from its Receptor Studied by Steered Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kosztin, D.

    1999-01-01

    Retinoic acid receptor (RAR) is a ligand-dependent transcription factor that regulates the expression of genes involved in cell growth, differentiation, and development. Binding of the retinoic acid hormone to RAR is accompanied by conformational changes in the protein which induce transactivation or transrepression of the target genes. In this paper we present a study of the hormone binding/unbinding process in order to clarify the role of some of the amino acid contacts and identify possible pathways of the all-trans retinoic acid binding/unbinding to/from human retinoic acid receptor (hRAR)-g. Three possible pathways were explored using steered molecular dynamics simulations. Unbinding was induced on a time scale of 1 ns by applying external forces to the hormone. The simulations suggest that the hormone may employ one pathway for binding and an alternative "back door" pathway for unbinding.

  5. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  6. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  7. Oxidative and reductive metabolism of 9-cis-retinoic acid in the rat. Identification of 13,14-dihydro-9-cis-retinoic acid and its taurine conjugate.

    PubMed

    Shirley, M A; Bennani, Y L; Boehm, M F; Breau, A P; Pathirana, C; Ulm, E H

    1996-03-01

    9-cis-Retinoic acid (9-cis-RA), a hormone that binds and activates all known retinoid receptor subtypes, is structurally similar to all-trans-retinoic acid and may share common metabolic fates. Both oral and intravenous doses of 9-cis-RA to rats led to hydroxylation and ketone formation at carbon-4. 9-Cis-RA also isomerized in vivo to 13-cis-retinoic acid, 9-cis, 13-cis-retinoic acid, and all-trans-retinoic acid. After administration of [11-3H]9-cis-RA, the proportion of plasma radioactivity that was volatile increased over time, which suggested that beta-oxidative chain-shortening of 9-cis-RA might occur. An equimolar mixture of [1-13C2H3]9-cis-RA and 9-cis-RA was administered to rats for stable-isotope-labeled metabolite production. A chromatographic peak that had a lambdamax = 290 nm vs. 348 nm for the parent compound, had a retention time similar to the parent, and yielded a 1:1 positive-ion isotope cluster at m/z 303/307 in its mass spectrum. NMR analysis revealed 9-cis and 13,14-dihydro configurations, indicating that 9-cis-RA can be metabolized in rat by reduction to 13,14-dihydro-9-cis-RA. An earlier-eluting HPLC peak that exhibited a lambdamax at 290 nm, and a negative-ion-MS isotope cluster at m/z 408/412 was observed during separations of rat liver extracts. LC/MS/MS analysis revealed product ions for this peak diagnostic for carboxylic acid taurine conjugates. In rats, reduction of 9-cis-RA to 13,14-dihydro-9-cis-RA may represent an initial step leading to beta-oxidation, although available data demonstrate it is conjugated with taurine to form a novel metabolite. PMID:8820419

  8. The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development.

    PubMed Central

    Kraft, J C; Schuh, T; Juchau, M; Kimelman, D

    1994-01-01

    Endogenous retinoids are potential regulators of vertebrate embryogenesis that have been implicated in early anterior-posterior patterning and limb-bud development. We have characterized the temporal and spatial distribution of 9-cis-retinoic acid in the Xenopus embryo and compared it to two other retinoids, all-trans-retinoic acid and all-trans-retinoyl-beta-glucuronide. 9-cis-Retinoic acid is first detected after the midblastula transition and by the end of gastrulation is localized primarily within the anterior and posterior dorsal regions of the embryo. Since 9-cis-retinoic acid is a 6-fold more potent dysmorphogen than trans-retinoic acid, we suggest that it is involved in the early specification of the Xenopus anterior-posterior axis. Images PMID:8159708

  9. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  10. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  11. 4-Hydroxybenzyl modification of the highly teratogenic retinoid, 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB), yields a compound that induces apoptosis in breast cancer cells and shows reduced teratogenicity.

    PubMed

    Anding, Allyson L; Nieves, Nirca J; Abzianidze, Victoria V; Collins, Michael D; Curley, Robert W; Clagett-Dame, Margaret

    2011-11-21

    Retinoids are a class of compounds with structural similarity to vitamin A. These compounds inhibit the proliferation of many cancer cell lines but have had limited medical application as they are often toxic at therapeutic levels. Efforts to synthesize retinoids with a greater therapeutic index have met with limited success. 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB) is one of the most biologically active all-trans-retinoic acid (atRA) analogues and is highly teratogenic. In this study, we show that modification of the TTNPB carboxyl group with an N-(4-hydroxyphenyl)amido (4HPTTNPB) or a 4-hydroxybenzyl (4HBTTNPB) group changes the activity of the compound in cell culture and in vivo. Unlike TTNPB, both compounds induce apoptosis in cancer cells and bind poorly to the retinoic acid receptors (RARs). Like the similarly modified all-trans-retinoic acid (atRA) analogues N-(4-hydroxyphenyl)retinamide (4-HPR/fenretinide) and 4-hydroxybenzylretinone (4-HBR), 4HBTTNPB is a potent activator of components of the ER stress pathway. The amide-linked analogue, 4HPTTNPB, is less toxic to developing embryos than the parent TTNPB, and most significantly, the 4-hydroxybenzyl-modified compound (4HBTTNPB) that cannot be hydrolyzed in vivo to the parent TTNPB compound is nearly devoid of teratogenic liability. PMID:21939267

  12. Retinoic acid affects calcium signaling in adult molluscan neurons.

    PubMed

    Vesprini, Nicholas D; Dawson, Taylor F; Yuan, Ye; Bruce, Doug; Spencer, Gaynor E

    2015-01-01

    Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons. PMID:25343782

  13. Uptake of all-trans retinoic acid–containing aerosol by inhalation to lungs in a guinea pig model system—A pilot study

    PubMed Central

    Schäffer, Michael W.; Roy, Somdutta Sinha; Mukherjee, Shyamali; Ong, David E.; Das, Salil K.

    2010-01-01

    Systemic therapies with retinoic acid (RA) can result in toxic side effects without yielding biologically effective levels in target tissues such as lung. The authors adapted a PARI LC Star nebulizer to create a tubular system for short-term inhalation treatment of guinea pigs using a water-miscible formulation of all-trans RA (ATRA) or vehicle. Based on the initial average weight, animals received an estimated average ATRA doses of either 0.32 mg·kg−1 (low dose, 1.4 mM), or 0.62 mg·kg−1 (medium dose, 2.8 mM), or 1.26 mg·kg−1 (high dose, 5.6 mM) 20 minutes per day for 6 consecutive days. This system led to a rise of ATRA levels in lung, but not liver or plasma. Cellular lung levels of retinol, retinyl palmitate, and retinyl stearate also appeared to be unaffected (245.6 ± 10.7, 47.4 ± 3.4, and 132.8 ± 7.7 ng·g−1 wet weight, respectively). The application of this aerosolized ATRA also induced a dose-dependent protein expression of the cellular retinol-binding protein 1 (CRBP-1) in lung, without apparent harmful side effects. PMID:21043991

  14. Ethanol Effects On Physiological Retinoic Acid Levels

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    Summary All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand whether interference with atRA biosynthesis and/or action may explain (in part) pathology associated with excess ethanol consumption. Ethanol affects many aspects of retinoid metabolism and mechanisms of action site-specifically, but no robust data support inhibition of vitamin A metabolism, resulting in decreased atRA in vivo during normal vitamin A nutriture. Actually, ethanol either has no effect on or increases atRA at select sites. Despite this realization, insight into whether interactions between ethanol and retinoids represent cause vs. effect requires additional research. PMID:21766417

  15. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species.

    PubMed

    Carter, Christopher J; Rand, Christopher; Mohammad, Imtiaz; Lepp, Amanda; Vesprini, Nicholas; Wiebe, Olivia; Carlone, Robert; Spencer, Gaynor E

    2015-01-01

    The vitamin A metabolite, retinoic acid, is an important molecule in nervous system development and regeneration in vertebrates. Retinoic acid signaling in vertebrates is mediated by two classes of nuclear receptors, the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Recently, evidence has emerged to suggest that many effects of retinoic acid are conserved between vertebrate and invertebrate nervous systems, even though the RARs were previously thought to be a vertebrate innovation and to not exist in non-chordates. We have cloned a full-length putative RAR from the CNS of the mollusc Lymnaea stagnalis (LymRAR). Immunoreactivity for the RAR protein was found in axons of adult neurons in the central nervous system and in growth cones of regenerating neurons in vitro. A vertebrate RAR antagonist blocked growth cone turning induced by exogenous all-trans retinoic acid, possibly suggesting a role for this receptor in axon guidance. We also provide immunostaining evidence for the presence of RAR protein in the developing, embryonic CNS, where it is also found in axonal processes. Using qPCR, we determined that LymRAR mRNA is detectable in the early veliger stage embryo and that mRNA levels increase significantly during embryonic development. Putative disruption of retinoid signaling in Lymnaea embryos using vertebrate RAR antagonists resulted in abnormal eye and shell development and in some instances completely halted development, resembling the effects of all-trans retinoic acid. This study provides evidence for RAR functioning in a protostome species. PMID:25504929

  16. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration

    SciTech Connect

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R.S.; Nickoloff, B.J.; Voorhees, J.J. )

    1990-06-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium (KGM)) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment.

  17. Induced expression of the new cytokine, activin A, in human monocytes: inhibition by glucocorticoids and retinoic acid.

    PubMed Central

    Yu, J; Shao, L E; Frigon, N L; Lofgren, J; Schwall, R

    1996-01-01

    The capacity of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), glucocorticoids or all-trans-retinoic acid to modulate production of activin A by human monocytes was studied. It was shown that GM-CSF stimulated monocytes to accumulate activin A RNA after as few as 4 hr of incubation, reaching a peak of stimulation at approximately 16 hr of incubation. The activin A transcripts accumulated in the monocytes after stimulation with only 5 U/ml of GM-CSF and reached a maximum plateau level of expression between 25 and 50 U/ml of GM-CSF. Biologically active activin A molecules were detected in the conditioned media by a bioassay, performed both in the absence and presence of a neutralizing antiserum for activin A. Accumulation of bioactive activin A in conditioned medium of monocyte cultures was detected after 24 hr of incubation with GM-CSF and high levels of activin A were maintained for 72 hr. The production of the dimeric beta A beta A in these monocytes was further confirmed by sandwich enzyme-linked immunosorbent assay (ELISA) specific for activin A. In contrast to the stimulatory effect of GM-CSF, hydrocortisone, dexamethasone or all-trans-retinoic acid at 1 x 10(-7) to 1 x 10(-5) M inhibited the constitutive expression of activin A and greatly suppressed the GM-CSF-stimulated production. Thus, the expression of activin A is modulated in monocytes by different agents. These observations may imply new roles for activin A at sites of inflammation where monocytes accumulate. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8774352

  18. Synthesis of (11)C-labeled retinoic acid, [(11)C]ATRA, via an alkenylboron precursor by Pd(0)-mediated rapid C-[(11)C]methylation.

    PubMed

    Suzuki, Masaaki; Takashima-Hirano, Misato; Ishii, Hideki; Watanabe, Chika; Sumi, Kengo; Koyama, Hiroko; Doi, Hisashi

    2014-08-01

    Retinoids are a class of chemical compounds which include both natural dietary vitamin A (retinol) metabolites and active synthetic analogs. Both experimental and clinical studies have revealed that retinoids regulate a wide variety of essential biological processes. In this study, we synthesized (11)C-labeled all-trans-retinoic acid (ATRA), the most potent biologically active metabolite of retinol and used in the treatment of acute promyelocytic leukemia. The synthesis of (11)C-labeled ATRA was accomplished by a combination of rapid Pd(0)-mediated C-[(11)C]methylation of the corresponding pinacol borate precursor prepared by 8 steps and hydrolysis. [(11)C]ATRA will prove useful as a PET imaging agent, particularly for elucidating the improved therapeutic activity of ATRA (natural retinoid) for acute promyelocytic leukemia by comparing with the corresponding PET probe [(11)C]Tamibarotene (artificial retinoid). PMID:24930828

  19. Eosinophils from Murine Lamina Propria Induce Differentiation of Naïve T Cells into Regulatory T Cells via TGF-β1 and Retinoic Acid

    PubMed Central

    Ojcius, David M.; Hu, Wei-Lin; Ge, Yu-Mei; Lin, Xu’ai; Li, Lan-Juan; Pan, Jian-Ping; Yan, Jie

    2015-01-01

    Treg cells play a crucial role in immune tolerance, but mechanisms that induce Treg cells are poorly understood. We here have described eosinophils in lamina propria (LP) that displayed high aldehyde dehydrogenase (ALDH) activity, a rate-limiting step during all-trans retinoic acid (ATRA) synthesis, and expressed TGF-β1 mRNA and high levels of ATRA. Co-incubation assay confirmed that LP eosinophils induced the differentiation of naïve T cells into Treg cells. Differentiation promoted by LP eosinophils were inhibited by blocked either TGF-β1 or ATRA. Peripheral blood (PB) eosinophils did not produce ATRA and could not induce Treg differentiation. These data identifies LP eosinophils as effective inducers of Treg cell differentiation through a mechanism dependent on TGF-β1 and ATRA. PMID:26587591

  20. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration

    PubMed Central

    Liu, Hui-Xin; Hu, Ying; Wan, Yu-Jui Yvonne

    2016-01-01

    Background & Aims All-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration. Methods C57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied. Results RA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers. Conclusions Priming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation. PMID:26701854

  1. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    SciTech Connect

    Yu, Yun; Shen, Shao-Ming; Zhang, Fei-Fei; Wu, Zhao-Xia; Han, Bin; Wang, Li-Shun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer ANP32B inhibited ATRA activated transcriptional activity of RAR{alpha}. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RAR{alpha}). These data will shed new insights into understanding the biological functions of ANP32B protein.

  2. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    PubMed Central

    Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN. PMID:22125642

  3. Identification and characterization of a functional retinoic acid/thyroid hormone-response element upstream of the human insulin gene enhancer.

    PubMed Central

    Clark, A R; Wilson, M E; London, N J; James, R F; Docherty, K

    1995-01-01

    A deletion analysis of the human insulin gene extending to 2 kb upstream of the transcription start site provided evidence of regulatory sequences located upstream of the insulin-linked polymorphic region (ILPR). Within this ILPR-distal region is a sequence (Ink, for insulin kilobase upstream) which contains three potential nuclear hormone-receptor half-sites, closely matching the consensus sequence AGGTCA. These sequences are arranged as a palindromic element with zero spacing over-lapping a direct repeat with 2 bp spacing. The Ink sequence was used in electrophoretic mobility-shift assays within nuclear extracts from COS-7 cells overexpressing the vitamin D, thyroid hormone or retinoic acid receptors, or from an insulin-expressing hamster cell line, HIT-T15. These studies suggest that the insulin-expressing cell line contains thyroid hormone and retinoic acid receptors at least, and that these receptors are able to recognize the Ink sequence. Three copies of the Ink sequence were placed upstream of the thymidine kinase promoter and firefly luciferase reporter gene. In COS-7 cells expressing the appropriate nuclear hormone receptor, this construct was responsive to both thyroid hormone (18-fold) and all-trans-retinoic acid (31-fold). In HIT-T15 cells the same construct responded to all-trans-retinoic acid, but not to thyroid hormone. Within the context of a 2 kb insulin gene fragment, the Ink sequence was shown to be activated by retinoic acid and by the retinoic acid receptor, but acted as a negative element in the presence of both retinoic acid and the retinoic acid receptor. Mutagenesis studies demonstrated that the palindromic sequence was important for the retinoic acid response, and for binding of complexes containing retinoic acid receptor. In human islets of Langerhans, retinoic acid was shown to stimulate insulin mRNA levels. These results demonstrate that a functional nuclear hormone-receptor-response element is located upstream of the human ILPR. As

  4. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  5. Retinoic acid induces cells cultured from oral squamous cell carcinomas to become anti-angiogenic.

    PubMed Central

    Lingen, M. W.; Polverini, P. J.; Bouck, N. P.

    1996-01-01

    Retinoids have shown great promise as chemopreventive against the development of squamous cell carcinomas of the upper aerodigestive tract. However, the exact mechanism by which they block new tumors from arising is unknown. Here, we report that 13-cis- and all-trans-retinoic acid, used at clinically achievable doses of 10(-6) mol/L or less, can directly and specifically affect cell lines cultured from oral squamous cell carcinomas, inducing them to switch from an angiogenic to an anti-angiogenic phenotype. Although retinoic-acid-treated and untreated tumor cells make the same amount of interleukin-8, the major inducer of neovascularization produced by such tumor lines, they vary in production of inhibitory activity. Only the retinoic-acid-treated cells produce a potent angio-inhibitory activity that is able to block in vitro migration of endothelial cells toward tumor cell conditioned media and to halt neovascularization induced by such media in the rat cornea. Anti-angiogenic activity is induced in the tumor cells by low doses of retinoids in the absence of toxicity with a kinetics that suggest that it could be contributing to the effectiveness of the retinoids as chemopreventive agents. Images Figure 6 PMID:8686749

  6. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    PubMed

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  7. All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially

    PubMed Central

    Hellemans, K; Grinko, I; Rombouts, K; Schuppan, D; Geerts, A

    1999-01-01

    BACKGROUND—Hepatic stellate cells exert specific functions in the liver: storage of large amounts of retinyl esters, synthesis and breakdown of hepatic extracellular matrix, secretion of a variety of cytokines, and control of the diameter of the sinusoids.
AIMS—To examine the influence of all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9RA) on extracellular matrix production and proliferation of activated hepatic stellate cells.
METHODS—Cells were isolated using collagenase/pronase, purified by centrifugation in nycodenz, and cultured for two weeks. At this time point the cells exhibited the activated phenotype. Cells were exposed to various concentrations of ATRA and 9RA. The expression of procollagens I, III, and IV, of fibronectin and of laminin were analysed by immunoprecipitation and northern hybridisation.
RESULTS—ATRA exerted a significant inhibitory effect on the synthesis of procollagens type I, III, and IV, fibronectin, and laminin, but did not influence stellate cell proliferation, whereas 9RA showed a clear but late effect on proliferation. 9RA increased procollagen I mRNA 1.9-fold, but did not affect the expression of other matrix proteins.
CONCLUSION—Results showed that ATRA and 9RA exert different, often contrary effects on activated stellate cells. These observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or in animals subjected to fibrogenic stimuli.


