Science.gov

Sample records for acid ameliorates experimental

  1. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    PubMed

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage.

  2. Dietary α-Eleostearic Acid Ameliorates Experimental Inflammatory Bowel Disease in Mice by Activating Peroxisome Proliferator-Activated Receptor-γ

    PubMed Central

    Lewis, Stephanie N.; Brannan, Lera; Guri, Amir J.; Lu, Pinyi; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2011-01-01

    Background Treatments for inflammatory bowel disease (IBD) are modestly effective and associated with side effects from prolonged use. As there is no known cure for IBD, alternative therapeutic options are needed. Peroxisome proliferator-activated receptor-gamma (PPARγ) has been identified as a potential target for novel therapeutics against IBD. For this project, compounds were screened to identify naturally occurring PPARγ agonists as a means to identify novel anti-inflammatory therapeutics for experimental assessment of efficacy. Methodology/Principal Findings Here we provide complementary computational and experimental methods to efficiently screen for PPARγ agonists and demonstrate amelioration of experimental IBD in mice, respectively. Computational docking as part of virtual screening (VS) was used to test binding between a total of eighty-one compounds and PPARγ. The test compounds included known agonists, known inactive compounds, derivatives and stereoisomers of known agonists with unknown activity, and conjugated trienes. The compound identified through VS as possessing the most favorable docked pose was used as the test compound for experimental work. With our combined methods, we have identified α-eleostearic acid (ESA) as a natural PPARγ agonist. Results of ligand-binding assays complemented the screening prediction. In addition, ESA decreased macrophage infiltration and significantly impeded the progression of IBD-related phenotypes through both PPARγ-dependent and –independent mechanisms in mice with experimental IBD. Conclusions/Significance This study serves as the first significant step toward a large-scale VS protocol for natural PPARγ agonist screening that includes a massively diverse ligand library and structures that represent multiple known target pharmacophores. PMID:21904603

  3. Triptolide ameliorates colonic fibrosis in an experimental rat model.

    PubMed

    Tao, Qingsong; Wang, Baochai; Zheng, Yu; Li, Guanwei; Ren, Jianan

    2015-08-01

    Triptolide is known to exert anti-inflammatory and immunomodulatory activities; however, its impact on intestinal fibrosis has not been previously examined. Based on our previous studies of the suppressive activity of triptolide on human colonic subepithelial myofibroblasts and the therapeutic efficacy of triptolide in Crohn's disease, it was hypothesized that triptolide may have beneficial effects on intestinal fibrosis. In the present study, colonic fibrosis was induced in rats by 6 weekly repeated administration with a low-dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and was then treated with triptolide or PBS daily (control) simultaneously. Extracellular matrix (ECM) deposition in the colon was examined with image analysis of Masson Trichrome staining. Total collagen levels in colonic homogenates were measured by a Sircol assay. Collagen Iα1 transcripts and collagen I protein were measured ex vivo in the isolated colonic subepithelial myofibroblasts by reverse transcription-quantitative polymerase chain reaction and immunoblot analysis, respectively. The results indicated that triptolide decreased ECM deposition and collagen production in the colon, and inhibited collagen Iα1 transcripts and collagen I protein expression in the isolated subepithelial myofibroblasts of the rats with colonic fibrosis. In conclusion, triptolide ameliorates colonic fibrosis in the experimental rat model, suggesting triptolide may be a promising compound for inflammatory bowel disease treatment. PMID:25845760

  4. Triptolide ameliorates colonic fibrosis in an experimental rat model

    PubMed Central

    TAO, QINGSONG; WANG, BAOCHAI; ZHENG, YU; LI, GUANWEI; REN, JIANAN

    2015-01-01

    Triptolide is known to exert anti-inflammatory and immunomodulatory activities; however, its impact on intestinal fibrosis has not been previously examined. Based on our previous studies of the suppressive activity of triptolide on human colonic subepithelial myofibroblasts and the therapeutic efficacy of triptolide in Crohn’s disease, it was hypothesized that triptolide may have beneficial effects on intestinal fibrosis. In the present study, colonic fibrosis was induced in rats by 6 weekly repeated administration with a low-dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS) and was then treated with triptolide or PBS daily (control) simultaneously. Extracellular matrix (ECM) deposition in the colon was examined with image analysis of Masson Trichrome staining. Total collagen levels in colonic homogenates were measured by a Sircol assay. Collagen Iα1 transcripts and collagen I protein were measured ex vivo in the isolated colonic subepithelial myofibroblasts by reverse transcription-quantitative polymerase chain reaction and immunoblot analysis, respectively. The results indicated that triptolide decreased ECM deposition and collagen production in the colon, and inhibited collagen Iα1 transcripts and collagen I protein expression in the isolated subepithelial myofibroblasts of the rats with colonic fibrosis. In conclusion, triptolide ameliorates colonic fibrosis in the experimental rat model, suggesting triptolide may be a promising compound for inflammatory bowel disease treatment. PMID:25845760

  5. Ameliorative potential of omega 3 fatty acids and HMG-CoA reductase inhibitors on experimentally-induced non-alcoholic steatohepatitis.

    PubMed

    Kabel, Ahmed M; Abd Elmaaboud, Maaly A; Albarraq, Ahmed A

    2015-05-01

    Non-alcoholic steatohepatitis (NASH) has a relation to obesity. It may lead to hepatocellular carcinoma. To date, the therapeutic options are limited due to complex pathogenesis. This study aimed to investigate the effect of atorvastatin and omega 3 fatty acids on experimentally-induced NASH. Sixty male albino rats were divided into 6 equal groups; control group, high fat emulsion/sucrose (HFE/S) diet, HFE/S+carboxymethyl cellulose, HFE/S +Atorvastatin, HFE/S+Fish oil and HFE/S+Atorvastatin+Fish oil. Serum alanine aminotransferase, total cholesterol (TC), triglycerides (TG), high density lipoproteins, insulin, glucose, C-reactive protein and quantitative insulin sensitivity check index were measured. Also, hepatic TC, TG, malondialdehyde, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor beta 1 (TGF-β1) were determined. Liver sections were examined histopathologically. Atorvastatin improved lipid profile, inflammation and oxidative stress but did not improve insulin resistance, hepatic TGF-β1 or body weight while fish oil improved lipid profile, decreased inflammation and oxidative stress, improved insulin resistance, hepatic TGF-β1 and body weight compared to HFE/S group. Atorvastatin/fish oil combination produced significant improvement in the lipid profile, inflammation, oxidative stress, insulin resistance, hepatic TGF-β1 and body weight compared to the use of each of these drugs alone. This might be attributed to the effect of fish oil on the lipid profile, inflammatory cytokines, insulin resistance and TGF-β1 which potentiates the effect of atorvastatin on NASH. PMID:25541279

  6. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  7. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Xiao, Wenqin; Jiang, Weiliang; Shen, Jie; Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  8. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    PubMed

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils. PMID:24078274

  9. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells.

    PubMed

    Ahad, Amjid; Ahsan, Haseeb; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2015-10-01

    Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.

  10. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus

    PubMed Central

    Sreekutty, MS; Mini, S

    2016-01-01

    Objective(s): Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Materials and Methods: Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. Results: ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. Conclusion: These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus. PMID:27096072

  11. Heparanase upregulaes Th2 cytokines, ameliorating experimental autoimmune encephalitis

    PubMed Central

    Bitan, Menachem; Weiss, Lola; Reibstein, Israel; Zeira, Michael; Fellig, Yakov; Slavin, Shimon; Zcharia, Eyal; Nagler, Arnon; Vlodavsky, Israel

    2010-01-01

    Heparanase is an endo–β–D-glucuronidase that cleaves heparan sulfate (HS) saccharide chains. The enzyme promotes cell adhesion, migration and invasion and plays a significant role in cancer metastasis, angiogenesis and inflammation. The present study focuses on the involvement of heparanase in autoimmunity, applying the murine experimental autoimmune encephalitis (EAE) model, a T cell dependent disease often used to investigate the pathophysiology of multiple sclerosis (MS). Intraperitoneal administration of recombinant heparanase ameliorated, in a dose dependent manner, the clinical signs of the disease. In vitro and in vivo studies revealed that heparanase inhibited mitogen induced splenocyte proliferation and mixed lymophocyte reaction (MLR) through modulation of their repertoire of cytokines indicated by a marked increase in the levels of IL-4, IL-6 and IL-10, and a parallel decrease in IL-12 and TNF-α. Similar results were obtained with active, latent, or point mutated inactive heparanase, indicating that the observed inhibitory effect is attributed to a non-enzymatic activity of the heparanase protein. We suggest that heparanase induces upregulation of Th2 cytokines, resulting in inhibition of the inflammatory lesion of EAE. PMID:20399501

  12. Augmenting DAF levels in vivo ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Qing; Huang, Danping; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-09-01

    Recent studies in experimental autoimmune encephalomyelitis (EAE) have found that CNS injury in Daf1(-/-) mice is much greater than in wild types (WTs), suggesting that upregulating DAF levels in vivo might ameliorate disease. To test this, we generated a Daf1 transgenic (Tg) mouse which had elevated DAF levels on its cell surfaces. In by-stand C3b uptake assays, Daf1 Tg mouse erythrocytes took up less C3b on their surfaces than WT erythrocytes. When co-cultured with OT-II CD4(+) T cells together with OVA(323-339) peptide, Daf1 Tg mouse bone marrow derived dendritic cells (BM-DCs) produced less C5a and C3a than WT BM-DCs and stimulated a lesser T cell response. In MOG(35-55) immunization induced EAE model, Daf1 Tg mice exhibited delayed disease onset and decreased clinical scores compared to WTs. Histological analyses showed that there were less inflammation and demyelination in spinal cords in Daf1 Tg mice than those in WTs. In accordance with these results, Daf1 Tg mice had decreased MOG(35-55) specific Th1 and Th17 responses. These data provide further evidence that DAF suppresses autoreactive T cell responses in EAE, and indicate that augmenting its expression levels could be effective therapeutically in treating multiple sclerosis as well as other T cell mediated diseases. PMID:19660813

  13. Silibinin ameliorates LPS-induced memory deficits in experimental animals.

    PubMed

    Joshi, Ritu; Garabadu, Debapriya; Teja, Gangineni Ravi; Krishnamurthy, Sairam

    2014-12-01

    Neuroinflammation is considered as one of the predisposing factor in the etiology of several neurodegenerative disorders. Therefore, the objective of the present study was to evaluate the protective effect of silibinin (SIL) in the lipopolysaccharide (LPS)-induced neuroinflammatory model. The effect of SIL on memory function was also evaluated on normal rats without LPS administration. In the first experiment, male rats were divided into five groups. Except control group animals, all rats received bilateral intracerebroventricular injection of LPS (5 μg/5 μl) into lateral ventricles on the first day of the experimental schedule. Control rats received bilateral intracerebroventricular injection of artificial cerebrospinal fluid into lateral ventricles. SIL in doses of 50, 100 and 200 mg/kg, p.o. was administered 1h before LPS injection and continued for 7 days. On Day-7, SIL attenuated the LPS-induced long-term and working memory loss in elevated plus and Y-maze test respectively. Further, SIL dose-dependently attenuated LPS-induced decrease in acetylcholine level and increase in the acetylcholinestrase activity in hippocampus and pre-frontal cortex. SIL ameliorated LPS-induced decrease in the mitochondrial complex activity (I, IV and V) and integrity, increase in lipid peroxidation and decrease in the activity of superoxide dismutase in both the brain regions. SIL attenuated amyloidogenesis in the hippocampus, while it decreased the LPS-induced increase in the level of NFκB in the pre-frontal cortex. In another study, SIL dose-dependently, enhanced memory functions in the normal rats, indicating its nootropic activity. Hence, SIL could be a potential candidate in the management of neuroinflammation-related memory disorders.

  14. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  15. Polymerase I pathway inhibitor ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Achiron, Anat; Mashiach, Roi; Zilkha-Falb, Rina; Meijler, Michael M; Gurevich, Michael

    2013-10-15

    Applying high throughput gene expression microarrays we identified that the suppression of polymerase 1 (POL1) pathway is associated with benign course of multiple sclerosis (MS). This finding supports the rationale for direct targeting of the POL1 transcription machinery as an innovative strategy to suppress MS. To evaluate the effects of a specific polymerase I inhibitor (POL1-I) on experimental autoimmune encephalomyelitis (EAE), we immunized female C57BL/6J mice (8 weeks) with MOG35-55/CFA. A new POL1-I was administered at a daily dose of 12.5mg/kg body weight by oral gavage either from the day of immunization until disease onset (EAE score 1.0, immunization model), at disease onset (EAE score=1.0) for the following 14 days (treatment model), or by alternate daily dose of 25.0mg/kg body weight, by oral gavage from the day of immunization for the following 25 days (combined model). POL1-I remarkably suppressed EAE in the immunization model; while in the Vehicle group the onset of EAE occurred on day 10.0±0.4 with maximal clinical score of 3.2±0.2, in the POL1-I treated mice onset was significantly delayed and occurred on day 16.9±1.1 (p=0.001), and maximal disease score 2.0±0.1 was reduced (p=0.004). In the treatment model POL1-I treatment significantly reduced disease activity; maximal score was 2.0±0.5 while in the Vehicle group it reached a mean maximal score of 3.9±0.1, (p=0.0008). In the combined model, POL1-I treatment completely inhibited disease activity. The effect of POL1-I treatment was modulated through decreased expression of POL1 pathway key-related genes LRPPRC, pre-RNA, POLR1D and RRN3 together with activation of P53 dependent apoptosis of CD4+ splenocytes. Our findings demonstrate that POL1 pathway inhibition delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.

  16. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  17. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished. PMID:24078235

  18. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3. PMID:25868813

  19. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Okon, E; Bursztyn, M

    1995-01-01

    Enhanced nitric oxide (NO) generation by stimulated NO synthase (NOS) activity may, through its oxidative metabolism contribute to tissue injury in experimental colitis. In this study the possible amelioration of experimental colitis by NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS activity, was evaluated. Colitis was induced in rats by intracolonic administration of 30 mg trinitrobenzene sulphonic acid (TNB) dissolved in 0.25 ml 50% ethanol or by flushing the colon of capsaicin pretreated rats with 2 ml of 5% acetic acid. In several experiments, L-NAME 0.1 mg/ml was added to the drinking water at the time of colitis induction with TNB or seven days before acetic acid treatment. Rats were killed at various time intervals after induction of colitis. A 10 cm distal colonic segment was isolated, weighed, lesion area measured, and explants organ cultured for 24 hours for determination of NO generation by the Greiss reaction. The rest of the mucosa was scraped for determination of myeloperoxidase and NOS activities and leukotriene generation. In TNB treated rats mean arterial pressure was also determined up to 72 hours after damage induction, with or without cotreatment with nitroprusside. L-NAME significantly decreased the extent of tissue injury in TNB treated rats. Seven days after TNB treatment lesion area was reduced by 55%, colonic weight by 37%, and myeloperoxidase and NOS activity by 59% and 42%, respectively. Acetic acid induced colitis in capsaicin pretreated rats was also significantly decreased by L-NAME. Twenty four hours after acetic acid treatment lesion area was reduced by 61%, colonic weight by 21% and NOS activity by 39%. Mean (SEM) arterial blood pressure in TNB+L-NAME treated rats was 37.6 (8.1) mm Hg higher than in TNB treated rats, an effect that was only partially abolished by nitroprusside. These results show that inhibition of NO synthesis by an L-arginine analogue significantly ameliorates the extent of tissue injury in two

  20. Ichnocarpus frutescens Ameliorates Experimentally Induced Convulsion in Rats

    PubMed Central

    Singh, Narendra Kumar; Laloo, Damiki; Garabadu, Debapriya; Singh, Tryambak Deo; Singh, Virendra Pratap

    2014-01-01

    The present study was carried out to evaluate the anticonvulsant activity and probable mechanism of action of the methanol root extract from I. frutescens (MEIF) using different experimental animal models. Anticonvulsant activity of the single dose of MEIF (100, 200, and 400 mg/kg, p.o.) was evaluated in maximal electroshock- (MES-), pentylenetetrazole- (PTZ-), and isoniazid- (INH-) induced convulsions models in rats. The levels of γ-amino butyric acid (GABA), glutamate, GABA-transaminase (GABA-T) activity and oxidative stress markers were measured in pretreated rat's brain homogenate to corroborate the mechanism of observed anticonvulsant activity. MEIF (200–400 mg/kg, p.o.) protected the animals in all the behavioral models used. Pretreatment of MEIF (200–400 mg/kg, p.o.) and diazepam (1.0 mg/kg, i.p.) to the animals in INH-induced convulsion model showed 100% and 80% protection, respectively, as well as significant restoration of GABA and glutamate level in the rat's brain. MEIF and vigabatrin (50 mg/kg, i.p.) reduced the PTZ-induced increase in the activity of GABA-T (46%) in the brain. Further, MEIF reversed the PTZ-induced increase in lipid peroxidase (LPO) and decrease in reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. The findings of this study validate the anticonvulsant activity of I. frutescens. PMID:27379268

  1. Ascorbic Acid Ameliorates Nicotine Exposure Induced Impaired Spatial Memory Performance in Rats

    PubMed Central

    Sirasanagandla, SR; Rooben, RK; Rajkumar; Narayanan, SN; Jetti, R

    2014-01-01

    Introduction: The long lasting behavioural and cognitive impairments in offspring prenatally exposed to nicotine have been confirmed in animal models. In the present study, we investigated the effect of ascorbic acid on prenatal nicotine exposure induced behavioural deficits in male offspring of rats. Methods: The pregnant Wistar dams were divided into four groups of six rats: control, vehicle control, nicotine and nicotine+ascorbic acid groups. The nicotine group received daily dose of subcutaneous injections of 0.96 mg/kg body weight (bw) nicotine free base throughout gestation. Pregnant dams in nicotine+ascorbic acid group were first given nicotine free base (0.96 mg/kg bw/day; subcutaneous route) followed by ascorbic acid (50 mg/kg bw/day, orally) daily throughout gestation. The cognitive function of male offspring of all the experimental groups was studied using Morris water maze test at postnatal day 40. Results: Prenatal nicotine exposure altered spatial learning and memory in male offspring. However, treatment with ascorbic acid ameliorated these changes in rats. Conclusion: Ascorbic acid supplementation was found to be effective in preventing the prenatal nicotine exposure induced cognitive deficits in rat offspring to some extent. PMID:25429474

  2. Intraarticular overexpression of Smad7 ameliorates experimental arthritis

    PubMed Central

    Chen, Shih-Yao; Shiau, Ai-Li; Wu, Chao-Liang; Wang, Chrong-Reen

    2016-01-01

    Rheumatoid arthritis (RA) and Crohn’s disease (CD) are autoimmune disorders with a crosstalk between their pathogenesis such as increased expression of TNF in the target organs. Despite a successful clinical trial with an oral Smad7 antisense oligonucleotide in CD, intraarticular (i.a.) modulation of Smad7 expression has not been performed in rheumatoid joint yet. In this study, contradictory to the findings in CD mucosa, higher levels of pSmad2/3 were found in RA synovium. In vitro experiments with synovial fibroblasts revealed that higher acetylated Smad7 expression was associated with lower activation status. Abundant expression of synovial pSmad2/3 with increased levels during the progression of arthritis was detected in collagen-induced arthritis (CIA) mice. To prove the concept that overexpressing Smad7 as a therapeutic strategy in rheumatoid joint, the i.a. injection of lentiviral vectors carrying Smad7 (LVSmad7) was carried out in CIA mice. In LVSmad7-injected joints, there were lower arthritis and histological scores with less synovitis, synovial hyperplasia and erosion on cartilage and bone as well as reduced IL-17 and TNF expression levels in comparison with other control groups. In conclusion, we demonstrate that lentiviral vector-mediated i.a. overexpression of Smad7 can ameliorate rheumatoid joint, implicating a pharmacological development of Smad7-based molecular strategy in RA. PMID:27731365

  3. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection

    PubMed Central

    Pitarokoili, Kalliopi; Ambrosius, Björn; Meyer, Daniela; Schrewe, Lisa; Gold, Ralf

    2015-01-01

    Background Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system. Methods and Findings Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN. Conclusions We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies. PMID:26618510

  4. Extract of a polyherbal formulation ameliorates experimental nonalcoholic steatohepatitis

    PubMed Central

    Azeemuddin, Mohammed; Rafiq, Mohamed; Anturlikar, Suryakanth Dattatraya; Sharath Kumar, Lakkavalli Mohan; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Shyam, Ramakrishnan

    2015-01-01

    The objective of the present study is to evaluate the effect of the extract of a well-known hepatospecific polyherbal formulation, Liv.52, in an experimental model of high-fat diet (HFD)-induced nonalcoholic steatohepatitis (NASH) in rats. Feeding a HFD for 15 weeks resulted in significant impairment of the lipid profile, elevation of hepatic enzyme markers, and insulin resistance in rats. The histological examination of the liver furthermore indicated fibrotic changes and fat deposition in hepatic tissues. The treatment with Liv.52 extract [125 mg/kg body weight per os (b.wt. p.o.)], which was administered from week 9 onward, reversed the HFD-induced changes to a statistically significant extent, compared to the untreated positive control animals. The effect observed with Liv.52 extract was comparable to that of pioglitazone (4 mg/kg b.wt.), a standard drug that is useful in the management of NASH. The treatment with Liv.52 extract significantly reduced steatosis, collagen deposition, and necrosis in hepatic tissues, which indicates its antifibrotic and antinecrotic properties. The results obtained in the present set of experiments indicate that Liv.52 extract effectively reverses metabolic and histological changes associated with HFD-induced NASH. PMID:27114939

  5. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis.

    PubMed

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul; Kim, Ho-Youn; Cho, Mi-La

    2015-10-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  6. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis

    PubMed Central

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul

    2015-01-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist–knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4+CD25+Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor–related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  7. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  8. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    SciTech Connect

    Zhang, Liang Ji, Yunxia Kang, Zechun Lv, Changjun Jiang, Wanglin

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  9. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice

    PubMed Central

    Zhang, Zhan; Wu, Xinyue; Cao, Shuyuan; Wang, Li; Wang, Di; Yang, Hui; Feng, Yiming; Wang, Shoulin; Li, Lei

    2016-01-01

    Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia. PMID:27177331

  10. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-01

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug.

  11. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    SciTech Connect

    Bruzzone, Santina; Battaglia, Florinda; Mannino, Elena; Parodi, Alessia; Fruscione, Floriana; Basile, Giovanna; Salis, Annalisa; Sturla, Laura; Negrini, Simone; Kalli, Francesca; Stringara, Silvia; Filaci, Gilberto; and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  12. Topical Nutraceutical Optixcare EH Ameliorates Experimental Ocular Oxidative Stress in Rats

    PubMed Central

    Guo, Changmei; Kawada, Hiroyoshi; Randazzo, James; Blessing, Karen

    2014-01-01

    Abstract Purpose: Based on the hypothesis that oral nutraceuticals do not adequately reach all ocular tissues in the anterior segment, we evaluated the ability of a 3% concentration of the ingredients in a topical nutraceutical antioxidant formulation called Optixcare Eye Health (Optixcare EH) to ameliorate oxidative stress in rat models of age-related ocular diseases. Methods: Diabetes was induced by tail-vein injection of streptozotocin, and the development of cataracts was monitored by slit lamp. Young rats were exposed to ultraviolet (UV) light, and the reduction in lens glutathione (GSH) levels and increase in 4-hydroxynonenol (4-HNE) were measured. Oxidative stress in the neural retina was generated by exposure of dark-adapted rats to 1,000 lx of light, and oxidative stress markers were measured. Dry eye was induced in rats by twice daily (b.i.d.) subcutaneous scopolamine injections. Topical Optixcare EH was administered b.i.d. and compared in select experiments to the multifunctional antioxidant JHX-4, the topical aldose reductase inhibitor (ARI) Kinostat™, oral Ocu-GLO™, and the topical ocular comfort agents Optixcare Eye Lube, Optixcare Eye Lube + Hyaluron, and Idrop Vet Plus hyaluronic acid. Results: In diabetic rats, topical ARI treatment prevented cataract formation while the nutraceuticals delayed their development with Optixcare EH>Ocu-GLO. In UV-exposed rats, the reduction of GSH and increase in 4-HNE in the lens were normalized in order JHX-4>Optixcare EH>Ocu-GLO. In the retina, oxidative stress markers were reduced better by oral JHX-4 compared with topical Optixcare EH. In the scopolamine-induced dry-eye rats, tear flow was maintained by Optixcare EH treatment, while none of the comfort agents examined altered tear flow. Conclusions: Topical administration of a 3% concentration of the ingredients in Optixcare EH reduces experimentally induced reactive oxygen species in rats exposed to several sources of ocular oxidative stress. In addition

  13. Paeoniflorin ameliorates symptoms of experimental Sjogren's syndrome associated with down-regulating Cyr61 expression.

    PubMed

    Li, Huidan; Sun, Xiaoxuan; Zhang, Jie; Sun, Yue; Huo, Rongfen; Li, Haichuan; Zhai, Tianhang; Shen, Baihua; Zhang, Miaojia; Li, Ningli

    2016-01-01

    Paeoniflorin (PF), an active compound extracted from Paeony root, has been used in therapy of autoimmune diseases with effective clinical efficiency and higher safety. Sjogren's syndrome (SS) is a chronic, systemic, immune-mediated inflammatory disease. In this study, we demonstrated that novel pro-inflammatory factor Cyr61/CCN1 was up-regulated in epithelial cells of salivary glands of primary SS patients and submandibular gland autoantigen-induced experimental SS mice. Blocking Cyr61 expression with special monoclonal antibody improved saliva secretion by ameliorating inflammatory infiltration and cytokines production in vivo. Furthermore, we showed that PF could alleviate inflammation by down-regulating Cyr61 expression in experimental SS mice. In conclusion, our new findings revealed for the first time that Cyr61 involves the pathogenesis of primary SS and PF alleviates SS-like symptoms associated with inhibiting Cyr61 expression, providing new insights into the potential molecular mechanism of PF in primary SS treatment. PMID:26630293

  14. Amelioration of Cd toxicity by pretreatment of salicylic acid in Cicer arietinum L. seedlings.

    PubMed

    Canakci, Songül; Dursun, Bahar

    2013-11-01

    In this study, the ameliorating effect of salicylic acid (SA), serving as a mediator for protecting plants, against cadmium (Cd) toxicity in Cicer arietinum was investigated. The seedlings of Cicer arietinum treated with increasing Cd concentrations (0, 25, 50, 100 microM ) inhibited seedling length, reduced fresh and dry weight, total chlorophyll, carotenoid content and fatty acid methyl ester content. Furthermore, the level of some important parameters like MDA, proline and GSH content related to oxidative stress increased in Cd treated seedlings. Leaves of seedlings pretreated with salicylic acid (0.5 mM), alleviated the toxic effects of Cd by increasing the growth parameters, photosynthetic pigments, GSH and FAME content and decreasing proline and MDA content respectively. The result of the present study reveals the protective role of salicylic acid against Cd toxicity in C. arietinum.

  15. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  16. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  17. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice

    PubMed Central

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients. PMID:26383267

  18. Vibsanin B preferentially targets HSP90β, inhibits interstitial leukocyte migration, and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Ye, Bai-Xin; Deng, Xu; Shao, Li-Dong; Lu, Ying; Xiao, Run; Liu, Yi-Jie; Jin, Yi; Xie, Yin-Yin; Zhao, Yan; Luo, Liu-Fei; Ma, Shun; Gao, Ming; Zhang, Lian-Ru; He, Juan; Zhang, Wei-Na; Chen, Yi; Xia, Cheng-Feng; Deng, Min; Liu, Ting-Xi; Zhao, Qin-Shi; Chen, Sai-Juan; Chen, Zhu

    2015-05-01

    Interstitial leukocyte migration plays a critical role in inflammation and offers a therapeutic target for treating inflammation-associated diseases such as multiple sclerosis. Identifying small molecules to inhibit undesired leukocyte migration provides promise for the treatment of these disorders. In this study, we identified vibsanin B, a novel macrocyclic diterpenoid isolated from Viburnum odoratissimum Ker-Gawl, that inhibited zebrafish interstitial leukocyte migration using a transgenic zebrafish line (TG:zlyz-enhanced GFP). We found that vibsanin B preferentially binds to heat shock protein (HSP)90β. At the molecular level, inactivation of HSP90 can mimic vibsanin B's effect of inhibiting interstitial leukocyte migration. Furthermore, we demonstrated that vibsanin B ameliorates experimental autoimmune encephalomyelitis in mice with pathological manifestation of decreased leukocyte infiltration into their CNS. In summary, vibsanin B is a novel lead compound that preferentially targets HSP90β and inhibits interstitial leukocyte migration, offering a promising drug lead for treating inflammation-associated diseases.

  19. C-C chemokine receptor type 4 antagonist Compound 22 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Moriguchi, Kota; Miyamoto, Katsuichi; Tanaka, Noriko; Ueno, Rino; Nakayama, Takashi; Yoshie, Osamu; Kusunoki, Susumu

    2016-02-15

    Chemokines and chemokine receptors play important roles in the immune response. We previously reported the pathogenic role of C-C chemokine receptor type 4 (CCR4) in experimental autoimmune encephalomyelitis (EAE). Here, we examined whether CCR4 antagonism modulates the disease course of EAE. Wild-type and CCR4-knockout mice were induced EAE and were administered Compound 22, an antagonist of CCR4. Compound 22 significantly ameliorated the severity of EAE in wild-type mice, but not in the CCR4-knockout mice. Compound 22 inhibited Th1 and Th17 polarization of antigen-induced T-cell responses. Therefore, CCR4 antagonists might be potential therapeutic agents for multiple sclerosis. PMID:26857495

  20. Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain.

    PubMed

    Lalith Kumar, Venkareddy; Muralidhara

    2014-12-01

    Epidemiological evidence has shown higher susceptibility of Children to the adverse effects of lead (Pb) exposure. However, experimental studies on Pb-induced neurotoxicity in prepubertal (PP) rats are limited. The present study aimed to examine the propensity of ferulic acid (FA), a commonly occurring phenolic acid in staple foods (fruits, vegetables, cereals, coffee etc.) to abrogate Pb-induced toxicity. Initially, we characterized Pb-induced adverse effects among PP rats exposed to Pb acetate (1,000-3,000 ppm in drinking water) for 5 weeks in terms of locomotor phenotype, activity of 5-aminolevulinic acid dehydratase (ALAD) in the blood, blood Pb levels and oxidative stress in brain regions. Further, the ameliorative effects of oral supplements of FA (25 mg/kg bw/day) were investigated in PP rats exposed to Pb (3,000 ppm). Pb intoxication increased the locomotor activity and FA supplements partially reversed the phenotype, while the reduced ALAD activity was also restored. FA significantly abrogated the enhanced oxidative stress in cerebellum (Cb) and hippocampus (Hc) as evidenced in terms of ROS generation, lipid peroxidation and protein carbonyls. Further, Pb-mediated perturbations in the glutathione levels and activity of enzymic antioxidants were also markedly restored. Furthermore, the protective effect of FA was discernible in striatum in terms of reduced oxidative stress, restored cholinergic activity and dopamine levels. Interestingly, reduced activity levels of mitochondrial complex I in Cb and enhanced levels in Hc among Pb-intoxicated rats were ameliorated by FA supplements. FA also decreased the number of damaged cells in cornu ammonis area CA1 and dentate gyrus as reflected by the histoarchitecture of Hc among Pb intoxicated rats. Collectively, our findings in the PP model allow us to hypothesize that ingestion of common phenolics such as FA may significantly alleviate the neurotoxic effects of Pb which may be largely attributed to its ability

  1. Camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats.

    PubMed

    Meena, Sunita; Rajput, Yudhishthir S; Pandey, Amit K; Sharma, Rajan; Singh, Raghvendar

    2016-08-01

    This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level. PMID:27600979

  2. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Robinson, Andrew P; Caldis, Matthew W; Harp, Christopher T; Goings, Gwendolyn E; Miller, Stephen D

    2013-06-01

    Multiple sclerosis (MS) is an autoimmune, demyelinating disease and as such, the gold standard of treatment is to selectively suppress the pathogenic autoimmune response without compromising the entire arm of the adaptive immune response. One target of this strategy lying upstream of the pathologic adaptive immune response is the local, innate immune signaling that initiates and drives autoimmunity and sterile injury. High-mobility group box 1 protein (HMGB1) is a ubiquitous nuclear protein that when released from necrotic cells, such as damaged oligodendrocytes in MS lesions, drives pro-inflammatory responses. Here we demonstrate that HMGB1 drives neuroinflammatory responses in experimental autoimmune encephalomyelitis (EAE), a murine model for MS, and that inhibition of HMGB1 signaling ameliorates disease. Specifically i.v. injection of an HMGB1 neutralizing antibody in the C57BL/6 model of chronic EAE or SJL/J model of relapsing-remitting EAE ameliorated clinical disease prophylactically or during ongoing disease, blocked T cell infiltration of the central nervous system, and inhibited systemic CD4(+) T cell responses to myelin epitopes. Additionally, lymphocytes from EAE mice restimulated in vitro in the presence of recombinant HMGB1 exhibited increased proliferation and pro-inflammatory cytokine production, an effect that was blocked by anti-HMGB1 antibody. Similarly recombinant HMGB1 promoted proliferation and pro-inflammatory cytokine production of human peripheral blood mononuclear cells stimulated in vitro, and anti-HMGB1 antibody blocked this effect. These findings indicate that HMGB1 contributes to neuroinflammatory responses that drive EAE pathogenesis and that HMGB1 blockade may be a novel means to selectively disrupt the pro-inflammatory loop that drives MS autoimmunity.

  3. Amelioration of diabesity-induced colorectal ontogenesis by omega-3 fatty acids in mice.

    PubMed

    Algamas-Dimantov, Anna; Davidovsky, Dana; Ben-Ari, Julius; Kang, Jing X; Peri, Irena; Hertz, Rachel; Bar-Tana, Jacob; Schwartz, Betty

    2012-06-01

    Postnatal intestinal ontogenesis in an animal model of diabesity may recapitulate morphological and transduction features of diabesity-induced intestinal dysplasia and its amelioration by endogenous (n-3) polyunsaturated fatty acids (PUFA). Proliferation, differentiation, and transduction aspects of intestinal ontogenesis have been studied here in obese, insulin-resistant db/db mice, in fat-1 transgene coding for desaturation of (n-6) PUFA into (n-3) PUFA, in db/db crossed with fat-1 mice, and in control mice. Diabesity resulted in increased colonic proliferation and dedifferentiation of epithelial colonocytes and goblet cells, with increased colonic β-catenin and hepatocyte nuclear factor (HNF)-4α transcriptional activities accompanied by enrichment in HNF-4α-bound (n-6) PUFA. In contrast, in fat-1 mice, colonic proliferation was restrained, accompanied by differentiation of crypt stem cells into epithelial colonocytes and goblet cells and by decrease in colonic β-catenin and HNF-4α transcriptional activities, with concomitant enrichment in HNF-4α-bound (n-3) PUFA at the expense of (n-6) PUFA. Colonic proliferation and differentiation, the profile of β-catenin and HNF-4α-responsive genes, and the composition of HNF-4α-bound PUFA of db/db mice reverted to wild-type by introducing the fat-1 gene into the db/db context. Suppression of intestinal HNF-4α activity by (n-3) PUFA may ameliorate diabesity-induced intestinal ontogenesis and offer an effective preventive modality for colorectal cancer.

  4. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats.

    PubMed

    Kang, Dae Gill; Oh, Hyuncheol; Sohn, Eun Jin; Hur, Tae Young; Lee, Kang Chang; Kim, Kwang Jin; Kim, Tai Yo; Lee, Ho Sub

    2004-08-27

    The present study was designed to examine whether lithospermic acid B (LSB) isolated from Salvia miltiorrhiza has an ameliorative effect on renal functional parameters in association with the expression of aquaporin 2 (AQP 2) and Na,K-ATPase in the ischemia-reperfusion induced acute renal failure (ARF) rats. LSB showed strong antioxidant activity against production of reactive oxygen species (ROS), ROS-induced hemolysis, and production of lipid peroxide in a dose-dependent manner. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-reperfusion induced ARF rats was partially restored by administration of LSB (40 mg/kg, i.p.), restoring expression of AQP 2, in renal inner and outer medulla. The expression of Na,K-ATPase alpha1 subunit in outer medulla of the ARF rats was also restored in the ARF rats by administration of LSB, while beta1 subunit level was not altered. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also partially restored in ischemia-ARF rats by administration of LSB. Histological study also showed that renal damages in the ARF rats were abrogated by administration of LSB. Taken together, these data indicate that LSB ameliorates renal defects in rats with ischemia-reperfusion induced ARF, most likely via scavenging of ROS.

