Science.gov

Sample records for acid ameliorates experimental

  1. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Unoda, Kiichi; Doi, Yoshimitsu; Nakajima, Hideto; Yamane, Kazushi; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2013-03-15

    Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, is a neuroprotective lipid with anti-inflammatory properties. We investigated the possible therapeutic effect of EPA on experimental autoimmune encephalomyelitis (EAE). EAE mice were fed a diet with or without EPA. The clinical EAE scores of the EPA-fed mice were significantly lower than those of the non-EPA mice. In the EPA-treated mice, IFN-γ and IL-17 productions were remarkably inhibited and the expression levels of peroxisome proliferator-activated receptors were significantly enhanced in the CNS-infiltrating CD4T cells. Thus EPA shows promise as a potential new therapeutic agent against multiple sclerosis.

  2. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation.

    PubMed

    Shamran, Haidar; Singh, Narendra P; Zumbrun, Elizabeth E; Murphy, Angela; Taub, Dennis D; Mishra, Manoj K; Price, Robert L; Chatterjee, Saurabh; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2017-01-01

    Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), which is thought to result from immune-mediated inflammatory disorders, leads to high morbidity and health care cost. Fatty acid amide hydrolase (FAAH) is an enzyme crucially involved in the modulation of intestinal physiology through anandamide (AEA) and other endocannabinoids. Here we examined the effects of an FAAH inhibitor (FAAH-II), on dextran sodium sulphate (DSS)-induced experimental colitis in mice. Treatments with FAAH-II improved overall clinical scores by reversing weight loss and colitis-associated pathogenesis. The frequencies of activated CD4(+) T cells in spleens, mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and colon lamina propiria (LP) were reduced by FAAH inhibition. Similarly, the frequencies of macrophages, neutrophils, natural killer (NK), and NKT cells in the PPs and LP of mice with colitis declined after FAAH blockade, as did concentrations of systemic and colon inflammatory cytokines. Microarray analysis showed that 26 miRNAs from MLNs and 217 from PPs had a 1.5-fold greater difference in expression after FAAH inhibition. Among them, 8 miRNAs were determined by reverse-transcription polymerase chain reaction (RT-PCR) analysis to have anti-inflammatory properties. Pathway analysis demonstrated that differentially regulated miRNAs target mRNA associated with inflammation. Thus, FAAH-II ameliorates experimental colitis by reducing not only the number of activated T cells but also the frequency of macrophages, neutrophils, and NK/NKT cell, as well as inflammatory miRNAs and cytokine at effector sites in the colon. These studies demonstrate for the first time that FAAH-II inhibitor may suppress colitis through regulation of pro-inflammatory miRNAs expression.

  3. Ursolic Acid Ameliorates Early Brain Injury After Experimental Traumatic Brain Injury in Mice by Activating the Nrf2 Pathway.

    PubMed

    Ding, Hui; Wang, Handong; Zhu, Lin; Wei, Wuting

    2017-02-01

    Previous studies have indicated oxidative stress and inflammatory injury as significant contributors to the secondary damage associated with traumatic brain injury (TBI). Ursolic acid (UA) has been demonstrated to exert anti-oxidative and anti-inflammatory effects on cerebral ischemia by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. However, the effects of UA on TBI remain unclear. The aim of this study is to evaluate the potential roles of UA in the activation of the Nrf2 pathway using an experimental TBI model and the underlying mechanism. Wild-type (WT) and Nrf2((-/-)) mice were divided into eight groups: (1) sham; (2) TBI; (3) TBI + vehicle; (4) TBI + 50 mg/kg UA; (5) TBI + 100 mg/kg UA; (6) TBI + 150 mg/kg UA; (7) TBI + Nrf2((-/-)) + vehicle; (8) TBI + Nrf2((-/-)) + UA. All mice underwent the TBI with the exception of the sham group. The neurologic outcomes of the mice were evaluated at 24 h after TBI, as well as the expression of Nrf2, NQO1, HO1,SOD, GPx, and MDA. Treatment of UA significantly ameliorated brain edema and the neurological insufficiencies after TBI. In addition, UA treatment markedly strengthened the nuclear translocation of Nrf2 protein and increased the expression of NQO1 and HO1. Moreover, UA significantly increased the expression of AKT, an Nrf2 upstream factor, suggesting that UA play a neuroprotective role through the activation of the Nrf2-ARE signal pathway. On the contrary, UA showed no neuroprotective effect on the Nrf2((-/-)) mice. These data indicated that UA increases the activity of antioxidant enzymes and attenuated brain injury via Nrf2 factor.

  4. Triptolide ameliorates colonic fibrosis in an experimental rat model

    PubMed Central

    TAO, QINGSONG; WANG, BAOCHAI; ZHENG, YU; LI, GUANWEI; REN, JIANAN

    2015-01-01

    Triptolide is known to exert anti-inflammatory and immunomodulatory activities; however, its impact on intestinal fibrosis has not been previously examined. Based on our previous studies of the suppressive activity of triptolide on human colonic subepithelial myofibroblasts and the therapeutic efficacy of triptolide in Crohn’s disease, it was hypothesized that triptolide may have beneficial effects on intestinal fibrosis. In the present study, colonic fibrosis was induced in rats by 6 weekly repeated administration with a low-dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and was then treated with triptolide or PBS daily (control) simultaneously. Extracellular matrix (ECM) deposition in the colon was examined with image analysis of Masson Trichrome staining. Total collagen levels in colonic homogenates were measured by a Sircol assay. Collagen Iα1 transcripts and collagen I protein were measured ex vivo in the isolated colonic subepithelial myofibroblasts by reverse transcription-quantitative polymerase chain reaction and immunoblot analysis, respectively. The results indicated that triptolide decreased ECM deposition and collagen production in the colon, and inhibited collagen Iα1 transcripts and collagen I protein expression in the isolated subepithelial myofibroblasts of the rats with colonic fibrosis. In conclusion, triptolide ameliorates colonic fibrosis in the experimental rat model, suggesting triptolide may be a promising compound for inflammatory bowel disease treatment. PMID:25845760

  5. Ameliorative potential of omega 3 fatty acids and HMG-CoA reductase inhibitors on experimentally-induced non-alcoholic steatohepatitis.

    PubMed

    Kabel, Ahmed M; Abd Elmaaboud, Maaly A; Albarraq, Ahmed A

    2015-05-01

    Non-alcoholic steatohepatitis (NASH) has a relation to obesity. It may lead to hepatocellular carcinoma. To date, the therapeutic options are limited due to complex pathogenesis. This study aimed to investigate the effect of atorvastatin and omega 3 fatty acids on experimentally-induced NASH. Sixty male albino rats were divided into 6 equal groups; control group, high fat emulsion/sucrose (HFE/S) diet, HFE/S+carboxymethyl cellulose, HFE/S +Atorvastatin, HFE/S+Fish oil and HFE/S+Atorvastatin+Fish oil. Serum alanine aminotransferase, total cholesterol (TC), triglycerides (TG), high density lipoproteins, insulin, glucose, C-reactive protein and quantitative insulin sensitivity check index were measured. Also, hepatic TC, TG, malondialdehyde, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor beta 1 (TGF-β1) were determined. Liver sections were examined histopathologically. Atorvastatin improved lipid profile, inflammation and oxidative stress but did not improve insulin resistance, hepatic TGF-β1 or body weight while fish oil improved lipid profile, decreased inflammation and oxidative stress, improved insulin resistance, hepatic TGF-β1 and body weight compared to HFE/S group. Atorvastatin/fish oil combination produced significant improvement in the lipid profile, inflammation, oxidative stress, insulin resistance, hepatic TGF-β1 and body weight compared to the use of each of these drugs alone. This might be attributed to the effect of fish oil on the lipid profile, inflammatory cytokines, insulin resistance and TGF-β1 which potentiates the effect of atorvastatin on NASH.

  6. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  7. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    PubMed

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-05

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  8. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus

    PubMed Central

    Sreekutty, MS; Mini, S

    2016-01-01

    Objective(s): Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Materials and Methods: Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. Results: ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. Conclusion: These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus. PMID:27096072

  9. Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

    PubMed Central

    Oh, Keunhee; Kim, Yon Su

    2011-01-01

    Background Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are CD4+ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naïve T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) peptide1-20. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic CD4+ T cell activation and differentiation. Conclusion Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection. PMID:22346781

  10. Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis

    PubMed Central

    Carneiro, Priscila J.; Clevelario, Amanda L.; Padilha, Gisele A.; Silva, Johnatas D.; Kitoko, Jamil Z.; Olsen, Priscilla C.; Capelozzi, Vera L.; Rocco, Patricia R. M.; Cruz, Fernanda F.

    2017-01-01

    Silicosis is an occupational lung disease for which no effective therapy exists. We hypothesized that bosutinib, a tyrosine kinase inhibitor, might ameliorate inflammatory responses, attenuate pulmonary fibrosis, and thus improve lung function in experimental silicosis. For this purpose, we investigated the potential efficacy of bosutinib in the treatment of experimental silicosis induced in C57BL/6 mice by intratracheal administration of silica particles. After 15 days, once disease was established, animals were randomly assigned to receive DMSO or bosutinib (1 mg/kg/dose in 0.1 mL 1% DMSO) by oral gavage, twice daily for 14 days. On day 30, lung mechanics and morphometry, total and differential cell count in alveolar septa and granuloma, levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, transforming growth factor (TGF)-β, and vascular endothelial growth factor in lung homogenate, M1 and M2 macrophages, total leukocytes, and T cells in BALF, lymph nodes, and thymus, and collagen fiber content in alveolar septa and granuloma were analyzed. In a separate in vitro experiment, RAW264.7 macrophages were exposed to silica particles in the presence or absence of bosutinib. After 24 h, gene expressions of arginase-1, IL-10, IL-12, inducible nitric oxide synthase (iNOS), metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, and caspase-3 were evaluated. In vivo, in silicotic animals, bosutinib, compared to DMSO, decreased: (1) fraction area of collapsed alveoli, (2) size and number of granulomas, and mononuclear cell granuloma infiltration; (3) IL-1β, TNF-α, IFN-γ, and TGF-β levels in lung homogenates, (4) collagen fiber content in lung parenchyma, and (5) viscoelastic pressure and static lung elastance. Bosutinib also reduced M1 cell counts while increasing M2 macrophage population in both lung parenchyma and granulomas. Total leukocyte, regulatory T, CD4+, and CD8+ cell counts in the lung-draining lymph

  11. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  12. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Okon, E; Bursztyn, M

    1995-01-01

    Enhanced nitric oxide (NO) generation by stimulated NO synthase (NOS) activity may, through its oxidative metabolism contribute to tissue injury in experimental colitis. In this study the possible amelioration of experimental colitis by NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS activity, was evaluated. Colitis was induced in rats by intracolonic administration of 30 mg trinitrobenzene sulphonic acid (TNB) dissolved in 0.25 ml 50% ethanol or by flushing the colon of capsaicin pretreated rats with 2 ml of 5% acetic acid. In several experiments, L-NAME 0.1 mg/ml was added to the drinking water at the time of colitis induction with TNB or seven days before acetic acid treatment. Rats were killed at various time intervals after induction of colitis. A 10 cm distal colonic segment was isolated, weighed, lesion area measured, and explants organ cultured for 24 hours for determination of NO generation by the Greiss reaction. The rest of the mucosa was scraped for determination of myeloperoxidase and NOS activities and leukotriene generation. In TNB treated rats mean arterial pressure was also determined up to 72 hours after damage induction, with or without cotreatment with nitroprusside. L-NAME significantly decreased the extent of tissue injury in TNB treated rats. Seven days after TNB treatment lesion area was reduced by 55%, colonic weight by 37%, and myeloperoxidase and NOS activity by 59% and 42%, respectively. Acetic acid induced colitis in capsaicin pretreated rats was also significantly decreased by L-NAME. Twenty four hours after acetic acid treatment lesion area was reduced by 61%, colonic weight by 21% and NOS activity by 39%. Mean (SEM) arterial blood pressure in TNB+L-NAME treated rats was 37.6 (8.1) mm Hg higher than in TNB treated rats, an effect that was only partially abolished by nitroprusside. These results show that inhibition of NO synthesis by an L-arginine analogue significantly ameliorates the extent of tissue injury in two

  13. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3.

  14. Hydroxycitric acid ameliorates inflammation and oxidative stress in mouse models of multiple sclerosis

    PubMed Central

    Goudarzvand, Mahdi; Afraei, Sanaz; Yaslianifard, Somaye; Ghiasy, Saleh; Sadri, Ghazal; Kalvandi, Mustafa; Alinia, Tina; Mohebbi, Ali; Yazdani, Reza; Azarian, Shahin Khadem; Mirshafiey, Abbas; Azizi, Gholamreza

    2016-01-01

    Hydroxycitric acid (HCA) is derived primarily from the Garcinia plant and is widely used for its anti-inflammatory effects. Multiple sclerosis can cause an inflammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis, i.e., experimental autoimmune encephalomyelitis, using Complete Freund's Adjuvant (CFA) emulsion containing myelin oligodendrocyte glycoprotein (35–55). Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reductase activities. These findings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inflammation and oxidative stress. PMID:27904492

  15. Ichnocarpus frutescens Ameliorates Experimentally Induced Convulsion in Rats

    PubMed Central

    Singh, Narendra Kumar; Laloo, Damiki; Garabadu, Debapriya; Singh, Tryambak Deo; Singh, Virendra Pratap

    2014-01-01

    The present study was carried out to evaluate the anticonvulsant activity and probable mechanism of action of the methanol root extract from I. frutescens (MEIF) using different experimental animal models. Anticonvulsant activity of the single dose of MEIF (100, 200, and 400 mg/kg, p.o.) was evaluated in maximal electroshock- (MES-), pentylenetetrazole- (PTZ-), and isoniazid- (INH-) induced convulsions models in rats. The levels of γ-amino butyric acid (GABA), glutamate, GABA-transaminase (GABA-T) activity and oxidative stress markers were measured in pretreated rat's brain homogenate to corroborate the mechanism of observed anticonvulsant activity. MEIF (200–400 mg/kg, p.o.) protected the animals in all the behavioral models used. Pretreatment of MEIF (200–400 mg/kg, p.o.) and diazepam (1.0 mg/kg, i.p.) to the animals in INH-induced convulsion model showed 100% and 80% protection, respectively, as well as significant restoration of GABA and glutamate level in the rat's brain. MEIF and vigabatrin (50 mg/kg, i.p.) reduced the PTZ-induced increase in the activity of GABA-T (46%) in the brain. Further, MEIF reversed the PTZ-induced increase in lipid peroxidase (LPO) and decrease in reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. The findings of this study validate the anticonvulsant activity of I. frutescens. PMID:27379268

  16. Bovine glycomacropeptide ameliorates experimental rat ileitis by mechanisms involving downregulation of interleukin 17

    PubMed Central

    Requena, P; Daddaoua, A; Martínez-Plata, E; González, M; Zarzuelo, A; Suárez, M D; Sánchez de Medina, F; Martínez-Augustin, O

    2008-01-01

    Background and purpose: Bovine glycomacropeptide (BGMP) is an inexpensive, non-toxic milk peptide with anti-inflammatory effects in rat experimental colitis but its mechanism of action is unclear. It is also unknown whether BGMP can ameliorate inflammation in proximal regions of the intestine. Our aim was therefore two-fold: first, to determine the anti-inflammatory activity of BGMP in the ileum; second, to characterise its mechanism of action. Experimental approach: We used a model of ileitis induced by trinitrobenzenesulphonic acid in rats. Rats were treated orally with BGMP and its efficacy compared with that of oral 5-aminosalicylic acid or vehicle, starting 2 days before ileitis induction. Key results: BGMP pretreatment (500 mg kg−1 day−1) resulted in marked reduction of inflammatory injury, as assessed by lower extension of necrosis and damage score, myeloperoxidase, alkaline phosphatase, inducible nitric oxide synthase, interleukin 1β, tumour necrosis factor and interleukin 17. These effects were generally comparable to those of 5-aminosalicylic acid (200 mg kg−1 day−1). Neither compound affected the production of interferon γ, tumour necrosis factor and interleukin 2 by mesenteric lymph node cells isolated from animals with ileitis. The expression of Foxp3 was increased in ileitis and not reduced significantly by BGMP or aminosalicylate treatment. Conclusions and implications: These results demonstrate that BGMP has anti-inflammatory activity in the ileum with similar efficacy to 5-aminosalicylic acid. The mechanism of action may involve Th17 and regulatory T cells and perhaps macrophages but probably not Th1 lymphocytes. Patients with Crohn's ileitis may benefit from treatment with BGMP. PMID:18536735

  17. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke.

    PubMed

    Yang, Fan; Wang, Ziying; Wei, Xinbing; Han, Huirong; Meng, Xianfang; Zhang, Yan; Shi, Weichen; Li, Fengli; Xin, Tao; Pang, Qi; Yi, Fan

    2014-04-01

    Although the innate immune response to induce postischemic inflammation is considered as an essential step in the progression of cerebral ischemia injury, the role of innate immunity mediator NLRP3 in the pathogenesis of ischemic stroke is unknown. In this study, focal ischemia was induced by middle cerebral artery occlusion in NLRP3(-/-), NOX2(-/-), or wild-type (WT) mice. By magnetic resonance imaging (MRI), Evans blue permeability, and electron microscopic analyses, we found that NLRP3 deficiency ameliorated cerebral injury in mice after ischemic stroke by reducing infarcts and blood-brain barrier (BBB) damage. We further showed that the contribution of NLRP3 to neurovascular damage was associated with an autocrine/paracrine pattern of NLRP3-mediated interleukin-1β (IL-1β) release as evidenced by increased brain microvessel endothelial cell permeability and microglia-mediated neurotoxicity. Finally, we found that NOX2 deficiency improved outcomes after ischemic stroke by mediating NLRP3 signaling. This study for the first time shows the contribution of NLRP3 to neurovascular damage and provides direct evidence that NLRP3 as an important target molecule links NOX2-mediated oxidative stress to neurovascular damage in ischemic stroke. Pharmacological targeting of NLRP3-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.

  18. Aedes aegypti salivary gland extract ameliorates experimental inflammatory bowel disease.

    PubMed

    Sales-Campos, Helioswilton; de Souza, Patricia Reis; Basso, Paulo José; Ramos, Anderson Daniel; Nardini, Viviani; Chica, Javier Emílio Lazo; Capurro, Margareth Lara; Sá-Nunes, Anderson; de Barros Cardoso, Cristina Ribeiro

    2015-05-01

    Current therapies for inflammatory bowel disease (IBD) are not totally effective, resulting in persistent and recurrent disease for many patients. Mosquito saliva contains immunomodulatory molecules and therein could represent a novel therapy for IBD. Here, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Aedes aegypti on dextran sulfate sodium (DSS)-induced colitis. For this purpose, C57BL/6 male mice were exposed to 3% DSS in drinking water and treated with SGE at early (days 3-5) or late (days 5-8) time points, followed by euthanasia on days 6 and 9, respectively, for sample collection. The results showed an improvement in clinical disease outcome and postmortem scores after SGE treatment, accompanied by the systemic reduction in peripheral blood lymphocytes, with no impact on bone marrow and mesenteric lymph nodes cellularity or macrophages toxicity. Moreover, a local diminishment of IFN-γ, TNF-α, IL-1β and IL-5 cytokines together with a reduction in the inflammatory area were observed in the colon of SGE-treated mice. Strikingly, early treatment with SGE led to mice protection from a late DSS re-challenging, as observed by decreased clinical and postmortem scores, besides reduced circulating lymphocytes, indicating that the mosquito saliva may present components able to prevent disease relapse. Indeed, high performance liquid chromatography (HPLC) experiments pointed to a major SGE pool fraction (F3) able to ameliorate disease signs. In conclusion, SGE and its components might represent a source of important immunomodulatory molecules with promising therapeutic activity for IBD.

  19. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis

    PubMed Central

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-01-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an amelioration at

  20. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    PubMed

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    amelioration at low concentrations and an aggravation at high concentrations. Low concentrations of HNPs may contribute to the maintenance of intestinal homeostasis.

  1. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  2. Deletion of C-reactive protein ameliorates experimental cerebral malaria?

    PubMed Central

    Szalai, Alexander J.; Barnum, Scott R.; Ramos, Theresa N.

    2014-01-01

    Background C-reactive protein (CRP) level correlates with parasitemia and severity of malaria, but whether this reflects causality remains unknown. Methods Using CRP-transgenic and CRP-deficient mice we compared the onset and severity of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA). Results CRP-deficient mice were most resistant to ECM. Conclusions CRP might contribute to the development of cerebral malaria, rather than protect against it. PMID:25002461

  3. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Basler, Michael; Mundt, Sarah; Muchamuel, Tony; Moll, Carlo; Jiang, Jing; Groettrup, Marcus; Kirk, Christopher J

    2014-01-01

    Multiple sclerosis (MS) is a chronic demyelinating immune mediated disease of the central nervous system. The immunoproteasome is a distinct class of proteasomes found predominantly in monocytes and lymphocytes. Recently, we demonstrated a novel function of immunoproteasomes in cytokine production and T cell differentiation. In this study, we investigated the therapeutic efficacy of an inhibitor of the immunoproteasome (ONX 0914) in two different mouse models of MS. ONX 0914 attenuated disease progression after active and passive induction of experimental autoimmune encephalomyelitis (EAE), both in MOG35–55 and PLP139–151-induced EAE. Isolation of lymphocytes from the brain or spinal cord revealed a strong reduction of cytokine-producing CD4+ cells in ONX 0914 treated mice. Additionally, ONX 0914 treatment prevented disease exacerbation in a relapsing-remitting model. An analysis of draining lymph nodes after induction of EAE revealed that the differentiation to Th17 or Th1 cells was strongly impaired in ONX 0914 treated mice. These results implicate the immunoproteasome in the development of EAE and suggest that immunoproteasome inhibitors are promising drugs for the treatment of MS. PMID:24399752

  4. Extract of a polyherbal formulation ameliorates experimental nonalcoholic steatohepatitis

    PubMed Central

    Azeemuddin, Mohammed; Rafiq, Mohamed; Anturlikar, Suryakanth Dattatraya; Sharath Kumar, Lakkavalli Mohan; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Shyam, Ramakrishnan

    2015-01-01

    The objective of the present study is to evaluate the effect of the extract of a well-known hepatospecific polyherbal formulation, Liv.52, in an experimental model of high-fat diet (HFD)-induced nonalcoholic steatohepatitis (NASH) in rats. Feeding a HFD for 15 weeks resulted in significant impairment of the lipid profile, elevation of hepatic enzyme markers, and insulin resistance in rats. The histological examination of the liver furthermore indicated fibrotic changes and fat deposition in hepatic tissues. The treatment with Liv.52 extract [125 mg/kg body weight per os (b.wt. p.o.)], which was administered from week 9 onward, reversed the HFD-induced changes to a statistically significant extent, compared to the untreated positive control animals. The effect observed with Liv.52 extract was comparable to that of pioglitazone (4 mg/kg b.wt.), a standard drug that is useful in the management of NASH. The treatment with Liv.52 extract significantly reduced steatosis, collagen deposition, and necrosis in hepatic tissues, which indicates its antifibrotic and antinecrotic properties. The results obtained in the present set of experiments indicate that Liv.52 extract effectively reverses metabolic and histological changes associated with HFD-induced NASH. PMID:27114939

  5. An ameliorated skin flap model in rats for experimental research.

    PubMed

    Hosnuter, Mübin; Kargi, Eksal; Peksoy, Irfan; Babucçu, Orhan; Payasli, Cem

    2006-01-01

    There is a disagreement in the experimental design of random skin flaps owing to their vascular inconsistency. The definition of a reliable axial-pattern skin flap model is needed. The purpose of this study was to describe a new skin flap model to deal with entire drawbacks of existing random and axial pattern skin flap designs. This was accomplished by creating paired skin flaps including both skin and vascular pedicle on the dorsum of the same rat. This design was suitably termed as rando-axial flap. The present study offers a simple and reliable skin flap model with following advantages: (1) it has a predictable necrosis area, (2) it reveals a larger survival area (75 +/- 5%) when compared to other flaps in this study (Mann-Whitney U-test, p<0.001), (3) the vascular pedicle is consistent, (4) control and study flaps are placed on the same animal (5) it can be converted to a random, an axial or a free flap.

  6. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    SciTech Connect

    Zhang, Liang Ji, Yunxia Kang, Zechun Lv, Changjun Jiang, Wanglin

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  7. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    PubMed

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  8. Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.

    PubMed

    Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou

    2015-07-01

    The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.

  9. Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules.

    PubMed

    Xu, Ling; Kanasaki, Megumi; He, Jianhua; Kitada, Munehiro; Nagao, Kenji; Jinzu, Hiroko; Noguchi, Yasushi; Maegawa, Hiroshi; Kanasaki, Keizo; Koya, Daisuke

    2013-10-01

    Ketogenic amino acid (KAA) replacement diet has been shown to cure hepatic steatosis, a serious liver disease associated with diverse metabolic defects. In this study, we investigated the effects of KAA replacement diet on nutrition sensing signaling pathway and analyzed whether induction of hepatic autophagy was involved. Mice are fed with high fat diet (HFD) or KAA replacement in high-fat diet (30% fat in food; HFD)-fed (HFD(KAAR)) and sacrificed at 8, 12, 16 weeks after initiation of experimental food. Hepatic autophagy was analyzed in protein expression of several autophagy-associated molecules and in light chain-3 green fluorescent protein (LC-3 GFP) transgenic mice. HFD(KAAR) showed increased AMP-activated protein kinase (AMPK) phosphorylation and enhanced liver kinase B1 (LKB1) expression compared to control HFD-fed mice. The KAA-HFD-induced activation of AMPK was associated with an increased protein expression of sirtuin 1 (Sirt1), decreased forkhead box protein O3a (Foxo3a) level, and suppression of mammalian target of rapamycin (mTOR) phosphorylation compared with the HFD-fed mice. The intervention study revealed that a KAA-replacement diet also ameliorated all the established metabolic and autophagy defects in the HFD-fed mice, suggesting that a KAA-replacement diet can be used therapeutically in established diseases. These results indicate that KAA replacement in food could be a novel strategy to combat hepatic steatosis and metabolic abnormalities likely involvement of an induction of autophagy.

  10. Salvianolic acid B ameliorates CNS autoimmunity by suppressing Th1 responses.

    PubMed

    Dong, Zhihui; Ma, Dihui; Gong, Ye; Yu, Tingmin; Yao, Gang

    2016-04-21

    Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), is a Th1 and Th17 cell-mediated CNS autoimmune disease. Therefore, immune regulation is a key target for therapy. Salvianolic acid B (Sal B) is a major water-soluble bioactive component of the famous traditional Chinese medicine Salvia miltiorrhiza, which is notable for its anti-oxidative and anti-inflammatory effects. Thus Sal B, by impairing Th1 or Th17 responses in EAE/MS, might ameliorate the crippling symptoms. Here we show that the intraperitoneal administration of 30mg/kg Sal B daily for 14 days after the onset of MOG-induced EAE in mice effectively reduced its severity. Additionally, Sal B treatment downgraded the infiltration of inflammatory cells, limited astrogliosis and blocked Th1 responses other than that of Th17. These results indicated that Sal B may serve as an effective therapeutic agent for MS/EAE by inhibiting Th1 cell responses.

  11. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion

    PubMed Central

    Böyük, Abdullah; Önder, Akin; Kapan, Murat; Gümüş, Metehan; Fιrat, Uğur; Başaralι, Mustafa Kemal; Alp, Harun

    2011-01-01

    Background: The aim of this study was to investigate the possible protective role of antioxidant treatment with ellagic acid (EA) on lung injury after intestinal ischemia-reperfusion (I/R) injury using biochemical and histopatological approaches. Materials and Methods: Forty rats were divided into four groups as control, control + EA, I/R, and I/R + EA. The control and control + EA groups were also anesthetized and subjected to laparotomy, but without clamp application. The control + EA and I/R + EA groups were given EA (85 mg/kg) orally prior to experiment. The I/R and I/R + EA groups underwent 30 minutes of intestinal ischemia and 1 hour of reperfusion. In all groups, serum total antioxidant capacity (TAC) and malondialdehyde (MDA) levels were determined. TAC, total oxidative status (TOS), and oxidative stress index (OSI) in lung tissue were measured. Lung tissue histopathology was also evaluated by light microscopy. Results: TAC levels were higher in control, EA, and I/R + EA groups while TOS, OSI, and MDA levels were lower in these groups compared with I/R group. Serum MDA levels were significantly higher in I/R + EA group than that of control group. Lung tissue TAC levels were lower in I/R + EA group while OSI values were higher in that groups compared with EA group. Histological tissue damage was milder in the EA treatment group than in the I/R group. Conclusion: These results suggest that EA treatment protected the rats lung tissue against intestinal I/R injury. PMID:21969793

  12. Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration.

    PubMed

    Shi, Lin; Xu, Peizhi; Xie, Kaizhi; Tang, Shuanhu; Li, Yongli

    2011-09-15

    A modified flue gas desulphurization residue (MFGDR) was prepared and its effects on sorghum growth and acidic soil amelioration were evaluated in this paper. The MFGDR was prepared by calcining a mixture of dry/semi-dry flue gas desulphurization (FGD) residue from a coal-fired power plant, sorted potash feldspar and/or limestone powder. The available nutrients from the MFGDR were determined with 4.91 wt% K(+), 1.15 wt% Mg(2+), 22.4 wt% Ca(2+), 7.01 wt% Si(4+) and 2.07 wt% SO(4)(2-)-S in 0.1 mol L(-1) citric acid solution. Its pH value was held at 9.60 displaying slightly alkaline. The results of sorghum pot growth in both red and crimson acidic soil for 30 days indicated that adding the MFGDR at a dosage of 2 g kg(-1) in total soil weight would increase the growth rate of biomass by 24.3-149% (wet weight basis) and 47.3-157% (dry weight), the stem length and thickness increase by 5.75-22.1% and 4.76-30.9% in contrast with CK treatment for two test cuttings, respectively. The effect on sorghum growth was attributed to the increase of available nutrients, the enhancement of soil pH value and the reduction of aluminum toxicity in acidic soil due to the addition of the MFGDR. The experimental results also suggested that the MFGDR could be effectively used to ameliorate the acidic soil which is widely distributed throughout the southern China.

  13. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    PubMed

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions.

  14. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis.

    PubMed

    Amir-Levy, Yifat; Mausner-Fainberg, Karin; Karni, Arnon

    2014-01-01

    Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU(+)GFAP(+) NSCs to BrdU(+)DCX(+) neuroblasts in the subventricular zone (SVZ), increased BrdU(+)NeuN(+) neurons in the granular cell layer of the dentate gyrus, and increased BrdU(+)O4(+) oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS.

  15. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  16. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  17. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    PubMed

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  18. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells

    PubMed Central

    Jiang, Hong; Zhang, Yuanyuan; Tian, Kewei; Wang, Beibei; Han, Shu

    2017-01-01

    Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy. PMID:28186117

  19. Effects of Nigella sativa seed extract on ameliorating lung tissue damage in rats after experimental pulmonary aspirations.

    PubMed

    Kanter, Mehmet

    2009-01-01

    Aspiration of gastric contents can cause serious lung injury, although the mechanisms of pulmonary damage are still not clear and means of amelioration of the pulmonary damage have been little investigated. The black cumin seed, Nigella sativa L. (NS) has been shown to have specific health benefits and the aim of the current study was to investigate the possible beneficial effects of NS on experimental lung injury in male Wistar rats after pulmonary aspiration of different materials. The rats were randomly allotted into one of six experimental groups (n=7 per group): (1) saline control, (2) saline+NS treated, (3) Pulmocare (a specialized nutritional supplement given to pulmonary patients), (4) Pulmocare+NS treated, (5) hydrochloric acid, (6) hydrochloric acid+NS treated. The saline, Pulmocare and hydrochloric acid were injected into the lungs in a volume of 2 ml/kg. The rats received daily oral doses of NS volatile oil (400mg/kg body weight) by means of intragastric intubation for 7 days starting immediately after the pulmonary aspiration of the materials. After 7 days, the rats were sacrificed and tissue samples from both lungs were taken for histopathological investigation. To date, no similar study investigating the potential for NS treatment to protect against lung injury after pulmonary aspiration of materials has been reported. Our study showed that NS treatment inhibits the inflammatory pulmonary responses, reducing significantly (p<0.05) peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar macrophages, interstitial fibrosis, granuloma and necrosis formation in different pulmonary aspiration models. Our data indicate a significant reduction in the activity of inducible nitric oxide synthase (iNOS) and a rise in surfactant protein D in lung tissue of different pulmonary aspiration models after NS therapy. Based on our results, we conclude that NS treatment might be beneficial in lung injury and

  20. Pituitary Adenylate Cyclase-Activating Polypeptide Ameliorates Experimental Acute Ileitis and Extra-Intestinal Sequelae

    PubMed Central

    Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A.; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P.; Göbel, Ulf B.; Reglodi, Dora; Bereswill, Stefan

    2014-01-01

    Background The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Methodology/Principal Findings Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Conclusion/Significance Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases. PMID:25238233

  1. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.

    PubMed

    Meena, Sunita; Rajput, Yudhishthir S; Pandey, Amit K; Sharma, Rajan; Singh, Raghvendar

    2016-08-01

    This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level.

  2. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats.

    PubMed

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-07-21

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS.

  3. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats

    PubMed Central

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-01-01

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS. PMID:26194431

  4. Sex differences regarding the amelioration of wrinkles due to skin dryness by the administration of tranexamic acid.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Iizuka, Yasutaka; Yamaguchi, Tomohiko

    2016-10-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) exerts an amelioration effect on wrinkle formation due to skin dryness. We examined the sex differences in this effect. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to male and female Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In the treated female mice, the amelioration effect on the wrinkle score, deterioration of transepidermal water loss (TEWL), capacitance, and decrease in the expression of collagen type I was stronger than in the male treated mice. Furthermore, the level of β-endorphin in the plasma and the expression of β-endorphin, μ-opioid receptor, and macrophages in the dorsal skin increased after the administration of tranexamic acid, and this increase was higher in female mice than in males. In addition, the macrophage production was increased by the administration of tranexamic acid in the ovary but did not change after administration in the testes. A histological examination revealed that these macrophages produce the β-endorphin, clarifying the source of the elevated levels. The amelioration effect in the female treated mice was decreased by the administration of clophosome (a macrophage inhibitor) to a degree that did not markedly differ from the effect observed in the male treated mice. These results suggest that the amelioration effect on wrinkles is stronger in female NOA mice than in males and that β-endorphin produced by macrophages plays an important role in this sex difference.

  5. Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Semon, Julie A.; Zhang, Xiujuan; Pandey, Amitabh C.; Alandete, Sandra M.; Maness, Catherine; Zhang, Shijia; Scruggs, Brittni A.; Strong, Amy L.; Sharkey, Steven A.; Beuttler, Marc M.; Gimble, Jeffrey M.

    2013-01-01

    Administration of adipose-derived stromal/stem cells (ASCs) represents a promising therapeutic approach for autoimmune diseases since they have been shown to have immunomodulatory properties. The uncultured, nonexpanded counterpart of ASCs, the stromal vascular fraction (SVF), is composed of a heterogeneous mixture of cells. Although administration of ex vivo culture-expanded ASCs has been used to study immunomodulatory mechanisms in multiple models of autoimmune diseases, less is known about SVF-based therapy. The ability of murine SVF cells to treat myelin oligodendrocyte glycoprotein35–55-induced experimental autoimmune encephalitis (EAE) was compared with that of culture-expanded ASCs in C57Bl/6J mice. A total of 1 × 106 SVF cells or ASCs were administered intraperitoneally concomitantly with the induction of disease. The data indicate that intraperitoneal administration of ASCs significantly ameliorated the severity of disease course. They also demonstrate, for the first time, that the SVF effectively inhibited disease severity and was statistically more effective than ASCs. Both cell therapies also demonstrated a reduction in tissue damage, a decrease in inflammatory infiltrates, and a reduction in sera levels of interferon-γ and interleukin-12. Based on these data, SVF cells effectively inhibited EAE disease progression more than culture-expanded ASCs. PMID:23981726

  6. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation

    PubMed Central

    Zhang, Han; Qi, Yuanyuan; Yuan, Yuanyang; Cai, Li; Xu, Haiyan; Zhang, Lili; Su, Bing; Nie, Hong

    2017-01-01

    Paeoniflorin (PF) is a monoterpene glycoside and exhibits multiple effects, including anti-inflammation and immunoregulation. To date, the effect of PF on multiple sclerosis (MS) has not been investigated. In this study, we investigated the effect of PF in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. After administered with PF, the onset and clinical symptoms of EAE mice were significantly ameliorated, and the number of Th17 cells infiltrated in central nervous system (CNS) and spleen was also dramatically decreased. Instead of inhibiting the differentiation of Th17 cells directly, PF influenced Th17 cells via suppressing the expression of costimulatory molecules and the production of interlukin-6 (IL-6) of dendritic cells (DCs) in vivo and in vitro, which may be attributable to the inhibition of IKK/NF-κB and JNK signaling pathway. When naïve CD4+ T cells were co-cultured with PF-treated dendritic cells under Th17-polarizing condition, the percentage of Th17 cells and the phosphorylation of STAT3 were decreased, as well as the mRNA levels of IL-17, RORα, and RORγt. Our study provided insights into the role of PF as a unique therapeutic agent for the treatment of multiple sclerosis and illustrated the underlying mechanism of PF from a new perspective. PMID:28165507

  7. DOCOSAHEXAENOIC ACID PARTIALLY AMELIORATES DEFICITS IN SOCIAL BEHAVIOR AND ULTRASONIC VOCALIZATIONS CAUSED BY PRENATAL ETHANOL EXPOSURE

    PubMed Central

    Wellmann, Kristen A.; George, Finney; Brnouti, Fares; Mooney, Sandra M.

    2015-01-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol’s damaging effects. PMID:25746516

  8. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure.

    PubMed

    Wellmann, Kristen A; George, Finney; Brnouti, Fares; Mooney, Sandra M

    2015-06-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.

  9. Acanthoic acid, a diterpene in Acanthopanax koreanum, ameliorates the development of liver fibrosis via LXRs signals.

    PubMed

    Bai, Ting; Yao, You-li; Jin, Xue-jun; Lian, Li-hua; Li, Qian; Yang, Ning; Jin, Quan; Wu, Yan-ling; Nan, Ji-xing

    2014-07-25

    Liver X receptors (LXRs)-mediated signals in acanthoic acid (AA) ameliorating liver fibrosis were examined in carbon tetrachloride (CCl4)-induced mice and TGF-β stimulated hepatic stellate cells (HSCs). AA was isolated from the root of Acanthopanax koreanum Nakai (Araliaceae). CCl4-treated mice were intraperitoneally injected with 10% CCl4 in olive oil (2 mL/kg for 8 weeks). In AA treated groups, mice were intragastrically administrated with AA (20 mg/kg or 50 mg/kg) 3 times per week for 8 weeks. Administration of AA reduced serum aminotransferase and tissue necrosis factor-α (TNF-α) levels evoked by CCl4, and the reverse of liver damage was further confirmed by histopathological staining. Administration of AA reduced the expression of fibrosis markers and regulated the ratio of MMP-13/TIMP-1, further reversed the development of liver fibrosis. TGF-β (5 ng/ml) was added to activate HSC-T6 cells for 2 h, and then treated with AA (1, 3, or 10 μmol/l) for 24 h before analysis. Cells were collected and proteins were extracted to detect the expressions of LXRs. AA could inhibit the expression of α-SMA stimulated by TGF-β and increase the expression of LXRβ. In vivo and in vitro experiments, AA could modulate liver fibrosis induced by CCl4-treatment via activation of LXRα and LXRβ, while inhibit HSCs activation only via activation of LXRβ. Acanthoic acid might ameliorate liver fibrosis induced by CCl4 via LXRs signals.

  10. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function.

    PubMed

    Xu, Bin; Li, Yan-Li; Xu, Ming; Yu, Chang-Chun; Lian, Meng-Qiao; Tang, Ze-Yao; Li, Chuan-Xun; Lin, Yuan

    2017-03-06

    Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg(-1)·d(-1), ig) or with sulfasalazine (SASP, 100 mg·kg(-1)·d(-1), ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μmol/L) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway..

  11. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Zhang, JunMei; Jia, Ge; Liu, Qun; Hu, Jue; Yan, Mei; Yang, BaiFeng; Yang, Huan; Zhou, WenBin; Li, Jing

    2015-01-01

    MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.

  12. Amelioration of Cisplatin-Induced Experimental Peripheral Neuropathy by a Small Molecule Targeting p75NTR

    PubMed Central

    Friesland, Amy; Weng, Zhiying; Duenas, Maria; Massa, Stephen M.; Longo, Frank M.; Lu, Qun

    2014-01-01

    Cisplatin is an effective and widely used first-line chemotherapeutic drug for treating cancers. However, many patients sustain cisplatin-induced peripheral neuropathy (CIPN), often leading to a reduction in drug dosages or complete cessation of treatment altogether. Therefore, it is important to understand cisplatin mechanisms in peripheral nerve tissue mediating its toxicity and identify signaling pathways for potential intervention. Rho GTPase activation is increased following trauma in several models of neuronal injury. Thus, we investigated whether components of the Rho signaling pathway represent important neuroprotective targets with the potential to ameliorate CIPN and thereby optimize current chemotherapy treatment regimens. We have developed a novel CIPN model in the mouse. Using this model and primary neuronal culture, we determined whether LM11A-31, a small-molecule, orally bioavailable ligand of the p75 neurotrophin receptor (p75NTR), can modulate Rho GTPase signaling and reduce CIPN. Von Frey filament analysis of sural nerve function showed that LM11A-31 treatment prevented decreases in peripheral nerve sensation seen with cisplatin treatment. Morphometric analysis of harvested sural nerves revealed that cisplatin-induced abnormal nerve fiber morphology and the decreases in fiber area were alleviated with concurrent LM11A-31 treatment. Cisplatin treatment increased RhoA activity accompanied by the reduced tyrosine phosphorylation of SHP-2, which was reversed by LM11A-31. LM11A-31 also countered the effects of calpeptin, which activated RhoA by inhibiting SHP-2 tyrosine phosphatase. Therefore, suppression of RhoA signaling by LM11A-31 that blocks proNGF binding to p75NTR or activates SHP-2 tyrosine phosphatase downstream of NGF receptor enhances neuroprotection in experimental CIPN in mouse model. PMID:25277379

  13. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome.

  14. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  15. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].

    PubMed

    Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou

    2012-10-01

    Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with

  16. Orally administered conjugated linoleic acid ameliorates allergic dermatitis induced by repeated applications of oxazolone in mice.

    PubMed

    Nakanishi, Tomonori; Tokunaga, Yuzo; Yamasaki, Masao; Erickson, Laurie; Kawahara, Satoshi

    2016-12-01

    Conjugated linoleic acid (CLA) is one of the constituents of animal products with possible health benefits such as anti-carcinogenic and anti-obesity effects. In this study, we investigated the immunomodulatory effects of CLA using a mouse model of allergic dermatitis. Mice were orally administered either a CLA mixture containing equal amounts of 9c, 11 t-CLA and 10 t, 12c-CLA, or high linoleic acid safflower oil, and allergic dermatitis was induced on the ear by repeated topical applications of oxazolone. Oral administration of the CLA mixture but not the high linoleic safflower oil attenuated the symptoms of allergic dermatitis in both ear weights and clinical scores. This effect was associated with decreased levels of ear interleukin-4 (IL-4) and plasma immunoglobulin E. The immunomodulatory effects of the CLA isomers were compared by an in vitro cytokine production assay. The results showed that 9c, 11 t-CLA, the most predominant isomer in animal products, significantly inhibited IL-4 and interferon-γ production from mouse splenocytes with similar potency to 10 t, 12c-CLA. These findings suggest that CLA, a constituent of animal products, has a potentially beneficial effect for amelioration of allergic dermatitis.