Keywords: hepatic stellate cells; retinoic acid; extracellular matrix proteins; proliferation PMID:10369717

  8. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    SciTech Connect

    Wang, Ai-Guo Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  9. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior.

    PubMed

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-07-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc. PMID:26860546

  10. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases.

    PubMed

    Njar, Vincent C O; Gediya, Lalji; Purushottamachar, Puranik; Chopra, Pankaj; Vasaitis, Tadas Sean; Khandelwal, Aakanksha; Mehta, Jhalak; Huynh, Carlic; Belosay, Aashvini; Patel, Jyoti

    2006-07-01

    The naturally occurring retinoids and their synthetic analogs play a key role in differentiation, proliferation, and apoptosis, and their use/potential in oncology, dermatology and a variety of diseases are well documented. This review focuses on the role of all-trans-retinoic acid (ATRA), the principal endogenous metabolite of vitamin A (retinol) and its metabolism in oncology and dermatology. ATRA has been used successfully in differentiated therapy of acute promyelocytic leukemia, skin cancer, Kaposi's sarcoma, and cutaneous T-cell lymphoma, and also in the treatment of acne and psoriasis. However, its usefulness is limited by the rapid emergence of acquired ATRA resistance involving multifactoral mechanisms. A key mechanism of resistance involves ATRA-induced catabolism of ATRA. Thus, a novel strategy to overcome the limitation associated with exogenous ATRA therapy has been to modulate and/or increase the levels of endogenous ATRA by inhibiting the cytochrome P450-dependent ATRA-4-hydroxylase enzymes (particularly CYP26s) responsible for ATRA metabolism. These inhibitors are also referred to as retinoic acid metabolism blocking agents (RAMBAs). This review highlights development in the design, synthesis, and evaluation of RAMBAs. Major emphasis is given to liarozole, the most studied and only RAMBA in clinical use and also the new RAMBAs in development and with clinical potential. PMID:16530416

  11. Application of retinoic acid to obtain osteocytes cultures from primary mouse osteoblasts.

    PubMed

    Mattinzoli, Deborah; Messa, Piergiorgio; Corbelli, Alessandro; Ikehata, Masami; Mondini, Anna; Zennaro, Cristina; Armelloni, Silvia; Li, Min; Giardino, Laura; Rastaldi, Maria Pia

    2014-01-01

    The need for osteocyte cultures is well known to the community of bone researchers; isolation of primary osteocytes is difficult and produces low cell numbers. Therefore, the most widely used cellular system is the osteocyte-like MLO-Y4 cell line. The method here described refers to the use of retinoic acid to generate a homogeneous population of ramified cells with morphological and molecular osteocyte features. After isolation of osteoblasts from mouse calvaria, all-trans retinoic acid (ATRA) is added to cell medium, and cell monitoring is conducted daily under an inverted microscope. First morphological changes are detectable after 2 days of treatment and differentiation is generally complete in 5 days, with progressive development of dendrites, loss of the ability to produce extracellular matrix, down-regulation of osteoblast markers and up-regulation of osteocyte-specific molecules. Daily cell monitoring is needed because of the inherent variability of primary cells, and the protocol can be adapted with minimal variation to cells obtained from different mouse strains and applied to transgenic models. The method is easy to perform and does not require special instrumentation, it is highly reproducible, and rapidly generates a mature osteocyte population in complete absence of extracellular matrix, allowing the use of these cells for unlimited biological applications. PMID:24894124

  12. Prospective teratology of retinoic acid metabolic blocking agents (RAMBAs) and loss of CYP26 activity.

    PubMed

    McCaffery, P; Simons, C

    2007-01-01

    All-trans retinoic acid (atRA) is the transcriptionally active product of vitamin A and induces gene expression via specific receptors at nM concentrations. Essential enzymes that regulate the local levels of atRA are the CYP26 members of the cytochrome P450 family, which catabolize atRA. Compounds that have been designed to inhibit these enzymes are known as Retinoic Acid Metabolic Blocking Agents (RAMBAs). Treatment with these compounds will raise endogenous atRA levels and may be therapeutic for the treatment of diseases that respond to high atRA concentrations, including several types of cancer as well as skin conditions such as psoriasis and acne. This review describes the mechanism of action of the RAMBAs and discusses the potential side effects of these compounds. atRA is highly teratogenic and the potential teratogenicity of the RAMBAs is described by comparison with the abnormalities resulting from null mutation of individual CYP26 genes. The possible effects of RAMBAs on the adult brain are also described that have the potential for harm but, in the right circumstances, may also be beneficial. PMID:17979744

  13. Reversal effects of topical retinoic acid on the skin of kidney transplant recipients under systemic corticotherapy.

    PubMed

    De Lacharriére, O; Escoffier, C; Gracia, A M; Teillac, D; Saint Léger, D; Berrebi, C; Debure, A; Lévêque, J L; Kreis, H; De Prost, Y

    1990-11-01

    The systemic long-term corticosteroid treatment administered to kidney graft recipients (KGR) within the framework of the required immunosuppressive therapy induces an atrophy of the skin, from the sixth month onwards. We studied the effect of topical all-trans retinoic acid (0.05%; Galderma Labs.) applied to the forearms of 27 KGR (14 men, 13 women) over a 6-month period. Twenty-four subjects completed the trial. The following results were obtained in the treated forearm versus the untreated forearm (excipient alone): clinically, an increase in skin thickness; by noninvasive techniques, an increase in skin thickness, skin elasticity, skin conductance, and TEWL, and a reduction in the size of the corneocytes. No change in stratum corneum lipid content was observed. A sex-related difference was noted in the response to treatment under our experimental conditions, the female patients responding better. A punch biopsy (4 mm) was performed on both forearms of four patients after the 6-month period. Histologic and ultrastructural examination revealed epidermal and dermal changes evoking increased cellular metabolism in the retinoic acid-treated forearms. PMID:2230213

  14. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

    PubMed

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Łaszkiewicz, Agnieszka; Śnieżewski, Łukasz; Brown, Geoffrey; Marcinkowska, Ewa

    2016-05-01

    Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D. PMID:26969398

  15. Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice.

    PubMed

    Palencia, Guadalupe; Hernández-Pedro, Norma; Saavedra-Perez, David; Peña-Curiel, Omar; Ortiz-Plata, Alma; Ordoñez, Graciela; Flores-Estrada, Diana; Sotelo, Julio; Arrieta, Oscar

    2014-08-01

    In humans, exposure to organic solvents (OS) is frequent in work activities or as a recreational inhalant, inducing severe neuropathy (secondary to demyelization of peripheral nerves). We have previously shown that all-trans retinoic acid (ATRA) increases local content of neural growth factor (NGF), improving peripheral neuropathy of diverse origins. In this study, we evaluated the effect of ATRA on OS-induced peripheral neuropathy in experimental mice. Two simultaneous experiments were performed. The first one aimed to evaluate ATRA for the prevention of damage induced by OS, the second to test ATRA as an OS-induced neuropathy treatment. Nociceptive threshold latency and NGF concentration in serum and in peripheral nerves were determined. Morphological changes and evidence of sciatic nerve regeneration were evaluated. Mice exposed to OS developed neuropathy and axonal degeneration. ATRA diminished the effects of OS inhalation on sensorial changes and nerve morphology. Treatment with ATRA reversed sensorial and nerve morphological changes of OS-induced neuropathy, and this was associated with increased contents of NGF. Similar to previous experiences on diabetic and toxic neuropathy, ATRA reduced and partially reversed the peripheral neuropathy caused by OS exposure. These favorable effects apparently are due to local production of NGF induced by neural regeneration in response to the administration of retinoic acid. PMID:24647975

  16. Retinoic acid decreases the severity of Salmonella enterica serovar Typhimurium mediated gastroenteritis in a mouse model.

    PubMed

    Sinha, Ritam; Howlader, Debaki Ranjan; Mukherjee, Priyadarshini; Rai, Sulabh; Nag, Dhrubajyoti; Koley, Hemanta

    2016-07-01

    Gastroenteritis is a global burden; it's the major cause of morbidity and mortality both in adults and children of developing countries. Salmonella is one of the leading causes of bacteria-mediated gastroenteritis and due to its increasing multidrug antibiotic resistance; Salmonella-mediated gastroenteritis is difficult to control. Retinoic acid, the biologically active agent of vitamin A has an anti-inflammatory effect on experimental colitis. In this study we have shown All trans retinoic acid (ATRA) treatment down regulates Salmonella-mediated colitis in a murine model. Macroscopic signs of inflammation such as decrease in body weight and cecum weight, shorter length of proximal colon and pathological score of colitis were observed less in ATRA treated mice than in a vehicle control group. ATRA treatment not only reduced pro-inflammatory cytokine responses, such as TNF-α, IL-6, IL-1β, IFN-γ and IL-17 production but also increased IL-10 response in the supernatant of intestinal tissue. Results also suggested that ATRA treatment enhances the number of FoxP3-expressing T regulatory cells in MLN and also decreases bacterial load in systemic organs. We concluded that ATRA treatment indeed reduces Salmonella Typhimurium-mediated gastroenteritis in mice, suggesting it could be an important part of an alternative therapeutic approach to combat the disease. PMID:26858186

  17. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells.

    PubMed

    Urban, Sylvia; Kobi, Dominique; Ennen, Marie; Langer, Diana; Le Gras, Stéphanie; Ye, Tao; Davidson, Irwin

    2015-07-01

    Mouse embryonic stem cells (ESCs) treated with all-trans retinoic acid differentiate into a homogenous population of glutamatergic neurons. Although differentiation is initiated through activation of target genes by the retinoic acid receptors, the downstream transcription factors specifying neuronal fate are less well characterised. Here, we show that the transcription factor Brn2 (also known as Pou3f2) is essential for the neuronal differentiation programme. By integrating results from RNA-seq following Brn2 silencing with results from Brn2 ChIP-seq, we identify a set of Brn2 target genes required for the neurogenic programme. Further integration of Brn2 ChIP-seq data from retinoic-acid-treated ESCs and P19 cells with data from ESCs differentiated into neuronal precursors by Fgf2 treatment and that from fibroblasts trans-differentiated into neurons by ectopic Brn2 expression showed that Brn2 occupied a distinct but overlapping set of genomic loci in these differing conditions. However, a set of common binding sites and target genes defined the core of the Brn2-regulated neuronal programme, among which was that encoding the transcription factor Zic1. Small hairpin RNA (shRNA)-mediated silencing of Zic1 prevented ESCs from differentiating into neuronal precursors, thus defining a hierarchical Brn2-Zic1 axis that is essential to specify neural fate in retinoic-acid-treated ESCs. PMID:25991548

  18. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    PubMed Central

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-01-01

    Background We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-α (RAR-α)-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR). Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production. PMID:18416830

  19. Identification of Tazarotenic Acid as the First Xenobiotic Substrate of Human Retinoic Acid Hydroxylase CYP26A1 and CYP26B1.

    PubMed

    Foti, Robert S; Isoherranen, Nina; Zelter, Alex; Dickmann, Leslie J; Buttrick, Brian R; Diaz, Philippe; Douguet, Dominique

    2016-05-01

    Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics. PMID:26937021

  20. A newly established culture method highlights regulatory roles of retinoic acid on morphogenesis and calcification of mammalian limb cartilage.

    PubMed

    Masuda, Eizo; Shirai, Kota; Maekubo, Kenji; Hirai, Yohei

    2015-06-01

    During mammalian embryogenesis, sclerotome-derived chondrocytes in the limb bud are arranged into a complicated bone shape with specific areas undergoing hypertrophy and calcification, creating a region-specific mineralized pattern in the cartilage. To follow chondrogenesis progression in vitro, we isolated limb cartilage from mice on embryonic day 13 (E13) and cultured it at the air-liquid interface after microsurgical removal of the ectoderm/epidermis. Explants underwent proper morphogenesis, giving rise to complete templates for limb bones in vitro. We found that region-specific calcification patterns resembling limbs of prepartum mature embryos could be induced in explants using culture medium containing high concentrations of CaCl2 (Ca), ascorbic acid (AA), and β-glycerophosphoric acid (BGP). In this culture system, excess amounts of all-trans retinoic acid (RA) severely disrupted morphogenesis and calcification patterns in limb cartilage. These effects were more pronounced in forearms than in phalanges. Although dissociated, the nascent chondrocytes in culture did not give rise to cartilage units even though augmented calcification was induced in these cell aggregates in the presence of RA. Taken together, our newly established culture system revealed that RA independently regulates three-dimensional morphogenesis and calcification. PMID:26054768

  1. Potentiation of Acute Promyelocytic Leukemia Cell Differentiation and Prevention of Leukemia Development in Mice by Oleanolic Acid.

    PubMed

    Rawendra, Reynetha D S; Lin, Ping-Yuan; Chang, Ching-Dong; Hsu, Jue-Liang; Huang, Tzou-Chi; Shih, Wen-Ling

    2015-12-01

    Although differentiation therapy with all-trans retinoic acid (ATRA) induces complete remission in most acute promyelocytic leukemia (APL) patients, it is associated with organ toxicity. The present study focused on investigating the effects of the natural compounds oleanolic acid (OA) and ursolic acid (UA) on proliferation and differentiation of human APL HL-60 cells in vitro and murine APL WEHI-3 cells in vivo. Results demonstrated that OA and UA significantly inhibited cellular proliferation of HL-60 in a concentration- and time-dependent manner. Non-cytotoxic concentration of OA exhibited a marked differentiation-inducing effect on HL-60 and enhanced ATRA-induced HL-60 differentiation. In contrast, UA showed only a moderate effect. Activation of MAPK/NF-κB signaling pathway was likely found to be involved in the mechanism. Moreover, OA increased survival duration of WEHI-3 transplanted BALB/c mice, and decreased leukemia cells infiltration in the liver and spleen. Thus, these results may provide new insight for developing alternative therapy in APL patients. PMID:26637873

  2. Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats.

    PubMed

    Hernández-Pedro, Norma; Granados-Soto, Vinicio; Ordoñez, Graciela; Pineda, Benjamin; Rangel-López, Edgar; Salazar-Ramiro, Aleli; Arrieta, Oscar; Sotelo, Julio

    2014-09-01

    All-trans retinoic acid (ATRA) promotes the endogenous expression of both nerve growth factor (NGF) and retinoic acid receptor beta (RAR-β). We have previously shown that the administration of ATRA partly reverts the damage induced by diabetic neuropathy (DN). In this investigation, we evaluated the effects of vitamin A, a commercial, inexpensive compound of retinoic acid, on the therapy of DN. A total of 70 rats were randomized into 4 groups. Group A was the control, and groups B, C, and D received a total dose of 60 mg/kg streptozotocin intraperitoneally. When signs of DN developed, groups C and D were treated either with vitamin A (20,000 IU) or with ATRA 25 mg/kg for 60 days. Plasma glucose, contents of NGF, thermal and nociceptive tests, and RAR-β expression were evaluated. All diabetic rats developed neuropathy. The treatment with vitamin A and ATRA reverted similarly the sensorial disturbances, which was associated with increased contents of NGF and RAR-β expression. Our results indicate that the administration of vitamin A has the same therapeutic effect as ATRA on peripheral neuropathy and suggest its potential therapeutic use in patients with diabetes. PMID:24768685

  3. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    SciTech Connect

    Louisse, Jochem; Verwei, Miriam; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  4. Anti-apoptotic role of retinoic acid in the inner ear of noise-exposed mice

    SciTech Connect

    Ahn, Joong Ho; Kang, Hun Hee; Kim, Young-Jin; Chung, Jong Woo . E-mail: jwchung@amc.seoul.kr

    2005-09-23

    Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise.

  5. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  6. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  7. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  8. Potential for use of retinoic acid as an oral vaccine adjuvant

    PubMed Central

    Mwanza-Lisulo, Mpala; Kelly, Paul

    2015-01-01

    Despite the heavy burden of diarrhoeal disease across much of the tropical world, only two diarrhoea-causing pathogens, cholera and rotavirus, are the target of commercially available vaccines. Oral vaccines are generally less immunogenic than the best parenteral vaccines, but the reasons for this are still debated. Over the past decade, several lines of evidence from work in experimental animals have suggested that all-trans retinoic acid (ATRA), a form of vitamin A which is highly transcriptionally active, can alter the homing receptor expression of T lymphocytes. Increased expression of α4β7 integrin and the chemokine receptor CCR9 following exposure to ATRA can be used to redirect T cells to the gut. Early work in human volunteers suggests that oral ATRA administration 1 h prior to dosing with oral typhoid vaccine can augment secretion of specific IgA against vaccine-derived lipopolysaccharide into gut secretions. In this review, we set out the rationale for using ATRA in this way and assess its likely applicability to vaccination programmes for protection of children in low-income countries from the considerable mortality caused by diarrhoeal disease. Comparison of recent work in experimental animals, non-human primates and men suggests that a more detailed understanding of ATRA dosage and kinetics will be important to taking forward translational work into human vaccinology. PMID:25964457

  9. Retinoic acid treatment of fibroblasts causes a rapid decrease in ( sup 3 H)inositol uptake

    SciTech Connect

    Sinha, R.; Creek, K.E.; Silverman-Jones, C.; de Luca, L.M. )

    1989-04-01

    NIH 3T3 fibroblasts treated with all-trans-retinoic acid (RA) showed a dramatic decrease in the uptake of ({sup 3}H)inositol compared to solvent-treated controls. The onset of RA-induced inhibition of ({sup 3}H)inositol uptake was rapid with a 10-15% decrease occurring after 2-3 h of RA exposure and 60-70% reduction after 16 h of RA treatment. A progressive dose-dependent decrease in inositol uptake was found as the concentration of RA increased from 10{sup {minus}8} to 10{sup {minus}5} M and the effect was fully reversible within 48 h after RA removal. RA inhibition of inositol uptake was also observed in 3T3-Swiss and Balb/3T3 cells but not in two virally transformed 3T3 cell lines. Phlorizin, amiloride, and monensin inhibited inositol uptake by 66, 74, and 58%, respectively, and this inhibition was additive when the cells were treated with RA as well as these inhibitors. A decreased incorporation of ({sup 3}H)inositol into polyphosphoinositides was also observed in RA-treated cells but not to the same extent as for ({sup 3}H)inositol uptake. In conclusion, RA treatment of 3T3 fibroblasts decreases the uptake of ({sup 3}H)inositol by up to 70% within 8 to 10 h at near physiological concentrations in a reversible and specific manner.