  5. Salvianolic acid A as a multifunctional agent ameliorates doxorubicin-induced nephropathy in rats

    PubMed Central

    Fan, Hua-Ying; Yang, Ming-Yan; Qi, Dong; Zhang, Zuo-Kai; Zhu, Lin; Shang-Guan, Xiu-Xin; Liu, Ke; Xu, Hui; Che, Xin

    2015-01-01

    Nephrotic syndrome (NS) is still a therapeutic challenge. To date there is no ideal treatment. Evidence suggest that multidrug therapy has more effect than monotherapy in amelioration of renal injury. Salvianolic acid A (SAA) is the major active component of Salviae Miltiorrhizae Bunge. Previous studies have demonstrated that SAA is a multi-target agent and has various pharmacological activities. The pleiotropic properties of SAA predict its potential in the treatment of NS. The study investigated the effect of SAA on doxorubicin-induced nephropathy. The kidney function related-biochemical changes, hemorheological parameters and oxidative stress status were determined, and histological examination using light and transmission electron microcopies and western blot analysis were also performed. Results revealed that treatment with SAA alleviated histological damages, relieved proteinuria, hypoalbuminemia and hyperlipidemia, reduced oxidative stress, as well as improving hemorheology. Furthermore, SAA restored podocin expression, down-regulated the expression of NF-κB p65 and p-IκBα while up-regulating IκBα protein expression. Overall, as a multifunctional agent, SAA has a favorable renoprotection in doxorubicin-induced nephropathy. The anti-inflammation, antioxidant, amelioration of podocyte injury, improvement of hemorheology and hypolipidemic properties may constituent an important part of its therapeutic effects. All these indicate that SAA is likely to be a promising agent for NS. PMID:26194431

  6. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice

    PubMed Central

    Berres, Marie-Luise; Koenen, Rory R.; Rueland, Anna; Zaldivar, Mirko Moreno; Heinrichs, Daniel; Sahin, Hacer; Schmitz, Petra; Streetz, Konrad L.; Berg, Thomas; Gassler, Nikolaus; Weiskirchen, Ralf; Proudfoot, Amanda; Weber, Christian; Trautwein, Christian; Wasmuth, Hermann E.

    2010-01-01

    Activation of hepatic stellate cells in response to chronic inflammation represents a crucial step in the development of liver fibrosis. However, the molecules involved in the interaction between immune cells and stellate cells remain obscure. Herein, we identify the chemokine CCL5 (also known as RANTES), which is induced in murine and human liver after injury, as a central mediator of this interaction. First, we showed in patients with liver fibrosis that CCL5 haplotypes and intrahepatic CCL5 mRNA expression were associated with severe liver fibrosis. Consistent with this, we detected Ccl5 mRNA and CCL5 protein in 2 mouse models of liver fibrosis, induced by either injection of carbon tetrachloride (CCl4) or feeding on a methionine and choline–deficient (MCD) diet. In these models, Ccl5–/– mice exhibited decreased hepatic fibrosis, with reduced stellate cell activation and immune cell infiltration. Transplantation of Ccl5-deficient bone marrow into WT recipients attenuated liver fibrosis, identifying infiltrating hematopoietic cells as the main source of Ccl5. We then showed that treatment with the CCL5 receptor antagonist Met-CCL5 inhibited cultured stellate cell migration, proliferation, and chemokine and collagen secretion. Importantly, in vivo administration of Met-CCL5 greatly ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression. Our results define a successful therapeutic approach to reduce experimental liver fibrosis by antagonizing Ccl5 receptors. PMID:20978355

  7. A diet with lactosucrose supplementation ameliorates trinitrobenzene sulfonic acid-induced colitis in rats.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Xiaoli; Huang, Xiaoliu; Li, Hua; Wang, Ling; Zhang, Cui; Liu, Shiqiang; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2015-01-01

    Chronic intestinal inflammation contributes to an increased risk of colon cancer. Lactosucrose (LS), a kind of functional trisaccharide, can modulate immunity and promote microbe growth. The aim of this study was to investigate the effect of LS on 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced colitis in rats. Rats were randomly divided into four treatment groups: the normal group, TNBS group, LS group, and salicylazosulfapyridine (SASP) group for five weeks. LS supplementation ameliorated TNBS-induced colitis. LS supplementation increased IL-10 production and suppressed the secretion of IL-12 in the colon, as compared to the TNBS group. LS decreased the production of TLR-2 protein and nuclear NF-κB p65 protein, as well as mRNA levels, as compared with colitic rats. These results indicate that chronic feeding of LS inhibited TNBS-induced chronic inflammation. LS has potential nutraceutical intervention to combat colitis.

  8. DOCOSAHEXAENOIC ACID PARTIALLY AMELIORATES DEFICITS IN SOCIAL BEHAVIOR AND ULTRASONIC VOCALIZATIONS CAUSED BY PRENATAL ETHANOL EXPOSURE

    PubMed Central

    Wellmann, Kristen A.; George, Finney; Brnouti, Fares; Mooney, Sandra M.

    2015-01-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10 g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol’s damaging effects. PMID:25746516

  9. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure.

    PubMed

    Wellmann, Kristen A; George, Finney; Brnouti, Fares; Mooney, Sandra M

    2015-06-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects.

  10. Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure.

    PubMed

    Wellmann, Kristen A; George, Finney; Brnouti, Fares; Mooney, Sandra M

    2015-06-01

    Prenatal ethanol exposure disrupts social behavior in humans and rodents. One system particularly important for social behavior is the somatosensory system. Prenatal ethanol exposure alters the structure and function of this area. Docosahexaenoic acid (DHA), an omega 3 polyunsaturated fatty acid, is necessary for normal brain development and brains from ethanol-exposed animals are DHA deficient. Thus, we determined whether postnatal DHA supplementation ameliorated behavioral deficits induced by prenatal ethanol exposure. Timed pregnant Long-Evans rats were assigned to one of three groups: ad libitum access to an ethanol-containing liquid diet, pair fed an isocaloric isonutritive non-alcohol liquid diet, or ad libitum access to chow and water. Pups were assigned to one of two postnatal treatment groups; gavaged intragastrically once per day between postnatal day (P)11 and P20 with DHA (10g/kg in artificial rat milk) or artificial rat milk. A third group was left untreated. Isolation-induced ultrasonic vocalizations (iUSVs) were recorded on P14. Social behavior and play-induced USVs were tested on P28 or P42. Somatosensory performance was tested with a gap crossing test around P33 or on P42. Anxiety was tested on elevated plus maze around P35. Animals exposed to ethanol prenatally vocalized less, play fought less, and crossed a significantly shorter gap than control-treated animals. Administration of DHA ameliorated these ethanol-induced deficits such that the ethanol-exposed animals given DHA were no longer significantly different to control-treated animals. Thus, DHA administration may have therapeutic value to reverse some of ethanol's damaging effects. PMID:25746516

  11. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model.

    PubMed

    Sil, Rajarshi; Ray, Doel; Chakraborti, Abhay Sankar

    2015-11-01

    Glycyrrhizin, a major constituent of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate insulin resistance, hyperglycemia, dyslipidemia, and obesity in rats with metabolic syndrome. Liver dysfunction is associated with this syndrome. The objective of this study is to investigate the effect of glycyrrhizin treatment on metabolic syndrome-induced liver damage. After induction of metabolic syndrome in rats by high fructose (60%) diet for 6 weeks, the rats were treated with glycyrrhizin (50 mg/kg body weight, single intra-peritoneal injection). After 2 weeks of treatment, rats were sacrificed to collect blood samples and liver tissues. Compared to normal, elevated activities of serum alanine transaminase, alkaline phosphatase and aspartate transaminase, increased levels of liver advanced glycation end products, reactive oxygen species, lipid peroxidation, protein carbonyl, protein kinase Cα, NADPH oxidase-2, and decreased glutathione cycle components established liver damage and oxidative stress in fructose-fed rats. Activation of nuclear factor κB, mitogen-activated protein kinase pathways as well as signals from mitochondria were found to be involved in liver cell apoptosis. Increased levels of cyclooxygenase-2, tumor necrosis factor, and interleukin-12 proteins suggested hepatic inflammation. Metabolic syndrome caused hepatic DNA damage and poly-ADP ribose polymerase cleavage. Fluorescence-activated cell sorting using annexin V/propidium iodide staining confirmed the apoptotic hepatic cell death. Histology of liver tissue also supported the experimental findings. Treatment with glycyrrhizin reduced oxidative stress, hepatic inflammation, and apoptotic cell death in fructose-fed rats. The results suggest that glycyrrhizin possesses therapeutic potential against hepatocellular damage in metabolic syndrome. PMID:26400710

  12. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    PubMed Central

    Xue, Haikuo; Ren, Huijun; Zhang, Lei; Sun, Xiaoxu; Wang, Wanhai; Zhang, Shijie; Zhao, Junwei; Ming, Liang

    2016-01-01

    Objective(s): Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. Materials and Methods: Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG), and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results: AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. Conclusion: According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS. PMID:27403263

  13. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Zhang, JunMei; Jia, Ge; Liu, Qun; Hu, Jue; Yan, Mei; Yang, BaiFeng; Yang, Huan; Zhou, WenBin; Li, Jing

    2015-01-01

    MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.

  14. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes.

    PubMed

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  15. Assessment of natural and calcined starfish for the amelioration of acidic soil.

    PubMed

    Moon, Deok Hyun; Yang, Jae E; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun; Lim, Kyoung Jae; Kim, Sung Chul; Kim, Rog-Young; Ok, Yong Sik

    2014-01-01

    Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth. PMID:24756689

  16. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism

    PubMed Central

    WANG, ZHENZHONG; GUO, AI; MA, LIFENG; YU, HAOMIAO; ZHANG, LIANG; MENG, HAI; CUI, YINPENG; YU, FEI; YANG, BO

    2016-01-01

    Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti-inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin-1β (IL-1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant-induced arthritis (AIA). The safe concentration range (0–50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP-13 mRNA and protein expression were confirmed by RT-qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP-13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP-13 expression was partially attributed to the inactivation of the p38 mitogen-activated protein kinases pathway by suppressing p-p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA. PMID:27082436

  17. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia

    PubMed Central

    Yin, Xue; Zhang, Xiuli; Lv, Changjun; Li, Chunli; Yu, Yan; Wang, Xiaozhi; Han, Fang

    2015-01-01

    Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions. PMID:26419512

  18. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    PubMed Central

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  19. Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model.

    PubMed

    Yang, Honggai; Qu, Zhuo; Zhang, Jingze; Huo, Liqin; Gao, Jing; Gao, Wenyuan

    2016-11-01

    Ferulic acid (FA) acts as a powerful antioxidant against various age-related diseases. To investigate the effect and underlying mechanism of FA against d-galactose(d-gal)-induced memory deficit, mice were injected with d-gal to induce memory impairment and simultaneously treated with FA and donepezil. The behavioral results revealed that chronic FA treatment reversed d-gal-induced memory impairment. Further, FA treatment inhibited d-gal-induced AChE activity and oxidative stress via increase of superoxide dismutase activity and reduced glutathione content, as well as decrease of malondialdehyde and nitric oxide levels. We also observed that FA significantly inhibits inflammation in the brain through reduction of NF-κB and IL-1β by enzyme-linked immunosorbent assay. Additionally, FA treatment significantly reduces the caspase-3 level in the hippocampus of d-gal-treated mice. Hematoxylin and eosin and Nissl staining showed that FA prevents neurodegeneration induced by d-gal. These findings showed that FA inhibits d-gal-induced AChE activity, oxidative stress, neuroinflammation and neurodegeneration, and consequently ameliorates memory impairment.

  20. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    PubMed

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-01

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes.

  1. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.

    PubMed

    Tian, Chunjie; Kim, Young Ho; Kim, Young Chul; Park, Kyung Tae; Kim, Seung Won; Kim, Youn Ju; Lim, Hye Jin; Choung, Yun-Hoon

    2013-01-01

    3-Nitropropionic acid (3-NP), a mitochondrial toxin, has been reported to induce an acute cochlear damage. Korean red ginseng (KRG) is known to have protective effects from some types of hearing loss. This study aimed to observe the protective effect of KRG in an ototoxic animal model using 3-NP intratympanic injection. BALB/c mice were classified into 5 groups (n=15) and dose-dependent toxic effects after intratympanic injection with 3-NP (300-5000 mM) on the left ear were investigated to determine the appropriate toxicity level of 3-NP. For observation of the protective effects of KRG, 23 mice were grouped into 3-NP (500 mM, n=12) and KRG+3-NP groups (300 mg/kg KRG for 7 days before 500 mM 3-NP administration, n=11). Auditory brain response (ABR) and cochlear morphological evaluations were performed before and after drug administration. The ABR thresholds in the 800-5000 mM groups exceeded the maximum recording limit at 16 and 32 kHz 1 day after 3-NP administration. The ABR threshold in the 500 mM 3-NP+KRG group was significantly lower than that in the 500 mM 3-NP group from post 1 week to 1 month. The mean type II fibrocyte counts significantly differed between the control and 3-NP groups and between the 3-NP and 3-NP+KRG groups. Spiral ganglion cell degeneration in the 3-NP group was more severe than that in the 3-NP+KRG group. This animal model exhibited a dose-dependent hearing loss with histological changes. KRG administration ameliorated the deterioration of hearing by 3-NP. PMID:23164932

  2. Role of Ferulic Acid in the Amelioration of Ionizing Radiation Induced Inflammation: A Murine Model

    PubMed Central

    Das, Ujjal; Manna, Krishnendu; Sinha, Mahuya; Datta, Sanjukta; Das, Dipesh Kr; Chakraborty, Anindita; Ghosh, Mahua; Saha, Krishna Das; Dey, Sanjit

    2014-01-01

    Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation. PMID:24854039

  3. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats.

    PubMed

    Nagib, Marwa M; Tadros, Mariane G; ElSayed, Moushira I; Khalifa, Amani E

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5days. OLM-M (1, 3 and 10mg/kg) was administered orally during 21days prior to the induction of colitis, and for 5days after. Sulfasalazine (500mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects.

  4. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury.

    PubMed

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  5. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury

    PubMed Central

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  6. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats.

    PubMed

    Wu, Jian-Guo; Wu, Jin-Zhong; Sun, Lian-Na; Han, Ting; Du, Jian; Ye, Qi; Zhang, Hong; Zhang, Yu-Guang

    2009-11-01

    Membranous glomerulonephritis (MGN) remains the most common cause of adult-onset nephrotic syndrome in the world and up to 40% of untreated patients will progress to end-stage renal disease. Although the treatment of MGN with immunosuppressants or steroid hormones can attenuate the deterioration of renal function, numerous treatment-related complications have also been established. In this study, the ameliorative effects of arctiin, a natural compound isolated from the fruits of Arctium lappa, on rat glomerulonephritis induced by cationic bovine serum albumin (cBSA) were determined. After oral administration of arctiin (30, 60, 120 mg/kgd) for three weeks, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and 24-h urine protein content markedly decreased, while endogenous creatinine clearance rate (ECcr) significantly increased. The parameters of renal lesion, hypercellularity, infiltration of polymorphonuclear leukocyte (PMN), fibrinoid necrosis, focal and segmental proliferation and interstitial infiltration, were reversed. In addition, we observed that arctiin evidently reduced the levels of malondialdehyde (MDA) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-alpha), suppressed nuclear factor-kappaB p65 (NF-kappaB) DNA binding activity, and enhanced superoxide dismutase (SOD) activity. These findings suggest that the ameliorative effects of arctiin on glomerulonephritis is carried out mainly by suppression of NF-kappaB activation and nuclear translocation and the decreases in the levels of these pro-inflammatory cytokines, while SOD is involved in the inhibitory pathway of NF-kappaB activation. Arctiin has favorable potency for the development of an inhibitory agent of NF-kappaB and further application to clinical treatment of glomerulonephritis, though clinical studies are required.

  7. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    SciTech Connect

    Nagib, Marwa M.; Tadros, Mariane G.; ELSayed, Moushira I.; Khalifa, Amani E.

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  8. Light and ultrastructural study in the propylthiouracil-induced hypothyroid rat heart ventricles and the ameliorating role of folic acid.

    PubMed

    Massoud, Ahmed A; El-Atrash, Afaf; Tousson, Ehab; Ibrahim, Wafaa; Abou-Harga, Heba

    2012-04-01

    Thyroid hormones have marked effects on the growth, development, and metabolic function of virtually all organs and tissues. Thyroid status is an important determinant of cardiovascular function. The present work studied the histopathological and ultrastructural changes in the hypothyroid rat left ventricle at post-pubertal stage, in addition to the ameliorating role of folic acid. A total of 50 male albino rats were randomly divided into 5 groups (group I, control; group II, folic acid; group III, propylthiouracil-induced hypothyroid rats; group IV, co-treatment with folic acid; group V, post-treatment). In order to ensure the hypothyroid state, the level of serum triiodothyronine (T(3)) and thyroid stimulating hormone (TSH) through the dose period was regularly determined. The TSH levels were significantly higher while T(3) levels were significantly lower in hypothyroid rats when compared to control group. The high-performance liquid chromatography analysis showed an increase in homocysteine (Hcy) in the hypothyroid rats group when compared to the control group. The histopathological studies of the ventricle in hypothyroid rats revealed hydrophobic changes in myofibrillar structure with striations, myocardial atrophy, nuclear pyknosis, cytoplasmic vacuoles, and cytoplasmic eosinophilia. Transmission electron micrographs in the myocardium of hypothyroid rats revealed a marked reduction in muscle fibre mass, a marked degeneration of muscle fibres, swollen mitochondria, dilated sarcoplasmic reticulum and more prominent perinuclear oedema observed in the cardiac myocytes. In co-treated hypothyroid rats with folic acid, a regular arrangement of muscle fibres, mild swelling of myofibrillar structure with striations and no continuity with adjacent myofibrils were observed while the post-treated hypothyroid rat with folic acid showed normal architecture of myofibrillar structure with striations and continuity with adjacent myofibrils. In conclusion, our results indicated

  9. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  10. Soil acidity amelioration in a no-till system in west Tennessee USA differs by cover crop type and nitrogen application rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation soil management practices may influence the soil acidity. Surface application of lime may be required in no-till systems to ameliorate soil acidity and to improve crop yields. The application of lime may also increase microbial activity on soil. Specifically, the microbial activity of s...

  11. Sonoporation-mediated transduction of siRNA ameliorated experimental arthritis using 3 MHz pulsed ultrasound.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Terauchi, Ryu; Nakagawa, Shuji; Saito, Masazumi; Tsuchida, Shinji; Inoue, Atsuo; Shirai, Toshiharu; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2014-03-01

    The goal of this feasibility study was to examine whether sonoporation assisted transduction of siRNA could be used to ameliorate arthritis locally. If successful, such approach could provide an alternative treatment for the patients that have or gradually develop adverse response to chemical drugs. Tumor necrosis factor alpha (TNF-α) produced by synovial fibroblasts has an important role in the pathology of rheumatoid arthritis, inducing inflammation and bone destruction. In this study, we injected a mixture of microbubbles and siRNA targeting TNF-α (siTNF) into the articular joints of rats, and transduced siTNF into synovial tissue by exposure to a collimated ultrasound beam, applied through a probe 6mm in diameter with an input frequency of 3.0 MHz, an output intensity of 2.0 W/cm(2) (spatial average temporary peak; SATP), a pulse duty ratio of 50%, and a duration of 1 min. Sonoporation increased skin temperature from 26.8 °C to 27.3 °C, but there were no adverse effect such as burns. The mean level of TNF-α expression in siTNF-treated knee joints was 55% of those in controls. Delivery of siTNF into the knee joints every 3 days (i.e., 7, 10, 13, and 16 days after immunization) by in vivo sonoporation significantly reduced paw swelling on days 20-23 after immunization. Radiographic scores in the siTNF group were 56% of those in the CIA group and 61% of those in the siNeg group. Histological examination showed that the number of TNF-α positive cells was significantly lower in areas of pannus invasion into the ankle joints of siTNF- than of siNeg-treated rats. These results indicate that transduction of siTNF into articular synovium using sonoporation may be an effective local therapy for arthritis. PMID:24291002

  12. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype.

    PubMed

    Zhu, Wei; Jin, Zaishun; Yu, Jianbo; Liang, Jun; Yang, Qingdong; Li, Fujuan; Shi, Xuekui; Zhu, Xiaodong; Zhang, Xiaoli

    2016-06-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract. Baicalin, originally isolated from the root of the Chinese herb Huangqin (Scutellaria baicalensis Georgi) and its main active ingredient, has a protective effect against inflammatory responses in several diseases. The present study investigated the effects of baicalin on macrophage polarization and its therapeutic role in IBD. Murine peritoneal macrophages and mice with colitis were treated with baicalin. Macrophage subset distribution, M1 and M2 macrophage-associated mRNA expression, and interferon regulatory factor 4 and 5 (IRF4 and IRF5) expression were analyzed. siRNA transfection into mouse peritoneal macrophages was utilized to suppress IRF4. Fluorescence-activated cell sorting, western blot, and real-time PCR analyses were performed. Baicalin (50μM) limited lipopolysaccharide (LPS)-induced M1 macrophage polarization; decreased LPS-induced tumor necrosis factor α, interleukin (IL)-23, and IRF5 expression; and increased IL-10, arginase-1 (Arg-1), and IRF4 expression. siRNA-mediated IRF4 silencing significantly impaired baicalin activity. Furthermore, pretreatment with baicalin (100mg/kg) in mice with dextran sodium sulfate (DSS)-induced colitis ameliorated the severity of colitis and significantly decreased the disease activity index (baicalin group, 3.33±0.52 vs. DSS group, 5.67±1.03). Baicalin (100mg/kg) also repressed IRF5 protein expression and promoted IRF4 protein expression in the lamina propria mononuclear cells, and induced macrophage polarization to the M2 phenotype. In summary, our results showed that baicalin upregulates IRF4 protein expression and reverses LPS-induced macrophage subset redistribution. Thus, baicalin alleviates DSS-induced colitis by modulating macrophage polarization to the M2 phenotype.

  13. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  14. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A.

    PubMed

    Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi

    2016-01-20

    The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis.

  15. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A.

    PubMed

    Zhou, Jian-Rong; Kanda, Yurina; Tanaka, Anna; Manabe, Hideyuki; Nohara, Toshihiro; Yokomizo, Kazumi

    2016-01-20

    The increasing incidence of atopic dermatitis during recent decades has prompted the development of safe and effective agents for prevention of atopic diseases. Esculeoside A, a glycoside of spirosolane type, is identified as a major component in ripe tomato fruits. The present study investigated the effects of esculeoside A and its aglycon esculeogenin A on hyaluronidase activity in vitro and antiallergy in experimental dermatitis mice. Esculeogenin A/esculeoside A (esculeogenin A equivalent) with an IC50 of about 2 μM/9 μM dose-dependently inhibited hyaluronidase activity measured by a modified Morgan-Elson method. Oral treatment with esculeoside A 10 mg/kg of experimental dermatitis mice for 4 weeks significantly decreased the skin clinical score to 2.5 without any detectable side effects compared with 6.75 of the control. The scratching frequency of esculeoside A 100 mg/kg application was decreased significantly as 107.5 times compared with 296.67 times of the control. Thus, the present study showed that esculeoside A/esculeogenin A significantly blocks hyaluronidase activity in vitro and that esculeoside A ameliorates mouse experimental dermatitis. PMID:26716906

  16. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  17. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice.

    PubMed

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M; Owen, Robert W; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50  μ g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100  μ L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  18. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  19. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  20. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  1. Maxi-Acid{trademark}: In-situ amelioration of acid mine drainage problems. Topical report, February 1, 1995--February 1, 1996

    SciTech Connect

    1997-08-01

    The development of technologies to ameliorate acid mine drainage problems has had few successes. Most often, once acid mine drainage exists, the company responsible develops treatment programs to make sure that water resources and land are not contaminated by the acid mine drainage. These treatments usually result in significant costs and do not result in a cure to the problem. Much effort and money has been spent on the problems associated with acid mine drainage. However, it appears that most of the meaningful breakthroughs have come in the area of treatment of the results of the problem (i.e. water treatment). There have been few breakthroughs in the prevention of acid formation. Most of the work associated with the prevention of acid formation has dealt with the prevention of oxidation using grouting to seal mines, removing oxygen from the system or preventing water flow into the mines, using bactericides to eliminate the catalytic effect of Thiobacillus ferrooxidans, and modifying the mining methods. The Maxi-Acid{trademark} technology takes a different approach to the problem. A site treated using Maxi-Acid won`t be expected to generate acid mine drainage for a number of years, if ever. The application of Maxi-Acid is expected to eliminate continuous treatment of acid waters discharged from applicable mine sites. The work accomplished to date includes characterization of overburden materials that contain large quantities of potential acidity, and preliminary evaluations of the acid-generating capabilities of materials containing high levels of potential acidity (pyritic materials) using humidity cells. This research effort is in the preliminary stages. To date, a number of interesting findings have been made that could be used to contribute to the elimination of acid mine drainage. However, the concepts that are expected to have the most significant impact on the formation of acid mine drainage have not yet been substantiated.

  2. Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury.

    PubMed

    Shapiro, J; Smith, B; Beck, T; Ballard, P; Dapthary, M; BrintzenhofeSzoc, K; Caminis, J

    2007-05-01

    Acute spinal cord injury is associated with rapid bone loss and an increased risk of fracture. In this double-blind, randomized, placebo-controlled trial, 17 patients were followed for 1 year after administration of either 4 or 5 mg of zoledronic acid or placebo. Bone mineral density (BMD) and structural analyses of the proximal femur were performed using the hip structural analysis program at entry, 6 months, and 12 months. The 17 subjects completed 12 months of observation, nine receiving placebo and eight zoledronic acid. The placebo group showed a decrease in BMD, cross-sectional area, and section modulus and an increase in buckling ratio at each proximal femur site at 6 and 12 months. Six months after zoledronic acid, BMD, cross-sectional area, and section modulus increased at the femoral neck and intertrochanteric regions and buckling ratio decreased consistent with improved bone stability. However, at 12 months, the femoral narrow-neck values declined to baseline. In contrast to placebo, the intertrochanteric region and femur shaft were maintained at or near baseline through 12 months in the zoledronic acid-treated group. Urine N-telopeptide excretion was increased at baseline and declined in both the placebo and treatment groups during the 12 months of observation. We conclude that a single administration of zoledronic acid will ameliorate bone loss and maintain parameters of bone strength at the three proximal femur sites for 6 months and at the femur intertrochanteric and shaft sites for 12 months.

  3. Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia

    PubMed Central

    Morimoto, M; Lee, E-Y; Zhang, X; Inaba, Y; Inoue, H; Ogawa, M; Shirasawa, T; Yokosuka, O; Miki, T

    2016-01-01

    Background/Objective: Eicosapentaenoic acid (EPA) exerts pleiotropic effects on metabolic disorders such as atherosclerosis and dyslipidemia, but its effectiveness in the treatment of type 2 diabetes mellitus remains controversial. Methods: We examined the antidiabetic effect of EPA in insulin receptor mutant (InsrP1195L/+) mice that exhibit high-fat diet (HFD)-dependent hyperglycemia. Results: EPA supplementation was found to alleviate hyperglycemia of InsrP1195L/+ mice fed HFD (InsrP1195L/+/HFD mice), which was accompanied by amelioration of increased gluconeogenesis and impaired insulin signaling, as assessed by glucose-6-phosphatase (G6pc) expression on refeeding and insulin-induced phosphorylation of Akt in the liver, respectively. We found that serum levels of adiponectin, the antidiabetic adipokine, were decreased by HFD along with the body weight gain in InsrP1195L/+ mice but not in wild-type mice, suggesting that InsrP1195L/+ mice are prone to hypoadiponectinemia in response to obesity. Interestingly, the blood glucose levels of InsrP1195L/+ mice were in reverse proportion to their serum adiponectin levels and EPA supplementation ameliorated their hyperglycemia in conjunction with the restoration of hypoadiponectinemia. Conclusions: EPA exerts an antidiabetic effect in InsrP1195L/+/HFD mice, an HFD-sensitive, insulin-resistant animal model, possibly through its action against hypoadiponectinemia. PMID:27348201

  4. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    PubMed Central

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  5. A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord.

    PubMed

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Suh, Sang Won; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35-55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α 4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  6. A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord.

    PubMed

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Suh, Sang Won; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35-55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α 4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  7. Monoamine concentrations changes in the PTU-induced hypothyroid rat brain and the ameliorating role of folic acid.

    PubMed

    Tousson, E; Ibrahim, W; Arafa, N; Akela, M A

    2012-03-01

    Thyroid hormones are recognized as the key metabolic hormones that play a critical role in the development of central nervous system (CNS) throughout life. The present study was designed to determine the changes in brain monoamine concentrations in 6-n-propyl thiouracil (PTU)-induced hypothyroid rats, in addition to the ameliorating role of folic acid treatment. Fifty male albino rats were equally divided into five groups; first and second groups were the control and folic acid groups, respectively, while the third group was the hypothyroid group in which the rats received PTU in drinking water for 6 weeks. The fourth and fifth groups were co- and post-treated folic acid groups with hypothyroid rats, respectively. Our results revealed that serotonin and norepinephrine concentrations were significantly decreased in the hypothalamus and cortex, while it significantly increased in the hippocampus of hypothyroid rats when compared with control group. Serotonin and norepinephrine concentrations were decreased in hypothalamus and cortex in co- and post-treated folic acid groups with hypothyroid rats, while the concentration of dopamine were significantly increased in the hypothalamus and hippocampus of the hypothyroid rats and co-treated folic acid group with hypothyroid rats. In cortex, the dopamine concentration was significantly increased in hypothyroid rats and post-treated folic acid group with hypothyroid rats, while it significantly decreased in co-treated folic acid group with hypothyroid rats when compared with the control group. Also, our results revealed that, folic acid treatment was better if it is administered as an adjuvant after returning to the euthyroid state by withdrawing PTU from the drinking water.

  8. Oral Administration of Interleukin-10 and Anti-IL-1 Antibody Ameliorates Experimental Intestinal Inflammation

    PubMed Central

    Cardani, Diego; Dusio, Giuseppina F; Luchini, Patrizia; Sciarabba, Michele; Solimene, Umberto; Rumio, Cristiano

    2013-01-01

    Background To elucidate the effects of a solution containing interleukin-10 and anti-IL-1 antibody in modulating experimental intestinal inflammation. Methods Colitis was induced in BALB/c mice by oral administration of dextran sodium sulphate; mice were then treated with interleukin-10 plus anti-IL-1 antibody at low dosage. Transepithelial electrical resistance of isolated mouse colon and colon lengths were evaluated. Cytokines concentrations in organocultures supernatants and plasma samples were evaluated by Enzyme-Linked Immuno Sorbent Assay. Tight junction proteins were evaluated by immunofluorescence, respectively. Results Oral administration of tested products restores intestinal barrier function during experimental intestinal inflammation in association with reduced levels of proinflammatory cytokines, increased interleukin-10 plasma concentrations and a tight junction architecture restoration. Conclusion Obtained results may contribute to modelling an interesting strategy for the treatment of patients with inflammatory bowel diseases.

  9. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine.

    PubMed

    Long, Jiangang; Gao, Feng; Tong, Liqi; Cotman, Carl W; Ames, Bruce N; Liu, Jiankang

    2009-04-01

    To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-alpha-lipoic acid plus acetyl-L-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in K(m)) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage.

  10. Omega-3 polyunsaturated fatty acids ameliorate the severity of ileitis in the senescence accelerated mice (SAM)P1/Yit mice model

    PubMed Central

    Matsunaga, H; Hokari, R; Kurihara, C; Okada, Y; Takebayashi, K; Okudaira, K; Watanabe, C; Komoto, S; Nakamura, M; Tsuzuki, Y; Kawaguchi, A; Nagao, S; Miura, S

    2009-01-01

    Clinical studies using omega-3 polyunsaturated fatty acids (ω3-PUFA) to Crohn's disease (CD) are conflicting. Beneficial effects of dietary ω3-PUFA intake in various experimental inflammatory bowel disease (IBD) models have been reported. However, animal models of large intestinal inflammation have been used in all previous studies, and the effect of ω3 fat in an animal model of small intestinal inflammation has not been reported. We hypothesized that the effects of ω3 fat are different between large and small intestine. The aim of this study was to determine whether the direct effect of ω3 fat is beneficial for small intestinal inflammation. Senescence accelerated mice (SAM)P1/Yit mice showed remarkable inflammation of the terminal ileum spontaneously. The numbers of F4/80-positive monocyte–macrophage cells as well as β7-integrin-positive lymphocytes in the intestinal mucosa were increased significantly compared with those in the control mice (AKR-J mice). The area of mucosal addressin cell adhesion molecule-1 (MAdCAM-1)-positive vessels was also increased. The degree of expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6 and interferon (IFN)-γ mRNA were increased significantly compared with those in the control mice. The feeding of two different kinds of ω3 fat (fish-oil-rich and perilla-oil-rich diets) for 16 weeks to SAMP1/Yit mice ameliorated inflammation of the terminal ileum significantly. In both the ω3-fat-rich diet groups, enhanced infiltration of F4/80-positive monocytes/macrophages in intestinal mucosa of SAMP1/Yit mice cells and the increased levels of MCP-1, IL-6 and IFN-γ mRNA expression were ameliorated significantly compared with those in the control diet group. The results suggest that ω3 fat is beneficial for small intestinal inflammation by inhibition of monocyte recruitment to inflamed intestinal mucosa. PMID:19793338

  11. The immunomodulator AS101suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang

    2014-01-01

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323

  12. Simvastatin ameliorates low-dose streptozotocin-induced type 2 diabetic nephropathy in an experimental rat model.

    PubMed

    Zhang, Siwei; Xu, Huali; Yu, Xiaofeng; Wang, Yuchen; Sun, Fanfan; Sui, Dayuan

    2015-01-01

    The present study aims to study the possible renal protective effect of simvastatin in the development and progression of type 2 diabetic nephropathy. A rat model of T2DN was induced by high-fat diet together with single low-dose of streptozotocin. The diabetic rats were either given treatment or vehicle control for 13 weeks to develop nephropathy. At the end of treatment, parameters of renal function were determined. Kidney samples were collected for histological studies and generated homogenates for biochemical analysis. In T2DN rats, severe hyperglycemia was developed, FBG were markedly elevated. Diabetes induced significant alterations in renal structure, such as severe reduction of glomerular tufts, increase in Bowman's spaces, thickening of GBM. In addition, and SCr, UAER and BUN are elevated, accompanied with reduction in UCr and CCr, indicating obvious renal failure. On the other hand, endogenous antioxidants SOD, GSH-Px were reduced, whereas MDA was increased. However, treatment of T2DN rats with simvastatin restored renal changes in different aspects. Our results showed that STZ-induced T2DN could be attenuated by simvastatin. The renoprotective effects of simvastatin was indicated by improvements in kidney function parameters, and was attributed by its lipid-lowering effect as well as its anti-oxidative stress, anti-inflammatory properties without having noticeable influence on glycemic control. Simvastatin ameliorates low-dose Streptozotocin-induced type 2 diabetic nephropathy in an experimental rat model. PMID:26131264

  13. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    PubMed Central

    Ho, Peggy P.; Steinman, Lawrence

    2016-01-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid–FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4+ T cells and CD19+ B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8+ T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA– or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  14. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Chandraratna, Roshantha As; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4(+) T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4(+) T cells that produce pro-inflammatory cytokines. In addition, CD4(+) T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  15. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Chandraratna, Roshantha AS; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4+ T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4+ T cells that produce pro-inflammatory cytokines. In addition, CD4+ T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  16. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer's disease.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat

    2011-01-01

    Docosahexaenoic acid (DHA, C22:6 n-3), the most abundant n-3 polyunsaturated fatty acid in the brain, is essential for brain growth and development. Recent evidence has indicated the potential health benefits of DHA for managing Alzheimer's disease (AD). For example, dietary administration of DHA considerably protects against and ameliorates the impairment of learning ability in amyloid-beta (Aβ)(1-40)-infused AD-model rats, with concurrent increases in DHA levels and decreases in the levels of lipid peroxide and reactive oxygen species in the cortico-hippocampal tissues. In addition, dietary DHA helps in eliminating the amyloid burden from the brains of AD-model rats. In vitro studies have revealed that DHA substantially inhibits Aβ fibrillation. Furthermore, DHA reduces amyloid-induced toxicity in cell culture. These in vitro data support the hypothesis that DHA can ameliorate the cognitive deficits of AD in vivo by limiting Aβ polymerization in the brains. Therefore, it might be a useful therapeutic agent to prevent and/or delay cognitive impairment in mild cases of AD.

  17. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  18. Soluble Epoxide Hydrolase Pharmacological Inhibition Ameliorates Experimental Acute Pancreatitis in Mice.