  17. Ursolic acid derivative ameliorates streptozotocin-induced diabestic bone deleterious effects in mice

    PubMed Central

    Yu, Su-Guo; Zhang, Cheng-Jie; Xu, Xiu-E; Sun, Ji-Hua; Zhang, Li; Yu, Peng-Fei

    2015-01-01

    Objective: This study was performed to investigate bone deteriorations of diabetic mice in response to the treatment of ursolic acid derivative (UAD). Methods: The biomarkers in serum and urine were measured, tibias were taken for the measurement on gene and protein expression and histomorphology analysis, and femurs were taken for the measurement on bone Ca and three-dimensional architecture of trabecular bone. Results: UAD showed a greater increase in bone Ca, BMD and significantly increased FGF-23 and OCN, reduced PTH and CTX in diabetic mice. UAD reversed STZ-induced trabecular deleterious effects and stimulated bone remodeling. The treatment of STZ group with UAD significantly elevated the ratio of OPG/RANKL. Moreover, insulin and IGF-1 showed a negative correlation with both FBG and Hb1Ac in STZ group. We attributed down-regulating the level of Hb1Ac in diabetic mice to that ursolic acid derivative could primely control blood sugar levels. After analyzing of two adipocyte markers, PPARγ and aP2, increased expression in the tibias of diabetic mice, and UAD could improve STZ-induced adipocyte dysfunction. Conclusions: These results demonstrated that UAD could ameliorate STZ-induced bone deterioration through improving adipocyte dysfunction and enhancing new bone formation and inhibiting absorptive function of osteoclast in the bone of diabetic mice. PMID:26097549

  18. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism.

    PubMed

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-02-02

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism.

  19. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism

    PubMed Central

    Jiang, Xu-Guang; Sun, Kai; Liu, Yu-Ying; Yan, Li; Wang, Ming-Xia; Fan, Jing-Yu; Mu, Hong-Na; Li, Chong; Chen, Yuan-Yuan; Wang, Chuan-She; Han, Jing-Yan

    2017-01-01

    Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and β-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit β expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism. PMID:28150820

  20. Assessment of natural and calcined starfish for the amelioration of acidic soil.

    PubMed

    Moon, Deok Hyun; Yang, Jae E; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun; Lim, Kyoung Jae; Kim, Sung Chul; Kim, Rog-Young; Ok, Yong Sik

    2014-01-01

    Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth.

  1. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism

    PubMed Central

    WANG, ZHENZHONG; GUO, AI; MA, LIFENG; YU, HAOMIAO; ZHANG, LIANG; MENG, HAI; CUI, YINPENG; YU, FEI; YANG, BO

    2016-01-01

    Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti-inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin-1β (IL-1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant-induced arthritis (AIA). The safe concentration range (0–50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP-13 mRNA and protein expression were confirmed by RT-qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP-13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP-13 expression was partially attributed to the inactivation of the p38 mitogen-activated protein kinases pathway by suppressing p-p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA. PMID:27082436

  2. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    PubMed Central

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  3. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia

    PubMed Central

    Yin, Xue; Zhang, Xiuli; Lv, Changjun; Li, Chunli; Yu, Yan; Wang, Xiaozhi; Han, Fang

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions. PMID:26419512

  4. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats

    PubMed Central

    Kumar, Venkatashivam Shiva; Rajmane, Anuchandra Ramchandra; Adil, Mohammad; Kandhare, Amit Dattatraya; Ghosh, Pinaki; Bodhankar, Subhash Laxman

    2014-01-01

    The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage. PMID:24683411

  5. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism.

    PubMed

    Wang, Zhenzhong; Guo, Ai; Ma, Lifeng; Yu, Haomiao; Zhang, Liang; Meng, Hai; Cui, Yinpeng; Yu, Fei; Yang, Bo

    2016-06-01

    Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti‑inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin‑1β (IL‑1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant‑induced arthritis (AIA). The safe concentration range (0‑50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP‑13 mRNA and protein expression were confirmed by RT‑qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP‑13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP‑13 expression was partially attributed to the inactivation of the p38 mitogen‑activated protein kinases pathway by suppressing p‑p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA.

  6. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.

    PubMed

    Tian, Chunjie; Kim, Young Ho; Kim, Young Chul; Park, Kyung Tae; Kim, Seung Won; Kim, Youn Ju; Lim, Hye Jin; Choung, Yun-Hoon

    2013-01-01

    3-Nitropropionic acid (3-NP), a mitochondrial toxin, has been reported to induce an acute cochlear damage. Korean red ginseng (KRG) is known to have protective effects from some types of hearing loss. This study aimed to observe the protective effect of KRG in an ototoxic animal model using 3-NP intratympanic injection. BALB/c mice were classified into 5 groups (n=15) and dose-dependent toxic effects after intratympanic injection with 3-NP (300-5000 mM) on the left ear were investigated to determine the appropriate toxicity level of 3-NP. For observation of the protective effects of KRG, 23 mice were grouped into 3-NP (500 mM, n=12) and KRG+3-NP groups (300 mg/kg KRG for 7 days before 500 mM 3-NP administration, n=11). Auditory brain response (ABR) and cochlear morphological evaluations were performed before and after drug administration. The ABR thresholds in the 800-5000 mM groups exceeded the maximum recording limit at 16 and 32 kHz 1 day after 3-NP administration. The ABR threshold in the 500 mM 3-NP+KRG group was significantly lower than that in the 500 mM 3-NP group from post 1 week to 1 month. The mean type II fibrocyte counts significantly differed between the control and 3-NP groups and between the 3-NP and 3-NP+KRG groups. Spiral ganglion cell degeneration in the 3-NP group was more severe than that in the 3-NP+KRG group. This animal model exhibited a dose-dependent hearing loss with histological changes. KRG administration ameliorated the deterioration of hearing by 3-NP.

  7. A fusion protein composed of IL-2 and caspase-3 ameliorates the outcome of experimental inflammatory colitis.

    PubMed

    Sagiv, Yuval; Kaminitz, Ayelet; Lorberboum-Galski, Haya; Askenasy, Nadir; Yarkoni, Shai

    2009-09-01

    Targeted depletion of immune cells expressing the interleukin-2 (IL-2) receptor can exacerbate inflammatory bowel disease (IBD) through elimination of regulatory T (Treg) cells, or ameliorate its course by depletion of cytotoxic cells. To answer this question we used a fusion protein composed of IL-2 and caspase-3 (IL2-cas) in an experimental model of DSS-induced toxic colitis. In a preventive setting, co-administration of DSS with a daily therapeutic dose of IL2-cas for seven days improved all disease parameters. Although CD4(+)CD25(+) T cells were depleted in the mesenteric lymph nodes, a fractional increase in CD4(+)FoxP3(+) T cells was observed in the spleen. Likewise, IL2-cas therapy improved the outcome of established disease in a chronic model of colitis. These data demonstrate that therapies that use IL-2 as a targeting moiety exert a protective effect over the colon under conditions of inflammation. The efficacy of IL-2-targeted therapy is attributed to reduced activity of reactive T cells, which ameliorates the secondary inflammatory infiltration. IL2-cas evolves as a potential therapeutic tool in IBD.

  8. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats.

    PubMed

    Wu, Jian-Guo; Wu, Jin-Zhong; Sun, Lian-Na; Han, Ting; Du, Jian; Ye, Qi; Zhang, Hong; Zhang, Yu-Guang

    2009-11-01

    Membranous glomerulonephritis (MGN) remains the most common cause of adult-onset nephrotic syndrome in the world and up to 40% of untreated patients will progress to end-stage renal disease. Although the treatment of MGN with immunosuppressants or steroid hormones can attenuate the deterioration of renal function, numerous treatment-related complications have also been established. In this study, the ameliorative effects of arctiin, a natural compound isolated from the fruits of Arctium lappa, on rat glomerulonephritis induced by cationic bovine serum albumin (cBSA) were determined. After oral administration of arctiin (30, 60, 120 mg/kgd) for three weeks, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and 24-h urine protein content markedly decreased, while endogenous creatinine clearance rate (ECcr) significantly increased. The parameters of renal lesion, hypercellularity, infiltration of polymorphonuclear leukocyte (PMN), fibrinoid necrosis, focal and segmental proliferation and interstitial infiltration, were reversed. In addition, we observed that arctiin evidently reduced the levels of malondialdehyde (MDA) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-alpha), suppressed nuclear factor-kappaB p65 (NF-kappaB) DNA binding activity, and enhanced superoxide dismutase (SOD) activity. These findings suggest that the ameliorative effects of arctiin on glomerulonephritis is carried out mainly by suppression of NF-kappaB activation and nuclear translocation and the decreases in the levels of these pro-inflammatory cytokines, while SOD is involved in the inhibitory pathway of NF-kappaB activation. Arctiin has favorable potency for the development of an inhibitory agent of NF-kappaB and further application to clinical treatment of glomerulonephritis, though clinical studies are required.

  9. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    SciTech Connect

    Nagib, Marwa M.; Tadros, Mariane G.; ELSayed, Moushira I.; Khalifa, Amani E.

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  10. Long-term amelioration of acidity accelerates decomposition in headwater streams.

    PubMed

    Jenkins, Gareth B; Woodward, Guy; Hildrew, Alan G

    2013-04-01

    The secondary production of culturally acidified streams is low, with a few species of generalist detritivores dominating invertebrate assemblages, while decomposition processes are impaired. In a series of lowland headwater streams in southern England, we measured the rate of cellulolytic decomposition and compared it with values measured three decades ago, when anthropogenic acidification was at its peak. We hypothesized that, if acidity has indeed ameliorated, the rate of decomposition will have accelerated, thus potentially supporting greater secondary production and the longer food chains that have been observed in some well-studied recovering freshwater systems. We used cellulose Shirley test cloth as a standardized bioassay to measure the rate of cellulolytic decomposition, via loss in tensile strength, for 31 streams in the Ashdown Forest over 7 days in summer 2011 and 49 days in winter 2012. We compared this with data from an otherwise identical study conducted in 1978 and 1979. In a secondary study, we determined whether decomposition followed a linear or logarithmic decay and, as Shirley cloth is no longer available, we tested an alternative in the form of readily available calico. Overall mean pH had increased markedly over the 32 years between the studies (from 6.0 to 6.7). In both the previous and contemporary studies, the relationship between decomposition and pH was strongest in winter, when pH reaches a seasonal minimum. As in the late 1970s, there was no relationship in 2011/2012 between pH and decay rate in summer. As postulated, decomposition in winter was significantly faster in 2011/2012 than in 1978/1979, with an average increase in decay rate of 18.1%. Recovery from acidification, due to decreased acidifying emissions and deposition, has led to an increase in the rate of cellulolytic decomposition. This response in a critical ecosystem process offers a potential explanation of one aspect of the limited biological recovery that has been

  11. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    PubMed

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  12. Light and ultrastructural study in the propylthiouracil-induced hypothyroid rat heart ventricles and the ameliorating role of folic acid.

    PubMed

    Massoud, Ahmed A; El-Atrash, Afaf; Tousson, Ehab; Ibrahim, Wafaa; Abou-Harga, Heba

    2012-04-01

    Thyroid hormones have marked effects on the growth, development, and metabolic function of virtually all organs and tissues. Thyroid status is an important determinant of cardiovascular function. The present work studied the histopathological and ultrastructural changes in the hypothyroid rat left ventricle at post-pubertal stage, in addition to the ameliorating role of folic acid. A total of 50 male albino rats were randomly divided into 5 groups (group I, control; group II, folic acid; group III, propylthiouracil-induced hypothyroid rats; group IV, co-treatment with folic acid; group V, post-treatment). In order to ensure the hypothyroid state, the level of serum triiodothyronine (T(3)) and thyroid stimulating hormone (TSH) through the dose period was regularly determined. The TSH levels were significantly higher while T(3) levels were significantly lower in hypothyroid rats when compared to control group. The high-performance liquid chromatography analysis showed an increase in homocysteine (Hcy) in the hypothyroid rats group when compared to the control group. The histopathological studies of the ventricle in hypothyroid rats revealed hydrophobic changes in myofibrillar structure with striations, myocardial atrophy, nuclear pyknosis, cytoplasmic vacuoles, and cytoplasmic eosinophilia. Transmission electron micrographs in the myocardium of hypothyroid rats revealed a marked reduction in muscle fibre mass, a marked degeneration of muscle fibres, swollen mitochondria, dilated sarcoplasmic reticulum and more prominent perinuclear oedema observed in the cardiac myocytes. In co-treated hypothyroid rats with folic acid, a regular arrangement of muscle fibres, mild swelling of myofibrillar structure with striations and no continuity with adjacent myofibrils were observed while the post-treated hypothyroid rat with folic acid showed normal architecture of myofibrillar structure with striations and continuity with adjacent myofibrils. In conclusion, our results indicated

  13. Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes? Evidence Based on Experimental and Clinical Studies

    PubMed Central

    Petersen, Karen Ekkelund; Rakipovski, Günaj; Raun, Kirsten; Lykkesfeldt, Jens

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) has shown to influence the oxidative stress status in a number of in vitro, in vivo and clinical studies. Well-known effects of GLP-1 including better glycemic control, decreased food intake, increased insulin release and increased insulin sensitivity may indirectly contribute to this phenomenon, but glucose-independent effects on ROS level, production and antioxidant capacity have been suggested to also play a role. The potential ‘antioxidant’ activity of GLP-1 along with other proposed glucose-independent modes of action related to ameliorating redox imbalance remains a controversial topic but could hold a therapeutic potential against micro- and macrovascular diabetic complications. This review discusses the presently available knowledge from experimental and clinical studies on the effects of GLP-1 on oxidative stress in diabetes and diabetes-related complications. PMID:26381142

  14. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  15. Anticubilin antisense RNA ameliorates adriamycin-induced tubulointerstitial injury in experimental rats.

    PubMed

    Liu, Jun; Li, Kailong; He, Yani; Zhang, Jianguo; Wang, Huiming; Yang, Jurong; Zhan, Jun; Liang, Haijun

    2011-12-01

    This study was designed to determine the effects of in vivo anticubilin antisense RNA on the uptake of albumin in tubules and on the tubulointerstitial injury in adriamycin-induced proteinuric rats. Adriamycin-treated rats were subjected to intrarenal delivery of adenoviral vectors encoding empty plasmid, cubilin sense RNA expression vector pAd-CUB or anticubilin antisense RNA expression vector pAd-ACUB on day 3. On days 14 and 28, half of the rats in each group were randomly selected to be killed, and blood samples, kidney tissues and 24-hour urine were collected. The diseased rats treated with pAdEasy-ACUB showed a 60% decrease in serum creatinine and glomerular filtration rate. Interestingly, the anticubilin antisense treatment led to a marked increase in albuminuria. Antisense treatment attenuated the histologic changes on both day 14 and day 28. The antisense treatment induced more than 60% recovery of adriamycin-induced injury, accompanied with 85% knockdown in the expression of cubilin protein and markedly decreased albumin deposition. Adriamycin induced an increase in the expression of monocyte chemoattractant protein-1, transforming growth factor-β and regulated on activation in normal T-cell expressed and secreted and the number of infiltrating cells, which was reversed by the antisense treatment. Anticubilin antisense RNA delivered by an adenoviral vector ameliorates albuminuria-induced glomerulosclerosis and tubulointerstitial damage in adriamycin nephrotic rats, indicating that cubilin could be a potential therapeutic target in proteinuric nephropathy.

  16. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li

    2017-05-01

    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  17. Alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes.

    PubMed

    Koçak, G; Aktan, F; Canbolat, O; Ozoğul, C; Elbeğ, S; Yildizoglu-Ari, N; Karasu, C

    2000-12-01

    The present study investigated the effects of alpha-lipoic acid treatment (50 mg/kg/day) on the metabolism and vascular condition already damaged by streptozotocin (STZ)-diabetes in rats. Carbohydrate and lipid metabolism, oxidative stress and antioxidant status were assessed in non-diabetic controls, 12-week untreated diabetic and 12-week treated diabetic (untreated for 6 weeks and then treated with alpha-lipoic acid for the last 6 weeks) rats. Blood pressures of rats were measured by tail-cuff method. Vascular reactivity was evaluated in isolated aortic rings. Morphology of aorta was examined by electron microscopy technique. Alpha-lipoic acid treatment effectively reversed body weight, blood glucose, plasma insulin, cholesterol, triglycerides and lipid peroxidation levels of diabetic animals. STZ-diabetes resulted in increased blood pressure, which was partially improved by alpha-lipoic acid treatment. Although the superoxide dismutase (SOD) activity in aortic homogenates was not changed by diabetes or antioxidant treatment, catalase or glutathione peroxidase (GPx) activity significantly increased in untreated diabetic rats. Alpha-lipoic acid treatment improved catalase activity in diabetic aorta. The contractile effect of phenylephrine markedly increased in diabetic rings, which was completely reversed by alpha-lipoic acid treatment. The maximum vasorelaxant response of pre-contracted aortic rings exposed to cumulatively increased concentrations of acetylcholine was unaffected by diabetes or antioxidant treatment. Sodium nitroprusside-induced endothelium-independent relaxations were similar in all experimental groups. Various alterations caused by STZ-diabetes in aorta structure were partially ameliorated by alpha-lipoic acid treatment. The potency of alpha-lipoic acid on the reversal of hypertension by affecting vascular reactivity and morphology as well as general metabolism of diabetic rats confirms the importance of hyperglycemia-induced oxidative stress in

  18. Soil acidity amelioration in a no-till system in west Tennessee USA differs by cover crop type and nitrogen application rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation soil management practices may influence the soil acidity. Surface application of lime may be required in no-till systems to ameliorate soil acidity and to improve crop yields. The application of lime may also increase microbial activity on soil. Specifically, the microbial activity of s...

  19. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  20. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A.

    PubMed

    Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi

    2016-01-20

    The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis.

  1. Ursodeoxycholic Acid Ameliorates Intrahepatic Cholestasis Independent of Biliary Bicarbonate Secretion in Vil2(kd/kd) Mice.

    PubMed

    Hatano, Ryo; Kawaguchi, Kotoku; Togashi, Fumitaka; Sugata, Masato; Masuda, Shizuka; Asano, Shinji

    2017-01-01

    Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid that possesses many pharmacological effects, including increasing bile flow, changing the hydrophobicity of the bile acid pool, and modulation of the immune response. UDCA has been approved for treating cholestatic liver disease, such as primary biliary cholangitis. However, several unanticipated severe side effects of UDCA are observed in cholestatic patients, and its pharmacological benefits remain controversial. We reported that ezrin-knockdown (Vil2(kd/kd)) mice exhibited severe hepatic injury because of a functional disorder in bile duct fluidity and alkalinity regulation, resembling human intrahepatic cholestatic disease. Here we used Vil2(kd/kd) mice as a cholestatic model to investigate the pharmacological effects of UDCA. We investigated the effects of oral and parenteral administration of UDCA on Vil2(kd/kd) mice. In Vil2(kd/kd) mice, fed a 0.5% (w/w) UDCA diet for 3 weeks, hepatic injury was exacerbated, although oral administration of a lower dose of UDCA slightly improved hepatic function in Vil2(kd/kd) mice. On the other hand, intraperitoneal administration of UDCA (50 mg/kg/d) ameliorated hepatic function and markedly reduced periductal fibrosis and cholangiocyte proliferation in Vil2(kd/kd) mice although biliary pH and HCO3(-) concentration were not improved. The expression levels of inflammatory and profibrotic genes were also significantly decreased in these mice. Furthermore, UDCA prevented cholangiocytes from hydrophobic bile acid-induced cytotoxicity independent of extracellular pH in in vitro experiments. These results suggest that an appropriate dosage of UDCA can ameliorate the intrahepatic cholestasis in Vil2(kd/kd) mice without changing the biliary bicarbonate secretion.

  2. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  3. Vanillic Acid Ameliorates Cationic Bovine Serum Albumin Induced Immune Complex Glomerulonephritis in BALB/c Mice.

    PubMed

    Motiram Kakalij, Rahul; Tejaswini, G; Patil, Madhoosudan A; Dinesh Kumar, B; Diwan, Prakash V

    2016-06-01

    Preclinical Research Vanillic acid (VA) is a dihydroxybenzoic acid derivative widely used as a flavoring agent. It has chemopreventive effects on experimentally-induced carcinogenesis and in ulcerative colitis. The object of the present study was to investigate the effects of VA, alone and in combination with methylprednisolone (MP), on cationic bovine serum albumin (cBSA induced immune-complex glomerulonephritis in female BALB/c mice. Pre-immunization was carried out with cBSA in BALB/c mice and repeated (cBSA, 13 mg/kg, 3 times/week, i.v.) for 6 weeks to induce glomerulonephritis which was confirmed by the presence of severe proteinuria. The effect of VA (50, 100, and 200 mg/kg, p.o.) and its combination with MP (12.5 mg/kg, p.o.) was assessed in the nephrotic disease model. Treatment with VA decreased inflammatory nephrotic injury as evidenced by decreased proteinuria, serum creatinine, blood urea nitrogen, serum IgG1 and TNF-α levels. Co-administration of VA with MP showed an improvement in the immunohistochemistry of glomerular nephrin and podocin. The present results indicate that VA has a nephroprotective effect in the management of autoimmune nephritis. Drug Dev Res 77 : 171-179, 2016.   © 2016 Wiley Periodicals, Inc.

  4. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism.

    PubMed

    Hontecillas, Raquel; Roberts, Paul C; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2013-06-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.

  5. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  6. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    PubMed Central

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  7. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia

    PubMed Central

    Morimoto, M; Lee, E-Y; Zhang, X; Inaba, Y; Inoue, H; Ogawa, M; Shirasawa, T; Yokosuka, O; Miki, T

    2016-01-01

    Background/Objective: Eicosapentaenoic acid (EPA) exerts pleiotropic effects on metabolic disorders such as atherosclerosis and dyslipidemia, but its effectiveness in the treatment of type 2 diabetes mellitus remains controversial. Methods: We examined the antidiabetic effect of EPA in insulin receptor mutant (InsrP1195L/+) mice that exhibit high-fat diet (HFD)-dependent hyperglycemia. Results: EPA supplementation was found to alleviate hyperglycemia of InsrP1195L/+ mice fed HFD (InsrP1195L/+/HFD mice), which was accompanied by amelioration of increased gluconeogenesis and impaired insulin signaling, as assessed by glucose-6-phosphatase (G6pc) expression on refeeding and insulin-induced phosphorylation of Akt in the liver, respectively. We found that serum levels of adiponectin, the antidiabetic adipokine, were decreased by HFD along with the body weight gain in InsrP1195L/+ mice but not in wild-type mice, suggesting that InsrP1195L/+ mice are prone to hypoadiponectinemia in response to obesity. Interestingly, the blood glucose levels of InsrP1195L/+ mice were in reverse proportion to their serum adiponectin levels and EPA supplementation ameliorated their hyperglycemia in conjunction with the restoration of hypoadiponectinemia. Conclusions: EPA exerts an antidiabetic effect in InsrP1195L/+/HFD mice, an HFD-sensitive, insulin-resistant animal model, possibly through its action against hypoadiponectinemia. PMID:27348201

  8. Oral Administration of Interleukin-10 and Anti-IL-1 Antibody Ameliorates Experimental Intestinal Inflammation

    PubMed Central

    Cardani, Diego; Dusio, Giuseppina F; Luchini, Patrizia; Sciarabba, Michele; Solimene, Umberto; Rumio, Cristiano

    2013-01-01

    Background To elucidate the effects of a solution containing interleukin-10 and anti-IL-1 antibody in modulating experimental intestinal inflammation. Methods Colitis was induced in BALB/c mice by oral administration of dextran sodium sulphate; mice were then treated with interleukin-10 plus anti-IL-1 antibody at low dosage. Transepithelial electrical resistance of isolated mouse colon and colon lengths were evaluated. Cytokines concentrations in organocultures supernatants and plasma samples were evaluated by Enzyme-Linked Immuno Sorbent Assay. Tight junction proteins were evaluated by immunofluorescence, respectively. Results Oral administration of tested products restores intestinal barrier function during experimental intestinal inflammation in association with reduced levels of proinflammatory cytokines, increased interleukin-10 plasma concentrations and a tight junction architecture restoration. Conclusion Obtained results may contribute to modelling an interesting strategy for the treatment of patients with inflammatory bowel diseases. PMID:27785242

  9. Ursodeoxycholic Acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats.

    PubMed

    Moon, Su-Jin; Jeong, Jeong-Hee; Jhun, Joo Yeon; Yang, Eun Ji; Min, Jun-Ki; Choi, Jong Young; Cho, Mi-La

    2014-02-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage. And, increased oxidative stress plays a relevant role in the pathogenesis of OA. Ursodeoxycholic acid (UDCA) is a used drug for liver diseases known for its free radical-scavenging property. The objectives of this study were to investigate the in vivo effects of UDCA on pain severity and cartilage degeneration using an experimental OA model and to explore its mode of actions. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration UDCA was initiated on the day of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-1β (IL-1β), IL-6, nitrotyrosine and inducible nitric oxide synthase (iNOS) in knee joints. UDCA showed an antinociceptive property and attenuated cartilage degeneration. OA rats given oral UDCA significantly exhibited a decreased number of osteoclasts in subchondral bone legion compared with the vehicle-treated OA group. UDCA reduced the expression of IL-1β, IL-6, nitrotyrosine and iNOS in articular cartilage. UDCA treatment significantly attenuated the mRNA expression of matrix metalloproteinase-3 (MMP-3), -13, and ADAMTS5 in IL-1β-stimulated human OA chondrocytes. These results show the inhibitory effects of UDCA on pain production and cartilage degeneration in experimentally induced OA. The chondroprotective properties of UDCA were achieved by suppressing oxidative damage and inhibiting catabolic factors that are implicated in the pathogenesis of cartilage damage in OA.

  10. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  11. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice

    PubMed Central

    Hartmann, Phillipp; Chen, Peng; Wang, Hui J.; Wang, Lirui; McCole, Declan F.; Brandl, Katharina; Stärkel, Peter; Belzer, Clara; Hellerbrand, Claus; Tsukamoto, Hidekazu; Ho, Samuel B.; Schnabl, Bernd

    2013-01-01

    The intestinal mucus layer protects the epithelium from noxious agents, viruses, and pathogenic bacteria present in the gastrointestinal tract. It is composed of mucins, predominantly mucin-2 (Muc2), secreted by goblet cells of the intestine. Experimental alcoholic liver disease requires translocation of bacterial products across the intestinal barrier into the systemic circulation, which induces an inflammatory response in the liver and contributes to steatohepatitis. We investigated the roles of the intestinal mucus layer, and in particular Muc2, in development of experimental alcohol-associated liver disease in mice. We studied experimental alcohol-induced liver disease, induced by the Tsukamoto-French method (which involves continuous intragastric feeding of an isocaloric diet or alcohol) in wild-type and Muc2−/− mice. Muc2−/− mice showed less alcohol-induced liver injury and steatosis that developed in wild-type mice. Most notably, Muc2−/− mice had significantly lower plasma levels of lipopolysaccharide than wild-type mice after alcohol feeding. In contrast to wild-type mice, Muc2−/− mice were protected from alcohol-associated microbiome changes that are dependent on intestinal mucins. The anti-microbial proteins Reg3b and Reg3g were expressed at significantly higher levels in the jejunum of Muc2−/− mice fed the isocaloric diet or alcohol, compared with wild-type mice. Consequently, Muc2−/− mice showed increased killing of commensal bacteria and prevented intestinal bacterial overgrowth. Conclusion: Muc2−/− mice are protected from intestinal bacterial overgrowth and dysbiosis in response to alcohol feeding. Subsequently, lower amounts of bacterial products such as endotoxin translocate into the systemic circulation, decreasing liver disease. PMID:23408358

  12. Ameliorative potential of sodium cromoglycate and diethyldithiocarbamic acid in restraint stress-induced behavioral alterations in rats.

    PubMed

    Manchanda, Rajneet K; Jaggi, Amteshwar S; Singh, Nirmal

    2011-01-01

    The present study was designed to investigate the ameliorative effects of sodium cromoglycate and diethyldithiocarbamic acid in acute stress-induced behavioral alterations in rats subjected to restraint stress. The rats were placed in the restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Restraint stress-induced behavioral alterations were assessed using the hole-board, social interactions and open field tests. Restraint stress resulted in a decrease in the frequency of head dips, rearing in the hole board, line crossings and rearings in the open field, and an increase in avoidance behaviors in the social interaction tests. Sodium cromoglycate (25 mg/kg and 50 mg/kg, ip), a mast cell stabilizer, and diethyldithiocarbamic acid (75 mg/kg and 150 mg/kg, ip), a selective NF-κB inhibitor, were employed to modulate restraint stress-induced behavioral changes. The administration of sodium cromoglycate and diethyldithiocarbamic acid significantly attenuated the restraint stress-induced behavioral changes. The noted beneficial effects of sodium cromoglycate and diethyldithiocarbamic acid may possibly be attributed to mast cell stabilization and inhibition of NF-κB activity, respectively.

  13. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy

    PubMed Central

    Hassanzadeh, Parichehr; Arbabi, Elham; Rostami, Fatemeh

    2014-01-01

    Objective(s): A growing interest has recently been attracted towards the identification of plant-based medications including those with protective effects against cognitive impairment. Sesamol has shown promising antioxidant and neuroprotective effects, therefore, we aimed to evaluate its therapeutic potential in epilepsy which is commonly associated with oxidative stress and cognitive impairment. Materials and Methods: Male Wistar rats received pentylenetetrazole (PTZ) (30 mg/kg, IP) once every other day until the development of kindling, i.e., the occurrence of stage 5 of seizures for three consecutive trials. After the completion of kindling procedure, behavioural tests including elevated plus maze and passive avoidance were performed in order to assess learning and memory. Oxidative stress was assessed by estimation of lipid peroxidation and reduced glutathione. The effects of pretreatment with sesamol (10, 20, and 30 mg/kg, IP) against PTZ-induced seizures, cognitive impairment and oxidative stress were investigated. Results: 32.45 ± 1.86 days after treatment with PTZ, kindling was developed that was associated with myoclonic jerks and generalized tonic-clonic seizures. Moreover, PTZ kindling induced a remarkable cognitive impairment and oxidative stress. Sesamol (30 mg/kg) significantly delayed the development of kindling and prevented seizure-induced cognitive impairment and oxidative stress. Conclusion: Sesamol exerts ameliorative effects in the experimental model of epilepsy. This phytochemical may be considered as a beneficial adjuvant for antiepileptic drugs. PMID:24711892

  14. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adjuvant-induced arthritis in rats.

    PubMed

    Pragasam, Samuel Joshua; Murunikkara, Vachana; Sabina, Evan Prince; Rasool, MahaboobKhan

    2013-02-01

    p-Coumaric acid (3-(4-hydroxyphenyl)-2-propenoic acid), a common dietary polyphenol, is widely distributed in cereals, fruits and vegetables with antioxidant property. Numerous studies have enlightened the ability of dietary phenols to be considered as potential therapeutics against arthritis. In this study, we aimed to investigate the ameliorative effect of plant phenolic p-coumaric acid on adjuvant-induced arthritis in rats. The reference drug indomethacin was used for comparison purposes. Arthritis was induced in rats by a single intradermal injection of complete freund's adjuvant (0.1 mL) into the foot pad of right hind paw. p-Coumaric acid (100 mg/kg b wt) and indomethacin (3 mg/kg b wt) were administered intraperitoneally for 8 days from day 11 to 18 after adjuvant injection. An increase in the activities/levels of lysosomal enzymes, tissue marker enzymes, glycoproteins and paw thickness was observed in the arthritic rats, on the contrary, the body weight was found to be reduced in arthritic rats when compared to normal control rats. Administration of p-coumaric acid (100 mg/kg b wt) to the arthritic rats reverted back the altered physical and biochemical parameters to near normal levels comparable to indomethacin treatment. Histopathological evaluation of ankle joints in arthritic rats also revealed the anti-inflammatory effect of p-coumaric acid by the reduction in leukocytes infiltration. Thus, the present study clearly demonstrates the anti-inflammatory potential of the p-coumaric acid against adjuvant-induced arthritis in rats.

  15. Rituximab Therapy Reduces Organ-Specific T Cell Responses and Ameliorates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Monson, Nancy L.; Cravens, Petra; Hussain, Rehana; Harp, Christopher T.; Cummings, Matthew; de Pilar Martin, Maria; Ben, Li-Hong; Do, Julie; Lyons, Jeri-Anne; Lovette-Racke, Amy; Cross, Anne H.; Racke, Michael K.; Stüve, Olaf; Shlomchik, Mark; Eagar, Todd N.

    2011-01-01

    Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS). The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE) model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH) and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues. PMID:21359213

  16. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation.

  17. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  18. Ameliorative potential of fluoxetine/raloxifene combination on experimentally induced breast cancer.

    PubMed

    Kabel, Ahmed M; Elkhoely, Abeer A

    2016-04-01

    Breast cancer is one of the most common types of malignancies in females worldwide. Targeting the estrogen receptors alone with raloxifene (RAL) reduces the incidence of estrogen receptor positive tumors. Fluoxetine (FLX) is one of selective serotonin reuptake inhibitors that was proven to have anticancer properties. Our aim was to detect the effects of RAL/FLX combination on experimentally induced breast cancer. Eighty female Wistar rats were divided into four equal groups: 7,12-Dimethyl Benzanthracene (DMBA) induced breast cancer group, DMBA+RAL, DMBA+FLX and DMBA+RAL+FLX. Tumor volume, tissue malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta1 (TGF-β1) were determined in the tumor tissues. Parts of the tumor were subjected to histopathological examination. RAL or FLX alone or in combination induced significant increase in tumor CAT and SOD with significant decrease in tumor volume, tissue MDA, TNF-α, IL-6 and TGF-β1 and alleviated the histopathological and immunohistochemical changes compared to DMBA group. In conclusion, RAL/FLX combination had a better effect than each of RAL or FLX alone against DMBA-induced breast cancer in rats which may represent a new therapeutic modality for management of breast cancer.

  19. The mechanism of sesame oil in ameliorating experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Ghazavi, A; Mosayebi, G

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease of the CNS that serves as an animal model for multiple sclerosis (MS). The study investigated the effectiveness of treatment with sesame oil on the development of EAE. EAE was induced in 8 week old C57BL/6 mice with an emulsion of MOG35-55. Therapy with sesame oil (4 mL/kg/day as oral gavage) was started on day 3 before the immunization. IFN-gamma and IL-10 production from cultured spleen supernatants were determined by the ELISA method. The results showed that daily oral gavage of sesame oil significantly reduced the clinical symptoms of EAE in C57BL/6 mice. In addition, sesame oil-treated mice displayed a significantly delayed disease onset. Mononuclear cells isolated from spleen of sesame oil-treated mice showed a significant decrease in the production of IFN-gamma compared with control mice (p = 0.001). IL-10 production was also enhanced in splenic mononuclear cells in sesame oil-treated mice. The ratio of IFN-gamma to IL-10 in sesame oil-treated EAE mice was significantly less than in non-treated EAE mice (p = 0.01). This report indicates that sesame oil therapy protected mice from developing EAE by reducing IFN-gamma secretion. Thus, sesame oil treatment may be effective in MS patients by immunomodulating the Th1 immune response.

  20. C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells.

    PubMed

    Pentón-Rol, Giselle; Martínez-Sánchez, Gregorio; Cervantes-Llanos, Majel; Lagumersindez-Denis, Nielsen; Acosta-Medina, Emilio Felino; Falcón-Cama, Viviana; Alonso-Ramírez, Ruby; Valenzuela-Silva, Carmen; Rodríguez-Jiménez, Efraín; Llópiz-Arzuaga, Alexey; Marín-Prida, Javier; López-Saura, Pedro Antonio; Guillén-Nieto, Gerardo Emilio; Pentón-Arias, Eduardo

    2011-01-01

    For decades Experimental Autoimmune Encephalitis (EAE) has remained as an unsurpassed multiple sclerosis (MS) animal model. C-Phycocyanin (C-Pc) has been reported to exhibit pharmacological properties that may be expected to symptomatically improve EAE and MS. However, in this paper we reveal a basic underlying mechanism that may provide a new approach to the rationale of the overall beneficial effect of this natural antioxidant. We demonstrate that C-Pc is able to trigger mechanisms preventing or downgrading EAE expression and induces a regulatory T cell (Treg) response, in peripheral blood mononuclear cells (PBMC) from MS patients. These results agree with reports suggesting that Treg limit acute MS attacks and that C-Pc may act as a neuroprotector and thereby reverts the organic and functional damage in neurodegenerative disorders of the central nervous system (CNS). Moreover, evidence is provided on the antioxidant activity of C-Pc within the CNS, intended to improve the myelin and axonal damage of EAE induced Lewis rats. Our results indicate that specific Treg activation may represent a central and essential mechanism in supporting the therapeutic potential of C-Pc for MS and may lead to new and more effective therapies; this property would then complement and enhance other proven active principles such as interferons (IFN), giving rise to combined therapies.

  1. Extract of Sesbania grandiflora Ameliorates Hyperglycemia in High Fat Diet-Streptozotocin Induced Experimental Diabetes Mellitus

    PubMed Central

    Panigrahi, Ghanshyam; Panda, Chhayakanta; Patra, Arjun

    2016-01-01

    Background. Sesbania grandiflora has been traditionally used as antidiabetic, antioxidant, antipyretic, and expectorant and in the management of various ailments. Materials and Methods. The study evaluates the antidiabetic activity of methanolic extract of Sesbania grandiflora (MESG) in type 2 diabetic rats induced by low dose streptozotocine and high fat diet. Diabetic rats were given vehicle, MESG (200 and 400 mg/kg, p.o.), and the standard drug, metformin (10 mg/kg), for 28 days. During the experimental period, body weight, abdominal girth, food intake, fasting serum glucose, urine analyses were measured. Insulin tolerance test was carried out on 25th day of drug treatment period. Serum analyses for lipid profile and SGOT and SGPT and serums creatinine, urea, protein, SOD, and MDA were also carried out. At the end of the experiment, animals were euthanized, the liver and pancreas were immediately dissected out, and the ratio of pancreas to body weight and hepatic glycogen were calculated. Results. MESG (200 and 400 mg/kg, p.o.) induced significant reduction (P < 0.05) of raised blood glucose levels in diabetic rats and also restored other parameters to normal level. Conclusion. Therefore, it is concluded that MESG has potential antihyperglycemic and antihyperlipemic activities and alleviate insulin resistance conditions. PMID:27313954

  2. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    PubMed Central

    Na, Songqing; Ma, Yanfei; Zhao, Jingyong; Schmidt, Clint; Zeng, Qing Q.; Chandrasekhar, Srinivasan; Chin, William W.; Nagpal, Sunil

    2011-01-01

    Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia. PMID:21318047

  3. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury.

    PubMed

    De Blasio, Daiana; Fumagalli, Stefano; Longhi, Luca; Orsini, Franca; Palmioli, Alessandro; Stravalaci, Matteo; Vegliante, Gloria; Zanier, Elisa R; Bernardi, Anna; Gobbi, Marco; De Simoni, Maria-Grazia

    2017-03-01

    Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin(-/-)) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin(-/-) mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.

  4. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice.

    PubMed

    Jhun, JooYeon; Lee, Seung Hoon; Byun, Jae-Kyeong; Jeong, Jeong-Hee; Kim, Eun-Kyung; Lee, Jennifer; Jung, Young-Ok; Shin, Dongyun; Park, Sung Hwan; Cho, Mi-La

    2015-08-01

    Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant synthesized in human body. This enzyme promotes immune system function and can be used as a dietary supplement. Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. RA results in severe destruction of cartilage and disability. This study aimed to investigate the effect of CoQ10 on inflammation and Th17 cell proliferation on an experimental rheumatoid arthritis (RA) mice model. CoQ10 or cotton seed oil as control was orally administrated once a day for seven weeks to mice with zymosan-induced arthritis (ZIA). Histological analysis of the joints was conducted using immunohistochemistry. Germinal center (GC) B cells, Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. mRNA expression was measured by real-time PCR and protein levels were estimated by enzyme-linked immunosorbent assay (ELISA). Flow cytometric analysis (FACS) was used to evaluate Th17 cells and Treg cells. CoQ10 mitigated the severity of ZIA and decreased serum immunoglobulin concentrations. CoQ10 also reduced RANKL-induced osteoclastogenesis, inflammatory mediators and oxidant factors. Th17/Treg axis was reciprocally controlled by CoQ10 treatment. Moreover, CoQ10 treatment on normal mouse and human cells cultured in Th17 conditions decreased the number of Th17 cells and enhanced the number of Treg cells. CoQ10 alleviates arthritis in mice with ZIA declining inflammation, Th17 cells and osteoclast differentiation. These findings suggest that CoQ10 can be a potential therapeutic substance for RA.

  5. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy.

    PubMed

    Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.

  6. Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes.

    PubMed

    Sundaram, Bhuvaneshwari; Singhal, Kirti; Sandhir, Rajat

    2012-01-01

    Chromium has been recognized as an essential trace element that plays an important role in carbohydrate metabolism. However, the molecular mechanisms involved in its action are not clear. This study was undertaken to understand the mechanism of chromium action in experimental diabetes. Streptozotocin-induced diabetic animals were administered chromium as chromium picolinate (CrP) at a daily dose of 1 mg/kg body weight for a period of 4 weeks. It was observed that chromium complexed with picolinate was effective in lowering plasma glucose levels as well as was able to alleviate polyphagia, polydipsia, and weight loss in diabetic animals. Administration of chromium was also found to normalize glycogen content in liver of diabetic animals to near control levels. The reduction in plasma glucose levels by chromium was accompanied by increase in activity of glycolytic enzymes (e.g., glucokinase, phosphofructokinase, and pyruvate kinase) and by suppression in activity of gluconeogenic enzymes (e.g., glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) in liver. Hepatic glucose uptake was found to be increased by chromium supplementation as demonstrated by decrease in Km and increase in Vmax values in diabetic animals. Chromium levels were lower in the liver of diabetic rats when compared with that of control rats. A negative correlation was observed between plasma glucose and chromium concentration in patients with diabetes. The data suggests that chromium supplementation as CrP is beneficial in correcting hyperglycemia, implying that the modulation of the glucose metabolism by chromium may be therapeutically beneficial in the treatment of diabetes.

  7. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men.

    PubMed

    Raigani, M; Yaghmaei, B; Amirjannti, N; Lakpour, N; Akhondi, M M; Zeraati, H; Hajihosseinal, M; Sadeghi, M R

    2014-01-01

    We investigated the effects of folic acid and zinc sulphate supplementation on the improvement of sperm function in subfertile oligoasthenoteratozoospermic (OAT) men. Eighty-three OAT men participated in a 16-week intervention randomised, double-blind clinical trial with daily treatment of folic acid (5 mg day(-1) ) and zinc sulphate (220 mg day(-1) ), or placebo. Before and after treatment, semen and blood samples were obtained for determining sperm concentration, motility, and morphology, sperm viability, sperm mitochondrial function, sperm chromatin status using toluidine blue, aniline blue, acridine orange and chromomycin A3 staining; and semen and blood folate, zinc, B12 , total antioxidant capacity (TAC) and malondialdehyde (MDA) concentrations. Sperm concentration (×10(6)  ml(-1) ) increased in subfertile men receiving the combined treatment of folic acid and zinc sulphate and also in the group receiving only folic acid treatment; however, it was not statistically significant (P = 0.056 and P = 0.05, respectively). Sperm chromatin integrity (%) increased significantly in subfertile men receiving only zinc sulphate treatment (P = 0.048). However, this improvement in sperm quality was not significant after adjusting placebo effect. This study showed that zinc sulphate and folic acid supplementation did not ameliorate sperm quality in infertile men with severely compromised sperm parameters, OAT. Male infertility is a multifactorial disorder, and also nutritional factors play an important role in results of administration of supplementation on sperm parameters. However, these results should be confirmed by multiple studies in larger populations of OAT men.

  8. Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro.

    PubMed

    Chu, Xi; Wang, Hua; Jiang, Yan-min; Zhang, Yuan-yuan; Bao, Yi-fan; Zhang, Xuan; Zhang, Jian-ping; Guo, Hui; Yang, Fan; Luan, Yan-chao; Dong, Yong-sheng

    2016-01-01

    We investigated the ameliorative effects and potential mechanisms of tannic acid (TA) in carbon tetrachloride (CCl4)-intoxicated mice and hepatic stellate cells (HSCs). Liver fibrosis was observed in CCl4 (800 ml/kg)-induced mice, and high viability was observed in CCl4 (10 mM)-intoxicated HSCs. Pre-treatment of mice with TA (25 or 50 g/kg/day) significantly ameliorated hepatic morphology and coefficient values and reduced the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the concentrations of malondialdehyde (MDA) and serum levels of endothelin-1 (ET-1). In addition, TA increased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and endothelial nitric oxide synthase (eNOS) and the serum level of NO. Moreover, TA reduced the expression of angiotensin II receptor-1 (ATR-1), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), caspase-3, c-fos, c-jun, the ratio of Bax/bcl-2, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TA increased matrix metal proteinase-9 (MMP-9), matrix metalloproteinase-1 (MMP-1). Furthermore, TA (0.01 μM, 0.1 μM or 1 μM) decreased the TIMP-1/MMP-1 ratio and reduced the viability of HSCs. These results indicated that TA exerts significant liver-protective effects in mice with CCl4-induced liver fibrosis. The potential mechanism may rely on the inhibition of collagen accumulation, oxidative stress, inflammation and apoptosis.