  10. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis.

    PubMed

    Hellmann-Regen, Julian; Heuser, Isabella; Regen, Francesca

    2013-12-01

    Worldwide bans on incandescent light bulbs (ILBs) drive the use of compact fluorescent light (CFL) bulbs, which emit ultraviolet (UV) radiation. Potential health issues of these light sources have already been discussed, including speculation about the putative biological effects on light exposed tissues, yet the underlying mechanisms remain unclear. We hypothesized photoisomerization of all-trans retinoic acid (at-RA), a highly light sensitive morphogen, into biologically less active isomers, as a mechanism mediating biological effects of CFLs. Local at-RA is anti-carcinogenic, entrains molecular rhythms and is crucial for skin homeostasis. Therefore, we quantified the impact of CFL irradiation on extra- and intracellular levels of RA isomers using an epidermal cell culture model. Moreover, a biologically relevant impact of CFL irradiation was assessed using highly at-RA-sensitive human neuroblastoma cells. Dose-dependent conversion of extra- and intracellular at-RA into the biologically less active 13-cis-isomer was significantly higher in CFL vs. ILB exposure and completely preventable by employing a UV-filter. Moreover, pre-irradiation of culture media by CFL attenuated at-RA-specific effects on cell viability in human at-RA-sensitive cells in a dose-dependent manner. These findings point towards a biological relevance of CFL-induced at-RA decomposition, providing a mechanism for CFL-mediated effects on environmental health. PMID:24135972

  11. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

    PubMed

    Rampal, Ritika; Awasthi, Amit; Ahuja, Vineet

    2016-07-01

    All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. However, as a result of limited human data, we investigated the effect of retinoic acid on human dendritic cells and CD4(+) T cell responses in the presence of polarizing (Th1/Th9/Th17) and inflammatory (LPS-induced dendritic cells) conditions. We report a novel role of retinoic acid in an inflammatory setup, where retinoic acid-primed dendritic cells (retinoic acid-monocyte-derived dendritic cells) up-regulated CCR9(+)T cells, which were observed to express high levels of IFN-γ in the presence of Th1/Th17 conditions. Retinoic acid-monocyte-derived dendritic cells, under Th17 conditions, also favored the induction of IL-17(+) T cells. Furthermore, in the presence of TGF-β1 and IL-4, retinoic acid-monocyte-derived dendritic cells inhibited IL-9 and induced IFN-γ expression on T cells. Experiments with naïve CD4(+) T cells, activated in the presence of Th1/Th17 conditions and absence of DCs, indicated that retinoic acid inhibited IFN-γ and IL-17 expression on T cells. These data revealed that in the face of inflammatory conditions, retinoic acid, in contrast from its anti-inflammatory role, could maintain or aggravate the intestinal inflammation. PMID:26980802

  12. Retinoic acid biosynthesis is impaired in human and murine endometriosis.

    PubMed

    Pierzchalski, Keely; Taylor, Robert N; Nezhat, Ceana; Jones, Jace W; Napoli, Joseph L; Yang, Guixiang; Kane, Maureen A; Sidell, Neil

    2014-10-01

    Endometriosis is characterized by the presence of endometrial glands and stroma in extrauterine sites. Our objective was to determine whether endometriotic lesions (ELs) from women with endometriosis have altered retinoid levels compared with their eutopic endometrium, and to test the hypothesis that defects in all-trans retinoic acid (ATRA) biosynthesis in EL is related to reduced expression of cellular retinol-binding protein type 1 (RBP1). Retinoids were evaluated by liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography in eutopic endometrial biopsies (EBs) and ELs from 42 patients with pathologically confirmed endometriosis. The ATRA levels were reduced, whereas the retinol and retinyl ester concentrations were elevated in EL compared with EB tissue. Similar results were found in a mouse model of endometriosis that used green fluorescent protein-positive endometrial tissue injected into the peritoneum of syngeneic hosts to mimic retrograde menses. The ATRA biosynthesis in vitro in retinol-treated primary human endometrial stromal cell (ESC) cultures derived from ELs was reduced compared with that of ESCs derived from patient-matched EBs. Correspondingly, RBP1 expression was reduced in tissue and ESCs derived from EL versus EB. Rbp1(-/-) mice showed reduced endometrial ATRA concentrations compared with wild type, associated with loss of tissue organization and hypercellularity. These findings provide the first quantitative measurements of ATRA in human endometrium and endometriosis, demonstrating reduced ATRA in ectopic tissue and corresponding ESC cultures. Quantitation of retinoids in murine endometriosis and in Rbp1(-/-) mice supports the contention that impaired ATRA synthesis caused by reduced RBP1 promotes an "endometriosis phenotype" that enables cells to implant and grow at ectopic sites. PMID:25143356

  13. The Effect of a Retinoic Acid Derivative on Cell-Growth Inhibition in a Pulmonary Carcinoma Cell Line.

    PubMed

    Akita, Tomomi; Horiguchi, Michiko; Ozawa, Chihiro; Terada, Hiroshi; Yamashita, Chikamasa

    2016-01-01

    Pulmonary carcinoma is a major cause of cancer-related death worldwide. Because the prognosis remains poor, the development of novel therapeutic approaches is highly desirable. In this study, we investigated the effect of Tamibarotene (Am80), a retinoic acid derivative, on the growth of human lung adenocarcinoma cell line A549. Our ultimate goal in this study is to provide pulmonary carcinoma therapy with a new approach. First, we treated A549 cells with Am80 to clarify the effect of cell-growth inhibition. Am80 significantly reduced the viability of A549 cells in a dose- and time-dependent manner. The IC50 value, which was determined using CellTiter-Glo Luminescent Cell Viability assay, of Am80 and all-trans retinoic acid (ATRA) against A549 cells at 6 d was 49.1±8.1 µM and 92.3±8.0 µM, respectively. Furthermore, Am80 reduced the anchorage-independent cell-growth ability of A549 cells. However, it was not an apoptosis-mediated mechanism. These results suggest that Am80 can be used as an effective, novel cell-growth inhibitor in lung adenocarcinoma. PMID:26934924

  14. ERAP140/Nbla10993 is a novel favorable prognostic indicator for neuroblastoma induced in response to retinoic acid.

    PubMed

    Arai, Hiroshi; Ozaki, Toshinori; Niizuma, Hidetaka; Nakamura, Yohko; Ohira, Miki; Takano, Kunio; Matsumoto, Masahiko; Nakagawara, Akira

    2008-06-01

    In the present study, we identified a gene termed Nbla10993 whose expression levels are higher in favorable neuroblastomas versus unfavorable ones. Structural analysis showed that Nbla10993 is a novel splicing variant of the ER-associated protein of 140 kDa (ERAP140), which lacks the central acidic as well as the COOH-terminal Cys/His-rich domain. Similarly, ERAP140 was preferentially expressed in favorable neuroblastomas relative to unfavorable ones. During the all-trans-retinoic acid (ATRA)-mediated neuronal differentiation in neuroblastoma-derived RTBM1 cells, the expression levels of ERAP140/Nbla10993 increased at the mRNA level. Consistent with these observations, the luciferase reporter analysis demonstrated that the ERAP140/Nbla10993 promoter responds to ATRA. In addition, the immunoprecipitation/immunoblotting experiments showed that ERAP140 forms a stable complex with RARalpha but not with RXRalpha in cells, suggesting that ERAP140 is involved in RAR-mediated transcriptional regulation. Furthermore, the quantitative real-time PCR analysis using 109 primary neuroblastoma samples demonstrated that the expression levels of ERAP140/Nbla10993 significantly correlate with a better clinical outcome of neuroblastomas. Taken together, our present findings indicate that ERAP140/Nbla10993 plays an important role in the regulation of ATRA-mediated neuronal differentiation, and is a novel member of prognostic indicators for neuroblastoma. PMID:18497940

  15. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid.

    PubMed

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-07-14

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14(-/-) mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16(INK4a) and p21(CIP1/WAF) (1), increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14(-/-) mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions. PMID:25991604

  16. Synthesis and characterization of a new retinoic acid ECPIRM as potential chemotherapeutic agent for human cutaneous squamous carcinoma.

    PubMed

    Zhang, Mengli; Tao, Yue; Ma, Pengcheng; Wang, Dechuan; He, Chundi; Cao, Yuping; Wei, Jun; Li, Lingjun; Tao, Lei

    2015-01-01

    Cutaneous squamous cell carcinoma (CSCC) is one of the most common cancers worldwide, requiring effective therapeutic interventions. Retinoids are important chemopreventive and therapeutic agents for a variety of human cancers including CSCC. In this study we synthesized a novel retinoic derivative N-(4-ethoxycarbonylphenyl) isoretinamide (ECPIRM) and evaluated its biological activities and possible mechanisms in human cutaneous squamous cell lines. ECPIRM had better inhibitory effect on the proliferation of squamous carcinoma cells SCL-1 and colo-16, compared with All-trans retinoic acid and 13-cis retinoic acid. ECPIRM had less toxicity to normal keratinocyte cell line HaCaT. Mechanistically, ECPIRM induced G1 cell cycle arrest in SCL-1 cells, via the downregulation of CDK2, CDK4, cycling D1 and cyclin E expression and upregulation of p21. In addition, these effects were at least partially due to the inhibition of JNK/ ERK-AP-1 signaling pathway by ECPIRM. Importantly, these effects of ECPIRM are independent of the classical retinoid receptor pathway, suggesting that the novel compound will have less side-effects in chemotherapy. These findings demonstrate that ECPIRM is a potential inhibitor of MPAK-AP-1 pathway, and is a potential therapeutic agent against CSCC. PMID:25991427

  17. Retinoic acid binding properties of the lipocalin member beta-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods.

    PubMed

    Zsila, Ferenc; Bikádi, Zsolt; Simonyi, Miklós

    2002-12-01

    Interaction between the Vitamin A derivative all-trans retinoic acid and the lipocalin member bovine beta-lactoglobulin (BLG) was studied by circular dichroism (CD) and electronic absorption spectroscopy at different pH values. In neutral and alkaline solutions achiral retinoic acid forms a non-covalent complex with the protein as indicated by the appearance of a negative Cotton effect around 347 nm associated to the narrowed and red shifted pi-pi(*) absorption band of the ligand. The induced optical activity is attributed to the helical distortion of the conjugated chain caused by the chiral protein binding environment. As the disappearing CD activity showed in the course of CD-pH titration experiment, retinoic acid molecules dissociate from BLG upon acidification but this release is completely reversible as proved by the reconstitution of the CD and absorption spectra after setting the pH back to neutral. This unique behavior of the complex is explained by the conformational change of BLG (Tanford transition) which involves a movement of the EF loop at the entrance of the central cavity from open to closed conformation in the course of pH lowering. From these results it was inferred that retinoic acid binds within the hydrophobic calyx of the beta-barrel. PMID:12429354

  18. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  19. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line

    PubMed Central

    Di Lascio, Simona; Saba, Elena; Belperio, Debora; Raimondi, Andrea; Lucchetti, Helen; Fornasari, Diego; Benfante, Roberta

    2016-01-01

    PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making. PMID:26902400

  20. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor.

    PubMed

    Gely-Pernot, Aurore; Raverdeau, Mathilde; Teletin, Marius; Vernet, Nadège; Féret, Betty; Klopfenstein, Muriel; Dennefeld, Christine; Davidson, Irwin; Benoit, Gérard; Mark, Manuel; Ghyselinck, Norbert B

    2015-10-01

    All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells. PMID:26427057

  1. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor

    PubMed Central

    Gely-Pernot, Aurore; Raverdeau, Mathilde; Teletin, Marius; Vernet, Nadège; Féret, Betty; Klopfenstein, Muriel; Dennefeld, Christine; Davidson, Irwin; Benoit, Gérard; Mark, Manuel; Ghyselinck, Norbert B.

    2015-01-01

    All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells. PMID:26427057

  2. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    PubMed

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  3. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  4. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  5. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  6. Enhancement of differentiation induction and upregulation of CCAAT/enhancer-binding proteins and PU.1 in NB4 cells treated with combination of ATRA and valproic acid.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Yoshino, Yuta; Hatta, Yoshihiro; Horikoshi, Akira; Aizawa, Shin; Takei, Masami; Takeuchi, Jin; Takagi, Norio; Toyoda, Hiroo

    2014-03-01

    The effects of all-trans retinoic acid (ATRA) and valproic acid (VPA), alone and in combination, on the human acute promyelocytic leukemia (APL) cell line NB4 were investigated in view of differentiation induction and growth inhibition. After 48 h of treatment, not only ATRA but also VPA induced differentiation in NB4 cells, and their combination further augmented the differentiation activity. Furthermore, the upregulation of transcription factors including CCAAT/enhancer-binding proteins (CEBPα, β, ε) and PU.1, which are known to be critical factors for normal myelopoiesis, granulocytic maturation and being repressed in APL, concurred with the differentiation induction. A significant cell growth inhibition was observed after the treatment with VPA, which was further strengthened by the addition of ATRA. Given the importance of C/EBPs and PU.1 in myeloid development, these results, thus, suggest that restoration of the normal function of the myeloid cell transcriptional machinery is a major molecular mechanism underlying the differentiation induction in NB4. Therefore, these results may provide novel insights into a possible combinational therapeutic approach for APL patients. PMID:24379003

  7. Expression and Subcellular Localization of Retinoic Acid Receptor-α (RARα) in Healthy and Varicocele Human Spermatozoa: Its Possible Regulatory Role in Capacitation and Survival.

    PubMed

    Perrotta, Ida; Perri, Mariarita; Santoro, Marta; Panza, Salvatore; Caroleo, Maria C; Guido, Carmela; Mete, Annamaria; Cione, Erika; Aquila, Saveria

    2015-01-01

    Varicocele, an abnormal tortuosity and dilation of veins of the pampiniform plexus, is the most common identifiable and correctable cause of male infertility. It is now becoming apparent that signaling through vitamin A metabolites, such as all-trans retinoic acid (ATRA), is indispensable for spermatogenesis and disruption of retinoic acid receptor-α (RARα) function may result in male sterility and aberrant spermatogenesis. Herein, we investigated by Western blot and immunogold electron microscopy the expression profiles and subcellular localization of RARα in healthy and varicocele human sperm; in addition, we analyzed the effects of ATRA on cholesterol efflux and sperm survival utilizing enzymatic colorimetric CHOD-PAP method and Eosin Y technique, respectively. In varicocele samples, a strong reduction of RARα expression was observed. Immunogold labeling evidenced cellular location of RARα also confirming its reduced expression in "varicocele" samples. Sperm responsiveness to ATRA treatment was reduced in varicocele sperm. Our study showed that RARα is expressed in human sperm probably with a dual role in promoting both cholesterol efflux and survival. RARα might be involved in the pathogenesis of varicocele as its expression is reduced in pathologic samples. Thus, ATRA administration in procedures for artificial insemination or dietary vitamin A supplementation might represent a promising therapeutic approach for the management of male infertility. PMID:24992177

  8. Involvement of protein kinase C α and δ activities on the induction of the retinoic acid system in mammary cancer cells.

    PubMed

    Berardi, Damián E; Bessone, María I Díaz; Motter, Andrea; Bal de Kier Joffé, Elisa D; Urtreger, Alejandro J; Todaro, Laura B

    2015-10-01

    It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment. PMID:24838400

  9. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia.