    PubMed

    Bettaieb, Ahmed; Chahed, Samah; Bachaalany, Santana; Griffey, Stephen; Hammock, Bruce D; Haj, Fawaz G

    2015-08-01

    Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacological inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates experimental AP in mice, but the suitability of sEH pharmacological inhibition for treating AP remains to be determined. We investigated the effects of sEH pharmacological inhibition on cerulein- and arginine-induced AP using the selective sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered before and after induction of pancreatitis. Serum amylase and lipase levels were lower in TPPU-treated mice compared with controls. In addition, circulating levels and pancreatic mRNA of the inflammatory cytokines tumor necrosis factor-α, interleukin Il-1β, and Il-6 were reduced in TPPU-treated mice. Moreover, sEH pharmacological inhibition before and after induction of pancreatitis was associated with decreased cerulein- and arginine-induced nuclear factor-κB inflammatory response, endoplasmic reticulum stress, and cell death. sEH pharmacological inhibition before and after induction of pancreatitis mitigated cerulein- and arginine-induced AP. This work suggests that sEH pharmacological inhibition may be of therapeutic value in acute pancreatitis. PMID:25993999

  19. Ameliorative potential of fluoxetine/raloxifene combination on experimentally induced breast cancer.

    PubMed

    Kabel, Ahmed M; Elkhoely, Abeer A

    2016-04-01

    Breast cancer is one of the most common types of malignancies in females worldwide. Targeting the estrogen receptors alone with raloxifene (RAL) reduces the incidence of estrogen receptor positive tumors. Fluoxetine (FLX) is one of selective serotonin reuptake inhibitors that was proven to have anticancer properties. Our aim was to detect the effects of RAL/FLX combination on experimentally induced breast cancer. Eighty female Wistar rats were divided into four equal groups: 7,12-Dimethyl Benzanthracene (DMBA) induced breast cancer group, DMBA+RAL, DMBA+FLX and DMBA+RAL+FLX. Tumor volume, tissue malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta1 (TGF-β1) were determined in the tumor tissues. Parts of the tumor were subjected to histopathological examination. RAL or FLX alone or in combination induced significant increase in tumor CAT and SOD with significant decrease in tumor volume, tissue MDA, TNF-α, IL-6 and TGF-β1 and alleviated the histopathological and immunohistochemical changes compared to DMBA group. In conclusion, RAL/FLX combination had a better effect than each of RAL or FLX alone against DMBA-induced breast cancer in rats which may represent a new therapeutic modality for management of breast cancer. PMID:26881735

  20. Inhibition of autophagy ameliorates pulmonary microvascular dilation and PMVECs excessive proliferation in rat experimental hepatopulmonary syndrome

    PubMed Central

    Xu, Duo; Chen, Bing; Gu, Jianteng; Chen, Lin; Belguise, Karine; Wang, Xiaobo; Yi, Bin; Lu, Kaizhi

    2016-01-01

    Hepatopulmonary syndrome (HPS) is a defective liver-induced pulmonary vascular disorder with massive pulmonary microvascular dilation and excessive proliferation of pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that autophagy is involved in pulmonary diseases, protectively or detrimentally. Thus, it is interesting and important to explore whether autophagy might be involved in and critical in HPS. In the present study, we report that autophagy was activated in common bile duct ligation (CBDL) rats and cultured pulmonary PMVECs induced by CBDL rat serum, two accepted in vivo and in vitro experimental models of HPS. Furthermore, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) significantly alleviated pathological alterations and typical symptom of HPS in CBDL rats in vivo, and consistently 3-MA significantly attenuated the CBDL rat serum-induced excessive proliferation of PMVECs in vitro. All these changes mediated by 3-MA might explain the observed prominent improvement of pulmonary appearance, edema, microvascular dilatation and arterial oxygenation in vivo. Collectively, these results suggest that autophagy activation may play a critical role in the pathogenesis of HPS, and autophagy inhibition may have a therapeutic potential for this disease. PMID:27480323

  1. Extract of Sesbania grandiflora Ameliorates Hyperglycemia in High Fat Diet-Streptozotocin Induced Experimental Diabetes Mellitus

    PubMed Central

    Panigrahi, Ghanshyam; Panda, Chhayakanta; Patra, Arjun

    2016-01-01

    Background. Sesbania grandiflora has been traditionally used as antidiabetic, antioxidant, antipyretic, and expectorant and in the management of various ailments. Materials and Methods. The study evaluates the antidiabetic activity of methanolic extract of Sesbania grandiflora (MESG) in type 2 diabetic rats induced by low dose streptozotocine and high fat diet. Diabetic rats were given vehicle, MESG (200 and 400 mg/kg, p.o.), and the standard drug, metformin (10 mg/kg), for 28 days. During the experimental period, body weight, abdominal girth, food intake, fasting serum glucose, urine analyses were measured. Insulin tolerance test was carried out on 25th day of drug treatment period. Serum analyses for lipid profile and SGOT and SGPT and serums creatinine, urea, protein, SOD, and MDA were also carried out. At the end of the experiment, animals were euthanized, the liver and pancreas were immediately dissected out, and the ratio of pancreas to body weight and hepatic glycogen were calculated. Results. MESG (200 and 400 mg/kg, p.o.) induced significant reduction (P < 0.05) of raised blood glucose levels in diabetic rats and also restored other parameters to normal level. Conclusion. Therefore, it is concluded that MESG has potential antihyperglycemic and antihyperlipemic activities and alleviate insulin resistance conditions. PMID:27313954

  2. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition.

    PubMed

    Guo, Wenjie; Hu, Shasha; Elgehama, Ahmed; Shao, Fenli; Ren, Ren; Liu, Wen; Zhang, Wenjing; Wang, Xinlei; Tan, Renxiang; Xu, Qiang; Sun, Yang; Jiao, Ruihua

    2015-10-01

    In the present study, the effect of Fumigaclavine C, a fungal metabolite, on murine experimental colitis induced by dextran sulfate sodium (DSS) and its possible mechanism were examined in vivo and vitro. Oral administration of Fumigaclavine C dose-dependently attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic scores of musco was also significantly reduced by Fumigaclavine C treatment. Protein and mRNA levels of DSS-induced pro-inflammatory cytokines in colon, including TNF-α, IL-1β and IL-17A, were markedly suppressed by Fumigaclavine C. At the same time, decreased activation of caspase-1 in peritoneal macrophages was detected in Fumigaclavine C -treated mice which suggested that the NLRP3 inflammasome activation was suppressed. Furthermore, in the LPS plus ATP cell model, we found that Fumigaclavine C dose-dependent inhibited IL-1β release and caspase-1 activation. Taken together, our results demonstrate the ability of Fumigaclavine C to inhibit NLRP3 inflammasome activation and give some evidence for its potential use in the treatment of inflammatory bowel diseases. PMID:26320672

  3. Extract of Sesbania grandiflora Ameliorates Hyperglycemia in High Fat Diet-Streptozotocin Induced Experimental Diabetes Mellitus.

    PubMed

    Panigrahi, Ghanshyam; Panda, Chhayakanta; Patra, Arjun

    2016-01-01

    Background. Sesbania grandiflora has been traditionally used as antidiabetic, antioxidant, antipyretic, and expectorant and in the management of various ailments. Materials and Methods. The study evaluates the antidiabetic activity of methanolic extract of Sesbania grandiflora (MESG) in type 2 diabetic rats induced by low dose streptozotocine and high fat diet. Diabetic rats were given vehicle, MESG (200 and 400 mg/kg, p.o.), and the standard drug, metformin (10 mg/kg), for 28 days. During the experimental period, body weight, abdominal girth, food intake, fasting serum glucose, urine analyses were measured. Insulin tolerance test was carried out on 25th day of drug treatment period. Serum analyses for lipid profile and SGOT and SGPT and serums creatinine, urea, protein, SOD, and MDA were also carried out. At the end of the experiment, animals were euthanized, the liver and pancreas were immediately dissected out, and the ratio of pancreas to body weight and hepatic glycogen were calculated. Results. MESG (200 and 400 mg/kg, p.o.) induced significant reduction (P < 0.05) of raised blood glucose levels in diabetic rats and also restored other parameters to normal level. Conclusion. Therefore, it is concluded that MESG has potential antihyperglycemic and antihyperlipemic activities and alleviate insulin resistance conditions. PMID:27313954

  4. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy.

    PubMed

    Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.

  5. A cell permeable peptide inhibitor of NFAT inhibits macrophage cytokine expression and ameliorates experimental colitis.

    PubMed

    Elloumi, Houda Z; Maharshak, Nitsan; Rao, Kavitha N; Kobayashi, Taku; Ryu, Hyungjin S; Mühlbauer, Marcus; Li, Fengling; Jobin, Christian; Plevy, Scott E

    2012-01-01

    Nuclear factor of activated T cells (NFAT) plays a critical role in the development and function of immune and non-immune cells. Although NFAT is a central transcriptional regulator of T cell cytokines, its role in macrophage specific gene expression is less defined. Previous work from our group demonstrated that NFAT regulates Il12b gene expression in macrophages. Here, we further investigate NFAT function in murine macrophages and determined the effects of a cell permeable NFAT inhibitor peptide 11R-VIVIT on experimental colitis in mice. Treatment of bone marrow derived macrophages (BMDMs) with tacrolimus or 11R-VIVIT significantly inhibited LPS and LPS plus IFN-γ induced IL-12 p40 mRNA and protein expression. IL-12 p70 and IL-23 secretion were also decreased. NFAT nuclear translocation and binding to the IL-12 p40 promoter was reduced by NFAT inhibition. Experiments in BMDMs from IL-10 deficient (Il10(-/-)) mice demonstrate that inhibition of IL-12 expression by 11R-VIVIT was independent of IL-10 expression. To test its therapeutic potential, 11R-VIVIT was administered systemically to Il10(-/-) mice with piroxicam-induced colitis. 11R-VIVIT treated mice demonstrated significant improvement in colitis compared to mice treated with an inactive peptide. Moreover, decreased spontaneous secretion of IL-12 p40 and TNF in supernatants from colon explant cultures was demonstrated. In summary, NFAT, widely recognized for its role in T cell biology, also regulates important innate inflammatory pathways in macrophages. Selective blocking of NFAT via a cell permeable inhibitory peptide is a promising therapeutic strategy for the treatment of inflammatory bowel diseases.

  6. Cinnamon Ameliorates Experimental Allergic Encephalomyelitis in Mice via Regulatory T Cells: Implications for Multiple Sclerosis Therapy

    PubMed Central

    Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach. PMID:25569428

  7. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice.

    PubMed

    Jhun, JooYeon; Lee, Seung Hoon; Byun, Jae-Kyeong; Jeong, Jeong-Hee; Kim, Eun-Kyung; Lee, Jennifer; Jung, Young-Ok; Shin, Dongyun; Park, Sung Hwan; Cho, Mi-La

    2015-08-01

    Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant synthesized in human body. This enzyme promotes immune system function and can be used as a dietary supplement. Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. RA results in severe destruction of cartilage and disability. This study aimed to investigate the effect of CoQ10 on inflammation and Th17 cell proliferation on an experimental rheumatoid arthritis (RA) mice model. CoQ10 or cotton seed oil as control was orally administrated once a day for seven weeks to mice with zymosan-induced arthritis (ZIA). Histological analysis of the joints was conducted using immunohistochemistry. Germinal center (GC) B cells, Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. mRNA expression was measured by real-time PCR and protein levels were estimated by enzyme-linked immunosorbent assay (ELISA). Flow cytometric analysis (FACS) was used to evaluate Th17 cells and Treg cells. CoQ10 mitigated the severity of ZIA and decreased serum immunoglobulin concentrations. CoQ10 also reduced RANKL-induced osteoclastogenesis, inflammatory mediators and oxidant factors. Th17/Treg axis was reciprocally controlled by CoQ10 treatment. Moreover, CoQ10 treatment on normal mouse and human cells cultured in Th17 conditions decreased the number of Th17 cells and enhanced the number of Treg cells. CoQ10 alleviates arthritis in mice with ZIA declining inflammation, Th17 cells and osteoclast differentiation. These findings suggest that CoQ10 can be a potential therapeutic substance for RA.

  8. Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid.

    PubMed

    Kalani, Anuradha; Kamat, Pradip K; Givvimani, Srikanth; Brown, Kasey; Metreveli, Naira; Tyagi, Suresh C; Tyagi, Neetu

    2014-02-01

    Epigenetic mechanisms underlying nutrition (nutrition epigenetics) are important in understanding human health. Nutritional supplements, for example folic acid, a cofactor in one-carbon metabolism, regulate epigenetic alterations and may play an important role in the maintenance of neuronal integrity. Folic acid also ameliorates hyperhomocysteinemia, which is a consequence of elevated levels of homocysteine. Hyperhomocysteinemia induces oxidative stress that may epigenetically mediate cerebrovascular remodeling and leads to neurodegeneration; however, the mechanisms behind such alterations remain unclear. Therefore, the present study was designed to observe the protective effects of folic acid against hyperhomocysteinemia-induced epigenetic and molecular alterations leading to neurotoxic cascades. To test this hypothesis, we employed 8-weeks-old male wild-type (WT) cystathionine-beta-synthase heterozygote knockout methionine-fed (CBS+/− + Met), WT, and CBS+/− + Met mice supplemented with folic acid (FA) [WT + FA and CBS+/− + Met + FA, respectively, 0.0057-μg g−1 day−1 dose in drinking water/4 weeks]. Hyperhomocysteinemia in CBS+/− + Met mouse brain was accompanied by a decrease in methylenetetrahydrofolate reductase and an increase in S-adenosylhomocysteine hydrolase expression, symptoms of oxidative stress, upregulation of DNA methyltransferases, rise in matrix metalloproteinases, a drop in the tissue inhibitors of metalloproteinases, decreased expression of tight junction proteins, increased permeability of the blood-brain barrier, neurodegeneration, and synaptotoxicity. Supplementation of folic acid to CBS+/− + Met mouse brain led to a decrease in the homocysteine level and rescued pathogenic and epigenetic alterations, showing its protective efficacy against homocysteine-induced neurotoxicity.

  9. Nutri-epigenetics Ameliorates Blood–Brain Barrier Damage and Neurodegeneration in Hyperhomocysteinemia: Role of Folic Acid

    PubMed Central

    Kalani, Anuradha; Kamat, Pradip K.; Givvimani, Srikanth; Brown, Kasey; Metreveli, Naira; Tyagi, Suresh C.

    2014-01-01

    Epigenetic mechanisms underlying nutrition (nutrition epigenetics) are important in understanding human health. Nutritional supplements, for example folic acid, a cofactor in one-carbon metabolism, regulate epigenetic alterations and may play an important role in the maintenance of neuronal integrity. Folic acid also ameliorates hyperhomocysteinemia, which is a consequence of elevated levels of homocysteine. Hyperhomocysteinemia induces oxidative stress that may epigenetically mediate cerebrovascular remodeling and leads to neurodegeneration; however, the mechanisms behind such alterations remain unclear. Therefore, the present study was designed to observe the protective effects of folic acid against hyperhomocysteinemia-induced epigenetic and molecular alterations leading to neurotoxic cascades. To test this hypothesis, we employed 8-weeks-old male wild-type (WT) cystathionine-beta-synthase heterozygote knockout methionine-fed (CBS+/−+Met), WT, and CBS+/−+Met mice supplemented with folic acid (FA) [WT+FA and CBS+/−+ Met+FA, respectively, 0.0057-μg g−1 day−1 dose in drinking water/4 weeks]. Hyperhomocysteinemia in CBS+/−+Met mouse brain was accompanied by a decrease in methylenetet-rahydrofolate reductase and an increase in S-adenosylho-mocysteine hydrolase expression, symptoms of oxidative stress, upregulation of DNA methyltransferases, rise in matrix metalloproteinases, a drop in the tissue inhibitors of metallo-proteinases, decreased expression of tight junction proteins, increased permeability of the blood–brain barrier, neuro-degeneration, and synaptotoxicity. Supplementation of folic acid to CBS+/−+Met mouse brain led to a decrease in the homocysteine level and rescued pathogenic and epigenetic alterations, showing its protective efficacy against homocysteine-induced neurotoxicity. PMID:24122186

  10. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men.

    PubMed

    Raigani, M; Yaghmaei, B; Amirjannti, N; Lakpour, N; Akhondi, M M; Zeraati, H; Hajihosseinal, M; Sadeghi, M R

    2014-01-01

    We investigated the effects of folic acid and zinc sulphate supplementation on the improvement of sperm function in subfertile oligoasthenoteratozoospermic (OAT) men. Eighty-three OAT men participated in a 16-week intervention randomised, double-blind clinical trial with daily treatment of folic acid (5 mg day(-1) ) and zinc sulphate (220 mg day(-1) ), or placebo. Before and after treatment, semen and blood samples were obtained for determining sperm concentration, motility, and morphology, sperm viability, sperm mitochondrial function, sperm chromatin status using toluidine blue, aniline blue, acridine orange and chromomycin A3 staining; and semen and blood folate, zinc, B12 , total antioxidant capacity (TAC) and malondialdehyde (MDA) concentrations. Sperm concentration (×10(6)  ml(-1) ) increased in subfertile men receiving the combined treatment of folic acid and zinc sulphate and also in the group receiving only folic acid treatment; however, it was not statistically significant (P = 0.056 and P = 0.05, respectively). Sperm chromatin integrity (%) increased significantly in subfertile men receiving only zinc sulphate treatment (P = 0.048). However, this improvement in sperm quality was not significant after adjusting placebo effect. This study showed that zinc sulphate and folic acid supplementation did not ameliorate sperm quality in infertile men with severely compromised sperm parameters, OAT. Male infertility is a multifactorial disorder, and also nutritional factors play an important role in results of administration of supplementation on sperm parameters. However, these results should be confirmed by multiple studies in larger populations of OAT men.

  11. Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro.

    PubMed

    Chu, Xi; Wang, Hua; Jiang, Yan-min; Zhang, Yuan-yuan; Bao, Yi-fan; Zhang, Xuan; Zhang, Jian-ping; Guo, Hui; Yang, Fan; Luan, Yan-chao; Dong, Yong-sheng

    2016-01-01

    We investigated the ameliorative effects and potential mechanisms of tannic acid (TA) in carbon tetrachloride (CCl4)-intoxicated mice and hepatic stellate cells (HSCs). Liver fibrosis was observed in CCl4 (800 ml/kg)-induced mice, and high viability was observed in CCl4 (10 mM)-intoxicated HSCs. Pre-treatment of mice with TA (25 or 50 g/kg/day) significantly ameliorated hepatic morphology and coefficient values and reduced the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the concentrations of malondialdehyde (MDA) and serum levels of endothelin-1 (ET-1). In addition, TA increased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and endothelial nitric oxide synthase (eNOS) and the serum level of NO. Moreover, TA reduced the expression of angiotensin II receptor-1 (ATR-1), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), caspase-3, c-fos, c-jun, the ratio of Bax/bcl-2, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TA increased matrix metal proteinase-9 (MMP-9), matrix metalloproteinase-1 (MMP-1). Furthermore, TA (0.01 μM, 0.1 μM or 1 μM) decreased the TIMP-1/MMP-1 ratio and reduced the viability of HSCs. These results indicated that TA exerts significant liver-protective effects in mice with CCl4-induced liver fibrosis. The potential mechanism may rely on the inhibition of collagen accumulation, oxidative stress, inflammation and apoptosis. PMID:26810570

  12. AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...

  13. Ethyl pyruvate ameliorates experimental colitis in mice by inhibiting the HMGB1-Th17 and Th1/Tc1 responses.

    PubMed

    Guo, Xianghua; Guo, Runhua; Luo, Xia; Zhou, Lian

    2015-12-01

    Ethyl pyruvate (EP), a simple lipophilic pyruvate ester, has demonstrated protective effects against murine colitis through inhibition the release of inflammatory factor high-mobility group protein box 1 (HMGB1). HMGB1 has been implicated in several autoimmune diseases by inducing Thl and Thl7 cells activation. This study was designed to investigate whether EP amelioration of murine colitis is related to the blocking of the HMGB1-Th17/Thl pathway. We induced murine colitis by intrarectal administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Ethyl pyruvate was injected intraperitoneally once a day for 7days. One week after intrarectal challenge with TNBS, HMGB1, IL-17 and IFN-γ protein levels were remarkably increased following severe colon inflammation. Meanwhile, excessive infiltration of Th17 cells in colonic tissues, and an upregulated proportion of Th17 and Th1/Tc1 cells in the spleen and mesenteric lymph nodes (MLN) were found in the TNBS-treated group compared to the control group. Treatment with the HMGB1 inhibitor EP not only remarkably improved colon pathological damage, but also significantly reduced the number of Th17 cells in the local tissues of the colitis-induced mice. Furthermore, the percentage of Th1/Tc1 and Th17 cells in the spleen and MLN, as well as levels of serum IFN-γ and IL-17A, were all markedly decreased in the EP-treated group. Moreover, in vitro, our results showed that EP in a dose dependent manner inhibited HMGB1 release induced by LPS from CT26 cells (murine colon adenocarcinoma cell line). These results suggest that HMGB1 contributes to the development of murine colitis by promoting the Th17 and Th1/Tc1 responses, and that EP can significantly inhibit HMGB1-Th17 and Thl/Tc1 pathway activation, which may provide better protection to mice with TNBS-induced colitis.

  14. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  15. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  16. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    PubMed

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX.

  17. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation.

    PubMed

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  18. Pentoxifylline ameliorates non-alcoholic fatty liver disease in hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation

    PubMed Central

    Ye, Jia-Hung; Chao, Jung; Chang, Ming-Ling; Peng, Wen-Huang; Cheng, Hao-Yuan; Liao, Jiunn-Wang; Pao, Li-Heng

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), which includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis, is characterised by abnormal fat accumulation in the liver in the absence of excessive alcohol intake. In patients with type 2 diabetes (T2D), concurrent NAFLD might increase the risk of chronic kidney disease and the mortality rate. Although several studies have examined the effectiveness of pentoxifylline (PTX) in NAFLD treatment, no results are available to verify the effectiveness of PTX in treating T2D associated with NAFLD. In this study, we developed a combined high-fat diet-induced obesity and low-dose streptozocin-induced hyperglycaemia mouse model to mimic the concurrent NAFLD and T2D pathological condition. By combining physiological assessments, pathological examinations, metabolomics studies on blood, urine, and liver, and measurements of gene and protein expression, we elucidated the effectiveness and the underlying mechanism of action of PTX in the hyperglycaemic and dyslipidaemic mice. Our results revealed that PTX ameliorated NAFLD in the hyperglycaemic and dyslipidaemic mice by upregulating fatty acid β-oxidation. Furthermore, the glycolysis pathway and branched-chain amino acid-related pathways in these mice were restored by PTX. PMID:27612024

  19. Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats

    PubMed Central

    2014-01-01

    Background Caffeic acid phenethyl ester (CAPE) has been shown to protect the heart against ischemia/reperfusion (I/R) injury by various mechanisms including its antioxidant effect. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. Methods Type 1 diabetes mellitus was induced in Sprague–Dawley rats by a single intravenous injection of 60 mg/kg STZ. To produce the I/R injury, the left anterior descending coronary artery was occluded for 45 minutes, followed by 2 hours of reperfusion. CAPA was pretreated intraperitoneally 30 minutes before reperfusion. An analog devoid of the antioxidant property of CAPA, dimethoxyl CAPA (dmCAPA), and a nitric oxide synthase (NOS) inhibitor (Nω-nitro-l-arginine methyl ester [l-NAME]) were used to evaluate the mechanism involved in the reduction of the infarct size following CAPA-treatment. Finally, the cardioprotective effect of chronic treatment of CAPA was analyzed in diabetic rats. Results Compared to the control group, CAPA administration (3 and 15 mg/kg) significantly reduced the myocardial infarct size after I/R, while dmCAPA (15 mg/kg) had no cardioprotective effect. Interestingly, pretreatment with a NOS inhibitor, (l-NAME, 3 mg/kg) eliminated the effect of CAPA on myocardial infarction. Additionally, a 4-week CAPA treatment (1 mg/kg, orally, once daily) started 4 weeks after STZ-induction could effectively decrease the infarct size and ameliorate the cardiac dysfunction by pressure-volume loop analysis in STZ-induced diabetic animals. Conclusions CAPA, which is structurally similar to CAPE, exerts cardioprotective activity in I/R injury through its antioxidant property and by preserving nitric oxide levels. On the other hand, chronic CAPA treatment could also ameliorate cardiac dysfunction in diabetic animals. PMID:24923878

  20. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    SciTech Connect

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-12-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of {beta}-rays from 22.5 mm diameter {sup 90}Sr/{sup 90}Y plaques at a dose rate of {approximately}3 Gy/min. Essential fatty acids were administered orally in the form of two {open_quotes}active{close_quotes} oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a {open_quotes}placebo{close_quotes} oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when {open_quotes}active{close_quotes} oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of {beta}-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs.

  1. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus.

  2. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest potential for expanding the world’s agricultural frontier lies in the savanna regions of the tropics, which are dominated by Oxisols. Soil acidity and low native fertility, however, are major constraints for crop production on tropical Oxisols. Soil acidification is an ongoing natural p...

  3. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-01-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1. PMID:26030156

  4. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  5. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  6. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    PubMed

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  7. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  8. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude

    PubMed Central

    Faramoushi, Mahdi; Amir Sasan, Ramin; Sari Sarraf, Vahid; Karimi, Pouran

    2016-01-01

    Introduction: Chronic intermittent hypoxia is considered as a preconditioning status in cardiovascular health to inducing resistance to the low oxygen supply. Diabetic cardiomyopathy leads to inability of the heart to effective circulation of blood preventing of consequent tissue damages so; the aim of this study was elucidation of effect of chronic exposure to hypoxia on Cardiac fibrosis and expression of GLUT4 in experimental diabetic cardiomyopathy. Methods: A total number of 30 rats were randomly divided into three groups; 1: Normoxia control group (NN, n = 10). 2: Normoxia diabetic group (ND, n = 10) that took fat diet for 2 weeks then were injected by streptozotocin (37 mg/kg) and 3: Hypoxia diabetic group (HD, n = 10): that were exposed to chronic intermittent hypoxia (CIH) (altitude ≈3400 m, 14% oxygen for 8 weeks). After hypoxia challenge, plasma metabolic parameters including: fasting blood glucose (FBS), triglyceride (TG) and total cholesterol (TC) were measured by colorimetric assay. Cardiac expression of GLUT4 protein and cardiac collagen accumulation were determined in the excised left ventricle by western blotting, and Masson trichrome staining respectively. Results: Based on resultant data, FBS, TG and TC were significantly (P < 0.05) decreased in HD vs. ND. Homeostasis Model Assessment (HOMA) were also significantly attenuated after exposed to CIH in HD group compared to ND group (P < 0.05). Significant increase in packed cell volume and hemoglobin concentration was observed in HD group compared to ND group (P < 0.05). Comparison of heart wet weight between three groups showed a significant difference (P < 0.05) with lower amount in HD and ND versus NN. Myocardial fibrosis was significantly more pronounced in ND when compared to NN. Eight weeks exposure to hypoxia ameliorated this increase in HD group. Intermittent hypoxia significantly increased GLUT4 protein expression in HD compared to ND group (P < 0.05). Conclusion: Data suggested that CIH

  9. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    PubMed

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells.

  10. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  11. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  12. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity.

  13. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf . E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  14. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation

    PubMed Central

    Thamphiwatana, Soracha; Gao, Weiwei; Obonyo, Marygorret; Zhang, Liangfang

    2014-01-01

    Helicobacter pylori infection is marked by a vast prevalence and strong association with various gastric diseases, including gastritis, peptic ulcers, and gastric cancer. Because of the rapid emergence of H. pylori strains resistant to existing antibiotics, current treatment regimens show a rapid decline of their eradication rates. Clearly, novel antibacterial strategies against H. pylori are urgently needed. Here, we investigated the in vivo therapeutic potential of liposomal linolenic acid (LipoLLA) for the treatment of H. pylori infection. The LipoLLA formulation with a size of ∼100 nm was prone to fusion with bacterial membrane, thereby directly releasing a high dose of linolenic acids into the bacterial membrane. LipoLLA penetrated the mucus layer of mouse stomach, and a significant portion of the administered LipoLLA was retained in the stomach lining up to 24 h after the oral administration. In vivo tests further confirmed that LipoLLA was able to kill H. pylori and reduce bacterial load in the mouse stomach. LipoLLA treatment was also shown to reduce the levels of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor alpha, which were otherwise elevated because of the H. pylori infection. Finally, a toxicity test demonstrated excellent biocompatibility of LipoLLA to normal mouse stomach. Collectively, results from this study indicate that LipoLLA is a promising, effective, and safe therapeutic agent for the treatment of H. pylori infection. PMID:25422427

  15. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels.

    PubMed

    Green, Kim N; Martinez-Coria, Hilda; Khashwji, Hasan; Hall, Eileen B; Yurko-Mauro, Karin A; Ellis, Lorie; LaFerla, Frank M

    2007-04-18

    The underlying cause of sporadic Alzheimer disease (AD) is unknown, but a number of environmental and genetic factors are likely to be involved. One environmental factor that is increasingly being recognized as contributing to brain aging is diet, which has evolved markedly over modern history. Here we show that dietary supplementation with docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, in the 3xTg-AD mouse model of AD reduced the intraneuronal accumulation of both amyloid-beta (Abeta) and tau. In contrast, combining DHA with n-6 fatty acids, either arachidonic acid or docosapentaenoic acid (DPAn-6), diminished the efficacy of DHA over a 12 month period. Here we report the novel finding that the mechanism accounting for the reduction in soluble Abeta was attributable to a decrease in steady-state levels of presenilin 1, and not to altered processing of the amyloid precursor protein by either the alpha- or beta-secretase. Furthermore, the presence of DPAn-6 in the diet reduced levels of early-stage phospho-tau epitopes, which correlated with a reduction in phosphorylated c-Jun N-terminal kinase, a putative tau kinase. Collectively, these results suggest that DHA and DPAn-6 supplementations could be a beneficial natural therapy for AD.

  16. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    SciTech Connect

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  17. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats.

    PubMed

    Alcaraz-Contreras, Y; Mendoza-Lozano, R P; Martínez-Alcaraz, E R; Martínez-Alfaro, M; Gallegos-Corona, M A; Ramírez-Morales, M A; Vázquez-Guevara, M A

    2016-04-01

    We studied the effect of silymarin and dimercaptosuccinic acid (DMSA), a chelating agent that was administered individually or in combination against lead (Pb) toxicity in rats. Wistar rats (200 ± 20) were randomly divided into five groups. Group A served as a control. Groups B-E were exposed to 2000 ppm of lead acetate in drinking water for 8 weeks. Group B served as a positive control. Group C received silymarin (100 mg kg(-1) orally) for 8 weeks. Group D received DMSA (75 mg kg(-1) orally) once daily for the last 5 days of treatment. Group E received DMSA and silymarin as groups C and D, respectively. The effect of Pb was evaluated and accordingly the treatments on blood lead levels (BLLs), renal system, and genotoxic effects were calculated using comet assay. The BLLs were significantly increased following the exposition of lead acetate. The administration of silymarin and DMSA provided reduction in BLLs. Silymarin and DMSA provided significant protection on the genotoxic effect of Pb. The toxic effect of Pb on kidneys was also studied. Our data suggest that silymarin and DMSA improve the renal histopathological lesions.

  18. Acid Sphingomyelinase Gene Deficiency Ameliorates the Hyperhomocysteinemia-Induced Glomerular Injury in Mice

    PubMed Central

    Boini, Krishna M.; Xia, Min; Li, Caixia; Zhang, Chun; Payne, Lori P.; Abais, Justine M.; Poklis, Justin L.; Hylemon, Philip B.; Li, Pin-Lan

    2011-01-01

    Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm−/−) and wild-type (Asm+/+) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm+/+ mice compared with that from Asm−/− or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm+/+ mice but not in those from Asm−/− and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase–associated local oxidative stress during hHcys. PMID:21893018

  19. Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes.

    PubMed

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2007-12-01

    Arsenic is a potent environmental toxin. Present study has been designed to evaluate the protective role of taurine (2-aminoethanesulfonic acid) against arsenic induced cytotoxicity in murine hepatocytes. Sodium arsenite (NaAsO(2)) was chosen as the source of arsenic. Incubation of hepatocytes with the toxin (1 mM) for 2 h reduced the cell viability as well as intra-cellular antioxidant power. Increased activities of alanine transaminase (ALT) and alkaline phosphatase (ALP) due to toxin exposure confirmed membrane damage. Toxin treatment caused reduction in the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). In addition, the same treatment reduced the level of glutathione (GSH), elevated the level of oxidized glutathione (GSSG) and increased the extent of lipid peroxidation. Incubation of hepatocytes with taurine, both prior to and in combination with NaAsO(2), attenuated the extent of lipid peroxidation and enhanced the activities of enzymatic as well as non enzymatic antioxidants. Besides, taurine administration normalized the arsenic-induced enhanced levels of the marker enzymes ALT and ALP in hepatocytes. The cytoprotective activity of taurine against arsenic poisoning was found to be comparable to that of a known antioxidant, vitamin C. Combining all, the results suggest that taurine protects mouse hepatocytes against arsenic induced cytotoxicity.

  20. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  1. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    PubMed

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects.

  2. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation.

    PubMed

    Bakhtiari, Nuredin; Hosseinkhani, Saman; Tashakor, Amin; Hemmati, Roohullah

    2015-07-01

    Ursolic acid (UA) is a lipophilic compound, which highly found in apple peels. UA has some certain features, of the most important is its anabolic effects on skeletal muscles, which in turn plays a prominent role in the aging process, encouraged us to evaluate skeletal muscle rejuvenation. This study seeks to address the two following questions: primarily, we wonder to know if UA increases anti-aging biomarkers (SIRT1 and PGC-1α) in the isolated satellite cells, to pave the way for satellite cells proliferation. The results revealed that UA elevated the expression of SIRT1 (∼ 35 folds) and PGC-1α (∼ 175 folds) genes. The other question that needs to be asked, however, is to understand whether it is possible to generalize the in vitro findings to in vivo. For this, a study was designed to investigate the effects of UA on the cellular energy status in the animal models (C57BL/6 mice). We found that UA decreased cellular energy charges such as ATP (∼ 3 times) and ADP (∼ 18 times). With respect to the role of UA in energy expenditure and as an anti-aging biomarker, one might wonder to elucidate skeletal muscle rejuvenation as well as satellite cells proliferation and neomyogenesis. The results illustrated that UA boosted neomyogenesis through enhancing the number of satellite cells. In addition, rejuvenation effects of UA on the skeletal muscle promptly encouraged us to reexamine the performance of skeletal muscles. The results indicated that UA through increasing myoglobin expression (∼ 2 folds) accompanied with transforming of glycolytic to fast oxidative status chiefly and slow-twitch muscle fibers. To the best of our knowledge, it seems that UA might be considered as a potential candidate for treatment of pathological conditions associated with muscular atrophy and dysfunction, including skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS), sarcopenia and metabolic diseases of the muscles.

  3. Mitochonic Acid 5 Binds Mitochondria and Ameliorates Renal Tubular and Cardiac Myocyte Damage.

    PubMed

    Suzuki, Takehiro; Yamaguchi, Hiroaki; Kikusato, Motoi; Hashizume, Osamu; Nagatoishi, Satoru; Matsuo, Akihiro; Sato, Takeya; Kudo, Tai; Matsuhashi, Tetsuro; Murayama, Kazutaka; Ohba, Yuki; Watanabe, Shun; Kanno, Shin-Ichiro; Minaki, Daichi; Saigusa, Daisuke; Shinbo, Hiroko; Mori, Nobuyoshi; Yuri, Akinori; Yokoro, Miyuki; Mishima, Eikan; Shima, Hisato; Akiyama, Yasutoshi; Takeuchi, Yoichi; Kikuchi, Koichi; Toyohara, Takafumi; Suzuki, Chitose; Ichimura, Takaharu; Anzai, Jun-Ichi; Kohzuki, Masahiro; Mano, Nariyasu; Kure, Shigeo; Yanagisawa, Teruyuki; Tomioka, Yoshihisa; Toyomizu, Masaaki; Tsumoto, Kohei; Nakada, Kazuto; Bonventre, Joseph V; Ito, Sadayoshi; Osaka, Hitoshi; Hayashi, Ken-Ichi; Abe, Takaaki

    2016-07-01

    Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction. PMID:26609120

  4. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    PubMed

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  5. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease

  6. Treatment with a novel oleic-acid-dihydroxyamphetamine conjugation ameliorates non-alcoholic fatty liver disease in obese Zucker rats.