  9. Ethyl pyruvate ameliorates experimental colitis in mice by inhibiting the HMGB1-Th17 and Th1/Tc1 responses.

    PubMed

    Guo, Xianghua; Guo, Runhua; Luo, Xia; Zhou, Lian

    2015-12-01

    Ethyl pyruvate (EP), a simple lipophilic pyruvate ester, has demonstrated protective effects against murine colitis through inhibition the release of inflammatory factor high-mobility group protein box 1 (HMGB1). HMGB1 has been implicated in several autoimmune diseases by inducing Thl and Thl7 cells activation. This study was designed to investigate whether EP amelioration of murine colitis is related to the blocking of the HMGB1-Th17/Thl pathway. We induced murine colitis by intrarectal administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Ethyl pyruvate was injected intraperitoneally once a day for 7days. One week after intrarectal challenge with TNBS, HMGB1, IL-17 and IFN-γ protein levels were remarkably increased following severe colon inflammation. Meanwhile, excessive infiltration of Th17 cells in colonic tissues, and an upregulated proportion of Th17 and Th1/Tc1 cells in the spleen and mesenteric lymph nodes (MLN) were found in the TNBS-treated group compared to the control group. Treatment with the HMGB1 inhibitor EP not only remarkably improved colon pathological damage, but also significantly reduced the number of Th17 cells in the local tissues of the colitis-induced mice. Furthermore, the percentage of Th1/Tc1 and Th17 cells in the spleen and MLN, as well as levels of serum IFN-γ and IL-17A, were all markedly decreased in the EP-treated group. Moreover, in vitro, our results showed that EP in a dose dependent manner inhibited HMGB1 release induced by LPS from CT26 cells (murine colon adenocarcinoma cell line). These results suggest that HMGB1 contributes to the development of murine colitis by promoting the Th17 and Th1/Tc1 responses, and that EP can significantly inhibit HMGB1-Th17 and Thl/Tc1 pathway activation, which may provide better protection to mice with TNBS-induced colitis.

  10. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  11. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  12. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    PubMed Central

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  13. Ameliorative potential of ferulic acid in vincristine-induced painful neuropathy in rats: An evidence of behavioral and biochemical examination.

    PubMed

    Vashistha, Bharat; Sharma, Abhisheak; Jain, Vivek

    2017-01-01

    The present study was designed to investigate the effect of ferulic acid (FA) in vincristine-induced neuropathic pain in rats. Vincristine (50 µg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy in rats. Various pain sensitive tests, viz., pinprick, hot plate, paint-brush, and acetone test were performed on different days (1, 6, 14, and 21) to assess the degree of mechanical hyperalgesia, heat hyperalgesia, mechanical dynamic allodynia, and cold allodynia, respectively. The electrophysiological and histopathological evaluations were also investigated. The tissue thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-10 (IL-10), and total calcium were measured as the markers of inflammation and oxidative stress. FA (50 and 100 mg/kg, i.p.) and gabapentin (10 mg/kg, p.o.) were administered for 11 days. Administration of FA attenuated the vincristine-induced behavioral alteration along with electrophysiological and histopathological changes significantly (P < 0.05). FA also attenuated the vincristine-induced oxidative stress (TBARS, GSH, and total calcium levels) and inflammation (MPO, TNF-alpha, IL-6, and IL-10). It may be concluded that FA has ameliorative potential in mitigation of the painful states associated with vincristine-induced painful neuropathy that may further be attributed to anti-inflammatory actions with subsequent reduction in oxidative stress.

  14. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis.

    PubMed

    Patel, Tushar P; Rawal, Komal; Soni, Sanket; Gupta, Sarita

    2016-10-01

    Swertiamarin, a bitter secoiridoid glycoside, is an antidiabetic drug with lipid lowering activity meliorates insulin resistance in Type 2 Diabetes condition. Therefore, the study was designed to explore the antioxidant and hypolipidemic activity of swertiamarin in ameliorating NAFLD caused due to hepatic lipid accumulation, inflammation and insulin resistance. Steatosis was induced in HepG2 cells by supplementing 1mM oleic acid (OA) for 24h which was marked by significant accumulation of lipid droplets. This was determined by Oil Red O (ORO) staining and triglyceride accumulation. Swertiamarin (25μg/ml) decreased triglyceride content by 2 folds and effectively reduced LDH release (50%) activity by protecting membrane integrity thus, preventing apoptosis evidenced by reduced cleavage of Caspase 3 and PARP1. We observed that swertiamarin significantly increased the expressions of major insulin signaling proteins like Insulin receptor (IR), PI(3)K, pAkt with concomitant reduction in p307 IRS-1. AMPK was activated by swertiamarin action, thus restoring insulin sensitivity in hepatocytes. In addition, qPCR results confirmed OA up-regulated Sterol Regulatory Element Binding Protein (SREBP)-1c and fatty acid synthase (FAS), resulting in increased fatty acid synthesis. Swertiamarin effectively modulated PPAR-α, a major potential regulator of carbohydrate metabolism which, in turn, decreased the levels of the gluconeogenic enzyme PEPCK, further restricting hepatic glucose production and fatty acid synthesis. Cumulatively, swertiamarin targets potential metabolic regulators AMPK and PPAR-α, through which it regulates hepatic glycemic burden, fat accumulation, insulin resistance and ROS in hepatic steatosis which emphasizes clinical significance of swertiamarin in regulating metabolism and as a suitable candidate for treating NAFLD.

  15. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study.

    PubMed

    Kannan, M Mari; Quine, S Darlin

    2011-05-20

    The present study was designed to evaluate the cardioprotective effects of ellagic acid against isoproterenol induced myocardial infarction in rats by studying electrocardiography, blood pressure, cardiac markers, lipid peroxidation, antioxidant defense system and histological changes. Male Wistar rats were treated orally with ellagic acid (7.5 and 15mg/kg) daily for a period of 10 days. After 10 days of pretreatment, isoproterenol (100mg/kg) was injected subcutaneously to rats at an interval of 24h for 2 days to induce myocardial infarction. Isoproterenol administered rats showed significant changes in the electrocardiogram pattern, arterial pressure, and heart rate. Isoproterenol-induced rats also showed significant (P<0.05) increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, C-reactive protein, plasma homocysteine, heart tissue thiobarbituric acid reactive substances and lipid hydro peroxides. The activities/levels of antioxidant system were decreased in isoproterenol-induced rats. The histopathological findings of the myocardial tissue evidenced myocardial damage in isoproterenol induced rats. The oral pretreatment of ellagic acid restored the pathological electrocardiographic patterns, regulated the arterial blood pressures and heart rate in the isoproterenol induced myocardial infarcted rats. The ellagic acid pretreatment significantly reduced the levels of biochemical markers, lipid peroxidation and significantly increased the activities/levels of the antioxidant system in the isoproterenol induced rats. An inhibited myocardial necrosis was evidenced by the histopathological findings in ellagic acid pretreated isoproterenol induced rats. Our study shows that oral pretreatment of ellagic acid prevents isoproterenol induced oxidative stress in myocardial infarction.

  16. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy.

    PubMed

    Dong, Yan; Wang, Shengjun; Zhang, Tongxia; Zhao, Xiuhe; Liu, Xuewu; Cao, Lili; Chi, Zhaofu

    2013-10-16

    Oxidative stress is a mechanism of cell death induced by seizures. Antioxidant compounds have neuroprotective effects due to their ability to inhibit free radical production. Autophagy is a process in which cytoplasmic components such as organelles and proteins are delivered to the lysosomal compartment for degradation, and plays an essential role in the maintenance of cellular homeostasis. The activity of autophagy is enhanced during oxidative stress. The objectives of this work were first to study the inhibitory action of antioxidant ascorbic acid on behavioral changes and brain damage induced by high doses of pilocarpine, then to study the effect of ascorbic acid on oxidative stress (MDA and SOD were used to estimate oxidative stress) and activated autophagy (beclin 1 was used to estimate autophagy) induced by seizures, aiming to further clarify the mechanism of action of this antioxidant compound. In order to determinate neuroprotective effects, we studied the effects of ascorbic acid (500 mg/kg, i.p.) on the behavior and brain lesions observed after seizures induced by pilocarpine (340 mg/kg, i.p., P340 model) in rats. Ascorbic acid injections prior to pilocarpine suppressed behavioral seizure episodes by increasing the latency to the first myoclonic, clonic and tonic seizure and decreasing the percentage of incidence of clonic and tonic seizures as well as the mortality rate. These findings suggested that oxidative stress can be produced and autophagy is increased during brain damage induced by seizures. In the P340 model, ascorbic acid significantly decreased cerebral damage, reduced oxidative stress and inhibited autophagy by reducing de novo synthesis of beclin 1. Antioxidant compound can exert neuroprotective effects associated with inhibition of free radical production and autophagy. These results highlighted the promising therapeutic potential of ascorbic acid in treatment for seizures.

  17. Ameliorative effects of pyrazinoic acid against oxidative and metabolic stress manifested in rats with dimethylhydrazine induced colonic carcinoma.

    PubMed

    Sahdev, Anil K; Raj, Vinit; Singh, Ashok K; Rai, Amit; Keshari, Amit K; De, Arnab; Samanta, Amalesh; Kumar, Umesh; Rawat, Atul; Kumar, Dinesh; Nath, Sneha; Prakash, Anand; Saha, Sudipta

    2017-03-30

    Pyrazinoic acid (PA) is structurally similar to nicotinic acid which acts on G-protein-coupled receptor (GPR109A). GPR109A expresses in colonic and intestinal epithelial sites, and involves in DNA methylation and cellular apoptosis. Therefore, it may be assumed that PA has similar action like nicotinic acid and may be effective against colorectal carcinoma (CRC). CRC was produced via subcutaneous injection of dimethylhydrazine (DMH) at 40 mg/kg body weight once in a week for four weeks. After that, PA was administered orally at two doses of 10 and 25 mg/kg daily for 15 days to observe the antiproliferative effect. Various physiological, oxidative stress, molecular parameters, histopathology, RT-PCR and NMR based metabolomics were performed to evaluate the antiproliferative potential of PA. Our results collectively suggested that PA reduced body weight, tumor volume and incidence no. to normal. It restored various oxidative stress parameters and normalized IL-2, IL-6, and COX-2 as compared to carcinogen control. In molecular level, over expressed IL-6 and COX-2 genes became normal after PA administration. Again, normal tissue architecture was prominent after PA administration. Score plots of PLS-DA models exhibited that PA treated groups were significantly different from CRC group. We found that CRC rat sera have increased levels of acetate, glutamine, o-acetyl-glycoprotein, succinate, citrulline, choline, o-acetyl choline, tryptophan, glycerol, creatinine, lactate, citrate and decreased levels of 3-hydroxy butyrate, dimethyl amine, glucose, maltose, myoinositol. Further the PA therapy has ameliorated the CRC-induced metabolic alterations, signifying its antiproliferative properties. In conclusion, our study provided the evidence that PA demonstrated good antiproliferative effect on DMH induced CRC and thus demonstrated the potential of PA as a useful drug for future anticancer therapy.

  18. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission.

    PubMed

    Shaaban, Muhammad; Wu, Lei; Peng, Qi-An; van Zwieten, Lukas; Chhajro, Muhammad Afzal; Wu, Yupeng; Lin, Shan; Ahmed, Muhammad Mahmood; Khalid, Muhammad Salman; Abid, Muhammad; Hu, Ronggui

    2017-02-21

    Lime or dolomite is commonly implemented to ameliorate soil acidity. However, the impact of dolomite on CO2 emissions from acidic soils is largely unknown. A 53-day laboratory study was carried out to investigate CO2 emissions by applying dolomite to an acidic Acrisol (rice-rapeseed rotation [RR soil]) and a Ferralsol (rice-fallow/flooded rotation [RF soil]). Dolomite was dosed at 0, 0.5, and 1.5 g 100 g(-1) soil, herein referred to as CK, L, and H, respectively. The soil pH(H2O) increased from 5.25 to 7.03 and 7.62 in L and H treatments of the RR soil and from 5.52 to 7.27 and 7.77 in L and H treatments of the RF soil, respectively. Dolomite application significantly (p ≤ 0.001) increased CO2 emissions in both RR and RF soils, with higher emissions in H as compared to L dose of dolomite. The cumulative CO2 emissions with H dose of dolomite were greater 136% in the RR soil and 149% in the RF soil as compared to CK, respectively. Dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased and reached at 193 and 431 mg kg(-1) in the RR soil and 244 and 481 mg kg(-1) in the RF soil by H treatments. The NH4(-)-N and NO3(-)-N were also increased by dolomite application. The increase in C and N contents stimulated microbial activities and therefore higher respiration in dolomite-treated soil as compared to untreated. The results suggest that CO2 release in dolomite-treated soils was due to the priming of soil C content rather than chemical reactions.

  19. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest potential for expanding the world’s agricultural frontier lies in the savanna regions of the tropics, which are dominated by Oxisols. Soil acidity and low native fertility, however, are major constraints for crop production on tropical Oxisols. Soil acidification is an ongoing natural p...

  20. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain.

    PubMed

    Marwaha, Lovish; Bansal, Yashika; Singh, Raghunath; Saroj, Priyanka; Sodhi, Rupinder Kaur; Kuhad, Anurag

    2016-12-01

    TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic

  1. Ameliorating the Formation of Fullerene Complexes with Amino Acids:. a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.

    The present study is geared towards investigating methods to increase the tendency of fullerene structures to aggregate with biological systems. To accomplish this task, the encapsulation of metals inside a fullerene structure was performed. The calculations performed demonstrate that the Ca@C60 structure leads to stronger interactions with amino acids at the DFT-BLYP/DND level of theory. Correlations of the dissociation energies, HOMO/LUMO band gaps and hardness are discussed.

  2. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  3. Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway.

    PubMed

    Wang, Yujue; Chen, Guang; Yu, Xiangdong; Li, Yunchao; Zhang, Li; He, Zongze; Zhang, Nannan; Yang, Xiuping; Zhao, Yansheng; Li, Na; Qiu, Hong

    2016-08-01

    Ischemic stroke can activate multiple transcription factors and cause inflammatory reactions, which involve pattern recognition receptors with immunostimulatory effects. Toll-like receptor 4 (TLR4) is one of the receptors related to innate immunity and several inflammatory reactions. The promising anti- inflammatory activity of salvianolic acid B (SAB) had been previously reported, but its effect on ischemic stroke remains unknown. An oxygen-glucose deprivation and reoxygenation (OGD/R) model in vitro and a middle cerebral artery occlusion (MCAO) model in vivo were used in this paper, and the results showned that SAB remarkably increased the viabilities of PC12 cells and primary cortical neurons after OGD/R injury and notably prevented cerebral ischemia/reperfusion (I/R) injury. SAB also significantly ameliorated NeuN release from primary cortical neurons. Further research indicated that the neuroprotection of SAB was completed through inhibiting the TLR4/MyD88/TRAF6 signaling pathway. The blocking of TLR4 by SAB also restrained NF-kB transcriptional activity and pro-inflammatory cytokine responses (IL-1β, IL-6, and TNF-α). These findings supply a new insight that will aid in clarifying the effect of SAB against cerebral I/R injury and provide the development of SAB as a potential candidate for treating ischemic stroke.

  4. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  5. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-06-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1.

  6. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude

    PubMed Central

    Faramoushi, Mahdi; Amir Sasan, Ramin; Sari Sarraf, Vahid; Karimi, Pouran

    2016-01-01

    Introduction: Chronic intermittent hypoxia is considered as a preconditioning status in cardiovascular health to inducing resistance to the low oxygen supply. Diabetic cardiomyopathy leads to inability of the heart to effective circulation of blood preventing of consequent tissue damages so; the aim of this study was elucidation of effect of chronic exposure to hypoxia on Cardiac fibrosis and expression of GLUT4 in experimental diabetic cardiomyopathy. Methods: A total number of 30 rats were randomly divided into three groups; 1: Normoxia control group (NN, n = 10). 2: Normoxia diabetic group (ND, n = 10) that took fat diet for 2 weeks then were injected by streptozotocin (37 mg/kg) and 3: Hypoxia diabetic group (HD, n = 10): that were exposed to chronic intermittent hypoxia (CIH) (altitude ≈3400 m, 14% oxygen for 8 weeks). After hypoxia challenge, plasma metabolic parameters including: fasting blood glucose (FBS), triglyceride (TG) and total cholesterol (TC) were measured by colorimetric assay. Cardiac expression of GLUT4 protein and cardiac collagen accumulation were determined in the excised left ventricle by western blotting, and Masson trichrome staining respectively. Results: Based on resultant data, FBS, TG and TC were significantly (P < 0.05) decreased in HD vs. ND. Homeostasis Model Assessment (HOMA) were also significantly attenuated after exposed to CIH in HD group compared to ND group (P < 0.05). Significant increase in packed cell volume and hemoglobin concentration was observed in HD group compared to ND group (P < 0.05). Comparison of heart wet weight between three groups showed a significant difference (P < 0.05) with lower amount in HD and ND versus NN. Myocardial fibrosis was significantly more pronounced in ND when compared to NN. Eight weeks exposure to hypoxia ameliorated this increase in HD group. Intermittent hypoxia significantly increased GLUT4 protein expression in HD compared to ND group (P < 0.05). Conclusion: Data suggested that CIH

  7. Possible ameliorative effects of antioxidants on propionic acid / clindamycin - induced neurotoxicity in Syrian hamsters

    PubMed Central

    2013-01-01

    Background Propionic acid (PA) found in some foods and formed as a metabolic product of gut bacteria has been reported to mimic/mediate the effects of autism. The present study was undertaken to compare the effect of orally administered PA with that of clindamycin-induced PA-microbial producers in inducing persistent biochemical autistic features in hamsters. The neuroprotective potency of carnosine and carnitine supplements against PA toxicity was also investigated. Methods The following groups were studied. 1. Control group, which received phosphate buffered saline orally, 2. Propionic acid treated group which were given PA at a dose of 250 mg/kg body weight/day for 3 days orally, 3. Clindamycin treated group which received a single dose of the antibiotic orogastrically at a dose of 30 mg/kg on the day of the experiment, 4. Carnosine-treated group which were given carnosine at a dose of 10 mg/kg body weight/day orally for one week, 5. Carnitine treated group given 50 mg/kg body weight/day carnitine orally daily for one week. Group 6. Carnosine followed by PA, Group 7. Carnitine followed by PA. Dopamine, adrenaline and noradrenaline, serotonin and Gamma amino-butyric acid (GABA) were measured in the cortex and medulla of the nine studied groups. Results PA administration caused significant decrease in the neurotransmitters in the brains of treated hamsters while clindamycin caused a significant decrease only in dopamine in hamster brains (cortex and medulla) and GABA in the cerebral cortex of the treated hamsters. Administration of carnosine and carnitine which are known antioxidants caused no significant changes in the levels of neurotransmitters when administered alone to hamsters. However when administered with PA both carnosine and carnitine restored the altered neurotransmitters to near normal levels. Conclusion Carnosine and carnitine may be used as supplements to protect against PA neurotoxicity. PMID:24188374

  8. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    PubMed

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells.

  9. TUMOR NECROSIS FACTOR EXPRESSION IS AMELIORATED AFTER EXPOSURE TO AN ACIDIC ENVIRONMENT

    PubMed Central

    Grabowski, Julia; Vazquez, Daniel E.; Costantini, Todd; Cauvi, David M.; Charles, Wisler; Bickler, Stephen; Talamini, Mark A.; Vega, Virginia L.; Coimbra, Raul; De Maio, Antonio

    2010-01-01

    Background It has been well established that laparoscopic surgery presents several clinical benefits, including reduced pain and a shorter hospital stay. These effects have been associated with a decrease in the inflammatory response. Previous studies have demonstrated that reduced inflammation after laparoscopic surgery is the product of carbon dioxide insufflation, which decreases peritoneal pH. The objective of this study was to investigate the cellular and molecular mechanisms responsible for the reduced response after exposure to acidic environments. Materials and methods A murine macrophage line (J744) was incubated in culture medium at pH 6.0 or pH 7.4 for 3 hours at 37°C. Then, cells were stimulated with lipopolysaccharide (LPS) at pH 7.4, the expression of TNF-α (qRT-PCR or ELISA) and intracellular pH were measured. In addition, CD14 and Toll-like receptor 4 expression and and NF-κB nuclear translocation were analyzed. Results A significant decrease in LPS-induced TNF-α expression levels was observed in cells pre-incubated at pH 6.0 in comparison with cells at neutral pH conditions. This decrease in TNF-α levels was not associated with a reduction in cell surface expression of CD14 and Toll-like receptor 4. Exposure to an extracellular acidic environment resulted in a reduction of IκB phosphorylation and NF-κB nuclear translocation, secondary to a significant drop in cytosolic pH. Conclusions These observations provide a potential mechanism for the reduced expression of TNF-α after exposure to low extracellular pH, which may be related to acidification after CO2 insufflation during laparoscopic surgery. In addition, extracellular acidic pH environments could emerge as an important regulator of macrophage function. PMID:20888586

  10. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  11. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.

    PubMed

    Kumar, Dev; Singla, Surinder K; Puri, Veena; Puri, Sanjeev

    2015-01-01

    The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI), which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA) induced acute kidney injury (AKI) characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI). Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC) lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.

  12. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity.

  13. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation

    PubMed Central

    Zhang, Zihui; Jiang, Manli; Xie, Xinya; Yang, Haixia; Wang, Xinfeng; Xiao, Lei; Wang, Nanping

    2017-01-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway. PMID:28067284

  14. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf . E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  15. Amelioration of an acidic ultisol by straw-derived biochars combined with dicyandiamide under application of urea.

    PubMed

    Mehmood, Khalid; Li, Jiu-Yu; Jiang, Jun; Shi, Ren-Yong; Liu, Zhao-Dong; Xu, Ren-Kou

    2017-01-13

    The rapid increase in agricultural pollution demands judicious use of inputs and outputs for sustainable crop production. Crop straws were pyrolyzed under oxygen-limited conditions at 400 °C for 2 h to prepare peanut straw biochar (PB), canola straw biochar (CB), and wheat straw biochar (WB). Then, 300-g soils were incubated each with urea nitrogen (UN) and UN + biochars with or without dicyandiamide (DCD) for 60 days. During the incubations, soil acidification induced by urea was somewhat inhibited by biochars, but nitrification of hydrolyzed NH4(+) produced much more acidity than the neutralization potential of the biochars. In single UN (200 mg/kg) treatment, soil pH decreased drastically and the final pH after incubation was lower than the control. Antagonistic to UN, all three biochars neutralized the soil acidity, which was consistent to their inherent alkalinity. DCD inhibited nitrification which was obvious throughout the incubations, as 30 mg/kg DCD + 200 mg/kg UN combined with 1  % PB, CB, and WB retained 0.94, 0.79, and 1.19 units higher pH, respectively, and significantly reduced exchangeable acidity over the treatments without DCD (P < 0.05). The treatments of UN + biochars with and without DCD had highly significant effects on soil pH, exchangeable Al(3+), NH4(+)-N, (NO3(-)+NO2(-))-N, and available P (P < 0.05). Amplified NH4(+)-N retentions at higher rates of PB referred increased negatively charged sites for nutrient adsorptions. Applied UN transformations varied among different treatments, and the maximum amounts of total mineral N recovered were 218.3, 218.5, and 223.8 mg/kg in the presence of DCD by PB, CB, and WB, compared to 198.2, 201.6, and 205.2 mg/kg, respectively, in no DCD treatments. Urea induced severe soil acidification and even lowered the ameliorative effects of applied biochars. Thus, ammonium-based fertilizers must include nitrification inhibitor (DCD) and, if used in combination with biochars will offer a

  16. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    PubMed Central

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  17. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    SciTech Connect

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  18. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  19. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice

    PubMed Central

    Cho, Hyun Seop; Kim, Jin Hyun; Jang, Ha Nee; Lee, Tae Won; Jung, Myeong Hee; Kim, Tae Ho; Chang, Se-Ho; Park, Dong Jun

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) is one of mechanisms that induce renal interstitial fibrosis. Understanding EMT in renal fibrosis has important therapeutic implications for patients with kidney disease. Alpha-lipoic acid (ALA) is a natural compound with antioxidant properties. Studies for ALA are performed in acute kidney injury with renal tubular apoptosis, renal inflammation, and oxidative stress. We investigated the effects of ALA on EMT-mediated renal interstitial fibrosis in mice with unilateral ureteral obstruction (UUO). UUO mice developed severe tubular atrophy and tubulointerstitial fibrosis, with a robust EMT response and ECM deposition after 7 postoperative days. In contrast, ALA-treated UUO mice showed only moderate injury and minimal fibrosis and also larger reductions in the expression of ECM proteins, inflammatory factors, and EMT markers. ALA was shown to be involved in the suppression of infiltrating macrophages associated with EMT and the progression of interstitial fibrosis. It also lessened the destruction of the tubular basement membrane, by reducing the expression of matrix metalloproteinases. This is the first study to show that ALA modulates EMT in a UUO mouse model. Our results suggest that ALA merits further exploration as a therapeutic agent in the prevention and treatment of chronic kidney disease. PMID:28378840

  20. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    PubMed

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  1. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    PubMed

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects.

  2. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    PubMed

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  3. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation.

    PubMed

    Bakhtiari, Nuredin; Hosseinkhani, Saman; Tashakor, Amin; Hemmati, Roohullah

    2015-07-01

    Ursolic acid (UA) is a lipophilic compound, which highly found in apple peels. UA has some certain features, of the most important is its anabolic effects on skeletal muscles, which in turn plays a prominent role in the aging process, encouraged us to evaluate skeletal muscle rejuvenation. This study seeks to address the two following questions: primarily, we wonder to know if UA increases anti-aging biomarkers (SIRT1 and PGC-1α) in the isolated satellite cells, to pave the way for satellite cells proliferation. The results revealed that UA elevated the expression of SIRT1 (∼ 35 folds) and PGC-1α (∼ 175 folds) genes. The other question that needs to be asked, however, is to understand whether it is possible to generalize the in vitro findings to in vivo. For this, a study was designed to investigate the effects of UA on the cellular energy status in the animal models (C57BL/6 mice). We found that UA decreased cellular energy charges such as ATP (∼ 3 times) and ADP (∼ 18 times). With respect to the role of UA in energy expenditure and as an anti-aging biomarker, one might wonder to elucidate skeletal muscle rejuvenation as well as satellite cells proliferation and neomyogenesis. The results illustrated that UA boosted neomyogenesis through enhancing the number of satellite cells. In addition, rejuvenation effects of UA on the skeletal muscle promptly encouraged us to reexamine the performance of skeletal muscles. The results indicated that UA through increasing myoglobin expression (∼ 2 folds) accompanied with transforming of glycolytic to fast oxidative status chiefly and slow-twitch muscle fibers. To the best of our knowledge, it seems that UA might be considered as a potential candidate for treatment of pathological conditions associated with muscular atrophy and dysfunction, including skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS), sarcopenia and metabolic diseases of the muscles.

  4. All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis.

    PubMed

    Zhu, Zhengbin; Zhu, Jinzhou; Zhao, Xiaoran; Yang, Ke; Lu, Lin; Zhang, Fengru; Shen, Weifeng; Zhang, Ruiyan

    2015-01-01

    Myocardial ischemia/reperfusion (I/R) injury interferes with the restoration of blood flow to ischemic myocardium. Oxidative stress-elicited apoptosis has been reported to contribute to I/R injury. All-trans retinoic acid (ATRA) has anti-apoptotic activity as previously reported. Here, we investigated the effects and the mechanism of action of ATRA on myocardial I/R injury both in vivo and in vitro. In vivo, ATRA reduced the size of the infarcted area (17.81±1.05% vs. 24.41±1.03%, P<0.05) and rescued cardiac function loss (ejection fraction 46.42±6.76% vs. 37.18±4.63%, P<0.05) after I/R injury. Flow-cytometric analysis and TUNEL assay demonstrated that the protective role of ATRA on myocardial I/R injury was related to its anti-apoptotic effects. The anti-apoptotic effects of ATRA were associated with partial inhibition of reactive oxygen species (ROS) production and significantly less phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK. Western blot analysis also revealed that ATRA pre-treatment increased a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression (0.65 ± 0.20 vs. 0.41±0.02 in vivo) and reduced the level of receptor for advanced glycation end-products (RAGE) (0.38 ± 0.17 vs. 0.52 ± 0.11 in vivo). Concomitantly, the protective role of ATRA on I/R injury was not observed in RAGE-KO mice. The current results indicated that ATRA could prevent myocardial injury and reduced cardiomyocyte apoptosis after I/R effectively. One possible mechanism underlying these effects is that ATRA could increase ADAM10 expression and thus cleave RAGE, which is the main receptor up-stream of MAPKs in myocardial I/R injury, resulting in the down-regulation of MAPK signaling and protective role on myocardial I/R injury.

  5. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  6. High Uric Acid Ameliorates Indoxyl Sulfate-Induced Endothelial Dysfunction and Is Associated with Lower Mortality among Hemodialysis Patients

    PubMed Central

    Hsu, Wei-Liang; Li, Szu-Yuan; Liu, Jia-Sin; Huang, Po-Hsun; Lin, Shing-Jong; Hsu, Chih-Cheng; Lin, Yao-Ping; Tarng, Der-Cherng

    2017-01-01

    High uric acid (UA) can act as a pro-oxidant in normal physiological conditions; however, emerging evidence is still debatable with regard to the association between high UA and poor outcomes among chronic hemodialysis (HD) patients. In the present study, 27,229 stable prevalent HD patients were enrolled and divided into four groups according to the quartiles of baseline UA concentration, and 5737 died during a median follow-up of 38 months. Multivariate Cox regression analysis showed that a UA level of <6.1 mg/dL was associated with a higher risk of all-cause mortality compared with a UA level of >8.1 mg/dL [HR, 1.20, 95% CI (1.10–1.31)] adjusting for baseline demographic and biochemical parameters. Moreover, a UA level of <6.1 mg/dL was associated with greater risks of cardiovascular mortality [HR, 1.26, 95% CI (1.13–1.41)] and stroke-related mortality [HR, 1.59, 95% CI (1.12–2.25)], respectively. In vitro experiments further showed an increase in oxidative stress and an inhibition nitric oxide synthesis by indoxyl sulfate (IS) in human aortic endothelial cells, which were significantly attenuated by UA in a dose-dependent manner. We concluded that higher UA in serum was associated with lower risk of all-cause and cardiovascular mortality among HD patients probably through its antioxidant property in ameliorating the IS-related vascular toxicity. PMID:28067806

  7. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease.

  8. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia.

    PubMed

    Zendedel, Adib; Habib, Pardes; Dang, Jon; Lammerding, Leoni; Hoffmann, Stefanie; Beyer, Cordian; Slowik, Alexander

    2015-01-15

    Omega-3 polyunsaturated fatty acids (PUFA n3) provide neuroprotection due to their anti-inflammatory and anti-apoptotic properties as well as their regulatory function on growth factors and neuronal plasticity. These qualities enable PUFA n3 to ameliorate stroke outcome and limit neuronal damage. Young adult male rats received transient middle cerebral artery occlusion (tMCAO). PUFA n3 were intravenously administered into the jugular vein immediately after stroke and 12h later. We analyzed stroke volume and behavioral performance as well as the regulation of functionally-relevant genes in the penumbra. The extent of ischemic damage was reduced and behavioral performance improved subject to applied PUFA n3. Expression of Tau and growth-associated protein-43 genes were likewise restored. Ischemia-induced increase of cytokine mRNA levels was abated by PUFA n3. Using an in vitro approach, we demonstrate that cultured astroglial and microglia directly respond to PUFA n3 administration by preventing ischemia-induced increase of cyclooxygenase 2, hypoxia-inducible factor 1alpha, inducible nitric oxide synthase, and interleukin 1beta. Cultured cortical neurons also appeared as direct targets, since PUFA n3 shifted the Bcl-2-like protein 4 (Bax)/B-cell lymphoma 2 (Bcl 2) ratio towards an anti-apoptotic constellation. Thus, PUFA n3 reveal a high neuroprotective and anti-inflammatory potential in an acute ischemic stroke model by targeting astroglial and microglial function as well as improving neuronal survival strategies. Our findings signify the potential clinical feasibility of PUFA n3 therapeutic treatment in stroke and other acute neurological diseases.

  9. Ameliorating effects of short-chain inulin-like fructans on the healing stage of trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Hino, Shingo; Ito, Hiroyuki; Bito, Hiroyuki; Kawagishi, Hirokazu; Morita, Tatsuya

    2011-01-01

    We evaluated the ameliorating effects of short-chain inulin-like fructans (SIF) with different degrees of polymerization (DP) on the healing stage of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. The rats were assigned to 3 groups 10 d after the colitis induction, and fed for 24 d on a control diet or diet including 60 g of DP4 or DP8/kg. The fecal myeloperoxidase (MPO) activity and IgA concentration were monitored every 7 d. The colonic MPO activities and cecal concentrations of organic acids, lactobacilli, bifidobacteria, mucin and IgA were measured at the end of the study. DP4, but not DP8, significantly reduced the colonic inflammation accompanied by higher cecal concentrations of short-chain fatty acids, propionate in particular, and lactic acid-producing bacteria. DP4 therefore accelerated the healing process of TNBS-induced colitis, even when the treatment was initiated after inducing colitis.

  10. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression.

    PubMed

    Peng, Jing-Hua; Cui, Tuan; Huang, Fu; Chen, Liang; Zhao, Yu; Xu, Lin; Xu, Li-Li; Feng, Qin; Hu, Yi-Yang

    2013-03-01

    Puerarin, an isoflavone component extracted from Kudzu (Pueraria lobata), has been demonstrated to alleviate alcohol-related disorders. Our study examined whether puerarin ameliorates chronic alcoholic liver injury through inhibition of endotoxin gut leakage, the subsequent Kupffer cell activation, and endotoxin receptors expression. Rats were provided with the Liber-DeCarli liquid diet for 8 weeks. Puerarin (90 mg/kg or 180 mg/kg daily) was orally administered from the beginning of the third week until the end of the experiment. Chronic alcohol intake caused increased serum alanine aminotransferase, aspartate aminotransferase, hepatic gamma-glutamyl transpeptidase, and triglyceride levels as well as fatty liver and neutrophil infiltration in hepatic lobules as determined by biochemical and histologic assays. A significant increase of liver tumor necrosis factor α was detected by enzyme-linked immunosorbent assay. These pathologic effects correlated with increased endotoxin level in portal vein and upregulated protein expression of hepatic CD68, lipopolysaccharide-binding protein, CD14, Toll-like receptor 2, and Toll-like receptor 4. Meanwhile, the intestinal microvilli were observed to be sparse, shortened, and irregularity in distribution under the transmission electron microscope in conjunction with the downregulated intestinal zonula occludens-1 protein expression. These hepatic pathologic changes were significantly inhibited in puerarin-treated animals as were the endotoxin levels and hepatic CD68 and endotoxin receptors. Moreover, the pathologic changes in intestinal microvillus and the decreased intestinal zonula occludens-1 were also ameliorated with puerarin treatment. These results thus demonstrate that puerarin inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression is involved in the alleviation of chronic alcoholic liver injury in rats.

  11. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats.

    PubMed

    Arteaga, Olatz; Revuelta, M; Urigüen, L; Martínez-Millán, L; Hilario, E; Álvarez, A

    2016-10-29

    As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

  12. Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease

    PubMed Central

    2013-01-01

    Background Camel milk (CM) is gaining increasing recognition due to its beneficial effects in the control and prevention of multiple health problems. The current study aimed to investigate the effects of CM on the hepatic biochemical and cellular alterations induced by a high-fat, cholesterol-rich diet (HCD), specifically, non-alcoholic fatty liver disease (NAFLD). Methods Seventy male Wistar rats were divided into four groups: the Control (C) Group fed a standard diet; the Control + camel milk (CCM) Group fed a standard diet and CM, the Cholesterol (Ch) Group fed a HCD with no CM, and the Cholesterol + camel milk (ChM) Group fed a HCD and CM. The following parameters were investigated in the studied groups; basal, weekly random and final fasting blood glucose levels, intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT), serum insulin, serum lipids, liver functions, lipid peroxidation products, the antioxidant activity of catalase (CAT) and the levels of reduced glutathione (GSH). In addition, HOMA-IR as an index of insulin resistance (IR) and the histopathology of the hepatic tissue were assessed. Results The Ch Group developed features similar to those of non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis; inflammatory cellular infiltration in liver tissue; altered liver functions; and increased total cholesterol, triglycerides, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, atherogenic index (AI), blood glucose, IR, and malondialdehyde (MDA) levels. Additionally, feeding the HCD to animals in the Ch Group decreased CAT activity and the GSH and high-density lipoprotein (HDL) cholesterol levels. Camel milk intake for eight weeks decreased hepatic fat accumulation and inflammatory cellular infiltration, preserved liver function, increased the GSH levels and CAT activity, decreased the MDA levels, and ameliorated the changes in the lipid profile, AI, and IR in animals from the Ch

  13. Dietary supplementation with omega-3 polyunsaturated fatty acids ameliorates acute pneumonia induced by Klebsiella pneumoniae in BALB/c mice.

    PubMed

    Sharma, Sonica; Chhibber, Sanjay; Mohan, Harsh; Sharma, Saroj

    2013-07-01

    The immune benefits associated with the optimal intake of dietary fatty acids are widely known. The objective of the present investigation was to elucidate the role of omega-3 polyunsaturated fatty acids (n-3 PUFA) food source on acute pneumonia induced by Klebsiella pneumoniae. Three different n-3 PUFA preparations (cod liver oil, Maxigard, and flaxseed oil) were orally supplemented and infection was induced in different groups of experimental mice. Mice fed olive oil and normal saline served as oil and saline controls, respectively. After 2 weeks of fatty acid feeding, no effect on the establishment of infection was observed when acute pneumonia was induced in animals. On the other hand, 6 weeks of n-3 PUFA administration was found to improve resistance in mice, as reduced lung bacterial load coupled with significant improvement in pathology was seen in infected mice. Alveolar macrophages collected from all 3 groups of mice fed n-3 PUFA exhibited a significant decrease in the level of apoptosis following infection with K. pneumoniae and an enhanced in vitro phagocytic potential for the pathogen. Lower lung levels of nitric oxide, malondialdehyde, and lactate dehydrogenase were associated with a decrease in the severity of tissue damage. There was a significant increase in the lung levels of pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)). No significant change was observed in the levels of interleukin-10 (IL-10). This study highlights that dietary n-3 PUFA supplementation exerts an overall beneficial effect against acute experimental pneumonia. This mechanism is operative through upregulation of nonspecific and specific immune defenses of the host.

  14. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice.

    PubMed

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby

    2017-04-01

    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we

  15. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats.

    PubMed

    Ding, Chunchun; Zhao, Yan; Shi, Xue; Zhang, Ning; Zu, Guo; Li, Zhenlu; Zhou, Junjun; Gao, Dongyan; Lv, Li; Tian, Xiaofeng; Yao, Jihong

    2016-06-27

    Salvianolic acid A (SalA), one of the most efficacious polyphenol compounds extracted from Radix Salvia miltiorrhiza (Danshen), has been shown to possess many potential pharmacological activities. This study aimed to investigate whether SalA has hepatoprotective effects against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and to further explore the mechanism underlying this process. SalA treatment significantly attenuated HFD-induced obesity and liver injury, and markedly decreased lipid accumulation in HFD-fed rat livers. Moreover, SalA treatment ameliorated HFD-induced hepatic inflammation and oxidative stress by decreasing hepatotoxic levels of cytokines, suppressing the overproduction of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) and preventing the decreased expression of superoxide dismutase (SOD). Importantly, SalA reversed the HFD- or palmitic acid (PA)-induced activation of the NLRP3 inflammasome, the nuclear translocation of ChREBP and the up-regulation of FAS, and these effects were accompanied by TXNIP down-regulation. However, TXNIP siRNA treatment partially abrogated the above-mentioned effects of SalA in PA-treated HepG2 cells. Together, our results demonstrated, for the first time, that SalA protects against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation, and these protective effects may partially due to regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways.

  16. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats

    PubMed Central

    Ding, Chunchun; Zhao, Yan; Shi, Xue; Zhang, Ning; Zu, Guo; Li, Zhenlu; Zhou, Junjun; Gao, Dongyan; Lv, Li; Tian, Xiaofeng; Yao, Jihong

    2016-01-01

    Salvianolic acid A (SalA), one of the most efficacious polyphenol compounds extracted from Radix Salvia miltiorrhiza (Danshen), has been shown to possess many potential pharmacological activities. This study aimed to investigate whether SalA has hepatoprotective effects against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and to further explore the mechanism underlying this process. SalA treatment significantly attenuated HFD-induced obesity and liver injury, and markedly decreased lipid accumulation in HFD-fed rat livers. Moreover, SalA treatment ameliorated HFD-induced hepatic inflammation and oxidative stress by decreasing hepatotoxic levels of cytokines, suppressing the overproduction of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) and preventing the decreased expression of superoxide dismutase (SOD). Importantly, SalA reversed the HFD- or palmitic acid (PA)-induced activation of the NLRP3 inflammasome, the nuclear translocation of ChREBP and the up-regulation of FAS, and these effects were accompanied by TXNIP down-regulation. However, TXNIP siRNA treatment partially abrogated the above-mentioned effects of SalA in PA-treated HepG2 cells. Together, our results demonstrated, for the first time, that SalA protects against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation, and these protective effects may partially due to regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways. PMID:27345365

  17. Ameliorative Effect of Vanillic Acid on Serum Bilirubin, Chronotropic and Dromotropic Properties in the Cholestasis-Induced Model Rats

    PubMed Central

    Atefipour, Narges; Dianat, Mahin; Badavi, Mohammad; Sarkaki, Alireza

    2016-01-01

    Introduction The liver modulates several important roles, such as metabolism and liver cirrhosis, which have several cardiovascular problems. Due to preservative role of antioxidant agents in cardiovascular disease, consequently, many of them are applied as medicinal plants in traditional medicine. Vanillic acid (VA), as an antioxidant agent, has a principal preservative role on some diseases. In this study, the effect of vanillic acid was examined on heart rate (as chronotropic property), P-R interval (as dromotropic property), and serum bilirubin in cholestasis-induced model rats. Methods In this study, 32 male Sprague-Dawley rats weighing 200–250 g were allocated into four groups, and each group contained eight rats as follows: Control (normal saline, 1 ml/kg, gavage, daily for 4 weeks), cirrhotic (normal saline, 1 ml/kg, gavage, daily for 4 weeks), vanillic acid (10 mg/kg, gavage, daily for 4 weeks), cirrhotic treated with vanillic acid (10 mg/kg, gavage, daily for 4 weeks). Chronic biliary cirrhosis was induced in cirrhotic groups by four weeks Bile Duct Ligation (BDL). At the first day and four weeks after surgery, the animals were anesthetized, electrocardiograms were recorded (lead II), and chronotropic and dromotropic properties (HR and PR interval) were investigated. At the end of experimental duration, the animals were anesthetized, and blood samples were taken to measure serum bilirubin. The results were analyzed using t-test and one-way ANOVA by SPSS software, version 22. Results After induced of BDL, the results presented that laboratory parameter (bilirubin) in the cirrhotic group significantly increased compared to the control group. The P-R interval was reduced in the cirrhotic group compared to the control group, and there was no significant difference between heart rate in all groups. Bilirubin were reduced in cirrhotic groups treated with vanillic acid (VA) compared to cirrhotic group and also administration of VA in the cirrhotic treated with

  18. Dioclea violacea lectin ameliorates oxidative stress and renal dysfunction in an experimental model of acute kidney injury

    PubMed Central

    Freitas, Flavia PS; Porto, Marcella L; Tranhago, Camilla P; Piontkowski, Rogerio; Miguel, Emilio C; Miguel, Thaiz BAR; Martins, Jorge L; Nascimento, Kyria S; Balarini, Camille M; Cavada, Benildo S; Meyrelles, Silvana S; Vasquez, Elisardo C; Gava, Agata L

    2015-01-01

    Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury. PMID:26885258

  19. St. John's wort may ameliorate 2,4,6-trinitrobenzenesulfonic acid colitis off rats through the induction of pregnane X receptors and/or P-glycoproteins.