    PubMed

    Skavland, J; Jørgensen, K M; Hadziavdic, K; Hovland, R; Jonassen, I; Bruserud, O; Gjertsen, B T

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial. PMID:22829110

  10. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    PubMed Central

    Skavland, J; Jørgensen, K M; Hadziavdic, K; Hovland, R; Jonassen, I; Bruserud, Ø; Gjertsen, B T

    2011-01-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial. PMID:22829110

  11. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  12. Antagonists of retinoic acid receptors (RARs) are potent growth inhibitors of prostate carcinoma cells

    PubMed Central

    Hammond, L A; Krinks, C H Van; Durham, J; Tomkins, S E; Burnett, R D; Jones, E L; Chandraratna, R A S; Brown, G

    2001-01-01

    Novel synthetic antagonists of retinoic acid receptors (RARs) have been developed. To avoid interference by serum retinoids when testing these compounds, we established serum-free grown sub-lines (>3 years) of the prostate carcinoma lines LNCaP, PC3 and DU145. A high affinity pan-RAR antagonist (AGN194310, Kd for binding to RARs = 2–5 nM) inhibited colony formation (by 50%) by all three lines at 16–34 nM, and led to a transient accumulation of flask-cultured cells in G1 followed by apoptosis. AGN194310 is 12–22 fold more potent than all-trans retinoic acid (ATRA) against cell lines and also more potent in inhibiting the growth of primary prostate carcinoma cells. PC3 and DU145 cells do not express RARβ, and an antagonist with predominant activity at RARβ and RARγ (AGN194431) inhibited colony formation at concentrations (∼100 nM) commensurate with a Kd value of 70 nM at RARγ. An RARα antagonist (AGN194301) was less potent (IC50 ∼200 nM), but was more active than specific agonists of RARα and of βγ. A component(s) of serum and of LNCaP-conditioned medium diminishes the activity of antagonists: this factor is not the most likely candidates IGF-1 and EGF. In vitro studies of RAR antagonists together with data from RAR-null mice lead to the hypothesis that RARγ-regulated gene transcription is necessary for the survival and maintenance of prostate epithelium. The increased potencies of RAR antagonists, as compared with agonists, suggest that antagonists may be useful in the treatment of prostate carcinoma. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487280

  13. Significance of ETV6 rearrangement in acute promyelocytic leukemia with t(15;17)/promyelocytic leukemia/retinoic acid receptor alpha

    PubMed Central

    GAO, NA; YU, WEN-ZHENG; WANG, XUE-XIA; SUN, JIAN-RONG; YU, NING; LIU, ZENG-YAN; LIU, XIAO-DAN; LIU, REN-TONG; FENG, RUI; DING, BU-TONG; SANG, TAN; GUO, NONG-JIAN

    2016-01-01

    Acute promyelocytic leukemia (APL) is a common subtype of acute myeloid leukemia in China. Since the application of arsenic trioxide and all-trans retinoic acid in the treatment of APL, the prognosis has greatly improved. However, ~20% of patients with APL relapse upon completing chemotherapy. Decreasing the relapse rate and incidence of early mortality may pose the greatest challenges for the future management of APL. Recently, Ets variant 6 (ETV6) was reported to be involved in a variety of translocations associated with hematological malignancies of myeloid and lymphoid origin. To date, little is known about the clinical implication of ETV6 rearrangement in APL. In the present study, ETV6 rearrangement was examined by split-signal fluorescence in situ hybridization in 258 adults with APL, and its association with the clinical features and outcomes of the patients was analyzed. The data suggested that ETV6 rearrangement may be an independent unfavorable prognostic factor for overall survival in APL patients. PMID:27313723

  14. Differential effects of retinoic acid on the growth of isogenic metastatic and non-metastatic breast cancer cell lines and their association with distinct expression of retinoic acid receptor beta isoforms 2 and 4.

    PubMed

    Hayashi, Ken; Goodison, Steven; Urquidi, Virginia; Tarin, David; Lotan, Reuben; Tahara, Eiichi

    2003-03-01

    The human retinoic acid receptor beta (RARbeta) has three isoforms (beta1, beta2, and beta4), which play important, distinct roles in mediating the effects of retinoic acid on cell growth and apoptosis. Whereas RARbeta2 is a potent inhibitor of breast cancer cell proliferation, RARbeta4 can act as a dominant-negative repressor of RARbeta2-mediated growth suppression. In this study we investigated the effects of all-trans-retinoic acid (ATRA) on two clones derived from the breast cancer cell line MDA-MB-435: a non-metastatic clone (NM-2C5) and a metastatic clone (M-4A4). ATRA treatment of the NM-2C5 cells resulted in growth inhibition and apoptosis, whereas the M-4A4 cells were resistant to ATRA. Analyses of the expression of RARbeta isoforms revealed that the sensitive NM-2C5 clone expressed only RARbeta2, whereas the resistant M-4A4 cells expressed both RARbeta2 and RARbeta4 mRNA and protein. ATRA treatment increased RARbeta2 mRNA level in NM-2C5 cells, whereas the same treatment of the M-4A4 cells resulted in an increase in RARbeta4 and a decrease in RARbeta2 mRNA. ATRA treatment of NM-2C5 cells increased the protein levels of the histone acetyl transferases p300 and CBP, suppressed the level of histone deacetylase and increased the level of acetylated histone H4. ATRA also decreased Bcl-2 and increased Bax and decreased VEGF. In contrast, the same treatment of the M-4A4 cells resulted in opposite effects. These results suggest that the effects of ATRA on the growth of the metastatic and non-metastatic breast cancer cell lines depend on the expression of RARbeta isoforms and that the expression of RARbeta4 may contribute to metastatic properties. PMID:12579317

  15. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  16. Mefenamic Acid

    MedlinePlus

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  17. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  18. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  19. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  20. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  1. Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells.

    PubMed

    Eck-Enriquez, K; Kiefer, T L; Spriggs, L L; Hill, S M

    2000-06-01

    It has been established that melatonin (Mlt) and retinoic acid, individually, inhibit the proliferation of the estrogen receptor-alpha (ER alpha)-positive MCF-7 breast cancer cell line. Our laboratory has previously demonstrated that Mlt and all-trans-retinoic acid (atRA) not only inhibit the proliferation, but also induce apoptosis of MCF-7 cells when used in a sequential regimen of Mlt followed 24 h later by atRA. Using this same MCF-7 breast cancer cell line, we investigated the potential pathways through which apoptosis is being induced. We found that treatment of MCF-7 cells with Mlt for 24 h before the addition of atRA decreased the protein levels of the death suppressor, Bcl-2, and increased, although with different time courses, the levels of the death promoters, Bax and Bak; however, there was no change in the levels of the tumor suppressor gene, p53. MCF-7 cells treated sequentially with Mlt and atRA also demonstrated an enhanced sensitivity to the apoptotic effects of atRA, which did not appear to be due to increased expression of the retinoic acid receptors, RAR alpha or RXR alpha, but rather to enhanced transcriptional activity of the RAR alpha. These data suggest that the sequential treatment regimen of Mlt and atRA may induce apoptosis by modulation of members of the Bcl-2 family of proteins. Thus, this combinatorial regimen, which reduces the concentration of atRA needed for clinical efficacy while enhancing its anti-tumorigenic activity, could be of great therapeutic benefit, and may, in fact, specifically induce the regression of established breast tumors due to its apoptosis-promoting effects. PMID:10965999

  2. Human renal mesangial cells are a target for the anti-inflammatory action of 9-cis retinoic acid

    PubMed Central

    Manzano, V Moreno; Muñoz, J C Sepúlveda; Jiménez, J Rodriguez; Puyol, M Rodriguez; Puyol, D Rodriguez; Kitamura, M; Cazaña, F J Lucio

    2000-01-01

    Mesangial cells play an active role in the inflammatory response to glomerular injury. We have studied in cultured human mesangial cells (CHMC) several effects of 9-cis retinoic acid (9-cRA), an activator of both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). 9-cRA inhibited foetal calf serum-induced CHMC proliferation. It also prevented CHMC death induced by the inflammatory mediator H2O2. This preventive effect was not due to any increase in H2O2 catabolism and it persisted even when both catalase and glutathione synthesis were inhibited. Finally, 9-cRA diminished monocyte adhesion to FCS-stimulated CHMC. Interestingly, the retinoid also inhibited in FCS-stimulated cells the protein expression of two mesangial adhesion molecules, fibronectin and osteopontin, but it did not modify the protein expression of intercellular adhesion molecule-1 and vascular adhesion molecule-1. All major RARs and RXRs isotypes were expressed in CHMC regardless of the presence or absence of 9-cRA. Transcripts to RAR-α, RAR-β and RXR-α increased after incubation with 9-cRA whereas RXR-γ was inhibited, suggesting a major role for RARs and RXRs in 9-cRA-anti-inflammatory effects. 9-cRA was toxic only at 50 μM (a concentration 50–5000 times higher than required for the effects above). Cell death occurred by apoptosis, whose onset was associated with a pronounced increase in catalase activity and reduced glutathione content, being more effectively induced by all-trans retinoic acid. Modulation of the oxidant/antioxidant balance failed to inhibit apoptosis. We conclude that mesangial cells might be a target for the treatment of inflammatory glomerulopathies with 9-cRA. PMID:11139446

  3. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  4. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  5. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    PubMed

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  6. Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization.

    PubMed

    Xu, Lijun; Feng, Zhiping; Sinha, Deepak; Ducos, Bertrand; Ebenstein, Yuval; Tadmor, Arbel D; Gauron, Carole; Le Saux, Thomas; Lin, Shuo; Weiss, Shimon; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    2012-09-01

    All-trans retinoic acid (RA) is a key player in many developmental pathways. Most methods used to study its effects in development involve continuous all-trans RA activation by incubation in a solution of all-trans RA or by implanting all-trans RA-soaked beads at desired locations in the embryo. Here we show that the UV-driven photo-isomerization of 13-cis RA to the trans-isomer (and vice versa) can be used to non-invasively and quantitatively control the concentration of all-trans RA in a developing embryo in time and space. This facilitates the global or local perturbation of developmental pathways with a pulse of all-trans RA of known concentration or its inactivation by UV illumination. In zebrafish embryos in which endogenous synthesis of all-trans RA is impaired, incubation for as little as 5 minutes in 1 nM all-trans RA (a pulse) or 5 nM 13-cis RA followed by 1-minute UV illumination is sufficient to rescue the development of the hindbrain if performed no later than bud stage. However, if subsequent to this all-trans RA pulse the embryo is illuminated (no later than bud stage) for 1 minute with UV light (to isomerize, i.e. deactivate, all-trans RA), the rescue of hindbrain development is impaired. This suggests that all-trans RA is sequestered in embryos that have been transiently exposed to it. Using 13-cis RA isomerization with UV light, we further show that local illumination at bud stage of the head region (but not the tail) is sufficient to rescue hindbrain formation in embryos whose all-trans RA synthetic pathway has been impaired. PMID:22874920

  7. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.

    PubMed

    Garzon, R; Pichiorri, F; Palumbo, T; Visentini, M; Aqeilan, R; Cimmino, A; Wang, H; Sun, H; Volinia, S; Alder, H; Calin, G A; Liu, C-G; Andreeff, M; Croce, C M

    2007-06-14

    MicroRNAs (miRNAs) are small non-coding RNAs of 19-25 nucleotides that are involved in the regulation of critical cell processes such as apoptosis, cell proliferation and differentiation. However, little is known about the role of miRNAs in granulopoiesis. Here, we report the expression of miRNAs in acute promyelocytic leukemia patients and cell lines during all-trans-retinoic acid (ATRA) treatment by using a miRNA microarrays platform and quantitative real time-polymerase chain reaction (qRT-PCR). We found upregulation of miR-15a, miR-15b, miR-16-1, let-7a-3, let-7c, let-7d, miR-223, miR-342 and miR-107, whereas miR-181b was downregulated. Among the upregulated miRNAs, miR-107 is predicted to target NFI-A, a gene that has been involved in a regulatory loop involving miR-223 and C/EBPa during granulocytic differentiation. Indeed, we have confirmed that miR-107 targets NF1-A. To get insights about ATRA regulation of miRNAs, we searched for ATRA-modulated transcription factors binding sites in the upstream genomic region of the let-7a-3/let-7b cluster and identified several putative nuclear factor-kappa B (NF-kappaB) consensus elements. The use of reporter gene assays, chromatin immunoprecipitation and site-directed mutagenesis revealed that one proximal NF-kappaB binding site is essential for the transactivation of the let-7a-3/let-7b cluster. Finally, we show that ATRA downregulation of RAS and Bcl2 correlate with the activation of known miRNA regulators of those proteins, let-7a and miR-15a/miR-16-1, respectively. PMID:17260024

  8. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    PubMed Central

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  9. Role of retinoic acid metabolizing cytochrome P450s, CYP26, in inflammation and cancer

    PubMed Central

    Stevison, Faith; Jing, Jing; Tripathy, Sasmita; Isoherranen, Nina

    2016-01-01

    Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer and what roles atRA metabolizing enzymes have in immune responses and cancers. PMID:26233912

  10. Retinoic Acid-Treated Pluripotent Stem Cells Undergoing Neurogenesis Present Increased Aneuploidy and Micronuclei Formation

    PubMed Central

    Sartore, Rafaela C.; Campos, Priscila B.; Trujillo, Cleber A.; Ramalho, Bia L.; Negraes, Priscilla D.; Paulsen, Bruna S.; Meletti, Tamara; Costa, Elaine S.; Chicaybam, Leonardo; Bonamino, Martin H.; Ulrich, Henning; Rehen, Stevens K.

    2011-01-01

    The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies

  11. An Alternative Retinoic Acid-responsive Stra6 Promoter Regulated in Response to Retinol Deficiency*

    PubMed Central

    Laursen, Kristian B.; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J.

    2015-01-01

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ−/− mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low. PMID:25544292

  12. Identification of RALDH2 as a Visually Regulated Retinoic Acid Synthesizing Enzyme in the Chick Choroid

    PubMed Central

    Hollaway, Lindsey R.; Lam, Wengtse; Li, Nan; Napoli, Joseph L.

    2012-01-01

    Purpose. All-trans-retinoic acid (atRA) has been implicated in the local regulation of scleral proteoglycan synthesis in vivo. The purpose of the present study was to identify the enzymes involved in the synthesis of atRA during visually guided ocular growth, the cells involved in modulation of atRA biosynthesis in the choroid, and the effect of choroid-derived atRA on scleral proteoglycan synthesis. Methods. Myopia was induced in White leghorn chicks by form deprivation for 10 days, followed by up to 15 days of unrestricted vision (recovery). Expression of atRA synthesizing enzymes was evaluated by semiquantitative qRT-PCR, in situ hybridization, and immunohistochemistry. atRA synthesis was measured in organ cultures of isolated choroids using LC-tandem MS quantification. Scleral proteoglycan synthesis was measured in vitro by the incorporation of 35SO4 in CPC-precipitable glycosaminoglycans. Results. RALDH2 was the predominant RALDH transcript in the choroid (>100-fold that of RALDH3). RALDH2 mRNA was elevated after 12 and 24 hours of recovery (60% and 188%, respectively; P < 0.01). The atRA concentration was significantly higher in cultures of choroids from 24-hour to 15-day recovering eyes than in paired controls (∼195%; P < 0.01). Choroid conditioned medium from recovering choroids inhibited proteoglycan synthesis to 43% of controls (P < 0.02, paired t-test; n = 16) and produced a relative inhibition corresponding to a RA concentration of 7.20 × 10−8 M. Conclusions. The results of this study suggest that RALDH2 is the major retinal dehydrogenase in the chick choroid and is responsible for increased atRA synthesis in response to myopic defocus. PMID:22323456

  13. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    PubMed

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low. PMID:25544292

  14. Interactive Roles of Ets-1, Sp1, and Acetylated Histones in the Retinoic Acid-dependent Activation of Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A Gene Transcription*

    PubMed Central

    Kumar, Prerna; Garg, Renu; Bolden, Gevoni; Pandey, Kailash N.

    2010-01-01

    Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles of all-trans retinoic acid (ATRA), Ets-1, Sp1, and histone acetylation on the transcriptional regulation and function of the Npr1 gene. Deletion analysis of the Npr1 promoter and luciferase assays showed that ATRA enhanced a 16-fold Npr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein in both atrial natriuretic peptide (ANP)-dependent and -independent manner. As confirmed by gel shift and chromatin immunoprecipitation assays, ATRA enhanced the binding of both Ets-1 and Sp1 to the Npr1 promoter. The retinoic acid receptor α (RARα) was recruited by Ets-1 and Sp1 to form a transcriptional activator complex with their binding sites in the Npr1 promoter. Interestingly, ATRA also increased the acetylation of histones H3 and H4 and enhanced their recruitment to Ets-1 and Sp1 binding sites within the Npr1 promoter. Collectively, the present results demonstrate that ATRA regulates Npr1 gene transcription and GC activity of the receptor by involving the interactive actions of Ets-1, Sp1, and histone acetylation. PMID:20864529

  15. Effects of Diet and Strain on Mouse Serum and Tissue Retinoid Concentrations

    PubMed Central

    Obrochta, Kristin M.; Kane, Maureen A.; Napoli, Joseph L.

    2014-01-01

    The relationship between dietary vitamin A and all-trans-retinoic acid levels in serum and tissues had not been quantified. We determined the impact of dietary vitamin A on retinoid levels in serum, liver, kidney, testis, and epididymal white adipose of five mouse strains: AKR/J; BALB/cByJ; C3H/HeJ; C57BL/6J; 129S1/SvImJ. Retinoids were quantified in mice fed copious vitamin A (lab chow, ≥20 IU/g) followed by one month feeding a vitamin A-sufficient diet (4 IU/g), or after three generations of feeding a vitamin A-sufficient diet. Retinol and retinyl esters were measured by high-performance liquid chromatography with ultraviolet absorbance detection. All-trans-retinoic acid was quantified by liquid chromatography tandem mass spectrometry. The amounts of dietary vitamin A had long-term strain-specific effects on tissue retinyl ester, retinol and all-trans-retinoic acid concentrations. Three generations of feeding a vitamin A-sufficient diet decreased all-trans-retinoic acid in most tissues of most strains, in some cases more than 60%, compared to a diet with copious vitamin A. With both diets, all-trans-retinoic acid concentrations maintained an order of liver ≈ testis > kidney > white adipose tissue ≈ serum. Neither retinol nor all-trans-retinoic acid in serum reflected all-trans-retinoic acid concentrations in tissues. Strain and tissue-specific differences in retinol and all-trans-retinoic acid altered by different amounts of dietary vitamin A could have profound effects on retinoid action. This would be the case especially with the increased all-trans-retinoic acid values associated with the amounts of vitamin A and its precursors (carotenoids) in chow diets. PMID:24911926

  16. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  17. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  18. Treatment of Children with APL (Acute Promyelocytic Leukemia)

    MedlinePlus

    ... drug similar to vitamin A called all-trans retinoic acid (ATRA). ATRA alone can often put APL into ... a problem called differentiation syndrome (formerly known as retinoic acid syndrome ). This can include breathing problems from fluid ...

  19. CSK Controls Retinoic Acid Receptor (RAR) Signaling: a RAR-c-SRC Signaling Axis Is Required for Neuritogenic Differentiation▿

    PubMed Central

    Dey, Nandini; De, Pradip K.; Wang, Mu; Zhang, Hongying; Dobrota, Erika A.; Robertson, Kent A.; Durden, Donald L.