    PubMed

    Decara, Juan M; Pavón, Francisco Javier; Suárez, Juan; Romero-Cuevas, Miguel; Baixeras, Elena; Vázquez, Mariam; Rivera, Patricia; Gavito, Ana L; Almeida, Bruno; Joglar, Jesús; de la Torre, Rafael; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2015-10-01

    Fatty liver disease is one of the main hepatic complications associated with obesity. To date, there are no effective treatments for this pathology apart from the use of classical fibrates. In this study, we have characterized the in vivo effects of a novel conjugation of oleic acid with an amphetamine derivative (OLHHA) in an animal model of genetic obesity. Lean and obese Zucker rats received a daily intraperitoneal administration of OLHHA (5 mg kg(-1)) for 15 days. Plasma and liver samples were collected for the biochemical and molecular biological analyses, including both immunohistochemical and histological studies. The expression of key enzymes and proteins that are involved in lipid metabolism and energy homeostasis was evaluated in the liver samples. The potential of OLHHA to produce adverse drug reactions or toxicity was also evaluated through the monitoring of interactions with hERG channel and liver cytochrome. We found that OLHHA is a drug with a safe pharmacological profile. Treatment for 15 days with OLHHA reduced the liver fat content and plasma triglyceride levels, and this was accompanied by a general improvement in the profile of plasma parameters related to liver damage in the obese rats. A decrease in fat accumulation in the liver was confirmed using histological staining. Additionally, OLHHA was observed to exert anti-apoptotic effects. This hepatoprotective activity in obese rats was associated with an increase in the mRNA and protein expression of the cannabinoid type 1 receptor and a decrease in the expression of the lipogenic enzymes FAS and HMGCR primarily. However, changes in the mRNA expression of certain proteins were not associated with changes in the protein expression (i.e. L-FABP and INSIG2). The present results demonstrate that OLHHA is a potential anti-steatotic drug that ameliorates the obesity-associated fatty liver and suggest the potential use of this new drug for the treatment of non-alcoholic fatty liver disease.

  7. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  8. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard

    PubMed Central

    2013-01-01

    Background Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. Methods LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection. Results Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Conclusion The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23634883

  9. Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase

    PubMed Central

    Boini, Krishna M.; Xia, Min; Abais, Justine M.; Xu, Ming; Li, Cai-xia; Li, Pin-Lan

    2012-01-01

    Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2.− level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2.− level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2.− production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or

  10. Potency of pre–post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism

    PubMed Central

    El-Ansary, Afaf; Al-Ghamdi, Mashael; Bhat, Ramesa Shafi; Al-daihan, Sooad; Al-Ayadhi, Laila

    2016-01-01

    Background Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. Objective This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA)–treated rats. Design Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group). The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. Results The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre–post melatonin and coenzyme Q groups. Conclusions Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups. PMID:26945230

  11. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia.

    PubMed

    Neha; Kumar, Amit; Jaggi, Amteshwar S; Sodhi, Rupinder K; Singh, Nirmal

    2014-08-01

    A huge body evidences suggest that obesity is the single great risk factor for the development of dementia. Recently, silymarin, a flavonoid, clinically in use as a hepatoprotectant, has been reported to prevent amyloid beta-induced memory impairment by reducing oxidative stress and inflammation in mice brain. However, its potential in high-fat-diet (HFD)-induced dementia has not yet been investigated. Therefore, the present study is designed to explore the role of silymarin in HFD-induced experimental dementia in mice. Morris water maze test was employed to assess learning and memory. Various biochemical estimations including brain acetylcholinerstarse activity (AchE), thiobarbituric acid-reactive species (TBARS) level, reduced glutathione level (GSH), nirate/nitrite, and myeloperoxidase (MPO) activity were measured. Serum cholesterol level was also determined. HFD significantly impaired the cognitive abilities, along with increasing brain AchE, TBARS, MPO, nitrate/nitrite, and serum cholesterol levels. Marked reduction of brain GSH levels was observed. On the contrary, silymarin significantly reversed HFD-induced cognitive deficits and the biochemical changes. The present study indicates strong potential of silymarin in HFD-induced experimental dementia.

  12. Trichosanthes dioica fruit ameliorates experimentally induced arsenic toxicity in male albino rats through the alleviation of oxidative stress.

    PubMed

    Bhattacharya, Sanjib; Haldar, Pallab Kanti

    2012-08-01

    The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.

  13. 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape.

    PubMed

    Ali, Basharat; Huang, C R; Qi, Z Y; Ali, Shafaqat; Daud, M K; Geng, X X; Liu, H B; Zhou, W J

    2013-10-01

    Due to its prolific growth, oilseed rape (Brassica napus L.) can be grown successfully for phytoremediation of cadmium (Cd)-contaminated soils. Nowadays, use of plant growth regulators against heavy metals stress is one of the major objectives of researchers. The present study evaluates the ameliorate effects of 5-aminolevulinic acid (ALA, 0, 0.4, 2, and 10 mg/l) on the growth of oilseed rape (B. napus L. cv. ZS 758) seedlings under Cd stress (0, 100, and 500 μM). Results have shown that Cd stress hampered the seedling growth by decreasing the radical and hypocotyls length, shoot and root biomass, chlorophyll content, and antioxidants enzymes. On the other hand, Cd stress increased the level of malondialdehyde (MDA) and production of H2O2 and accumulation of Cd in the shoots. The microscopic study of leaf mesophyll cells showed that toxicity of Cd totally destroyed the whole cell structure, and accumulation of Cd also appeared in micrographs. Application of ALA at lower dosage (2 mg/l) enhanced the seedling growth and biomass. The results showed that 2 mg/l ALA significantly improved chlorophyll content under Cd stress and decreased the level of Cd contents in shoots. Application of ALA reduced the MDA and H2O2 levels in the cotyledons. The antioxidants enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, and superoxide dismutase) enhanced their activities significantly with the application of 2 mg/l ALA under Cd stress. This study also indicated that higher dosage of ALA (10 mg/l) imposed the negative effect on the growth of oilseed rape. Microscopic study showed that application of ALA alleviated the toxic effects of Cd in the mesophyll cell and improved the cell structure. Use of 2 mg/l ALA under 500 μM Cd was found to be more effective, and under this dosage, cell structure was clear, with obvious cell wall and cell membrane as well as a big nucleus, which was found with well-developed two or more nucleoli. Chloroplast was almost round

  14. Ameliorative effects of glycine in an experimental nonalcoholic steatohepatitis and its correlation between TREM-1 and TREM-2

    PubMed Central

    Dou, Zhang-Feng; Guo, Ya-Rong; Liu, Jin-Chun; Li, Ning; Chai, Bao; Li, Xiu-Qing; Fu, Rong; Wang, Xiao-Juan

    2016-01-01

    Inflammation plays an important role in Nonalcoholic Steatohepatitis (NASH), triggering receptor expressed on myeloid cells-1 and 2 (TREM-1 and TREM-2) modulates inflammatory and innate immune, they have been investigated in various inflammatory diseases, but not in NASH. Meanwhile we added glycine in HFO (HFOG) to investigate if the liver pathologic relief is related with TREM-1 and TREM-2. Liver tissue staining and serum indexes showed that the NASH was successful from the 4th weekend and glycine can improved many features of NASH. Results from Q-PCR and ELISA study showed that compareaded with control, TREM-1 is upregulated and TREM-2 is downregulated respectively in 4 and 8-week NASH model (TREM-1: p < 0.001; TREM-2: p < 0.001).Compared with HFO group, HFOG group with an extra 5% Glycine into the diet of NASH, we found that all model liver pathologic and serum indexes ameliorated in this group. Furthermore, Results from Q-PCR and ELISA study showed that compareaded with HFO group, TREM-2 of this group is upregulated and TREM-1 is downregulated respectively from the 4th weekend, which is more significant at the 8th weekend (TREM-1: p <0.001; TREM-2: p =0.048). Pearson correlation showed that TREM-1 and TREM-2 were closely associated with serum ET, TNF-α, TLR-4 and PC III. Besides, using multiple-stepwise regression analysis, we found that the ameliorative effects of glycine in HFOG was mainly related to its counteraction of PC III, TREM-1 and upregulation of TREM-2. Furthermore, we detected the expression of TREM-1 and TREM-2 in gall stone patients without drinking excessively before undergoing cholecystectomy, and found that the rise of TREM-1 and reduction of TREM-2 was close associated with the severity of fatty liver. To conclude, our results support the concept that TREM-1 and TREM-2 were close strongly linked to NASH and NALFD. Glycine can relieve NASH by its anti-fibrosis effect, and this ameliorative effect is related to the expression change of TREM-1

  15. Ameliorative effects of glycine in an experimental nonalcoholic steatohepatitis and its correlation between TREM-1 and TREM-2.

    PubMed

    Dou, Zhang-Feng; Guo, Ya-Rong; Liu, Jin-Chun; Li, Ning; Chai, Bao; Li, Xiu-Qing; Fu, Rong; Wang, Xiao-Juan

    2016-01-01

    Inflammation plays an important role in Nonalcoholic Steatohepatitis (NASH), triggering receptor expressed on myeloid cells-1 and 2 (TREM-1 and TREM-2) modulates inflammatory and innate immune, they have been investigated in various inflammatory diseases, but not in NASH. Meanwhile we added glycine in HFO (HFOG) to investigate if the liver pathologic relief is related with TREM-1 and TREM-2. Liver tissue staining and serum indexes showed that the NASH was successful from the 4(th) weekend and glycine can improved many features of NASH. Results from Q-PCR and ELISA study showed that compareaded with control, TREM-1 is upregulated and TREM-2 is downregulated respectively in 4 and 8-week NASH model (TREM-1: p < 0.001; TREM-2: p < 0.001).Compared with HFO group, HFOG group with an extra 5% Glycine into the diet of NASH, we found that all model liver pathologic and serum indexes ameliorated in this group. Furthermore, Results from Q-PCR and ELISA study showed that compareaded with HFO group, TREM-2 of this group is upregulated and TREM-1 is downregulated respectively from the 4(th) weekend, which is more significant at the 8(th) weekend (TREM-1: p <0.001; TREM-2: p =0.048). Pearson correlation showed that TREM-1 and TREM-2 were closely associated with serum ET, TNF-α, TLR-4 and PC III. Besides, using multiple-stepwise regression analysis, we found that the ameliorative effects of glycine in HFOG was mainly related to its counteraction of PC III, TREM-1 and upregulation of TREM-2. Furthermore, we detected the expression of TREM-1 and TREM-2 in gall stone patients without drinking excessively before undergoing cholecystectomy, and found that the rise of TREM-1 and reduction of TREM-2 was close associated with the severity of fatty liver. To conclude, our results support the concept that TREM-1 and TREM-2 were close strongly linked to NASH and NALFD. Glycine can relieve NASH by its anti-fibrosis effect, and this ameliorative effect is related to the expression change of

  16. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression.

    PubMed

    Peng, Jing-Hua; Cui, Tuan; Huang, Fu; Chen, Liang; Zhao, Yu; Xu, Lin; Xu, Li-Li; Feng, Qin; Hu, Yi-Yang

    2013-03-01

    Puerarin, an isoflavone component extracted from Kudzu (Pueraria lobata), has been demonstrated to alleviate alcohol-related disorders. Our study examined whether puerarin ameliorates chronic alcoholic liver injury through inhibition of endotoxin gut leakage, the subsequent Kupffer cell activation, and endotoxin receptors expression. Rats were provided with the Liber-DeCarli liquid diet for 8 weeks. Puerarin (90 mg/kg or 180 mg/kg daily) was orally administered from the beginning of the third week until the end of the experiment. Chronic alcohol intake caused increased serum alanine aminotransferase, aspartate aminotransferase, hepatic gamma-glutamyl transpeptidase, and triglyceride levels as well as fatty liver and neutrophil infiltration in hepatic lobules as determined by biochemical and histologic assays. A significant increase of liver tumor necrosis factor α was detected by enzyme-linked immunosorbent assay. These pathologic effects correlated with increased endotoxin level in portal vein and upregulated protein expression of hepatic CD68, lipopolysaccharide-binding protein, CD14, Toll-like receptor 2, and Toll-like receptor 4. Meanwhile, the intestinal microvilli were observed to be sparse, shortened, and irregularity in distribution under the transmission electron microscope in conjunction with the downregulated intestinal zonula occludens-1 protein expression. These hepatic pathologic changes were significantly inhibited in puerarin-treated animals as were the endotoxin levels and hepatic CD68 and endotoxin receptors. Moreover, the pathologic changes in intestinal microvillus and the decreased intestinal zonula occludens-1 were also ameliorated with puerarin treatment. These results thus demonstrate that puerarin inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression is involved in the alleviation of chronic alcoholic liver injury in rats.

  17. Amelioration of sodium valproate-induced neural tube defects in mouse fetuses by maternal folic acid supplementation during gestation.

    PubMed

    Padmanabhan, R; Shafiullah, M Mohamed

    2003-03-01

    Infants of epileptic women treated with valproic acid (VPA) during pregnancy have a higher risk of developing spina bifida than those of the general population. VPA induces exencephaly in experimental animal embryos. But the pathogenetic mechanism remains rather elusive. Antiepileptic drugs (AED) in general accentuate pregnancy-imposed fall in maternal folate levels. Periconceptional folic acid supplementation is reported to protect embryos from developing neural tube defects (NTD). Conflicting results have been reported by experimental studies that attempted to alleviate VPA-induced NTD by folic acid. Our objectives were to determine the critical developmental stages and an effective dose of folic acid for the prevention of VPA-induced exencephaly in mouse fetuses. A single teratogenic dose of 400 mg/kg of VPA was administered to TO mice on gestation day (GD) 7 or 8. It was followed by (1) a single dose of 12 mg/kg of FA (folinic acid) or (2) 3 doses of FA 4 mg/kg each. In experiment (3), FA (4 mg/kg) was administered thrice daily starting on GD 5 and continued through GD 10. These animals received VPA on GD 7 or 8. VPA and B12 concentrations were determined by radioimmunoassay. The single heavy dose of FA had no rescue effect on NTD. Three divided doses of FA on GD 7 and continuous dosing of FA from GD 5 through GD 10 substantially reduced the VPA-induced exencephaly in the fetuses. In the later experiments, the neural folds elevated faster than the non-supplemented group. VPA considerably reduced maternal plasma folate and B12 concentrations. The heavy dose of FA only moderately improved vitamin levels. Three divided doses of FA elevated the vitamin levels slightly better but it was the prolonged dosing of FA that was associated with sustained elevation of plasma levels higher than the control levels and acceleration of neural tube closure thus accounting for the pronounced protection against VPA-induced NTD development. These data suggest that plasma levels of

  18. Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease

    PubMed Central

    2013-01-01

    Background Camel milk (CM) is gaining increasing recognition due to its beneficial effects in the control and prevention of multiple health problems. The current study aimed to investigate the effects of CM on the hepatic biochemical and cellular alterations induced by a high-fat, cholesterol-rich diet (HCD), specifically, non-alcoholic fatty liver disease (NAFLD). Methods Seventy male Wistar rats were divided into four groups: the Control (C) Group fed a standard diet; the Control + camel milk (CCM) Group fed a standard diet and CM, the Cholesterol (Ch) Group fed a HCD with no CM, and the Cholesterol + camel milk (ChM) Group fed a HCD and CM. The following parameters were investigated in the studied groups; basal, weekly random and final fasting blood glucose levels, intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT), serum insulin, serum lipids, liver functions, lipid peroxidation products, the antioxidant activity of catalase (CAT) and the levels of reduced glutathione (GSH). In addition, HOMA-IR as an index of insulin resistance (IR) and the histopathology of the hepatic tissue were assessed. Results The Ch Group developed features similar to those of non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis; inflammatory cellular infiltration in liver tissue; altered liver functions; and increased total cholesterol, triglycerides, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, atherogenic index (AI), blood glucose, IR, and malondialdehyde (MDA) levels. Additionally, feeding the HCD to animals in the Ch Group decreased CAT activity and the GSH and high-density lipoprotein (HDL) cholesterol levels. Camel milk intake for eight weeks decreased hepatic fat accumulation and inflammatory cellular infiltration, preserved liver function, increased the GSH levels and CAT activity, decreased the MDA levels, and ameliorated the changes in the lipid profile, AI, and IR in animals from the Ch

  19. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats

    PubMed Central

    Ding, Chunchun; Zhao, Yan; Shi, Xue; Zhang, Ning; Zu, Guo; Li, Zhenlu; Zhou, Junjun; Gao, Dongyan; Lv, Li; Tian, Xiaofeng; Yao, Jihong

    2016-01-01

    Salvianolic acid A (SalA), one of the most efficacious polyphenol compounds extracted from Radix Salvia miltiorrhiza (Danshen), has been shown to possess many potential pharmacological activities. This study aimed to investigate whether SalA has hepatoprotective effects against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and to further explore the mechanism underlying this process. SalA treatment significantly attenuated HFD-induced obesity and liver injury, and markedly decreased lipid accumulation in HFD-fed rat livers. Moreover, SalA treatment ameliorated HFD-induced hepatic inflammation and oxidative stress by decreasing hepatotoxic levels of cytokines, suppressing the overproduction of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) and preventing the decreased expression of superoxide dismutase (SOD). Importantly, SalA reversed the HFD- or palmitic acid (PA)-induced activation of the NLRP3 inflammasome, the nuclear translocation of ChREBP and the up-regulation of FAS, and these effects were accompanied by TXNIP down-regulation. However, TXNIP siRNA treatment partially abrogated the above-mentioned effects of SalA in PA-treated HepG2 cells. Together, our results demonstrated, for the first time, that SalA protects against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation, and these protective effects may partially due to regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways. PMID:27345365

  20. Ameliorative Effect of Vanillic Acid on Serum Bilirubin, Chronotropic and Dromotropic Properties in the Cholestasis-Induced Model Rats

    PubMed Central

    Atefipour, Narges; Dianat, Mahin; Badavi, Mohammad; Sarkaki, Alireza

    2016-01-01

    Introduction The liver modulates several important roles, such as metabolism and liver cirrhosis, which have several cardiovascular problems. Due to preservative role of antioxidant agents in cardiovascular disease, consequently, many of them are applied as medicinal plants in traditional medicine. Vanillic acid (VA), as an antioxidant agent, has a principal preservative role on some diseases. In this study, the effect of vanillic acid was examined on heart rate (as chronotropic property), P-R interval (as dromotropic property), and serum bilirubin in cholestasis-induced model rats. Methods In this study, 32 male Sprague-Dawley rats weighing 200–250 g were allocated into four groups, and each group contained eight rats as follows: Control (normal saline, 1 ml/kg, gavage, daily for 4 weeks), cirrhotic (normal saline, 1 ml/kg, gavage, daily for 4 weeks), vanillic acid (10 mg/kg, gavage, daily for 4 weeks), cirrhotic treated with vanillic acid (10 mg/kg, gavage, daily for 4 weeks). Chronic biliary cirrhosis was induced in cirrhotic groups by four weeks Bile Duct Ligation (BDL). At the first day and four weeks after surgery, the animals were anesthetized, electrocardiograms were recorded (lead II), and chronotropic and dromotropic properties (HR and PR interval) were investigated. At the end of experimental duration, the animals were anesthetized, and blood samples were taken to measure serum bilirubin. The results were analyzed using t-test and one-way ANOVA by SPSS software, version 22. Results After induced of BDL, the results presented that laboratory parameter (bilirubin) in the cirrhotic group significantly increased compared to the control group. The P-R interval was reduced in the cirrhotic group compared to the control group, and there was no significant difference between heart rate in all groups. Bilirubin were reduced in cirrhotic groups treated with vanillic acid (VA) compared to cirrhotic group and also administration of VA in the cirrhotic treated with

  1. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus.

    PubMed

    Peterson, Jennifer K; Graham, Andrea L; Elliott, Ryan J; Dobson, Andrew P; Triana Chávez, Omar

    2016-08-01

    Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma rangeli, which shares 60% of its antigens with T. cruzi. Additionally, T. rangeli has been observed to be pathogenic in some of its vector species. Although T. cruzi-T. rangeli co-infections are common, their effect on the vector has rarely been investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treatments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi-T. rangeli co-infection could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher parasite doses. PMID:27174360

  2. Trientine and renin-angiotensin system blockade ameliorate progression of glomerular morphology in hypertensive experimental diabetic nephropathy.

    PubMed

    Moya-Olano, Leire; Milne, Helen Marie; Robinson, Jillian Margaret; Hill, Jonathan Vernon; Frampton, Christopher Miles; Abbott, Helen Frances; Turner, Rufus; Kettle, Anthony James; Endre, Zoltán Huba

    2011-11-01

    A comparison of the efficacy of the copper chelator, trientine, with combined renin angiotensin system (RAS) blockade on the progression of glomerular pathology in the diabetic (mREN-2)27 rat is reported. Animals were treated for 2 months with trientine, combined RAS blockers, combined trientine plus RAS blockers or none. Treatments began after inducing diabetes with streptozotocin. Physiological data were recorded monthly and light microscopic glomerular features were scored. Plasma allantoin and both plasma and renal protein carbonyls were measured as markers of oxidative stress. Trientine and RAS blockade decreased proteinuria and albuminuria and prevented an increase in creatinine clearance and kidney weight. Both reduced the diabetes-related glomerular features of mesangiolysis and glomerular segmental hypocellularity and trientine prevented severe tuft-to-capsule adhesion and reduced tubularization. Hypertension-related severe mesangial matrix expansion and global hypercellularity were increased by both treatments, which may reflect repair of mesangiolysis. Trientine reduced plasma but not renal protein carbonyls or plasma allantoin. In this model, trientine prevented the development of many diabetes-specific features similarly to RAS blockade. Amelioration of oxidative stress and features commonly observed in human diabetic nephropathy (DN), support a diabetes-related defect in copper (Cu) metabolism. The addition of Cu(II) chelation may improve current DN therapy.

  3. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus.

    PubMed

    Peterson, Jennifer K; Graham, Andrea L; Elliott, Ryan J; Dobson, Andrew P; Triana Chávez, Omar

    2016-08-01

    Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma rangeli, which shares 60% of its antigens with T. cruzi. Additionally, T. rangeli has been observed to be pathogenic in some of its vector species. Although T. cruzi-T. rangeli co-infections are common, their effect on the vector has rarely been investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treatments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi-T. rangeli co-infection could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher parasite doses.

  4. Dioclea violacea lectin ameliorates oxidative stress and renal dysfunction in an experimental model of acute kidney injury

    PubMed Central

    Freitas, Flavia PS; Porto, Marcella L; Tranhago, Camilla P; Piontkowski, Rogerio; Miguel, Emilio C; Miguel, Thaiz BAR; Martins, Jorge L; Nascimento, Kyria S; Balarini, Camille M; Cavada, Benildo S; Meyrelles, Silvana S; Vasquez, Elisardo C; Gava, Agata L

    2015-01-01

    Acute kidney injury (AKI) is characterized by rapid and potentially reversible decline in renal function; however, the current management for AKI is nonspecific and associated with limited supportive care. Considering the need for more novel therapeutic approaches, we believe that lectins from Dioclea violacea (Dvl), based on their anti-inflammatory properties, could be beneficial for the treatment of AKI induced by renal ischemia/reperfusion (IR). Dvl (1 mg/kg, i.v.) or vehicle (100 µL) was administered to Wistar rats prior to the induction of bilateral renal ischemia (45 min). Following 24 hours of reperfusion, inulin and para-aminohippurate (PAH) clearances were performed to determine glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF) and renal vascular resistance (RVR). Renal inflammation was assessed using myeloperoxidase (MPO) activity. Kidney sections were stained with hematoxylin-eosin to evaluate morphological changes. Intracellular superoxide anions, hydrogen peroxide, peroxynitrite, nitric oxide and apoptosis were analyzed using flow cytometry. IR resulted in diminished GFR, RPF, RBF, and increased RVR; however, these changes were ameliorated in rats receiving Dvl. AKI-induced histomorphological changes, such as tubular dilation, tubular necrosis and proteinaceous casts, were attenuated by Dvl administration. Treatment with Dvl resulted in diminished renal MPO activity, oxidative stress and apoptosis in rats submitted to IR. Our data reveal that Dvl has a protective effect in the kidney, improving renal function after IR injury, probably by reducing neutrophil recruitment and oxidative stress. These results indicate that Dvl can be considered a new therapeutic approach for AKI-induced kidney injury. PMID:26885258

  5. St. John's wort may ameliorate 2,4,6-trinitrobenzenesulfonic acid colitis off rats through the induction of pregnane X receptors and/or P-glycoproteins.

    PubMed

    Sehirli, A O; Cetinel, S; Ozkan, N; Selman, S; Tetik, S; Yuksel, M; Dulger, F G A

    2015-04-01

    It is reported that deficiencies of the pregnane X receptor (PXR) and P-glycoprotein (P-gp), the latter of which is encoded by the MDR1 gene, are important factors in the pathogenesis of inflammatory bowel disease (IBD). It is also known that the activation of PXR is protective of IBD due to the mutual repression between PXR and nuclear factor kappa B (NF-κB) expression and because NF-κB was reported to play a pivotal role in the pathogenesis of ulcerative colitis. The goal of this study was to investigate whether St. John's wort (SJW) and spironolactone (SPL), both known to have strong inducing effects on cytochrome P 450 (CYP) enzymes as well as PXR and P-gp, have ameliorating effects on 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis of rats through induction of PXR and/or P-gp. Wistar albino rats (250 - 300 g) were divided into control and TNBS-colitis groups. Each group was then divided into a) control (saline), b) SJW (300 mg/kg p.o. bid), and c) SPL (80 mg/kg p.o.) groups. Drugs were given for 7 days. Both treatments ameliorated the clinical hallmarks of colitis, as determined by body weight loss and assessment of diarrhea, colon length, and bowel histology. Plasma levels of NF-κB, tumour necrosis factor-alpha (TNF-α) and tissue myeloperoxidase (MPO) activity, as well as the oxidative stress markers that increased during colitis, decreased significantly after both treatments. The PXR and P-gp expression in the intestinal tissues was diminished in the colitis group but increased after drug treatments. Both drugs appeared to have significant antioxidant and anti-inflammatory effects and ameliorated the TNBS colitis of the rats, most likely through their PXR- and P-gp-inducing properties.

  6. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis1

    PubMed Central

    Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.

    2010-01-01

    Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445

  7. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice

    PubMed Central

    Zeng, Hong-liang; Huang, Su-ling; Xie, Fu-chun; Zeng, Li-min; Hu, You-hong; Leng, Ying

    2015-01-01

    Aim: Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. Methods: The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg−1·d−1 for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. Results: Yhhu981 (12.5–25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. Conclusion: Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK. PMID:25732571

  8. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas).

    PubMed

    Jayaprakasam, Bolleddula; Olson, L Karl; Schutzki, Robert E; Tai, Mei-Hui; Nair, Muraleedharan G

    2006-01-11

    Much attention has been focused on food that may be beneficial in preventing diet-induced body fat accumulation and possibly reduce the risk of diabetes and heart disease. Cornelian cherries (Cornus mas) are used in the preparation of beverages in Europe and also to treat diabetes-related disorders in Asia. In this study, the most abundant bioactive compounds in C. mas fruits, the anthocyanins and ursolic acid, were purified, and their ability to ameliorate obesity and insulin resistance in C57BL/6 mice fed a high-fat diet was evaluated. Mice were initially fed a high-fat diet for 4 weeks and then switched to a high-fat diet containing anthocyanins (1 g/kg of high-fat diet) and ursolic acid (500 mg/kg of high-fat diet) for an additional 8 weeks. The high-fat diet induced glucose intolerance, and this was prevented by anthocyanins and ursolic acid. The anthocyanin-treated mice showed a 24% decrease in weight gain. These mice also showed decreased lipid accumulation in the liver, including a significant decrease in liver triacylglycerol concentration. Anthocyanin and ursolic acid treated mice exhibited extremely elevated insulin levels. Both treatments, however, showed preserved islet architecture and insulin staining. Overall, these data suggest that anthocyanins and ursolic acid purified from C. mas fruits have biological activities that improve certain metabolic parameters associated with diets high in saturated fats and obesity. PMID:16390206

  9. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  10. Gingko biloba extract (Ginaton) ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in mice via reducing IL-6/STAT3 and IL-23/IL-17.

    PubMed

    Sun, Yan; Lin, Lian-Jie; Lin, Yan; Sang, Li-Xuan; Jiang, Min; Zheng, Chang-Qing

    2015-01-01

    This study explored the underlying mechanism of Gingko biloba extract (Ginaton) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. 40 male C57BL/6 mice were randomly divided into four groups: normal control group, Ginaton group, Ginaton treatment group, and DSS group. After 7 days administration, mice were sacrificed and colons were collected for H-E staining, immunohistochemistry, real-time PCR and Western blot. By observing clinical disease activity and histological damage, we assessed the effect of Ginaton on DSS-induced acute experimental colitis in mice and observed the effect of Ginaton on normal mice. We also explored the specific mechanism of Ginaton on DSS-induced acute experimental colitis in mice through examining the expression of inflammatory related mediators (gp130, STAT3, p-STAT3, ROR-γt) and cytokines (IL-6, IL-17, IL-23). Ginaton-treated DSS mice showed significant improvement over untreated DSS mice. Specifically, Ginaton improved clinical disease activity (DAI score, weight closs, colon shortening, and bloody stool) and histological damage, and reduced the expression of inflammatory-related mediators (p-STAT3, gp130, ROR-γt) and cytokines (IL-6, IL-17, IL-23). In addition, clinical disease activity, histological damage, the expression of inflammatory related mediators (STAT3, p-STAT3, gp130, ROR-t) and cytokines (IL-6, IL-17, IL-23) in mice of Ginaton group were similar to normal control group. In conclusion, Ginaton ameliorates DSS-induced acute experimental colitis in mice by reducing IL-17 production, which is at least partly involved in inhibiting IL-6/STAT3 signaling pathway and IL-23/IL-17 axis. Moreover, Ginaton itself does not cause inflammatory change in normal mice. These results support that Ginaton can be as a potential clinical treatment for ulcerative colitis (UC).

  11. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    PubMed Central

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  12. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    SciTech Connect

    Tikoo, Kulbhushan Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  13. Sweroside ameliorates α-naphthylisothiocyanate-induced cholestatic liver injury in mice by regulating bile acids and suppressing pro-inflammatory responses

    PubMed Central

    Yang, Qiao-ling; Yang, Fan; Gong, Jun-ting; Tang, Xiao-wen; Wang, Guang-yun; Wang, Zheng-tao; Yang, Li

    2016-01-01

    Aim: Sweroside is an iridoid glycoside with diverse biological activities. In the present study we investigated the effects of sweroside on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in mice. Methods: Mice received sweroside (120 mg·kg−1·d−1, ig) or a positive control INT-747 (12 mg·kg−1·d−1, ig) for 5 d, and ANIT (75 mg/kg, ig) was administered on d 3. The mice were euthanized on d 5, and serum biochemical markers, hepatic bile acids and histological changes were analyzed. Hepatic expression of genes related to pro-inflammatory mediators and bile acid metabolism was also assessed. Primary mouse hepatocytes were exposed to a reconstituted mixture of hepatic bile acids, which were markedly elevated in the ANIT-treated mice, and the cell viability and expression of genes related to pro-inflammatory mediators were examined. Results: Administration of sweroside or INT-747 effectively ameliorated ANIT-induced cholestatic liver injury in mice, as evidenced by significantly reduced serum biochemical markers and attenuated pathological changes in liver tissues. Furthermore, administration of sweroside or INT-747 significantly decreased ANIT-induced elevation of individual hepatic bile acids, such as β-MCA, CA, and TCA, which were related to its effects on the expression of genes responsible for bile acid synthesis and transport as well as pro-inflammatory responses. Treatment of mouse hepatocytes with the reconstituted bile acid mixture induced significant pro-inflammatory responses without affecting the cell viability. Conclusion: Sweroside attenuates ANIT-induced cholestatic liver injury in mice by restoring bile acid synthesis and transport to their normal levels, as well as suppressing pro-inflammatory responses. PMID:27498779

  14. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice.

    PubMed

    Sun, Yafei; Tian, Tian; Gao, Juan; Liu, Xiaoqian; Hou, Huiqing; Cao, Runjing; Li, Bin; Quan, Moyuan; Guo, Li

    2016-03-15

    Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.

  15. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response.

    PubMed

    Kwon, Ho-Keun; Kim, Gi-Cheon; Kim, Young; Hwang, Won; Jash, Arijita; Sahoo, Anupama; Kim, Jung-Eun; Nam, Jong Hee; Im, Sin-Hyeog

    2013-03-01

    The immunomodulatory effect of probiotics has been shown mainly in gastro-intestinal immune disorders and little information is available on the inflammation of central nervous system. Recently we reported that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental inflammatory disorders. In this study, we evaluated the prophylactic and therapeutic effects of IRT5 probiotics in experimental autoimmune encephalomyelitis (EAE), a T cell mediated inflammatory autoimmune disease of the central nervous system. Pretreatment of IRT5 probiotics before disease induction significantly suppressed EAE development. In addition, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset. Administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL10(+) producing or/and Foxp3(+) regulatory T cells, both in the peripheral immune system and at the site of inflammation. Collectively, our data suggest that IRT5 probiotics could be applicable to modulate T cell mediated neuronal autoimmune diseases, including multiple sclerosis.

  16. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    PubMed

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

  17. Folic acid prevented cognitive impairment in experimental pneumococcal meningitis.

    PubMed

    Barichello, Tatiana; Generoso, Jaqueline S; Simões, Lutiana R; Steckert, Amanda V; Moreira, Ana Paula; Dominguini, Diogo; Ferrari, Pâmela; Gubert, Carolina; Kapczinski, Flávio; Jornada, Luciano K; Danielski, Lucineia G; Petronilho, Fabricia; Budni, Josiane; Quevedo, João

    2015-05-01

    Streptococcus pneumoniae is a common cause of bacterial meningitis, with a high mortality rate and neurological sequelae. In contrast, folic acid plays an important role in neuroplasticity and the preservation of neuronal integrity. In the present study, we evaluated the influence of folic acid on memory, oxidative damage, enzymatic defence, and brain-derived neurotrophic factor (BDNF) expression in experimental pneumococcal meningitis. In animals that received folic acid at a dose of 10 or 50 mg, there was a reduction in both crossing and rearing during an open-field task compared with the training session, demonstrating habituation memory. During a step-down inhibitory avoidance task, there was a difference between the training and the test sessions, demonstrating aversive memory. In the hippocampus, BDNF expression decreased in the meningitis group; however, adjuvant treatment with 10 mg of folic acid increased BDNF expression, decreased lipid peroxidation, protein carbonylation, nitrate/nitrite levels, and myeloperoxidase activity and increased superoxide dismutase activity. In frontal cortex adjuvant treatment with 10 mg of folic acid decreased lipid peroxidation and protein carbonylation. There is substantial interest in the role of folic acid and related pathways in nervous system function and in folic acid's potential therapeutic effects. Here, adjuvant treatment with vitamin B9 prevented memory impairment in experimental pneumococcal meningitis.

  18. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice.

    PubMed

    Yun, Jaesuk; Gu, Sun Mi; Yun, Hyung Mun; Son, Dong Ju; Park, Mi Hee; Lee, Moon Soon; Hong, Jin Tae

    2015-12-01

    Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord. PMID:26564962

  19. Therapeutic Role of Ursolic Acid on Ameliorating Hepatic Steatosis and Improving Metabolic Disorders in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Rats

    PubMed Central

    Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Methodology/Principal Findings Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. Conclusions/Significance These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD. PMID:24489777

  20. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  1. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases. PMID:26440666

  2. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice.

    PubMed

    Higashi, Kiyoshi; Tomigahara, Yoshitaka; Shiraki, Hiroaki; Miyata, Kaori; Mikami, Toshiyuki; Kimura, Toru; Moro, Tadashi; Inagaki, Yutaka; Kaneko, Hideo

    2011-02-11

    Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to liver fibrosis. We have previously shown that nuclear translocation of YB-1 antagonizes the TGF-β/Smad3 signaling in regulating collagen gene expression. More recently, we have demonstrated that the novel small compound HSc025 promotes nuclear translocation of YB-1, resulting in the improvement of skin and pulmonary fibrosis. Here, we presented evidence as to the mechanism by which HSc025 stimulates nuclear translocation of YB-1 and the pharmacological effects of HSc025 on a murine model of hepatic fibrosis. A proteomics approach and binding assays using HSc025-immobilized resin showed that HSc025 binds to the amino acid sequence within the C-tail region of YB-1. In addition, immunoprecipitation experiments and glutathione S-transferase pulldown assays identified poly(A)-binding protein (PABP) as one of the cytoplasmic anchor proteins of YB-1. HSc025 directly binds to YB-1 and interrupts its interaction with PABP, resulting in accelerated nuclear translocation of YB-1. Transfection of cells with PABP siRNA promoted nuclear translocation of YB-1 and subsequently inhibited basal and TGF-β-stimulated collagen gene expression. Moreover, HSc025 significantly suppressed collagen gene expression in cultured activated hepatic stellate cells. Oral administration of HSc025 to mice with carbon tetrachloride-induced hepatic fibrosis improved liver injury as well as the degree of hepatic fibrosis. Altogether, the results provide a novel insight into therapy for organ fibrosis using YB-1 modulators.