    PubMed

    Sehirli, A O; Cetinel, S; Ozkan, N; Selman, S; Tetik, S; Yuksel, M; Dulger, F G A

    2015-04-01

    It is reported that deficiencies of the pregnane X receptor (PXR) and P-glycoprotein (P-gp), the latter of which is encoded by the MDR1 gene, are important factors in the pathogenesis of inflammatory bowel disease (IBD). It is also known that the activation of PXR is protective of IBD due to the mutual repression between PXR and nuclear factor kappa B (NF-κB) expression and because NF-κB was reported to play a pivotal role in the pathogenesis of ulcerative colitis. The goal of this study was to investigate whether St. John's wort (SJW) and spironolactone (SPL), both known to have strong inducing effects on cytochrome P 450 (CYP) enzymes as well as PXR and P-gp, have ameliorating effects on 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis of rats through induction of PXR and/or P-gp. Wistar albino rats (250 - 300 g) were divided into control and TNBS-colitis groups. Each group was then divided into a) control (saline), b) SJW (300 mg/kg p.o. bid), and c) SPL (80 mg/kg p.o.) groups. Drugs were given for 7 days. Both treatments ameliorated the clinical hallmarks of colitis, as determined by body weight loss and assessment of diarrhea, colon length, and bowel histology. Plasma levels of NF-κB, tumour necrosis factor-alpha (TNF-α) and tissue myeloperoxidase (MPO) activity, as well as the oxidative stress markers that increased during colitis, decreased significantly after both treatments. The PXR and P-gp expression in the intestinal tissues was diminished in the colitis group but increased after drug treatments. Both drugs appeared to have significant antioxidant and anti-inflammatory effects and ameliorated the TNBS colitis of the rats, most likely through their PXR- and P-gp-inducing properties.

  20. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  1. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice

    PubMed Central

    Zeng, Hong-liang; Huang, Su-ling; Xie, Fu-chun; Zeng, Li-min; Hu, You-hong; Leng, Ying

    2015-01-01

    Aim: Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. Methods: The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg−1·d−1 for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. Results: Yhhu981 (12.5–25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. Conclusion: Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK. PMID:25732571

  2. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  3. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    SciTech Connect

    Tikoo, Kulbhushan Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  4. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    PubMed Central

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  5. Sweroside ameliorates α-naphthylisothiocyanate-induced cholestatic liver injury in mice by regulating bile acids and suppressing pro-inflammatory responses

    PubMed Central

    Yang, Qiao-ling; Yang, Fan; Gong, Jun-ting; Tang, Xiao-wen; Wang, Guang-yun; Wang, Zheng-tao; Yang, Li

    2016-01-01

    Aim: Sweroside is an iridoid glycoside with diverse biological activities. In the present study we investigated the effects of sweroside on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in mice. Methods: Mice received sweroside (120 mg·kg−1·d−1, ig) or a positive control INT-747 (12 mg·kg−1·d−1, ig) for 5 d, and ANIT (75 mg/kg, ig) was administered on d 3. The mice were euthanized on d 5, and serum biochemical markers, hepatic bile acids and histological changes were analyzed. Hepatic expression of genes related to pro-inflammatory mediators and bile acid metabolism was also assessed. Primary mouse hepatocytes were exposed to a reconstituted mixture of hepatic bile acids, which were markedly elevated in the ANIT-treated mice, and the cell viability and expression of genes related to pro-inflammatory mediators were examined. Results: Administration of sweroside or INT-747 effectively ameliorated ANIT-induced cholestatic liver injury in mice, as evidenced by significantly reduced serum biochemical markers and attenuated pathological changes in liver tissues. Furthermore, administration of sweroside or INT-747 significantly decreased ANIT-induced elevation of individual hepatic bile acids, such as β-MCA, CA, and TCA, which were related to its effects on the expression of genes responsible for bile acid synthesis and transport as well as pro-inflammatory responses. Treatment of mouse hepatocytes with the reconstituted bile acid mixture induced significant pro-inflammatory responses without affecting the cell viability. Conclusion: Sweroside attenuates ANIT-induced cholestatic liver injury in mice by restoring bile acid synthesis and transport to their normal levels, as well as suppressing pro-inflammatory responses. PMID:27498779

  6. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice

    PubMed Central

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    Background and aims A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Methods Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Results Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. Conclusions The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans. PMID:28278289

  7. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response.

    PubMed

    Kwon, Ho-Keun; Kim, Gi-Cheon; Kim, Young; Hwang, Won; Jash, Arijita; Sahoo, Anupama; Kim, Jung-Eun; Nam, Jong Hee; Im, Sin-Hyeog

    2013-03-01

    The immunomodulatory effect of probiotics has been shown mainly in gastro-intestinal immune disorders and little information is available on the inflammation of central nervous system. Recently we reported that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental inflammatory disorders. In this study, we evaluated the prophylactic and therapeutic effects of IRT5 probiotics in experimental autoimmune encephalomyelitis (EAE), a T cell mediated inflammatory autoimmune disease of the central nervous system. Pretreatment of IRT5 probiotics before disease induction significantly suppressed EAE development. In addition, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset. Administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL10(+) producing or/and Foxp3(+) regulatory T cells, both in the peripheral immune system and at the site of inflammation. Collectively, our data suggest that IRT5 probiotics could be applicable to modulate T cell mediated neuronal autoimmune diseases, including multiple sclerosis.

  8. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    PubMed

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

  9. HSV-1-mediated IL-1 receptor antagonist gene therapy ameliorates MOG(35-55)-induced experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Furlan, R; Bergami, A; Brambilla, E; Butti, E; De Simoni, M G; Campagnoli, M; Marconi, P; Comi, G; Martino, G

    2007-01-01

    Primary proinflammatory cytokines, such as IL-1beta, play a crucial pathogenic role in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE), and may represent, therefore, a suitable therapeutic target. We have previously established the delivery of anti-inflammatory cytokine genes within the central nervous system (CNS), based on intracisternal (i.c.) injection of non-replicative HSV-1-derived vectors. Here we show the therapeutic efficacy of i.c. administration of an HSV-1-derived vector carrying the interleukin-1receptor antagonist (IL-1ra) gene, the physiological antagonist of the proinflammatory cytokine IL-1, in C57BL/6 mice affected by myelin oligodendrocyte glycoprotein-induced EAE. IL-1ra gene therapy is effective preventively, delaying EAE onset by almost 1 week (22.4+/-1.4 days post-immunization vs 15.9+/-2.1 days in control mice; P=0.0229 log-rank test), and decreasing disease severity. Amelioration of EAE course was associated with a reduced number of macrophages infiltrating the CNS and in a decreased level of proinflammatory cytokine mRNA in the CNS, suggesting an inhibitory activity of IL-1ra on effector cell recruitment, as antigen-specific peripheral T-cell activation and T-cell recruitment to the CNS is unaffected. Thus, local IL-1ra gene therapy may represent a therapeutic alternative for the inhibition of immune-mediated demyelination of the CNS.

  10. Aqueous Extract from Hibiscus sabdariffa Linnaeus Ameliorate Diabetic Nephropathy via Regulating Oxidative Status and Akt/Bad/14-3-3γ in an Experimental Animal Model

    PubMed Central

    Wang, Shou-Chieh; Lee, Shiow-Fen; Wang, Chau-Jong; Lee, Chao-Hsin; Lee, Wen-Chin; Lee, Huei-Jane

    2011-01-01

    Several studies point out that oxidative stress maybe a major culprit in diabetic nephropathy. Aqueous extract of Hibiscus sabdariffa L. (HSE) has been demonstrated as having beneficial effects on anti-oxidation and lipid-lowering in experimental studies. This study aimed at investigating the effects of Hibiscus sabdariffa L. on diabetic nephropathy in streptozotocin induced type 1 diabetic rats. Our results show that HSE is capable of reducing lipid peroxidation, increasing catalase and glutathione activities significantly in diabetic kidney, and decreasing the plasma levels of triglyceride, low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL) value. In histological examination, HSE improves hyperglycemia-caused osmotic diuresis in renal proximal convoluted tubules (defined as hydropic change) in diabetic rats. The study also reveals that up-regulation of Akt/Bad/14-3-3γ and NF-κB-mediated transcription might be involved. In conclusion, our results show that HSE possesses the potential effects to ameliorate diabetic nephropathy via improving oxidative status and regulating Akt/Bad/14-3-3γ signaling. PMID:19965962

  11. Amelioration of Experimental Autoimmune Encephalomyelitis by Plumbagin through Down-Regulation of JAK-STAT and NF-κB Signaling Pathways

    PubMed Central

    Bai, Yang; Li, Zhen; Liu, Lande; Luo, Jian; Liu, Mingyao; Chen, Huaqing

    2011-01-01

    Plumbagin(PL), a herbal compound derived from roots of the medicinal plant Plumbago zeylanica, has been shown to have immunosuppressive properties. Present report describes that PL is a potent novel agent in control of encephalitogenic T cell responses and amelioration of mouse experimental autoimmune encephalomyelitis (EAE), through down-regulation of JAK-STAT pathway. PL was found to selectively inhibit IFN-γ and IL-17 production by CD4+ T cells, which was mediated through abrogated phosphorylation of JAK1 and JAK2. Consistent with IFN-γ and IL-17 reduction was suppressed STAT1/STAT4/T-bet pathway which is critical for Th1 differentiation, as well as STAT3/ROR pathway which is essential for Th17 differentiation. In addition, PL suppressed pro-inflammatory molecules such as iNOS, IFN-γ and IL-6, accompanied by inhibition of IκB degradation as well as NF-κB phosphorylation. These data give new insight into the novel immune regulatory mechanism of PL and highlight the great value of this kind of herb compounds in probing the complex cytokine signaling network and novel therapeutic targets for autoimmune diseases. PMID:22066025

  12. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice.

    PubMed

    Yun, Jaesuk; Gu, Sun Mi; Yun, Hyung Mun; Son, Dong Ju; Park, Mi Hee; Lee, Moon Soon; Hong, Jin Tae

    2015-12-01

    Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord.

  13. Wheat germ agglutinin anchored chitosan microspheres of reduced brominated derivative of noscapine ameliorated acute inflammation in experimental colitis.

    PubMed

    Kaur, Kamalpreet; Sodhi, Rupinder Kaur; Katyal, Anju; Aneja, Ritu; Jain, Upendra Kumar; Katare, Om Prakash; Madan, Jitender

    2015-08-01

    Reduced brominated derivative of noscapine (Red-Br-Nos, EM012), has potent anti-inflammatory property. However, physicochemical limitations of Red-Br-Nos like low aqueous solubility (0.43×10(-3) g/mL), high lipophilicity (logP∼2.94) and ionization at acidic pH greatly encumber the scale-up of oral drug delivery systems for the management of colitis. Therefore, in present investigation, chitosan microspheres bearing Red-Br-Nos (CTS-MS-Red-Br-Nos) were prepared by emulsion polymerization method and later coated with wheat germ agglutinin (WGA-CTS-MS-Red-Br-Nos) to boost the bioadhesive property. The mean particle size and zeta-potential of CTS-MS-Red-Br-Nos were measured to be 10.5±5.4 μm and 8.1±2.2 mV, significantly (P<0.05) lesser than, 30.2±3.2 μm and 19.2±2.3 mV of WGA-CTS-MS-Red-Br-Nos. Furthermore, various spectral techniques like SEM, FT-IR, DSC and PXRD substantiated that Red-Br-Nos was molecularly dispersed in tailored microspheres in amorphous state. Surface bioadhesive property of WGA-CTS-MS-Red-Br-Nos promoted the affinity toward colon mucin cells in simulated colonic fluid (SCF, pH∼7.2). In vitro release studies carried out on WGA-CTS-MS-Red-Br-Nos and CTS-MS-Red-Br-Nos indicated that SCF with colitis milieu (pH∼4.7) favored the controlled release of Red-Br-Nos, owing to solubilization at acidic pH. Consistently, in vivo investigation also demonstrated the utility of WGA-CTS-MS-Red-Br-Nos, which remarkably attenuated the DSS encouraged neutrophil infiltration, myeloperoxidase activity, and pro-inflammatory cytokine production in C57BL6J mice, as compared to CTS-MS-Red-Br-Nos and Red-Br-Nos suspension. The noteworthy anti-inflammatory activity of WGA-CTS-MS-Red-Br-Nos against acute colitis may be attributed to enhanced drug delivery, affinity and utmost drug exposure at inflamed mucosal layers of colon. In conclusion, WGA-CTS-MS-Red-Br-Nos warrants further in-depth in vitro and in vivo investigations to scale-up the technology for clinical

  14. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  15. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    PubMed Central

    Luo, Shasha; Zou, Qiang

    2016-01-01

    It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525

  16. A Dual Target-directed Agent against Interleukin-6 Receptor and Tumor Necrosis Factor α ameliorates experimental arthritis

    PubMed Central

    Kim, Youngkyun; Yi, Hyoju; Jung, Hyerin; Rim, Yeri Alice; Park, Narae; Kim, Juryun; Jung, Seung Min; Park, Sung-Hwan; Park, Young Woo; Ju, Ji Hyeon

    2016-01-01

    A considerable proportion of patients with rheumatoid arthritis (RA) do not respond to monospecific agents. The purpose of our study was to generate a hybrid form of biologics, targeting tumor-necrosis factor alpha (TNFα) and interleukin-6 receptor (IL-6R), and determine its anti-arthritic properties in vitro and in vivo. A novel dual target-directed agent (DTA(A7/sTNFR2)) was generated by conjugating soluble TNF receptor 2 (sTNFR2) to the Fc region of A7, a new anti-IL-6R antibody obtained by screening the phage display human antibody library. DTA(A7/sTNFR2) inhibited the proliferation and migration of fibroblast-like synoviocytes from patients with RA (RA-FLS) more efficiently than single target-directed agents. DTA(A7/sTNFR2) also blocked osteoclastogenesis from bone marrow cells. The arthritis severity scores of the experimental arthritis mice with DTA(A7/sTNFR2) tended to be lower than those of mice with IgG, A7, or sTNFR2. Histological data suggested that DTA(A7/sTNFR2) is more efficient than single-target drugs in preventing joint destruction and bone loss. These results were confirmed in vivo using the minicircle system. Taken together, the results show that DTA(A7/sTNFR2) may be a promising therapeutic agent for the treatment of RA. PMID:26841833

  17. Catechin-7-O-β-D-glucopyranoside isolated from the seed of Phaseolus calcaratus Roxburgh ameliorates experimental colitis in rats.

    PubMed

    Kook, Sung-Ho; Choi, Ki Choon; Cho, Seong-Wan; Cho, Hyoung-Kwon; Lee, Kyung Dong; Lee, Jeong-Chae

    2015-12-01

    The seeds of Phaseolus calcaratus Roxburgh (PHCR) are common legumes that comprise part of the daily diet in Chinese and Korean culture. Recent findings highlight anti-inflammatory and anti-septic potentials of catechin-7-O-β-D-glucopyranoside (CGP) isolated from PHCR seeds. We investigated the intestinal anti-inflammatory activity and associated mechanisms of CGP using a rat model of trinitrobenzenesulfonic acid (TNBS)-induced colitis. Oral treatment with CGP (10mg/kg body weight) suppressed body weight loss and intestinal inflammatory damages in TNBS-induced colitic rats. This treatment reduced myeloperoxidase activity and malondialdehyde level, but increased glutathione level in the TNBS colitic rats. CGP treatment also inhibited the TNBS-mediated increases in nitric oxide synthase, cyclooxygenase-2, interleukin-1β, tumor necrosis factor-α, intercellular adhesion molecule-1, and monocyte chemotactic protein-1 proteins or mRNA levels. This inhibition was accompanied by the increased mRNA levels of mucins MUC2 and MUC3. The CGP treatment prevented phosphorylation of p38 mitogen-activated protein kinase, IκB-α, and DNA-nuclear factor-κB binding, all of which were increased in the inflamed colons of TNBS-treated rats. Furthermore, oral administration with a crude PHCR butanol extract (100mg/kg body weight) which contains 1.5% of CGP showed intestinal anti-inflammatory potentials similar to that of CGP. Collectively, our current findings suggest that CGP or CGP-containing PHCR seeds may have favorable effects on intestinal inflammatory diseases.

  18. Therapeutic Role of Ursolic Acid on Ameliorating Hepatic Steatosis and Improving Metabolic Disorders in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Rats

    PubMed Central

    Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Methodology/Principal Findings Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. Conclusions/Significance These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD. PMID:24489777

  19. Betulinic acid and betulin ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro.

    PubMed

    Wan, Ying; Jiang, Shuang; Lian, Li-Hua; Bai, Ting; Cui, Peng-He; Sun, Xiao-Ting; Jin, Xue-Jun; Wu, Yan-Ling; Nan, Ji-Xing

    2013-10-01

    Ethanol consumption leads to many kinds of liver injury and suppresses innate immunity, but the molecular mechanisms have not been fully delineated. The present study was conducted to determine whether betulinic acid (BA) or betulin (BT) would ameliorate acute ethanol-induced fatty liver in mice, and to characterize whether Toll like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) were involved in ethanol-stimulated hepatic stellate cells (HSCs). EtOH (5mg/kg) and BA or BT (20 or 50mg/kg) were applied in vivo, while EtOH (50mM) and BA or BT (12.5 or 25μM) were applied in vitro. Administration of BA or BT significantly prevented the increases of serum ALT and AST caused by ethanol, as well as serum TG. Supplement of BA or BT prevented ethanol-induced acidophilic necrosis, increased hepatocyte nuclei and stromal inflammation infiltration as indicated by liver histopathological studies. Administration of BA or BT significantly decreased CYP2E1 activities and expression of SREBP-1caused by ethanol, however, lower dosage of BA or BT showed slight effects on CYP2E1 activity or expression of SREBP-1c. BA or BT administration significantly decreased the expression of TLR4, and increased the phosphorylation of STAT3. In vitro, BA or BT treatment reduced the expressions of α-SMA and collagen-I in ethanol-stimulated HSCs via regulation of TLR4 and STAT3, coincided with in vivo. All of these findings demonstrated that BA or BT might ameliorate acute ethanol-induced fatty liver via TLR4 and STAT3 in vivo and in vitro, promising agents for ethanol-induced fatty liver therapies.

  20. Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter.

    PubMed

    Vana, Adam C; Li, Shihe; Ribeiro, Rachel; Tchantchou, Flaubert; Zhang, Yumin

    2011-09-01

    Inhibition of phospholipase A(2) (PLA(2)) has recently been found to attenuate the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis (MS). However, the protective mechanisms that underlie PLA(2) inhibition are still not well understood. In this study, we found that cytosolic PLA(2) (cPLA(2)) was highly expressed in infiltrating lymphocytes and macrophages/microglia in mouse spinal cord white matter. Although cPLA(2) is also expressed in spinal cord neurons and oligodendrocytes, there were no differences observed in these cell types between EAE and control animals. Arachidonyl trifluoromethyl ketone (AACOCF3), a cPLA(2) inhibitor, significantly reduced the clinical symptoms and inhibited the body weight loss typically found in EAE mice. AACOCF3 also attenuated the loss of mature, myelin producing, oligodendrocytes, and axonal damage in the spinal cord white matter. Nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was dramatically increased in EAE mice and attenuated by treatment with AACOCF3. These protective effects were not evident when AA861, an inhibitor of lipoxygenase, was used. In primary cultures of microglia, lipopolysaccharide (LPS) induced an upregulation of cPLA(2), inducible nitric oxide synthase (iNOS) and components of the NADPH oxidase complex, p47phox and p67phox. AACOCF3 significantly attenuated iNOS induction, nitric oxide production and the generation of reactive oxygen species in reactive microglia. Similar to the decomposition catalyst of peroxynitrite, AACOCF3 also blocked oligodendrocyte toxicity induced by reactive microglia. These results suggest that AACOCF3 may prevent oligodendrocyte loss in EAE by attenuating peroxynitrite formation in the spinal cord white matter.

  1. Amino acid metabolism of experimental granulation tissue in vitro.

    PubMed

    Aalto, M; Lampiaho, K; Pikkarainen, J; Kulonen, E

    1973-04-01

    1. The intracellular volume in granulation tissue was about 15% of the total urea space. 2. The experimental granuloma has a greater ability to retain amino acids during the proliferation phase than later during the synthesis of collagen. 3. The synthesis of collagen and other proteins by granulation tissue is related to the concentrations of proline and glutamic acid in the medium. 4. The rate of synthesis of proline from glutamic acid in granulation-tissue slices is greatest during collagen synthesis. It is enhanced by lactate. 5. Extracellular cations influence the synthesis of collagen and ouabain is inhibitory. Synthesis of other proteins is less sensitive in this respect. 6. It is suggested that the synthesis of collagen is related to the supply of certain amino acids, especially proline, and hence to the redox balance, and also to the function of the cell wall.

  2. Inhibition of microsomal prostaglandin E synthase-1 by aminothiazoles decreases prostaglandin E2 synthesis in vitro and ameliorates experimental periodontitis in vivo

    PubMed Central

    Kats, Anna; Båge, Tove; Georgsson, Pierre; Jönsson, Jörgen; Quezada, Hernán Concha; Gustafsson, Anders; Jansson, Leif; Lindberg, Claes; Näsström, Karin; Yucel-Lindberg, Tülay

    2013-01-01

    The potent inflammatory mediator prostaglandin E2 (PGE2) is implicated in the pathogenesis of several chronic inflammatory conditions, including periodontitis. The inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1), catalyzing the terminal step of PGE2 biosynthesis, is an attractive target for selective PGE2 inhibition. To identify mPGES-1 inhibitors, we investigated the effect of aminothiazoles on inflammation-induced PGE2 synthesis in vitro, using human gingival fibroblasts stimulated with the cytokine IL-1β and a cell-free mPGES-1 activity assay, as well as on inflammation-induced bone resorption in vivo, using ligature-induced experimental periodontitis in Sprague-Dawley rats. Aminothiazoles 4-([4-(2-naphthyl)-1,3-thiazol-2-yl]amino)phenol (TH-848) and 4-(3-fluoro-4-methoxyphenyl)-N-(4-phenoxyphenyl)-1,3-thiazol-2-amine (TH-644) reduced IL-1β-induced PGE2 production in fibroblasts (IC50 1.1 and 1.5 μM, respectively) as well as recombinant mPGES-1 activity, without affecting activity or expression of the upstream enzyme cyclooxygenase-2. In ligature-induced experimental periodontitis, alveolar bone loss, assessed by X-ray imaging, was reduced by 46% by local treatment with TH-848, compared to vehicle, without any systemic effects on PGE2, 6-keto PGF1α, LTB4 or cytokine levels. In summary, these results demonstrate that the aminothiazoles represent novel mPGES-1 inhibitors for inhibition of PGE2 production and reduction of bone resorption in experimental periodontitis, and may be used as potential anti-inflammatory drugs for treatment of chronic inflammatory diseases, including periodontitis.—Kats, A., Båge, T., Georgsson, P., Jönsson, J., Quezada, H. C., Gustafsson, A., Jansson, L., Lindberg, C., Näsström, K., Yucel-Lindberg, T. Inhibition of microsomal prostaglandin E synthase-1 by aminothiazoles decreases prostaglandin E2 synthesis in vitro and ameliorates experimental periodontitis in vivo. PMID:23447581

  3. Experimental Study of Mechanistic Acid Deconstruction of Lignin

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Katahira, R.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major component of biomass, which remains highly underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in studying the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. Model dimers, imitating H, S, and G lignins, were synthesized with the most abundant {beta} - O - 4 linkage in lignin. These compounds were then depolymerized using various acids and at different operating conditions. The deconstruction products were analyzed to complement the QM studies and investigate proposed mechanisms.

  4. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    PubMed

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  5. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  6. Plasmin activity in the porcine airways is enhanced during experimental infection with Mycoplasma hyopneumoniae, is positively correlated with proinflammatory cytokine levels and is ameliorated by vaccination.

    PubMed

    Woolley, Lauren K; Fell, Shayne A; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2013-05-31

    In Mycoplasma hyopneumoniae (Mhp) infection of swine, the host immune response is considered a major driver of lung pathology; however the underlying inflammatory mechanisms are not well understood. The serine protease plasmin is being increasingly recognised as a significant player in inflammatory processes. Here we compare plasmin activity in tracheobronchial lavage fluid (TBLF) from pigs experimentally challenged with Mhp that were either unvaccinated (n=10), or vaccinated with the commercial vaccine Suvaxyn(®) M.hyo (n=10). TBLF collected immediately prior to challenge and at 21 d and 35 d post-challenge was also assayed for levels of proinflammatory cytokines (TNF-α, IL-1β and IL-6), and for bacterial load (by qPCR). Clinical signs, pathology, cytokine analyses and qPCR all indicated that vaccinated pigs had significantly reduced disease relative to unvaccinated animals. Plasmin activity increased significantly in TBLF collected at 21 d post-challenge compared to pre-challenge TBLF in unvaccinated (P<0.01), but not vaccinated animals (P>0.05). A significant correlation was observed between bacterial load and plasmin activity in the 21 d (r=0.66; P<0.01) and the 35 d post-challenge samples, (r=0.62; P<0.01). Plasmin activity was also significantly correlated with levels of TNF-α, IL-1β and IL-6 at 21 d (r=0.78, P<0.0001; r=0.77, P<0.0001; r=0.64, P<0.005) and with TNF-α and IL-1β at 35 d post-challenge (r=0.77, P<0.0001; r=0.74, P<0.0005). Our results indicate that plasminogen is activated to plasmin in the respiratory tract of pigs as part of the host inflammatory response to Mhp infection and that this effect is ameliorated by vaccination.

  7. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats

    PubMed Central

    Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  8. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats.

    PubMed

    Sadar, Smeeta S; Vyawahare, Niraj S; Bodhankar, Subhash L

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis.Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  9. CTRP5 ameliorates palmitate-induced apoptosis and insulin resistance through activation of AMPK and fatty acid oxidation.

    PubMed

    Yang, Won-Mo; Lee, Wan

    2014-09-26

    Lipotoxicity resulting from a high concentration of saturated fatty acids is closely linked to development of insulin resistance, as well as apoptosis in skeletal muscle. CTRP5, an adiponectin paralog, is known to activate AMPK and fatty acid oxidation; however, the effects of CTRP5 on palmitate-induced lipotoxicity in myocytes have not been investigated. We found that globular domain of CTRP5 (gCTRP5) prevented palmitate-induced apoptosis and insulin resistance in myocytes by inhibiting the activation of caspase-3, reactive oxygen species accumulation, and IRS-1 reduction. These beneficial effects of gCTRP5 are mainly attributed to an increase in fatty acid oxidation through phosphorylation of AMPK. These results provide a novel function of CTRP5, which may have preventive and therapeutic potential in management of obesity, insulin resistance, and type 2 diabetes mellitus.

  10. Amelioration of non-alcoholic fatty liver disease with NPC1L1-targeted IgY or n-3 polyunsaturated fatty acids in mice.

    PubMed

    Bae, Jin-Sik; Park, Jong-Min; Lee, Junghoon; Oh, Byung-Chul; Jang, Sang-Ho; Lee, Yun Bin; Han, Young-Min; Ock, Chan-Young; Cha, Ji-Young; Hahm, Ki-Baik

    2017-01-01

    Patients with non-alcoholic fatty liver disease (NAFLD) have an increased risk for progression to hepatocellular carcinoma in addition to comorbidities such as cardiovascular and serious metabolic diseases; however, the current therapeutic options are limited. Based on our previous report that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can significantly ameliorate high fat diet (HFD)-induced NAFLD, we explored the therapeutic efficacy of n-3 PUFAs and N-IgY, which is a chicken egg yolk-derived IgY specific for the Niemann-Pick C1-Like 1 (NPC1L1) cholesterol transporter, on NAFLD in mice. We generated N-IgY and confirmed its efficient cholesterol transport-blocking activity in HepG2 and Caco-2 cells, which was comparable to the effect of ezetimibe (EZM). C57BL/6 wild type and fat-1 transgenic mice, capable of producing n-3 PUFAs, were fed a high fat diet (HFD) alone or supplemented with N-IgY. Endogenously synthesized n-3 PUFAs combined with N-IgY led to significant decreases in hepatic steatosis, fibrosis, and inflammation (p<0.01). The combination of N-IgY and n-3 PUFAs resulted in significant upregulation of genes involved in cholesterol uptake (LDLR), reverse cholesterol transport (ABCG5/ABCG8), and bile acid metabolism (CYP7A1). Moreover, fat-1 transgenic mice treated with N-IgY showed significant downregulation of genes involved in cholesterol-induced hepatic stellate cell activation (Tgfb1, Tlr4, Col1a1, Col1a2, and Timp2). Collectively, these data suggest that n-3 PUFAs and N-IgY, alone or in combination, represent a promising treatment strategy to prevent HFD-induced fatty liver through the activation cholesterol catabolism to bile acids and by decreasing cholesterol-induced fibrosis.

  11. Amelioration of age-dependent increase in protein carbonyls of cerebral hemispheres of mice by melatonin and ascorbic acid.

    PubMed

    Dkhar, Preeticia; Sharma, Ramesh

    2011-12-01

    Melatonin secreted by the pineal gland acts as a free radical scavenger besides its role as a hormonal signaling agent. It detoxifies a variety of free radicals and reactive oxygen intermediates including hydroxyl radical, peroxynitrite anion and singlet oxygen. Ascorbic acid (Vitamin C), a water soluble vitamin, is a naturally occurring antioxidant and cofactor in various enzymes. Protein carbonyls are formed as a consequence of the oxidative modification of proteins by reactive oxygen species. Oxidative modification alters the function of protein and is thought to play an important role in the decline of cellular functions during aging. In the present study, the effect of melatonin and ascorbic acid on age-related carbonyl content of cerebral hemispheres in mice was investigated. Protein carbonyls of cerebral hemispheres have been found to be significantly higher in 18-month-old mice as compared to 1-month old mice. Administration of a single dose of melatonin (10 mg/kg body weight) and ascorbic acid (10 mg/kg body weight) intraperitoneally for three consecutive days decreases the carbonyl content in 1- and 18-month-old mice significantly. The present study thus suggests that the formation of protein carbonyls in the cerebral hemispheres of the aging mice can be prevented by the antioxidative effects of melatonin and ascorbic acid that could in turn be beneficial in having health benefits from age-related neurodegenerative diseases.

  12. Folic Acid and Coenzyme Q10 Ameliorate Cognitive Dysfunction in the Rats with Intracerebroventricular Injection of Streptozotocin

    PubMed Central

    Dehghani Dolatabadi, Hamid Reza; Reisi, Parham; Alaei, Hojjatallah; Azizi Malekabadi, Hamid; Pilehvarian, Ali Asghar

    2012-01-01

    Objective(s) The present study aimed to investigate the effects of a fat soluble antioxidant, coenzyme Q10 (CoQ10) and folic acid on learning and memory in the rats with intracerebroventricular injection of streptozotocin (ICV-STZ), an animal model of sporadic type of Alzheimer's disease. Materials and Methods The lesion groups were injected bilaterally with ICV-STZ (1.5 mg/kg b.wt., in normal saline). In the treated groups, rats received folic acid (4 mg/kg; i.p.) or CoQ10 (10 mg/kg; i.p.), either alone or together, for 21 days. Passive avoidance learning test was used for evaluation of learning and memory. Results The results showed that learning and memory performance was significantly impaired in the rats with ICV-STZ (P< 0.001), however CoQ10 and folic acid, either alone or together, prevented impairments significantly (P< 0.001), as there was not any significant difference between these treated lesion groups and control group. Conclusion The present results suggest that CoQ10 and folic acid have therapeutic and preventive effects on cognitive impairments in Alzheimer’s disease. PMID:23493655

  13. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  14. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: possible role of peroxisome proliferator activated receptor-Upsilon (PPARUpsilon) in Huntington's disease.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-08-01

    Emerging evidence indicates that PPARUpsilon activators attenuate neurodegeneration and related complications. Therefore, the present study focused on the neuroprotective potential of pioglitazone against quinolinic acid (QUIN) induced neurotoxicity. Intrastriatal (unilaterally) administration of QUIN significantly altered body weight and motor function (locomotor activity, rotarod and beam walk performance). Further, QUIN treatment significantly caused oxidative damage (increased lipid peroxidation, nitrite concentration and depleted endogenous antioxidant defense enzymes), altered mitochondrial enzyme complex (I, II and IV) activities and TNF-alpha level as compared to sham treated animals. Pioglitazone (10, 20 and 40mg/kg, p.o.) treatment significantly improved body weight and motor functions, oxidative defense. Further, pioglitazone treatment restored mitochondrial enzyme complex activity as well as TNF-alpha level as compared to QUIN treated group. While Bisphenol A diglycidyl ether (BADGE) (15mg/kg), PPARUpsilon antagonist significantly reversed the protective effect of the pioglitazone (40mg/kg) in the QUIN treated animals. Further, pioglitazone treatment significantly attenuated the striatal lesion volume in QUIN treated animals, suggesting a role for the PPARUpsilon pathway in QUIN induced neurotoxicity. Altogether, this evidence indicates that PPARUpsilon activation by pioglitazone attenuated QUIN induced neurotoxicity in animals and which could be an important therapeutic avenue to ameliorate Huntington like symptoms.

  15. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  16. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    PubMed

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities.

  17. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production.

    PubMed

    Ahmad, Sheikh Fayaz; Khan, Beenish; Bani, Sarang; Suri, K A; Satti, N K; Qazi, G N

    2006-03-01

    The objective of the study was to investigate the activity of ursolic acid (UA) on proinflammatory (Th1) and anti-inflammatory (Th2) cytokines in the peripheral blood of arthritic balb/c mice. Ursolic acid is ubiquitous in the plant kingdom and is a constituent of numerous plants which are having diversified phylogenetic origin and taxonomic position. We applied Cytometric bead array (CBA) technology for simultaneously measurement of these cytokines in adjuvant inflammatory arthritis induced mice treated with ursolic acid in graded oral doses. Cytometric bead array uses the sensitivity of amplified fluorescence detection by flowcytometer to measure soluble analytes in a particle based immune assay. This assay can accurately quantitate five cytokines in a 50 microl sample volume. The T-helper (Th1) deviated cells produce detectable level of tumor necrosis factor (TNF-alpha), interleukin-2 (IL-2) and interferon-gamma (IFN-gamma), while the Th2 deviated cells produce significant amount of interleukin-4 (IL-4) and interleukin-5 (IL-5). Oral administration of UA at doses of 10, 20, 40, 80 and 160 mg kg(-1) per oral dose inhibited the presence of IL-2, IFN-gamma and TNF-alpha in the peripheral blood.

  18. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    PubMed Central

    Mack, Isabelle; Cuntz, Ulrich; Grämer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Andreas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-01-01

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55) and after weight gain (n = 44) in comparison to normal-weight participants (NW, n = 55) along with dietary intake and gastrointestinal complaints. We show profound microbial perturbations in AN patients as compared to NW participants, with higher levels of mucin-degraders and members of Clostridium clusters I, XI and XVIII and reduced levels of the butyrate-producing Roseburia spp. Branched-chain fatty acid concentrations, being markers for protein fermentation, were elevated. Distinct perturbations in microbial community compositions were observed for individual restrictive and binge/purging AN-subtypes. Upon weight gain, microbial richness increased, however perturbations in intestinal microbiota and short chain fatty acid profiles in addition to several gastrointestinal symptoms did not recover. These insights provide new leads to modulate the intestinal microbiota in order to improve the outcomes of the standard therapy. PMID:27229737

  19. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity.

    PubMed

    Jung Choi, Soo; Kim, Mi Jeong; Jin Heo, Ho; Kim, Jae Kyeum; Jin Jun, Woo; Kim, Hye Kyung; Kim, Eun-Ki; Ok Kim, Myeong; Yon Cho, Hong; Hwang, Han-Joon; Jun Kim, Young; Shin, Dong-Hoon

    2009-03-01

    Amyloid beta peptide (Abeta)-induced oxidative stress may be linked to neurodegenerative disease. Ethanol extracts of Rosa laevigata protected PC12 cells from hydrogen peroxide-induced oxidative stress. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction assays revealed a significant increase in cell viability when oxidatively stressed PC12 cells were treated with R. laevigata extract. The effect of R. laevigata on oxidative stress-induced cell death was further investigated by lactate dehydrogenase release assays and trypan blue exclusion assays. Administration of 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract to mice infused with Abeta significantly reversed learning and memory impairment in behavioural tests. After behavioural testing, the mice were sacrificed and brains were collected for the examination of lipid peroxidation, catalase activity and acetylcholinesterase (AchE) activity. These results suggest that 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract may be able to reduce Abeta-induced neurotoxicity, possibly by reducing oxidative stress. Therefore, R. laevigata extract may be useful for the prevention of oxidative stress-induced neurodegenerative disorders.

  20. Arjunolic acid ameliorates reactive oxygen species via inhibition of p47phox-serine phosphorylation and mitochondrial dysfunction

    PubMed Central

    Miriyala, Sumitra; Chandra, Mini; Maxey, Benjamin; Day, Alicia; St. Clair, Daret K.; Panchatcharam, Manikandan

    2015-01-01

    Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2:3:23-Trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2•−) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2•− in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation. PMID:26319153

  1. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  2. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes

    NASA Astrophysics Data System (ADS)

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly ( P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly ( P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly ( P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly ( P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher ( P < 0.05) in cooled group of Murrah buffaloes.

  3. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L.

    PubMed

    Hayat, Shamsul; Maheshwari, Pragya; Wani, Arif Shafi; Irfan, Mohd; Alyemeni, Mohammed Nasser; Ahmad, Aqil

    2012-04-01

    Among various environmental stresses, salt stress is extensively damaging to major crops all over the world. An experiment was conducted to explore the role of exogenously applied 28 homobrassinolide (HBL) and salicylic acid (SA) on growth, photosynthetic parameters, transpiration and proline content of Brassica juncea L. cultivar Varuna in presence or absence of saline conditions (4.2 dsm(-1)). The leaves of 29d old plants were sprayed with distilled water, HBL and/or SA and plant responses were studied at 30 days after sowing (24 h after spray) and 45 days after sowing. The salinity significantly reduced the plant growth, gas exchange parameters but increased proline content and electrolyte leakage in the leaves. The effects were more pronounced at 30 DAS than 45 DAS. Out of the two hormones (HBL/SA) HBL excelled in its effects at both sampling stages. Toxic effects generated by salinity stress were completely overcome by the combination of the two hormones (HBL and SA) at 45 DAS.

  4. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.

  5. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes.

    PubMed

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly (P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly (P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly (P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly (P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher (P < 0.05) in cooled group of Murrah buffaloes.

  6. Adriamycin cardiotoxicity amelioration by alpha-tocopherol.

    PubMed

    Krivit, W

    1979-01-01

    Adriamycin has become a potent member of the cancer chemotherapeutic program. However, the full utilization of adriamycin is limited by its cardiotoxicity. In experimental animals, alpha-tocopherol has been shown by some to ameliorate or prevent cardiac dysfunction without impairing antitumor effectiveness. During adriamycin therapy, future clinical research should consist of biochemical measurements of vitamin E in plasma, lipoperoxidation in red cells and platelets, while cars to indicate deficiency, should be considered as one method of ameliorating toxicity.

  7. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway

    PubMed Central

    Zhang, Jin-qiang; Wu, Xiao-hui; Feng, Yi; Xie, Xiao-fang; Fan, Yong-hua; Yan, Shuo; Zhao, Qiu-ying; Peng, Cheng; You, Zi-li

    2016-01-01

    Aim: Major depressive disorder (MDD) is a debilitating mental disorder associated with dysfunction of the neurotransmitter-neuroendocrine system and neuroinflammatory responses. Salvianolic acid B (SalB) has shown a variety of pharmacological activities, including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we examined whether SalB produced antidepressant-like actions in a chronic mild stress (CMS) mouse model, and explored the mechanisms underlying the antidepressant-like actions of SalB. Methods: Mice were subjected to a CMS paradigm for 6 weeks. In the last 3 weeks the mice were daily administered SalB (20 mg·kg−1·d−1, ip) or a positive control drug imipramine (20 mg·kg−1·d−1, ip). The depressant-like behaviors were evaluated using the sucrose preference test, the forced swimming test (FST), and the tail suspension test (TST). The gene expression of cytokines in the hippocampus and cortex was analyzed with RT-PCR. Plasma corticosterone (CORT) and cerebral cytokines levels were assayed with an ELISA kit. Neural apoptosis and microglial activation in brain tissues were detected using immunofluorescence staining. Results: Administration of SalB or imipramine reversed the reduced sucrose preference ratio of CMS-treated mice, and significantly decreased their immobility time in the FST and TST. Administration of SalB significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, and markedly increased the expression of anti-inflammatory cytokines IL-10 and TGF-β in the hippocampus and cortex of CMS-treated mice, and normalized their elevated plasma CORT levels, whereas administration of imipramine did not significantly affect the imbalance between pro- and anti-inflammatory cytokines in the hippocampus and cortex of CMS-treated mice. Finally, administration of SalB significantly decreased CMS-induced apoptosis and microglia activation in the hippocampus and cortex, whereas administration of

  8. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet.

    PubMed

    de Melo, Célio L; Queiroz, Maria Goretti R; Fonseca, Said G C; Bizerra, Ayla M C; Lemos, Telma L G; Melo, Tiago S; Santos, Flavia A; Rao, Vietla S

    2010-04-15

    Excess visceral adiposity may predispose to chronic diseases like hypertension and type 2 diabetes with a high risk for coronary artery disease. Adipose tissue secreted cytokines and oxidative stress play an important role in chronic disease progression. To combat adiposity, plant-derived triterpenes are currently receiving much attention as they possess antioxidant and anti-inflammatory properties and the ability to regulate glucose and lipid metabolism. In the search for potential antiobese compounds from natural sources, this study evaluated the effects of oleanolic acid (OA), a pentacyclic triterpene commonly present in fruits and vegetables, in glucose tolerance test and on high-fat diet (HFD)-induced obesity in mice. Adult male Swiss mice treated or not with OA (10 mg/kg) were fed a HFD during 15 weeks. Sibutramine (SIB) treated group (10 mg/kg) was included for comparison. Weekly body weights, food and water consumption were measured, and at the end of study period, the levels of blood glucose and lipids, plasma hormone levels of insulin, ghrelin and leptin, and the visceral abdominal fat content were analysed. Mice treated with OA and fed a HFD showed significantly (p<0.05) improved glucose tolerance, decreased body weights, visceral adiposity, blood glucose, plasma lipids relative to their respective controls fed no OA. Additionally, OA treatment, while significantly elevating the plasma hormone level of leptin, decreased the level of ghrelin. However, it caused a greater decrease in plasma amylase activity than lipase. Sibutramine-treated group also manifested similar effects like OA except for blood glucose level that was not different from HFD control. These findings suggest that OA ameliorates visceral adiposity and improves glucose tolerance in mice and thus has an antiobese potential through modulation of carbohydrate and fat metabolism.

  9. Nordihydroguaiaretic acid ameliorates cisplatin induced nephrotoxicity and potentiates its anti-tumor activity in DMBA induced breast cancer in female Sprague-Dawley rats.

    PubMed

    Mundhe, Nitin Arunrao; Kumar, Parveen; Ahmed, Sahabuddin; Jamdade, Vinayak; Mundhe, Sanjay; Lahkar, Mangala

    2015-09-01

    Cisplatin is a widely used antineoplastic drug, but its clinical usefulness is limited due to dose dependent nephrotoxicity. Nordihydroguaiaretic acid (NDGA) is a natural compound with broad pharmacological properties like antioxidant, anti-inflammatory and anticancer activity. The present study was undertaken to evaluate the possible beneficial effects of NDGA on cisplatin induced nephrotoxicity as well as its anticancer activity in rats bearing DMBA induced mammary tumors. The effect of NDGA on cisplatin induced nephrotoxicity was evaluated by checking serum nephrotoxicity markers, antioxidant enzymes and inflammatory markers level and kidney histopathology. NDGA induced amelioration of cisplatin nephrotoxicity was clearly visible from significant reductions in serum blood urea nitrogen (86.51 g/dl) and creatinine (5.30 g/dl) levels and significant improvement in body weight change (-10.34 g) and kidney weight (728 mg/kg). The protective effect of NDGA against cisplatin induced nephrotoxicity in the rats was further confirmed by significant restoration of antioxidant enzymes like SOD (86.28% inhibition), inflammatory markers like TNF-α (34.6 pg/ml) and histopathological examination. Moreover, our results showed that NDGA potentiated anti-breast cancer activity of cisplatin through an increment in the expression of antioxidant enzymes like SOD (85.35% inhibition) in breast cancer tissue. These results indicated that NDGA potentiated the anti-breast cancer activity of cisplatin, which was clearly evident from the tumor volume and % tumor inhibition in breast cancer rats. The current study demonstrated that NDGA may modify the therapeutic effect of cisplatin in DMBA induced breast cancer in female Sprague-Dawley rats.

  10. Can Bacteriotherapy Using Commercially Available Probiotics, Prebiotics, and Organic Acids Ameliorate the Symptoms Associated With Runting-Stunting Syndrome in Broiler Chickens?