    2007-01-01

    Herein, we report the first evidence that c-SRC is required for retinoic acid (RA) receptor (RAR) signaling, an observation that suggests a new paradigm for this family of nuclear hormone receptors. We observed that CSK negatively regulates RAR functions required for neuritogenic differentiation. CSK overexpression inhibited RA-mediated neurite outgrowth, a result which correlated with the inhibition of the SFK c-SRC. Consistent with an extranuclear effect of CSK on RAR signaling and neurite outgrowth, CSK overexpression blocked the downstream activation of RAC1. The conversion of GDP-RAC1 to GTP-RAC1 parallels the activation of c-SRC as early as 15 min following all-trans-retinoic acid treatment in LA-N-5 cells. The cytoplasmic colocalization of c-SRC and RARγ was confirmed by immunofluorescence staining and confocal microscopy. A direct and ligand-dependent binding of RAR with SRC was observed by surface plasmon resonance, and coimmunoprecipitation studies confirmed the in vivo binding of RARγ to c-SRC. Deletion of a proline-rich domain within RARγ abrogated this interaction in vivo. CSK blocked the RAR-RA-dependent activation of SRC and neurite outgrowth in LA-N-5 cells. The results suggest that transcriptional signaling events mediated by RA-RAR are necessary but not sufficient to mediate complex differentiation in neuronal cells. We have elucidated a nongenomic extranuclear signal mediated by the RAR-SRC interaction that is negatively regulated by CSK and is required for RA-induced neuronal differentiation. PMID:17325034

  20. MicroRNA Mediates DNA De-methylation Events Triggered By Retinoic Acid During Neuroblastoma Cell Differentiation

    PubMed Central

    Das, Sudipto; Foley, Niamh; Bryan, Kenneth; Watters, Karen M; Bray, Isabella; Murphy, Derek M; Buckley, Patrick G; Stallings, Raymond L

    2010-01-01

    Neuroblastoma is an often fatal pediatric cancer arising from precursor cells of the sympathetic nervous system. 13-Cis retinoic acid is included in the treatment regime for patients with high-risk disease, and a similar derivative, all-trans retinoic acid (ATRA) causes neuroblastoma cell lines to undergo differentiation. The molecular signaling pathways involved with ATRA induced differentiation are complex, and the role that DNA methylation changes might play are unknown. The purpose of this study was to evaluate the genome-wide effects of ATRA on DNA methylation using methylated DNA immunoprecipitation applied to microarrays representing all known promoter and CpG islands. 402 gene promoters became demethylated, while 88 were hypermethylated post-ATRA. mRNA expression microarrays revealed that 82 of the demethylated genes were over-expressed by >2 fold, while 13 of the hyper methylated genes were under-expressed. Gene ontology analysis indicated that de-methylated and re-expressed genes were enriched for signal transduction pathways, including NOS1, which is required for neural cell differentiation. As a potential mechanism for the DNA methylation changes, we demonstrate the down-regulation of methyltransferases, DNMT1 and DNMT3B, along with the up-regulation of endogenous microRNAs targeting them. Ectopic over-expression of miR-152, targeting DNMT1, also negatively impacted cell invasiveness and anchorage independent growth, contributing in part to the differentiated phenotype. We conclude that functionally important, miRNA-mediated DNA de-methylation changes contribute to the process of ATRA induced differentiation resulting in the activation of NOS1, a critical determinant of neural cell differentiation. Our findings illustrate the plasticity and dynamic nature of the epigenome during cancer cell differentiation. PMID:20841484

  1. G-CSF signaling can differentiate promyelocytes expressing a defective retinoic acid receptor: evidence for divergent pathways regulating neutrophil differentiation.

    PubMed

    Maun, Noel A; Gaines, Peter; Khanna-Gupta, Arati; Zibello, Theresa; Enriquez, Louie; Goldberg, Laura; Berliner, Nancy

    2004-03-01

    Several lines of investigation suggest that granulocyte colony-stimulating factor (G-CSF) augments all-trans retinoic acid (ATRA)-induced neutrophil differentiation in acute promyelocytic leukemia (APL). We sought to characterize the relationship between G-CSF- and ATRA-mediated neutrophil differentiation. We established a G-CSF receptor-transduced promyelocytic cell line, EPRO-Gr, derived from the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent EPRO cell line harboring a dominant-negative retinoic acid receptor alpha (RARalpha). In EPRO-Gr, neutrophil differentiation occurs either in GM-CSF upon addition of ATRA or upon induction with G-CSF alone. Transient transfection of EPRO-Gr cells with a RARE-containing reporter plasmid demonstrates increased activity in the presence of ATRA, but not G-CSF, while STAT3 phosphorylation occurs only in response to G-CSF. This suggests that ATRA-mediated differentiation of EPRO-Gr cells occurs via a RARE-dependent, STAT3-independent pathway, while G-CSF-mediated differentiation occurs via a RARE-independent, STAT3-dependent pathway. ATRA and G-CSF thus regulate differentiation by divergent pathways. We characterized these pathways in the APL cell line, NB4. ATRA induction of NB4 cells resulted in morphologic differentiation and up-regulation of C/EBPepsilon and G-CSFR, but not in STAT3 phosphorylation. The addition of G-CSF with ATRA during NB4 induction resulted in STAT3 phosphorylation but did not enhance differentiation. These results may elucidate how G-CSF and ATRA affect the differentiation of primary and ATRA-resistant APL cells. PMID:14604978

  2. Effect of Retinoic Acid on Gene Expression in Human Conjunctival Epithelium: Secretory phospholipase A2 mediates retinoic acid induction of MUC16.

    PubMed Central

    Hori, Yuichi; Spurr-Michaud, Sandra J.; Russo, Cindy Leigh; Argüeso, Pablo; Gipson, Ilene K.

    2005-01-01

    Purpose. How vitamin A contributes to the maintenance of the wet-surfaced phenotype at the ocular surface is not well understood. We sought to identify vitamin A responsive genes in ocular surface epithelia using gene microarray analysis of cultures of a human conjunctival epithelial cell line (HCjE) grown with all-trans-retinoic acid (RA). The analysis showed that secretory phospholipase A2 Group IIA (sPLA2-IIA) was the gene most upregulated by RA, followed by the membrane-associated mucin MUC16 at a later time point. Since eicosanoids, the product of arachidonic acid generated by the phospholipase A2 family, have been shown to increase mucin production, we sought to determine if sPLA2 mediates the RA induction of MUC16. Methods. HCjE cells were cultured with or without RA for 3, 6, 24 and 48 hours. Complementary RNA prepared from RNA of the HCjE cells was hybridized to human gene chips (HG-U133A; Affymetrix) and analyzed using Rosetta Resolver software. Microarray data on mucin expression were validated by real-time PCR. To investigate whether sPLA2 is associated with RA-induced MUC16 upregulation, HCjE cells were incubated with RA and the broad spectrum PLA2 inhibitor, aristolochic acid (ArA) or the specific sPLA2-IIA inhibitor LY315920, followed by analysis of MUC16 mRNA and protein by real-time PCR and Western blot analysis. Results. After RA addition, 28 transcripts were upregulated and 6 downregulated by over 2.0-fold (p < 0.01) at both 3 and 6 hours (early phase). Eighty gene transcripts were upregulated and 45 downregulated at both 24 and 48 hours (late phase). Group IIA sPLA2, significantly upregulated by 24 hours, and MUC16 were the most upregulated RNAs by RA at 48 hours. sPLA2 upregulation by RA was confirmed by Western blot analysis. When HCjE cells were incubated with RA plus ArA or specific inhibitor of sPLA2-IIA, LY315920, the RA-induced MUC16 mRNA was significantly reduced (p < 0.01). Conclusion. The retinoic acid-associated upregulation of

  3. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  4. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  5. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  6. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  7. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  8. [Gastric Acid].

    PubMed

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  9. The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis.

    PubMed

    Shao, Xuejing; Liu, Yujia; Li, Yangling; Xian, Miao; Zhou, Qian; Yang, Bo; Ying, Meidan; He, Qiaojun

    2016-01-01

    The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply this therapy to other types of acute myeloid leukemia (AML). However, AML, with the exception of APL, fails to respond to differentiation therapy. Therefore, research strategies to further sensitize cells to retinoids and to extend the range of AMLs that respond to retinoids beyond APLs are urgently needed. In this study, we showed that TAK165, a HER2 inhibitor, exhibited a strong synergy with ATRA to promote AML cell differentiation. We observed that TAK165 sensitized the AML cells to ATRA-induced cell growth inhibition, G0/G1 phase arrest, CD11b expression, mature morphologic changes, NBT reduction and myeloid regulator expression. Unexpectedly, HER2 pathway might not be essential for TAK165-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of the RARα/STAT1 axis. Furthermore, the MEK/ERK cascade regulated the activation of STAT1. Taken together, our study is the first to evaluate the synergy of TAK165 and ATRA in AML cell differentiation and to assess new opportunities for the combination of TAK165 and ATRA as a promising approach for future differentiation therapy. PMID:27074819

  10. The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis

    PubMed Central

    Shao, Xuejing; Liu, Yujia; Li, Yangling; Xian, Miao; Zhou, Qian; Yang, Bo; Ying, Meidan; He, Qiaojun

    2016-01-01

    The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply this therapy to other types of acute myeloid leukemia (AML). However, AML, with the exception of APL, fails to respond to differentiation therapy. Therefore, research strategies to further sensitize cells to retinoids and to extend the range of AMLs that respond to retinoids beyond APLs are urgently needed. In this study, we showed that TAK165, a HER2 inhibitor, exhibited a strong synergy with ATRA to promote AML cell differentiation. We observed that TAK165 sensitized the AML cells to ATRA-induced cell growth inhibition, G0/G1 phase arrest, CD11b expression, mature morphologic changes, NBT reduction and myeloid regulator expression. Unexpectedly, HER2 pathway might not be essential for TAK165-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of the RARα/STAT1 axis. Furthermore, the MEK/ERK cascade regulated the activation of STAT1. Taken together, our study is the first to evaluate the synergy of TAK165 and ATRA in AML cell differentiation and to assess new opportunities for the combination of TAK165 and ATRA as a promising approach for future differentiation therapy. PMID:27074819

  11. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells

    PubMed Central

    Shen, Miaoqing; Bunaciu, Rodica P.; Congleton, Johanna; Jensen, Holly A.; Sayam, Lavanya G.; Varner, Jeffrey D.; Yen, Andrew

    2014-01-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation. PMID:21740303

  12. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  13. Induced Differentiation of Human Myeloid Leukemia Cells into M2 Macrophages by Combined Treatment with Retinoic Acid and 1α,25-Dihydroxyvitamin D3

    PubMed Central

    Takahashi, Hiromichi; Hatta, Yoshihiro; Iriyama, Noriyoshi; Hasegawa, Yuichiro; Uchida, Hikaru; Nakagawa, Masaru; Makishima, Makoto; Takeuchi, Jin; Takei, Masami

    2014-01-01

    Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3. PMID:25409436

  14. Constituents within pulp mill effluent deplete retinoid stores in white sucker and bind to rainbow trout retinoic acid receptors and retinoid X receptors.

    PubMed

    Alsop, Derek; Hewitt, Mark; Kohli, Mohan; Brown, Scott; Van Der Kraak, Glen

    2003-12-01

    Wild female and male white sucker (Catostomus commersoni) inhabiting an area receiving pulp mill effluent had reduced hepatic levels of retinol, didehydroretinol, retinyl esters, and didehydroretinyl esters, while vitamin E levels were unaffected. This disruption of the retinoid system led us to test methanol and dichloromethane extracts from the effluent of 11 pulp mills from across Canada for their ability to bind to rainbow trout (Oncorhynchus mykiss) retinoic acid receptors (RARs) from the gill and retinoid X receptors (RXRs) from the liver. Concentrated extracts of the final effluent from 6 of the 11 pulp mills were able to displace greater than 25% of the receptor-bound [3H]all-trans retinoic acid (RA) or [3H]9-cis RA from trout RARs and RXRs, respectively. The ability of the extracts to displace retinoic acid did not appear to be linked to the pulping or treatment processes. Moreover, extracts with the greatest activity came from thermomechanical mills, suggesting the compounds may originate from the wood furnish. In addition, extracts prepared from wood furnish (wood chips: white spruce [50%], lodgepole pine [47%], and balsam fir [3%]) from one mill were able to displace [3H]RA from the RARs and RXRs. The 4-hydroxy RA, a metabolite of RA that has been shown to be generated in greater quantities in fish exposed to P450-inducing xenobiotics, was able to displace [3H]all-trans RA from trout RARs as effectively as unlabeled all-trans RA. These results suggest that pulp mill effluent may impact the retinoid system of fish at multiple sites, either by decreasing hepatic retinoid stores or through contributing additional ligands (from the wood furnish) that can bind to RA receptors. PMID:14713038

  15. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland. PMID:27052215

  16. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    PubMed

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs. PMID:25541526

  17. Cross-talk between glucocorticoid and retinoic acid signals involving glucocorticoid receptor interaction with the homoeodomain protein Pbx1.

    PubMed Central

    Subramaniam, Nanthakumar; Campión, Javier; Rafter, Ingalill; Okret, Sam

    2003-01-01

    Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'. PMID:12487626

  18. Vitamin A and immune function: retinoic acid modulates population dynamics in antigen receptor and CD38-stimulated splenic B cells.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2005-10-01

    Vitamin A and its active metabolite, all-trans retinoic acid (RA), regulate the antibody response in vivo, although the underlying mechanisms are not well understood. We have investigated the regulation by RA of B cell population dynamics and Ig gene expression in purified splenic mouse B cells stimulated through the B cell antigen receptor (BCR) and/or CD38, a BCR coreceptor. After ligation of the BCR and/or CD38, B cells became more heterogeneous in size. RA substantially restrained this change, concomitant with inhibition of cell proliferation. To examine B cell heterogeneity more closely, we categorized stimulated B cells by size (forward angle light scatter) and determined cell division dynamics, germ-line Ig heavy chain gene transcription and surface IgG1 (sIgG1) expression. Flow cytometric analysis of carboxyfluorescein diacetate succinimidyl ester-labeled B cells costained for sIgG1 showed that the more proliferative groups of B cells were smaller, whereas cells expressing more sIgG1 were larger. RA enriched the latter population, whereas cell division frequency in general and the number of smaller B cells that had undergone division cycles were reduced. Although RA significantly inhibited Ig germ-line transcript levels in the total B cell population, CD19(-)IgG1(+) B cells, which represent a more differentiated phenotype, were enriched. Furthermore, pax-5 mRNA was decreased and activation-induced cytidine deaminase mRNA was increased in RA-treated stimulated B cells. Thus, RA regulated factors known to be required for Ig class switch recombination and modulated the population dynamics of ligation-stimulated B cells, while promoting the progression of a fraction of B cells into differentiated sIgG-expressing cells. PMID:16093312

  19. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib

    PubMed Central

    Ishijima, Naoki; Kanki, Keita; Shimizu, Hiroki; Shiota, Goshi

    2015-01-01

    To improve the outcome of cancer chemotherapy, strategies to enhance the efficacy of anticancer drugs are required. Sorafenib is the only drug to prolong overall survival of the patients with hepatocellular carcinoma (HCC), however, the outcome is still not satisfactory. Retinoids, vitamin A derivatives, have been known to exhibit inhibitory effects on various cancers including HCC. In this study, we investigated the effects of combined treatment using sorafenib and retinoids including all-trans retinoic acid (ATRA), NIK-333, and Am80 on HCC cells. Cell viability assays in six HCC cell lines, HepG2, PLC/PRF/5, HuH6, HLE, HLF, and Hep3B, revealed that 5 and 10 μM ATRA, concentrations that do not exert cytotoxic effects, enhanced the cytotoxicity of sorafenib, being much more effective than NIK-333 and Am80. We found that ATRA induced AMP-activated protein kinase activation, which was followed by reduced intracellular ATP level. Gene expression analysis revealed that ATRA decreased the expression of glycolytic genes such as GLUT-1 and LDHA. In the combination treatment using ATRA and sorafenib, increased apoptosis, followed by the activation of p38 MAPK and JNK, the upregulation and translocation of Bax to mitochondria, and the activation of caspase-3, was observed. Suppression of AMP-activated protein kinase by siRNA restored the viability of the cells treated with ATRA and sorafenib. Our results thus indicate that ATRA is useful for enhancing the cytotoxicity of sorafenib against HCC cells by regulating the energy metabolism of HCC cells. PMID:25683251

  20. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib.

    PubMed

    Ishijima, Naoki; Kanki, Keita; Shimizu, Hiroki; Shiota, Goshi

    2015-05-01

    To improve the outcome of cancer chemotherapy, strategies to enhance the efficacy of anticancer drugs are required. Sorafenib is the only drug to prolong overall survival of the patients with hepatocellular carcinoma (HCC), however, the outcome is still not satisfactory. Retinoids, vitamin A derivatives, have been known to exhibit inhibitory effects on various cancers including HCC. In this study, we investigated the effects of combined treatment using sorafenib and retinoids including all-trans retinoic acid (ATRA), NIK-333, and Am80 on HCC cells. Cell viability assays in six HCC cell lines, HepG2, PLC/PRF/5, HuH6, HLE, HLF, and Hep3B, revealed that 5 and 10 μM ATRA, concentrations that do not exert cytotoxic effects, enhanced the cytotoxicity of sorafenib, being much more effective than NIK-333 and Am80. We found that ATRA induced AMP-activated protein kinase activation, which was followed by reduced intracellular ATP level. Gene expression analysis revealed that ATRA decreased the expression of glycolytic genes such as GLUT-1 and LDHA. In the combination treatment using ATRA and sorafenib, increased apoptosis, followed by the activation of p38 MAPK and JNK, the upregulation and translocation of Bax to mitochondria, and the activation of caspase-3, was observed. Suppression of AMP-activated protein kinase by siRNA restored the viability of the cells treated with ATRA and sorafenib. Our results thus indicate that ATRA is useful for enhancing the cytotoxicity of sorafenib against HCC cells by regulating the energy metabolism of HCC cells. PMID:25683251

  1. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells.