  3. Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response.

    PubMed

    Wang, Xue-Rui; Shi, Guang-Xia; Yang, Jing-Wen; Yan, Chao-Qun; Lin, Li-Ting; Du, Si-Qi; Zhu, Wen; He, Tian; Zeng, Xiang-Hong; Xu, Qian; Liu, Cun-Zhi

    2015-12-01

    Emerging evidence suggests acupuncture could exert neuroprotection in the vascular dementia via anti-oxidative effects. However, the involvement of Nrf2, a master regulator of antioxidant defense, in acupuncture-induced neuroprotection in vascular dementia remains undetermined. The goal of our study was to investigate the contribution of Nrf2 in acupuncture and its effects on vascular dementia. Morris water maze and Nissl staining were used to assess the effect of acupuncture on cognitive function and hippocampal neurodegeneration in experimental vascular dementia. The distribution of Nrf2 in neurons in hippocampus, the protein expression of Nrf2 in both cytosol and nucleus, and the protein and mRNA levels of its downstream target genes NQO1 and HO-1 were detected by double immunofluorescent staining, Western blotting and realtime PCR analysis respectively. Cognitive function and microglia activation were measured in both wild-type and Nrf2 gene knockout mice after acupuncture treatment. We found that acupuncture could remarkably reverse the cognitive deficits, neuron cell loss, reactive oxygen species production, and decreased cerebral blood flow. It was notable that acupuncture enhanced nuclear translocation of Nrf2 in neurons and up-regulate the protein and mRNA levels of Nrf2 and its target genes HO-1 and NQO1. Moreover, acupuncture could significantly down-regulated the over-activation of microglia after common carotid artery occlusion surgery. However, the reversed cognitive deficits, neuron cell loss and microglia activation by acupuncture were abolished in Nrf2 gene knockout mice. In conclusion, these findings provide evidence that the neuroprotection of acupuncture in models of vascular dementia was via the Nrf2 activation and Nrf2-dependent microglia activation. PMID:26546103

  4. Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction.

    PubMed

    Antanavičiūtė, Ieva; Ereminienė, Eglė; Vysockas, Vaidas; Račkauskas, Mindaugas; Skipskis, Vilius; Rysevaitė, Kristina; Treinys, Rimantas; Benetis, Rimantas; Jurevičius, Jonas; Skeberdis, Vytenis A

    2015-02-01

    Acute myocardial infarction is one of the major causes of mortality worldwide. For regeneration of the rabbit heart after experimentally induced infarction we used autologous skeletal myoblasts (SMs) due to their high proliferative potential, resistance to ischaemia and absence of immunological and ethical concerns. The cells were characterized with muscle-specific and myogenic markers. Cell transplantation was performed by injection of cell suspension (0.5 ml) containing approximately 6 million myoblasts into the infarction zone. The animals were divided into four groups: (i) no injection; (ii) sham injected; (iii) injected with wild-type SMs; and (iv) injected with SMs expressing connexin43 fused with green fluorescent protein (Cx43EGFP). Left ventricular ejection fraction (LVEF) was evaluated by 2D echocardiography in vivo before infarction, when myocardium has stabilized after infarction, and 3 months after infarction. Electrical activity in the healthy and infarction zones of the heart was examined ex vivo in Langendorff-perfused hearts by optical mapping using di-4-ANEPPS, a potential sensitive fluorescent dye. We demonstrate that SMs in the coculture can couple electrically not only to abutted but also to remote acutely isolated allogenic cardiac myocytes through membranous tunnelling tubes. The beneficial effect of cellular therapy on LVEF and electrical activity was observed in the group of animals injected with Cx43EGFP-expressing SMs. L-type Ca(2+) current amplitude was approximately fivefold smaller in the isolated SMs compared to healthy myocytes suggesting that limited recovery of LVEF may be related to inadequate expression or function of L-type Ca(2+) channels in transplanted differentiating SMs. PMID:25529770

  5. Inhibition of microsomal prostaglandin E synthase-1 by aminothiazoles decreases prostaglandin E2 synthesis in vitro and ameliorates experimental periodontitis in vivo

    PubMed Central

    Kats, Anna; Båge, Tove; Georgsson, Pierre; Jönsson, Jörgen; Quezada, Hernán Concha; Gustafsson, Anders; Jansson, Leif; Lindberg, Claes; Näsström, Karin; Yucel-Lindberg, Tülay

    2013-01-01

    The potent inflammatory mediator prostaglandin E2 (PGE2) is implicated in the pathogenesis of several chronic inflammatory conditions, including periodontitis. The inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1), catalyzing the terminal step of PGE2 biosynthesis, is an attractive target for selective PGE2 inhibition. To identify mPGES-1 inhibitors, we investigated the effect of aminothiazoles on inflammation-induced PGE2 synthesis in vitro, using human gingival fibroblasts stimulated with the cytokine IL-1β and a cell-free mPGES-1 activity assay, as well as on inflammation-induced bone resorption in vivo, using ligature-induced experimental periodontitis in Sprague-Dawley rats. Aminothiazoles 4-([4-(2-naphthyl)-1,3-thiazol-2-yl]amino)phenol (TH-848) and 4-(3-fluoro-4-methoxyphenyl)-N-(4-phenoxyphenyl)-1,3-thiazol-2-amine (TH-644) reduced IL-1β-induced PGE2 production in fibroblasts (IC50 1.1 and 1.5 μM, respectively) as well as recombinant mPGES-1 activity, without affecting activity or expression of the upstream enzyme cyclooxygenase-2. In ligature-induced experimental periodontitis, alveolar bone loss, assessed by X-ray imaging, was reduced by 46% by local treatment with TH-848, compared to vehicle, without any systemic effects on PGE2, 6-keto PGF1α, LTB4 or cytokine levels. In summary, these results demonstrate that the aminothiazoles represent novel mPGES-1 inhibitors for inhibition of PGE2 production and reduction of bone resorption in experimental periodontitis, and may be used as potential anti-inflammatory drugs for treatment of chronic inflammatory diseases, including periodontitis.—Kats, A., Båge, T., Georgsson, P., Jönsson, J., Quezada, H. C., Gustafsson, A., Jansson, L., Lindberg, C., Näsström, K., Yucel-Lindberg, T. Inhibition of microsomal prostaglandin E synthase-1 by aminothiazoles decreases prostaglandin E2 synthesis in vitro and ameliorates experimental periodontitis in vivo. PMID:23447581

  6. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  7. Experimental Study of Mechanistic Acid Deconstruction of Lignin

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Katahira, R.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major component of biomass, which remains highly underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in studying the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. Model dimers, imitating H, S, and G lignins, were synthesized with the most abundant {beta} - O - 4 linkage in lignin. These compounds were then depolymerized using various acids and at different operating conditions. The deconstruction products were analyzed to complement the QM studies and investigate proposed mechanisms.

  8. Protection of Tregs, Suppression of Th1 and Th17 Cells, and Amelioration of Experimental Allergic Encephalomyelitis by a Physically-Modified Saline

    PubMed Central

    Mondal, Susanta; Martinson, Jeffrey A.; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2012-01-01

    In multiple sclerosis (MS) and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs) due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) and PNS60 (saline containing excess oxygen without TCP modification), was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO) and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders. PMID:23284794

  9. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline.

    PubMed

    Mondal, Susanta; Martinson, Jeffrey A; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2012-01-01

    In multiple sclerosis (MS) and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs) due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) and PNS60 (saline containing excess oxygen without TCP modification), was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO) and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders.

  10. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  11. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    PubMed Central

    2013-01-01

    This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1), interferon gamma (IFN-γ), programmed cell death-receptor (Fas) and Tumor necrosis factor-alpha (TNF-α) mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA), cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH) and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals. PMID:23374533

  12. Therapeutic effect of hyaluronic acid on experimental osteoarthrosis of ovine temporomandibular joint.

    PubMed

    Kim, C H; Lee, B J; Yoon, J; Seo, K M; Park, J H; Lee, J W; Cho, E S; Hong, J J; Lee, Y S; Park, J H

    2001-10-01

    A symptomatic relief by hyaluronic acid (HA, MW: 3.5 x 10(6)), which is synthesized by Streptococcus spp, was investigated in experimental ovine osteoarthrosis. Bilateral osteoarthrosis (OA) of the temporo-mandibular joints (TMJs) was induced by perforating discs and by scrapping subchondral condylar surface. HA was intra-articularly injected into the left joints of 6 sheep on 7, 10, 14, 17 and 21 days after the operation and physiological saline as the control was injected into the contralateral (right) joints on the same day. Three sheep were killed at I month post-operation (MPO) and the remaining three sheep were killed at 3 MPO. Various responses such as proliferation of fibrous tissue, denudation, erosion, osteophyte formation, subcortical cyst formation and ankylosis were observed radiographically and histopathologically. The treatment of HA ameliorated the degenerative changes and lowered the osteoarthrotic score in the left joints at I MPO (9.96 vs 5.81) and 3 MPO (10.86 vs 5.29) compared to the right joints. These results indicate that a repeated intra-articular injection of HA inhibits the progression of OA in ovine TMJs by inducing the development of articular cartilage and by reducing the proliferation of fibrotic tissue.

  13. The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure

    PubMed Central

    Raghuveer, Vasudeva C.; Rao, Mallikarjuna C.; Somayaji, Nagabhooshana S.; Babu, Prakash B.

    2013-01-01

    Chronic exposure to fluoride causes dental and skeletal fluorosis. Fluoride exposure is also detrimental to soft tissues and organs. The present study aimed at evaluation of the effect of Ginkgo biloba and ascorbic acid on learning and memory deficits caused by fluoride exposure. Male Wistar rats were divided into five groups (n=6). Group 1 control. Groups 2 to 5 received 100 ppm of sodium fluoride over 30 days. Groups 3, 4 and 5 were further treated for 15 days receiving respectively 1% gum acacia solution, 100 mg/kg body weight ascorbic acid, and 100mg/kg body weight Ginkgo biloba extract. After 45 days, all animals were subjected to behavioural tests. The results showed that fluoride affected learning and memory. Fluoride causes oxidative stress and neurodegeneration, thereby affecting learning and memory. Ascorbic acid and Ginkgo biloba were found to augment the reversal of learning and memory deficits caused by fluoride ingestion. PMID:24678261

  14. Experimental and theoretical study on benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Świsłocka, R.; Regulska, E.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    Benzoic (BA), p-hydroxybenzoic (HBA), m-methoxybenzoic (MBA), vanillic (VA) and syringic (SGA) acids were studied using both experimental and theoretical tools. The vibrational (FT-IR, FT-Raman) and 1H and 13C NMR spectra of benzoic acid derivatives were recorded. Characteristic shifts and changes in intensities of bands along the studied series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied compounds were observed too. Optimized geometrical structures of studied compounds were obtained by B3LYP method using 6-31++G**, 6-311+G** and 6-311++G** basis sets. Aromaticity indices, atomic charges, dipole moments and energies were calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to experimental characteristic of studied compounds.

  15. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes.

    PubMed

    Chen, Pei-Yin; Wang, John; Lin, Yi-Chin; Li, Chien-Chun; Tsai, Chia-Wen; Liu, Te-Chung; Chen, Haw-Wen; Huang, Chin-Shiu; Lii, Chong-Kuei; Liu, Kai-Li

    2015-05-01

    Skeletal muscle is a major site of insulin action. Intramuscular lipid accumulation results in inflammation, which has a strong correlation with skeletal muscle insulin resistance (IR). The aim of this study was to explore the effects of linoleic acid, alpha-linolenic acid, and gamma-linolenic acid (GLA), 18-carbon polyunsaturated fatty acids (PUFAs), on palmitic acid (PA)-induced inflammatory responses and IR in C2C12 myotubes. Our data demonstrated that these three test 18-carbon PUFAs can inhibit PA-induced interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) expression and IR as evidenced by increases in phosphorylated AKT and the 160-kD AKT substrate, mRNA and plasma membrane protein expression of glucose transporter 4, and glucose uptake. Moreover, the 18-carbon PUFAs blocked the effects of PA on activation of mitogen-activated protein kinases (MAPKs), protein kinase C-θ (PKC-θ), AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB). Of note, supplementation with GLA-rich borage oil decreased proinflammatory cytokine production and hindered the activation of MAPKs, PKC-θ and NF-κB in the skeletal muscles of diabetic mice. The 18-carbon PUFAs did not reverse PA-induced inflammation or IR in C2C12 myotubes transfected with a constitutively active mutant IκB kinase-β plasmid, which suggests the importance of the inhibition of NF-κB activation by the 18-carbon PUFAs. Moreover, blockade of AMPK activation by short hairpin RNA annulled the inhibitory effects of the 18-carbon PUFAs on PA-induced IR but not inflammation. Our findings suggest that the 18-carbon PUFAs may be useful in the management of PA-induced inflammation and IR in myotubes. PMID:25687616

  16. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    PubMed

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities.

  17. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  18. Pioglitazone ameliorates behavioral, biochemical and cellular alterations in quinolinic acid induced neurotoxicity: possible role of peroxisome proliferator activated receptor-Upsilon (PPARUpsilon) in Huntington's disease.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-08-01

    Emerging evidence indicates that PPARUpsilon activators attenuate neurodegeneration and related complications. Therefore, the present study focused on the neuroprotective potential of pioglitazone against quinolinic acid (QUIN) induced neurotoxicity. Intrastriatal (unilaterally) administration of QUIN significantly altered body weight and motor function (locomotor activity, rotarod and beam walk performance). Further, QUIN treatment significantly caused oxidative damage (increased lipid peroxidation, nitrite concentration and depleted endogenous antioxidant defense enzymes), altered mitochondrial enzyme complex (I, II and IV) activities and TNF-alpha level as compared to sham treated animals. Pioglitazone (10, 20 and 40mg/kg, p.o.) treatment significantly improved body weight and motor functions, oxidative defense. Further, pioglitazone treatment restored mitochondrial enzyme complex activity as well as TNF-alpha level as compared to QUIN treated group. While Bisphenol A diglycidyl ether (BADGE) (15mg/kg), PPARUpsilon antagonist significantly reversed the protective effect of the pioglitazone (40mg/kg) in the QUIN treated animals. Further, pioglitazone treatment significantly attenuated the striatal lesion volume in QUIN treated animals, suggesting a role for the PPARUpsilon pathway in QUIN induced neurotoxicity. Altogether, this evidence indicates that PPARUpsilon activation by pioglitazone attenuated QUIN induced neurotoxicity in animals and which could be an important therapeutic avenue to ameliorate Huntington like symptoms. PMID:20450929

  19. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  20. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  1. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    PubMed Central

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  2. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints

    PubMed Central

    Mack, Isabelle; Cuntz, Ulrich; Grämer, Claudia; Niedermaier, Sabrina; Pohl, Charlotte; Schwiertz, Andreas; Zimmermann, Kurt; Zipfel, Stephan; Enck, Paul; Penders, John

    2016-01-01

    The gut microbiota not only influences host metabolism but can also affect brain function and behaviour through the microbiota-gut-brain axis. To explore the potential role of the intestinal microbiota in anorexia nervosa (AN), we comprehensively investigated the faecal microbiota and short-chain fatty acids in these patients before (n = 55) and after weight gain (n = 44) in comparison to normal-weight participants (NW, n = 55) along with dietary intake and gastrointestinal complaints. We show profound microbial perturbations in AN patients as compared to NW participants, with higher levels of mucin-degraders and members of Clostridium clusters I, XI and XVIII and reduced levels of the butyrate-producing Roseburia spp. Branched-chain fatty acid concentrations, being markers for protein fermentation, were elevated. Distinct perturbations in microbial community compositions were observed for individual restrictive and binge/purging AN-subtypes. Upon weight gain, microbial richness increased, however perturbations in intestinal microbiota and short chain fatty acid profiles in addition to several gastrointestinal symptoms did not recover. These insights provide new leads to modulate the intestinal microbiota in order to improve the outcomes of the standard therapy. PMID:27229737

  3. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis

    PubMed Central

    Sombetzki, Martina; Fuchs, Claudia D.; Fickert, Peter; Österreicher, Christoph H.; Mueller, Michaela; Claudel, Thierry; Loebermann, Micha; Engelmann, Robby; Langner, Cord; Sahin, Emine; Schwinge, Dorothee; Guenther, Nina D.; Schramm, Christoph; Mueller-Hilke, Brigitte; Reisinger, Emil C.; Trauner, Michael

    2015-01-01

    Background & Aims Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2−/− mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. Methods Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. Results UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. Conclusions This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. PMID:25463533

  4. High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep.

    PubMed

    Chauhan, S S; Celi, P; Leury, B J; Dunshea, F R

    2015-07-01

    The objective of this study was to determine the efficacy of supranutritional dietary selenium and vitamin E (Vit E) to ameliorate the effect of heat stress (HS) on oxidative status and acid-base balance in sheep. Thirty-two Merino × Poll Dorset ewes were acclimated to indoor individual pen feeding of a pelleted control diet (0.24 g Se and 10 IU of Vit E/kg DM) for 1 wk. Sheep were then moved to metabolism cages in climatic chambers and randomly allocated to a 2 × 2 × 2 factorial design with the respective factors being dietary Se (0.24 and 1.20 mg/kg DM as Sel-Plex; Alltech, Australia), Vit E (10 and 100 IU/kg DM), and temperature for 2 wk. After 1 wk of acclimation in metabolic cages, 1 climatic chamber continued on thermoneutral (TN) conditions (18°C to 21°C and 40% to 50% relative humidity [RH]), and the other one was set to HS conditions (28°C to 40°C and 30% to 40% RH) for 1 wk. The sheep were then returned to individual pens and fed the control diet for 1 wk before being returned to the same diet as in the first period but a reversed thermal treatment for a further 2 wk. Physiological parameters were recorded 3 times daily, and blood samples were collected on d 1 and 7 of thermal treatment. Average respiration rate and rectal temperature of sheep were increased (P < 0.001) during HS; however, combined supranutritional supplementation of Se and Vit E reversed the effects of HS. Sheep given the high Se and high Vit E diet had a lower respiration rate (191 vs. 232 breaths/min; P = 0.012) and rectal temperature (40.33°C vs. 40.58°C; P = 0.039) under peak HS (1700 h) compared with those fed the low Se and low Vit E diet. Plasma reactive oxygen metabolites concentrations were reduced (P = 0.048) by 20%, whereas biological antioxidant potential was increased (P = 0.17) by 10% in sheep fed the high Se and high Vit E diet compared with those fed the low Se and low Vit E diet. Blood pH was elevated (P = 0.007) and bicarbonate was reduced (P = 0.049) under HS

  5. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome.

  6. Folic Acid Supplementation Ameliorates Oxidative Stress, Metabolic Functions and Developmental Anomalies in a Novel Fly Model of Parkinson's Disease.

    PubMed

    Srivastav, Saurabh; Singh, Sandeep Kumar; Yadav, Amarish Kumar; Srikrishna, Saripella

    2015-07-01

    Mutations in parkin cause early-onset Parkinson's disease. Studies involving Drosophila model have emphasised mitochondrial dysfunction as a critical event in disease pathogenesis. In this context, we employed a novel recessive allele of parkin, park (c00062) , for the current study. The piggyBac insertion at 3rd intron of parkin in park (c00062) was confirmed by PCR. Homozygous park (c00062) has diminished levels of truncated parkin transcript with no detectable protein as confirmed by qRT-PCR and western blot analysis, respectively. The homozygous park (c00062) displayed severe developmental anomalies involving reduced body size, ~45 % pupal lethality, high mortality with locomotory defect, elevated oxidative stress, low metabolic active cell status with low mitochondrial respiration as reflected from reduced ATP levels. Further, folic acid therapeutic potential was analysed in park (c00062) . Here we show that dietary folic acid provided protection against disparities involving pupal lethality, high mortality, locomotory defect, elevated oxidative stress and low metabolic active cell status associated with park (c00062) . Further mitochondrial respiration was enhanced as reflected from improved ATP levels in folate supplemented park (c00062) . To corroborate mitochondrial functioning further our analysis regarding transcript status of p53 and spargel by qRT-PCR, revealed down regulation of p53 and up regulation of spargel in folate supplemented park (c00062) , which was originally vice a versa. Our data thus support the potential of FA in alleviating the disparities associated with parkin loss of function in fly model. Further, FA role in alleviating mitochondrial dysfunction is encouraging to further explore FA mechanistic role to be utilized as potential therapeutics for parkin mediated neurodegenerative diseases. PMID:25963948

  7. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  8. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes

    NASA Astrophysics Data System (ADS)

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly ( P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly ( P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly ( P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly ( P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher ( P < 0.05) in cooled group of Murrah buffaloes.

  9. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy. PMID:27584687

  10. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.

  11. c9,t11-Conjugated linoleic acid ameliorates steatosis by modulating mitochondrial uncoupling and Nrf2 pathway[S

    PubMed Central

    Mollica, Maria Pina; Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Cocca, Ennio; Gaita, Marcello; Della-Gatta, Antonio; Marano, Angela; Mazzarella, Giuseppe; Bergamo, Paolo

    2014-01-01

    Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but less is known about the actions of specific isomers. The differential ability of individual CLA isomers to modulate these pathways was explored in Wistar rats fed for 4 weeks with a lard-based high-fat diet (L) or with control diet (CD), and, within each dietary treatment, two subgroups were daily administered with 9,11-CLA or 10,12-CLA (30 mg/day). The 9,11-CLA, but not 10,12-CLA, supplementation to CD rats improves the GSH/GSSG ratio in the liver, mitochondrial functions, and Nrf2 activity. Histological examination reveals a reduction of steatosis in L-fed rats supplemented with both CLA isomers, but 9,11-CLA downregulated plasma concentrations of proinflammatory markers, mitochondrial dysfunction, and oxidative stress markers in liver more efficiently than in 10,12-CLA treatment. The present study demonstrates the higher protective effect of 9,11-CLA against diet-induced pro-oxidant and proinflammatory signs and suggests that these effects are determined, at least in part, by its ability to activate the Nrf2 pathway and to improve the mitochondrial functioning and biogenesis. PMID:24634500

  12. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice.

    PubMed

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2016-08-01

    Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis. PMID:27461363

  13. Nordihydroguaiaretic acid ameliorates cisplatin induced nephrotoxicity and potentiates its anti-tumor activity in DMBA induced breast cancer in female Sprague-Dawley rats.

    PubMed

    Mundhe, Nitin Arunrao; Kumar, Parveen; Ahmed, Sahabuddin; Jamdade, Vinayak; Mundhe, Sanjay; Lahkar, Mangala

    2015-09-01

    Cisplatin is a widely used antineoplastic drug, but its clinical usefulness is limited due to dose dependent nephrotoxicity. Nordihydroguaiaretic acid (NDGA) is a natural compound with broad pharmacological properties like antioxidant, anti-inflammatory and anticancer activity. The present study was undertaken to evaluate the possible beneficial effects of NDGA on cisplatin induced nephrotoxicity as well as its anticancer activity in rats bearing DMBA induced mammary tumors. The effect of NDGA on cisplatin induced nephrotoxicity was evaluated by checking serum nephrotoxicity markers, antioxidant enzymes and inflammatory markers level and kidney histopathology. NDGA induced amelioration of cisplatin nephrotoxicity was clearly visible from significant reductions in serum blood urea nitrogen (86.51 g/dl) and creatinine (5.30 g/dl) levels and significant improvement in body weight change (-10.34 g) and kidney weight (728 mg/kg). The protective effect of NDGA against cisplatin induced nephrotoxicity in the rats was further confirmed by significant restoration of antioxidant enzymes like SOD (86.28% inhibition), inflammatory markers like TNF-α (34.6 pg/ml) and histopathological examination. Moreover, our results showed that NDGA potentiated anti-breast cancer activity of cisplatin through an increment in the expression of antioxidant enzymes like SOD (85.35% inhibition) in breast cancer tissue. These results indicated that NDGA potentiated the anti-breast cancer activity of cisplatin, which was clearly evident from the tumor volume and % tumor inhibition in breast cancer rats. The current study demonstrated that NDGA may modify the therapeutic effect of cisplatin in DMBA induced breast cancer in female Sprague-Dawley rats. PMID:26247680

  14. Can Bacteriotherapy Using Commercially Available Probiotics, Prebiotics, and Organic Acids Ameliorate the Symptoms Associated With Runting-Stunting Syndrome in Broiler Chickens?

    PubMed

    Mundt, E; Collett, S R; Berghaus, R; Pedroso, A A; Lee, M D; Maurer, J J

    2015-06-01

    Runting-stunting syndrome (RSS) in poultry has been known for more than 40 years, but the precise etiology remains unknown and a licensed vaccine is consequently not currently available. In order to mitigate the symptoms associated with RSS, a series of experiments was performed to investigate whether a combined bacteriotherapeutic treatment consisting of probiotics, prebiotics, and organic acids could influence the outcome of this disease. Initially two groups of commercial broiler chickens were either left uninoculated or inoculated with filtrate from homogenized intestines of RSS-affected broiler chickens. One group from each of these two challenge groups was treated, with a bacteriotherapeutic regimen. After 12 days chickens were euthanatized, the body weight was measured, and duodenal lesions were enumerated. Five consecutive broiler chicken flocks were then raised either on litter from RSS-affected birds or on fresh wood shavings. Treatment had no beneficial effect on the number and severity of intestinal lesions. There appeared to be a significant build-up of RSS agent(s) in poultry litter, with each consecutive flock placement, independent of bacteriotherapeutic treatment, as more individuals exhibited intestinal lesions on built-up litter in RSS-affected houses (28.9% vs. 44%). While treatment did not appear to consistently reduce intestinal lesions, it did significantly improve the mean body weights (P<0.05) and uniformity of 12-day-old chickens placed on reused litter in houses in which RSS-infected birds were previously raised. A combination of litter management and bacteriotherapy may be needed to ameliorate the adverse effects of RSS on intestinal health and body weight in broiler chickens. PMID:26473669

  15. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway

    PubMed Central

    Zhang, Jin-qiang; Wu, Xiao-hui; Feng, Yi; Xie, Xiao-fang; Fan, Yong-hua; Yan, Shuo; Zhao, Qiu-ying; Peng, Cheng; You, Zi-li

    2016-01-01

    Aim: Major depressive disorder (MDD) is a debilitating mental disorder associated with dysfunction of the neurotransmitter-neuroendocrine system and neuroinflammatory responses. Salvianolic acid B (SalB) has shown a variety of pharmacological activities, including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we examined whether SalB produced antidepressant-like actions in a chronic mild stress (CMS) mouse model, and explored the mechanisms underlying the antidepressant-like actions of SalB. Methods: Mice were subjected to a CMS paradigm for 6 weeks. In the last 3 weeks the mice were daily administered SalB (20 mg·kg−1·d−1, ip) or a positive control drug imipramine (20 mg·kg−1·d−1, ip). The depressant-like behaviors were evaluated using the sucrose preference test, the forced swimming test (FST), and the tail suspension test (TST). The gene expression of cytokines in the hippocampus and cortex was analyzed with RT-PCR. Plasma corticosterone (CORT) and cerebral cytokines levels were assayed with an ELISA kit. Neural apoptosis and microglial activation in brain tissues were detected using immunofluorescence staining. Results: Administration of SalB or imipramine reversed the reduced sucrose preference ratio of CMS-treated mice, and significantly decreased their immobility time in the FST and TST. Administration of SalB significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, and markedly increased the expression of anti-inflammatory cytokines IL-10 and TGF-β in the hippocampus and cortex of CMS-treated mice, and normalized their elevated plasma CORT levels, whereas administration of imipramine did not significantly affect the imbalance between pro- and anti-inflammatory cytokines in the hippocampus and cortex of CMS-treated mice. Finally, administration of SalB significantly decreased CMS-induced apoptosis and microglia activation in the hippocampus and cortex, whereas administration of

  16. Dicaffeoylquinic Acid-Enriched Fraction of Cichorium glandulosum Seeds Attenuates Experimental Type 1 Diabetes via Multipathway Protection.

    PubMed

    Tong, Jing; Ma, Bingxin; Ge, Lanlan; Mo, Qigui; Zhou, Gao; He, Jingsheng; Wang, Youwei

    2015-12-23

    Chicory has a major geographical presence in Europe and Asia. Cichorium glandulosum Boiss. et Huet, a genus Cichorium, is used for medicinal and food purposes in Asia. In this study, a dicaffeoylquinic acid-enriched fraction of C. glandulosum seeds n-BuOH fraction (CGSB) could ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin (STZ)-induced diabetic mice with continuous administration for 2 weeks. CGSB treatment showed significantly higher plasma insulin levels but lower free fatty acids in adipose tissue and liver. Moreover, CGSB improved pancreatic islet mass. In vitro, different fractions of C. glandulosum seed (CGS) induced the differentiation of 3T3-L1 preadipocytes. The mRNA level for peroxisome proliferator-activated receptor alpha increased in high glucose treatment group in HepG2 cells, while CGSB significantly down-regulated the mRNA expression. The main compound of CGSB, 3,5-dicaffeoylquinic acid, was isolated and identified, which exhibited α-glucosidase inhibitory activity. These findings demonstrated that CGSB attenuated experimental T1DM via multipathway protection.

  17. Dicaffeoylquinic Acid-Enriched Fraction of Cichorium glandulosum Seeds Attenuates Experimental Type 1 Diabetes via Multipathway Protection.

    PubMed

    Tong, Jing; Ma, Bingxin; Ge, Lanlan; Mo, Qigui; Zhou, Gao; He, Jingsheng; Wang, Youwei

    2015-12-23

    Chicory has a major geographical presence in Europe and Asia. Cichorium glandulosum Boiss. et Huet, a genus Cichorium, is used for medicinal and food purposes in Asia. In this study, a dicaffeoylquinic acid-enriched fraction of C. glandulosum seeds n-BuOH fraction (CGSB) could ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin (STZ)-induced diabetic mice with continuous administration for 2 weeks. CGSB treatment showed significantly higher plasma insulin levels but lower free fatty acids in adipose tissue and liver. Moreover, CGSB improved pancreatic islet mass. In vitro, different fractions of C. glandulosum seed (CGS) induced the differentiation of 3T3-L1 preadipocytes. The mRNA level for peroxisome proliferator-activated receptor alpha increased in high glucose treatment group in HepG2 cells, while CGSB significantly down-regulated the mRNA expression. The main compound of CGSB, 3,5-dicaffeoylquinic acid, was isolated and identified, which exhibited α-glucosidase inhibitory activity. These findings demonstrated that CGSB attenuated experimental T1DM via multipathway protection. PMID:26586022

  18. A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway*

    PubMed Central

    Miyamoto, Junki; Mizukure, Taichi; Park, Si-Bum; Kishino, Shigenobu; Kimura, Ikuo; Hirano, Kanako; Bergamo, Paolo; Rossi, Mauro; Suzuki, Takuya; Arita, Makoto; Ogawa, Jun; Tanabe, Soichi

    2015-01-01

    Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease. PMID:25505251

  19. Pharmacologic overview of systemic chlorogenic acid therapy on experimental wound healing.

    PubMed

    Bagdas, Deniz; Gul, Nihal Yasar; Topal, Ayse; Tas, Sibel; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Gul, Zulfiye; Etoz, Betul Cam; Ziyanok, Sedef; Inan, Sevda; Turacozen, Ozge; Gurun, Mine Sibel

    2014-11-01

    Chlorogenic acid (CGA) is a well-known natural antioxidant in human diet. To understand the effects of CGA on wound healing by enhancing antioxidant defense in the body, the present study sought to investigate the potential role of systemic CGA therapy on wound healing and oxidative stress markers of the skin. We also aimed to understand whether chronic CGA treatment has side effects on pivotal organs or rat bone marrow during therapy. Full-thickness experimental wounds were created on the backs of rats. CGA (25, 50, 100, 200 mg/kg) or vehicle was administered intraperitoneally for 15 days. All rats were sacrificed on the 16th day. Biochemical, histopathological, and immunohistochemical examinations were performed. Possible side effects were also investigated. The results suggested that CGA accelerated wound healing in a dose-dependent manner. CGA enhanced hydroxyproline content, decreased malondialdehyde and nitric oxide levels. and elevated reduced glutathione, superoxide dismutase, and catalase levels in wound tissues. Epithelialization, angiogenesis, fibroblast proliferation, and collagen formation increased by CGA while polymorph nuclear leukocytes infiltration decreased. CGA modulated matrix metalloproteinase-9 and tissue inhibitor-2 expression in biopsies. Otherwise, high dose of CGA increased lipid peroxidation of liver and kidney without affecting the heart and muscle samples. Chronic CGA increased micronuclei formation and induced cytotoxicity in the bone marrow. In conclusion, systemic CGA has beneficial effects in improving wound repair. Antioxidant, free radical scavenger, angiogenesis, and anti-inflammatory effects of CGA may ameliorate wound healing. High dose of CGA may induce side effects. In light of these observations, CGA supplementation or dietary CGA may have benefit on wound healing.

  20. Experimental and computational studies of fatty acid distribution networks.

    PubMed

    Liu, Yong; Buendía-Rodríguez, Germán; Peñuelas-Rívas, Claudia Giovanna; Tan, Zhiliang; Rívas-Guevara, María; Tenorio-Borroto, Esvieta; Munteanu, Cristian R; Pazos, Alejandro; González-Díaz, Humberto

    2015-11-01

    Unbalanced uptake of Omega 6/Omega 3 (ω-6/ω-3) ratios could increase chronic disease occurrences, such as inflammation, atherosclerosis, or tumor proliferation, and methylation methods for measuring the ruminal microbiome fatty acid (FA) composition/distribution play a vital role in discovering the contribution of food components to ruminant products (e.g., meat and milk) when pursuing a healthy diet. Hansch's models based on Linear Free Energy Relationships (LFERs) using physicochemical parameters, such as partition coefficients, molar refractivity, and polarizability, as input variables (Vk) are advocated. In this work, a new combined experimental and theoretical strategy was proposed to study the effect of ω-6/ω-3 ratios, FA chemical structure, and other factors over FA distribution networks in the ruminal microbiome. In step 1, experiments were carried out to measure long chain fatty acid (LCFA) profiles in the rumen microbiome (bacterial and protozoan), and volatile fatty acids (VFAs) in fermentation media. In step 2, the proportions and physicochemical parameter values of LCFAs and VFAs were calculated under different boundary conditions (cj) like c1 = acid and/or base methylation treatments, c2 = with/without fermentation, c3 = FA distribution phase (media, bacterial, or protozoan microbiome), etc. In step 3, Perturbation Theory (PT) and LFER ideas were combined to develop a PT-LFER model of a FA distribution network using physicochemical parameters (V(k)), the corresponding Box-Jenkins (ΔV(kj)) and PT operators (ΔΔV(kj)) in statistical analysis. The best PT-LFER model found predicted the effects of perturbations over the FA distribution network with sensitivity, specificity, and accuracy > 80% for 407 655 cases in training + external validation series. In step 4, alternative PT-LFER and PT-NLFER models were tested for training Linear and Non-Linear Artificial Neural Networks (ANNs). PT-NLFER models based on ANNs presented better performance but are

  1. A novel 2-decenoic acid thioester ameliorates corticosterone-induced depression- and anxiety-like behaviors and normalizes reduced hippocampal signal transduction in treated mice

    PubMed Central

    Shibata, Shoyo; Iinuma, Munekazu; Soumiya, Hitomi; Fukumitsu, Hidefumi; Furukawa, Yoshiko; Furukawa, Shoei

    2015-01-01

    We characterized mice administered corticosterone (CORT) at a dose of 20 mg/kg for 3 weeks to determine their suitability as a model of mood disorders and found that the time immobilized in the tail suspension test was longer and the time spent in the open arms of the elevated plus-maze test was shorter than those of the vehicle-treated group, findings demonstrating that chronic CORT induced both depression-like and anxiety-like behaviors. Furthermore, the levels of phosphorylated extracellular signal-regulated kinase (pERK) 1/2 in the hippocampus and cerebral cortex were reduced in the CORT-treated group. Using this model, we investigated the protective effect of the ester, thioester, and amide compounds of 2-decenoic acid derivatives (termed compounds A, B, and C, respectively). The potency of the protective activity against the CORT-induced depression-like or anxiety-like behaviors and the reduction in pERK1/2 level were found to be in the following order: compound B > compound C > compound A. Therefore, we further investigated the therapeutic activity of only compound B, and its effect on depression-like behavior was observed after oral administration for 1 or 2 weeks, and its effect on anxiety-like behavior was observed after oral administration for 3 weeks. The ratios of phosphorylated ERK1/2, Akt, and cAMP-response element-binding protein to their respective nonphosphorylated forms were smaller in the CORT-treated group than in the vehicle-treated group; however, subsequent treatment with compound B at either 0.3 or 1.5 mg/kg significantly ameliorated this reduction. Compound B appeared to elicit intracellular signaling, similar to that elicited by brain-derived neurotrophic factor, and its mode of action was shown to be novel and different from that of fluvoxamine, a currently prescribed drug for mood disorders. PMID:26038707

  2. The liquorice root derivative glycyrrhetinic acid can ameliorate ionoregulatory disturbance in rainbow trout (Oncorhynchus mykiss) abruptly exposed to ion-poor water.