    PubMed

    Mundt, E; Collett, S R; Berghaus, R; Pedroso, A A; Lee, M D; Maurer, J J

    2015-06-01

    Runting-stunting syndrome (RSS) in poultry has been known for more than 40 years, but the precise etiology remains unknown and a licensed vaccine is consequently not currently available. In order to mitigate the symptoms associated with RSS, a series of experiments was performed to investigate whether a combined bacteriotherapeutic treatment consisting of probiotics, prebiotics, and organic acids could influence the outcome of this disease. Initially two groups of commercial broiler chickens were either left uninoculated or inoculated with filtrate from homogenized intestines of RSS-affected broiler chickens. One group from each of these two challenge groups was treated, with a bacteriotherapeutic regimen. After 12 days chickens were euthanatized, the body weight was measured, and duodenal lesions were enumerated. Five consecutive broiler chicken flocks were then raised either on litter from RSS-affected birds or on fresh wood shavings. Treatment had no beneficial effect on the number and severity of intestinal lesions. There appeared to be a significant build-up of RSS agent(s) in poultry litter, with each consecutive flock placement, independent of bacteriotherapeutic treatment, as more individuals exhibited intestinal lesions on built-up litter in RSS-affected houses (28.9% vs. 44%). While treatment did not appear to consistently reduce intestinal lesions, it did significantly improve the mean body weights (P<0.05) and uniformity of 12-day-old chickens placed on reused litter in houses in which RSS-infected birds were previously raised. A combination of litter management and bacteriotherapy may be needed to ameliorate the adverse effects of RSS on intestinal health and body weight in broiler chickens.

  11. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing.

    PubMed

    Bagdas, Deniz; Gul, Nihal Yasar; Topal, Ayse; Tas, Sibel; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Gul, Zulfiye; Etoz, Betul Cam; Ziyanok, Sedef; Inan, Sevda; Turacozen, Ozge; Gurun, Mine Sibel

    2014-11-01

    Chlorogenic acid (CGA) is a well-known natural antioxidant in human diet. To understand the effects of CGA on wound healing by enhancing antioxidant defense in the body, the present study sought to investigate the potential role of systemic CGA therapy on wound healing and oxidative stress markers of the skin. We also aimed to understand whether chronic CGA treatment has side effects on pivotal organs or rat bone marrow during therapy. Full-thickness experimental wounds were created on the backs of rats. CGA (25, 50, 100, 200 mg/kg) or vehicle was administered intraperitoneally for 15 days. All rats were sacrificed on the 16th day. Biochemical, histopathological, and immunohistochemical examinations were performed. Possible side effects were also investigated. The results suggested that CGA accelerated wound healing in a dose-dependent manner. CGA enhanced hydroxyproline content, decreased malondialdehyde and nitric oxide levels. and elevated reduced glutathione, superoxide dismutase, and catalase levels in wound tissues. Epithelialization, angiogenesis, fibroblast proliferation, and collagen formation increased by CGA while polymorph nuclear leukocytes infiltration decreased. CGA modulated matrix metalloproteinase-9 and tissue inhibitor-2 expression in biopsies. Otherwise, high dose of CGA increased lipid peroxidation of liver and kidney without affecting the heart and muscle samples. Chronic CGA increased micronuclei formation and induced cytotoxicity in the bone marrow. In conclusion, systemic CGA has beneficial effects in improving wound repair. Antioxidant, free radical scavenger, angiogenesis, and anti-inflammatory effects of CGA may ameliorate wound healing. High dose of CGA may induce side effects. In light of these observations, CGA supplementation or dietary CGA may have benefit on wound healing.

  12. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF THE TREASURY ALCOHOL WINE Production of Wine § 24.178 Amelioration. (a) General. In producing natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust..., during and after fermentation. The fixed acid level of the juice is determined prior to fermentation...

  13. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF THE TREASURY LIQUORS WINE Production of Wine § 24.178 Amelioration. (a) General. In producing natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust..., during and after fermentation. The fixed acid level of the juice is determined prior to fermentation...

  14. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS WINE Production of Wine § 24.178 Amelioration. (a) General. In producing natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust..., during and after fermentation. The fixed acid level of the juice is determined prior to fermentation...

  15. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY LIQUORS WINE Production of Wine § 24.178 Amelioration. (a) General. In producing natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust..., during and after fermentation. The fixed acid level of the juice is determined prior to fermentation...

  16. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL WINE Production of Wine § 24.178 Amelioration. (a) General. In producing natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust..., during and after fermentation. The fixed acid level of the juice is determined prior to fermentation...

  17. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  18. Parthenolide Is Neuroprotective in Rat Experimental Stroke Model: Downregulating NF-κB, Phospho-p38MAPK, and Caspase-1 and Ameliorating BBB Permeability

    PubMed Central

    Dong, Lipeng; Qiao, Huimin; Zhang, Xiangjian; Zhang, Xiaolin; Wang, Chaohui; Wang, Lina; Cui, Lili; Zhao, Jingru; Xing, Yinxue; Li, Yanhua; Liu, Zongjie; Zhu, Chunhua

    2013-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Parthenolide (PN) has been proved to elicit a wide range of biological activities through its anti-inflammatory action in the treatment of migraine, arthritis, and atherosclerosis. To decide whether this effect applies to ischemic injury in brain, we therefore investigate the potential neuroprotective role of PN and the underlying mechanisms. Male Sprague-Dawley rats were randomly divided into Saline, Vehicle, and PN groups and a permanent middle cerebral artery occlusion (MCAO) model was used. PN administered intraperitoneally immediately after cerebral ischemia and once daily on the following days. At time points after MCAO, neurological deficit, infarct volume, and brain water content were measured. Immunohistochemistry, western blot and RT-PCR were used to analyze the expression of NF-κB and caspase-1 in ischemic brain tissue. Phospho-p38MAPK and claudin-5 were detected by western blot. The results indicated that PN dramatically ameliorated neurological deficit, brain water content, and infarct volume, downregulated NF-κB, phospho-p38MAPK, and caspase-1 expressions, and upregulated claudin-5 expression in ischemic brain tissue. Conclusions. PN protected the brain from damage caused by MCAO; this effect may be through downregulating NF-κB, phosho-p38MAPK, and caspase-1 expressions and ameliorating BBB permeability. PMID:23935248

  19. Amelioration of cognitive impairments in APPswe/PS1dE9 mice is associated with metabolites alteration induced by total salvianolic acid

    PubMed Central

    Shen, Li; Han, Bing; Geng, Yuan; Wang, Jinhua; Wang, Zhengmin

    2017-01-01

    Purpose Total salvianolic acid (TSA) is extracted from salvia miltiorrhiza; however, to date, there has been limited characterization of its effects on metabolites in Alzheimer’s disease model-APPswe/PS1dE9 mice. The main objective of this study was to investigate the metabolic changes in 7-month-old APPswe/PS1dE9 mice treated with TSA, which protects against learning and memory impairment. Methods APPswe/PS1dE9 mice were treated with TSA (30 mg/kg·d and 60 mg/kg·d, i.p.) and saline (i.p.) daily from 3.5 months old for 14 weeks; saline-treated (i.p.) WT mice were included as the controls. The effects of TSA on learning and memory were assessed by a series of behavioral tests, including the NOR, MWM and step-through tasks. The FBG and plasma lipid levels were subsequently assessed using the GOPOD and enzymatic color methods, respectively. Finally, the concentrations of Aβ42, Aβ40 and metabolites in the hippocampus of the mice were detected via ELISA and GC-TOF-MS, respectively. Results At 7 months of age, the APPswe/PS1dE9 mice treated with TSA exhibited an improvement in the preference index (PI) one hour after the acquisition phase in the NOR and the preservation of spatial learning and memory in the MWM. Treatment with TSA substantially decreased the LDL-C level, and 60 mg/kg TSA decreased the CHOL level compared with the plasma level of the APPswe/PS1dE9 group. The Aβ42 and Aβ40 levels in the hippocampus were decreased in the TSA-treated group compared with the saline-treated APPswe/PS1dE9 group. The regulation of metabolic pathways relevant to TSA predominantly included carbohydrate metabolism, such as sorbitol, glucose-6-phosphate, sucrose-6-phosphate and galactose, vitamin metabolism involved in cholecalciferol and ascorbate in the hippocampus. Conclusions TSA induced a remarkable amelioration of learning and memory impairments in APPswe/PS1dE9 mice through the regulation of Aβ42, Aβ40, carbohydrate and vitamin metabolites in the hippocampus and LDL

  20. A novel 2-decenoic acid thioester ameliorates corticosterone-induced depression- and anxiety-like behaviors and normalizes reduced hippocampal signal transduction in treated mice

    PubMed Central

    Shibata, Shoyo; Iinuma, Munekazu; Soumiya, Hitomi; Fukumitsu, Hidefumi; Furukawa, Yoshiko; Furukawa, Shoei

    2015-01-01

    We characterized mice administered corticosterone (CORT) at a dose of 20 mg/kg for 3 weeks to determine their suitability as a model of mood disorders and found that the time immobilized in the tail suspension test was longer and the time spent in the open arms of the elevated plus-maze test was shorter than those of the vehicle-treated group, findings demonstrating that chronic CORT induced both depression-like and anxiety-like behaviors. Furthermore, the levels of phosphorylated extracellular signal-regulated kinase (pERK) 1/2 in the hippocampus and cerebral cortex were reduced in the CORT-treated group. Using this model, we investigated the protective effect of the ester, thioester, and amide compounds of 2-decenoic acid derivatives (termed compounds A, B, and C, respectively). The potency of the protective activity against the CORT-induced depression-like or anxiety-like behaviors and the reduction in pERK1/2 level were found to be in the following order: compound B > compound C > compound A. Therefore, we further investigated the therapeutic activity of only compound B, and its effect on depression-like behavior was observed after oral administration for 1 or 2 weeks, and its effect on anxiety-like behavior was observed after oral administration for 3 weeks. The ratios of phosphorylated ERK1/2, Akt, and cAMP-response element-binding protein to their respective nonphosphorylated forms were smaller in the CORT-treated group than in the vehicle-treated group; however, subsequent treatment with compound B at either 0.3 or 1.5 mg/kg significantly ameliorated this reduction. Compound B appeared to elicit intracellular signaling, similar to that elicited by brain-derived neurotrophic factor, and its mode of action was shown to be novel and different from that of fluvoxamine, a currently prescribed drug for mood disorders. PMID:26038707

  1. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-01-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.

  2. Phototransformations of quinaldic acid: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Shterev, Ivan G.; Delchev, Vassil B.

    2017-01-01

    A combined theoretical and experimental study was performed in order to clarify the mechanisms of phototransformations of a quinaldic acid solution in acetonitrile when exposed to UV radiation. The theoretical calculations were performed at the BLYP/aug-cc-pVDZ level. It was established that the most stable isomer of the compound in the solution is the one with an intramolecular H-bond between the H atom from the carboxylic group and the N atom from the quinoline ring. The major photoprocess is the breaking of the intramolecular H-bond, i.e. the rotation around the Csbnd OH bond of the carboxylic group through the specroscopically active 1ππ* excited state. Rietveld method was applied to refine the crystal structure of the compound. The refinement lead to the following unit cell parameters: a = 9.76754 Å, b = 6.02724 Å, c = 28.11714 Å, β = 90.495°; and a space Group of P 2/c (Z = 4). The cell volume is 1655.23 Å3.

  3. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings.

    PubMed

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Gupta, B D; Gupta, R K

    2011-07-01

    The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g(-1) FW) and bound (0.545 μg g(-1) FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g(-1) FW) and bound IAA (2.45-7.78 μg g(-1) FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g(-1) FW) and bound (12.17 μg g(-1) FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g(-1) FW) and Cad (9.08 μg g(-1) FW) contents were found for 10(-9)M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g(-1) FW), proline (4.97 mg g(-1) FW), glycinebetaine (39.01 μmol mL(-1)), ascorbic acid (3.17 mg g(-1) FW) and phytochelatins (65.69 μmol g(-1) FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg(-1) protein) and catalase (0.221 U mg(-1) protein) and enhanced activities of glutathione reductase (7.14 U mg(-1) protein), superoxide dismutase (15.20 U mg(-1) protein) and ascorbate peroxidase (4.31 U mg(-1) protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone

  4. Solution and gas-phase acidities of all-trans (all-E) retinoic acid: an experimental and computational study.

    PubMed

    Abboud, José-Luis M; Koppel, Ilmar A; Uggerud, Einar; Leito, Ivo; Koppel, Ivar; Sekiguchi, Osamu; Kaupmees, Karl; Saame, Jaan; Kütt, Karl; Mishima, Masaaki

    2015-07-27

    Retinoic acid is of fundamental biological importance. Its acidity was determined in the gas phase and in acetonitrile solution by means of mass spectrometry and UV/Vis spectrophotometry, respectively. The intrinsic acidity is slightly higher than that of benzoic acid. In solution, the situation is opposite. The experimental systems were described theoretically applying quantum chemical methods (wave function theory and density functional theory). This allowed the determination of the molecular structure of the acid and its conjugate base, both in vacuo and in solution, and for computational estimates of its acidity in both phases.

  5. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA).

  6. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    PubMed Central

    Tian, Yu; He, Lei; Shao, Yang; Li, Na

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  7. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis.

    PubMed

    Jesus, Jéssica A; Fragoso, Thais N; Yamamoto, Eduardo S; Laurenti, Márcia D; Silva, Marcelo S; Ferreira, Aurea F; Lago, João Henrique G; Gomes, Gabriela S; Passero, Luiz Felipe D

    2017-04-01

    Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.

  8. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid.

    PubMed

    Girisuta, B; Danon, B; Manurung, R; Janssen, L P B M; Heeres, H J

    2008-11-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T=150-175 degrees CH2SO4 = 0.1-1M, water hyacinth intake=1-5wt%). At high acid concentrations (>0.5M), LA was the major organic acid whereas at low acid concentrations (<0.1M) and high initial intakes of water hyacinth, the formation of propionic acid instead of LA was favoured. The highest yield of LA was 53mol% (35wt%) based on the amount of C6-sugars in the water hyacinth (T=175 degrees CH2SO4 =1M , water hyacinth intake=1wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained.

  9. Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat; Agdul, Haqu; Shido, Osamu

    2005-12-30

    We investigated the effects of dietary administration of docosahexaenoic acid (DHA; C22:6n-3) on the levels of amyloid beta (A beta) peptide (1-40) and cholesterol in the nonionic detergent Triton 100 x-insoluble membrane fractions (DIFs) of the cerebral cortex and, also, on learning-related memory in an animal model of Alzheimer's disease (AD) rats infused with A beta peptide (1-40) into the cerebral ventricle. The infusion increased the levels of A beta peptide and cholesterol in the DIFs concurrently with a significant increase in reference memory errors (measured by eight-arm radial-maze tasks) compared with those of vehicle rats. Conversely, the dietary administration of DHA to AD-model rats decreased the levels of A beta peptide and cholesterol in the DIFs, with the decrease being more prominent in the DHA-administered rats. Regression analysis revealed a significant positive correlation between A beta peptide and each of cholesterol, palmitic acid and stearic acid, and between the number of reference memory errors and each of cholesterol, palmitic, stearic and oleic acid; moreover, a significant negative correlation was observed between the number of reference memory errors and the molar ratio of DHA to palmitic plus stearic acid. These results suggest that DHA-induced protection of memory deficits in AD-model rats is related to the interactions of cholesterol, palmitic acid or stearic acid with A beta peptides in DIFs where DHA ameliorates these interactions.

  10. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    PubMed

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS.

  11. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson's Disease: Modulating Autophagy (Quercetin on Experimental Parkinson's Disease).

    PubMed

    El-Horany, Hemat E; El-Latif, Rania N Abd; ElBatsh, Maha M; Emam, Marwa N

    2016-07-01

    Autophagy is necessary for neuronal homeostasis and its dysfunction has been implicated in Parkinson's disease (PD) as it can exacerbate endoplasmic reticulum (ER) stress and ER stress-induced apoptosis. Quercetin is a flavonoid known for its neuroprotective and antioxidant effects. The present study investigated the protective, autophagy-modulating effects of quercetin in the rotenone rat model of PD. Rotenone was intraperitoneally injected at dose of 2 ml/kg/day for 4 weeks. Simultaneous intraperitoneal injection of quercetin was given at a dose of 50 mg/kg/day also for 4 weeks. Neurobehavioral changes were studied. Oxidative/antioxidant status, C/EBP homologous protein (CHOP), Beclin-1, and dopamine levels were assessed. DNA fragmentation and histopathological changes were evaluated. This research work revealed that quercetin significantly attenuated rotenone-induced behavioral impairment, augmented autophagy, ameliorated ER stress- induced apoptosis with attenuated oxidative stress. From the current study, quercetin can act as an autophagy enhancer in PD rat model and modulates the microenvironment that leads to neuronal death.

  12. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease.

    PubMed

    Heeba, Gehan H; Morsy, Mohamed A

    2015-11-01

    Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. In the present study, we investigated the therapeutic effect of fucoidan on non-alcoholic fatty liver disease (NAFLD) in rats. Rats were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD. Oral administrations of fucoidan (100mg/kg, orally), metformin (200mg/kg, orally) or the vehicle were started in the last four weeks. Results showed that administration of fucoidan for 4 weeks attenuated the development of NAFLD as evidenced by the significant decrease in liver index, serum liver enzymes activities, serum total cholesterol and triglycerides, fasting serum glucose, insulin, insulin resistance, and body composition index. Further, fucoidan decreased hepatic malondialdehyde as well as nitric oxide concentrations, and concomitantly increased hepatic reduced glutathione level. In addition, the effect of fucoidan was accompanied with significant decrease in hepatic mRNA expressions of tumor necrosis factor-α, interleukins-1β and matrix metalloproteinase-2. Furthermore, histopathological examination confirmed the effect of fucoidan. In conclusion, fucoidan ameliorated the development of HFD-induced NAFLD in rats that may be, at least partly, related to its hypolipidemic, insulin sensitizing, antioxidant and anti-inflammatory mechanisms.

  13. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    PubMed Central

    Gonzalez-Rey, Elena; Martin, Francisco; Oliver, F. Javier

    2017-01-01

    Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function. PMID:28250776

  14. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats.

    PubMed

    Ilhan, Atilla; Akyol, Omer; Gurel, Ahmet; Armutcu, Ferah; Iraz, Mustafa; Oztas, Emin

    2004-08-01

    Because oxidative damage has been known to be involved in inflammatory and autoimmune-mediated tissue destruction, modulation of oxygen free radical production represents a new approach to the treatment of inflammatory and autoimmune diseases. Central nervous system tissue is particularly vulnerable to oxidative damage, suggesting that oxidation plays an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has been determined to have antioxidant, anti-inflammatory, antiviral, and anticancer activities. We have previously reported that CAPE inhibits ischemia-reperfusion injury and oxidative stress in rabbit spinal cord tissue. The present study, therefore, examined effects of CAPE on oxidative tissue damage in EAE in rats. Treatment with CAPE significantly inhibited reactive oxygen species (ROS) production induced by EAE, and ameliorated clinical symptoms in rats. These results suggest that CAPE may exert its anti-inflammatory effect by inhibiting ROS production at the transcriptional level through the suppression of nuclear factor kappaB activation, and by directly inhibiting the catalytic activity of inducible nitric oxide synthase.

  15. A novel human truncated IL12rβ1-Fc fusion protein ameliorates experimental autoimmune encephalomyelitis via specific binding of p40 to inhibit Th1 and Th17 cell differentiation

    PubMed Central

    Wang, Xin; Luo, Cheng; Yu, Dongmei; Wang, Yuheng; Chen, Yucong; Lei, Wen; Gao, Xiangdong; Yao, Wenbing

    2015-01-01

    Interleukin (IL)-12 and IL-23 respectively driving polarization of T helper (Th) 1 and Th17 cells has been strongly implicated in the pathogenesis of both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we first constructed, expressed and purified a novel human truncated IL12rβ1-Fc fusion protein (tIL12rβ1/Fc) binding multiple forms of the p40 subunit of human IL-12 and IL-23. tIL12rβ1/Fc was found to effectively ameliorate MOG35–55-induced EAE through reducing the production of Th1- and Th17-polarized pro-inflammatory cytokines and suppressing inflammation and demyelination in the focused parts. Moreover, tIL12rβ1/Fc suppressed Th1 (IFN-γ+ alone) and IFN-γ+ IL-17+ as well as the population of classic Th17 (IL-17+ alone) cells in vivo. Furthermore, tIL12rβ1/Fc ameliorated EAE at the peak of disease via the inhibition of STAT pathway, thereby causing a prominent reduction of RORγt (Th17) and T-bet (Th1) expression. Notably, tIL12rβ1/Fc could increase the relative number of CD4+ Foxp3+ regulatory T cells. These findings indicates that tIL12rβ1/Fc is a novel fusion protein for specific binding multiple forms of p40 subunit to exert potent anti-inflammatory effects and provides a valuable approach for the treatment of MS and other autoimmune diseases. PMID:26384304

  16. Ellagic acid and gingerol, activators of the sarco-endoplasmic reticulum Ca²⁺-ATPase, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia.

    PubMed

    Namekata, Iyuki; Hamaguchi, Shogo; Wakasugi, Yumi; Ohhara, Minato; Hirota, Yoshitaka; Tanaka, Hikaru

    2013-04-15

    The effects of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) activators, ellagic acid and gingerol, on the contraction and Ca(2+) transient were examined in isolated myocardia from streptozotocin-induced diabetic mice and compared with control mice. The time required for relaxation of the right ventricular free wall was significantly longer in streptozotocin-treated mice. The basal Ca(2+) concentration of isolated ventricular myocytes from streptozotocin-treated mice was significantly higher than those from control mice. The Ca(2+) transient decay rate was significantly lower in myocytes from streptozotocin-treated mice. Cyclopiazonic acid, a SERCA inhibitor, decreased the rate of relaxation and the rate of Ca(2+) transient decay; these effects were larger in control mice. Both ellagic acid and gingerol accelerated the rate of relaxation and the rate of Ca(2+) transient decay; these effects were larger in the streptozotocin-treated mice. The acceleration of relaxation by ellagic acid and gingerol was completely inhibited by cyclopiazonic acid. These results suggest that the diabetes mellitus-induced myocardial diastolic dysfunction is partly caused by reduction of SERCA function and can be ameliorated by SERCA activators.

  17. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation.

    PubMed

    Samadder, Asmita; Das, Sreemanti; Das, Jayeeta; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2012-12-01

    In South East Asia, groundwater arsenic contamination has become a great menace. Chronic arsenic intoxication leads to a hyperglycemic condition in animals and man. Because of undesirable side-effects and affordability, orthodox medicine, like insulin, is not preferred by many who like natural products instead. Unfortunately, such natural products mostly lack scientific validation. Therefore, we became interested in assessing the efficacy of the ethanolic seed extract of Syzygium jambolanum (SJ), traditionally used against diabetic conditions. We also formulated poly (lactic-co-glycolic) acid (PLGA)-encapsulated nano-SJ (NSJ) and tested whether the ameliorative potentials of SJ could be enhanced by nano-encapsulation. In this study, we conducted both in vitro (in L6 cells) and in vivo (in mice) experiments to assess the relative efficacy of SJ and NSJ. We characterized the physico-chemical features of NSJ by atomic force microscopy and critically analyzed several bio-markers and signal proteins associated with arsenic-induced stress and hyperglycemia. We also determined the relative ameliorative potentials of SJ and NSJ by using standard protocols. NSJ could cross the blood brain barrier in mice. Overall results suggested that NSJ had a greater potential than that of SJ, indicating the possibility of using NSJ in the future drug design and management of arsenic-induced hyperglycemia and stress.

  18. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    expression profiling of the transcriptome revealed that COWE treatment caused the down regulation of a group of genes involved in the immune response, inflammatory response, antigen processing and presentation, B-cell-mediated immunity and innate immune response. Collectively, these results suggest anti-neuroinflammatory mechanisms by which COWE treatment delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.

  19. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids

    NASA Astrophysics Data System (ADS)

    Koczoń, P.; Dobrowolski, J. Cz.; Lewandowski, W.; Mazurek, A. P.

    2003-07-01

    The experimental and theoretical (B3PW91/6-311++G**) vibrational (IR and Raman) spectra of picolinic, nicotinic and isonicotinic acids (pyridine-2-, -3-, and -4-carboxylic acid, respectively) were studied. Three stable calculated structures were found for picolinic acid: the structure with intramolecular hydrogen COOH⋯N bond, and the two without hydrogen bond. For the nicotinic acid two stable theoretical structures differ in orientation of the COOH group with respect to the nitrogen atom, whereas for the isonicotinic acid only one form was stable. The theoretical vibrational spectra of the three acids were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. Next, selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, the wavenumbers and intensities for the three isomeric acids were compared and discussed in terms of location of the carboxylic group.

  20. Relationships between fatty acids and psychophysiological parameters in depressive inpatients under experimentally induced stress.

    PubMed

    Irmisch, G; Schläfke, D; Richter, J

    2006-02-01

    Fatty acids can influence important cellular and hormonal processes in the human body. Non-adequate contents of fatty acids, e.g., in blood, can cause and/or result in various diseases. In depressive patients, changes in fatty acid concentrations were found (deficits in omega3-fatty acids, in particular). This paper poses the question whether there are any relations between psychophysiological parameters and changes in fatty acid compositions. The concentration of fatty acids in serum of 118 psychiatric inpatients measured directly before and after experimentally induced stress of about 1h were analysed in relation to psychophysiological parameters continuously registered during the experimental sessions at admission, discharge and at 3 months follow-up. Systolic and diastolic blood pressure, finger pulse amplitude, forehead temperature (FD) and the EMG activity of the musculus zygomaticus consistently correlated with concentrations of single unsaturated oleic (18:1n-9) and erucic acid (22:1) and saturated myristic (14:0) and lauric acid (12:0). Negative relations were found between FD and the concentration of arachidonic acid (20:4n-6) as well as of palmitoleic acid (16:1). Furthermore, the higher the concentration of the erucic acid at discharge the higher the depression score as assessed by the Beck depression inventory (BDI). High concentrations of palmitoleic acid and lauric acid were related to a low level of depression (BDI and Hamilton scores). The implications of these findings for add-on treatment regimens in depression are discussed.

  1. Theory of the effect of inhibition of transfer of radionucleides and heavy metals from soil to plants by effective ameliorants. III. Calculations and experimental measurements

    NASA Astrophysics Data System (ADS)

    Olodovskii, P. P.

    1996-03-01

    Analytical solutions have been obtained for determination of the linear velocity of ions on the surface of plant roots. Relative amounts of a nuclide (or some other ion) that is transferred to plants from the soil are evaluated theoretically and determined experimentally.

  2. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid

    NASA Astrophysics Data System (ADS)

    Hsieh, Tiane-Jye; Su, Chia-Ching; Chen, Chung-Yi; Liou, Chyong-Huey; Lu, Li-Hwa

    2005-05-01

    Three natural products, Coumarin ( 1), p-hydroxybenzoic acid ( 2), trans-cinnamic acid ( 3) were isolated from the natural plant of indigenous cinnamon and the structures including relative stereochemistry were elucidated on the basis of spectroscopic data and theoretical calculations. Their sterochemical structures were determined by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The p-hydroxybenzoic acid complex with water is reported to show the existence of two hydrogen bonds. The two hydrogen bonds are formed in the water molecule of two hydrogen-accepting oxygen of carbonyl group of the p-hydroxybenzoic acid. The intermolecular interaction two hydrogen bond of the model system of the water- p-hydroxybenzoic acid was investigated. An experimental study and a theoretical analysis using the B3LYP/6-31G* method in the GAUSSIAN-03 package program were conducted on the three natural products. The theoretical results are supplemented by experimental data. Optimal geometric structures of three compounds were also determined. The calculated molecular mechanics compared quite well with those obtained from the experimental data. The ionization potentials, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, energy gaps, heat of formation, atomization energies, and vibration frequencies of the compounds were also calculated. The results of the calculations show that three natural products are stable molecules with high reactive and various other physical properties. The study also provided an explicit understanding of the sterochemical structure and thermodynamic properties of the three natural products.

  3. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO42-) in wheat roots. A descriptive and mathematical assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannic acids and tannins are polyphenolic compounds produced by plants and are important components of soil and water organic matter. Tannic acids and tannins form complexes with proteins, metals, and soil particulate matter and perform several physiological and ecological functions. The tannic ac...

  4. Bacteria-Derived Compatible Solutes Ectoine and 5α-Hydroxyectoine Act as Intestinal Barrier Stabilizers to Ameliorate Experimental Inflammatory Bowel Disease.

    PubMed

    Abdel-Aziz, Heba; Wadie, Walaa; Scherner, Olaf; Efferth, Thomas; Khayyal, Mohamed T

    2015-06-26

    Earlier studies showed that the compatible solute ectoine (1) given prophylactically before induction of colitis by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats prevented histological changes induced in the colon and the associated rise in inflammatory mediators. This study was therefore conducted to investigate whether ectoine (1) and its 5α-hydroxy derivative (2) would also be effective in treating an already established condition. Two days after inducing colitis in rats by instilling TNBS/alcohol in the colon, animals were treated orally once daily for 1 week with either 1 or 2 (50, 100, 300 mg/kg). Twenty-four hours after the last drug administration rats were sacrificed. Ulcerative lesions and colon mass indices were reduced by 1 and 2 in a bell-shaped manner. Best results were obtained with 100 mg/kg ectoine (1) and 50 mg/kg 5α-hydroxyectoine (2). The solutes normalized the rise in myeloperoxidase, TNFα, and IL-1β induced by TNBS but did not affect levels of reduced glutathione or ICAM-1, while reducing the level of fecal calprotectin, an established marker for inflammatory bowel disease. The findings indicate that the naturally occurring compatible solutes ectoine (1) and 5α-hydroxyectoine (2) possess an optimum concentration that affords maximal intestinal barrier stabilization and could therefore prove useful for better management of human inflammatory bowel disease.

  5. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone

    SciTech Connect

    Wu, Xue-Feng; Ouyang, Zi-Jun; Feng, Li-Li; Chen, Gong; Guo, Wen-Jie; Shen, Yan; Wu, Xu-Dong; Sun, Yang Xu, Qiang

    2014-11-15

    Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD. Treatment with fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b{sup +} macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following fraxinellone treatment. The results from in vitro assays showed that fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of fraxinellone in NF-κB signaling and NLRP3 inflammasome activation. Overall, our results support fraxinellone as a novel drug candidate in the treatment of colonic inflammation. - Highlights: • Fraxinellone, a lactone compound, alleviated DSS induced colitis. • The effects of fraxinellone were attributed to its inhibition on

  6. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    PubMed

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  7. Effects of Boric Acid on Fracture Healing: An Experimental Study.

    PubMed

    Gölge, Umut Hatay; Kaymaz, Burak; Arpaci, Rabia; Kömürcü, Erkam; Göksel, Ferdi; Güven, Mustafa; Güzel, Yunus; Cevizci, Sibel

    2015-10-01

    Boric acid (BA) has positive effects on bone tissue. In this study, the effects of BA on fracture healing were evaluated in an animal model. Standard closed femoral shaft fractures were created in 40 male Sprague-Dawley rats under general anesthesia. The rats were allocated into five groups (n = 8 each): group 1, control with no BA; groups 2 and 3, oral BA at doses of 4 and 8 mg/kg/day, respectively; group 4, local BA (8 mg/kg); and group 5, both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally). After closed fracture creation, the fracture line was opened with a mini-incision, and BA was locally administered to the fracture area in groups 4 and 5. In groups 2, 3, and 5, BA was administered by gastric gavage daily until sacrifice. The rats were evaluated by clinical, radiological, and histological examinations. The control group (group 1) significantly differed from the local BA-exposed groups (groups 4 and 5) in the clinical evaluation. Front-rear and lateral radiographs revealed significant differences between the local BA-exposed groups and the control and other groups (p < 0.05). Clinical and radiological evaluations demonstrated adequate agreement between observers. The average histological scores significantly differed across groups (p = 0.007) and were significantly higher in groups 4 and 5 which were the local BA (8 mg/kg) and both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally), respectively, compared to the controls. This study suggests that BA may be useful in fracture healing. Further research is required to demonstrate the most effective local dosage and possible use of BA-coated implants.

  8. Short hydrogen bonds in a new salt of pyromellitic acid: An experimental charge density investigation

    NASA Astrophysics Data System (ADS)

    Dos Santos, Leonardo H. R.; Rodrigues, Bernardo L.; Idemori, Ynara M.; Fernandes, Nelson G.

    2012-04-01

    An analysis of intra- and intermolecular short hydrogen bonds in a new salt of nicotinic acid (3-pyridinecarboxylic acid), Nic, and pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), H4Pm, with formula (HNic)2(H2Pm), 1, has been carried out by single-crystal X-ray diffraction method at 120 K. The experimental charge density has been performed using multipolar functions and analyzed by Quantum Theory of Atoms in Molecules, which gave evidence for the partly covalent character of those interactions.

  9. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  10. Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist.

    PubMed

    Cahalan, Stuart M; Gonzalez-Cabrera, Pedro J; Nguyen, Nhan; Guerrero, Miguel; Cisar, Elizabeth A George; Leaf, Nora B; Brown, Steven J; Roberts, Edward; Rosen, Hugh

    2013-02-01

    Sphingosine 1-phosphate receptor 1 (S1P(1)) is a G protein-coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P(1) are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P(1) expressed on lymphocytes and S1P(1) expressed within the central nervous system. Agonists to S1P(1) and deficiency in S1P(1) both cause lymphocyte sequestration in the lymph nodes. In the present study, we show that S1P(1) antagonism induces lymphocyte sequestration in the lymph nodes similar to that observed with S1P(1) agonists while upregulating S1P(1) on lymphocytes and endothelial cells. Additionally, we show that S1P(1) antagonism reverses experimental autoimmune encephalomyelitis in mice without acting on S1P(1) expressed within the central nervous system, demonstrating that lymphocyte sequestration via S1P(1) antagonism is sufficient to alleviate autoimmune pathology.

  11. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin - nicotinamide induced experimental rats.

    PubMed

    Dhananjayan, Indumathi; Kathiroli, Sujithra; Subramani, Srinivasan; Veerasamy, Vinothkumar

    2017-04-01

    Betanin, a chromoalkaloid of beetroot, has shown significant biological effects of antioxidants, anti-inflammatory and anticarcinogenic activities. So, we attempted to determine whether betanin (a natural pigment) would be protective against hyperglycemia in streptozotocin (STZ) - nicotinamide (NA) induced diabetic rats. Rats were injected with STZ (40mg/kgb.w.) 15 mins after the administration of NA (110mg/kgb.w.) by intraperitonially (i.p.) 30days for the induction of experimental diabetes mellitus. After 72h diabetic rats were treated with betanin orally at a doses of 10, 20 and 40mg/kg b.w., respectively in a dose dependent manner and glibenclamide (600μg/kgb.w.). The promising character of betanin against diabetic rats was evaluated by performing the various biochemical parameters and histomorphological changes in liver and pancreas. Among the three doses, 20mg/kgb.w. of betanin was able to positively regulate plasma glucose, insulin, glycosylated hemoglobin (HbA1c) and hemoglobin (Hb) levels by significantly increasing the activity of glycolytic enzyme (glucokinase and pyruvate kinase), glucose-6-phosphate dehydrogenase and significantly decreasing the activity of gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) thereby increasing the glycogen content in the liver. We put forward that betanin could significantly restore the levels of carbohydrate metabolic key enzymes to near normal in diabetic rat. Immunohistochemical observation of pancreas revealed that betanin treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. Taken together, present study suggests that betanin modulates the carbohydrate metabolism and has beneficial effects in glucose homeostasis.

  12. Experimental evolution of a green fluorescent protein composed of 19 unique amino acids without tryptophan.

    PubMed

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).

  13. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  14. Coenzyme Q10 Ameliorates Trimethyltin Chloride Neurotoxicity in Experimental Model of Injury in Dentate Gyrus of Hippocampus: A Histopathological and Behavioral Study

    PubMed Central

    Sakhaie, Mohammad Hassan; Soleimani, Mansoureh; Pirhajati, Vahid; Soleimani Asl, Sara; Madjd, Zahra; Mehdizadeh, Mehdi

    2016-01-01

    Background Coenzyme Q10 has antioxidative and free radical scavenging effects. CoQ10 supplementation is known to have neuroprotective effects in some neurodegenerative diseases, such as Parkinson’s disease and Huntington’s disease. Objectives The aim of this study was to evaluate both histopathologic and behavioral whether Coenzyme Q10 is protective against trimethyltin chloride (TMT) induced hippocampal damage. Materials and Methods This was an experimental study. Thirty-six Balb/c mice were divided into four groups, as follows: 1) control group; 2) sham group of mice that received a 100 µL intraperitoneal injection (IP) of sesame oil; 3) TMT group of mice that received a single 2.5 mg/kg/day IP injection of TMT; and 4) TMT + CoQ10 group of mice that received a 10 mg/kg IP injection of CoQ10. Body weight and Morris water maze (MWM) responses were investigated. In addition, the dentate gyrus neurons of the hippocampus were evaluated histopathologically by light and electron microscopes. Results This study revealed that the body weight scale was found to be significantly higher in the CoQ10 group (21.39 ± 2.70), compared to the TMT group (19.39 ± 2.74) (P < 0.05). In the TMT group, the animals showed body a weight loss that was significantly lower than that of the control group (22.33 ± 3.06) (P < 0.05). Our results showed that CoQ10 provided protection against MWM deficits. Furthermore, TMT impaired the ability of mice to locate the hidden platform, compared to the control group (P < 0.05). Microscopic studies showed that TMT caused histopathological changes in the dentate gyrus and increased the number of necrotic neurons (476 ± 78.51), compared to the control group (208 ± 40.84) (P < 0.001). But, CoQ10 significantly attenuated (31 9 ± 60.08) the density of necrotic neurons compared to TMT (P < 0.05). Conclusions The results of the present study indicate that Coenzyme Q10 diminished neuronal necrosis and improved learning memory. Part of its beneficial

  15. Experimental and Computational Study on the Molecular Energetics of 2-Pyrrolecarboxylic Acid and 1-Methyl-2-pyrrolecarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Santos, Ana Filipa L. O. M.; Silva, Manuel A. V. Ribeiro Da

    2009-08-01

    This paper reports a combined thermochemical experimental and computational study of 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p° = 0.1 MPa) molar enthalpies of combustion, ΔcHm°, and sublimation, ΔcrgHm°, respectively, from which the standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were derived. The values obtained were -(286.3 ± 1.7) and -(291.6 ± 1.7) kJ·mol for 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid, respectively. For comparison purposes, the gas-phase enthalpies of formation of these two compounds were estimated by G3(MP2)//B3LYP and MP2 approaches, using a set of gas-phase working reactions; the results are in excellent agreement with experimental data. G3(MP2)//B3LYP computations were also extended to the calculation of N-H bond dissociation enthalpies, gas-phase acidities and basicities, proton and electron affinities and adiabatic ionization enthalpies. Moreover, the results are also discussed in terms of the energetic effects of the addition of a carboxylic and of a methyl groups to the pyrrole ring and compared with structurally similar compounds.

  16. 4-Methylpyrazole partially ameliorated the teratogenicity of retinol and reduced the metabolic formation of all-trans-retinoic acid in the mouse.

    PubMed

    Collins, M D; Eckhoff, C; Chahoud, I; Bochert, G; Nau, H

    1992-01-01

    Oral administration of retinol (50 mg/kg) to NMRI mice on day 11 of gestation (vaginal plug = day 0) led to the metabolic formation of high quantities of all-trans retinoic acid and all-trans-4-oxoretinoic acid, both known as potent teratogenic agents in the mouse. A 96% reduction of the area under the concentration-versus-time-curve (AUC) of metabolically generated all-trans retinoic acid in maternal plasma, and an 84% decrease in the embryonic AUC were observed when mice had been pretreated with the alcohol dehydrogenase inhibitor 4-methylpyrazole. A similar reduction was observed for the major metabolite of all-trans retinoic acid in the mouse, all-trans-4-oxoretinoic acid. However, 4-methylpyrazole pretreatment decreased the AUC of retinol by 10% in maternal plasma and 15% in embryo. Treatment with retinol alone resulted in 55.6%, 43.9% and 56.0% skeletal anomalies of the forelimbs, hindlimbs and craniofacial structures, respectively. Pretreatment with 4-methylpyrazole lowered the retinol induced skeletal defects to 31.3%, 24.0% and 31.3%, respectively, in the forelimb, hindlimb and craniofacial region. Typical retinoid-induced malformations for gestational day 11, e.g. bent or reduced zeugopod or stylopod elements, or cleft palate, were significantly reduced by 4-methylpyrazole pretreatment but were still detected in significantly higher prevalence than in control mice. These data suggest that the teratogenic activity of a single high dose of vitamin A in mouse is partially but not exclusively dependent on the metabolic activation of retinol to all-trans retinoic acid. Thus it could be hypothesized that retinol is either a proximate teratogen or a coteratogen with all-trans retinoic acid.

  17. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  18. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.

    PubMed

    Hanna, K; Lassabatere, L; Bechet, B

    2012-09-15

    In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.

  19. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis

    PubMed Central

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death worldwide and remains a major life-threatening factor in humans. Apoptosis has been implicated in the pathogenesis of IHD. The Chinese herbal formula Huo Luo Xiao Ling Dan (HLXLD), one of the commonly used Chinese herbal formulas, consists of Salviae miltiorrhizae, Angelica sinensis, Gummi olibanum, and Commiphora myrrha, with a wide spectrum of pharmacological activity. However, the mechanism of action and molecular targets of HLXLD in the treatment of IHD are unclear. This study aimed to computationally predict the molecular interactions between the major active components of HLXLD and key regulators of apoptosis and then examine the effect of HLXLD on coronary artery ligation-induced acute myocardial ischemia in rats. The molecular interactions between the major active components of HLXLD, including ferulic acid, ligustilide, succinic acid, vanillic acid, tanshinone IIA, tanshinone IIB, danshensu, salvianolic acid A, salvianolic acid C, protocatechuic aldehyde, and β-boswellic acid and human protein molecules including B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 antagonist/killer 1 (Bak1), B cell lymphoma 2 (Bcl-2), procaspase 3, and caspase 9 with regard to hydrogen bond formation, charge interaction, and π-π stacking using Discovery Studio® program 3.1. The 12 HLXLD components were predicted by ADMET (absorption, distribution, metabolism, excretion and toxicity) Predictor to have favorable pharmacokinetic and low hepatotoxicity profiles. The acute myocardial ischemia was established by surgical ligation of the left anterior descending coronary artery. The rats were divided into a sham operative group, a model group, a positive control group treated with 0.2 mg/kg isosorbide mononitrate, and groups treated with 2.7, 5.4, or 10.8 g/kg HLXLD. The results showed that administration of HLXLD increased mean arterial pressure, left ventricular systolic pressure, heart rate, and maximal rate of

  20. Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    PubMed Central

    Huang, Yaowei; Hou, Xusheng; Wu, Wenyu; Nie, Lei; Tian, Yinghong; Lu, Yanmeng

    2016-01-01

    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions. PMID:27340672

  1. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  2. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    PubMed

    Downing, Laura E; Heidker, Rebecca M; Caiozzi, Gianella C; Wong, Brian S; Rodriguez, Kelvin; Del Rey, Fernando; Ricketts, Marie-Louise

    2015-01-01

    The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for

  3. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic Acid (DIDS) Ameliorates Ischemia-Hypoxia-Induced White Matter Damage in Neonatal Rats through Inhibition of the Voltage-Gated Chloride Channel ClC-2

    PubMed Central

    Zhao, Baixiong; Quan, Hongyu; Ma, Teng; Tian, Yanping; Cai, Qiyan; Li, Hongli

    2015-01-01

    Chronic cerebral hypoperfusion is believed to cause white matter lesions (WMLs), leading to cognitive impairment. Previous studies have shown that inflammation and apoptosis of oligodendrocytes (OLs) are involved in the pathogenesis of WMLs, but effective treatments have not been studied. In this study, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a chloride (Cl−) channel blocker, was injected into chronic cerebral ischemia-hypoxia rat models at different time points. Our results showed that DIDS significantly reduced the elevated mRNA levels and protein expression of chloride channel 2 (ClC-2) in neonatal rats induced by ischemia-hypoxia. Meanwhile, DIDS application significantly decreased the concentrations of reactive oxygen species (ROS); and the mRNA levels of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha TNF-α in neonatal rats with hypoxic-ischemic damage. Myelin staining was weaker in neonatal rats with hypoxic-ischemic damage compared to normal controls in corpus callosum and other white matter, which was ameliorated by DIDS. Furthermore, the elevated number of caspase-3 and neural/glial antigen 2 (NG-2) double-labeled positive cells was attenuated by DIDS after ischemia anoxic injury. Administration of DIDS soon after injury alleviated damage to OLs much more effectively in white matter. In conclusion, our study suggests that early application of DIDS after ischemia-hypoxia injury may partially protect developing OLs. PMID:25961953

  4. Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-κB in rats with TNBS-induced colitis.