    PubMed

    Best, Monica W; Wu, Juanjuan; Pauli, Samuel A; Kane, Maureen A; Pierzchalski, Keely; Session, Donna R; Woods, Dori C; Shang, Weirong; Taylor, Robert N; Sidell, Neil

    2015-06-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (C x 43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on C x 43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of C x 43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of C x 43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of C x 43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC. PMID:25877907

  2. [Treatment of acute promyelocytic leukemia with trans-retinoic acid. Experience of the Santa Maria Hospital, Medical School of Lisbon].

    PubMed

    De Lacerda, J F; Do Carmo, J A; De Moura, M C; Guerra, M L; Lopes, C; Raposo, J; Melo, A; De Oliveira, J J; De Lacerda, J M

    1994-12-01

    Acute promyelocytic leukemia (APL) is a rare subtype of acute myelogenous leukemia that is usually associated with a fatal hemorrhagic diathesis. All trans-retinoic acid (ATRA) is an active metabolite of vitamin A that differentiates the malignant cell clone, corrects the coagulopathy, and induces complete remission in the vast majority of patients with APL. Between June 1992 and September 1993, 8 patients with APL (4 previously untreated, 3 in first relapse and 1 in second relapse) received ATRA. Complete remission was achieved in 7 patients; in 5 with ATRA alone and in 2 with ATRA followed by cytotoxic chemotherapy due to the development of asymptomatic hyperleukocytosis. The earliest signs of response were the correction of the coagulopathy and an increase in the white blood cell count. Sequential morphological and immunophenotypical analyses of the bone marrow revealed differentiation of the malignant cell clone, in the absence of bone marrow hypoplasia. 4 of 5 patients treated only with ATRA until complete remission had late leukopenia. The most frequent adverse effects were dryness of skin and mucosae, hypertrigliceridemia and hypercholesterolemia, and a moderate increase in liver transaminases. An increase in the white blood cell count was common, and in two cases exceeded 35.0 x 10(9)/l. One of these patients developed multiple thrombosis of the extremities after cytotoxic chemotherapy. We frequently observed an increase in lactic dehydrogenase levels that was concomitant with the peak in the white blood cell count. The only patient on whom complete remission was not achieved was 60 years old, had chronic obstructive pulmonary disease, and died in the third week of therapy with a pulmonary distress syndrome.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7717119

  3. Inactivation of SAG E3 Ubiquitin Ligase Blocks Embryonic Stem Cell Differentiation and Sensitizes Leukemia Cells to Retinoid Acid

    PubMed Central

    Yang, Ruiguo; Xi, Ning; Sun, Yi

    2011-01-01

    Sensitive to Apoptosis Gene (SAG), also known as RBX2 (RING box protein-2), is the RING component of SCF (SKP1, Cullin, and F-box protein) E3 ubiquitin ligase. Our previous studies have demonstrated that SAG is an anti-apoptotic protein and an attractive anti-cancer target. We also found recently that Sag knockout sensitized mouse embryonic stem cells (mES) to radiation and blocked mES cells to undergo endothelial differentiation. Here, we reported that compared to wild-type mES cells, the Sag−/− mES cells were much more sensitive to all-trans retinoic acid (RA)-induced suppression of cell proliferation and survival. While wild-type mES cells underwent differentiation upon exposure to RA, Sag−/− mES cells were induced to death via apoptosis instead. The cell fate change, reflected by cellular stiffness, can be detected as early as 12 hrs post RA exposure by AFM (Atomic Force Microscopy). We then extended this novel finding to RA differentiation therapy of leukemia, in which the resistance often develops, by testing our hypothesis that SAG inhibition would sensitize leukemia to RA. Indeed, we found a direct correlation between SAG overexpression and RA resistance in multiple leukemia lines. By using MLN4924, a small molecule inhibitor of NEDD8-Activating Enzyme (NAE), that inactivates SAG-SCF E3 ligase by blocking cullin neddylation, we were able to sensitize two otherwise resistant leukemia cell lines, HL-60 and KG-1 to RA. Mechanistically, RA sensitization by MLN4924 was mediated via enhanced apoptosis, likely through accumulation of pro-apoptotic proteins NOXA and c-JUN, two well-known substrates of SAG-SCF E3 ligase. Taken together, our study provides the proof-of-concept evidence for effective treatment of leukemia patients by RA-MLN4924 combination. PMID:22110742

  4. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation. PMID:26518675

  5. Cross-talk between glucocorticoid and retinoic acid signals involving glucocorticoid receptor interaction with the homoeodomain protein Pbx1.

    PubMed

    Subramaniam, Nanthakumar; Campión, Javier; Rafter, Ingalill; Okret, Sam

    2003-03-15

    Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'. PMID:12487626

  6. Substrate Specificity and Ligand Interactions of CYP26A1, the Human Liver Retinoic Acid Hydroxylase

    PubMed Central

    Thatcher, Jayne E.; Buttrick, Brian; Shaffer, Scott A.; Shimshoni, Jakob A.; Goodlett, David R.; Nelson, Wendel L.

    2011-01-01

    All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. atRA is also used as a drug, and synthetic atRA analogs and inhibitors of retinoic acid (RA) metabolism have been developed. The hepatic clearance of atRA is mediated primarily by CYP26A1, but design of CYP26A1 inhibitors is hindered by lack of information on CYP26A1 structure and structure-activity relationships of its ligands. The aim of this study was to identify the primary metabolites of atRA formed by CYP26A1 and to characterize the ligand selectivity and ligand interactions of CYP26A1. On the basis of high-resolution tandem mass spectrometry data, four metabolites formed from atRA by CYP26A1 were identified as 4-OH-RA, 4-oxo-RA, 16-OH-RA and 18-OH-RA. 9-cis-RA and 13-cis-RA were also substrates of CYP26A1. Forty-two compounds with diverse structural properties were tested for CYP26A1 inhibition using 9-cis-RA as a probe, and IC50 values for 10 inhibitors were determined. The imidazole- and triazole-containing inhibitors [S-(R*,R*)]-N-[4-[2-(dimethylamino)-1-(1H-imidazole-1-yl)propyl]-phenyl]2-benzothiazolamine (R116010) and (R)-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]-2-benzothiazolamine (R115866) were the most potent inhibitors of CYP26A1 with IC50 values of 4.3 and 5.1 nM, respectively. Liarozole and ketoconazole were significantly less potent with IC50 values of 2100 and 550 nM, respectively. The retinoic acid receptor (RAR) γ agonist CD1530 was as potent an inhibitor of CYP26A1 as ketoconazole with an IC50 of 530 nM, whereas the RARα and RARβ agonists tested did not significantly inhibit CYP26A1. The pan-RAR agonist 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid and the peroxisome proliferator-activated receptor ligands rosiglitazone and pioglitazone inhibited CYP26A1 with IC50 values of 3.7, 4.2, and 8.6 μM, respectively. These data demonstrate that CYP26A1 has high ligand selectivity but accepts structurally related nuclear

  7. Folic acid

    MedlinePlus

    ... in the blood vessel to keep it open. Bipolar disorder. Taking folic acid does not appear to improve the antidepressant effects of lithium in people with bipolar disorder. However, taking folate with the medication valproate improves ...

  8. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  9. ACID RAIN

    EPA Science Inventory

    Acid precipitation has become one of the major environmental problems of this decade. It is a challenge to scientists throughout the world. Researchers from such diverse disciplines as plant pathology, soil science, bacteriology, meteorology and engineering are investigating diff...

  10. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  11. Carnosic acid.

    PubMed

    Birtić, Simona; Dussort, Pierre; Pierre, François-Xavier; Bily, Antoine C; Roller, Marc

    2015-07-01

    Carnosic acid (salvin), which possesses antioxidative and antimicrobial properties, is increasingly exploited within the food, nutritional health and cosmetics industries. Since its first extraction from a Salvia species (∼70 years ago) and its identification (∼50 years ago), numerous articles and patents (∼400) have been published on specific food and medicinal applications of Rosmarinus and Salvia plant extracts abundant in carnosic acid. In contrast, relevant biochemical, physiological or molecular studies in planta have remained rare. In this overview, recent advances in understanding of carnosic acid distribution, biosynthesis, accumulation and role in planta, and its applications are summarised. We also discuss the deficiencies in our understanding of the relevant biochemical processes, and suggest the molecular targets of carnosic acid. Finally, future perspectives and studies related to its potential roles are highlighted. PMID:25639596

  12. Aminocaproic Acid

    MedlinePlus

    Amicar® Oral Solution ... Aminocaproic acid comes as a tablet and a solution (liquid) to take by mouth. It is usually ... it at room temperature and away from excess heat and moisture (not in the bathroom). Throw away ...

  13. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  14. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  15. Identification and characterization of the retinoic acid response elements in the human RIG1 gene promoter

    SciTech Connect

    Jiang, S.-Y.; Wu, M.-S.; Chen, L.-M.; Hung, M.-W.; Lin, H.-E.; Chang, G.-G.; Chang, T.-C. . E-mail: tcchang@ndmctsgh.edu.tw

    2005-06-03

    The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the at

  16. Cilostazol suppresses β-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-β.

    PubMed

    Lee, Hye Rin; Shin, Hwa Kyoung; Park, So Youn; Kim, Hye Young; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2014-11-01

    The accumulation of plaques of β-amyloid (Aβ) peptides, a hallmark of Alzheimer's disease, results from the sequential cleavage of amyloid precursor protein (APP) by activation of β- and γ-secretases. However, the production of Aβ can be avoided by alternate cleavage of APP by α-and γ-secretases. We hypothesized that cilostazol attenuates Aβ production by increasing a disintegrin and metalloproteinase 10 (ADAM10)/α-secretase activity via SIRT1-coupled retinoic acid receptor-β (RARβ) activation in N2a cells expressing human APP Swedish mutation (N2aSwe). To evoke endogenous Aβ overproduction, the culture medium was switched from medium containing 10% fetal bovine serum (FBS) to medium containing 1% FBS, and cells were cultured for 3∼24 hr. After depletion of FBS in media, N2aSwe cells showed increased accumulations of full-length APP (FL-APP) and Aβ in a time-dependent manner (3-24 hr) in association with decreased ADAM10 protein expression. When pretreated with cilostazol (10-30 μM), FL-APP and Aβ levels were significantly reduced, and ADAM10 and α-secretase activities were restored. Furthermore, the effect of cilostazol on ADAM10 expression was antagonized by pretreating Rp-cAMPS and sirtinol and by SIRT1-gene silencing. In the N2aSwe cells overexpressing the SIRT1 gene, ADAM10, and sAPPα levels were significantly elevated. In addition, like all-trans retinoic acid, cilostazol enhanced the protein expressions of RARβ and ADAM10, and the cilostazol-stimulated ADAM10 elevation was significantly attenuated by LE135 (a RARβ inhibitor), sirtinol, and RARβ-gene silencing. In conclusion, cilostazol suppresses the accumulations of FL-APP and Aβ by activating ADAM10 via the upregulation of SIRT1-coupled RARβ. PMID:24903973

  17. Retinoic Acid Receptor γ Regulates B and T Lymphopoiesis via Nestin-Expressing Cells in the Bone Marrow and Thymic Microenvironments.

    PubMed

    Joseph, Chacko; Nota, Celeste; Fletcher, Jessica L; Maluenda, Ana C; Green, Alanna C; Purton, Louise E

    2016-03-01

    Vitamin A has essential but largely unexplained roles in regulating lymphopoiesis. We have previously shown that retinoic acid receptor (RAR) γ-deficient mice have hematopoietic defects, some phenotypes of which were microenvironment induced. Bone marrow (BM) microenvironment cells identified by either their expression of nestin (Nes) or osterix (Osx) have previously been shown to have roles in regulating lymphopoiesis. We therefore conditionally deleted Rarγ in Nes- or Osx-expressing microenvironment cells. Osx cell-specific deletion of Rarγ had no impact on hematopoiesis. In contrast, deletion of Rarγ in Nes-expressing cells resulted in reductions in peripheral blood B cells and CD4(+) T cells, accompanied by reductions of immature PreB cells in BM. The mice lacking Rarγ in Nes-expressing cells also had smaller thymi, with reductions in double-negative 4 T cell precursors, accompanied by reduced numbers of both TCRβ(low) immature single-positive CD8(+) cells and double-positive T cells. In the thymus, Nes expression was restricted to thymic stromal cells that expressed cerebellar degeneration-related Ag 1 and lacked expression of epithelial cell adhesion molecule. These cells expressed platelet-derived growth factor α and high transcript levels of Rars, Cxcl12, and stem cell factor (Scf). Short-term treatment of mice with all-trans retinoic acid resulted in increased PreB lymphopoiesis in BM and an increase in thymic double-negative 4 T cells, inverse to that observed upon Nes cell-specific deletion of Rarγ. Collectively, these studies show that RARγ is a regulator of B and T lymphopoiesis via Nes-expressing cells in the BM and thymic microenvironments, respectively. PMID:26843326

  18. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.

    PubMed

    Subramanian, Umadevi; Kumar, Prerna; Mani, Indra; Chen, David; Kessler, Isaac; Periyasamy, Ramu; Raghavaraju, Giri; Pandey, Kailash N

    2016-07-01

    The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner. PMID:27199456

  19. Gene Expression Profiling Elucidates a Specific Role for RARγ in the Retinoic Acid Induced Differentiation of F9 Teratocarcinoma Stem Cells

    PubMed Central

    Su, Dan; Gudas, Lorraine J

    2010-01-01

    The biological effects of all-trans-retinoic acid (RA), a major active metabolite of retinol, are mainly mediated through its interactions with retinoic acid receptor (RARs α, β, γ) and retinoid X receptor (RXRs α, β, γ) heterodimers. RAR/RXR heterodimers activate transcription by binding to RA-response elements (RAREs or RXREs) in the promoters of primary target genes. Murine F9 teratocarcinoma stem cells have been widely used as a model for cellular differentiation and RA signaling during embryonic development. We identified and characterized genes that are differentially expressed in F9 wild type (Wt) and F9 RAR γ−/− cells, with and without RA treatment, through the use of oligonucleotide based microarrays. Our data indicate that RARγ, in the absence of exogenous RA, modulates gene expression. Genes such as Sfrp2, Tie1, Fbp2, Emp1, and Emp3 exhibited higher transcript levels in RA treated Wt, RARα−/− and RARβ2−/− lines than in RA-treated RARγ−/− cells, and represent specific RARγ targets. Other genes, such as Runx1, were expressed at lower levels in both F9 RARβ2−/− and RARγ−/− cell lines then in F9 Wt and RARα−/−. Genes specifically induced by RA at 6h with the protein synthesis inhibitor cycloheximide in F9 Wt, but not in RARγ−/− cells, included Hoxa3, Hoxa5, Gas1, Cyp26a1, Sfrp2, Fbp2, and Emp1. These genes represent specific primary RARγ targets in F9 cells. Several genes in the Wnt signaling pathway were regulated by RARγ. Delineation of the receptor specific actions of RA with respect to cell proliferation and differentiation should result in more effective therapies with this drug. PMID:18164278

  20. The synthetic retinoid AGN 193109 but not retinoic acid elevates CYP1A1 levels in mouse embryos and Hepa-1c1c7 cells.

    PubMed

    Soprano, D R; Gambone, C J; Sheikh, S N; Gabriel, J L; Chandraratna, R A; Soprano, K J; Kochhar, D M

    2001-07-15

    The synthetic retinoid AGN 193109 is a potent pan retinoic acid receptor (RAR) antagonist. Treatment of pregnant mice with a single oral 1 mg/kg dose of this antagonist on day 8 postcoitum results in severe craniofacial (median cleft face or frontonasal deficiency) and eye malformations in virtually all exposed fetuses. Using differential display analysis, we have determined that CYP1A1 mRNA levels are elevated in mouse embryos 6 h following treatment with AGN 193109. Similarly, an elevation in CYP1A1 mRNA levels, protein levels, and aryl hydrocarbon hydoxylase activity occurs in Hepa-1c1c7 cells, with the maximal elevation observed when the cells were treated with 10(-5) M AGN 193109 for 4 to 8 h. Elevation in CYP1A1 mRNA levels in mouse embryos and Hepa-1c1c7 cells does not occur upon treatment with the natural retinoid, all-trans-retinoic acid. Finally, elevation in CYP1A1 mRNA levels was not observed when mutant Hepa-1c1c7 cells, which are defective in either the aryl hydrocarbon receptor (AhR) or aryl hydrocarbon receptor nuclear translocator (ARNT), were treated with AGN 193109. This suggests that the AhR/ARNT pathway and not the RAR/RXR pathway is mediating the elevation of CYP1A1 mRNA levels by AGN 193109, at least in the Hepa-1c1c7 cells. This is the first example of a retinoid that displays the abililty to regulate both the RAR/RXR and AhR/ARNT transcriptional regulatory pathways. PMID:11446831

  1. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  2. Folic acid

    MedlinePlus

    ... disease called vitiligo, and an inherited disease called Fragile-X syndrome. It is also used for reducing harmful side ... to blood clots (ischemic stroke). Inherited disease called Fragile-X syndrome.Taking folic acid by mouth does not improve ...

  3. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  4. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  5. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  7. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  8. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  9. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  10. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  11. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  12. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  13. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  14. Multipotent hematopoietic cell lines derived from C/EBPalpha(-/-) knockout mice display granulocyte macrophage-colony-stimulating factor, granulocyte- colony-stimulating factor, and retinoic acid-induced granulocytic differentiation.