    PubMed

    Chen, Chun Chih; Kolosov, Dennis; Kelly, Scott P

    2016-09-01

    To consider the idea that a dietary botanical supplement could act as an adaptogen in a teleost fish, the effect of a liquorice root derivative (18β-glycyrrhetinic acid, 18βGA) on rainbow trout following an acute ionoregulatory stressor was examined. Freshwater (FW) trout were fed a control or 18βGA supplemented diet (0, 5, or 50μg 18βGA/g diet) for 2weeks, then abruptly exposed to ion-poor water (IPW) for 24h. Following IPW exposure, muscle moisture content and serum cortisol levels elevated and serum [Na(+)] and/or [Cl(-)] reduced in control and 50μg/g 18βGA-fed fish. However, these endpoints were unaltered in 5μg/g 18βGA-fed fish. Gill tissue was investigated for potential mechanisms of 18βGA action by examining mRNA abundance of genes encoding corticosteroid receptors (CRs), 11β-hydroxysteroid dehydrogenase 2 (11β-hsd2), and tight junction (TJ) proteins, as well as Na(+)-K(+)-ATPase and H(+)-ATPase activity, and mitochondrion-rich cell (MRC) morphometrics. Following IPW exposure, CR and 11β-hsd2 mRNA, MRC fractional surface, Na(+)-K(+)-ATPase and H(+)-ATPase activity were unaltered or decreased in 50μg 18βGA fish, as was mRNA encoding select TJ proteins. In contrast, 5μg 18βGA-fed fish exhibited elevated 11β-hsd2 and CR mRNA abundance versus 50μg 18βGA-fed, and reduced MRC apical area as well as some differences in TJ protein mRNA abundance versus control fish. Data suggest that 18βGA, at low levels, may be adaptogenic in trout and might help to ameliorate ionoregulatory perturbation following IPW exposure. This seems to occur, in part, through 18βGA-induced alterations in the biochemistry and physiology of the gill.

  3. The liquorice root derivative glycyrrhetinic acid can ameliorate ionoregulatory disturbance in rainbow trout (Oncorhynchus mykiss) abruptly exposed to ion-poor water.

    PubMed

    Chen, Chun Chih; Kolosov, Dennis; Kelly, Scott P

    2016-09-01

    To consider the idea that a dietary botanical supplement could act as an adaptogen in a teleost fish, the effect of a liquorice root derivative (18β-glycyrrhetinic acid, 18βGA) on rainbow trout following an acute ionoregulatory stressor was examined. Freshwater (FW) trout were fed a control or 18βGA supplemented diet (0, 5, or 50μg 18βGA/g diet) for 2weeks, then abruptly exposed to ion-poor water (IPW) for 24h. Following IPW exposure, muscle moisture content and serum cortisol levels elevated and serum [Na(+)] and/or [Cl(-)] reduced in control and 50μg/g 18βGA-fed fish. However, these endpoints were unaltered in 5μg/g 18βGA-fed fish. Gill tissue was investigated for potential mechanisms of 18βGA action by examining mRNA abundance of genes encoding corticosteroid receptors (CRs), 11β-hydroxysteroid dehydrogenase 2 (11β-hsd2), and tight junction (TJ) proteins, as well as Na(+)-K(+)-ATPase and H(+)-ATPase activity, and mitochondrion-rich cell (MRC) morphometrics. Following IPW exposure, CR and 11β-hsd2 mRNA, MRC fractional surface, Na(+)-K(+)-ATPase and H(+)-ATPase activity were unaltered or decreased in 50μg 18βGA fish, as was mRNA encoding select TJ proteins. In contrast, 5μg 18βGA-fed fish exhibited elevated 11β-hsd2 and CR mRNA abundance versus 50μg 18βGA-fed, and reduced MRC apical area as well as some differences in TJ protein mRNA abundance versus control fish. Data suggest that 18βGA, at low levels, may be adaptogenic in trout and might help to ameliorate ionoregulatory perturbation following IPW exposure. This seems to occur, in part, through 18βGA-induced alterations in the biochemistry and physiology of the gill. PMID:27220746

  4. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings.

    PubMed

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Gupta, B D; Gupta, R K

    2011-07-01

    The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g(-1) FW) and bound (0.545 μg g(-1) FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g(-1) FW) and bound IAA (2.45-7.78 μg g(-1) FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g(-1) FW) and bound (12.17 μg g(-1) FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g(-1) FW) and Cad (9.08 μg g(-1) FW) contents were found for 10(-9)M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g(-1) FW), proline (4.97 mg g(-1) FW), glycinebetaine (39.01 μmol mL(-1)), ascorbic acid (3.17 mg g(-1) FW) and phytochelatins (65.69 μmol g(-1) FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg(-1) protein) and catalase (0.221 U mg(-1) protein) and enhanced activities of glutathione reductase (7.14 U mg(-1) protein), superoxide dismutase (15.20 U mg(-1) protein) and ascorbate peroxidase (4.31 U mg(-1) protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone

  5. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion.

    PubMed

    Chen, Ting; Yuan, Fahu; Wang, Hualin; Tian, Yu; He, Lei; Shao, Yang; Li, Na; Liu, Zhiguo

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  6. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    PubMed Central

    Tian, Yu; He, Lei; Shao, Yang; Li, Na

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  7. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    PubMed Central

    Tian, Yu; He, Lei; Shao, Yang; Li, Na

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  8. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion.

    PubMed

    Chen, Ting; Yuan, Fahu; Wang, Hualin; Tian, Yu; He, Lei; Shao, Yang; Li, Na; Liu, Zhiguo

    2016-01-01

    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  9. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  10. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  11. Neuroprotective effects of folic acid on experimental diabetic peripheral neuropathy.

    PubMed

    Yilmaz, Mustafa; Aktug, Huseyin; Oltulu, Fatih; Erbas, Oytun

    2016-05-01

    Diabetic peripheral neuropathy (DPN) is widely considered as a degenerative complication of diabetic patients. The clinical effectiveness of folic acid (FA) on DPN is uncertain. The objective of the present study was to determine the effect of FA in DPN using electromyography (EMG), histopathological examination, immunohistochemistry, inclined plane test, and malondialdehyde (MDA) levels as a marker for lipid peroxidation in experimental diabetic rats. A total of 21 Sprague Dawley rats were randomly divided into 3 groups: control group, diabetes group, and FA-treated group. In EMG, compound muscle action potential (CMAP) amplitude in the sciatic nerve was lower in the diabetes group compared with the control group. CMAP amplitude in the sciatic nerve was higher in the FA-treated group when compared with the diabetes group. Distal latency and CMAP duration in the sciatic nerve were lower in the FA-treated group when compared with the diabetes group. In histopathological examination of the sciatic nerve, peripheral fibrosis was present in the diabetic group; the fibrosis was lower in the FA-treated group. In comparison with the diabetes group, the expression of nerve growth factor (NGF) was higher in the FA-treated group. The scores for the inclined plane test were lower in the diabetes group and higher in the FA-treated group than the control group. The MDA levels were significantly lower in the FA-treated group when compared with the diabetes group.The study suggests that FA can protect diabetic rats against DPN and that the underlying mechanism for this may be related to improvement of the expression of NGF and lower MDA levels.

  12. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    PubMed

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS. PMID:26758971

  13. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    PubMed

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS.

  14. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease.

    PubMed

    Heeba, Gehan H; Morsy, Mohamed A

    2015-11-01

    Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. In the present study, we investigated the therapeutic effect of fucoidan on non-alcoholic fatty liver disease (NAFLD) in rats. Rats were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD. Oral administrations of fucoidan (100mg/kg, orally), metformin (200mg/kg, orally) or the vehicle were started in the last four weeks. Results showed that administration of fucoidan for 4 weeks attenuated the development of NAFLD as evidenced by the significant decrease in liver index, serum liver enzymes activities, serum total cholesterol and triglycerides, fasting serum glucose, insulin, insulin resistance, and body composition index. Further, fucoidan decreased hepatic malondialdehyde as well as nitric oxide concentrations, and concomitantly increased hepatic reduced glutathione level. In addition, the effect of fucoidan was accompanied with significant decrease in hepatic mRNA expressions of tumor necrosis factor-α, interleukins-1β and matrix metalloproteinase-2. Furthermore, histopathological examination confirmed the effect of fucoidan. In conclusion, fucoidan ameliorated the development of HFD-induced NAFLD in rats that may be, at least partly, related to its hypolipidemic, insulin sensitizing, antioxidant and anti-inflammatory mechanisms.

  15. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-01-01

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  16. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation.

    PubMed

    Samadder, Asmita; Das, Sreemanti; Das, Jayeeta; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2012-12-01

    In South East Asia, groundwater arsenic contamination has become a great menace. Chronic arsenic intoxication leads to a hyperglycemic condition in animals and man. Because of undesirable side-effects and affordability, orthodox medicine, like insulin, is not preferred by many who like natural products instead. Unfortunately, such natural products mostly lack scientific validation. Therefore, we became interested in assessing the efficacy of the ethanolic seed extract of Syzygium jambolanum (SJ), traditionally used against diabetic conditions. We also formulated poly (lactic-co-glycolic) acid (PLGA)-encapsulated nano-SJ (NSJ) and tested whether the ameliorative potentials of SJ could be enhanced by nano-encapsulation. In this study, we conducted both in vitro (in L6 cells) and in vivo (in mice) experiments to assess the relative efficacy of SJ and NSJ. We characterized the physico-chemical features of NSJ by atomic force microscopy and critically analyzed several bio-markers and signal proteins associated with arsenic-induced stress and hyperglycemia. We also determined the relative ameliorative potentials of SJ and NSJ by using standard protocols. NSJ could cross the blood brain barrier in mice. Overall results suggested that NSJ had a greater potential than that of SJ, indicating the possibility of using NSJ in the future drug design and management of arsenic-induced hyperglycemia and stress.

  17. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    expression profiling of the transcriptome revealed that COWE treatment caused the down regulation of a group of genes involved in the immune response, inflammatory response, antigen processing and presentation, B-cell-mediated immunity and innate immune response. Collectively, these results suggest anti-neuroinflammatory mechanisms by which COWE treatment delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs. PMID:27609283

  18. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice.

    PubMed

    Ozgun-Acar, Ozden; Celik-Turgut, Gurbet; Gazioglu, Isil; Kolak, Ufuk; Ozbal, Seda; Ergur, Bekir U; Arslan, Sevki; Sen, Alaattin; Topcu, Gulacti

    2016-09-15

    expression profiling of the transcriptome revealed that COWE treatment caused the down regulation of a group of genes involved in the immune response, inflammatory response, antigen processing and presentation, B-cell-mediated immunity and innate immune response. Collectively, these results suggest anti-neuroinflammatory mechanisms by which COWE treatment delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.

  19. Experimental uremia affects hypothalamic amino acid neurotransmitter milieu.

    PubMed

    Schaefer, F; Vogel, M; Kerkhoff, G; Woitzik, J; Daschner, M; Mehls, O

    2001-06-01

    Chronic renal failure is associated with delayed puberty and hypogonadism. To investigate the mechanisms subserving the reported reduced pulsatile release of gonadotropin-releasing hormone (GnRH) in chronic renal failure, this study examined the amino acid neurotransmitter milieu in the medial preoptic area (MPOA), the hypothalamic region where the GnRH-secreting neurons reside, in 5/6-nephrectomized male rats and in ad libitum-fed or pair-fed controls. All rats were castrated and received either a testosterone or a vehicle implant to evaluate additional effects of the prevailing sex steroid milieu. Local excitatory (essential amino acids: aspartate, glutamate) and inhibitory (gamma-aminobutyric acid [GABA], taurine) amino acid transmitter outflow in the MPOA was measured by microdialysis via stereotactically implanted cannulae in the awake, freely moving rats. In addition to basal extracellular concentrations, the neurosecretory capacity was assessed by the addition of 100 mM KCl to the dialysis fluid. The mechanisms of neurosecretion were evaluated further by inhibition of vesicular release with the use of Ca(2+)-free, Mg(2+)-enriched dialysis fluid and by local perfusion with inhibitors of voltage-dependent synaptic release (1 microM tetrodotoxin) and of GABA reuptake (0.5 mM nipecotic acid). In the uremic rats, basal outflow of GABA, glutamate and aspartate, and K(+)-stimulated aspartate outflow were increased. K(+)-stimulated GABA and glutamate release was less sensitive to Ca(2+) depletion in the uremic than in the control rats. The elevated basal GABA and essential amino acid outflow in the uremic rats was due to a voltage- and Ca(2+)-independent mechanism. GABA reuptake was inhibited proportionately by nipecotic acid in uremic and pair-fed control rats. Testosterone supplementation had no independent effects on neurotransmitter outflow. In summary, the amino acid neurotransmitter milieu is altered in the MPOA of uremic rats by a nonsynaptic, nonvesicular

  20. Hypobromous acid, a powerful endogenous electrophile: Experimental and theoretical studies.

    PubMed

    Ximenes, Valdecir Farias; Morgon, Nelson Henrique; de Souza, Aguinaldo Robinson

    2015-05-01

    Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br(-)). The blood plasma level of Br(-) is more than 1,000-fold lower than that of chloride anion (Cl(-)). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2=2.3×10(2)M(-1)s(-1), HOCl non-reactive); dansylglycine (HOBr, k2=7.3×10(6)M(-1)s(-1), HOCl, 5.2×10(2)M(-1)s(-1)); salicylic acid (HOBr, k2=4.0×10(4)M(-1)s(-1), non-reactive); 3-hydroxybenzoic acid (HOBr, k2=5.9×10(4)M(-1)s(-1), HOCl, k2=1.1×10(1)M(-1)s(-1)); uridine (HOBr, k2=1.3×10(3)M(-1)s(-1), HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile. PMID:25771434

  1. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis.

    PubMed

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death worldwide and remains a major life-threatening factor in humans. Apoptosis has been implicated in the pathogenesis of IHD. The Chinese herbal formula Huo Luo Xiao Ling Dan (HLXLD), one of the commonly used Chinese herbal formulas, consists of Salviae miltiorrhizae, Angelica sinensis, Gummi olibanum, and Commiphora myrrha, with a wide spectrum of pharmacological activity. However, the mechanism of action and molecular targets of HLXLD in the treatment of IHD are unclear. This study aimed to computationally predict the molecular interactions between the major active components of HLXLD and key regulators of apoptosis and then examine the effect of HLXLD on coronary artery ligation-induced acute myocardial ischemia in rats. The molecular interactions between the major active components of HLXLD, including ferulic acid, ligustilide, succinic acid, vanillic acid, tanshinone IIA, tanshinone IIB, danshensu, salvianolic acid A, salvianolic acid C, protocatechuic aldehyde, and β-boswellic acid and human protein molecules including B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 antagonist/killer 1 (Bak1), B cell lymphoma 2 (Bcl-2), procaspase 3, and caspase 9 with regard to hydrogen bond formation, charge interaction, and π-π stacking using Discovery Studio(®) program 3.1. The 12 HLXLD components were predicted by ADMET (absorption, distribution, metabolism, excretion and toxicity) Predictor to have favorable pharmacokinetic and low hepatotoxicity profiles. The acute myocardial ischemia was established by surgical ligation of the left anterior descending coronary artery. The rats were divided into a sham operative group, a model group, a positive control group treated with 0.2 mg/kg isosorbide mononitrate, and groups treated with 2.7, 5.4, or 10.8 g/kg HLXLD. The results showed that administration of HLXLD increased mean arterial pressure, left ventricular systolic pressure, heart rate, and maximal rate

  2. Surface characteristics of dentin experimentally exposed to hydrofluoric acid.

    PubMed

    Pioch, Thomas; Jakob, Heiko; García-Godoy, Franklin; Götz, Hermann; Dörfer, Christof E; Staehle, Hans J

    2003-08-01

    The purpose of this study was to test the effect of hydrofluoric acid (HF) on the surface characteristics of dentin in vitro. Dentin was exposed in 50 human molars and divided into five groups according to different etching schedules: (i) no etching, (ii) 15 s HF, (iii) 15 s H3PO4, (iv) 15 s HF and 15 s H3PO4, (v) 15 s H3PO4 and 15 s HF. Teeth were examined under a scanning electron microscope equipped with energy-dispersive X-ray (EDX) or two layers of fluorescence-labeled primer followed by the composite were applied, and the teeth were sectioned and examined using confocal laser scanning microscopy (CLSM). With scanning electron microscopy, no openings of dentinal tubules were found in groups (i), (ii), and (iv). In group (v) only a few tubules were opened and in group (iii) the smear layer was completely removed and tubules appeared open. The EDX analysis revealed that fluoride was incorporated into the dentin surface when HF was used. With CLSM, distinct hybrid layers could be detected only in group (iii). In group (v) the hybrid layer appeared less established compared with group (iii). No dentin hybridization was found in groups (i), (ii), and (iv). It is concluded that HF has the ability to close the openings of dentin tubules which were opened due to etching by phosphoric acid and cannot dissolve the smear layer.

  3. Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins

    NASA Astrophysics Data System (ADS)

    Akanuma, S.; Nakajima, Y.; Yokobori, S.; Yamagishi, A.

    2013-11-01

    It has been argued that a fewer amino acids were used in primitive proteins and later the repertoire increased up to 20. To test this hypothesis experimentally, we restricted the amino acid usage of a reconstructed, ancestral protein to reduced sets.

  4. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways.

  5. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO42-) in wheat roots. A descriptive and mathematical assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannic acids and tannins are polyphenolic compounds produced by plants and are important components of soil and water organic matter. Tannic acids and tannins form complexes with proteins, metals, and soil particulate matter and perform several physiological and ecological functions. The tannic ac...

  6. Vitamin D₃ and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis.

    PubMed

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4⁺ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139-151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D₃ (vitamin D₃), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D₃ and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D₃-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells.

  7. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A.

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  8. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid

    NASA Astrophysics Data System (ADS)

    Hsieh, Tiane-Jye; Su, Chia-Ching; Chen, Chung-Yi; Liou, Chyong-Huey; Lu, Li-Hwa

    2005-05-01

    Three natural products, Coumarin ( 1), p-hydroxybenzoic acid ( 2), trans-cinnamic acid ( 3) were isolated from the natural plant of indigenous cinnamon and the structures including relative stereochemistry were elucidated on the basis of spectroscopic data and theoretical calculations. Their sterochemical structures were determined by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The p-hydroxybenzoic acid complex with water is reported to show the existence of two hydrogen bonds. The two hydrogen bonds are formed in the water molecule of two hydrogen-accepting oxygen of carbonyl group of the p-hydroxybenzoic acid. The intermolecular interaction two hydrogen bond of the model system of the water- p-hydroxybenzoic acid was investigated. An experimental study and a theoretical analysis using the B3LYP/6-31G* method in the GAUSSIAN-03 package program were conducted on the three natural products. The theoretical results are supplemented by experimental data. Optimal geometric structures of three compounds were also determined. The calculated molecular mechanics compared quite well with those obtained from the experimental data. The ionization potentials, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, energy gaps, heat of formation, atomization energies, and vibration frequencies of the compounds were also calculated. The results of the calculations show that three natural products are stable molecules with high reactive and various other physical properties. The study also provided an explicit understanding of the sterochemical structure and thermodynamic properties of the three natural products.

  9. Bacteria-Derived Compatible Solutes Ectoine and 5α-Hydroxyectoine Act as Intestinal Barrier Stabilizers to Ameliorate Experimental Inflammatory Bowel Disease.

    PubMed

    Abdel-Aziz, Heba; Wadie, Walaa; Scherner, Olaf; Efferth, Thomas; Khayyal, Mohamed T

    2015-06-26

    Earlier studies showed that the compatible solute ectoine (1) given prophylactically before induction of colitis by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats prevented histological changes induced in the colon and the associated rise in inflammatory mediators. This study was therefore conducted to investigate whether ectoine (1) and its 5α-hydroxy derivative (2) would also be effective in treating an already established condition. Two days after inducing colitis in rats by instilling TNBS/alcohol in the colon, animals were treated orally once daily for 1 week with either 1 or 2 (50, 100, 300 mg/kg). Twenty-four hours after the last drug administration rats were sacrificed. Ulcerative lesions and colon mass indices were reduced by 1 and 2 in a bell-shaped manner. Best results were obtained with 100 mg/kg ectoine (1) and 50 mg/kg 5α-hydroxyectoine (2). The solutes normalized the rise in myeloperoxidase, TNFα, and IL-1β induced by TNBS but did not affect levels of reduced glutathione or ICAM-1, while reducing the level of fecal calprotectin, an established marker for inflammatory bowel disease. The findings indicate that the naturally occurring compatible solutes ectoine (1) and 5α-hydroxyectoine (2) possess an optimum concentration that affords maximal intestinal barrier stabilization and could therefore prove useful for better management of human inflammatory bowel disease.

  10. Integration des sciences et de la langue: Creation et experimentation d'un modele pedagogique pour ameliorer l'apprentissage des sciences en milieu francophone minoritaire

    NASA Astrophysics Data System (ADS)

    Cormier, Marianne

    Les faibles resultats en sciences des eleves du milieu francophone minoritaire, lors d'epreuves au plan national et international, ont interpelle la recherche de solutions. Cette these avait pour but de creer et d'experimenter un modele pedagogique pour l'enseignement des sciences en milieu linguistique minoritaire. En raison de la presence de divers degres de francite chez la clientele scolaire de ce milieu, plusieurs elements langagiers (l'ecriture, la discussion et la lecture) ont ete integres a l'apprentissage scientifique. Nous avions recommande de commencer le processus d'apprentissage avec des elements langagiers plutot informels (redaction dans un journal, discussions en dyades...) pour progresser vers des activites langagieres plus formelles (redaction de rapports ou d'explications scientifiques). En ce qui a trait a l'apprentissage scientifique, le modele preconisait une demarche d'evolution conceptuelle d'inspiration socio-constructiviste tout en s'appuyant fortement sur l'apprentissage experientiel. Lors de l'experimentation du modele, nous voulions savoir si celui-ci provoquait une evolution conceptuelle chez les eleves, et si, simultanement, le vocabulaire scientifique de ces derniers s'enrichissait. Par ailleurs, nous cherchions a comprendre comment les eleves vivaient leurs apprentissages dans le cadre de ce modele pedagogique. Une classe de cinquieme annee de l'ecole de Grande-Digue, dans le Sud-est du Nouveau-Brunswick, a participe a la mise a l'essai du modele en etudiant les marais sales locaux. Lors d'entrevues initiales, nous avons remarque que les connaissances des eleves au sujet des marais sales etaient limitees. En effet, s'ils etaient conscients que les marais etaient des lieux naturels, ils ne pouvaient pas necessairement les decrire avec precision. Nous avons egalement constate que les eleves utilisaient surtout des mots communs (plantes, oiseaux, insectes) pour decrire le marais. Les resultats obtenus indiquent que les eleves ont

  11. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone

    SciTech Connect

    Wu, Xue-Feng; Ouyang, Zi-Jun; Feng, Li-Li; Chen, Gong; Guo, Wen-Jie; Shen, Yan; Wu, Xu-Dong; Sun, Yang Xu, Qiang

    2014-11-15

    Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD. Treatment with fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b{sup +} macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following fraxinellone treatment. The results from in vitro assays showed that fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of fraxinellone in NF-κB signaling and NLRP3 inflammasome activation. Overall, our results support fraxinellone as a novel drug candidate in the treatment of colonic inflammation. - Highlights: • Fraxinellone, a lactone compound, alleviated DSS induced colitis. • The effects of fraxinellone were attributed to its inhibition on

  12. [Prevention of cholelithiasis with ascorbic acid. Experimental study in hamsters].

    PubMed

    Peraza, M; Méndez, N; Lagarriga, J; Cohen, J; Alcantar, M; Chiprut, R

    1979-01-01

    Cholesterol lithogenesis is the end result of hepatic microsomal enzymatic alterations which determine an increase in cholesterol synthesis (HMG CoA reductase) and a decrease in its transformation into bile salts (7 alpha hydroxylase). Therefore biliary cholesterol excretion is increased while bile salt excretion is diminished. Ascorbic Acid (A.A.) seems capable of reversing those enzymatic derrangements in scorbutic animals. Since hamsters are able to synthesize A.A., we evaluated its effect used in high doses during diet induced lithogenesis. Two groups of 6 weeks old, male hamsters, were fed with a lithogenic diet for 30 days. Group A received the usual amount of A.A. contained in the diet (0.25 mg/day/manster) while group B had supplementary A.A. added to drinking water (5 mg/day/hamster). Thirteen out of twenty of group A (65%) and 5 out of 20 of group B (25%) developed cholesterol calculi (p 0.05). Less stones were found in the gallbladders of hamsters fed with supplementary A.A. It is concluded that A.A. in this model, has an inhibitory effect on lithogenesis. The possible mechanism seems to be related to A.A. influence on the microsomal enzymes involved in lithogenesis. These findings, plus the lack of undesirable secondary effects of supplementary A.A. suggest a potential therapeutic role in human cholelithiasis. PMID:531439

  13. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.

    PubMed

    Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G

    2014-03-15

    Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. PMID:24433927

  14. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Liu, Zhong-he; Chen, Hong-guang; Wu, Pan-feng; Yao, Qing; Cheng, Hong-ke; Yu, Wei; Liu, Chao

    2015-01-01

    Objective. The effects of Flos Puerariae extract (FPE) on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ) for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA) and total cholesterol (TCH) in serum, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and acetylcholinesterase (AChE) activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain. PMID:26060502

  15. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    PubMed

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  16. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis.

    PubMed

    Medicherla, Kanakaraju; Ketkar, Avanee; Sahu, Bidya Dhar; Sudhakar, Godi; Sistla, Ramakrishna

    2016-07-13

    We investigated the anti-inflammatory and anti-colitis effects of Rosmarinus officinalis L. extract (RE) by using both in vitro LPS-activated mouse RAW 264.7 macrophages and in vivo dextran sulfate sodium (DSS)-induced experimental murine colitis and suggested the underlying possible mechanisms. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis was performed to identify the major components present in the RE. The clinical signs, biochemistry, immunoblot, ELISA and histology in colon tissues were assessed in order to elucidate the beneficial effect of RE. RE suppressed the LPS-induced pro-inflammatory cytokine production and the expressions of inflammatory proteins in macrophages. Administration of RE (50 and 100 mg kg(-1)) also significantly reduced the severity of DSS-induced murine colitis, as assessed by the clinical symptoms, colon length and histology. RE administration prevented the DSS-induced activation of p38, ERK and JNK MAPKs, attenuated IκBα phosphorylation and subsequent nuclear translocation and DNA binding of NF-κB (p65). RE also suppressed the COX-2 and iNOS expressions, decreased the levels of TNF-α and IL-6 cytokines and the myeloperoxidase activity in the colon tissue. Histological observation revealed that RE administration alleviated mucosal damage and inflammatory cell infiltration induced by DSS in the colon tissue. Hence, RE could be used as a new preventive and therapeutic food ingredient or as a dietary supplement for inflammatory bowel disease. PMID:27349640

  17. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  18. Effects of Boric Acid on Fracture Healing: An Experimental Study.

    PubMed

    Gölge, Umut Hatay; Kaymaz, Burak; Arpaci, Rabia; Kömürcü, Erkam; Göksel, Ferdi; Güven, Mustafa; Güzel, Yunus; Cevizci, Sibel

    2015-10-01

    Boric acid (BA) has positive effects on bone tissue. In this study, the effects of BA on fracture healing were evaluated in an animal model. Standard closed femoral shaft fractures were created in 40 male Sprague-Dawley rats under general anesthesia. The rats were allocated into five groups (n = 8 each): group 1, control with no BA; groups 2 and 3, oral BA at doses of 4 and 8 mg/kg/day, respectively; group 4, local BA (8 mg/kg); and group 5, both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally). After closed fracture creation, the fracture line was opened with a mini-incision, and BA was locally administered to the fracture area in groups 4 and 5. In groups 2, 3, and 5, BA was administered by gastric gavage daily until sacrifice. The rats were evaluated by clinical, radiological, and histological examinations. The control group (group 1) significantly differed from the local BA-exposed groups (groups 4 and 5) in the clinical evaluation. Front-rear and lateral radiographs revealed significant differences between the local BA-exposed groups and the control and other groups (p < 0.05). Clinical and radiological evaluations demonstrated adequate agreement between observers. The average histological scores significantly differed across groups (p = 0.007) and were significantly higher in groups 4 and 5 which were the local BA (8 mg/kg) and both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally), respectively, compared to the controls. This study suggests that BA may be useful in fracture healing. Further research is required to demonstrate the most effective local dosage and possible use of BA-coated implants. PMID:25846213

  19. Effects of Boric Acid on Fracture Healing: An Experimental Study.

    PubMed

    Gölge, Umut Hatay; Kaymaz, Burak; Arpaci, Rabia; Kömürcü, Erkam; Göksel, Ferdi; Güven, Mustafa; Güzel, Yunus; Cevizci, Sibel

    2015-10-01

    Boric acid (BA) has positive effects on bone tissue. In this study, the effects of BA on fracture healing were evaluated in an animal model. Standard closed femoral shaft fractures were created in 40 male Sprague-Dawley rats under general anesthesia. The rats were allocated into five groups (n = 8 each): group 1, control with no BA; groups 2 and 3, oral BA at doses of 4 and 8 mg/kg/day, respectively; group 4, local BA (8 mg/kg); and group 5, both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally). After closed fracture creation, the fracture line was opened with a mini-incision, and BA was locally administered to the fracture area in groups 4 and 5. In groups 2, 3, and 5, BA was administered by gastric gavage daily until sacrifice. The rats were evaluated by clinical, radiological, and histological examinations. The control group (group 1) significantly differed from the local BA-exposed groups (groups 4 and 5) in the clinical evaluation. Front-rear and lateral radiographs revealed significant differences between the local BA-exposed groups and the control and other groups (p < 0.05). Clinical and radiological evaluations demonstrated adequate agreement between observers. The average histological scores significantly differed across groups (p = 0.007) and were significantly higher in groups 4 and 5 which were the local BA (8 mg/kg) and both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally), respectively, compared to the controls. This study suggests that BA may be useful in fracture healing. Further research is required to demonstrate the most effective local dosage and possible use of BA-coated implants.

  20. ASP4058, a Novel Agonist for Sphingosine 1-Phosphate Receptors 1 and 5, Ameliorates Rodent Experimental Autoimmune Encephalomyelitis with a Favorable Safety Profile

    PubMed Central

    Yamamoto, Rie; Okada, Youhei; Hirose, Jun; Koshika, Tadatsura; Kawato, Yuka; Maeda, Masashi; Saito, Rika; Hattori, Kazuyuki; Harada, Hironori; Nagasaka, Yasuhisa; Morokata, Tatsuaki

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that acts through the members of a family of five G protein-coupled receptors (S1P1–S1P5). S1P1 is a major regulator of lymphocyte trafficking, and fingolimod, whose active metabolite fingolimod phosphate acts as a nonselective S1P receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating the lymphocyte trafficking by inducing down regulation of lymphocyte S1P1. Here, we detail the pharmacological profile of 5-{5-[3-(trifluoromethyl)-4-{[(2S)-1,1,1-trifluoropropan-2-yl]oxy}phenyl]-1,2,4-oxadiazol-3-yl}-1H-benzimidazole (ASP4058), a novel next-generation S1P receptor agonist selective for S1P1 and S1P5. ASP4058 preferentially activates S1P1 and S1P5 compared with S1P2, 3, 4 in GTPγS binding assays in vitro. Oral administration of ASP4058 reduced the number of peripheral lymphocytes and inhibited the development of experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Further, ASP4058 prevented relapse of disease in a mouse model of relapsing-remitting EAE. Although these immunomodulatory effects were comparable to those of fingolimod, ASP4058 showed a wider safety margin than fingolimod for bradycardia and bronchoconstriction in rodents. These observations suggest that ASP4058 represents a new therapeutic option for treating multiple sclerosis that is safer than nonselective S1P receptor agonists such as fingolimod. PMID:25347187

  1. Coenzyme Q10 Ameliorates Trimethyltin Chloride Neurotoxicity in Experimental Model of Injury in Dentate Gyrus of Hippocampus: A Histopathological and Behavioral Study

    PubMed Central

    Sakhaie, Mohammad Hassan; Soleimani, Mansoureh; Pirhajati, Vahid; Soleimani Asl, Sara; Madjd, Zahra; Mehdizadeh, Mehdi

    2016-01-01

    Background Coenzyme Q10 has antioxidative and free radical scavenging effects. CoQ10 supplementation is known to have neuroprotective effects in some neurodegenerative diseases, such as Parkinson’s disease and Huntington’s disease. Objectives The aim of this study was to evaluate both histopathologic and behavioral whether Coenzyme Q10 is protective against trimethyltin chloride (TMT) induced hippocampal damage. Materials and Methods This was an experimental study. Thirty-six Balb/c mice were divided into four groups, as follows: 1) control group; 2) sham group of mice that received a 100 µL intraperitoneal injection (IP) of sesame oil; 3) TMT group of mice that received a single 2.5 mg/kg/day IP injection of TMT; and 4) TMT + CoQ10 group of mice that received a 10 mg/kg IP injection of CoQ10. Body weight and Morris water maze (MWM) responses were investigated. In addition, the dentate gyrus neurons of the hippocampus were evaluated histopathologically by light and electron microscopes. Results This study revealed that the body weight scale was found to be significantly higher in the CoQ10 group (21.39 ± 2.70), compared to the TMT group (19.39 ± 2.74) (P < 0.05). In the TMT group, the animals showed body a weight loss that was significantly lower than that of the control group (22.33 ± 3.06) (P < 0.05). Our results showed that CoQ10 provided protection against MWM deficits. Furthermore, TMT impaired the ability of mice to locate the hidden platform, compared to the control group (P < 0.05). Microscopic studies showed that TMT caused histopathological changes in the dentate gyrus and increased the number of necrotic neurons (476 ± 78.51), compared to the control group (208 ± 40.84) (P < 0.001). But, CoQ10 significantly attenuated (31 9 ± 60.08) the density of necrotic neurons compared to TMT (P < 0.05). Conclusions The results of the present study indicate that Coenzyme Q10 diminished neuronal necrosis and improved learning memory. Part of its beneficial

  2. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  3. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renal injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress

  4. Experimental and Computational Study on the Molecular Energetics of 2-Pyrrolecarboxylic Acid and 1-Methyl-2-pyrrolecarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Santos, Ana Filipa L. O. M.; Silva, Manuel A. V. Ribeiro Da

    2009-08-01

    This paper reports a combined thermochemical experimental and computational study of 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p° = 0.1 MPa) molar enthalpies of combustion, ΔcHm°, and sublimation, ΔcrgHm°, respectively, from which the standard (p° = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were derived. The values obtained were -(286.3 ± 1.7) and -(291.6 ± 1.7) kJ·mol for 2-pyrrolecarboxylic acid and 1-methyl-2-pyrrolecarboxylic acid, respectively. For comparison purposes, the gas-phase enthalpies of formation of these two compounds were estimated by G3(MP2)//B3LYP and MP2 approaches, using a set of gas-phase working reactions; the results are in excellent agreement with experimental data. G3(MP2)//B3LYP computations were also extended to the calculation of N-H bond dissociation enthalpies, gas-phase acidities and basicities, proton and electron affinities and adiabatic ionization enthalpies. Moreover, the results are also discussed in terms of the energetic effects of the addition of a carboxylic and of a methyl groups to the pyrrole ring and compared with structurally similar compounds.