    PubMed

    Mbodji, Khaly; Charpentier, Cloé; Guérin, Charlène; Querec, Coraline; Bole-Feysot, Christine; Aziz, Moutaz; Savoye, Guillaume; Déchelotte, Pierre; Marion-Letellier, Rachel

    2013-04-01

    5-aminosalicylic acid (5-ASA) is widely used for the treatment of inflammatory bowel disease (IBD). Recent studies have evaluated the potential of nutritional intervention as adjunct therapy to 5-ASA in IBD. N-3 polyunsaturated fatty acids (PUFA) have shown potent anti-inflammatory properties in gut inflammation. Therefore, we aimed to evaluate the efficacy of the dual therapy (n-3 PUFA plus 5-ASA) in rats with 2, 4, 6-trinitrobenzen sulfonic acid (TNBS)-induced colitis. Colitis was induced by intrarectal injection of TNBS while control rats received the vehicle. Rats received by gavage a fish oil-rich formula (n-3 groups) or an isocaloric and isolipidic oil formula supplemented with 5-ASA for 14 days. A dose response of 5-ASA (5-75 mg. suppression mg kg(-1) d(-1)) was tested. Colitis was evaluated and several inflammatory markers were quantified in the colon. COX-2 expression (P<.05) and pro-inflammatory eicosanoids production of prostaglandin E2 (P<.001) and leukotriene B4 (P<.001) were significantly inhibited by n-3 PUFA or 5-ASA therapy. 5-ASA also reduces mRNA levels of tumor necrosis factor α (P<.05). n-3 PUFA or 5-ASA significantly inhibits nuclear factor κB (NF-κB) activation (P<.01 and P<.05, respectively). The dual therapy n-3 PUFA plus 5-ASA also inhibited inflammatory response by lowering NF-κB activation (P<.01) or inducing peroxisome proliferator-activated receptor-γ (PPARγ) expression (P<.05). These results indicate that 5-ASA plus n-3 PUFAs are more effective than a higher dose of 5-ASA alone to reduce NF-κB activation and to induce PPARγ. By contrast, the dual therapy did not improve the effects of individual treatments on eicosanoids or cytokine production. Use of n-3 PUFA in addition to 5-ASA may reduce dose of standard therapy.

  5. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  6. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  7. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    SciTech Connect

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; Neumman, Anica; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show that all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.

  8. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats.

    PubMed

    Tian, Jingwei; Fu, Fenghua; Li, Guisheng; Gao, Yubai; Zhang, Yunjuan; Meng, Qingsheng; Li, Changlu; Liu, Fu

    2009-08-01

    SMND-309, a novel compound named (2E)-2-{6-[(E)-2-carboxylvinyl]-2,3-dihydroxyphenyl}-3-(3,4-dihydroxyphenyl) propenoic acid, is a new derivate of salvianolic acid B. The present study was conducted to investigate whether SMND-309 has a protective effect on brain injury after focal cerebral ischemia, and if it did so, to investigate its effects on brain mitochondria. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests and brain patho-physiological tests were used to evaluate the damage to central nervous system. Origin targets including mitochondria production of reactive oxygen species, antioxidant potentia, membrane potential, energy metabolism, mitochondrial respiratory enzymes activities and mitochondria swelling degree were evaluated. The results showed that SMND-309 decreased neurological deficit scores, reduced the number of dead hippocampal neuronal cells in accordance with its depression on mitochondria swelling degree, reactive oxygen species production, improvements on mitochondria swelling, energy metabolism, membrane potential level and mitochondrial respiratory chain complex activities. All of these findings indicate that SMND-309 exerted potent neuroprotective effects in the model of permanent cerebral ischemia, contributed to its protections on brain mitochondrial structure and function.

  9. Abnormal O-GlcNAcylation of Pax3 Occurring from Hyperglycemia-Induced Neural Tube Defects Is Ameliorated by Carnosine But Not Folic Acid in Chicken Embryos.

    PubMed

    Tan, Rui-Rong; Li, Yi-Fang; Zhang, Shi-Jie; Huang, Wen-Shan; Tsoi, Bun; Hu, Dan; Wan, Xin; Yang, Xuesong; Wang, Qi; Kurihara, Hiroshi; He, Rong-Rong

    2017-01-01

    Neural tube defects (NTDs) are among the most common of the embryonic abnormalities associated with hyperglycemic gestation. In this study, the molecular mechanisms of embryonic neurogenesis influenced by hyperglycemia was investigated using chicken embryo models. High-concentration glucose was administered into chicken eggs and resulted in increased plasma and brain tissue glucose, and suppressed expression of glucose transporters (GLUTs). The rate of NTD positively correlated with hyperglycemia. Furthermore, abnormally increased O-GlcNAcylation, a nutritionally responsive modification, of the key neural tube marker Pax3 protein led to the loss of this protein. This loss was not observed in a folate-deficiency NTD induced by methotrexate. Carnosine, an endogenous dipeptide, showed significant recovery effects on neural tube development. In contrast, folic acid, a well-known periconceptional agent, surprisingly showed relatively minimal effect. Higher expression levels of the Pax3 protein were found in the carnosine-treated groups, while lower expression levels were found in folic acid groups. Furthermore, the abnormal O-GlcNAcylation of the Pax3 protein was restored by carnosine. These results suggest new insights into using endogenous nutrients for the protection of embryonic neurodevelopment affected by diabetes gestation. The abnormal excessive O-GlcNAcylation of Pax3 may be responsible for the neural tube defects associated with hyperglycemia.

  10. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice.

    PubMed

    Zhao, Yantao; Sedighi, Rashin; Wang, Pei; Chen, Huadong; Zhu, Yingdong; Sang, Shengmin

    2015-05-20

    In this study, we investigated the preventive effects of carnosic acid (CA) as a major bioactive component in rosemary extract (RE) on high-fat-diet-induced obesity and metabolic syndrome in mice. The mice were given a low-fat diet, a high-fat diet or a high-fat diet supplemented with either 0.14% or 0.28% (w/w) CA-enriched RE (containing 80% CA, RE#1L and RE#1H), or 0.5% (w/w) RE (containing 45% CA, RE#2), for a period of 16 weeks. There was the same CA content in the RE#1H and RE#2 diets and half of this amount in the RE#1L diet. The dietary RE supplementation significantly reduced body weight gain, percent of fat, plasma ALT, AST, glucose, insulin levels, liver weight, liver triglyceride, and free fatty acid levels in comparison with the mice fed with a HF diet without RE treatment. RE administration also decreased the levels of plasma and liver malondialdehyde, advanced glycation end products (AGEs), and the liver expression of receptor for AGE (RAGE) in comparison with those for mice of the HF group. Histological analyses of liver samples showed decreased lipid accumulation in hepatocytes in mice administrated with RE in comparison with that of HF-diet-fed mice. Meanwhile, RE administration enhanced fecal lipid excretion to inhibit lipid absorption and increased the liver GSH/GSSG ratio to perform antioxidant activity compared with HF group. Our results demonstrate that rosemary is a promising dietary agent to reduce the risk of obesity and metabolic syndrome.

  11. Ameliorative effects of α-lipoic acid on high-fat diet-induced oxidative stress and glucose uptake impairment of T cells.

    PubMed

    Cui, Jue; Huang, Dejian; Zheng, Yi

    2016-10-01

    The incidence of obesity and metabolic disease continues to rise, mainly associated with consumption of a high-fat diet (HFD). Previous studies have indicated that HFD could disturb the immune system, leading to immunodeficiency and inflammation. Several mechanisms have been postulated to account for immunodeficiency associated with HFD, one being oxidative stress. To further investigate the effects of HFD on glucose metabolism and proliferative capability of T cells and the protective effects of α-lipoic acid (LA), male C57BL/6J mice were fed a normal chow (10% fat), an HFD (60% fat), an LA supplement (HFD +0.1%LA), and a N-acetyl-L-cysteine supplement (HFD +0.1% NAC) for 10 weeks. Results showed that 10-week HFD increased intracellular reactive oxygen species (ROS) production, induced oxidative stress state formation, inhibited glucose uptake, decreased ATP concentration, reduced proliferative rate, and dampened IL-2 production of T cells of mice. Administration of LA significantly alleviated these changes induced by HFD. These findings reveal that oxidative stress of T cells caused by HFD may be a key factor leading to glucose metabolism reduction and proliferative capability and function impairment of T cells. LA, as a potent agonist, could promote Nrf2 nuclear translocation and up-regulate expression of Nrf2 target genes (Ho-1 and Prdx1), which can eliminate excess ROS and restore redox balance of cells.

  12. Amelioration of 1,2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats.

    PubMed

    Hamiza, Oday O; Rehman, Muneeb U; Tahir, Mir; Khan, Rehan; Khan, Abdul Quaiyoom; Lateef, Abdul; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Colon cancer is the third most common malignant neoplasm in the world and it remains an important cause of death, especially in western countries. The toxic environmental pollutant, 1, 2-dimethylhydrazine (DMH), is also a colon-specific carcinogen. Tannic acid (TA) is reported to be effective against various types of chemically induced toxicity and also carcinogenesis. In the present study, we evaluated the chemopreventive efficacy of TA against DMH induced colon toxicity in a rat model. Efficacy of TA against the colon toxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, lipid peroxidation, histopathological changes and expression of early molecular markers of inflammation and tumor promotion. DMH treatment induced oxidative stress enzymes (p<0.001) and an early inflammatory and tumor promotion response in the colons of Wistar rats. TA treatment prevented deteriorative effects induced by DMH through a protective mechanism that involved reduction of oxidative stress as well as COX-2, i-NOS, PCNA protein expression levels and TNF-α(p<0.001) release. It could be concluded from our results that TA markedly protects against chemically induced colon toxicity and acts plausibly by virtue of its antioxidant, anti-inflammatory and antiproliferative activities.

  13. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain.

    PubMed

    Liu, Qian; Hu, Yaya; Cao, Youfang; Song, Ge; Liu, Zhigang; Liu, Xuebo

    2017-01-18

    As a major nutraceutical component of a typical Mediterranean vegetable chicory, chicoric acid (CA) has been well-documented due to its excellent antioxidant and antiobesity bioactivities. In the current study, the effects of CA on lipopolysaccharide (LPS)-stimulated oxidative stress in BV-2 microglia and C57BL/6J mice and the underlying molecular mechanisms were investigated. Results demonstrated that CA significantly reversed LPS-elicited cell viability decrease, mitochondrial dysfunction, activation of NFκB and MAPK stress pathways, and inflammation responses via balancing cellular redox status. Furthermore, molecular modeling study demonstrated that CA could insert into the pocket of Keap1 and up-regulated Nrf2 signaling and, thus, transcriptionally regulate downstream expressions of antioxidant enzymes including HO-1 and NQO-1 in both microglial cells and ip injection of LPS-treated mouse brain. These results suggested that CA attenuated LPS-induced oxidative stress via mediating Keap1/Nrf2 transcriptional pathways and downstream enzyme expressions, which indicated that CA has great potential as a nutritional preventive strategy in oxidative stress-related neuroinflammation.

  14. Determination of acid dissociation constants (pKa) of cephalosporin antibiotics: Computational and experimental approaches.

    PubMed

    Ribeiro, Alyson R; Schmidt, Torsten C

    2017-02-01

    Cefapirin (CEPA) and ceftiofur (CEF) are two examples of widely used veterinarian cephalosporins presenting multiple ionization centers. However, the acid dissociation constants (pKa) of CEF are missing and experimental data about CEPA are rare. The same is true for many cephalosporins, where available data are either incomplete or even wrong. Environmentally relevant biotic and abiotic processes depend primordially on the antibiotic pH-dependent speciation. Consequently, this physicochemical parameter should be reliable, including the correct ionization center identification. In this direction, two experimental techniques, potentiometry and spectrophotometry, along with two well-known pKa predictors, Marvin and ACD/Percepta, were used to study the macro dissociation constants of CEPA and CEF. Additionally, the experimental dissociation constants of 14 cephalosporins available in the literature were revised, compiled and compared with data obtained in silico. Only one value was determined experimentally for CEF (2.68 ± 0.05), which was associated to the carboxylic acid group deprotonation. For CEPA two values were obtained experimentally: 2.74 ± 0.01 for the carboxylic acid deprotonation and 5.13 ± 0.01 for the pyridinium ring deprotonation. In general, experimentally obtained values agree with the in silico predicted data (ACD/Percepta RMSE: 0.552 and Marvin RMSE: 0.706, n = 88). However, for cephalosporins having imine and aminothiazole groups structurally close, Marvin presented problems in pKa predictions. For the biological and environmental fate and effect discussion, it is important to recognize that CEPA and CEF, as well as many other cephalosporins, are present as anionic species in the biologic and environmentally relevant pH values of 6-7.5.

  15. The water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia (Designated as MAK) ameliorates murine colitis induced by trinitrobenzene sulphonic acid.

    PubMed

    Hanaoka, R; Ueno, Y; Tanaka, S; Nagai, K; Onitake, T; Yoshioka, K; Chayama, K

    2011-11-01

    Ganoderma lucidum Karst is well known as 'Reishi', a traditional food in China and Japan. It contains a polysaccharide component known to induce granulocyte macrophage colony-stimulating factor (GM-CSF) production from murine splenocytes. Moreover, GM-CSF may be a therapeutic agent for Crohn's disease. In this study, we investigated the water-soluble, polysaccharide components of Reishi (designated as MAK) in murine colitis induced by trinitrobenzene sulphonic acid (TNBS). We examined the concentration of GM-CSF in peritoneal macrophage cells (PMs) of C57BL/6 mice during in vitro and in vivo stimulation with MAK. After feeding with chow or MAK for 2 weeks, 2 mg of TNBS/50% ethanol was administered to each mouse. After 3 days of TNBS treatment, intestinal inflammation was evaluated, and mononuclear cells of the mesenteric lymph nodes (MLNs) and colon were cultured for ELISA. To determine the preventive role of GM-CSF, the mice were pre-treated with or without anti-GM-CSF antibody before TNBS administration. In vitro and in vivo MAK-stimulated PMs produced GM-CSF in a dose-dependent manner. Intestinal inflammation by TNBS was improved by feeding with MAK. MLNs of mice treated with TNBS produced IFN-γ, which was inhibited by feeding with MAK. In contrast, MLNs of mice treated with TNBS inhibited GM-CSF production, which was induced by feeding with MAK. The colon organ culture assay also revealed that IFN-γ was decreased and GM-CSF was increased by MAK. The preventive effect was blocked by the neutralization of GM-CSF. We concluded that the induction of GM-CSF by MAK may provide the anti-inflammatory effect.

  16. A boswellic acid-containing extract ameliorates schistosomiasis liver granuloma and fibrosis through regulating NF-κB signaling in mice.

    PubMed

    Liu, Miao; Wu, Qingsi; Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18-22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD.

  17. A Boswellic Acid-Containing Extract Ameliorates Schistosomiasis Liver Granuloma and Fibrosis through Regulating NF-κB Signaling in Mice

    PubMed Central

    Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18–22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD. PMID:24941000

  18. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers.

    PubMed

    Elamin, Elhaseen E; Masclee, Ad A; Dekker, Jan; Pieters, Harm-Jan; Jonkers, Daisy M

    2013-12-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier dysfunction and to examine the role of AMP-activated protein kinase (AMPK) as a possible mechanism using Caco-2 monolayers. The monolayers were treated apically with butyrate (2, 10, or 20 mmol/L), propionate (4, 20, or 40 mmol/L), or acetate (8, 40, or 80 mmol/L) for 1 h before ethanol (40 mmol/L) for 3 h. Barrier function was analyzed by measurement of transepithelial resistance and permeation of fluorescein isothiocyanate-labeled dextran. Distribution of the tight junction (TJ) proteins zona occludens-1, occludin, and filamentous-actin (F-actin) was examined by immunofluorescence. Metabolic stress was determined by measuring oxidative stress, mitochondrial function, and ATP using dichlorofluorescein diacetate, dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, and bioluminescence assay, respectively. AMPK was knocked down by small interfering RNA (siRNA), and its activity was assessed by a cell-based ELISA. Exposure to ethanol significantly impaired barrier function compared with controls (P < 0.0001), disrupted TJ and F-actin cytoskeleton integrity, and induced metabolic stress. However, pretreatment with 2 mmol/L butyrate, 4 mmol/L propionate, and 8 mmol/L acetate significantly alleviated the ethanol-induced barrier dysfunction, TJ and F-actin disruption, and metabolic stress compared with ethanol-exposed monolayers (P < 0.0001). The promoting effects on barrier function were abolished by inhibiting AMPK using either compound C or siRNA. These observations indicate that SCFAs exhibit protective effects against ethanol-induced barrier disruption via AMPK activation, suggesting a potential for SCFAs as prophylactic and/or therapeutic factors against ethanol

  19. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice.

    PubMed

    Martínez-Vega, Raquel; Partearroyo, Teresa; Vallecillo, Néstor; Varela-Moreiras, Gregorio; Pajares, María A; Varela-Nieto, Isabel

    2015-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients well known for their beneficial effects, among others on cognitive development and maintenance, inflammation and oxidative stress. Previous studies have shown an inverse association between high plasma levels of PUFAs and age-related hearing loss, and the relationship between low serum folate and elevated plasma homocysteine levels and hearing loss. Therefore, we used C57BL/6J mice and long-term omega-3 supplementation to evaluate the impact on hearing by analyzing their auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) thresholds. The omega-3 group showed significantly lower ABR hearing thresholds (~25 dB sound pressure level) and higher DPOAE amplitudes in mid-high frequencies when compared to the control group. These changes did not correlate with alterations between groups in plasma homocysteine or serum folate levels as measured by high-performance liquid chromatography and a microbiological method, respectively. Aging in the control group was associated with imbalanced cytokine expression toward increased proinflammatory cytokines as determined by quantitative reverse transcriptase polymerase chain reaction; these changes were prevented by omega-3 supplementation. Genes involved in homocysteine metabolism showed decreased expression during aging of control animals, and only alterations in Bhmt and Cbs were significantly prevented by omega-3 feeding. Western blotting showed that omega-3 supplementation precluded the CBS protein increase detected in 10-month-old controls but also produced an increase in BHMT protein levels. Altogether, the results obtained suggest a long-term protective role of omega-3 supplementation on cochlear metabolism and progression of hearing loss.

  20. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway.

    PubMed

    Yu, De-Shui; Wang, Yan-Song; Bi, Yun-Long; Guo, Zhan-Peng; Yuan, Ya-Jiang; Tong, Song-Ming; Su, Rui-Chao; Ge, Li-Hao; Wang, Jian; Pan, Ya-Li; Guan, Ting-Ting; Cao, Yang

    2017-02-15

    Salvianolic acid A (Sal A), a bioactive compound isolated from the Chinese medicinal herb Danshen, is used for the prevention and treatment of cardiovascular diseases. However, the protective function of Sal A on preserving the role of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is unclear. The present study investigated the effects and mechanisms of Sal A (2.5, 5, 10mg/kg, i.p.) on BSCB permeability at different time-points after compressive SCI in rats. Compared to the SCI group, treatment with Sal A decreased the content of the Evans blue in the spinal cord tissue at 24h post-SCI. The expression levels of tight junction proteins and HO-1 were remarkably increased, and that of p-caveolin-1 protein was greatly decreased after SCI Sal A. The effect of Sal A on the expression level of ZO-1, occluding, and p-caveolin-1 after SCI was blocked by the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP). Also, Sal A inhibited the level of apoptosis-related proteins and improved the motor function until 21days after SCI. In addition, Sal A significantly increased the expression of microRNA-101 (miR-101) in the RBMECs under hypoxia. AntagomiR-101 markedly increased the RBMECs permeability and the expression of the Cul3 protein by targeting with 3'-UTR of its mRNA. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 was significantly increased after agomiR-101 treatment. Therefore, Sal A could improve the recovery of neurological function after SCI, which could be correlated with the repair of BSCB integrity by the miR-101/Cul3/Nrf2/HO-1 signaling pathway.

  1. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway

    PubMed Central

    Liu, Yu-Ying; Zhang, Yu; He, Ke; Yang, Xiao-Yuan; Hu, Bai-He; Chang, Xin; Wang, Ming-Xia; Wei, Xiao-Hong; Fan, Jing-Yu; Wu, Xin-Min; Han, Jing-Yan

    2015-01-01

    Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work. PMID:25992563

  2. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway.

    PubMed

    Pan, Chun-Shui; Liu, Ying-Hua; Liu, Yu-Ying; Zhang, Yu; He, Ke; Yang, Xiao-Yuan; Hu, Bai-He; Chang, Xin; Wang, Ming-Xia; Wei, Xiao-Hong; Fan, Jing-Yu; Wu, Xin-Min; Han, Jing-Yan

    2015-01-01

    Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work.

  3. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    PubMed Central

    2012-01-01

    Background Resident macrophages (Kupffer cells, KCs) in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF) diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD) or high-fat (HF) diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes. PMID:22439764

  4. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  5. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea

    NASA Astrophysics Data System (ADS)

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311 ++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes.

  6. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  7. Microminipigs as a new experimental animal model for toxicological studies: comparative pharmacokinetics of perfluoroalkyl acids.

    PubMed

    Guruge, Keerthi S; Noguchi, Michiko; Yoshioka, Koji; Yamazaki, Eriko; Taniyasu, Sachi; Yoshioka, Miyako; Yamanaka, Noriko; Ikezawa, Mitsutaka; Tanimura, Nobuhiko; Sato, Masumi; Yamashita, Nobuyoshi; Kawaguchi, Hiroaki

    2016-01-01

    In this study, we evaluated the efficacy of a novel minipig strain, the Microminipig (MMPig), as an animal model for studying the pharmacokinetics of a mixture of 10 perfluoroalkyl acids (PFAAs). After a single oral dose was given, we found that the blood depuration of PFAAs (blood t1/2), which we calculated using first-order elimination curves, ranged from 1.6 to 86.6 days. Among the five body compartments analyzed, the liver was the greatest site of accumulation of perfluorooctanesulfonate and longer chain perfluorinated carboxylates such as perfluorodecanoic acid, perfluoroundecanoic acid and perfluorododecanoic acid. We observed an increasing accumulation trend of perfluorinated carboxylates in the organs associated with the fluorinated carbon chain length. The perfluorononanoic acid burden was the highest among the treated compounds 21 days after a single exposure, as 29% of the given perfluorononanoic acid dose was accumulated in the tissues. The persistence of PFAAs in edible pig tissues even after 21 days post-exposure raises concerns about the safety of swine products. This was the first study to use MMPigs to elucidate the pharmacokinetics of a group of environmental pollutants. We found that MMPigs could be excellent experimental animals for toxicological studies due to their easy handling, cost efficacy for target compounds and ease of waste treatment.

  8. Experimental Evidence of Localized Oscillations in the Photosensitive Chlorine Dioxide-Iodine-Malonic Acid Reaction

    NASA Astrophysics Data System (ADS)

    Míguez, David G.; Alonso, Sergio; Muñuzuri, Alberto P.; Sagués, Francesc

    2006-10-01

    The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.

  9. Amelioration of palmitate-induced insulin resistance in C₂C₁₂ muscle cells by rooibos (Aspalathus linearis).

    PubMed

    Mazibuko, S E; Muller, C J F; Joubert, E; de Beer, D; Johnson, R; Opoku, A R; Louw, J

    2013-07-15

    Increased levels of free fatty acids (FFAs), specifically saturated free fatty acids such as palmitate are associated with insulin resistance of muscle, fat and liver. Skeletal muscle, responsible for up to 80% of the glucose disposal from the peripheral circulation, is particularly vulnerable to increased levels of saturated FFAs. Rooibos (Aspalathus linearis) and its unique dihydrochalcone C-glucoside, aspalathin, shown to reduce hyperglycemia in diabetic rats, could play a role in preventing or ameliorating the development of insulin resistance. This study aims to establish whether rooibos can ameliorate experimentally-induced insulin-resistance in C₂C₁₂ skeletal muscle cells. Palmitate-induced insulin resistant C₂C₁₂ cells were treated with an aspalathin-enriched green (unfermented) rooibos extract (GRE), previously shown for its blood glucose lowering effect in vitro and in vivo or an aqueous extract of fermented rooibos (FRE). Glucose uptake and mitochondrial activity were measured using 2-deoxy-[³H]-D-glucose, MTT and ATP assays, respectively. Expression of proteins relevant to glucose metabolism was analysed by Western blot. GRE contained higher levels of all compounds, except the enolic phenylpyruvic acid-2-O-glucoside and luteolin-7-O-glucoside. Both rooibos extracts increased glucose uptake, mitochondrial activity and ATP production. Compared to FRE, GRE was more effective at increasing glucose uptake and ATP production. At a mechanistic level both extracts down-regulated PKC θ activation, which is associated with palmitate-induced insulin resistance. Furthermore, the extracts increased activation of key regulatory proteins (AKT and AMPK) involved in insulin-dependent and non-insulin regulated signalling pathways. Protein levels of the glucose transporter (GLUT4) involved in glucose transport via these two pathways were also increased. This in vitro study therefore confirms that rooibos can ameliorate palmitate-induced insulin resistance in

  10. Fungal populations in podzolic soil experimentally acidified to simulate acid rain

    SciTech Connect

    Baath, E.; Lundgren, B.; Soederstroem, B.

    1984-01-01

    The effect of experimental acidification on the soil microfungal community was studied in the humus layer of a coniferous forest in northern Sweden. The study was made 4 years after the last application of sulfuric acid. Fungal species composition was altered by treatments of 100 and 150 kg sulfuric acid ha/sup -1/ each year for 6 years, yet no differences were found between the control treatment and an application of 50 kg ha/sup -1/. The abundance of Penicillium spinulosum and Oidiodendron cf. echinulatum II increased with increasing rates of acid application, whereas only small changes were found for other isolated fungal taxa. Soil respiration rate and fluorescein diacetate (FDA)-active fungal biomass were significantly different from the control treatment at all 3 levels of acidification. 15 references, 4 tables.

  11. Experimental design and process analysis for acidic leaching of metal-rich glass wastes.

    PubMed

    Tuncuk, A; Ciftci, H; Akcil, A; Ognyanova, A; Vegliò, F

    2010-05-01

    The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.

  12. Statistical mechanics of hydrophobic amino acids in aqueous solution: A joint experimental scattering and computational study

    NASA Astrophysics Data System (ADS)

    Song, Lingshuang; Yang, Lin; Huang, Wei; Meng, Jie; Yang, Sichun

    How hydrophobic amino acids interact with each other is still a fundamental question in understanding protein dynamics and folding. Here, we describe an integrative experimental-computational approach of combining x-ray solution scattering and atomistic molecular simulations to determine the molecular properties of a hydrophobic leucine amino acid in an aqueous solution. First, scattering data were acquired at a series of amino acid and salt concentrations and these scattering profiles were further used to calibrate atomistic molecular simulations via a single parameter for solute-solvent interaction. Second, these accurate data of atomistic leucine simulations were used to quantify the effective interacting potentials via a structural simplification of one-bead-per-residue and two-bead-per-residue representations. Third, comparative energetic analyses between the one-bead and two-bead representations were performed to reach a simple picture of residue-residue interactions with an accurate energy function. Taken together, this joint experimental-computational study provides critical insights into microscopic interactions of hydrophobic amino acids in solution with a profound application for studying molecular dynamics of, e.g., intrinsically disordered proteins and their folding.

  13. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  14. Effects of pyruvate salts, pyruvic acid, and bicarbonate salts in preventing experimental oxalate urolithiasis in rats.

    PubMed

    Ogawa, Y; Yamaguchi, K; Tanaka, T; Morozumi, M

    1986-05-01

    Sodium pyruvate, potassium pyruvate, pyruvic acid, sodium bicarbonate and potassium bicarbonate were added to a calcium-oxalate lithogenic diet (a glycolic-acid diet) in order to determine their effects in preventing lithogenicity. Male Wistar-strain rats who had been fed the glycolic-acid diet developed marked urinary calculi within four weeks. Rats in the sodium and potassium pyruvate groups had, however, almost no stones in the urinary system. Rats in the bicarbonate and pyruvic-acid groups showed slightly less effect than those in the pyruvate groups. Urinary oxalate excretion was high in all the groups during the experiment. The urinary oxalate concentration was relatively higher in the sodium-pyruvate group, and significantly higher in the potassium-pyruvate group, than in the glycolic-acid group. Urinary citrate excretion was high both in the pyruvate and bicarbonate groups; the urinary citrate concentration was, however, significantly higher in the pyruvate groups than in the bicarbonate groups at the fourth experimental week. The urinary calcium and magnesium concentrations were irrelevant to the diets administered. Therefore, it can be concluded that pyruvate salts inhibit urinary calculi formation, not by decreasing oxalate synthesis, but by increasing the urinary citrate concentration; bicarbonate salts work in the same manner, but a little less effectively.

  15. Experimental protoporphyria: effect of bile acids on liver damage induced by griseofulvin.

    PubMed

    Martinez, María Del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria; Batlle, Alcira

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  16. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  17. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  18. The first experimental observation of the higher-energy trans conformer of trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Apóstolo, R. F. G.; Bazsó, Gábor; Bento, R. R. F.; Tarczay, G.; Fausto, R.

    2016-12-01

    We report here the first experimental observation of the higher-energy conformer of trifluoroacetic acid (trans-TFA). The new conformer was generated by selective narrowband near-infrared vibrational excitation of the lower-energy cis-TFA conformer isolated in cryogenic matrices (Ar, Kr, N2) and shown to spontaneously decay to this latter form in the various matrix media, by tunneling. The decay rates in the different matrices were measured and compared with those of the trans conformers of other carboxylic acids in similar experimental conditions. The experimental studies received support from quantum chemistry calculations undertaken at various levels of approximation, which allowed a detailed characterization of the relevant regions of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers in the various matrices. Noteworthly, in contrast to cis-TFA that has its trifluoromethyl group eclipsed with the Cdbnd O bond of the carboxylic moiety, trans-TFA has the trifluoromethyl group eclipsed with the Csbnd O bond. This unusual structure of trans-TFA results from the fact that the relative orientation of the CF3 and COOH groups in this geometry facilitates the establishment of an intramolecular hydrogen-bond-like interaction between the OH group and the closely located in-plane fluorine atom of the CF3 moiety.

  19. Oleanolic acid modulates the immune-inflammatory response in mice with experimental autoimmune myocarditis and protects from cardiac injury. Therapeutic implications for the human disease.

    PubMed

    Martín, R; Cordova, C; San Román, J A; Gutierrez, B; Cachofeiro, V; Nieto, M L

    2014-07-01

    Myocarditis and dilated cardiomyopathy (DCM) are inflammatory diseases of the myocardium, for which appropriate treatment remains a major clinical challenge. Oleanolic acid (OA), a natural triterpene widely distributed in food and medicinal plants, possesses a large range of biological effects with beneficial properties for health and disease prevention. Several experimental approaches have shown its cardioprotective actions, and OA has recently been proven effective for treating Th1 cell-mediated inflammatory diseases; however, its effect on inflammatory heart disorders, including myocarditis, has not yet been addressed. Therefore, the present study was undertaken to determine the effectiveness of OA in prevention and treatment of experimental autoimmune myocarditis (EAM). The utility of OA was evaluated in vivo through their administration to cardiac α-myosin (MyHc-α614-629)-immunized BALB/c mice from day 0 or day 21 post-immunization to the end of the experiment, and in vitro through their addition to stimulated-cardiac cells. Prophylactic and therapeutic administration of OA dramatically decreased disease severity: the heart weight/body weight ratio as well as plasma levels of brain natriuretic peptide and myosin-specific autoantibodies production were significantly reduced in OA-treated EAM animals, compared with untreated ones. Histological heart analysis showed that OA-treatment diminished cell infiltration, fibrosis and dystrophic calcifications. OA also decreased proliferation of cardiac fibroblast in vitro and attenuated calcium and collagen deposition induced by relevant cytokines of active myocarditis. Furthermore, in OA-treated EAM mice the number of Treg cells and the production of IL-10 and IL-35 were markedly increased, while proinflammatory and profibrotic cytokines were significantly reduced. We demonstrate that OA ameliorates both developing and established EAM by promoting an antiinflammatory cytokine profile and by interfering with the

  20. Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme.

    PubMed

    Meng-Lund, Helena; Friis, Natascha; van de Weert, Marco; Rantanen, Jukka; Poso, Antti; Grohganz, Holger; Jorgensen, Lene

    2017-03-21

    A quantitative structure-property relationship (QSPR) between protein stability and the physicochemical properties of excipients was investigated to enable a more rational choice of stabilizing excipients than prior knowledge. The thermal transition temperature and aggregation time were determined for lysozyme in combination with 13 different amino acids using high throughput fluorescence spectroscopy and kinetic static light scattering measurements. On the theoretical side, around 200 2D and 3D molecular descriptors were calculated based on the amino acids' chemical structure. Multivariate data analysis was applied to correlate the descriptors with the experimental results. It was possible to identify descriptors, i.e. amino acids properties, with a positive influence on either transition temperature or aggregation onset time, or both. A high number of hydrogen bond acceptor moieties was the most prominent stabilizing factor for both responses, whereas hydrophilic surface properties and high molecular mass density mostly had a positive influence on the unfolding temperature. A high partition coefficient (logP(o/w)) was identified as the most prominent destabilizing factor for both responses. The QSPR shows good correlation between calculated molecular descriptors and the measured stabilizing effect of amino acids on lysozyme.

  1. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  2. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  3. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    PubMed Central

    Huete-Stauffer, Tamara M.; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G.

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  4. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  5. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces.

    PubMed

    Mertens, L; Geeraerd, A H; Dang, T D T; Vermeulen, A; Serneels, K; Van Derlinden, E; Cappuyns, A M; Moldenaers, P; Debevere, J; Devlieghere, F; Van Impe, J F

    2009-11-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating mu(max) at 0.5% Carbopol from absorbance detection times.

  6. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury.

    PubMed

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-10-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.

  7. Design of an Experimental Viscoelastic Food Model System for Studying Zygosaccharomyces bailii Spoilage in Acidic Sauces▿

    PubMed Central

    Mertens, L.; Geeraerd, A. H.; Dang, T. D. T.; Vermeulen, A.; Serneels, K.; Van Derlinden, E.; Cappuyns, A. M.; Moldenaers, P.; Debevere, J.; Devlieghere, F.; Van Impe, J. F.

    2009-01-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating μmax at 0.5% Carbopol from absorbance detection times. PMID:19783742

  8. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury

    PubMed Central

    Kızılay, Zahir; Erken, Haydar Ali; Çetin, Nesibe Kahraman; Aktaş, Serdar; Abas, Burçin İrem; Yılmaz, Ali

    2016-01-01

    The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions. PMID:27904499

  9. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  10. Integrated Computational and Experimental Protocol for Understanding Rh(III) Speciation in Hydrochloric and Nitric Acid Solutions

    SciTech Connect

    Samuels, Alex C.; Boele, Cherilynn A.; Bennett, Kevin T.; Clark, Sue B.; Wall, Nathalie; Clark, Aurora E.

    2014-12-01

    A combined experimental and theoretical approach has investigated the complex speciation of Rh(III) in hydrochloric and nitric acid media, as a function of acid concentration. This has relevance to the separation and isolation of Rh(III) from dissolved spent nuclear fuel, which is an emergent and attractive alternative source of platinum group metals, relative to traditional mining efforts.

  11. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    NASA Technical Reports Server (NTRS)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  12. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  13. Protective Effects of Chlorogenic Acid against Experimental Reflux Esophagitis in Rats

    PubMed Central

    Kang, Jung-Woo; Lee, Sun-Mee

    2014-01-01

    Esophageal reflux of gastric contents causes esophageal mucosal damage and inflammation. Recent studies show that oxygen-derived free radicals mediate mucosal damage in reflux esophagitis (RE). Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and possesses anti-inflammatory, antibacterial and anti-oxidant activities. In this context, we investigated the effects of CGA against experimental RE in rats. RE was produced by ligating the transitional region between the forestomach and the glandular portion and covering the duodenum near the pylorus ring with a small piece of catheter. CGA (10, 30 and 100 mg/kg) and omeprazole (positive control, 10 mg/kg) were administered orally 48 h after the RE operation for 12 days. CGA reduced the severity of esophageal lesions, and this beneficial effect was confirmed by histopathological observations. CGA reduced esophageal lipid peroxidation and increased the reduced glutathione/oxidized glutathione ratio. CGA attenuated increases in the serum level of tumor necrosis factor-α, and expressions of inducible nitric oxide synthase and cyclooxygenase-2 protein. CGA alleviates RE-induced mucosal injury, and this protection is associated with reduced oxidative stress and the anti-inflammatory properties of CGA. PMID:25414772

  14. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range.

  15. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  16. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    USGS Publications Warehouse

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  17. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  18. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data.

    PubMed

    Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın

    2012-01-01

    The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.

  19. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  20. Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Koll, A.; Filarowski, A.; Bhattacharyya, S. P.; Mukherjee, S.

    2004-06-01

    The absorption spectral change of methyl glyoxal (MG) due to the interaction with ascorbic acid (AA or Vitamin C) has been investigated using steady-state spectroscopic technique. A plausible explanation for the spectral change has been discussed on the basis of hydrogen bonding interaction between the two interacting species. The equilibrium constant for the complex formation due to hydrogen bonding interaction between MG and AA has been obtained from absorption spectral changes. Ab inito calculations with DFT B3LYP/6/31G (d,p) basis sets have been used to find out the molecular structure of the hydrogen bonded complex. The O⋯H distance found in the OH⋯O hydrogen bond turns out to be quite short (1.974 Å) which is in conformity with the large value of the equilibrium constant determined experimentally.

  1. Relationship between nine haloacetic acids with total organic halogens in different experimental conditions.

    PubMed

    Pourmoghadas, Hossein; Kinman, Riley N

    2013-04-03

    The effects of pH and bromide ion concentration on the formation of nine haloacetic acids (HAAs) and total organic halogens (TOX) in chlorinated drinking water have been evaluated. In an extensive study, the relationships of nine HAAs with TOX have been investigated. Honesty Significant Differences test (HSD) and ANOVA tests were used for the statistical analyses. The study determined the concentration range of nine HAAs as of a percentage of TOX at varying experimental conditions. Statistical analyses showed that the parameters pH and Br had significant effects on the formation of nine HAAs and TOX. This study also showed that brominated and mixed species of HAAs would be dominant in the presence of high bromide ion concentration which contributes a high percentage of the TOX. The results of this study could be used to set up a maximum contaminant level of TOX as a water quality standard for chlorination by-products.

  2. Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical (17)O NMR.

    PubMed

    Michaelis, Vladimir K; Keeler, Eric G; Ong, Ta-Chung; Craigen, Kimberley N; Penzel, Susanne; Wren, John E C; Kroeker, Scott; Griffin, Robert G

    2015-06-25

    We demonstrate here that the (17)O NMR properties of bound water in a series of amino acids and dipeptides can be determined with a combination of nonspinning and magic-angle spinning experiments using a range of magnetic field strengths from 9.4 to 21.1 T. Furthermore, we propose a (17)O chemical shift fingerprint region for bound water molecules in biological solids that is well outside the previously determined ranges for carbonyl, carboxylic, and hydroxyl oxygens, thereby offering the ability to resolve multiple (17)O environments using rapid one-dimensional NMR techniques. Finally, we compare our experimental data against quantum chemical calculations using GIPAW and hybrid-DFT, finding intriguing discrepancies between the electric field gradients calculated from structures determined by X-ray and neutron diffraction.

  3. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  4. Temperature dependence of single-bubble sonoluminescence threshold in sulfuric acid: An experimental study.

    PubMed

    Bandara, Vibodha; Herath, Prabhath; Nanayakkara, Asiri

    2015-06-01

    We experimentally investigated the temperature dependence of intensity of single-bubble sonoluminescence (SBSL) in 85 wt%. sulfuric acid. It was found that the intensity increases as temperature increases from 15 °C and 25 °C, confirming what has been predicted by A. Moshaii et al. [Phys. Rev. E 84, 046301 (2011)] theoretically. This behavior, however, is completely opposite to what has been observed for water. Above 25 °C, the behavior of intensity of SBSL in sulfuric acid is found to be independent of the liquid temperature. Moreover, it was observed that as the temperature increases, contribution to total intensity from the UV portion of the spectrum increases while contribution from the visible portion decreases, indicating higher bubble temperatures at higher liquid temperatures. Results of this experiment further indicate that the intensity threshold at each temperature is not determined by the shape or the positional stability conditions but by the driving pressure at which the transition from SBSL to multibubble sonoluminescence (MBSL) takes place.

  5. Temperature dependence of single-bubble sonoluminescence threshold in sulfuric acid: An experimental study

    NASA Astrophysics Data System (ADS)

    Bandara, Vibodha; Herath, Prabhath; Nanayakkara, Asiri

    2015-06-01

    We experimentally investigated the temperature dependence of intensity of single-bubble sonoluminescence (SBSL) in 85 wt %. sulfuric acid. It was found that the intensity increases as temperature increases from 15 °C and 25 °C, confirming what has been predicted by A. Moshaii et al. [Phys. Rev. E 84, 046301 (2011), 10.1103/PhysRevE.84.046301] theoretically. This behavior, however, is completely opposite to what has been observed for water. Above 25 °C, the behavior of intensity of SBSL in sulfuric acid is found to be independent of the liquid temperature. Moreover, it was observed that as the temperature increases, contribution to total intensity from the UV portion of the spectrum increases while contribution from the visible portion decreases, indicating higher bubble temperatures at higher liquid temperatures. Results of this experiment further indicate that the intensity threshold at each temperature is not determined by the shape or the positional stability conditions but by the driving pressure at which the transition from SBSL to multibubble sonoluminescence (MBSL) takes place.

  6. Experimental densities of binary mixtures: Acetic acid with benzene at several temperatures

    NASA Astrophysics Data System (ADS)

    Bolat, Georgiana; Sutiman, Daniel; Lisa, Gabriela

    2011-03-01

    Hydrocarbons are the most commonly used chemicals in the hydrocarbon processing industries. The knowledge of thermodynamic properties of various binary organic or inorganic mixtures is essential in many practical aspects concerning the mass transport and fluid flow. Such properties are important from the fundamental point of view to understand their mixing behaviour (molecular interactions), as well for practical applications (e.g. in the petrochemical industry). The density of acetic acid-benzene mixtures at several temperatures (T = 296.15, 302.15, 308.15, 314.15 and 319.15 K) were measured over the whole composition range and atmospheric pressure, along with the physical-chemical properties of the pure components (e.g. density, viscosity, refractive index at 298.15 K). The excess molar volumes at the above-mentioned temperatures were calculated from experimental data and fitted by using a new polynomial equation comparing the results with the known equation of Redlich-Kister. The excess volumes for acetic acid with benzene were positive and increase with the temperature. Results were analyzed in terms of molecular interactions. This research was financed by the postdoc grant PERFORM-ERA-ID 57649.

  7. Chicoric acid regulates behavioral and biochemical alterations induced by chronic stress in experimental Swiss albino mice.

    PubMed

    Kour, Kiranjeet; Bani, Sarang

    2011-09-01

    The present study was taken up to see the effect of chicoric acid (CA) on behavioral and biochemical alterations induced by chronic restraint stress in experimental Swiss albino mice. CA at 1mg/kg dose level exhibited considerable antidepressant activity as shown by significant decrease in immobility period in the Porsolt's swim stress-induced behavioral despair test and escape failures in Learned "helplessness test". The antidepressant activity shown by CA can be attributed to its modulating effect on nor-adrenaline (NA), dopamine (DA) and 5- hydroxy tryptamine (5-HT) as shown by their quantification in CA treated chronically stressed mice. Further, a significant antioxidant effect was exhibited by CA as shown by estimation of lipid peroxidation, glutathione (GSH) and glycogen in liver of chronically stressed mice. It also normalized altered values of serum glucose, triglycerides, aspartate aminotransferase (AST) alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in a dose dependent manner. The stress busting potential of CA was further confirmed by its regulating effect on raised plasma corticosterone levels and significant attenuation of the depleted ascorbic acid, cholesterol and corticosterone levels in adrenal glands. Thus, our results suggest that CA possesses considerable stress busting potential, and that anti-oxidation may be one of the mechanisms underlying its antistress action.

  8. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  9. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis.