    PubMed

    Collins, S J; Ulmer, J; Purton, L E; Darlington, G

    2001-10-15

    The transcription factor C/EBPalpha is an important mediator of granulocyte differentiation and regulates the expression of multiple granulocyte-specific genes including the granulocyte-colony-stimulating factor (G-CSF) receptor, neutrophil elastase, and myeloperoxidase. Indeed C/EBPalpha knockout mice display a profound block in granulocyte differentiation. To study this block in granulocytic differentiation in more detail, retroviral vector-mediated transduction of a dominant-negative retinoic acid receptor was used to establish hematopoietic growth factor-dependent, lympho-myeloid progenitor cell lines from the fetal livers of both the C/EBPalpha knockout animals (C/EBPalpha(-/-)) and their heterozygous littermates (C/EBPalpha(+/-)). Surprisingly, the C/EBPalpha(-/-) cell lines displayed significant spontaneous granulocytic differentiation, and this differentiation was markedly enhanced when the cells were stimulated with granulocyte macrophage (GM)-CSF. This GM-CSF-mediated differentiation was associated with the up-regulation of G-CSF receptor mRNA, and the combination of GM-CSF and G-CSF generated more than 95% mature neutrophils in the C/EBPalpha(-/-) cultures. The addition of all-trans retinoic acid also enhanced this granulocytic differentiation of the cultured C/EBPalpha(-/-) cells, indicating that the activated retinoic acid receptors can enhance granulocytic differentiation through a molecular pathway that is independent of C/EBPalpha. These studies clearly indicate that terminal granulocytic differentiation associated with the up-regulation of C/EBPalpha-responsive genes can occur in the absence of C/EBPalpha, and they indicate the existence of multiple independent molecular pathways potentially used by primitive hematopoietic precursors that can lead to the development of mature granulocytes. PMID:11588034

  15. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience. PMID:24797530

  16. Analysis of follicular fluid retinoids in women undergoing in vitro fertilization: retinoic acid influences embryo quality and is reduced in women with endometriosis.

    PubMed

    Pauli, Samuel A; Session, Donna R; Shang, Weirong; Easley, Kirk; Wieser, Friedrich; Taylor, Robert N; Pierzchalski, Keely; Napoli, Joseph L; Kane, Maureen A; Sidell, Neil

    2013-09-01

    Retinol (ROL) and its biologically active metabolite, all-trans retinoic acid (ATRA), are essential for a number of reproductive processes. However, there is a paucity of information regarding their roles in ovarian folliculogenesis, oocyte maturation, and early embryogenesis. The objectives of this study were to quantify and compare peripheral plasma (PP) and follicular fluid (FF) retinoid levels, including ATRA in women undergoing in vitro fertilization (IVF) and to investigate the relationship between retinoid levels and embryo quality. Retinoid levels were evaluated in PP and FF from 79 women undergoing IVF at the time of oocyte retrieval and corresponding embryo quality assessed on a daily basis after retrieval for 3 days until uterine transfer. Analysis compared the retinoid levels with day 3 embryo grades and between endometriosis versus control patients. Results demonstrated distinctive levels of retinoid metabolites and isomers in FF versus PP. There was a significantly larger percentage of high-quality grade I embryos derived from the largest versus smallest follicles. An increase in follicle size also correlated with a >50% increase in FF ROL and ATRA concentrations. Independent of follicle size, FF yielding grade I versus nongrade I embryos showed higher mean levels of ATRA but not ROL. In a nested case-control analysis, control participants had 50% higher mean levels of ATRA in their FF and PP than women with endometriosis. These findings strongly support the proposition that ATRA plays a fundamental role in oocyte development and quality, and that reduced ATRA synthesis may contribute to decreased fecundity of participants with endometriosis. PMID:23427183

  17. Retinoic acid-induced differentiation of human neuroblastoma SH-SY5Y cells is associated with changes in the abundance of G proteins.

    PubMed

    Ammer, H; Schulz, R

    1994-04-01

    Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH-SY5Y cells: Gs alpha, Gi alpha 1, Gi alpha 2, Go alpha, Gz alpha, and G beta. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 mumol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of mu-opioid binding sites, the levels of the inhibitory G proteins Gi alpha 1 and Gi alpha 2 were found to be significantly increased. This coordinate up-regulation is accompanied by functional changes in mu-opioid receptor-stimulated low-Km GTPase, mu-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5'-(beta gamma-imido)triphosphate [Gpp(NH)p; 10 nmol/L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prostaglandin E1 (PGE1) receptors and Gs alpha, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1-stimulated adenylate cyclase activity, but significantly reduced amounts of Gs alpha were found. This down-regulation is paralleled by a decrease in the stimulatory activity of Gs alpha as assessed in S49 cyc- reconstitution assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8133263

  18. IRF4 Is a Critical Gene in Retinoic Acid-Mediated Plasma Cell Formation and Is Deregulated in Common Variable Immunodeficiency-Derived B Cells.

    PubMed

    Indrevær, Randi L; Moskaug, Jan Ø; Paur, Ingvild; Bøhn, Siv K; Jørgensen, Silje F; Blomhoff, Rune; Aukrust, Pål; Fevang, Børre; Blomhoff, Heidi K

    2015-09-15

    In the present study, we aimed at identifying the mechanisms whereby the vitamin A metabolite all-trans retinoic acid (RA) promotes the formation of plasma cells upon stimulation of B cells via the innate immunity receptors TLR9 and RP105. Most often, differentiation of B cells involves the sequential events of class switch recombination and somatic hypermutations characteristic of germinal center reactions, followed by plasma cell formation. By studying the regulatory networks known to drive these reactions, we revealed that RA enhances the expression of the plasma cell-generating transcription factors IFN regulatory factor (IRF)4 and Blimp1, and paradoxically also activation-induced deaminase (AID) involved in somatic hypermutations/class switch recombination, in primary human B cells. IRF4 was identified as a particularly important protein involved in the RA-mediated production of IgG in TLR9/RP105-stimulated B cells. Based on kinetic studies, we present a model suggesting that the initial induction of IRF4 by RA favors AID expression. According to this model, the higher level of IRF4 that eventually arises results in sustained elevated levels of Blimp1. Regarded as a master regulator of plasma cell development, Blimp1 will in turn suppress AID expression and drive the formation of IgG-secreting plasma cells. Notably, we demonstrated IRF4 to be deregulated in B cells from common variable immunodeficiency patients, contributing to the observed aberrant expression of AID in these patients. Taken together, the present study both provides new insight into the mechanisms whereby RA induces differentiation of B cells and identifies IRF4 as a key to understand the defective functions of B cells in common variable immunodeficiency patients. PMID:26276871

  19. Effects of retinoic acid and fenretinide on the c-erbB-2 expression, growth and cisplatin sensitivity of breast cancer cells.

    PubMed Central

    Grunt ThW; Dittrich, E.; Offterdinger, M.; Schneider, S. M.; Dittrich, Ch; Huber, H.

    1998-01-01

    We investigated the effects of all-trans retinoic acid (ATRA) and fenretinide (4-HPR) on c-erbB-2 expression in SK-BR-3, BT-474 and MCF-7 breast cancer cells and on the growth, differentiation, apoptosis and cisplatin (CDDP) sensitivity of SK-BR-3 cells. It has been reported that oestrogen inhibits c-erbB-2 in oestrogen receptor-positive breast cancer cells. Using ELISA, Western and Northern analysis we have demonstrated that ATRA and 4-HPR exert similar effects down-regulating c-erbB-2 protein and mRNA in c-erbB-2-overexpressing SK-BR-3 and BT-474 and in normally expressing MCF-7 cells. Both retinoids inhibit SK-BR-3 cell growth. ATRA induces cellular enlargement and flattening, suggesting epithelial differentiation. 4-HPR causes nuclear and cytoplasmic condensation, DNA fragmentation and externalization of phosphatidylserine, indicating apoptosis. c-erbB-2 expression/activity has been linked to sensitivity against CDDP. Therefore, combinations of ATRA or 4-HPR with CDDP were tested for their anti-proliferative activity. Retinoid-conditioned cells were either exposed to retinoid and CDDP (schedule I, 'continuous retinoid treatment') or to CDDP alone (schedule II, 'retinoid pretreatment'). This retinoid-conditioning followed by CDDP +/- retinoid yields stronger growth inhibition compared with unconditioned cells, which were exposed to CDDP +/- retinoid (schedule III, 'no retinoid pretreatment'). The inefficacy of schedule III indicates that retinoid-conditioning is essential for the improvement of the antiproliferative effect. The interactions in schedules I and II are synergistic for ATRA and CDDP, but slightly antagonistic for 4-HPR and CDDR However, 4-HPR + CDDP is more effective in growth inhibition than each drug alone. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9662255

  20. Proteomic profiling of the stem cell response to retinoic acid and synthetic retinoid analogues: identification of major retinoid-inducible proteins.

    PubMed

    Maltman, Daniel J; Christie, Victoria B; Collings, Jonathan C; Barnard, Jonathan H; Fenyk, Stepan; Marder, Todd B; Whiting, Andrew; Przyborski, Stefan A

    2009-05-01

    The natural retinoid, all-trans retinoic acid (ATRA), is widely used to direct the in vitro differentiation of stem cells. However, substantial degradation and isomerisation of ATRA in response to UV-vis light has serious implications with regard to experimental reproducibility and standardisation. We present the novel application of proteomic biomarker profiling technology to stem cell lysates to rapidly compare the differentiation effects of ATRA with those of two stable synthetic retinoid analogues, EC19 and EC23, which have both been shown to induce differentiation in the embryonal carcinoma cell line TERA2.cl.SP12. MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) protein profiles support previous findings into the functional relationships between these compounds in the TERA2.cl.SP12 line. Subsequent analysis of protein peak data enabled the semi-quantitative comparison of individual retinoid-responsive proteins. We have used ion exchange chromatographic protein separation to enrich for retinoid-inducible proteins, thereby facilitating their identification from SDS-PAGE gels. The cellular retinoid-responsive proteins CRABP-I, CRABP-II, and CRBP-I were up-regulated in response to ATRA and EC23, indicating a bona fide retinoid pathway response to the synthetic compound. In addition, the actin filament regulatory protein profilin-1 and the microtubule regulator stathmin were also elevated following treatment with both ATRA and EC23. The up-regulation of profilin-1 and stathmin associated with retinoid-induced neural differentiation correlates with their known roles in cytoskeletal reorganisation during axonal development. Immunological analysis via western blotting confirmed the identification of CRABP-I, profilin-1 and stathmin, and supported their observed regulation in response to the retinoid treatments. PMID:19381361

  1. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  2. Folic acid - test

    MedlinePlus

    Folic acid is a type of B vitamin. This article discusses the test to measure the amount of folic acid in the blood. ... that may interfere with test results, including folic acid supplements. Drugs that can decrease folic acid measurements ...

  3. Uric acid urine test

    MedlinePlus

    The uric acid urine test measures the level of uric acid in urine. Uric acid level can also be checked using a blood ... help determine the cause of a high uric acid level in the blood. It may also be ...

  4. Methylmalonic acid blood test

    MedlinePlus

    The methylmalonic acid blood test measures the amount of methylmalonic acid in the blood. ... Methylmalonic acid is a substance produced when proteins, called amino acids, in the body break down. The health care ...

  5. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  6. Critical role of tyrosine 277 in the ligand-binding and transactivating properties of retinoic acid receptor alpha.

    PubMed

    Mailfait, S; Belaiche, D; Kouach, M; Dallery, N; Chavatte, P; Formstecher, P; Sablonnière, B

    2000-03-01

    Retinoic acid receptors specifically bind all-trans-retinoic acid (RA) and function as RA-inducible transcriptional regulatory factors. Binding of RA to RARalpha, beta, and gamma is sensitive to nitration with tetranitromethane, a tyrosine-specific modifying reagent. To identify tyrosine residue(s) that are important for RA binding, we carried out chemical modification experiments with purified RARalpha ligand-binding domain (RARalpha-LBD) subjected to partial acid hydrolysis and selective proteolysis. The chemically modified peptides containing each of the three Tyr residues present in the RARalpha-LBD sequence were then analyzed and identified by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC/ESI-MS). We found that RA binding to RARalpha-LBD protected Tyr(277)-containing peptides from nitration. Protection of Tyr(277) could result either from direct masking by the bound ligand or from ligand-induced changes in receptor conformation and tyrosine accessibility. The role of Tyr residues was further documented by site directed mutagenesis using three site-specific RARalpha mutants: Y208A, Y277A, and Y362A. The affinity for RA of these mutant receptors was in the range of that of the wild-type protein, except for the Y277A receptor mutant, which displays a 15-20-fold reduction in affinity and transactivation activity for RA. Whereas mutation of Tyr(277) into alanine had a variable effect on different agonists and antagonists binding, it caused a dramatic decrease of retinoid-dependent transactivation activity. This later effect was also observed with mutation of Tyr(277) into phenylalanine. It is unlikely that major conformational changes are responsible for the lower affinity of RA binding and RA-dependent transactivation since these mutants displayed wild-type dimerization and DNA-binding activities. Limited proteolysis revealed that upon ligand binding, the Y277A mutant induced a conformational change slightly

  7. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  8. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  9. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  10. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene.

    PubMed Central

    MacDonald, P N; Dowd, D R; Nakajima, S; Galligan, M A; Reeder, M C; Haussler, C A; Ozato, K; Haussler, M R

    1993-01-01

    The vitamin D receptor (VDR) binds the vitamin D-responsive element (VDRE) as a heterodimer with an unidentified receptor auxiliary factor (RAF) present in mammalian cell nuclear extracts. VDR also interacts with the retinoid X receptors (RXRs), implying that RAF may be related to the RXRs. Here we demonstrate that highly purified HeLa cell RAF contained RXR beta immunoreactivity and that both activities copurified and precisely coeluted in high-resolution hydroxylapatite chromatography. Furthermore, an RXR beta-specific antibody disrupted VDR-RAF-VDRE complexes in mobility shift assays. These data strongly indicate that HeLa RAF is highly related to or is identical to RXR beta. Consequently, the effect of the 9-cis retinoic acid ligand for RXRs was examined in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated gene expression systems. Increasing concentrations of 9-cis retinoic acid (1 nM to 1 microM) markedly reduced 1,25(OH)2D3-dependent accumulation of osteocalcin mRNA in osteoblast-like ROS 17/2.8 cells. All-trans retinoic acid also interfered with vitamin D responsiveness, but it was consistently less potent than the 9-cis isomer. Transient transfection studies revealed that attenuation by 9-cis retinoic acid was at the transcriptional level and was mediated through interactions at the osteocalcin VDRE. Furthermore, overexpression of both RXR beta and RXR alpha augmented 1,25(OH)2D3 responsiveness in transient expression studies. Direct analysis of VDRE binding in mobility shift assays demonstrated that heteromeric interactions between VDR and RXR were enhanced by 1,25(OH)2D3 and were not affected appreciably by 9-cis retinoic acid, except that inhibition was observed at high retinoid concentrations. These data suggest a regulatory mechanism for osteocalcin gene expression that involves 1,25(OH)2D3-induced heterodimerization of VDR and unliganded RXR. 9-cis retinoic acid may attenuate 1,25(OH)2D3 responsiveness by diverting RXRs away from VDR

  11. Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasion in lung cancer cells

    PubMed Central

    2013-01-01

    Background All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance. Results We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly, ATRA treatment induces the translocation of RARα to the plasma membrane, where it colocalizes with Akt. Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARα-Akt interaction. Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with 15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt, through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARβ2 and p53. In contrast, over-expression of the inactive form of Akt restores RARβ2 expression in cells treated with ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes

  12. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  13. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  14. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  15. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  16. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  17. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel is used to clear the bumps, lesions, and swelling caused by rosacea (a skin disease that ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat acne. Azelaic acid ...

  18. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  19. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  20. Keratinocyte lipid fluidity under the influence of cholesterols, hydrocortisones, "active lipid", tocopherol and retinoic acid--a fluorescence polarization study with regard to physiological and pathophysiological epidermopoiesis and its therapeutic accessibility.

    PubMed

    Bonnekoh, B; Daefler, S; Krueger, G R; Mahrle, G

    1991-01-01

    Lipid fluidity of freshly isolated human (H) and guinea pig (GP) keratinocytes (K) was determined as the reciprocal of diphenylhexatriene (DPH) fluorescence polarization (P-value), the temperature being kept at 25 degrees C and cell density standardized to 550,000 per ml (level of statistical significance a less than 0.05). An experimental model involving short-term incubations (2.5 hours, 37 degrees C) of GPK in 1% ethanolic lipid solutions (15 mg lipid agent per ml ethanol) was set up to investigate accumulation a) of cholesterol due to terminal differentiation of keratinocytes and b) of cholesteryl sulfate due to the lack of steroid sulfatase activity in recessive X-linked ichthyosis (RXLI). In comparison to the control including 1% ethanol (P = 0.291 +/- 0.004), significant rigidifying effects were demonstrated for cholesteryl hemisuccinate (0.331 +/- 0.005) and cholesteryl sulfate (0.310 +/- 0.002). Correspondingly, a significant increase of the P-value was also induced by cholesteryl hemisuccinate in HK. Rigidification of GPK by a preincubation with cholesteryl sulfate (P = 0.306 +/- 0.002) could be antagonized by a subsequent short-term incubation with "active lipid (mixture 721)" (0.285 +/- 0.003, a less than 0.05) which may be relevant for future therapeutic strategies in RXLI. Other steran molecules such as hydrocortisone-21-hemisuccinate or hydrocortisone acetate did not affect lipid fluidity. With regard to the therapeutic potency of retinoids in epidermopoietic disorders, incubations of HK with all-trans-retinoic-acid were compared to those with also lipophilic vitamin E, i.e. d-alpha-tocopherol, for 2.5 hours at 37 degrees C using 1% DMSO as a solvent.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1893078

  1. Folic acid - test

    MedlinePlus

    ... folic acid measurements include: Alcohol Aminosalicylic acid Birth control pills Estrogens Tetracyclines Ampicillin Chloramphenicol Erythromycin Methotrexate Penicillin Aminopterin Phenobarbital Phenytoin Drugs to treat malaria

  2. Oxalic acid poisoning

    MedlinePlus

    Symptoms of oxalic acid poisoning include: Abdominal pain Burns and blisters where the acid contacted the skin Collapse Convulsions Mouth pain Shock Throat pain Tremors (unintentional trembling) Vomiting

  3. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  4. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  5. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests. PMID:12024802

  6. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  7. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  8. [Amino acids in saliva].