  5. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis

    PubMed Central

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death worldwide and remains a major life-threatening factor in humans. Apoptosis has been implicated in the pathogenesis of IHD. The Chinese herbal formula Huo Luo Xiao Ling Dan (HLXLD), one of the commonly used Chinese herbal formulas, consists of Salviae miltiorrhizae, Angelica sinensis, Gummi olibanum, and Commiphora myrrha, with a wide spectrum of pharmacological activity. However, the mechanism of action and molecular targets of HLXLD in the treatment of IHD are unclear. This study aimed to computationally predict the molecular interactions between the major active components of HLXLD and key regulators of apoptosis and then examine the effect of HLXLD on coronary artery ligation-induced acute myocardial ischemia in rats. The molecular interactions between the major active components of HLXLD, including ferulic acid, ligustilide, succinic acid, vanillic acid, tanshinone IIA, tanshinone IIB, danshensu, salvianolic acid A, salvianolic acid C, protocatechuic aldehyde, and β-boswellic acid and human protein molecules including B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 antagonist/killer 1 (Bak1), B cell lymphoma 2 (Bcl-2), procaspase 3, and caspase 9 with regard to hydrogen bond formation, charge interaction, and π-π stacking using Discovery Studio® program 3.1. The 12 HLXLD components were predicted by ADMET (absorption, distribution, metabolism, excretion and toxicity) Predictor to have favorable pharmacokinetic and low hepatotoxicity profiles. The acute myocardial ischemia was established by surgical ligation of the left anterior descending coronary artery. The rats were divided into a sham operative group, a model group, a positive control group treated with 0.2 mg/kg isosorbide mononitrate, and groups treated with 2.7, 5.4, or 10.8 g/kg HLXLD. The results showed that administration of HLXLD increased mean arterial pressure, left ventricular systolic pressure, heart rate, and maximal rate of

  6. Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    PubMed Central

    Huang, Yaowei; Hou, Xusheng; Wu, Wenyu; Nie, Lei; Tian, Yinghong; Lu, Yanmeng

    2016-01-01

    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions. PMID:27340672

  7. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    PubMed

    Downing, Laura E; Heidker, Rebecca M; Caiozzi, Gianella C; Wong, Brian S; Rodriguez, Kelvin; Del Rey, Fernando; Ricketts, Marie-Louise

    2015-01-01

    The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for

  8. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  9. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis

    PubMed Central

    Wong, Brian S.; Rodriguez, Kelvin; Del Rey, Fernando; Ricketts, Marie-Louise

    2015-01-01

    The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for

  10. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    PubMed

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs. PMID:27497079

  11. Efficacy of amoxycillin/clavulanic acid in experimental Staphylococcus aureus endocarditis in the rat.

    PubMed

    Catherall, E J; Irwin, R; Mizen, L W

    1991-01-01

    The efficacy of amoxycillin/clavulanic acid was compared with that of flucloxacillin, vancomycin and amoxycillin in an experimental model of Staphylococcus aureus endocarditis. Doses of the antibiotics were selected to produce peak concentrations in rat serum similar to those achievable in man after administration of parenteral therapeutic doses. Amoxycillin clavulanic acid was more effective than amoxycillin alone against endocarditis caused by beta-lactamase producing strains of Staph. aureus, illustrating the beta-lactamase inhibitory activity of clavulanic acid in vivo. Amoxycillin/clavulanic acid was as effective as flucloxacillin in these infections whereas vancomycin was generally less active. These results illustrate the clinical potential of amoxycillin/clavulanic acid in the prophylaxis, or in the therapy of severe staphylococcal infections.

  12. Interaction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies.

    PubMed

    Liu, Benguo; Zeng, Jie; Chen, Chen; Liu, Yonglan; Ma, Hanjun; Mo, Haizhen; Liang, Guizhao

    2016-03-01

    Cyclodextrins (CDs) can be used to improve the solubility and stability of cinnamic acid derivatives (CAs). However, there was no detailed report about understanding the effects of the substituent groups in the benzene ring on the inclusion behavior between CAs and CDs in aqueous solution. Here, the interaction of β-CD with CAs, including caffeic acid, ferulic acid, and p-coumaric acid, in water was investigated by phase-solubility method, UV, fluorescence, and (1)H NMR spectroscopy, together with ONIOM (our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations. Experimental results demonstrated that CAs could form 1:1 stoichiometric inclusion complex with β-CD by non-covalent bonds, and that the maximum apparent stability constants were found in caffeic acid (176M(-1)) followed by p-coumaric acid (160M(-1)) and ferulic acid (133M(-1)). Moreover, our calculations reasonably illustrated the binding orientations of β-CD with CAs determined by experimental observations.

  13. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al), copper (Cu), and selenate (SeO) in wheat roots: a descriptive and mathematical assessment.

    PubMed

    Kinraide, Thomas B; Hagermann, Ann E

    2010-05-01

    Tannic acids and tannins are produced by plants and are important components of soil and water organic matter. These polyphenolic compounds form complexes with proteins, metals and soil particulate matter and perform several physiological and ecological functions. The tannic acid (TA) used in our study was a mixture of gallic acid and galloyl glucoses ranging up to nonagalloyl glucose. TA inhibited root elongation in wheat seedlings (Triticum aestivum L. cv. Scout 66) at concentrations >4 mg l(-1); but TA alleviated the toxicity of Al(3+), Cu(2+) and SeO(4)(2-); and Al(3+) and SeO(4)(2-) alleviated the toxicity of TA. The interactions of Al(3+) and TA (each toxic but each alleviating the toxicity of the other) were stoichiometric. Growth was affected as though 1 kg TA bound 2.76 mol Al so strongly that if (mol Al)/(kg TA) <2.76, then free Al approximately 0, and if (mol Al)/(kg TA) >2.76, then free TA approximately 0. This stoichiometry is consistent with one mole of galloyl groups binding approximately 0.5 mol Al. Using this binding scheme, growth was modeled successfully on the basis of free TA and free Al. TA enhanced the negativity of root surfaces and enhanced the binding of Al and Cu there without enhancing their toxicity. These and other interactions among TA, Al(3+), Cu(2+), SeO(4)(2-), Ca(2+), Na(+) and H(+) were quantified with a comprehensive non-linear equation with statistically significant coefficients.

  14. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice.

    PubMed

    Goto, Tsuyoshi; Teraminami, Aki; Lee, Joo-Young; Ohyama, Kana; Funakoshi, Kozue; Kim, Young-Il; Hirai, Shizuka; Uemura, Taku; Yu, Rina; Takahashi, Nobuyuki; Kawada, Teruo

    2012-07-01

    Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice.

  15. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic β-cells from apoptosis via mitochondrial dependent pathway.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-12-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications.

  16. Biochemical and histopathological studies of the PTU-induced hypothyroid rat kidney with reference to the ameliorating role of folic acid.

    PubMed

    Salama, Afrah F; Tousson, Ehab; Ibrahim, Wafaa; Hussein, Wesam M

    2013-08-01

    Thyroid hormones (THs) are essential for growth and development of the kidney. Also TH influences glomerular filtration and tubular functions. Hypothyroidism negative influences kidney function indirectly by affecting the cardiovascular system and the renal blood flow, and directly by affecting glomerular filtration, tubular functions and the structure of the kidney. The purpose of this study was to evaluate changes in biochemical markers, oxidative stress parameter and histological changes in kidney of hypothyroid rats before and after treatment with folic acid. Hypothyroidism was induced for 6 weeks by the administration of propylthiouracil in drinking water. Urea and creatinine were measured to evaluate the changes in kidney function. Also malondialdehyde, nitrite, nitrate and other oxidative stress parameter were measured in serum and kidney tissue as indicators of oxidative damage. Kidney function and oxidative stress parameters in hypothyroid rats were significantly changed compared to those in control rats. Treatment with folic acid helps in improving the adverse effect of hypothyroidism; the histological study also confirms this finding.

  17. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats.

    PubMed

    Tian, Jingwei; Fu, Fenghua; Li, Guisheng; Gao, Yubai; Zhang, Yunjuan; Meng, Qingsheng; Li, Changlu; Liu, Fu

    2009-08-01

    SMND-309, a novel compound named (2E)-2-{6-[(E)-2-carboxylvinyl]-2,3-dihydroxyphenyl}-3-(3,4-dihydroxyphenyl) propenoic acid, is a new derivate of salvianolic acid B. The present study was conducted to investigate whether SMND-309 has a protective effect on brain injury after focal cerebral ischemia, and if it did so, to investigate its effects on brain mitochondria. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests and brain patho-physiological tests were used to evaluate the damage to central nervous system. Origin targets including mitochondria production of reactive oxygen species, antioxidant potentia, membrane potential, energy metabolism, mitochondrial respiratory enzymes activities and mitochondria swelling degree were evaluated. The results showed that SMND-309 decreased neurological deficit scores, reduced the number of dead hippocampal neuronal cells in accordance with its depression on mitochondria swelling degree, reactive oxygen species production, improvements on mitochondria swelling, energy metabolism, membrane potential level and mitochondrial respiratory chain complex activities. All of these findings indicate that SMND-309 exerted potent neuroprotective effects in the model of permanent cerebral ischemia, contributed to its protections on brain mitochondrial structure and function. PMID:19481432

  18. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance.

    PubMed

    Thurston, J H; Hauhart, R E

    1992-04-01

    Very young children with organic brain damage, intractable seizures, and developmental retardation are at particular risk of developing fatal hepatic dysfunction coincident with valproate therapy, especially if the children are also receiving other anticonvulsant drugs. The mechanism of valproate-associated hepatic failure in these children is unclear. There are two major theories of etiology. The first concerns the manyfold consequences of depletion of CoA due to sequestration into poorly metabolized valproyl CoA and valproyl CoA metabolites. The other theory proposes that the unsaturated valproate derivative 2-n-propyl-4-pentenoic acid and/or metabolically activated intermediates are toxic and directly cause irreversible inhibition of enzymes of beta-oxidation. The present study shows for the first time that in developing mice, when panthothenic acid and carnitine are administered with valproate, at least some of the effects of valproate are mitigated. Perhaps most importantly, the beta-hydroxybutyrate concentration in plasma and the free CoA and acetyl CoA levels in liver do not fall so low. Cotreatment with carnitine alone was without effect. Findings support the CoA depletion mechanism of valproate inhibition of beta-oxidation and other CoA- and acetyl CoA-requiring enzymic reactions and stress the role of carnitine in the regulation of CoA synthesis at the site of action of pantothenate kinase. PMID:1570210

  19. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats.

    PubMed

    Tian, Jingwei; Fu, Fenghua; Li, Guisheng; Gao, Yubai; Zhang, Yunjuan; Meng, Qingsheng; Li, Changlu; Liu, Fu

    2009-08-01

    SMND-309, a novel compound named (2E)-2-{6-[(E)-2-carboxylvinyl]-2,3-dihydroxyphenyl}-3-(3,4-dihydroxyphenyl) propenoic acid, is a new derivate of salvianolic acid B. The present study was conducted to investigate whether SMND-309 has a protective effect on brain injury after focal cerebral ischemia, and if it did so, to investigate its effects on brain mitochondria. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests and brain patho-physiological tests were used to evaluate the damage to central nervous system. Origin targets including mitochondria production of reactive oxygen species, antioxidant potentia, membrane potential, energy metabolism, mitochondrial respiratory enzymes activities and mitochondria swelling degree were evaluated. The results showed that SMND-309 decreased neurological deficit scores, reduced the number of dead hippocampal neuronal cells in accordance with its depression on mitochondria swelling degree, reactive oxygen species production, improvements on mitochondria swelling, energy metabolism, membrane potential level and mitochondrial respiratory chain complex activities. All of these findings indicate that SMND-309 exerted potent neuroprotective effects in the model of permanent cerebral ischemia, contributed to its protections on brain mitochondrial structure and function.

  20. A Regenerative Antioxidant Protocol of Vitamin E and α-Lipoic Acid Ameliorates Cardiovascular and Metabolic Changes in Fructose-Fed Rats

    PubMed Central

    Patel, Jatin; Matnor, Nur Azim; Iyer, Abishek; Brown, Lindsay

    2011-01-01

    Type 2 diabetes is a major cause of cardiovascular disease. We have determined whether the metabolic and cardiovascular changes induced by a diet high in fructose in young adult male Wistar rats could be prevented or reversed by chronic intervention with natural antioxidants. We administered a regenerative antioxidant protocol using two natural compounds: α-lipoic acid together with vitamin E (α-tocopherol alone or a tocotrienol-rich fraction), given as either a prevention or reversal protocol in the food. These rats developed glucose intolerance, hypertension, and increased collagen deposition in the heart together with an increased ventricular stiffness. Treatment with a fixed combination of vitamin E (either α-tocopherol or tocotrienol-rich fraction, 0.84 g/kg food) and α-lipoic acid (1.6 g/kg food) normalized glucose tolerance, blood pressure, cardiac collagen deposition, and ventricular stiffness in both prevention and reversal protocols in these fructose-fed rats. These results suggest that adequate antioxidant therapy can both prevent and reverse the metabolic and cardiovascular damage in type 2 diabetes. PMID:21437191

  1. Evaluation of a chlorous acid-chlorine dioxide teat dip under experimental and natural exposure conditions.

    PubMed

    Drechsler, P A; Wildman, E E; Pankey, J W

    1990-08-01

    A postmilking teat dip containing chlorous acid-chlorine dioxide was evaluated by experimental challenge and in two herds under natural exposure. The test product had an efficacy of 78.9% against Staphylococcus aureus and 52.5% against Streptococcus agalactiae in the experimental challenge trial. The product was compared with a 1% iodine product in a 15-mo natural exposure study. Post-dipping with chlorous acid-chlorine dioxide reduced incidence of udder infection by major mastitis pathogens 36.1% when data were combined from the two herds. The 1% iodine and the chlorous acid-chlorine dioxide products were not equivalent for major mastitis pathogens; the test product was more effective. Incidence of udder infection by environmental mastitis pathogens was reduced 36.8% in both herds combined. Efficacy of the two teat dips was equivalent for environmental pathogens. PMID:2229601

  2. Repair of fascia with polyglycolic acid mesh cultured with fibroblasts--experimental study.

    PubMed

    Kyzer, S; Kadouri, A; Levi, A; Ramadan, E; Levinsky, H; Halpern, M; Chaimoff, C

    1997-01-01

    In the present study polyglycolic acid (PGA) mesh was used for repair of fascial defects experimentally made in rats. In the experimental group fibroblasts were cultured on the mesh before implantation and in the control group the mesh alone was used. Rats were sacrificed 7, 14, 28 and 60 days after the implantation of the mesh. Tissues were examined microscopically and for hydroxyproline content. Microscopically good incorporation of the mesh was noted in both the control and experimental groups. However, it seems that in the experimental group earlier dissolution of the mesh occurred. The hydroxyproline content was higher in the experimental group after 7 (statistically not significant) and 14 days (p < 0.05) and in the control group after 28 (p < 0.025) and 60 days (p < 0.05). These results suggest that the use of PGA mesh with cultured fibroblasts might have a beneficial effect on wound healing. PMID:9058075

  3. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice.

    PubMed

    Zhao, Yantao; Sedighi, Rashin; Wang, Pei; Chen, Huadong; Zhu, Yingdong; Sang, Shengmin

    2015-05-20

    In this study, we investigated the preventive effects of carnosic acid (CA) as a major bioactive component in rosemary extract (RE) on high-fat-diet-induced obesity and metabolic syndrome in mice. The mice were given a low-fat diet, a high-fat diet or a high-fat diet supplemented with either 0.14% or 0.28% (w/w) CA-enriched RE (containing 80% CA, RE#1L and RE#1H), or 0.5% (w/w) RE (containing 45% CA, RE#2), for a period of 16 weeks. There was the same CA content in the RE#1H and RE#2 diets and half of this amount in the RE#1L diet. The dietary RE supplementation significantly reduced body weight gain, percent of fat, plasma ALT, AST, glucose, insulin levels, liver weight, liver triglyceride, and free fatty acid levels in comparison with the mice fed with a HF diet without RE treatment. RE administration also decreased the levels of plasma and liver malondialdehyde, advanced glycation end products (AGEs), and the liver expression of receptor for AGE (RAGE) in comparison with those for mice of the HF group. Histological analyses of liver samples showed decreased lipid accumulation in hepatocytes in mice administrated with RE in comparison with that of HF-diet-fed mice. Meanwhile, RE administration enhanced fecal lipid excretion to inhibit lipid absorption and increased the liver GSH/GSSG ratio to perform antioxidant activity compared with HF group. Our results demonstrate that rosemary is a promising dietary agent to reduce the risk of obesity and metabolic syndrome.

  4. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  5. A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Blanksby, Stephen J

    2005-06-01

    Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA < PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid [M - H](-) anions. PMID:15907707

  6. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism.

    PubMed

    Ding, Yi; Chen, MinChun; Wang, MingMing; Li, YuWen; Wen, AiDong

    2015-12-01

    Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway.

  7. Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism.

    PubMed

    Ding, Yi; Chen, MinChun; Wang, MingMing; Li, YuWen; Wen, AiDong

    2015-12-01

    Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. The nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway has been considered a potential target for neuroprotection in stroke. 11-Keto-β-boswellic acid (KBA) is a triterpenoid compound from extracts of Boswellia serrata. The aim of the present study was to determine whether KBA, a novel Nrf2 activator, can protect against cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rats. KBA (25 mg/kg) applied 1 h after reperfusion significantly reduced infarct volumes and apoptotic cells as well as increased neurologic scores at 48 h after reperfusion. Meanwhile, posttreatment with KBA significantly decreased malondialdehyde (MDA) levels, restored the superoxide dismutase (SOD) activity, and increased the protein Nrf2 and HO-1 expression in brain tissues. In primary cultured astrocytes, KBA increased the Nrf2 and HO-1 expression, which provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. But knockdown of Nrf2 or HO-1 attenuated the protective effect of KBA. In conclusion, these findings provide evidence that the neuroprotection of KBA against oxidative stress-induced ischemic injury involves the Nrf2/HO-1 pathway. PMID:25452227

  8. Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways.

    PubMed

    Jang, Minhee; Cho, Ik-Hyun

    2016-05-01

    The potential neuroprotective value of sulforaphane (SFN) in Huntington's disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms. PMID:26096705

  9. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells. PMID:23348005

  10. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway

    PubMed Central

    Liu, Yu-Ying; Zhang, Yu; He, Ke; Yang, Xiao-Yuan; Hu, Bai-He; Chang, Xin; Wang, Ming-Xia; Wei, Xiao-Hong; Fan, Jing-Yu; Wu, Xin-Min; Han, Jing-Yan

    2015-01-01

    Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work. PMID:25992563

  11. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Sandeep Varma, R; Patki, Pralhad Sadashiv

    2013-03-01

    Hepatic lipid accumulation and oxidative stress contribute to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activity of quercetin would attenuate events leading to NAFLD. Addition of 2.0mM oleic acid (OA) into the culture media induced fatty liver condition in HepG2 cells by 24h. It was marked by significant accumulation of lipid droplets as determined by Oil-Red-O (ORO) based colorimetric assay, increased triacylglycerol (TAG) and increased lipid peroxidation. The inflammatory cytokines TNF-α and IL-8 levels were significantly increased with decreased antioxidant molecules. OA induced insulin resistance which was evident by inhibition of glucose uptake and cell proliferation. Quercetin (10 μM) increased cell proliferation by 3.05 folds with decreased TAG content (45%) and was effective in increasing insulin mediated glucose uptake by 2.65 folds. The intracellular glutathione content was increased by 2.0 folds without substantial increase in GSSG content. Quercetin (10 μM) decreased TNF-α and IL-8 by 59.74% and 41.11% respectively and inhibited generation of lipid peroxides by 50.5%. In addition, RT-PCR results confirmed quercetin (10 μM) inhibited TNF-alpha gene expression. Further, superoxide dismutase, catalase and glutathione peroxidase activities were increased by 1.68, 2.19 and 1.71 folds respectively. Albumin and urea content was increased while the alanine aminotransferase (ALAT) activity was significantly decreased by quercetin. Hence, quercetin effectively reversed NAFLD symptoms by decreased triacyl glycerol accumulation, insulin resistance, inflammatory cytokine secretion and increased cellular antioxidants in OA induced hepatic steatosis in HepG2 cells.

  12. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice.

    PubMed

    Martínez-Vega, Raquel; Partearroyo, Teresa; Vallecillo, Néstor; Varela-Moreiras, Gregorio; Pajares, María A; Varela-Nieto, Isabel

    2015-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients well known for their beneficial effects, among others on cognitive development and maintenance, inflammation and oxidative stress. Previous studies have shown an inverse association between high plasma levels of PUFAs and age-related hearing loss, and the relationship between low serum folate and elevated plasma homocysteine levels and hearing loss. Therefore, we used C57BL/6J mice and long-term omega-3 supplementation to evaluate the impact on hearing by analyzing their auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) thresholds. The omega-3 group showed significantly lower ABR hearing thresholds (~25 dB sound pressure level) and higher DPOAE amplitudes in mid-high frequencies when compared to the control group. These changes did not correlate with alterations between groups in plasma homocysteine or serum folate levels as measured by high-performance liquid chromatography and a microbiological method, respectively. Aging in the control group was associated with imbalanced cytokine expression toward increased proinflammatory cytokines as determined by quantitative reverse transcriptase polymerase chain reaction; these changes were prevented by omega-3 supplementation. Genes involved in homocysteine metabolism showed decreased expression during aging of control animals, and only alterations in Bhmt and Cbs were significantly prevented by omega-3 feeding. Western blotting showed that omega-3 supplementation precluded the CBS protein increase detected in 10-month-old controls but also produced an increase in BHMT protein levels. Altogether, the results obtained suggest a long-term protective role of omega-3 supplementation on cochlear metabolism and progression of hearing loss.

  13. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  14. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  15. Fish, Marine n−3 Fatty Acids, and Atrial Fibrillation – Experimental Data and Clinical Effects

    PubMed Central

    Rix, Thomas Andersen; Mortensen, Lotte Maxild; Schmidt, Erik Berg

    2012-01-01

    Marine n−3 polyunsaturated fatty acids (PUFA) may have beneficial effects in relation to atrial fibrillation (AF) with promising data from experimental animal studies, however, results from studies in humans have been inconsistent. This review evaluates the mechanisms of action of marine n−3 PUFA in relation to AF based on experimental data and provides a status on the evidence obtained from observational studies and interventional trials. In conclusion, there is growing evidence for an effect of marine n−3 PUFA in prevention and treatment of AF. However, further studies are needed to establish which patients are more likely to benefit from n−3 PUFA, the timing of treatment, and dosages. PMID:22654766

  16. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  17. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea.

    PubMed

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes.

  18. Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea.

    PubMed

    Pogány, Peter; Razali, Mayamin; Szekely, Gyorgy

    2017-01-01

    The present paper explores the complexation ability of methacrylic acid which is one of the most abundant functional monomer for the preparation of molecularly imprinted polymers. Host-guest interactions and the mechanism of complex formation between methacrylic acid and potentially genotoxic 1,3-diisopropylurea were investigated in the pre-polymerization solution featuring both experimental (NMR, IR) and in silico density functional theory (DFT) tools. The continuous variation method revealed the presence of higher-order complexes and the appearance of self-association which were both taken into account during the determination of the association constants. The quantum chemical calculations - performed at B3LYP 6-311++G(d,p) level with basis set superposition error (BSSE) corrections - are in agreement with the experimental observations, reaffirming the association constants and justifying the validity of computational investigation of such systems. Furthermore, natural bond orbital analysis was carried out to appraise the binding properties of the complexes. PMID:27419640

  19. [The hepatotropic action of sodium chloride and hydrocarbonate mineral water containing humic acids (an experimental study)].

    PubMed

    Verigo, N S; Ulashchik, V S

    2015-01-01

    The present article summarizes the results of experimental studies on the hepatotropic action of native and modified low-mineralized sodium chloride and bicarbonate waters differing in the content of humic acids. It was found that the most beneficial changes after a course of 21 day therapy with the use of such mineral waters for the treatment of experimental hepatitis were observed after the application of the water with a humic acid content of roughly 20 g/dm3. Such treatment resulted in the significant improvement of the liver antitoxic function, intensification of basal metabolism, reduction of the inflammatory processes, normalization of the hepatic enzyme activity, and stimulation of proteinsynthetic function in parallel with positive dynamics of the morphological and histochemical characteristics of the liver.

  20. Experimental and quantum-chemical studies of the reactions of 6-methyluracil with succinic and fumaric acids

    NASA Astrophysics Data System (ADS)

    Terent'ev, A. O.; Borisova, N. S.; Khamitov, E. M.; Zimin, Yu. S.; Mustafin, A. G.

    2014-12-01

    Possible structures of 6-methyluracil complexes with succinic and fumaric acids are studied by quantum-chemical means. The possibility of complex formation occurring between 6-methyluracil and the acids in the ionized and nonionized states is evaluated. The form of the complexes containing the nonionized acid is found to dominate. The quantum-chemical calculation data are consistent with the experimental results.

  1. Fungal populations in podzolic soil experimentally acidified to simulate acid rain.

    PubMed

    Bååth, E; Lundgren, B; Söderström, B

    1984-09-01

    The effect of experimental acidification on the soil microfungal community was studied in the humus layer of a coniferous forest in northern Sweden. The study was made 4 years after the last application of sulfuric acid. Fungal species composition was altered by treatments of 100 and 150 kg sulfuric acid ha(-1) each year for 6 years, yet no differences were found between the control treatment and an application of 50 kg ha(-1). The abundance ofPenicillium spinulosum andOidiodendron cf.echinulatum II increased with increasing rates of acid application, whereas only small changes were found for other isolated fungal taxa. Soil respiration rate and fluorescein diacetate (FDA)-active fungal biomass were significantly different from the control treatment at all 3 levels of acidification.

  2. Amelioration of selenium toxicity by arsenicals and cysteine.

    PubMed

    Lowry, K R; Baker, D H

    1989-04-01

    Young chicks exhibited a 61% reduction in weight gain when a corn-soybean meal diet was supplemented with 15 mg/kg Se provided as Na selenite. The same level of Se provided as selenomethionine depressed weight gain by 32%. Supplementing the high selenite diet with isoarsenous (14 mg/kg As) additions of As2O5, As2O3, phenylarsonic acid, phenylarsine oxide and roxarsone ameliorated the Se-induced growth depression: As2O5 almost totally restored growth rate; As2O3, phenylarsonic acid and phenylarsine oxide gave intermediate responses; and roxarsone gave only a small ameliorative growth response. Arsanilic acid was without effect in stimulating growth rate of selenite-intoxicated chicks. Dietary addition of .4% L-cysteine produced a growth response in selenite intoxicated chicks that was somewhat greater than that obtained with roxarsone; administering both roxarsone and cysteine corrected growth better than either compound given singly. Both roxarsone and As2O5 also effectively ameliorated the Se-toxicity growth depression caused by selenomethionine (15 mg Se/kg) supplementation, but cysteine showed no efficacy against morbidity caused by this form of Se. Liver Se concentration was elevated 10-fold by selenite and 25-fold by selenomethionine supplementation. The arsenic compounds had varying effects on liver Se, whereas cysteine tended to increase Se concentration. These findings suggest that both inorganic and organic arsenicals as well as cysteine ameliorate selenium toxicity by different mechanisms.

  3. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.

    PubMed

    Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L

    2015-03-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH.

  4. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.

    PubMed

    Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L

    2015-03-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. PMID:25556191

  5. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  6. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  7. Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats.

    PubMed

    Kumar, Pushpender; Kumar, Puneet; Khan, Aamir; Deshmukh, Rahul; Lal Sharma, Pyare

    2014-01-15

    Huntington's disease is an autosomal dominant, progressive, and fatal neurodegenerative disease characterized by motor and non-motor symptoms. Systemic administration of 3-nitropropionic acid, a complex II inhibitor of the electron transport chain induces selective striatal lesions in rodents. Neurosteroids are synthesized in central nervous system, able to modulate GABAA receptor function and has been reported to have neuroprotective action. The present study has been designed to investigate the role of neurosteroids such as progesterone and pregnenolone which are positive and negative modulators of GABA respectively against 3-nitropropionic acid induced experimental Huntington's disease. Systemic administration of 3-nitropropionic acid (10mg/kg i.p.) for 14 days significantly reduced body weight, locomotor activity, motor coordination, balance beam walk performance, antioxidant defense enzymes (reduced glutathione and catalase) and significantly increase oxidative stress markers (lipid peroxidation and nitrite level) in striatum and cortex. 3-Nitropropionic acid treatment also increases pro-inflammatory cytokines (TNF-α and IL-1β) level in striatum. Progesterone (10, 20mg/kg/day i.p.) treatments for 14 days significantly reversed the behavioral, antioxidant defense enzymes, oxidative stress marker and pro-inflammatory cytokines as compared to the 3-Nitropropionic acid treated group. Pregnenolone (1 and 2mg/kg i.p.), a negative modulator of GABAA pretreatment significantly reversed the protective effect of progesterone on behavioral and biochemical parameters. The results of the present study suggest that the positive GABAergic modulation may be beneficial for the treatment of motor disorder. PMID:24333475

  8. Synergy between acid and endotoxin in an experimental model of aspiration-related lung injury progression.

    PubMed

    Tetenev, Konstantin; Cloutier, Mary E; von Reyn, Jessica A; Ather, Jennifer L; Candon, James; Allen, Gilman B

    2015-11-15

    Aspiration is a common cause of lung injury, but it is unclear why some cases are self-limited while others progress to acute respiratory distress syndrome (ARDS). Sporadic exposure to more than one insult could account for this variable progression. We investigated whether synergy between airway acid and endotoxin (LPS) amplifies injury severity in mice and whether LPS levels in human patients could corroborate our experimental findings. C57BL/6 mice aspirated acid (pH 1.3) or normal saline (NS), followed by LPS aerosol or nothing. Bronchoalveolar lavage fluid (BALF) was obtained 2 to 49 h later. Mice were injected with FITC-dextran 25 h after aspiration and connected to a ventilator, and lung elastance (H) measured periodically following deep inflation (DI). Endotracheal and gastric aspirates were also collected from patients in the intensive care unit and assayed for pH and LPS. Lung instability (ΔH following DI) and pressure-volume hysteresis in acid- or LPS-exposed mice was greater than in controls but markedly greater in the combined acid/LPS group. BALF neutrophils, cytokines, protein, and FITC-dextran in the acid/LPS mice were geometrically higher than all other groups. BALF from acid-only mice markedly amplified LPS-induced TNF-α production in cultured macrophages. Human subjects had variable endotracheal LPS levels with the highest burden in those at higher risk of aspiration. Acid aspiration amplifies LPS signaling in mice to disrupt barrier function and lung mechanics in synergy. High variation in airway LPS and greater airway LPS burden in patients at higher risk of aspiration could help explain the sporadic progression of aspiration to ARDS. PMID:26408552

  9. Surface acidity scales: Experimental measurements of Brønsted acidities on anatase TiO2 and comparison with coinage metal surfaces

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.

    2016-08-01

    The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).

  10. The first experimental observation of the higher-energy trans conformer of trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Apóstolo, R. F. G.; Bazsó, Gábor; Bento, R. R. F.; Tarczay, G.; Fausto, R.

    2016-12-01

    We report here the first experimental observation of the higher-energy conformer of trifluoroacetic acid (trans-TFA). The new conformer was generated by selective narrowband near-infrared vibrational excitation of the lower-energy cis-TFA conformer isolated in cryogenic matrices (Ar, Kr, N2) and shown to spontaneously decay to this latter form in the various matrix media, by tunneling. The decay rates in the different matrices were measured and compared with those of the trans conformers of other carboxylic acids in similar experimental conditions. The experimental studies received support from quantum chemistry calculations undertaken at various levels of approximation, which allowed a detailed characterization of the relevant regions of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers in the various matrices. Noteworthly, in contrast to cis-TFA that has its trifluoromethyl group eclipsed with the Cdbnd O bond of the carboxylic moiety, trans-TFA has the trifluoromethyl group eclipsed with the Csbnd O bond. This unusual structure of trans-TFA results from the fact that the relative orientation of the CF3 and COOH groups in this geometry facilitates the establishment of an intramolecular hydrogen-bond-like interaction between the OH group and the closely located in-plane fluorine atom of the CF3 moiety.

  11. Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies.

    PubMed

    Eslami, Marzieh; Namazian, Mansoor; Zare, Hamid R

    2013-03-01

    Electrochemical behavior of homogentisic acid (HGA) has been studied in both aqueous and mixed solvent solution of water-acetonitrile. Physicochemical parameters of the electrochemical reaction of HGA in these solutions are obtained experimentally by cyclic voltammetry method and are also calculated theoretically using accurate ab initio calculations (G3MP2//B3LYP). Solvation energies are calculated using the available solvation model of CPCM. The pH dependence of the redox activity of HGA in aqueous and the mixture solutions at different temperatures was used for the experimental determination of the standard reduction potential and changes of entropy, enthalpy, and Gibbs free energy for the studied reaction. The experimental standard redox potential of the compound in aqueous solution was obtained to be 0.636 V versus the standard hydrogen electrode. There is a good agreement between the theoretical and experimental values (0.702 and 0.636 V) for the standard electrode potential of HGA. The changes of thermodynamic functions of solvation are also calculated from the differences between the solution-phase experimental values and the gas-phase theoretical values. Finally, using the value of solvation energy of HGA in water and acetonitrile solvents which calculated by the CPCM model of energy, we proposed an equation for calculating the standard redox potential of HGA in mixture solution of water and acetonitrile. A good agreement between the result of electrode potential calculated by the proposed equation and the experimental value confirms the validity of the theoretical models used here and the accuracy of experimental methods.

  12. Characterisation of acid-base abnormalities in pigs experimentally infected with Chlamydia suis.

    PubMed

    Reinhold, Petra; Hartmann, Helmut; Constable, Peter D

    2010-05-01

    This study characterises the acid-base abnormalities in pigs experimentally infected with Chlamydia suis (Henderson-Hasselbalch equation and Constable's simplified strong ion equation). Eight pigs were challenged with the respiratory pathogen C. suis and four pigs served as non-infected controls. Pigs were monitored from 7 days before challenge to 8 days post-inoculation. Clinical examination was performed twice daily and venous blood samples were collected every two days. Blood-gas analysis, haemoxymetry, serum biochemical analysis and electrophoresis were performed in order to characterise the acid-base derangement. Aerosol challenge with C. suis resulted in severe acid-base disturbance characterised by acute respiratory acidosis and strong ion (metabolic) acidosis secondary to anaerobic metabolism and hyper L-lactataemia. Maximal changes were seen at day 3 post-inoculation when severe clinical signs of respiratory dysfunction were evident. The results of the study provide new information regarding the pathophysiology of respiratory infection caused by C. suis and the applicability and diagnostic utility of different approaches for assessing acid-base status in pigs.

  13. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  14. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    PubMed Central

    Huete-Stauffer, Tamara M.; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G.

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  15. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures. PMID:27242747

  16. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  17. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    PubMed

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  18. Experimental and computational thermochemical study of 2- and 3-thiopheneacetic acid methyl esters.

    PubMed

    Roux, María Victoria; Temprado, Manuel; Notario, Rafael; Chickos, James S; Santos, Ana Filipa L O M; da Silva, Manuel A V Ribeiro

    2007-06-21

    Thiophene-based compounds have widespread use in modern drug design, biodiagnostics, electronic and optoelectronic devices, and conductive polymers. The present study reports an experimental and computational thermochemical study on the relative stabilities of 2- and 3-thiopheneacetic acid methyl esters. The enthalpies of combustion and vaporization were measured by a rotating-bomb combustion calorimeter, Calvet microcalorimetry, and correlation gas chromatography, and the gas-phase enthalpies of formation at T=298.15 K were determined. Standard ab initio molecular orbital calculations at the G3 level were performed, and a theoretical study of the molecular and electronic structure of the compounds studied was carried out. Calculated enthalpies of formation, using atomization and isodesmic reactions are in very good agreement with the experimental results. PMID:17530748

  19. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Drozd, Marek; Dudzic, Damian

    2012-04-01

    On the basis of experimental literature data the theoretical studies for guanidinium and maleic acid complex with using DFT method are performed. In these studies the experimental X-ray data for two different forms of investigated crystal were used. During the geometry optimization process one equilibrium structure was found, only. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained and graphically illustrated. The energy difference (GAP) between HOMO and LUMO was analyzed. Additionally, the nonlinear properties of this molecule were calculated. The α and β (first and second order) hyperpolarizability values are obtained. On the basis of these results the title crystal was classified as new second order NLO generator.

  20. Prophylactic effects of humic acid-glucan combination against experimental liver injury

    PubMed Central

    Vetvicka, Vaclav; Garcia-Mina, Jose Maria; Yvin, Jean-Claude

    2015-01-01

    Aim: Despite intensive research, liver diseases represent a significant health problem and current medicine does not offer a substance able to significantly inhibit the hepatotoxicity leading to various stages of liver disease. Based on our previously published studies showing the protective effects of a glucan-humic acid (HA) combination, we focused on the hypothesis that the combination of these two natural molecules can offer prophylactic protection against experimentally induced hepatotoxicity. Materials and Methods: Lipopolysaccharide, carbon tetrachloride, and ethanol were used to experimentally damage the liver. Levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase, glutathione, superoxide dismutase, and malondialdehyde, known to correspond to the liver damage, were assayed. Results: Using three different hepatotoxins, we found that in all cases, some samples of HA and most of all the glucan-HA combination, offer strong protection against liver damage. Conclusion: Glucan-HA combination is a promising agent for use in liver protection. PMID:26401416

  1. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress. PMID:26657007

  2. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Hynek, Brian M.

    2013-04-01

    Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a Mössbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.

  3. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces.