    PubMed

    Balaji, C; Muthukumaran, J; Nalini, N

    2014-12-01

    Sinapic acid (SA) is a naturally occurring phenolic acid found in various herbal plants which is attributed with numerous pharmacological properties. This study was aimed to investigate the chemopreventive effect of SA on 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. Rats were treated with DMH injections (20 mg kg(-1) bodyweight (b.w.) subcutaneously once a week for the first 4 consecutive weeks and SA (20, 40 and 80 mg kg(-1) b.w.) post orally for 16 weeks. At the end of the 16-week experimental period, all the rats were killed, and the tissues were evaluated biochemically. Our results reveal that DMH alone treatment decreased the levels/activities of lipid peroxidation by-products such as thiobarbituric acid reactive substances, conjugated dienes and antioxidants such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione in the intestine and colonic tissues which were reversed on supplementation with SA. Moreover, the activities of drug-metabolizing enzymes of phase I (cytochrome P450 and P4502E1) were enhanced and those of phase II (glutathione-S-transferase, DT-diaphorase and uridine diphosphate glucuronosyl transferase) were diminished in the liver and colonic mucosa of DMH alone-treated rats and were reversed on supplementation with SA. All the above changes were supported by the histopathological observations of the rat liver and colon. These findings suggest that SA at the dose of 40 mg kg(-1) b.w. was the most effective dose against DMH-induced colon carcinogenesis, and thus, SA could be used as a potential chemopreventive agent.

  10. Chemopreventive effects of dietary eicosapentaenoic acid supplementation in experimental myeloid leukemia

    PubMed Central

    Finch, Emily R.; Kudva, Avinash K.; Quickel, Michael D.; Goodfield, Laura L.; Kennett, Mary J.; Whelan, Jay; Paulson, Robert F.; Prabhu, K. Sandeep

    2015-01-01

    Current therapies for treatment of myeloid leukemia do not eliminate leukemia stem cells (LSC), leading to disease relapse. In this study, we supplemented mice with eicosapentaenoic acid (EPA, C20:5), a polyunsaturated omega-3 fatty acid, at pharmacological levels, to examine if the endogenous metabolite, cyclopentenone prostaglandin delta-12 PGJ3 (Δ12-PGJ3), was effective in targeting LSCs in experimental leukemia. EPA supplementation for eight weeks resulted in enhanced endogenous production of Δ12-PGJ3 that was blocked by indomethacin, a cyclooxygenase inhibitor. Using a murine model of chronic myelogenous leukemia (CML) induced by bone marrow transplantation of BCR-ABL-expressing hematopoietic stem cells, mice supplemented with EPA showed a decrease in the LSC population, reduced splenomegaly and leukocytosis, when compared to mice on an oleic acid diet. Supplementation of CML mice carrying the T315I mutation (in BCR-ABL) with EPA resulted in a similar effect. Indomethacin blocked the EPA effect and increased the severity of BCR-ABL-induced CML and decreased apoptosis. Δ12-PGJ3 rescued indomethacin-treated BCR-ABL mice and decreased LSCs. Inhibition of hematopoietic-prostaglandin D synthase (H-PGDS) by HQL-79 in EPA-supplemented CML mice also blocked the effect of EPA. In addition, EPA supplementation was effective in a murine model of acute myeloid leukemia. Supplemented mice exhibited a decrease in leukemia burden and a decrease in the LSC colony-forming unit (LSC-CFU). The decrease in LSCs was confirmed through serial transplantation assays in all disease models. The results support a chemopreventive role for EPA in myeloid leukemia, which is dependent on the ability to efficiently convert EPA to endogenous cyclooxygenase-derived prostanoids, including Δ12-PGJ3. PMID:26290393

  11. Development of experimental techniques to study protein and nucleic acid structures

    SciTech Connect

    Trewhella, J.; Bradbury, E.M.; Gupta, G.; Imai, B.; Martinez, R.; Unkefer, C.

    1996-04-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to develop experimental tools for structural biology, specifically those applicable to three-dimensional, biomolecular-structure analysis. Most biological systems function in solution environments, and the ability to study proteins and polynucleotides under physiologically relevant conditions is of paramount importance. The authors have therefore adopted a three-pronged approach which involves crystallographic and nuclear magnetic resonance (NMR) spectroscopic methods to study protein and DNA structures at high (atomic) resolution as well as neutron and x-ray scattering techniques to study the complexes they form in solution. Both the NMR and neutron methods benefit from isotope labeling strategies, and all provide experimental data that benefit from the computational and theoretical tools being developed. The authors have focused on studies of protein-nucleic acid complexes and DNA hairpin structures important for understanding the regulation of gene expression, as well as the fundamental interactions that allow these complexes to form.

  12. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  13. The hepatic bile acid transporters Ntcp and Mrp2 are downregulated in experimental necrotizing enterocolitis.

    PubMed

    Cherrington, Nathan J; Estrada, Teresa E; Frisk, Harrison A; Canet, Mark J; Hardwick, Rhiannon N; Dvorak, Bohuslav; Lux, Katie; Halpern, Melissa D

    2013-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants and is characterized by an extensive hemorrhagic inflammatory necrosis of the distal ileum and proximal colon. We have previously shown that, during the development of experimental NEC, the liver plays an important role in regulating inflammation in the ileum, and accumulation of ileal bile acids (BA) along with dysregulation of ileal BA transporters contributes to ileal damage. Given these findings, we speculated that hepatic BA transporters would also be altered in experimental NEC. Using both rat and mouse models of NEC, levels of Cyp7a1, Cyp27a1, and the hepatic BA transporters Bsep, Ntcp, Oatp2, Oatp4, Mrp2, and Mrp3 were investigated. In addition, levels of hepatic BA transporters were also determined when the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-18, which are both elevated in NEC, are neutralized during disease development. Ntcp and Mrp2 were decreased in NEC, but elevated ileal BA levels were not responsible for these reductions. However, neutralization of TNF-α normalized Ntcp, whereas removal of IL-18 normalized Mrp2 levels. These data show that the hepatic transporters Ntcp and Mrp2 are downregulated, whereas Cyp27a1 is increased in rodent models of NEC. Furthermore, increased levels of TNF-α and IL-18 in experimental NEC may play a role in the regulation of Ntcp and Mrp2, respectively. These data suggest the gut-liver axis should be considered when therapeutic modalities for NEC are developed.

  14. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis

    PubMed Central

    Romano, B; Borrelli, F; Fasolino, I; Capasso, R; Piscitelli, F; Cascio, MG; Pertwee, RG; Coppola, D; Vassallo, L; Orlando, P; Di Marzo, V; Izzo, AA

    2013-01-01

    Background and Purpose The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental Approach Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key Results LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and Implications Cannabichromene exerts anti-inflammatory actions in activated macrophages – with tonic CB1 cannabinoid signalling being negatively coupled to this effect – and ameliorates experimental murine colitis. PMID:23373571

  15. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT.

    PubMed

    Bardak, F; Karaca, C; Bilgili, S; Atac, A; Mavis, T; Asiri, A M; Karabacak, M; Kose, E

    2016-08-05

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, (1)H and (13)C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400nm. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400cm(-1) and 3500-50cm(-1), respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The (13)C and (1)H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  16. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  17. The influence of dietary nucleotides and long-chain polyunsaturated fatty acids on the incorporation of [3H] arachidonic acid on experimental liver cirrhosis.

    PubMed

    Leite, L H; Moreira-Vaz, E; Rosa, G; Pereira, A C; Monteiro, C R; Medeiros, F J; Chagas, V L

    2000-09-01

    The purposes of this study were to determine: a) the incorporation of labeled [3H] arachidonic acid on the intestinal mucosa, the liver and plasma, after 1,3 and 5 hours of administration, b) preferential incorporation by different tissues, c) and the effects on experimental rats with thioacetamide-induced cirrhosis, after four weeks of a dietary supplementation with nucleotides and long-chain polyunsaturated fatty acids. 209 female Wistar rats were divided into two groups (control and TAA group). The TAA group was given 300 mg of thioacetamide/L, in their drinking water for four months. After this period, a sample of 6 rats were taken from each group and examined, to evaluate the biochemical and histological changes of the experimental model, and 36 rats were taken to determine the incorporation of radioactivity by the groups. The rest of the animals were divided into four subgroups. Each group, receiving a supplementary diet with only long-chain polyunsaturated fatty acids and/or nucleotides or neither, for 4 weeks. After four months of thioacetamide, the incorporation of the [3H] arachidonic acid showed: a) an increased within 3 h in the intestinal mucosa, b) a decreased in the liver after 3 to 5 h c) and a drastic decrease in the plasma after 3 to 5 h. With a dietary supplementation of long-chain polyunsaturated fatty acids and nucleotides combined, there was a decrease of accumulate [3H] arachidonic acid in the intestine and a increase in the liver and plasma. The simultaneous supply of dietary polyunsaturated fatty acids and nucleotides was beneficial in the reversal of abnormalities of the lipid metabolism, in this experimental model of liver cirrhosis.

  18. Experimental determination and prediction of (solid+liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids

    NASA Astrophysics Data System (ADS)

    Benziane, Mokhtar; Khimeche, Kamel; Dahmani, Abdellah; Nezar, Sawsen; Trache, Djalal

    2012-06-01

    Solid-liquid equilibria for three binary mixtures, n-Eicosane (1) + Lauric acid (2), n-Tetracosane (1) + Stearic acid (2), and n-Octacosane (1) + Palmitic acid (2), were measured using a differential scanning calorimeter. Simple eutectic behaviour was observed for these systems. The experimental results were correlated by means of the modified UNIFAC (Larsen and Gmehling versions), UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.26 to 3.15 K and depend on the particular model used. The best solubility correlation was obtained with the UNIQUAC model.

  19. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    PubMed

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (p<0.001) learning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

  20. Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives

    NASA Astrophysics Data System (ADS)

    Khaled, K. F.

    2006-04-01

    The corrosion inhibition of mild steel in 0.5 M hydrochloric acid solutions by some new hydrazine carbodithioic acid derivatives namely N'-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N'-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N'-(3-nitro-benzylidene)-hydrazine carbodithioic (C) was studied using chemical (weight loss) and electrochemical (potentiodynamic and electrochemical impedance spectroscopy, EIS) measurements. These measurements show that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follow the order C > B > A. Polarization studies show that these compounds act as mixed type inhibitors in 0.5 M HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. The electronic properties of these inhibitors, obtained using PM3 semi-empirical self-consistence field method, have been correlated with their experimental efficiencies using non-linear regression method.

  1. Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements.

    PubMed

    Nazima, Bashir; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2015-06-01

    Cadmium (Cd) preferentially accumulates in the kidney, the major target for Cd-related toxicity. Cd-induced reactive oxygen species (ROS) have been considered crucial mediators for renal injury. The biologically significant ionic form of cadmium (Cd(+)) binds to many bio-molecules, and these interactions underlie the toxicity mechanisms of Cd. The present study was hypothesized to explore the protective effect of grape seed proanthocyanidins (GSP) on Cd-induced renal toxicity and to elucidate the potential mechanism. Male Wistar rats were treated with Cd as cadmium chloride (CdCl2, 5 mg·kg(-1) bw, orally) and orally pre-administered with GSP (100 mg·kg(-1) bw) 90 min before Cd intoxication for 4 weeks to evaluate renal damage of Cd and antioxidant potential of GSP. Serum renal function parameters (blood urea nitrogen and creatinine) levels in serum and urine, renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic, and non-enzymatic antioxidants), inflammatory (NF-κB p65, NO, TNF-α, IL-6), apoptotic (caspase-3, caspase-9, Bax, Bcl-2), membrane bound ATPases, and Nrf2 (HO-1, keap1, γ-GCS, and μ-GST) markers were evaluated in Cd-treated rats. Pretreatment with GSP revealed a significant improvement in renal oxidative stress markers in kidneys of Cd-treated rats. In addition, GSP treatment decreases the amount of iNOS, NF-κB, TNF-α, caspase-3, and Bax and increases the levels Bcl-2 protein expression. Similarly, mRNA and protein analyses substantiated that GSP treatment notably normalizes the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in the Cd-treated rats. Histopathological and ultra-structural observations also demonstrated that GSP effectively protects the kidney from Cd-induced oxidative damage. These findings suggest that GSP ameliorates renal dysfunction and oxidative stress through the activation of Nrf2 pathway in Cd-intoxicated rats.

  2. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    PubMed

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  3. Hypohalous Acids Contribute to Renal Extracellular Matrix Damage in Experimental Diabetes

    PubMed Central

    Brown, Kyle L.; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A.; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G.

    2015-01-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid–derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W28 and W192 are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid–derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes. PMID:25605804

  4. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration.

    PubMed

    Auladell, Carme; de Lemos, Luisa; Verdaguer, Ester; Ettcheto, Miren; Busquets, Oriol; Lazarowski, Alberto; Beas-Zarate, Carlos; Olloquequi, Jordi; Folch, Jaume; Camins, Antoni

    2017-01-01

    Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid  is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.

  5. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  6. Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model.

    PubMed

    Choi, Jae-Hyeog; Roh, Kug-Hwan; Oh, Hana; Park, Sol-Ji; Ha, Sung-Min; Kang, Mi Seon; Lee, Ji-Hyun; Jung, So Young; Song, Hyunkeun; Yang, Jae Wook; Park, SaeGwang

    2015-05-01

    Experimental autoimmune uveoretinitis (EAU) is an autoimmune disease that models human uveitis. Caffeic acid phenethyl ester (CAPE), a phenolic compound isolated from propolis, possesses anti-inflammatory and immunomodulatory properties. CAPE demonstrates therapeutic potential in several animal disease models through its ability to inhibit NF-κB activity. To evaluate these therapeutic effects in EAU, we administered CAPE in a model of EAU that develops after immunization with interphotoreceptor retinal-binding protein (IRBP) in B10.RIII and C57BL/6 mice. Importantly, we found that CAPE lessened the severity of EAU symptoms in both mouse strains. Notably, treated mice exhibited a decrease in the ocular infiltration of immune cell populations into the retina; reduced TNF-α, IL-6, and IFN-γ serum levels: and inhibited TNF-α mRNA expression in retinal tissues. Although CAPE failed to inhibit IRBP-specific T cell proliferation, it was sufficient to suppress cytokine, chemokine, and IRBP-specific antibody production. In addition, retinal tissues isolated from CAPE-treated EAU mice revealed a decrease in NF-κB p65 and phospho-IκBα. The data identify CAPE as a potential therapeutic agent for autoimmune uveitis that acts by inhibiting cellular infiltration into the retina, reducing the levels of pro-inflammatory cytokines, chemokine, and IRBP-specific antibody and blocking NF-κB pathway activation.

  7. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  8. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  9. Allergenicity and cross-reactivity of naphthenic acid and its metallic salts in experimental animals.

    PubMed

    Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu

    2006-01-01

    The allergenicity and the cross-reactivity of naphthenic acid (NA) and its metallic salts were evaluated in experimental animals. In the guinea pig maximization test, sensitizing skin reactions were observed with cobalt naphthenate (CoN), zinc naphthenate (ZnN) and NA, but not with copper naphthenate, with CoN being the most potent sensitizer. Animals sensitized with 1 naphthenic compound cross-reacted to the other 3 as well. Furthermore, animals in the CoN-sensitized group reacted to the relevant metallic salt cobalt chloride (CoCl2). A dose-response study using the CoN-sensitized group showed that the concentration of CoCl2 required to elicit a skin reaction of similar extent in comparison with CoN was more than 10 times higher, when skin-reaction scores were compared on the basis of cobalt content. In the local lymph node assay, significant increases in stimulation index values without skin irritation were observed with CoN and ZnN, where the former was more potent than the latter. Although CoN is a reported skin sensitizer, this study showed that skin allergenicity of naphthenic compounds is not restricted solely to CoN. In addition, the results suggest the main antigenic determinant of naphthenic compounds to be the structure of NA, even though metal moieties modulate their allergenicity.

  10. Experimental and theoretical study of lanthanide complexes based on linear and macrocyclic polyaminopolycarboxylic acids containing pyrazolylethyl arms.

    PubMed

    Pérez-Mayoral, Elena; Soriano, Elena; Cerdán, Sebastián; Ballesteros, Paloma

    2006-05-17

    We report the synthesis of two novel Gd(III)-complexes derived from linear and macrocyclic polyaminopolycarboxylic acids 1 and 2, which contain a 3,5- dimethylpyrazolyl-ethyl arm, and a study of their relaxivity properties. The relationships between the experimental and theoretical results have provided interesting information about the kinetic and thermodynamic stability of these complexes.

  11. Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats.

    PubMed

    Yu, Xiaoping; Xu, Zhaoxia; Mi, Mantian; Xu, Hongxia; Zhu, Jundong; Wei, Na; Chen, Ka; Zhang, Qianyong; Zeng, Kaihong; Wang, Jian; Chen, Fang; Tang, Yong

    2008-03-01

    The purpose of this study was to investigate whether taurine ameliorate the diabetic retinopathy, and to further explore the underlying mechanisms. The Sprague-Dawley rats were injected with streptozotocin to establish experimental diabetic model, then fed without or with 1.2% taurine for additional 4-12 weeks. After that, the protective effects of dietary taurine supplementation on diabetic retinopathy were estimated. Our results showed that chronic taurine supplement effectively improved diabetic retinopathy as changes of histopathology and ultrastructure. The supplementation could not lower plasma glucose concentration (P > 0.05), but caused an elevation in taurine content and a decline in levels of glutamate and gamma-aminobutyric acid (GABA) in diabetic retina (P < 0.05). Moreover, chronic taurine supplementation increased glutamate transporter (GLAST) expression (P < 0.05), decreased intermediate filament glial fibrillary acidic protein (GFAP) and N-methyl-D: -aspartate receptor subunit 1 (NR1) expression in diabetic retina (P < 0.05). These results demonstrated that chronic taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in rats.

  12. An experimental and computational investigation into the gas-phase acidities of tyrosine and phenylalanine: three structures for deprotonated tyrosine.

    PubMed

    Bokatzian, Samantha S; Stover, Michele L; Plummer, Chelsea E; Dixon, David A; Cassady, Carolyn J

    2014-11-06

    Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at the phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.

  13. An Experimental and Computational Investigation into the Gas-Phase Acidities of Tyrosine and Phenylalanine: Three Structures for Deprotonated Tyrosine

    SciTech Connect

    Bokatzian, Samantha S.; Stover, Michele L.; Plummer, Chelsea E.; Dixon, David A.; Cassady, Carolyn J.

    2014-11-06

    Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at the phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.

  14. Experimental studies on the effect of (Lambda-Cyhalothrin) insecticide on lungs and the ameliorating effect of plant extracts (Ginseng (Panax Ginseng) and garlic (Allium sativum L.) on asthma development in albino rats

    PubMed Central

    2014-01-01

    Background Lambda-cyhalothrin (LTC) is a synthetic pyrethroid insecticide for agricultural and public health applications. This study was to determine the pathological alterations of LTC in lungs, which has not previously been studied, and the ameliorating effects of plant extracts (ginseng and garlic) on the development of asthma in albino rats. Methods Four groups (gps) of albino rats, (n = 20, average body weight = 200 gm with an age of 4 months), were formed. Gp 1 was kept as control. Gp 2 was injected intraperitoneally (i.p.) with LTC at a dose of 1/6 LD50 that is 9.34 mg/kg body weight (w.t.) daily for 21 days (d). Gp 3 & 4 were injected (i.p.) with ginseng at the dose of 200 mg/kg b.wt and garlic (Allium sativum L.) at the dose of 100 mg/kg b.wt., respectively, one hour before being given LTC at a dose of 1/6 LD50 (9.34 mg/kg b.wt.) daily. Each groups were divided into two sacrificed, at 15 and 21 d p.i. Blood and lung samples were collected for hematological and histopathological examinations. Results Hematological findings showed that the animals in gps 2 and 3, which were treated for 21 days, showed a significant difference in RBC counts (P > .001), Hb (P > .007), PCV% (P > .004), (P > .008) in comparison with the control group. Signs of cough and nasal discharge were seen in gp 2, which became mild in gp 4. Grossly, the lungs showed congestion and consolidation in gp 2. Histopathologically, macroabscesses and interstitial alveolitis were seen in gp 2, which led to obstruction in the lumen of the bronchioles at 21 d p.i. Meanwhile, thickening in the interalveolar septa with mononuclear cells was seen in gps. 3 and 4 at 21d p.i. Conclusions The study shows 3 gps of rats injected with LHC alone or combined with garlic and ginseng extract, each group were divided into two sacrificed (15 and 21 d p.i.). Lambda cyhalothrin causes bronchial obstruction in the lungs of the rats (15 and 21 d p.i), which decreased into mild to

  15. Experimental FTIR and theoretical studies of gallic acid-acetonitrile clusters

    NASA Astrophysics Data System (ADS)

    Hirun, Namon; Dokmaisrijan, Supaporn; Tantishaiyakul, Vimon

    2012-02-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) has many possible conformers depending on the orientations of its three OH and COOH groups. The biological activity of polyphenolic compounds has been demonstrated to depend on their conformational characteristics. Therefore, experimental FTIR and theoretical studies of the GA-solvent clusters were performed to investigate the possible most favored conformation of GA. Acetonitrile (ACN) was selected as the solvent since its spectrum did not interfere with the OH stretching bands of GA. Also of importance was that these OH groups, in addition to the carboxyl group, of the GA are the most likely groups to interact with receptors. The solution of GA in the ACN solution was measured and the complex OH bands were deconvoluted to four component bands. These component bands corresponded to the three OH bands on the benzene ring and a broad band which is a combination band of mainly the OH of the COOH group and the inter- and intramolecular H-bonds from the OH groups on the ring. The conformations, relative stabilities and vibrational analysis of the GA monomers and the GA-ACN clusters were investigated using the B3LYP/6-311++G(2d,2p) method. Conformational analysis of the GA monomer yielded four most possible conformers, GA-I, GA-II, GA-III and GA-IV. These conformers were subsequently used for the study of the GA:ACN clusters at the 1:1, 1:2 and 1:4 mole ratios. The IR spectra of the most stable structures of these clusters were simulated and the vibrational wavenumbers of the OH and C dbnd O groups were compared with those from the experiment. The FTIR component bands were comparable to the computed OH bands of the GA-I-(ACN) 2, GA-IV-(ACN) 2 and GA-I-(ACN) 4 clusters. Furthermore, the C dbnd O stretching bands and the bands in the regions of 1800-1000 cm -1 obtained by computing and the experiment were similar for these clusters. Thus, GA-I and GA-IV are the most preferable conformations of GA in ACN and perhaps in the

  16. Desulfinylation of prop-2-enesulfinic acid: experimental results and mechanistic theoretical analysis.

    PubMed

    Varela-Alvarez, Adrián; Marković, Dean; Vogel, Pierre; Sordo, José Angel

    2009-07-15

    The potential energy surfaces of the desulfinylation of prop-2-enesulfinic acid (13) in CH(2)Cl(2) solution at -15 degrees C have been explored by quantum calculations and analyzed with kinetic data obtained for the reaction in absence or presence of additives. Monomeric 13 adopts a preferred conformation with gauche S=O/sigma(C(1)-C(2) bond pairs and the O-H bond pointing toward C(3). It equilibrates with the more stable dimer (13)(2) (at -15 degrees C) formed by two O-H...O=S hydrogen bonds and in which the S=O/sigmaC(1)-C(2) are gauche also, but the SOH moieties are antiperiplanar with respect to sigma(C(1)-C(2)). Dimer (13)(2) undergoes desulfinylation into propene + SO(2) + 13 following a one-step, concerted mechanism. The preferred transition state is a six-membered, chairlike transition structure (C...S elongation and S-O...H...C(3) hydrogen transfer occur in concert) in which the S=O/sigma(C(1)-C(2)) bonds are gauche (S=O adopt pseudoaxial positions). There are at least 48 transition states, each one defining a different pathway, all with similar calculated free energies (DeltaG(double dagger) = 25.3-28.6 kcal/mol), which makes the bimolecular (autocatalyzed) retro-ene elimination of SO(2) competing (entropy factor) with a monomolecular process for which the transition state (calculated DeltaG(double dagger) = 24.3 kcal/mol) implies only one molecule of sulfinic acid. This agrees with the experimental rate law of the reaction which is first order in the concentration of dimer (13)(2). SO(2), CF(3)COOH, and BF(3) x Me(2)O do not catalyze the reaction. In the presence of an excess of BF(3) x Me(2)O the desulfinylation is completely inhibited due to the formation of a stable tetramolecular complex of type (CH(2)=CHCH(2)SO(2)H x BF(3))(2) (18), for which quantum calculations show that the S=O/sigma(C(1)-C(2)) bonds are antiperiplanar whereas the S-OH/sigma(C(1)-C(2)) bonds are gauche. Independently of the additive, the retro-ene eliminations of SO(2) are

  17. Experimental FTIR and theoretical studies of gallic acid-acetonitrile clusters.

    PubMed

    Hirun, Namon; Dokmaisrijan, Supaporn; Tantishaiyakul, Vimon

    2012-02-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) has many possible conformers depending on the orientations of its three OH and COOH groups. The biological activity of polyphenolic compounds has been demonstrated to depend on their conformational characteristics. Therefore, experimental FTIR and theoretical studies of the GA-solvent clusters were performed to investigate the possible most favored conformation of GA. Acetonitrile (ACN) was selected as the solvent since its spectrum did not interfere with the OH stretching bands of GA. Also of importance was that these OH groups, in addition to the carboxyl group, of the GA are the most likely groups to interact with receptors. The solution of GA in the ACN solution was measured and the complex OH bands were deconvoluted to four component bands. These component bands corresponded to the three OH bands on the benzene ring and a broad band which is a combination band of mainly the OH of the COOH group and the inter- and intramolecular H-bonds from the OH groups on the ring. The conformations, relative stabilities and vibrational analysis of the GA monomers and the GA-ACN clusters were investigated using the B3LYP/6-311++G(2d,2p) method. Conformational analysis of the GA monomer yielded four most possible conformers, GA-I, GA-II, GA-III and GA-IV. These conformers were subsequently used for the study of the GA:ACN clusters at the 1:1, 1:2 and 1:4 mole ratios. The IR spectra of the most stable structures of these clusters were simulated and the vibrational wavenumbers of the OH and C=O groups were compared with those from the experiment. The FTIR component bands were comparable to the computed OH bands of the GA-I-(ACN)(2), GA-IV-(ACN)(2) and GA-I-(ACN)(4) clusters. Furthermore, the C=O stretching bands and the bands in the regions of 1800-1000 cm(-1) obtained by computing and the experiment were similar for these clusters. Thus, GA-I and GA-IV are the most preferable conformations of GA in ACN and perhaps in the polar

  18. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  19. Guided bone regeneration with local zoledronic acid and titanium barrier: An experimental study

    PubMed Central

    Dundar, Serkan; Ozgur, Cem; Yaman, Ferhan; Cakmak, Omer; Saybak, Arif; Ozercan, Ibrahim Hanifi; Alan, Hilal; Artas, Gokhan; Nacakgedigi, Onur

    2016-01-01

    The aim of this study was to evaluate the effects on new bone formation of autogenous blood alone or in combination with zoledronic acid (ZA), a β-tricalcium phosphate (β-TCP) graft or ZA plus a β-TCP graft placed under titanium barriers. For this purpose, eight adult male New Zealand white rabbits were used in the study, each with four titanium barriers fixed around four sets of nine holes drilled in the calvarial bones. The study included four groups, each containing 2 rabbits. In the autogenous blood (AB group), only autogeneous blood was placed under the titanium barriers. The three experimental groups were the AB+ZA group, with autogenous blood plus ZA, the AB+β-TCP group, with autogeneous blood plus a β-TCP graft, and the AB+β-TCP+ZA group, with autogeneous blood plus a β-TCP graft and ZA mixture under the titanium barriers. The animals were sacrificed after 3 months. The amounts of new bone formation identified histomorphometrically were found to be higher after 3 months than at the time of surgery in all groups. The differences between the groups were examined with histomorphometric analysis, and statistically significant differences were identified at the end of the 3 months. The bone formation rate in the AB+β-TCP+ZA group was determined to be significantly higher than that in the other groups (P<0.05). In the AB+ZA and AB+β-TCP groups, the bone formation rate was determined to be significantly higher than that in the AB group (P<0.05). No statistically significant difference in bone formation rate was observed between the AB+β-TCP and AB+ZA groups. Local ZA used with autogeneous blood and/or graft material appears to be a more effective method than the use of autogeneous blood or graft alone in bone augmentation executed with a titanium barrier. PMID:27698687

  20. Validation and optimization of experimental colitis induction in rats using 2, 4, 6-trinitrobenzene sulfonic acid

    PubMed Central

    Motavallian-Naeini, A.; Andalib, S.; Rabbani, M.; Mahzouni, P.; Afsharipour, M.; Minaiyan, M.

    2012-01-01

    Trinitrobenzene sulfonic acid (TNBS)-induced colitis is one of the most common methods for studying inflammatory bowel disease in animal models. Several factors may, however, affect its reproducibility, rate of animal mortality, and macroscopic and histopathological outcomes. Our aim was to validate the main contributing factors to this method and compare the effects of different reference drugs upon remission of resultant colon injuries. TNBS was dissolved in 0.25 ml of ethanol (50% v/v) and instilled (25, 50, 100 and 150 mg/kg) intracolonically to the male Wistar rats. After determination of optimum dose of TNBS in male rats and assessment of this dose in female rats, they were treated with reference drugs including dexamethasone [1 mg/kg, intraperitoneally (i.p.) and 2 mg/kg, orally (p.o.)], Asacol (mesalazine, 100 mg/kg, p.o.; 150 mg/kg, enema) and hydrocortisone acetate (20 mg/kg, i.p.; 20 mg/kg, enema) which started 2 h after colitis induction and continued daily for 6 consecutive days. Thereafter, macroscopic and microscopic parameters and clinical features were assessed and compared in different groups. We found that the optimum dose of TNBS for the reproducibility of colonic damage with the least mortality rate was 50 mg/kg. Amongst studied reference drugs, hydrocortisone acetate (i.p.), dexamethasone (i.p. and p.o.) and Asacol (p.o.) significantly diminished the severity of macroscopic and microscopic injuries and could be considered effective for experimental colitis studies in rats . Our findings suggest that optimization of TNBS dose is essential for induction of colitis under the laboratory conditions; and gender exerts no impact upon macroscopic and histological characteristics of TNBS-induced colitis in rats. Furthermore, the enema forms of hydrocortisone and Asacol are not appropriate reference drugs. PMID:23181094

  1. Resveratrol Pretreatment Ameliorates TNBS Colitis in Rats.

    PubMed

    Yildiz, Gulserap; Yildiz, Yuksel; Ulutas, Pinar A; Yaylali, Asl; Ural, Muruvvet

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease in humans constituting a major health concern today whose prevalence has been increasing over the world. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in IBD subjects have been reported. Antioxidants may play a significant role in IBD treatment. This study aimed at evaluating ameliorative effects of intraperitoneal resveratrol pretreatment on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Thirty five Wistar-Albino female rats were divided equally into five groups. Inflammation was induced by the intrarectal administration of TNBS under anesthesia. Intraperitoneal administration of resveratrol (RSV) at a concentration of 10mg/kg/day for 5 days before the induction of colitis significantly reduced microscopy score and malondialdehyde (MDA) levels and increased glutathione peroxidase (GSH Px) activity compared to TNBS and vehicle groups. Also an insignificant increase in catalase (CAT) activity was observed in the RSV treated group compared to TNBS and vehicle groups. In this paper, the most recent patent on the identification and treatment of IBD was indicated. In conclusion, antioxidant RSV proved to have a beneficial effect on TNBS colitis in rats. In light of these advantageous results, the RSV can be considered as adjuvant agent in IBD treatments.

  2. Experimental Evaluation of Woven Polylactic Acid, Polyester Tubes as Trachael Prostheses.

    DTIC Science & Technology

    Woven tubes of either polyester fibers or mixed polyester, polylactic acid fibers of appropriate sizes were prepared for substitution of the rabbit...woven tube prostheses was studied histologically after subcutaneous implantation in rabbits. Polylactic acid fibers were observed to increase in size...containing polylactic acid fibers as compared with those containing polyester fibers. It is concluded from these experiments that a mechanically suitable

  3. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  4. Allergenic potential of abietic acid, colophony and pine resin-HA. Clinical and experimental studies.

    PubMed

    Karlberg, A T; Boman, A; Wahlberg, J E

    1980-12-01

    Resin acids are considered to be the main allergens in colophony (rosin). Tall oils also contain resin acids and may then be potential sensitizers. A resin acid concentrate (pine resin-HA) together with Chinese colophony were included in our standard series and applied on 563 patients with contact dermatitis. Fourteen showed an isolated sensitivity to colophony and two to pine resin-HA. Six patients reacted to both test compounds. Guinea pig maximization tests (Magnusson & Kligman 1969) showed that pine resin-HA (2 series) was a grade I allergen, abietic acid a grade III allergen and colophony a grade IV allergen. The risk that the resin acids in tall oils would induce contact sensitivity to workers exposed to tall oil-containing products like cutting fluids and cleansing agents is considered to be minimal.

  5. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs.

    PubMed

    Liu, Chuanbin; Liu, Yan; Liao, Wei; Wen, Zhiyou; Chen, Shulin

    2004-01-01

    A biorefinery process that utilizes cheese whey as substrate to simultaneously produce nisin, a natural food preservative, and lactic acid, a raw material for biopolymer production, was studied. The conditions for nisin biosynthesis and lactic acid coproduction by Lactococcus lactis subsp. lactis (ATCC 11454) in a whey-based medium were optimized using statistically based experimental designs. A Plackett-Burman design was applied to screen seven parameters for significant factors for the production of nisin and lactic acid. Nutrient supplements, including yeast extract, MgSO4, and KH2PO4, were found to be the significant factors affecting nisin and lactic acid formation. As a follow-up, a central-composite design was applied to optimize these factors. Second-order polynomial models were developed to quantify the relationship between nisin and lactic acid production and the variables. The optimal values of these variables were also determined. Finally, a verification experiment was performed to confirm the optimal values that were predicted by the models. The experimented results agreed well with the model prediction, giving a similar production of 19.3 g/L of lactic acid and 92.9 mg/L of nisin.

  6. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients.

  7. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli.

    PubMed

    Ranganathan, Sridhar; Tee, Ting Wei; Chowdhury, Anupam; Zomorrodi, Ali R; Yoon, Jong Moon; Fu, Yanfen; Shanks, Jacqueline V; Maranas, Costas D

    2012-11-01

    Increasing demands for petroleum have stimulated sustainable ways to produce chemicals and biofuels. Specifically, fatty acids of varying chain lengths (C₆-C₁₆) naturally synthesized in many organisms are promising starting points for the catalytic production of industrial chemicals and diesel-like biofuels. However, bio-production of fatty acids from plants and other microbial production hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic pathways. In addition, precursors for fatty acids are used along other central metabolic pathways for the production of amino acids and biomass, which further complicates the engineering of microbial hosts for higher yields. Here, we demonstrate an iterative metabolic engineering effort that integrates computationally driven predictions and metabolic flux analysis techniques to meet this challenge. The OptForce procedure was used for suggesting and prioritizing genetic manipulations that overproduce fatty acids of different chain lengths from C₆ to C₁₆ starting with wild-type E. coli. We identified some common but mostly chain-specific genetic interventions alluding to the possibility of fine-tuning overproduction for specific fatty acid chain lengths. In accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g fatty acid/g glucose (∼39% maximum theoretical yield) of C₁₄₋₁₆ fatty acids in minimal M9 medium. These results highlight the benefit of using computational strain design and flux analysis tools in the design of recombinant strains of E. coli to produce free fatty acids.

  8. Treatment of endometriosis with local acetylsalicylic acid injection: experimental study in rabbits.

    PubMed

    Siqueira, Juliana Menezes; Barreto, Adriana Beatriz; Saad-Hossne, Rogério

    2011-01-01

    The objective of the present study was to estimate the effects of introduction of acetylsalicylic acid solution into peritoneal implants in autologous endometrium as a method for treating endometriosis. Forty adult female rabbits were subdivided into 4 groups of 10 rabbits each, and endometriosis was induced via autotransplantation of endometrial fragments into the peritoneal cavity. At 30 days after induction of endometriosis, all animals were randomly assigned to 1 of 2 protocols. In protocol 1, animals were evaluated at 24 hours after treatment; group 1 (control) received physiologic solution, and group 2 received acetylsalicylic acid. In protocol 2, animals were evaluated at 10 days after treatment, group 3 (control) and group 4 received acetylsalicylic acid. After measuring the lesion, the endometriotic focus was removed and prepared for mounting on slides for histologic analysis. Imaging software was used for analysis of the total remaining area of endometrial tissue. The affected area in acetylsalicylic acid-treated animals was smaller than that in control animals at 24 hours and 10 days after treatment; a significant difference was found between control and treated groups (p < .001). Statistical analysis comparing protocols 1 and 2 demonstrated no differences between controls groups or acetylsalicylic acid groups (p = .30), and no differences between times (p = .75). Acetylsalicylic acid solution led to less growth (or higher involution) of endometrial implants. Acetylsalicylic acid injected directly into endometriotic foci was effective in their destruction. This presents new perspectives for treatment of endometriosis and for clinical applications based on further clinical studies.

  9. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy.

    PubMed

    Melli, Giorgia; Taiana, Michela; Camozzi, Francesca; Triolo, Daniela; Podini, Paola; Quattrini, Angelo; Taroni, Franco; Lauria, Giuseppe

    2008-12-01

    The study investigates if alpha-lipoic acid is neuroprotective against chemotherapy induced neurotoxicity, if mitochondrial damage plays a critical role in toxic neurodegenerative cascade, and if neuroprotective effects of alpha-lipoic acid depend on mitochondria protection. We used an in vitro model of chemotherapy induced peripheral neuropathy that closely mimic the in vivo condition by exposing primary cultures of dorsal root ganglion (DRG) sensory neurons to paclitaxel and cisplatin, two widely used and highly effective chemotherapeutic drugs. This approach allowed investigating the efficacy of alpha-lipoic acid in preventing axonal damage and apoptosis and the function and ultrastructural morphology of mitochondria after exposure to toxic agents and alpha-lipoic acid. Our results demonstrate that both cisplatin and paclitaxel cause early mitochondrial impairment with loss of membrane potential and induction of autophagic vacuoles in neurons. Alpha-lipoic acid exerts neuroprotective effects against chemotherapy induced neurotoxicity in sensory neurons: it rescues the mitochondrial toxicity and induces the expression of frataxin, an essential mitochondrial protein with anti-oxidant and chaperone properties. In conclusion mitochondrial toxicity is an early common event both in paclitaxel and cisplatin induced neurotoxicity. Alpha-lipoic acid protects sensory neurons through its anti-oxidant and mitochondrial regulatory functions, possibly inducing the expression of frataxin. These findings suggest that alpha-lipoic acid might reduce the risk of developing peripheral nerve toxicity in patients undergoing chemotherapy and encourage further confirmatory clinical trials.

  10. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation

    PubMed Central

    Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana

    2015-01-01

    A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393

  11. Dietary Amelioration of Helicobacter Infection

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  12. Modeling of recognition sites of nucleic acid bases aaand amide side chains of amino acids. Combination of experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Shelkovsky, V. S.; Stepanian, S. G.; Galetich, I. K.; Kosevich, M. V.; Adamowicz, L.

    2002-09-01

    A combined experimental-theoretical approach to modeling of building blocks of recognition complexes formed by nucleic acid bases and the amino-acids side-chain amino group is reviewed. The approach includes the temperature dependent field-ionization mass spectrometry and ab initio quantum chemical calculations. The mass spectrometric technique allows determination of interaction enthalpies of biomolecules in the gas phase, and the results it produces are directly comparable to the results obtained through theoretical modeling. In our works we have analyzed both thermodynamic and structural aspects of the recognition complexes of four canonical nucleic acid bases and acrylamide, which models the side chain of asparagine and glutamine. It has been shown that all bases can interact with amide group of the amino acids via their Watson-Crick sites when being incorporated into a single strand DNA or RNA. Stability of the complexes studied, expressed as -Δ H (kJ mole^{-1}) decreases as: m^9Gua (-59.5) > m^1Cyt (-57.0) > m^9Ade (-52.0) gg m^1Ura (-40.6). We have determined that in the double stranded DNA only purine bases can be recognized.

  13. Experimental alkali feldspar dissolution at 100 degree C by carboxylic acids and their anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-05-01

    Feldspar dissolution will enhance sandstone porosity if the released aluminum can be transported away in the subsurface waters. Carboxylic acids have been proposed to provide hydrogen ions to promote dissolution and anions to complex aqueous aluminum to keep it in solution. However, the hydrogen ions should react quickly following acid generation in source beds, leaving monocarboxylic anions with lesser amounts of dicarboxylic acids and their anions on feldspar dissolution and the apparent complexing of aluminum in solution. Two-week dissolution experiments of alkali feldspar were run at 100{degree}C and 300 bars in acetic acid, oxalic acid, and sodium salt solutions of chloride, acetate, propionate, oxalate, and malonate. Extrapolation of the results, to reservoir conditions during sandstone diagenesis, implies that concentrations of aluminum-organic complexes are not significant for acetate and propionate and are possibly significant for oxalate and malonate, depending upon fluid compositions. Propionate appeared to inhibit feldspar dissolution and hence might decrease secondary porosity formation. Increases in aluminum concentrations in the presence of oxalic and acetic acid solutions appear to be due to enhanced dissolution kinetics and greater aluminum solubility under low-pH conditions. Such low-pH fluids are generally absent in subsurface reservoirs, making this an unlikely mechanism for enhancing porosity. Furthermore, the observed thermal instability of oxalate and malonate anions explains their general low concentrations in subsurface fluids which limits their aluminum complexing potential in reservoirs during late diagenesis.

  14. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4(+) T Cells.

    PubMed

    Zou, Ying; Li, Wen-Yang; Wan, Zheng; Zhao, Bing; He, Zhi-Wei; Wu, Zhu-Guo; Huang, Guo-Liang; Wang, Jian; Li, Bin-Bin; Lu, Yang-Jia; Ding, Cong-Cong; Chi, Hong-Gang; Zheng, Xue-Bao

    2015-01-01

    Huangqin-Tang decoction (HQT) is a classic traditional Chinese herbal formulation that is widely used to ameliorate the symptoms of gastrointestinal disorders, including inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic potential and immunological regulatory activity of HQT in experimental colitis in rats. Using an animal model of colitis by intrarectally administering 2,4,6-trinitrobenzenesulfonic acid (TNBS), we found that administration of HQT significantly inhibited the severity of TNBS-induced colitis in a dose-dependent manner. In addition, treatment with HQT produced better results than that with mesalazine, as shown by improvedweight loss bleeding and diarrhoea scores, colon length, and intestinal inflammation. As for potential immunological regulation of HQT action, the percentages of Th1 and Th17 cells were reduced, but those Th2 and Treg cells were enhanced in LPMCs after HQT treatment. Additionally, HQT lowered the levels of Th1/Th17-associated cytokines but increased production of Th2/Treg-associated cytokines in the colon and MLNs. Furthermore, we observed a remarkable suppression of the Th1/Th17-associated transcription factors T-bet and ROR-γt. However, expression levels of the Th2/Treg-associated transcription factors GATA-3 and Foxp3 were enhanced during treatment with HQT. Our results suggest that HQT has the therapeutic potential to ameliorate TNBS-induced colitis symptoms. This protective effect is possibly mediated by its effects on CD4(+) T cells subsets.

  15. Hydrogen-bond acidity of OH groups in various molecular environments (phenols, alcohols, steroid derivatives, and amino acids structures): experimental measurements and density functional theory calculations.

    PubMed

    Graton, Jérôme; Besseau, François; Brossard, Anne-Marie; Charpentier, Eloïse; Deroche, Arnaud; Le Questel, Jean-Yves

    2013-12-12

    The hydrogen-bond (H-bond) donating strengths of a series of 36 hydroxylic H-bond donors (HBDs) with N-methylpyrrolidinone have been measured in CCl4 solution by FTIR spectrometry. These data allow the definition of a H-bond acidity scale named pKAHY covering almost three pK units, corresponding to 16 kJ mol(-1). These results are supplemented by equilibrium constants determined in CH2Cl2 for one-third of the data set to study compounds showing a poor solubility in CCl4. A systematic comparison of these experimental results with theoretical data computed in the gas phase using DFT (density functional theory) calculations has also been carried out. Quantum electrostatic parameters appear to accurately describe the H-bond acidity of the hydroxyl group, whereas partial atomic charges according to the Merz-Singh-Kollman and CHelpG schemes are not suitable for this purpose. A substantial decrease of the H-bond acidity of the OH group is pointed out when the hydroxyl moiety is involved in intramolecular H-bond interactions. In such situations, the interactions are further characterized through AIM and NBO analyses, which respectively allow localizing the corresponding bond critical point and the quantification of a significant charge transfer from the available lone pair to the σ*OH antibonding orbital. Eventually, the H-bond ability of the hydroxyl groups of steroid derivatives and of lateral chains of amino acids are evaluated on the basis of experimental and/or theoretical data.