    PubMed

    Klinger, G; Gruhn, K

    1984-01-01

    Total amino acids in saliva and free and peptide-bound amino acids from 21 saliva samples were determined. The contents of amino acids was 25 mmol/1; total nitrogen content was 78-80 mmol/1. Amino acids consist of Prolin in 25%. Some patients were examined before and after application of the depot estrogen ethinyl estradiosulfonat, which stimulates the assimilation of protein. After application, amino acids increased and the authors found a shift between the single amino acids. Estrogen medication induced an increase in proteins with the character of collagens. Clinical effects are discussed. (author's modified) PMID:6240853

  9. Induction of CYP26A1 by Metabolites of Retinoic Acid: Evidence That CYP26A1 Is an Important Enzyme in the Elimination of Active Retinoids

    PubMed Central

    Topletz, Ariel R.; Tripathy, Sasmita; Foti, Robert S.; Shimshoni, Jakob A.; Nelson, Wendel L.

    2015-01-01

    All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD+, suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action. PMID:25492813

  10. During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein

    PubMed Central

    2011-01-01

    Introduction Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. Methods In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. Results Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions

  11. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, ... discusses poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  12. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  13. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  14. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  15. Aminolevulinic Acid Topical

    MedlinePlus

    Aminolevulinic acid is used in combination with photodynamic therapy (PDT; special blue light) to treat actinic keratoses (small crusty ... skin cancer) of the face or scalp. Aminolevulinic acid is in a class of medications called photosensitizing ...

  16. Acid-fast stain

    MedlinePlus

    The acid-fast stain is a laboratory test that determines if a sample of tissue, blood, or other body ... dye. The slide is then washed with an acid solution and a different stain is applied. Bacteria ...

  17. Uric acid - blood

    MedlinePlus

    Uric acid is a chemical created when the body breaks down substances called purines. Purines are found in some ... dried beans and peas, and beer. Most uric acid dissolves in blood and travels to the kidneys. ...

  18. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  19. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  20. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  1. Acid-fast stain

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003766.htm Acid-fast stain To use the sharing features on this page, please enable JavaScript. The acid-fast stain is a laboratory test that determines ...

  2. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  3. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  4. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  5. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  6. Boric acid poisoning

    MedlinePlus

    ... boric acid poisoning usually occurs when someone swallows powdered roach-killing products that contain the chemical. Chronic ... vein (IV) Medicines to treat symptoms Note: Activated charcoal does not effectively treat (absorb) boric acid. For ...

  7. Lactic acid test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  8. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  9. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  10. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  11. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  12. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  13. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  14. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  15. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  17. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  18. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  3. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  4. Demospongic Acids Revisited

    PubMed Central

    Kornprobst, Jean-Michel; Barnathan, Gilles

    2010-01-01

    The well-known fatty acids with a Δ5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32) and from some terrestrial plants with short acyl chains (C18–C19). Finally, the Δ5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs). This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between Δ5,9 fatty acids and other NMI FAs. PMID:21116406

  5. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  6. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age

    PubMed Central

    Owusu, Sarah A.; Ross, A. Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism–plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  7. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age.

    PubMed

    Owusu, Sarah A; Ross, A Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism-plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  8. IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid.

    PubMed

    Rafa, Hayet; Saoula, Houria; Belkhelfa, Mourad; Medjeber, Oussama; Soufli, Imene; Toumi, Ryma; de Launoit, Yvan; Moralès, Olivier; Nakmouche, M'hamed; Delhem, Nadira; Touil-Boukoffa, Chafia

    2013-07-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract, which are clinically present as 1 of the 2 disorders, Crohn's disease (CD) or ulcerative colitis (UC) (Rogler 2004). The immune dysregulation in the intestine plays a critical role in the pathogenesis of IBD, involving a wide range of molecules, including cytokines. The aim of this work was to study the involvement of T-helper 17 (Th17) subset in the bowel disease pathogenesis by the nitric oxide (NO) pathway in Algerian patients with IBD. We investigated the correlation between the proinflammatory cytokines [(interleukin (IL)-17, IL-23, and IL-6] and NO production in 2 groups of patients. We analyzed the expression of messenger RNAs (mRNAs) encoding Th17 cytokines, cytokine receptors, and NO synthase 2 (NOS2) in plasma of the patients. In the same way, the expression of p-signal transducer and activator of transcription 3 (STAT3) and NOS2 was measured by immunofluorescence and immunohistochemistry. We also studied NO modulation by proinflammatory cytokines (IL-17A, IL-6, tumor necrosis factor α, or IL-1β) in the presence or absence of all-trans retinoic acid (At RA) in peripheral blood mononuclear cells (PBMCs), monocytes, and in colonic mucosa cultures. Analysis of cytokines, cytokine receptors, and NOS2 transcripts revealed that the levels of mRNA transcripts of the indicated genes are elevated in all IBD groups. Our study shows a significant positive correlation between the NO and IL-17A, IL-23, and IL-6 levels in plasma of the patients with IBD. Interestingly, the correlation is significantly higher in patients with active CD. Our study shows that both p-STAT3 and inducible NOS expression was upregulated in PBMCs and colonic mucosa, especially in patients with active CD. At RA downregulates NO production in the presence of proinflammatory cytokines for the 2 groups of patients. Collectively, our study indicates that the IL-23/IL-17A axis plays a pivotal role

  9. Comparison of the Function and Expression of CYP26A1 and CYP26B1, the two Retinoic Acid Hydroxylases

    PubMed Central

    Topletz, Ariel R.; Thatcher, Jayne E.; Zelter, Alex; Lutz, Justin D.; Tay, Suzanne; Nelson, Wendel L.; Isoherranen, Nina

    2011-01-01

    All-trans-retinoic acid (atRA) is an important signaling molecule in all chordates. The cytochrome P450 enzymes CYP26 are believed to partially regulate cellular concentrations of atRA via oxidative metabolism and hence affect retinoid homeostasis and signaling. CYP26A1 and CYP26B1 are atRA hydroxylases that catalyze formation of similar metabolites in cell systems. However, they have only 40% sequence similarity suggesting differences between the two enzymes. The aim of this study was to determine whether CYP26A1 and CYP26B1 have similar catalytic activity, form different metabolites from atRA and are expressed in different tissues in adults. The mRNA expression of CYP26A1 and CYP26B1 correlated between human tissues except for human cerebellum in which CYP26B1 was the predominant CYP26 and liver in which CYP26A1 dominated. Quantification of CYP26A1 and CYP26B1 protein in human tissues was in agreement with the mRNA expression and showed correlation between the two isoforms. Qualitatively, recombinant CYP26A1 and CYP26B1 formed the same primary and sequential metabolites from atRA. Quantitatively, CYP26B1 had a lower Km (19nM) and Vmax (0.8pmol/min/pmol) than CYP26A1 (Km=50nM and Vmax=10pmol/min/pmol) for formation of 4-OH-RA. The major atRA metabolites 4-OH-RA, 18-OH-RA and 4-oxo-RA were all substrates of CYP26A1 and CYP26B1, and CYP26A1 had a 2–10 fold higher catalytic activity towards all substrates tested. This study shows that CYP26A1 and CYP26B1 are qualitatively similar RA hydroxylases with overlapping expression profiles. CYP26A1 has higher catalytic activity than CYP26B1 and seems to be responsible for metabolism of atRA in tissues that function as a barrier for atRA exposure. PMID:22020119

  10. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  11. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  12. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  13. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  14. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  15. Recovery of organic acids

    SciTech Connect

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  16. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    EPA Science Inventory

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  17. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  18. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  19. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  20. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  1. EFFECTS OF ACID PRECIPITATION

    EPA Science Inventory

    Recent reviews of available data indicate that precipitation in a large region of North America is highly acidic when its pH is compared with the expected pH value of 5.65 for pure rain water in equilibrium with CO2. A growing body of evidence suggests that acid rain is responsib...

  2. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  3. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  4. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  5. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  6. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  7. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  8. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  9. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  10. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  11. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  12. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  13. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  14. WASTE ACID DETOXIFICATION AND RECLAMATION

    EPA Science Inventory

    This Environmental Security Technology Certification Program (ESTCP) project demonstrated the Waste Acid Detoxification and Reclamation (WADR) systems ability to recover waste electropolish acid solutions generated during the manufacturing of gun-tubes, and reuse the clean acid. ...

  15. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  16. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  17. Aminolevulinic Acid Topical

    MedlinePlus

    ... in combination with photodynamic therapy (PDT; special blue light) to treat actinic keratoses (small crusty or scaly ... photosensitizing agents. When aminolevulinic acid is activated by light, it damages the cells of actinic keratosis lesions.

  18. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  19. Uric acid - urine

    MedlinePlus

    ... to filter fluids and waste normally (chronic glomerulonephritis ) Lead poisoning Long-term (chronic) alcohol use Risks There are ... Elsevier Saunders; 2011:chap 28. Read More Gout Lead poisoning Liver disease Polycythemia vera Uric acid - blood Update ...

  20. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... is used to treat certain infections caused by bacteria, including infections of the ears, lungs, sinus, skin, ... antibiotics. It works by stopping the growth of bacteria. Clavulanic acid is in a class of medications ...

  1. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New ...

  2. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  3. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  4. Pantothenic acid and biotin

    MedlinePlus

    ... JavaScript. Pantothenic acid and biotin are types of B vitamins. They are water-soluble, which means that the ... found in foods that are good sources of B vitamins, including the following: Animal proteins Avocado Broccoli, kale, ...

  5. (Acid rain workshop)

    SciTech Connect

    Turner, R.S.

    1990-12-05

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  6. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  7. Deoxycholic Acid Injection

    MedlinePlus

    ... severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a ... as a liquid to be injected subcutaneously (just under the skin) by a doctor. Your doctor will ...

  8. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  9. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  10. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  11. Uric acid - blood

    MedlinePlus

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test ... Alcoholism Chemotherapy-related side effects Diabetes Excessive exercise Gout Hypoparathyroidism Lead poisoning Leukemia Medullary cystic kidney disease ...

  12. Citric acid urine test

    MedlinePlus

    ... The test is used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The ... level of citric acid may mean renal tubular acidosis and a tendency to form calcium kidney stones. ...

  13. Folic Acid Quiz

    MedlinePlus

    ... more easily than natural food folate. Close × Answer: D CORRECT: Folic acid reduces the risk for spina ... g., orange juice and green vegetables). Close × Answer: D CORRECT: Spina bifida and anencephaly are neural tube ...

  14. Folic acid in diet

    MedlinePlus

    ... green leafy vegetables Dried beans and peas (legumes) Citrus fruits and juices Fortified means that vitamins have ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Folic Acid Browse the Encyclopedia A.D. ...

  15. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth ... allergic to amoxicillin (Amoxil, Trimox, Wymox), clavulanic acid, penicillin, cephalosporins, or any other medications.tell your doctor ...

  16. Boric Acid Poisoning

    PubMed Central

    Wong, L. C.; Heimbach, M. D.; Truscott, D. R.; Duncan, B. D.

    1964-01-01

    Boric acid poisoning in 11 infants, occurring in the newborn nursery as a result of the accidental and inadvertent use of 2.5% boric acid in the preparation of the formulae, is reported. Five of the infants died. All except two exhibited the classical symptomatology of acute boric acid poisoning, namely, diarrhea, vomiting, erythema, exfoliation, desquamation of the skin, and marked central nervous system irritation. Early manifestations of poisoning were nonspecific, and one patient died before skin manifestations were noted. Peritoneal dialysis, instituted in nine cases, was found to be the most effective method of treatment. It is recommended that boric acid, which is of doubtful therapeutic value, should be completely removed from hospitals, dispensaries and pharmacopoeias. ImagesFig. 1Fig. 2 PMID:14166459

  17. Polymers for acid thickening

    SciTech Connect

    Dixon, K.W.

    1980-09-30

    Acids, thickened with branched emulsion or suspension polymers of diallyldimethylammonium chloride are useful as oil well drilling and fracturing fluids for stimulating well production and in other applications, such as thickeners for cosmetics, paints, adhesives, textiles and printing inks.

  18. Acid-base chemistry

    SciTech Connect

    Hand, C.W.; Blewit, H.L.

    1985-01-01

    The book is not a research compendium and there are no references to the literature. It is a teaching text covering the entire range of undergraduate subject matter dealing with acid-base chemistry (some of it remotely) as taught in inorganic, analytical, and organic chemistry courses. The excellent chapters VII through IX deal in detail with the quantitative aspects of aqueous acid-base equilibria (salt hydrolysis and buffer, titrations, polyprotic and amphoteric substances).

  19. Utilization of acid tars

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Aminov, A.N.

    1987-01-01

    Freshly produced acid tar (FPAT), obtained as refinery waste in treating petroleum oils with sulfuric acid and oleum, contains 80% or more sulfuric acid. Of such tars, pond acid tars, which contain up to 80% neutral petroleum products and sulfonated resins, are more stable, and have found applications in the production of binders for paving materials. In this article the authors are presenting results obtained in a study of the composition and reactivity of FPAT and its stability in storage in blends with asphalts obtained in deasphalting operations, and the possibility of using the FPAT in road construction has been examined. In this work, wastes were used which were obtained in treating the oils T-750, KhF-12, I-8A, and MS-14. Data on the change in group chemical composition of FPAT are shown, and the acidity, viscosity, needle penetration, and softening point of acid tars obtained from different grades of oils are plotted as functions of the storage time. It is also shown that the fresh and hardened FPATs differ in their solubilities in various solvents.

  20. Mammalian Fatty Acid Elongases

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Summary Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1–7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. PMID:19763486

  1. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  2. Autophagy on acid.

    PubMed

    Wojtkowiak, Jonathan W; Gillies, Robert J

    2012-11-01

    The microenvironment of solid tumors tends to be more acidic (6.5-7.0) than surrounding normal (7.2-7.4) tissue. Chaotic vasculature, oxygen limitation and major metabolic changes all contribute to the acidic microenvironment. We have previously proposed that low extracellular pH (pHe) plays a critical role in the development and progression of solid tumors. While extracellular acidosis is toxic to most normal cells, cancer cells can adapt and survive under this harsh condition. In this study, we focused on identifying survival strategies employed by cancer cells when challenged with an acidic pHe (6.6-6.7) either acutely or for many generations. While acutely acidic cells did not grow, those acclimated over many generations grew at the same rate as control cells. We observed that these cells induce autophagy in response to acidosis both acutely and chronically, and that this adaptation appears to be necessary for survival. Inhibition of autophagy in low pH cultured cells results in cell death. Histological analysis of tumor xenografts reveals a strong correlation of LC3 protein expression in regions projected to be acidic. Furthermore, in vivo buffering experiments using sodium bicarbonate, previously shown to raise extracellular tumor pH, decreases LC3 protein expression in tumor xenografts. These data imply that autophagy can be induced by extracellular acidosis and appears to be chronically employed as a survival adaptation to acidic microenvironments. PMID:22874557

  3. Method for isolating nucleic acids

    DOEpatents

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  4. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  5. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  6. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  7. Nitric acid-formic acid compatibility in DWPF

    SciTech Connect

    Eibling, R.E.

    1992-10-20

    The addition of the Nitric Acid Flowsheet to the DWPF feed preparation process introduces nitric acid into a vessel which will subsequently receive a formic acid solution. The combination of these two acids suggests that a denitration reaction might occur. This memorandum reviews the conditions under which a denitration reaction is possible and compares these conditions to DWPF operating conditions.

  8. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  9. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  10. Domoic Acid Epileptic Disease

    PubMed Central

    Ramsdell, John S.; Gulland, Frances M.

    2014-01-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  11. Domoic acid epileptic disease.

    PubMed

    Ramsdell, John S; Gulland, Frances M

    2014-03-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  12. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  13. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  14. Oleanolic acid ethanol monosolvate

    PubMed Central

    Froelich, Anna; Gzella, Andrzej K.

    2010-01-01

    Crystals of the title compound (systematic name: 3β-hy­droxy­olean-12-en-28-oic acid ethanol monosolvate), C30H48O3·C2H5OH, were obtained from unsuccessful co-crystallization trials. The asymmetric unit contains two symmetry-independent oleanolic acid mol­ecules, as well as two ethanol solvent mol­ecules. Inter­molecular O—H⋯O hydrogen bonds stabilize the crystal packing. In the oleanolic acid mol­ecules, ring C has a slightly distorted envelope conformation, while rings A, B, D and E adopt chair conformations and rings D and E are cis-fused. Both independent ethanol mol­ecules are orientationally disordered [occupancy ratios of 0.742 (8):0.258 (8) and 0.632 (12):0.368 (12). PMID:21588987

  15. Amino acid analysis.

    PubMed

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  16. Acid rain: Controllable?

    NASA Astrophysics Data System (ADS)

    Machta, Lester

    Acid rain is one of a growing number of environmental issues in which impacts are far removed from the source o f the irritants. Those who suffer may differ in geographical area from those who benefit from the activity which releases pollution to the atmosphere. Like the issue concerning the depletion of ozone by manufactured chemicals, the acid rain issue further emphasizes the need for continuing atmospheric chemistry research, a science whose history dates back but a few decades. Examination of the acid rain issue also calls for intimate collaboration of atmospheric scientists with ecologists, biologists, and other scientists, who must advise the geophysicists regarding what chemicals in the environment produce damage, their mode of entry into an ecosystem, and the need to understand acute or chronic impacts.

  17. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  18. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  19. [Nicotinic acid and nicotinamide].

    PubMed

    Kobayashi, M; Shimizu, S

    1999-10-01

    Nicotinic acid and nicotinamide are called niacin. They are the antipellagra vitamin essential to many animals for growth and health. In human being, niacin is believed necessary together with other vitamins for the prevention and cure of pellagra. Niacin is widely distributed in nature; appreciable amounts are found in liver, fish, yeast and cereal grains. Nicotinamide is a precursor of the coenzyme NAD and NADP. Some of the most understood metabolic processes that involve niacin are glycolysis, fatty acid synthesis and respiration. Niacin is also related to the following diseases: Hartnup disease; blue diaper syndrome; tryptophanuria; hydroxykynureninuria; xanthurenic aciduria; Huntington's disease. PMID:10540864

  20. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206