  16. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling.

    PubMed

    Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi

    2017-03-01

    This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO4(2-) were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO4(2-) was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO4(2-) removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.

  17. Long-term ascorbic acid administration causes anticonvulsant activity during moderate and long-duration swimming exercise in experimental epilepsy.

    PubMed

    Tutkun, Erkut; Arslan, Gokhan; Soslu, Recep; Ayyildiz, Mustafa; Agar, Erdal

    2015-01-01

    The benefits of regular exercise on brain health are undeniable. Long-term exercise increases the production of reactive oxygen species in brain. Therefore, athletes often consume antioxidant supplements to remedy exercise-related damage and fatigue during exercise. The aim of this study is to evaluate the role of ascorbic acid in the effects of different intensities of swimming exercise on the brain susceptibility to experimental epilepsy in rats. Ascorbic acid was administered intraperitoneally (ip) during three different swimming exercise programme for 90 days (15 min, 30 min, 90 min/day). The anticonvulsant activity regarding the frequency of epileptiform activity appeared in the 80 min after 500 units intracortical penicillin injection in 30 min and 90 min/day exercise groups. The administration of ascorbic acid (100 mg/kg, ip) did not alter the anticonvulsant properties seen in the in short-duration (15 min/day) swimming exercise group. The amplitude of epileptiform activity also became significant in the 110 and 120 min after penicillin injection in the moderate (30 min/day) and long duration (60 min/day) groups, respectively. The results of the present study provide electrophysiologic evidence that long-term administration of ascorbic acid causes anticonvulsant activities in the moderate and long-duration swimming exercise. Antioxidant supplementation such as ascorbic acid might be suggested for moderate and long-duration swimming exercise in epilepsy.

  18. Experimental Investigations of the Effects of Acid Gas (H2S/CO2) Exposure under Geological Sequestration Conditions

    NASA Astrophysics Data System (ADS)

    Hawthorne, S. B.; Miller, D.; Kutchko, B. G.; Strazisar, B. R.

    2009-12-01

    Acid gas (mixed CO2 and H2S) injection into geological formations is increasingly used as a disposal option. In contrast to pure CO2 injection, there is little understanding of the possible effects of acid gases under geological sequestration conditions on exposed materials ranging from reactions with reservoir minerals to the stability of proppants injected to improve oil recovery to the possible failure of well-bore cements. The number of laboratory studies investigating effects of acid gas has been limited by safety concerns and the difficulty in preparing and maintaining single-phase H2S/CO2 mixtures under the experimental pressures and temperatures required. We have developed approaches using conventional syringe pumps and reactor vessels to prepare and maintain H2S/CO2 mixtures under relevant sequestration conditions of temperature, pressure, and exposure to water and dissolved salts. These methods have been used to investigate and compare the effects of acid gas with those of pure CO2 on several materials including reservoir cores, oil recovery proppants, and well-bore cements, as well as to investigate the rates of model reactions such as the conversion of Fe3O4 to pyrite. The apparatus and methods used to perform acid gas exposures and representative results from the various exposed materials will be presented.

  19. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  20. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  1. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress.

    PubMed

    Kobayashi, Yukihiro; Miyazawa, Maki; Kamei, Asuka; Abe, Keiko; Kojima, Takashi

    2010-01-01

    To determine the effects of mulberry (Morus alba L.) leaves on hyperlipidemia, we performed gene expression profiling of the liver. Rats were fed a high-fat diet and administered mulberry leaves for 7 weeks. Plasma triglyceride and non-esterified fatty acid levels were significantly lower in the rats treated with mulberry leaves as compared with the untreated rats. DNA microarray analysis revealed that mulberry leaves upregulated expression of the genes involved in α-, β- and ω-oxidation of fatty acids, mainly related to the peroxisome proliferator-activated receptor signaling pathway, and downregulated the genes involved in lipogenesis. Furthermore, treatment with mulberry leaves upregulated expression of the genes involved in the response to oxidative stress. These results indicate that consumption of fatty acids and inhibition of lipogenesis are responsible for the reduction in plasma lipids caused by mulberry administration. In addition, mulberry treatment maintains the body's oxidative state at a low level despite enhancing fatty acid oxidation.

  2. Vibration test methods and their experimental research on the performance of the lead-acid battery

    NASA Astrophysics Data System (ADS)

    He, Baoxiang; Wang, Hua; He, Xie

    2014-12-01

    As we know, Lead-acid battery is difficult to balance many factors such as the accuracy and the on-line testing requirement. The detecting system, as stated in this article, is based on the vibration test procedure, dynamically following the electrochemical process of the Lead-acid Battery, and collects the real-time state parameters for calculation, analysis and judgment. It also quantizes precisely the degradation and chargeability of the battery and therefore self-adapts to the ideal target values. During the test, it has not charged and discharged large current to the lead-acid battery, it only plus a smaller and shorter time of impulse voltage signal on both ends of lead-acid battery, so the battery measured is damage free, and the system energy consumption is small; Using the load compensation technology, it has solved the influence of load on the test results. What's more, the load characteristics are improved at the same time, it realized the online detection. The vibration detection is based on the adaptive fuzzy inference model which has taken various factors into account, concerning the choices of input aspects which may influence the output value. It realized a number of Lead-acid Battery voltage self-adaption and accomplished a variety of high-precise tests.

  3. Clofibric and ethacrynic acids prevent experimental pyelonephritis by Escherichia coli in mice.

    PubMed

    Balagué, Claudia E; de Ruiz, Clara Silva; Rey, Rosario; de Duffard, Ana María Evangelista; Nader-Macías, María Elena

    2004-11-01

    Interfering Escherichia coli attachment to the urinary tract, using P-fimbriation inhibitors, can prevent pyelonephritis. Clofibric and ethacrynic acids are organic compounds structurally related, but with different pharmacological uses. These agents are potentially active in the urinary tract due to its elimination in an unaltered form by the renal route. This study described a pyelonephritogenic E. coli strain, grown in the presence of sub-inhibitory concentrations of clofibric or ethacrynic acids (0.1 and 1 mM, respectively), which exhibits inhibition of P1 erythrocytes agglutination and a drastic decrease in fimbriation, using electron microscopy and quantitative analyses of superficial proteins (decrease to a 17-25% in comparison with the control). In vivo assays were performed using ascending urinary tract infection in mice. The treatment with therapeutic doses of the drugs, administered 2 days before the bacterial challenge and daily until the end of the experiment (22 days), abolished renal infection after 7-10 days of drug exposure. Within this period clofibric acid did not produce adverse effects on the renal parenchyma. However, ethacrynic acid caused pyelitis and tubular cellular desquamation. These results suggested that clofibric acid might be useful in the short-term prophylaxis of urinary tract infection.

  4. Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor

    PubMed Central

    Gu, Ming; Zhao, Ping; Huang, Jinwen; Zhao, Yuanyuan; Wang, Yahui; Li, Yin; Li, Yifei; Fan, Shengjie; Ma, Yue-Ming; Tong, Qingchun; Yang, Li; Ji, Guang; Huang, Cheng

    2016-01-01

    Background and purpose: Silymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis, and other types of toxic liver damage. Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. Experimental approach: C57BL/6 mice were fed high-fat diet (HFD) for 3 months to induce obesity, insulin resistance, hyperlipidaemia, and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. Farnesyl X receptor (FXR) and nuclear factor kappa B (NF-κB) transactivities were analyzed in liver using a gene reporter assay based on quantitative RT-PCR. Key results: Silymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signaling, which was enhanced by FXR activation. Conclusion and implications: Our results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signaling. PMID:27733832

  5. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    PubMed

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  6. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    NASA Astrophysics Data System (ADS)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime; Rindzevicius, Tomas; Svendsen, Winnie E.; Rozlosnik, Noemi; Boisen, Anja; Martínez, Fernando

    2013-03-01

    This Letter involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple 'one pot' synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N-layered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6-31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid conjugate presented herein is believed to lead the way to new potential applications as carbon nanotube-based drug delivery systems.

  7. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  8. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  9. Impact of experimental trauma and niflumic acid administration on antimicrobials' concentration in serum and mandible of rats.

    PubMed

    Kotsiou, A; Anagnostou, M; Mourouzis, C; Rallis, G; Chantzi, Ch; Tesseromatis, C

    2006-01-01

    Administration of antibiotics and analgesics in surgery or trauma is of great importance for an effective treatment. Trauma, as stress stimulus, causes alterations in various functions of the organism as well as in drug pharmacokinetics. The aim of this study was to determine the effect of trauma upon the serum and bone levels of the antimicrobial ampicillin and cefapirin, with and without co-administration of a non-steroidal anti-inflammatory analgesic (NSAIDs). Fifty-six male Wistar rats were divided into two groups A (control) and B (experimental). Each group consisted of 4 subgroups (n=7) receiving ampicillin, ampicillin with niflunic acid, cefapirin, and cefapirin with niflunic acid. In group B traumatic injury was performed by incision (7 mm length) in the right cheek. The levels of the antibiotics were estimated by the inhibition zone of B. subtilis. An increase in antibiotic levels was observed in group B, being statistically significant only for cefapirin level in the mandible. Upon niflumic acid co-administration a statistically significant rise in serum ampicillin and mandible cefapirin levels was observed in both control and experimental groups (student t-test). It can be concluded that the combination of antibiotics and non-steroid antiinflammatory drugs (NSAIDs) may enhance the antibacterial drug concentration.

  10. Experimental investigation on effects of acid/base waters on the bottom sediment of Kaita Cove (Hiroshima, Japan)

    NASA Astrophysics Data System (ADS)

    Touch, Narong; Hibino, Tadashi; Ueno, Kohei; Fukui, Shogo

    2013-12-01

    The decomposition of organic matter existing in bottom sediment produces reduced substances, and this has an influence on the water environment. Recently, it has been pointed out that the water environment can be improved after covering the bottom sediment with alkaline material. In this study, we experimentally investigate the effects of acid and base waters (hydrogen peroxide and calcium oxide solutions, respectively) on bottom sediment. The bottom sediment of Kaita Cove (Hiroshima, Japan) was mixed and stirred with the acid or base water, and then the dissolved carbon content (DCC), the pH, and the ammonium nitrogen (NH4-N) of the overlying solution were analyzed along with the particle size distribution, particulate carbon content (PCC), and particulate nitrogen content (PNC) of the sediment. It was found that particulate organic matter was decomposed under acid water conditions, leading to large decreases in PCC and PNC, and to large increases in pH, DCC, and NH4-N. Importantly, there were no variations in PCC, PNC, or particle size under base water conditions. However, there were increases in NH4-N, and large amounts of DCC remained in the overlying solution. It is evident from the experimental results that base water conditions enhanced both the elution of nutrient salts and the dissolved organic matter from the sediment, but retarded the decomposition of organic matter. These are considered as important factors associated with the improvement of water environments.

  11. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  12. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid.

    PubMed

    Jun-Bo, Liu; Yang, Shi; Shan-Shan, Tang; Rui-Fa, Jin

    2015-03-01

    The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol-imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC-WPBE/6-31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol-imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol-imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.

  13. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  14. Theoretical and experimental investigations on the structures of purified clay and acid-activated clay

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wen, Xiao-Dong; Li, Junfen; Yang, Liming

    2006-07-01

    The purified and acidified montmorillonite clay were characterized by XRD, BET and TPD. These results show that acidified clay is provided with more surface area and acid sites. For NH 3-TPD, molecular NH 3 desorption on purified clay and acidified clay occurs at temperatures with 873 and 1000 K, respectively. It is shown for the existence for strong acid sites. By two reactions of the tetrahydropyranylation of n-propanol and the esterification of cyclo-2-pentene with acetic acid, it is shown that the acidified clay displays better catalytic activity for above two organic reactions. By density-functional theory (DFT) method, we have analyzed the structures of different substituted montmorillonite and the effect sorption behavior of Na + in different montmorillonite models. The result shows that the process of substitution will occur apart from octahedral aluminums. The adsorption of NH 3 on clay surfaces have been investigated using TPD and DFT. This is shown that acid sites locate at round the octahedral aluminums, and substitution of Al 3+ for tetrahedral Si will be favorable to NH 3 adsorption.

  15. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid

    PubMed Central

    Gautam, M. K.; Goel, Shalini; Ghatule, R. R.; Singh, A.; Joshi, V. K.; Goel, R. K.

    2013-01-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats. PMID:24403663

  16. PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis.

    PubMed

    Standage, Stephen W; Bennion, Brock G; Knowles, Taft O; Ledee, Dolena R; Portman, Michael A; McGuire, John K; Liles, W Conrad; Olson, Aaron K

    2017-02-01

    Children with sepsis and multisystem organ failure have downregulated leukocyte gene expression of peroxisome proliferator-activated receptor-α (PPARα), a nuclear hormone receptor transcription factor that regulates inflammation and lipid metabolism. Mouse models of sepsis have likewise demonstrated that the absence of PPARα is associated with decreased survival and organ injury, specifically of the heart. Using a clinically relevant mouse model of early sepsis, we found that heart function increases in wild-type (WT) mice over the first 24 h of sepsis, but that mice lacking PPARα (Ppara(-/-)) cannot sustain the elevated heart function necessary to compensate for sepsis pathophysiology. Left ventricular shortening fraction, measured 24 h after initiation of sepsis by echocardiography, was higher in WT mice than in Ppara(-/-) mice. Ex vivo working heart studies demonstrated greater developed pressure, contractility, and aortic outflow in WT compared with Ppara(-/-) mice. Furthermore, cardiac fatty acid oxidation was increased in WT but not in Ppara(-/-) mice. Regulatory pathways controlling pyruvate incorporation into the citric acid cycle were inhibited by sepsis in both genotypes, but the regulatory state of enzymes controlling fatty acid oxidation appeared to be permissive in WT mice only. Mitochondrial ultrastructure was not altered in either genotype indicating that severe mitochondrial dysfunction is unlikely at this stage of sepsis. These data suggest that PPARα expression supports the hyperdynamic cardiac response early in the course of sepsis and that increased fatty acid oxidation may prevent morbidity and mortality.

  17. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  18. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models.

    PubMed

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.

  19. The effect of butyric acid with autogenous omental graft on healing of experimental Achilles tendon injury in rabbits

    PubMed Central

    Jahani, S; Moslemi, H. R.; Dehghan, M. M.; Sedaghat, R; Mazaheri Nezhad, R; Rezaee Moghaddam, D

    2015-01-01

    In this study, the role of local injection of butyric acid (BA) with autogenous omental graft was evaluated in healing of experimental Achilles tendon injury in rabbits. Nine adult male New Zealand rabbits were anesthetized and a partial thickness tenotomy was created on both hindlimbs. In treated group, omental graft was secured in place using BA soaked polygalactin 910 suture. In control group, the graft was sutured without BA. Butyric acid and normal saline were injected daily to treatment and control groups for three days, respectively. Based on the findings, on day 15 after injury, the tendon sections showed that healing rate in BA treated group was higher than that in control group. Furthermore, at days 28 and 45, comparison between BA treated and control groups demonstrated that BA increased the healing rate but with no significance. In summary, results of this study show that application of BA with autogenous omental graft can improve healing process of damaged Achilles tendon. PMID:27175160

  20. Experimental analysis of lead-in-air sources in lead-acid battery manufacture.

    PubMed

    Caplan, K J; Knutson, G W

    1979-07-01

    Plant-scale experimental sampling programs were carried out to determine the contribution to the lead-in-air exposure from (a) fork-truck transport of pasted plates in racks and (b) manual loading and unloading of plates from racks. Fork-truck transport was found not significant under "clean" conditions. Manual loading and unloading was found significant.

  1. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  2. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.

    PubMed

    Hines, Daniel J; Kaplan, David L

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) has been the most successful polymeric biomaterial used in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in the formulation of drug release devices. Mathematical modeling is a useful tool for identifying, characterizing, and predicting mechanisms of controlled release. The advantages and limitations of poly(lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled-release technology that utilize PLGA. Mathematical modeling applied toward controlled-release rates from PLGA-based devices also will be discussed to provide a complete picture of a state-of-the-art understanding of the control that can be achieved with this polymeric system, as well as the limitations.

  3. Topical treatments for hydrofluoric acid dermal burns. Further assessment of efficacy using an experimental piq model.

    PubMed

    Dunn, B J; MacKinnon, M A; Knowlden, N F; Billmaier, D J; Derelanko, M J; Rusch, G M; Naas, D J; Dahlgren, R R

    1996-05-01

    Several topical treatments for hydrofluoric acid dermal burns (Zephiran, calcium acetate and magnesium hydroxide antacid soaks, and calcium gluconate gel) were assessed for efficacy in a pig model. Gross appearance and histopathology of treated and untreated burn sites were evaluated. For superficial burns, Zephiran was most effective; calcium acetate, magnesium hydroxide antacid, and calcium gluconate gel were less effective. For deep burns, gross observations showed that calcium acetate and Zephiran were most efficacious, whereas histopathology indicated comparable efficacy of Zephiran, calcium acetate, and calcium gluconate gel for all skin layers. Magnesium hydroxide antacid demonstrated efficacy only for the subdermis. The clinically beneficial effects of both Zephiran and calcium gluconate gel were affirmed. Although results suggest that calcium acetate and magnesium-containing antacids may be beneficial for human hydrofluoric acid dermal burns, these are not established clinical treatments.

  4. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  5. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1.

    PubMed

    Ziamajidi, Nasrin; Khaghani, Shahnaz; Hassanzadeh, Gholamreza; Vardasbi, Safura; Ahmadian, Shahram; Nowrouzi, Azin; Ghaffari, Seyed Mahmood; Abdirad, Afshin

    2013-08-01

    We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents.

  6. Experimental and theoretical study of the inclusion complexes of 3-carboxycoumarin acid with β- and 2-hydroxypropyl-β-cyclodextrins

    NASA Astrophysics Data System (ADS)

    Tablet, Cristina; Minea, Liliana; Dumitrache, Luigi; Hillebrand, Mihaela

    2012-06-01

    The association process of a host-guest system, cyclodextrins (CyD) - 3-carboxycoumarin acid (3CCA) was followed by means of UV-vis, circular dichroism and steady-state fluorescence spectroscopies in buffer solution at pH = 1. The experimental data were analyzed in order to get information on the stoichiometry, the equilibrium constants and the geometry of the inclusion complexes. In the circular dichroism spectra, a positive induced signal was obtained reflecting that the guest penetrates the cavity in such a way that the transition moment of the electronic band is quasi parallel to the host main axis. The experimental data are supported by the DFT and TDDFT (B3LYP/6-31G) calculations performed on the isolated ligand and by TDDFT (ZINDO) calculations carried out on the supramolecular ligand-cyclodextrin system.

  7. Chiral Brønsted Acid-Catalyzed Enantioselective α-Amidoalkylation Reactions: A Joint Experimental and Predictive Study.

    PubMed

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria; González-Díaz, Humberto; Lete, Esther

    2016-12-01

    Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid-catalyzed enantioselective α-amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure-reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)-QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long-term empirical investigation.

  8. [Effect of the hyaluronic acid on tracheal healing. A canine experimental mode].

    PubMed

    Olmos-Zúñiga, J R; Santos-Cordero, J A; Jasso-Victoria, R; Sotres-Vega, A; Gaxiola-Gaxiola, M O; Mora-Fol, J R; Franco-Oropeza, J A; Santillan-Doherty, P

    2004-02-01

    Several drugs have been used to modulate of the tracheal healing process in order to prevent tracheal stenosis. Hyaluronic acid (HA) is a modulator of the fibrogenesis. In this work we evaluate the effect in order the application of hyaluronic acid has on tracheal healing, after cervical tracheoplasty in dogs. A cervical tracheal resection and tracheoplasty was performed in 12 dogs and they were treated following surgery as follows: Group I (n = 6) Topical application of normal saline solution (0.9%) on the anastomosis site. Group II Topical application of hyaluronic acid on the trachea anastomosed. The animals were evaluated clinical, radiological and tracheoscopically during 4 weeks and were submitted to euthanasia. Macroscopic and microscopic examinations of the tracheal anastomotic healing were evaluated. Biochemical collagen quantification by the Woessner method was performed to evaluate the collagen development at the anastomotic site. All the animals survived the surgical procedure and the study time. No animal presented differences in clinical evaluation. Radiological and endoscopical findings both two showed more development of the tracheal stenosis in-group than in group II. The tracheoscopy and macroscopic studies showed major inflammation and development of fibrotic tissue with a firm consistency in the healing of the group I than in group II. Microscopic examination in group I showed severe fibrosis and inflammatory reaction. The group II presented deposits of a thin and organized collagen fibers and minimal inflammatory reaction. Biochemical collagen concentration was larger in-group I, however significantly. We conclude that the hyaluronic acid applied after cervical tracheoplasty in dogs reduces postsurgical tracheal stenosis and inflammation, as well as improve the quality of the tracheal healing.

  9. Iron-rich drinking water and ascorbic acid supplementation improved hemolytic anemia in experimental Wistar rats.

    PubMed

    Chaturvedi, Richa; Chattopadhyay, Pronobesh; Banerjee, Saumen; Bhattacharjee, Chira R; Raul, Prasanta; Borah, Kusum; Singh, Lokendra; Veer, Vijay

    2014-11-01

    Anemia is a frequent problem in both the primary and secondary health care programs. In contrast, most areas of northeast India are vulnerable to iron toxicity. In the present study, we documented the effect of administration of iron rich water on hemolytic anemia in a Wistar rats' animal model. Hemolytic anemia was induced by phenyl hydrazine through intraperitoneal route and diagnosed by the lowering of blood hemoglobin. After inducing the hemolytic anemia, 24 Wistar rats (n = 6 in four groups) were randomly assigned to 1 mg/l, 5 mg/l, and 10 mg/l ferric oxide iron along with 1 mg/ml ascorbic acid administered through drinking water; a control group was treated with iron-free water. The hematological and biochemical parameters, iron levels in liver, spleen, and kidney were estimated after 30 d of treatment. In the group treated with 5 mg/l iron and ascorbic acid, a significant increase of serum iron and ferritin, and a decrease of TIBC (total iron binding capacity) were observed without changes in other biochemical parameters and histopathological findings. However, in the group treated with 10 mg/l iron and ascorbic acid, hematological changes with significantly higher values for white blood cell count, serum glutamic phospho transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, glucose, splenic, and liver iron content, indicate potential toxicity at this supplementation level. Data suggest that the optimum concentration of iron (5 mg/l) and ascorbic acid solution may improve anemic conditions and may be therapeutically beneficial in the treatment of iron deficiency anemia without any negative impact, while 10 mg/l in drinking water seems to be the threshold for the initiation of toxicity.

  10. Imaging of experimental myocardial infarction with technetium-99m 2,3-dimercaptosuccinic acid

    SciTech Connect

    Karlsberg, R.P.; Milne, N.; Lyons, K.P.; Aronow, W.S.

    1981-03-01

    We have studied the use of Tc-99m-labeled 2,3-dimercaptosuccinic acid(Tc-99m DMSA) to scintigraph acute myocardial infaction after coronary occlusion in dogs. Optimal images were obtained 5 hr after injection of radiotracer, with consistent delineation 48 hr after occlusion. Delivery of tracer was dependent on blood flow. Uptake of tracer correlated to extent of infarction as determined by the myocardial depletion of creatine kinase. Myocardial Tc-99m DMSA was protein-bound.

  11. [Experimental study of 3-oxypiridine and succinic acid derivates antidepressant activity in mice].

    PubMed

    Volchegorskiĭ, I A; Miroshnichenko, I Iu; Rassokhina, L M; Faĭzullin, R M

    2013-01-01

    Effect of Russian 3-oxypiridine and succinic acid derivatives (emoxipin, reamberin and mexidol) on duration of behavioral despair in mice in forced swimming test (by Porsolot) and tail suspension test (by Steru) was investigated. In addition impact assessment of studied medicinal products (MP) on animals' behavior in open field test was performed. Amitriptyline and alpha-lipoic acid were used as reference drugs. It was determined that single delivery of all studied drugs in optimal doses eqvivalent to therapeutic range for human reduces lasting of behavioral despair in Porsolot and Steru tests. This effect of reamberin, mexidol and alpha-lipoic acid indicates their antidepressant action unrelated to stimulatory activity, as far as these MPs like amitriptyline show sedative action in open field test. Reduction of behavioral despair due to effect of emoxipin in relative low doses was associated with increase of mice activity in open field test and so it can't be considered to be antidepressant action per se. Increase of emoxipin dose leads to progressive decrease of its stimulatory effect impact in behavioral despair reduction and induce antidepressant effect in the setting of sedation.

  12. Acid-base strength and acidochromism of some dimethylamino-azinium iodides. An integrated experimental and theoretical study.

    PubMed

    Benassi, Enrico; Carlotti, Benedetta; Fortuna, Cosimo G; Barone, Vincenzo; Elisei, Fausto; Spalletti, Anna

    2015-01-15

    The effects of pH on the spectral properties of stilbazolium salts bearing dimethylamino substituents, namely, trans isomers of the iodides of the dipolar E-[2-(4-dimethylamino)styryl]-1-methylpyridinium, its branched quadrupolar analogue E,E-[2,6-di-(p-dimethylamino)styryl]-1-methylpyridinium, and three analogues, chosen to investigate the effects of the stronger quinolinium acceptor, the longer butadiene π bridge, or both, were investigated through a joint experimental and computational approach. A noticeable acidochromism of the absorption spectra (interesting for applications) was observed, with the basic and protonated species giving intensely colored and transparent solutions, respectively. The acid–base equilibrium constants for the protonation of the dimethylamino group in the ground state (pKa) were experimentally derived. Theoretical calculations according to the thermodynamic Born-Haber cycle provided pKa values in good agreement with the experimental values. The very low fluorescence yield did not allow a direct investigation of the changes in the acid-base properties in the excited state (pKa*) by fluorimetric titrations. Their values were derived by quantum-mechanical calculations and estimated experimentally on the basis of the Förster cycle.

  13. Theoretical and experimental study of valence photoelectron spectrum of D,L-alanine amino acid.

    PubMed

    Farrokhpour, H; Fathi, F; De Brito, A Naves

    2012-07-05

    In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.

  14. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  15. TRANEXAMIC ACID ACTION ON LIVER REGENERATION AFTER PARTIAL HEPATECTOMY: EXPERIMENTAL MODEL IN RATS

    PubMed Central

    SOBRAL, Felipe Antonio; DAGA, Henrique; RASERA, Henrique Nogueira; PINHEIRO, Matheus da Rocha; CELLA, Igor Furlan; MORAIS, Igor Henrique; MARQUES, Luciana de Oliveira; COLLAÇO, Luiz Martins

    2016-01-01

    ABSTRACT Background: Different lesions may affect the liver resulting in harmful stimuli. Some therapeutic procedures to treat those injuries depend on liver regeneration to increase functional capacity of this organ. Aim: Evaluate the effects of tranexamic acid on liver regeneration after partial hepatectomy in rats. Method: 40 rats (Rattus norvegicus albinus, Rodentia mammalia) of Wistar-UP lineage were randomly divided into two groups named control (CT) and tranexamic acid (ATX), with 20 rats in each. Both groups were subdivided, according to liver regeneration time of 32 h or seven days after the rats had been operated. The organ regeneration was evaluated through weight and histology, stained with HE and PCNA. Results: The average animal weight of ATX and CT 7 days groups before surgery were 411.2 g and 432.7 g, and 371.3 g and 392.9 g after the regeneration time, respectively. The average number of mitotic cells stained with HE for the ATX and CT 7 days groups were 33.7 and 32.6 mitosis, and 14.5 and 14.9 for the ATX and CT 32 h groups, respectively. When stained with proliferating cell nuclear antigen, the numbers of mitotic cells counted were 849.7 for the ATX 7 days, 301.8 for the CT 7 days groups, 814.2 for the ATX 32 hand 848.1 for the CT 32 h groups. Conclusion: Tranexamic acid was effective in liver regeneration, but in longer period after partial hepatectomy. PMID:27438036

  16. Polyamino acid functionalized membranes for metal capture and nanofiltration of organics: Modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Hestekin, Jamie Allen

    2000-10-01

    Passive membranes have been used for separations ranging from seawater desalination via reverse osmosis to the separation of particles with microfiltration membranes. However the attachment of macromolecules, with multiple functional sites, to microfiltration membranes allows for more selective separations. For these reasons, we have designed a novel membrane system, consisting of cellulose-based microfiltration membranes functionalized with polyamino acids (2,500--15,000 MW). Because of the high carboxyl content of the polyamino acids, these membranes have been shown to be extremely useful for the separation of heavy metals from aqueous solutions. The primary objective of this research was to establish the sorption mechanisms of functionalized microfiltration membranes and use these mechanisms to predict the rate behavior of metal transport through these membranes. Both cellulose acetate and pure cellulose were used as membrane support materials. Extensive experiments (pH 3--6) were conducted (under convective flow mode) with the derivatized membranes involving the heavy metals: lead, cadmium, nickel, copper, and selected mixtures with calcium in aqueous solutions. Metal sorption results were found to be a function of derivatization (aldehydes) density of membranes and degree of attachment of the polyfunctional groups, number of functional groups per chain, membrane surface area, and the type of metals to be sorbed. We have obtained metal sorption capacities as high as 1.5 g metal/g membrane. As opposed to homogeneous solution systems, the molar sorption capacities of the functional carboxyl sites are significantly enhanced in the membrane pores because of counterion condensation resulting partly from the extremely high charge densities in the membrane pores. This phenomenon was incorporated in a kinetic model for the prediction of sorption behavior. The model studied the effect of pore size, polyamino acid attachment density, pH, and metal type. Finally, in

  17. Cortisol, growth hormone, free fatty acids, and experimentally evoked affective arousal.

    PubMed

    Brown, W A; Heninger, G

    1975-11-01

    Eight male volunteers who viewed selected control, suspense, and erotic films experienced significant changes in affect that were limited to fatigue, anxiety, and sexual arousal, respectively. All subjects showed free fatty acid elevations with the suspense and erotic films and those subjects with the most anxiety and sexual arousal showed cortisol elevation with the suspense and erotic films, respectively. Growth hormone elevations occurred independently of cortisol elevations and were not clearly related to film or affect. Thus, activation of the pituitary-adrenocortical and sympathetic nervous systems appears to occur not in relation to a specific dysphoric state but rather with nonspecific affective arousal.

  18. Experimental and theoretical investigation of the parabanic acid molecule following VUV excitation and photodissociation

    NASA Astrophysics Data System (ADS)

    Lago, A. F.; Oliva, J. M.; Dávalos, J. Z.

    2012-01-01

    Photodissociation experiments have been performed for the parabanic acid (C 3H 2N 2O 3) molecule in vapor phase using time-of-flight mass spectrometry and synchrotron radiation in the VUV photon energy range. Electron ion coincidence (PEPICO) spectra and partial ion yields have been recorded as a function of the photon energy covering the 11-21 eV valence range region. The resulting photoionization products as well as proposed fragmentation pathways leading to those species are presented and discussed. Electronic structure computations for the neutral and ionic species were also carried out at the B3LYP/ aug-cc-pVTZ level of theory.

  19. Nitric acid dihydrate at ambient and high pressure: An experimental and computational study

    SciTech Connect

    Walker, Martin; Pulham, Colin R.; Morrison, Carole A.; Allan, David R.; Marshall, William G.

    2006-06-01

    The high pressure structural behavior of nitric acid dihydrate ([H{sub 3}O]{sup +}{center_dot}[NO{sub 3}]{sup -}{center_dot}H{sub 2}O) has been investigated up to 3.8 GPa using single crystal x-ray diffraction and neutron powder diffraction techniques. A new structural phase has been identified above 1.33 GPa and this has been further studied by ab initio quantum mechanical calculations. These have guided the refinement by neutron powder diffraction.

  20. [α-Lipoic acid as the main pharmacological drug for in- and outpatient treatment of diabetic polyneuropathy].

    PubMed

    Strokov, I A; Phokina, A S

    2017-01-01

    α-Lipoic acid, or thioctic acid, (ALA) is the most applicable pharmacological drug for treatment of diabetic polyneuropathy. The article explores the results of experimental studies on the α-lipoic acid effect on mechanisms of peripheral nerves affection in hyperglycemia as well as the data of numerous randomized controlled trials and meta-analyses on studying ALA efficacy in symptomatic diabetic polyneuropathy. It has been shown that amelioration of patients with diabetic polyneuropathy is observed both for ALA infusions and tableted form of the drug. The authors conclude that α-lipoic acid is a drug for treatment of pathogenetic development mechanisms of diabetic polyneuropathy with the best proven efficacy.

  1. Enriched Endogenous Omega-3 Polyunsaturated Fatty Acids Protect Cortical Neurons from Experimental Ischemic Injury.

    PubMed

    Shi, Zhe; Ren, Huixia; Luo, Chuanming; Yao, Xiaoli; Li, Peng; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Yuan, Ti-Fei; Su, Huanxing

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.

  2. Experimental study on the stress corrosion cracking behavior of AISI347 in acid chloride ion solution

    NASA Astrophysics Data System (ADS)

    Qu, Yanpeng; Wang, Runkun; Wang, Chao; Chen, Songying

    The stress corrosion cracking (SCC) behavior of AISI347 austenitic stainless steel exposed to acid solution containing chloride ion at different temperature and pressure is studied through slow strain rate testing (SSRT) at different test condition. The result of SSRT shows, with the pressure increasing, the SCC resistance is getting worse and the trend of brittle fracture presented by the fracture surface is more obvious. With the temperature rising, the mechanical properties of AISI347 getting worse first and then getting better, it gets to be the worst when the temperature is 260 °C. The result of significance effect analysis of temperature and pressure on SCC shows that the temperature has a greater effect on the resistance to SCC of AISI347 austenitic stainless steel than the pressure. The main component of passive film is analyzed and the mechanism of SCC is discussed. Chromium oxides soluble in the acidic chloride solution results in the forming of corrosion pits and the cracking of the passive film under stress.

  3. Experimental and computational studies of 4-(Trifluoromethyl)pyridine-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Vural, Hatice

    2016-05-01

    The vibrational spectrum of 4-(Trifluoromethyl)pyridine-2-carboxylic acid was recorded using Fourier transform infrared spectrometer in the range 4000-400 cm-1. The optimized geometric structure of 4-(Trifluoromethyl)pyridine-2-carboxylic acid was searched by B3LYP, CAMB3LYP, and PBEPBE levels of density functional theory (DFT). The vibrational wavenumbers of the title molecule in the ground state were computed by using B3LYP, CAMB3LYP, and PBEPBE methods with the 6-31G (d) basis set. NMR chemical shifts of the title compound were calculated using the gauge-independent atomic orbital (GIAO) method. The solvent effect on the UV-Vis absorption spectrum of the molecule was also examined using the B3LYP method by applying the integral equation formalism-polarized continuum model (IEF-PCM). The nonlinear optical (NLO) properties were measured by means of hyperpolarizability calculation. The electric dipole moment, the mean polarizability and the mean first hyperpolarizability were calculated by using the DFT method with B3LYP, CAMB3LYP, and PBEPBE levels.

  4. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  5. Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington's disease phenotype.

    PubMed

    Tadros, Mariane G; Khalifa, Amani E; Abdel-Naim, Ashraf B; Arafa, Hossam M M

    2005-11-01

    An experimental animal model of Huntington's disease (HD) phenotype was induced using the mycotoxin 3-nitropropionic acid (3-NP) and was well characterized behaviorally, neurochemically, morphometrically and histologically. Administration of 3-NP caused a reduction in prepulse inhibition (PPI) of acoustic startle response, locomotor hyper- and/or hypoactivity, bilateral striatal lesions, brain oxidative stress, and decreased striatal gamma-aminobutyric acid (GABA) levels. Taurine is a semi-essential beta-amino acid that was demonstrated to have both antioxidant and GABA-A agonistic activity. In this study, treatment with taurine (200 mg/kg daily for 3 days) prior to 3-NP administration reversed both reduced PPI response and locomotor hypoactivity caused by 3-NP injection. Taurine pretreatment also caused about 2-fold increase in GABA concentration compared to 3-NP-treated animals. In addition, taurine demonstrated antioxidant activity against oxidative stress induced by 3-NP administration as evidenced by the reduced striatal malondialdehyde (MDA) and elevated striatal glutathione (GSH) levels. Histochemical examination of striatal tissue showed that prior administration of taurine ahead of 3-NP challenge significantly increased succinate dehydrogenase (SDH) activity compared to 3-NP-treated animals. Histopathological examination further affirmed the neuroprotective effect of taurine in 3-NP-induced HD in rats. Taken together, one may conclude that taurine has neuroprotective role in the current HD paradigm due, at least partly, to its indirect antioxidant effect and GABA agonistic action.

  6. Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids

    NASA Astrophysics Data System (ADS)

    Mercedes-Martín, R.; Rogerson, M. R.; Brasier, A. T.; Vonhof, H. B.; Prior, T. J.; Fellows, S. M.; Reijmer, J. J. G.; Billing, I.; Pedley, H. M.

    2016-04-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The first is that spherulites precipitate from solutions super-saturated with respect to magnesium-silicate clays, such as stevensite. The second is that spherulite precipitation happens in the presence of dissolved, organic acid molecules. In both cases, experiments were performed under sterile conditions using large batches of a synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes (such as Mono Lake, California). Our experimental results show that a highly alkaline and highly saline solution supersaturated with respect to calcite (control solution) will precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same solution supersaturated with respect to stevensite precipitates sheet-like stevensite crystals rather than a gel, and calcite precipitation is reduced by ~ 50% compared to the control solution, producing a mixture of patchy prismatic subhedral to euhedral, and minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the likely the cause of decreased volumes of calcite precipitation, as this raised equilibrium ion activity ratio in the solution. On the other hand, when alginic acid was present then the result was widespread development of micron-size calcium carbonate spherulite bodies. With further growth time, but falling supersaturation, these spherules fused into botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is to begin with a strongly supersaturated solution that contains specific but environmentally-common organic acids. Furthermore, we found

  7. In situ and experimental evidence for acidic weathering of rocks and soils on Mars

    NASA Astrophysics Data System (ADS)

    Hurowitz, J. A.; McLennan, S. M.; Tosca, N. J.; Arvidson, R. E.; Michalski, J. R.; Ming, D. W.; Schröder, C.; Squyres, S. W.

    2006-01-01

    Experimental data for alteration of synthetic Martian basalts at pH = 0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock surface analyses from Gusev crater are well described by the relationships apparent from low-pH experimental alteration data. A model for rock surface alteration is developed, which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low water to rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder, and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low water to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of Fe and Mg, consistent with alteration of olivine-bearing basalt and subsequent precipitation of Fe- and Mg-bearing secondary minerals as the primary control on soil geochemistry.

  8. Adsorption of poly acrylic acid onto the surface of calcite: an experimental and simulation study.

    PubMed

    Sparks, David J; Romero-González, Maria E; El-Taboni, Elfateh; Freeman, Colin L; Hall, Shaun A; Kakonyi, Gabriella; Swanson, Linda; Banwart, Steven A; Harding, John H

    2015-11-07

    Macromolecular binding to minerals is of great importance in the formation of biofilms, and carboxylate functional groups have been found to play a pivotal role in the functioning of these macromolecules. Here we present both fluorescence time-resolved anisotropy measurements and simulation data on the conformational behaviour and binding of a poly acrylic acid polymer. In solution the polymer exhibits a pH dependent behaviour, with a coiled conformation at a low pH and extended conformation at higher pH values. The polymer is readily adsorbed on the surface of calcite, preferring to bind in an extended conformation, with the strength of the adsorption dependent on the pH and presence of counter ions. We discuss the reasons why the calculated adsorption free energy differs from that obtained from a Langmuir isotherm analysis, showing that they refer to different quantities. The enhanced binding of the extended conformations shows the importance of flexibility in the binding of macromolecules.

  9. Histomorphometric evaluation of experimentally induced colitis with trinitrobenzene-sulphonic acid in rats

    PubMed Central

    RABAU, MICHA; EYAL, AMI; DAYAN, DAN

    1996-01-01

    Colitis was induced with trinitrobenzene-sulphonic acid (TNB) in rats and a histomorphometric study was performed as a possible scoring system for disease activity. The affected colon was examined 10, 20, 40 and 60 days after TNB administration. Quantitative microscopic analysis was performed on the following histologic parameters: necrosis, mucosal epithelium, muscularis fibres, inflammation, granulation tissue and fibrosis. Clinically, the rats were sick, especially on days 10 and 20 after TNB injection. Concomitantly, a peak necrosis score involving the full thickness of the colonic wall was recorded on day 10. The inflammatory reaction was most intense 20 days after TNB injection. After 60 days, marked epithelial regeneration was seen and most of the inflammatory reaction had subsided. A good correlation was found between clinical features and quantitative histomorphometric characteristics of colitis. The criteria described allow a precise description and quantification of the inflammatory and healing process of TNB-induced colitis in rats. PMID:8943736

  10. Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages.

    PubMed

    Alves, S P; Cabrita, A R J; Jerónimo, E; Bessa, R J B; Fonseca, A J M

    2011-08-01

    Two experiments were conducted using laboratory mini-silos to study the effect of ensiling and silage additives on fatty acid (FA) composition, including minor or unusual FA, of ryegrass and corn silages. Ryegrass was ensiled for 12 wk with no additives, with the addition of a bacterial inoculant or formic acid. Corn was ensiled for 9 wk without additives, with the addition of a bacterial inoculant or calcium formate. Ensiling affected both total FA content and FA composition of ryegrass silages. Total FA concentration increased (P < 0.001) during ryegrass ensiling. The proportions (g/100 g of total FA) of the major unsaturated FA, 18:3n-3 and 18:2n-6, were not affected (P > 0.05) by ensiling. However, their concentration (mg/g of DM) in silages was greater (P=0.017 and P=0.001, respectively) than in fresh ryegrass. Two 18:2 FA (trans-11,cis-15 and cis-9,cis-15) that were not originally present in the fresh ryegrass were detected in silages. Silage additives affected the FA composition of ryegrass silages, mostly by increasing the proportions of SFA, but not on total FA concentration. Ensiling did not affect (P=0.83) total FA content of corn silages; however, FA composition was affected, mostly by decreasing the proportions of 18:2n-6 and 18:3n-3. Silage additives had no effect on corn silage FA composition. Exposing corn silages to air resulted in no oxidation of FA or reduction in total FA content or composition.

  11. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e.,

  12. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-03-01

    In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ-aminobutyrate (GABA), tyrosine (Tyr), S-adenosylhomocysteine (SAH), l-cystathionine (l-Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N-acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham-operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long-lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l-Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu-Gln/GABA cycle between neurons and astrocytes, and of the methyl-cycle (demonstrated by decrease in Met, and increase in SAH and l-Cystat), throughout the post-injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.

  13. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e.,

  14. Reactive transport of gentisic acid in a hematite-coated sand column: Experimental study and modeling

    NASA Astrophysics Data System (ADS)

    Hanna, K.; Rusch, B.; Lassabatere, L.; Hofmann, A.; Humbert, B.

    2010-06-01

    The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site ( tbnd FeOH°), while gentisic acid at the surface was described by two surface complexes ( tbnd FeLH 2°, log Kint = 8.9 and tbnd FeLH -, log Kint = -8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (˜10 -3 s -1) while external and internal mass transfer rates (˜10 2 s -1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.

  15. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis.

    PubMed

    Claes, I J J; Lebeer, Sarah; Shen, C; Verhoeven, T L A; Dilissen, E; De Hertogh, G; Bullens, D M A; Ceuppens, J L; Van Assche, G; Vermeire, S; Rutgeerts, P; Vanderleyden, J; De Keersmaecker, S C J

    2010-11-01

    While some probiotic strains might have adjuvant effects in the therapy for inflammatory bowel diseases (IBD), these effects remain controversial and cannot be generalized. In this study, a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG), having a drastic modification in its lipoteichoic acid (LTA) molecules, was analysed for its effects in an experimental colitis model. Dextran sulphate sodium (DSS) was used to induce either moderate to severe or mild chronic colitis in mice. Mice received either phosphate-buffered saline (PBS), LGG wild-type or the dltD mutant via the drinking water. Macroscopic parameters, histological abnormalities, cytokine and Toll-like receptor (TLR) expression were analysed to assess disease activity. LGG wild-type did not show efficacy in the different