    PubMed

    Mertens, L; Geeraerd, A H; Dang, T D T; Vermeulen, A; Serneels, K; Van Derlinden, E; Cappuyns, A M; Moldenaers, P; Debevere, J; Devlieghere, F; Van Impe, J F

    2009-11-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating mu(max) at 0.5% Carbopol from absorbance detection times.

  4. Chiral changes of simple amino acids in early Earth's ocean by meteorite impacts: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Takase, A.; Sekine, T.; Furukawa, Y.; Kakegawa, T.

    2012-12-01

    It has been recognized that meteorite impacts on early Earth ocean may have contributed significantly for molecules related to the origin of life to originate and evolve. We have already established the formation of simple biomolecules from inorganic materials through oceanic impacts that may have occurred at late heavy bombardment. These simple molecules including amino acids need to be subjected to further developments to initiate life on the Earth. The chirality of terrestrial amino acids constructing proteins is only L-type. In order to make clear the the point that biomolecules are formed by oceanic impacts of meteorites, it wll be crucial to determine how they select the chirality. In order to investigate the basic chemistry on chirality of simple amino acids, we tried to simulate experimentally the chiral change of some amino acids present in ocean at that time under shock loading. Each aqueous solution (0.1 M) of L- and D-valine was prepared and used as mixtures of olivine powders and solutions in sealed steel containers. We performed shock recovery experiments at an impact condition where samples were compressed at ~5 GPa. The analytical results of shock recovered solutions indicate that valine survives significantly (~10%) and that L- and D-valines transform partially to D- and L-valine, respectively. The transformation rate varied with the chemical species present in solutions. These results imply that meteorite impacts as well as the surrounding conditions play important roles to control the chirality of simple amino acids that may have been formed at that time.

  5. Effect of pioglitazone, quercetin and hydroxy citric acid on extracellular matrix components in experimentally induced non-alcoholic steatohepatitis

    PubMed Central

    Mohan, Surapaneni Krishna; Veeraraghavan, Vishnu Priya; Jainu, Mallika

    2015-01-01

    Objective(s): Non-alcoholic steatohepatitis (NASH), is an important component of Non-alcoholic fatty liver disease (NAFLD) spectrum, which progresses to the end stage liver disease, if not diagnosed and treated properly. The disproportionate production of pro- and anti-inflammatory adipokines secreted from fat contributes to the pathogenesis of NASH. In this study, the comparative effect of pioglitazone, quercetin and hydroxy citric acid on extracellular matrix (ECM) component levels were studied in experimentally induced NASH. Materials and Methods: The experimental protocol consists of using 48 male Wister rats, which were divided into 8 groups. The levels of hyaluronic acid, leptin and adiponectin were monitored in experimental NASH. Results: The experimental NASH rats treated with pioglitazone showed significant decrease in the levels of hyaluronic acid and significant increase in adiponectin levels when compared to experimentally induced NASH group, but did not show any effect on the levels of leptin. Contrary to these two drugs, viz. pioglitazone and hydroxy citric acid, the group treated with quercetin showed significant decrease in the levels of hyaluronic acid and leptin and significant decrease in adiponectin levels compared with that of experimentally induced NASH NASH group, offering maximum protection against NASH. Conclusion: Considering our findings, it could be concluded that quercetin may offer maximum protection against NASH by significantly increasing the levels of adiponectin, when compared to pioglitazone and hydroxy citric acid. PMID:26557974

  6. Experimental and theoretical spectroscopic studies of anticancer drug rosmarinic acid using HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-11-01

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of anticancer drug of rosmarinic acid. The optimized molecular structure, atomic charges, vibrational frequencies, natural bond orbital analysis and ultraviolet-visible spectral interpretation of rosmarinic acid have been studied by performing HF and DFT/B3LYP/6-31G(d,p) level of theory. The FT-IR (solid and solution phase), FT-Raman (solid phase) spectra were recorded in the region 4000-400 and 3500-50 cm-1, respectively. The UV-Visible absorption spectra of the compound that dissolved in ethanol were recorded in the range of 200-800 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  7. Integrated Computational and Experimental Protocol for Understanding Rh(III) Speciation in Hydrochloric and Nitric Acid Solutions

    SciTech Connect

    Samuels, Alex C.; Boele, Cherilynn A.; Bennett, Kevin T.; Clark, Sue B.; Wall, Nathalie; Clark, Aurora E.

    2014-12-01

    A combined experimental and theoretical approach has investigated the complex speciation of Rh(III) in hydrochloric and nitric acid media, as a function of acid concentration. This has relevance to the separation and isolation of Rh(III) from dissolved spent nuclear fuel, which is an emergent and attractive alternative source of platinum group metals, relative to traditional mining efforts.

  8. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    NASA Technical Reports Server (NTRS)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  9. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range.

  10. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range. PMID:26256052

  11. Experimental (FTIR and FT-Raman) and theoretical investigation of some pyridine-dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Laxman Naik, J.; Venkatram Reddy, B.; Prabavathi, N.

    2015-11-01

    The FTIR and FT-Raman spectra of 2,3-pyridine-dicarboxylic acid (23PDA); 2,4-pyridine-dicarboxylic acid (24PDA); and 3,4-pyridine-dicarboxylic acid (34PDA) were recorded in the range 4000-450 cm-1 and 4000-50 cm-1, respectively. The optimized geometries and vibrational frequencies along with intensities were computed using DFT employing B3LYP functional with 6-311++G(d,p) basis set. The rms error between observed and calculated frequencies was 11.76, 12.79 and 9.8 cm-1 for 23PDA, 24PDA and 34PDA, respectively. A 74-parameter modified valence force field was evaluated by solving inverse vibrational problem using Wilson's GF matrix method and 99 experimental frequencies of the three molecules were used to refine the force constants in overlay least-squares technique. The average error between observed and computed frequencies was found to be 9.21 cm-1. PED and eigen vectors calculated in the process were used to make unambiguous vibrational assignments. The values of dipole moment, polarizability and hyperpolarizability were computed to determine the NLO behaviour of these molecules. The HOMO and LUMO energies and thermodynamic parameters were also evaluated.

  12. Hypohalous acids contribute to renal extracellular matrix damage in experimental diabetes.

    PubMed

    Brown, Kyle L; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G; Voziyan, Paul

    2015-06-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid-derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W(28) and W(192) are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid-derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes.

  13. An experimental and theoretical study of the amino acid side chain Raman bands in proteins

    NASA Astrophysics Data System (ADS)

    Sjöberg, Béatrice; Foley, Sarah; Cardey, Bruno; Enescu, Mironel

    2014-07-01

    The Raman spectra of a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was tryptophan, tyrosine, phenylalanine, glycine, methionine, histidine, lysine and leucine were measured in H2O. The theoretical Raman spectra obtained using density functional theory (DFT) calculations at the B3LYP/6-311+G(2df,2pd) level of theory allows a precise attribution of the vibrational bands. The experimental results show that there is a blue shift in the frequencies of several bands of the amino acid side chains in tripeptides compared to free amino acids, especially in the case of AAs containing aromatic rings. On the other hand, a very good agreement was found between the Raman bands of AA residues in tripeptides and those measured on three model proteins: bovine serum albumin, β-lactoglobulin and lysozyme. The present analysis contributes to an unambiguous interpretation of the protein Raman spectra that is useful in monitoring the biological reactions involving AA side chains alteration.

  14. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  15. Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution.

    PubMed

    Tautermann, Christofer S; Voegele, Andreas F; Loerting, Thomas; Kohl, Ingrid; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R

    2002-01-01

    Dry carbonic acid has recently been shown to be kinetically stable even at room temperature. Addition of water molecules reduces this stability significantly, and the decomposition (H2CO3 + nH2O --> (n+1)H2O + CO2) is extremely accelerated for n = 1, 2, 3. By including two water molecules, a reaction rate that is a factor of 3000 below the experimental one (10 s(-1)) at room temperature was found. In order to further remove the gap between experiment and theory, we increased the number of water molecules involved to 3 and took into consideration different mechanisms for thorough elucidation of the reaction. A mechanism whereby the reaction proceedes via a six-membered transition state turns out to be the most efficient one over the whole examined temperature range. The determined reaction rates approach experimental values in aqueous solution reasonably well; most especially, a significant increase in the rates in comparison to the decomposition reaction with fewer water molecules is found. Further agreement with experiment is found in the kinetic isotope effects (KIE) for the deuterated species. For water-free carbonic acid, the KIE (i.e., kH2CO3/kD2CO3) for the decomposition reaction is predicted to be 220 at 300 K, whereas it amounts to 2.2-3.0 for the investigated mechanisms including three water molecules. This result is therefore reasonably close to the experimental value of 2 (at 300 K). These KIEs are in much better accordance with the experiment than the KIE for decomposition with fewer water entities. PMID:11822465

  16. Value of Caffeic Acid Phenethyl Ester Pretreatment in Experimental Sepsis Model in Rats

    PubMed Central

    Alici, Ozlem; Kavakli, Havva Sahin; Koca, Cemile; Altintas, Neriman Defne; Aydin, Murat; Alici, Suleyman

    2015-01-01

    Background and Aim. The aim of this study was to determine the actions of caffeic acid phenethyl ester (CAPE) on the changes of endothelin-1 (ET-1) level, tumor necrosis factor- (TNF-) alpha, and oxidative stress parameters such as superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in experimental sepsis model in rats. Materials and Methods. Twenty-four rats were randomly divided into three experimental groups: sham (group 1), sepsis (group 2), and sepsis + CAPE (group 3), n = 8 each. CAPE was administered (10 µmol/kg) intraperitoneally to group 3 before sepsis induction. Serum ET-1, serum TNF-alpha, tissue SOD activity, and tissue MDA levels were measured in all groups. Results. Pretreatment with CAPE decreased ET-1, TNF-alpha, and MDA levels in sepsis induced rats. Additionally SOD activities were higher in rats pretreated with CAPE after sepsis induction. Conclusion. Our results demonstrate that CAPE may have a beneficial effect on ET and TNF-alpha levels and oxidative stress parameters induced by sepsis in experimental rat models. Therefore treatment with CAPE can be used to avoid devastating effects of sepsis. PMID:25948886

  17. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data.

    PubMed

    Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın

    2012-01-01

    The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.

  18. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    USGS Publications Warehouse

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  19. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  20. An experimental study on amelioration of dyslipidemia-induced atherosclesis by Clematichinenoside through regulating Peroxisome proliferator-activated receptor-α mediated apolipoprotein A-I, A-II and C-III.

    PubMed

    Liu, Chao; Guo, Qianqian; Lu, Mengchen; Li, Yunman

    2015-08-15

    Prevention or amelioration the prevalence of atherosclerosis has been an effective strategy in the management of cardiovascular diseases. The aim of the study was to scrutinize the effect of Clematichinenoside (AR) on dyslipidemia-induced atherosclerosis and explore its capability on expression of Peroxisome proliferator-activated receptor-α (PPAR-alpha), apolipoprotein A-I (APOA1) and A-II (APOA2), and suppression of apolipoprotein C-III (APOC3) genes and proteins. In the present study, we investigated atherosclerosis effect of AR using a combination of high-fat diet and balloon injury model in rabbits. The levels of biochemical indicators were evaluated in plasma, liver and HepG2 cells using immunoassay technology. In order to expose the underlying mechanism, we evaluated the regulation of PPAR-alpha, APOA1, APOA2 and APOC3 expressions by AR, and we further evaluated the interactions between them after transfection with shRNA (shPPAR-alpha) and, the action of PPAR-alpha in HepG2 cells. We could find that AR markedly promoted the PPAR-alpha transfer from cytoplasm to nucleus which resulted in the alteration of APOA1, APOA2 and APOC3 expressions in HepG2 cells. Moreover, AR significantly reduced total cholesterol, triglycerides and low-density lipoprotein cholesterol (LDL-C) levels, and elevated high-density lipoprotein cholesterol (HDL-C) level, which play an important role in dyslipidemia-induced atherosclerosis. In conclusion, AR ameliorated atherosclerosis via the regulation of hepatic lipid metabolism, and AR also contributed to the activation of PPAR-alpha, APOA1, APOA2 and APOC3. Therefore, AR could be a potential therapeutic agent in the treatment of atherosclerosis.

  1. Notch2 activation ameliorates nephrosis

    NASA Astrophysics Data System (ADS)

    Tanaka, Eriko; Asanuma, Katsuhiko; Kim, Eunhee; Sasaki, Yu; Trejo, Juan Alejandro Oliva; Seki, Takuto; Nonaka, Kanae; Asao, Rin; Nagai-Hosoe, Yoshiko; Akiba-Takagi, Miyuki; Hidaka, Teruo; Takagi, Masatoshi; Koyanagi, Akemi; Mizutani, Shuki; Yagita, Hideo; Tomino, Yasuhiko

    2014-02-01

    Activation of Notch1 and Notch2 has been recently implicated in human glomerular diseases. Here we show that Notch2 prevents podocyte loss and nephrosis. Administration of a Notch2 agonistic monoclonal antibody ameliorates proteinuria and glomerulosclerosis in a mouse model of nephrosis and focal segmental glomerulosclerosis. In vitro, the specific knockdown of Notch2 increases apoptosis in damaged podocytes, while Notch2 agonistic antibodies enhance activation of Akt and protect damaged podocytes from apoptosis. Treatment with triciribine, an inhibitor of Akt pathway, abolishes the protective effect of the Notch2 agonistic antibody. We find a positive linear correlation between the number of podocytes expressing activated Notch2 and the number of residual podocytes in human nephrotic specimens. Hence, specific activation of Notch2 rescues damaged podocytes and activating Notch2 may represent a novel clinical strategy for the amelioration of nephrosis and glomerulosclerosis.

  2. Neuroprotection of a novel synthetic caffeic acid-syringic acid hybrid compound against experimentally induced transient cerebral ischemic damage.

    PubMed

    Kim, In Hye; Yan, Bing Chun; Park, Joon Ha; Yeun, Go Heum; Yim, Yongbae; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Lee, Yun Lyul; Park, Jeong Ho; Won, Moo-Ho

    2013-03-01

    We investigated effects of caffeic acid, syringic acid, and their synthesis on transient cerebral ischemic damage in the gerbil hippocampal CA1 region. In the 10 mg/kg caffeic acid-, syringic acid-, and 20 mg/kg syringic-treated ischemia groups, we did not find any significant neuroprotection in the ischemic hippocampal CA region. In the 20 mg/kg caffeic acid- and 10 mg/kg caffeic acid-syringic acid-treated ischemia groups, moderate neuroprotection was found in the hippocampal CA1 region. In the 20 mg/kg caffeic acid-syringic acid-treated ischemia group, a strong neuroprotective effect was found in the ischemic hippocampal CA1 region: about 89 % of hippocampal CA1 region pyramidal neurons survived. We also observed changes in glial cells (astrocytes and microglia) in the ischemic hippocampal CA1 region in all the groups. Among them, the distribution pattern of the glial cells was only in the 20 mg/kg caffeic acid-syringic acid-treated ischemia group similar to that in the sham group (control). In brief, 20 mg/kg caffeic acid-syringic acid showed a strong neuroprotective effect with an inhibition of glia activation in the hippocampal CA1 region induced by transient cerebral ischemia.

  3. Relationship between nine haloacetic acids with total organic halogens in different experimental conditions.

    PubMed

    Pourmoghadas, Hossein; Kinman, Riley N

    2013-04-03

    The effects of pH and bromide ion concentration on the formation of nine haloacetic acids (HAAs) and total organic halogens (TOX) in chlorinated drinking water have been evaluated. In an extensive study, the relationships of nine HAAs with TOX have been investigated. Honesty Significant Differences test (HSD) and ANOVA tests were used for the statistical analyses. The study determined the concentration range of nine HAAs as of a percentage of TOX at varying experimental conditions. Statistical analyses showed that the parameters pH and Br had significant effects on the formation of nine HAAs and TOX. This study also showed that brominated and mixed species of HAAs would be dominant in the presence of high bromide ion concentration which contributes a high percentage of the TOX. The results of this study could be used to set up a maximum contaminant level of TOX as a water quality standard for chlorination by-products.

  4. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations. PMID:20180529

  5. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  6. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  7. Ellagic acid improves electrocardiogram waves and blood pressure against global cerebral ischemia rat experimental models

    PubMed Central

    Nejad, Khojasteh Hoseiny; Dianat, Mahin; Sarkaki, Alireza; Naseri, Mohammad Kazem Gharib; Badavi, Mohammad; Farbood, Yaghoub

    2015-01-01

    Background: Global cerebral ischemia (GCIR) arises in patients that are shown a variety of clinical difficulty including cardiac arrest, asphyxia, and shock. In spite of advances in understanding of the brain, ischemia and protective effects to improve ischemic injury still remain unknown. The aim of our study was to investigate the effect of ellagic acid (EA) pretreatment in the rat models of global cerebral ischemia reperfusion. Methods: This experimental study was conducted in 2014 at the Physiology Research Center of the Ahvaz Jundishapur University of Medical Sciences in Ahvaz, Iran. Adult male Wistar rats (250–300 g) were used in this study. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). 32 rats were divided randomly to four groups: 1) So (Sham) received normal saline as vehicle of EA, 2) EA, 3) normal saline + GCIR, and 4) EA + GCIR. After anesthesia (a mix of xylazine and ketamine), animal subjected to 20 minutes of ischemia followed by 30 minutes of reperfusion in related groups. EA (100 mg/kg, dissolved in normal saline) or 1.5 ml/kg normal saline was administered (gavage, 10 days) to the related groups. EEG was recorded from NTS in GCIR treated groups. Results: Present data showed that: 1) EEG in GCIR treated groups was flattened; 2) Blood pressure, voltage of QRS and P-R interval were reduced significantly in the ischemic groups compared to before ischemia, and pretreatment with EA prevented this reduction; and 3) MDA level and heart rate was increased by GCIR and pretreatment with EA reduced MDA level and restored the HR to normal level. Conclusion: Results indicate that global cerebral ischemia-reperfusion impairs certain heart functions and ellagic acid as an antioxidant can restore these parameters. The results of this study suggest the possible utility of ellagic acid in patients with brain stroke. PMID:26396728

  8. Development of experimental techniques to study protein and nucleic acid structures

    SciTech Connect

    Trewhella, J.; Bradbury, E.M.; Gupta, G.; Imai, B.; Martinez, R.; Unkefer, C.

    1996-04-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to develop experimental tools for structural biology, specifically those applicable to three-dimensional, biomolecular-structure analysis. Most biological systems function in solution environments, and the ability to study proteins and polynucleotides under physiologically relevant conditions is of paramount importance. The authors have therefore adopted a three-pronged approach which involves crystallographic and nuclear magnetic resonance (NMR) spectroscopic methods to study protein and DNA structures at high (atomic) resolution as well as neutron and x-ray scattering techniques to study the complexes they form in solution. Both the NMR and neutron methods benefit from isotope labeling strategies, and all provide experimental data that benefit from the computational and theoretical tools being developed. The authors have focused on studies of protein-nucleic acid complexes and DNA hairpin structures important for understanding the regulation of gene expression, as well as the fundamental interactions that allow these complexes to form.

  9. DFT and experimental investigation of catecholate derivatives of benzoic acid and pyridine

    NASA Astrophysics Data System (ADS)

    Hatzipanayioti, Despina; Tzeferakos, George; Petropouleas, Panayiotis

    2008-04-01

    DFT calculations, at the B3LYP/TZVP level of theory for pyrocatechuic acid (2,3-dihydroxybenzoic acid, 2,3-DHBA), 2,3-dihydroxy-pyridine 2,3-DHPY and their ionized and oxidized forms, have been performed, in combination with experimental data. 1H, 13C, 2D COSY NMR, IR and electronic spectra were coupled to the theoretical calculations. The geometrical parameters were checked by reported crystallographic data. The neutral form of pyrocatechuic acid is the most stable, regarding its ionized (mono-, di- or tri-anions) and oxidized ([2,3-DHBA-sqH] -, [2,3-DHBA-sq] 2-, [2,3-DHBA-q] -) species. The most stable conformer 2,3-DHBA-H 3 displays the COOH- group co-planar to the catechol ring, hydrogen bonded with OH(2). In the [2,3-DHBA-H 2] - the stable conformer shows the presence of protonated COOH, while OH(2) is ionized. The tri-anion is the form of 2,3-DHBA with the highest energy. Among the protonated semiquinone radical forms [2,3-DHBA-sqH] -, more stable is the OH(3)-oxidized, cited 21.3 kcal/mol lower in energy from the OH(2)-oxidized; in this latter the COO - group lies perpendicular to the benzene ring. The same calculation procedure fitted on the oxygenated [2,3-DHBA-H-O 2] 2- shows a weak π-bonding between O(2) and dioxygen, strongly H-bonded to OH(3), while the C(2)-O bond order increases. The different way of 2,3-DHBA oxidation parallels the different, from 3,4-isomer, degradation products. Our DFT calculations show that the keto/enol tautomeric forms of the neutral 2,3-DHPY-H 2 differ by 5.02 kcal/mol. Both species give, upon ionization, the [2,3-DHPY-H] - with the OH(2) deprotonated. The electronic density distribution of [2,3-DHPY-q] justifies further reactions (degradation or dienic addition) as experimentally observed.

  10. Efficacy of two barrier teat dips containing chlorous acid germicides against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Kemp, G K

    1994-10-01

    Two postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae using experimental challenge procedures recommended by the National Mastitis Council. Both dips contained chlorous acid as the primary germicidal agent and lactic acid or mandelic acid as the chlorous acid activator. The dip activated with mandelic acid significantly reduced new IMI by Staph. aureus and Strep. agalactiae. The IMI rate was reduced 68.7% for Staph. aureus and 56.4% for Strep. agalactiae. The dip activated with lactic acid significantly reduced new Staph. aureus IMI by 69.3% but did not significantly reduce new Strep. agalactiae IMI (35.2% reduction) through the full 11-wk study period. Teat skin condition did not change from pretrial status after using either teat dip during the study. PMID:7836608

  11. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis

    PubMed Central

    Romano, B; Borrelli, F; Fasolino, I; Capasso, R; Piscitelli, F; Cascio, MG; Pertwee, RG; Coppola, D; Vassallo, L; Orlando, P; Di Marzo, V; Izzo, AA

    2013-01-01

    Background and Purpose The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental Approach Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key Results LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and Implications Cannabichromene exerts anti-inflammatory actions in activated macrophages – with tonic CB1 cannabinoid signalling being negatively coupled to this effect – and ameliorates experimental murine colitis. PMID:23373571

  12. [Study of pantothenic acid derivatives as cardiac protectors in a model of experimental ischemia and reperfusion of the isolated heart].

    PubMed

    Kumerova, A O; Utno, L Ia; Lipsberga, Z E; Shkestere, I Ia

    1992-04-01

    An isolated heart model with experimental ischemia and reperfusion was used to show effective decrease in lactate, increase in ATP content and prevention of conjugated dienes accumulation in the myocardium by derivatives of pantothenic acid: panthenol (9.0 mg/kg), calcium pantothenate (15.6 mg/kg) and by these ones applied simultaneously as ingredients of perfusate (25 microM) in postischemic period. In that way derivatives of pantothenic acid should be regarded as cardiac protectors. PMID:1391892

  13. Experimental lead poisoning and intestinal transport of glucose, amino acids, and sodium.

    PubMed

    Wapnir, R A; Exeni, R A; McVicar, M; Lipshitz, F

    1977-03-01

    Juvenile rats fed a diet containing 1% lead acetate for 7 weeks, in addition to an impaired growth rate and renal function derangements, suffered malabsorption of glucose and certain amino acids, as assessed by an in vivo perfusion technique. The reduction in glucose absorption ranged between 10% and 31% when the carbohydrate was pumped in concentrations of 2-80 mM. This alteration was compatible with a noncompetitive type of transport inhibition. The intestinal absorption of glycine, lysine, and phenylalanine were, respectively, decreased 22, 18, and 15% when these amino acids were present at 1 mM levels. Sodium transport was severely reduced (57.6 +/- 17.9 (SEM) vs. 124.2 +/- 17.4 muEq/min-cm) and intestinal mucosa (Na+-K+)-ATPase was concomitantly lower in the lead-intoxicated rats (186.4 +/- 19.0 vs 268.4 +/- 29.8 nmol P/min-mg protein). However, this enzyme was not altered in liver and kidney. Furthermore, intestinal mucosa fructose-1,6-diphosphatase, succinic dehydrogenase, pyruvate kinase, and tryptophan hydroxylase were not different in experimental and control animals. These studies substantiate the presence of functional and biochemical abnormalities in the intestinal mucosa of young rats when fed substantial amounts of a soluble lead salt. It is, therefore, reasonable to accept the possibility that physiologic damage occurs in tissues directly subjected to high and persistent levels of a toxic agents, as it occurs in other organs, underscoring the parallelism between transport mechanisms at the renal and intestinal levels.

  14. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  15. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT.

    PubMed

    Bardak, F; Karaca, C; Bilgili, S; Atac, A; Mavis, T; Asiri, A M; Karabacak, M; Kose, E

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, (1)H and (13)C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400nm. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400cm(-1) and 3500-50cm(-1), respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The (13)C and (1)H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained. PMID:27107533

  16. Effect of topical preparation of mycophenolic acid on experimental allergic contact dermatitis of guinea-pigs induced by dinitrofluorobenzene.

    PubMed

    Shoji, Y; Fukumura, T; Kudo, M; Yanagawa, A; Shimada, J; Mizushima, Y

    1994-08-01

    The effects of a topical preparation of mycophenolic acid on the experimental allergic contact dermatitis induced by dinitrofluorobenzene was investigated. Visual assessment of skin reactions showed significant efficacy of a topical preparation of mycophenolic acid. This efficacy appeared from the early stage and endured up to 3 days. Morphological changes in the epidermis and dermis layers of animals treated with a mycophenolic acid cream were moderate compared with that in animals treated with vehicle only. In particular, hyperkeratosis was strongly suppressed. Since suppression of inflammatory cell infiltration was also observed, this efficacy might reach to the epidermis and dermis layer.

  17. Experimental determination and prediction of (solid+liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids

    NASA Astrophysics Data System (ADS)

    Benziane, Mokhtar; Khimeche, Kamel; Dahmani, Abdellah; Nezar, Sawsen; Trache, Djalal

    2012-06-01

    Solid-liquid equilibria for three binary mixtures, n-Eicosane (1) + Lauric acid (2), n-Tetracosane (1) + Stearic acid (2), and n-Octacosane (1) + Palmitic acid (2), were measured using a differential scanning calorimeter. Simple eutectic behaviour was observed for these systems. The experimental results were correlated by means of the modified UNIFAC (Larsen and Gmehling versions), UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.26 to 3.15 K and depend on the particular model used. The best solubility correlation was obtained with the UNIQUAC model.

  18. Trans-cinnamic acid and coumarin-3-carboxylic acid: experimental charge-density studies to shed light on [2 + 2] cycloaddition reactions.

    PubMed

    Howard, Judith A K; Mahon, Mary F; Raithby, Paul R; Sparkes, Hazel A

    2009-04-01

    As part of an ongoing series of experimental charge-density investigations into the intra- and intermolecular interactions present in compounds which undergo solid-state [2 + 2] cycloaddition reactions, the charge-density analyses of trans-cinnamic acid and coumarin-3-carboxylic acid are reported. Thus, high-resolution single-crystal X-ray diffraction data were recorded at 100 K for trans-cinnamic acid (sin theta/lambda(max) = 1.03 A(-1)) and coumarin-3-carboxylic acid (sin theta/lambda(max) = 1.19 A(-1)). In addition to the anticipated O-H...O hydrogen bonds weak C-H...O interactions were identified in both structures along with very weak intermolecular interactions between pairs of molecules that undergo solid-state [2 + 2] cycloaddition reactions upon irradiation.

  19. Characterization of stearic acid adsorption on Ni(111) surface by experimental and first-principles study approach

    SciTech Connect

    Liang, S. H.; Yu, T.; Liu, D. P.; Wang, W. X.; Wang, Y. P.; Han, X. F.

    2011-04-01

    Long-chain alkanoic acids usually form close-packed monolayer films with alkyl chains highly oriented on substrates. Previous studies have reported the adsorption of stearic acid on gold, aluminum, copper, silver, and aluminum oxide. However, there are no reports of stearic acid adsorption on magnetic metals. In this work, the characterization of stearic acid adsorbed on Ni(111) surface has been studied experimentally and with first-principles calculation. The results suggest that the stearic acid is chemically adsorbed on the Ni(111) surface via a bidentate interaction with a distance of about 1.8 A. Besides this, we have also obtained results for the charge transfer and magnetic proximity effect.

  20. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    NASA Astrophysics Data System (ADS)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  1. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  2. Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model.

    PubMed

    Choi, Jae-Hyeog; Roh, Kug-Hwan; Oh, Hana; Park, Sol-Ji; Ha, Sung-Min; Kang, Mi Seon; Lee, Ji-Hyun; Jung, So Young; Song, Hyunkeun; Yang, Jae Wook; Park, SaeGwang

    2015-05-01

    Experimental autoimmune uveoretinitis (EAU) is an autoimmune disease that models human uveitis. Caffeic acid phenethyl ester (CAPE), a phenolic compound isolated from propolis, possesses anti-inflammatory and immunomodulatory properties. CAPE demonstrates therapeutic potential in several animal disease models through its ability to inhibit NF-κB activity. To evaluate these therapeutic effects in EAU, we administered CAPE in a model of EAU that develops after immunization with interphotoreceptor retinal-binding protein (IRBP) in B10.RIII and C57BL/6 mice. Importantly, we found that CAPE lessened the severity of EAU symptoms in both mouse strains. Notably, treated mice exhibited a decrease in the ocular infiltration of immune cell populations into the retina; reduced TNF-α, IL-6, and IFN-γ serum levels: and inhibited TNF-α mRNA expression in retinal tissues. Although CAPE failed to inhibit IRBP-specific T cell proliferation, it was sufficient to suppress cytokine, chemokine, and IRBP-specific antibody production. In addition, retinal tissues isolated from CAPE-treated EAU mice revealed a decrease in NF-κB p65 and phospho-IκBα. The data identify CAPE as a potential therapeutic agent for autoimmune uveitis that acts by inhibiting cellular infiltration into the retina, reducing the levels of pro-inflammatory cytokines, chemokine, and IRBP-specific antibody and blocking NF-κB pathway activation. PMID:25795054

  3. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent. PMID:26427014

  4. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts.

    PubMed

    Mohd Sairazi, Nur Shafika; Sirajudeen, K N S; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  5. Proteome alterations in response to aristolochic acids in experimental animal model.

    PubMed

    Rucevic, Marijana; Rosenquist, Thomas; Breen, Lucas; Cao, Lulu; Clifton, James; Hixson, Douglas; Josic, Djuro

    2012-12-01

    Strong indications have been presented that dietary poisoning with aristolochic acids (AA) is responsible for Endemic Nephropathy (EN) and AA associated cancer of the upper urinary tract (UUTC). Our recent investigation showed drastic urinary proteome changes in AA treated mice. This study was designed to identify proteome changes associated with AA nephrotoxicity in experimental animal model. The DBA and C57BL mice, which differ in AA sensitivity, were exposed to AA for 4 days. The strategy for urinary, plasma and kidney tissue proteome study of AA exposed and control mice integrated gel-based and in-solution tryptic digestion combined with LC-ESI-MS/MS. To maximize proteome coverage, plasma fractionation scheme was developed and MS compatible sequential tissue extraction procedure was established. Proteomic analyses of urinary, plasma and kidney tissue tryptic digests resulted in identification of several cytoskeletal proteins, as well as proteins involved in kidney development and inflammatory response, that are differentially expressed in both AA exposed and control mice. These proteins are consistent with renal pathogenesis of endotoxicity and cancer. This proteomic strategy could be effectively translated for unbiased discovery of potential biomarkers for EN and associated UUTC in humans. At the same time, these results highlight the significance of AA exposure with EN. This article is part of a Special Issue entitled: Integrated omics.

  6. Excitatory amino acid glutamate: role in peripheral nociceptive transduction and inflammation in experimental and clinical osteoarthritis.

    PubMed

    Wen, Z-H; Chang, Y-C; Jean, Y-H

    2015-11-01

    Although a large proportion of patients with osteoarthritis (OA) show inflammation in their affected joints, the pathological role of inflammation in the development and progression of OA has yet to be clarified. Glutamate is considered an excitatory amino acid (EAA) neurotransmitter in the mammalian central nervous system (CNS). There are cellular membrane glutamate receptors and transporters for signal input modulation and termination as well as vesicular glutamate transporters (VGLUTs) for signal output through exocytotic release. Glutamate been shown to mediate intercellular communications in bone cells in a manner similar to synaptic transmission within the CNS. Glutamate-mediated events may also contribute to the pathogenesis and ongoing processes of peripheral nociceptive transduction and inflammation of experimental arthritis models as well as human arthritic conditions. This review will discuss the differential roles of glutamate signaling and blockade in peripheral neuronal and non-neuronal joint tissues, including bone remodeling systems and their potentials to impact OA-related inflammation and progression. This will serve to identify several potential targets to direct novel therapies for OA. Future studies will further elucidate the role of glutamate in the development and progression of OA, as well as its association with the clinical features of the disease.

  7. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent.

  8. Hypohalous Acids Contribute to Renal Extracellular Matrix Damage in Experimental Diabetes

    PubMed Central

    Brown, Kyle L.; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A.; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G.

    2015-01-01

    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid–derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W28 and W192 are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid–derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes. PMID:25605804

  9. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  10. Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport.

    PubMed

    Vierke, Lena; Berger, Urs; Cousins, Ian T

    2013-10-01

    The acid dissociation constants (pKas) of perfluoroalkyl carboxylic acids (PFCAs) have been the subject of discussion in the literature; for example, values from -0.2 to 3.8 have been suggested for perfluorooctanoic acid (PFOA). The dissociated anionic conjugate bases of PFCAs have negligible air-water partition coefficients (KAWs) and do not volatilize from water. The neutral acids, however, have relatively high KAWs and volatilization from water has been demonstrated. The extent of volatilization of PFCAs in the environment will depend on the water pH and their pKa. Knowledge of the pKas of PFCAs is therefore vital for understanding their environmental transport and fate. We investigated the water-to-air transfer of PFCAs in a novel experimental setup. We used ∼1 μg L(-1) of PFCAs in water (above environmental background concentrations but below the concentration at which self-association occurs) at different water pH (pH 0.3 to pH 6.9) and sampled the PFCAs volatilized from water during a 2-day experiment. Our results suggest that the pKas of C4-11 PFCAs are <1.6. For PFOA, we derived a pKa of 0.5 from fitting the experimental measurements with a volatilization model. Perfluoroalkane sulfonic acids were not volatilized, suggesting that their pKas are below the investigated pH range (pKa <0.3).

  11. Punicic Acid a Conjugated Linolenic Acid Inhibits TNFα-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats

    PubMed Central

    Boussetta, Tarek; Raad, Houssam; Lettéron, Philippe; Gougerot-Pocidalo, Marie-Anne; Marie, Jean-Claude

    2009-01-01

    Background Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFα primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFα-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. Methodology and Principal Findings We analyzed the effect of punicic acid on TNFα-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFα-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFα+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. Conclusions/Significance These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFα-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. PMID:19649246

  12. Experimental studies on the effect of (Lambda-Cyhalothrin) insecticide on lungs and the ameliorating effect of plant extracts (Ginseng (Panax Ginseng) and garlic (Allium sativum L.) on asthma development in albino rats

    PubMed Central

    2014-01-01

    Background Lambda-cyhalothrin (LTC) is a synthetic pyrethroid insecticide for agricultural and public health applications. This study was to determine the pathological alterations of LTC in lungs, which has not previously been studied, and the ameliorating effects of plant extracts (ginseng and garlic) on the development of asthma in albino rats. Methods Four groups (gps) of albino rats, (n = 20, average body weight = 200 gm with an age of 4 months), were formed. Gp 1 was kept as control. Gp 2 was injected intraperitoneally (i.p.) with LTC at a dose of 1/6 LD50 that is 9.34 mg/kg body weight (w.t.) daily for 21 days (d). Gp 3 & 4 were injected (i.p.) with ginseng at the dose of 200 mg/kg b.wt and garlic (Allium sativum L.) at the dose of 100 mg/kg b.wt., respectively, one hour before being given LTC at a dose of 1/6 LD50 (9.34 mg/kg b.wt.) daily. Each groups were divided into two sacrificed, at 15 and 21 d p.i. Blood and lung samples were collected for hematological and histopathological examinations. Results Hematological findings showed that the animals in gps 2 and 3, which were treated for 21 days, showed a significant difference in RBC counts (P > .001), Hb (P > .007), PCV% (P > .004), (P > .008) in comparison with the control group. Signs of cough and nasal discharge were seen in gp 2, which became mild in gp 4. Grossly, the lungs showed congestion and consolidation in gp 2. Histopathologically, macroabscesses and interstitial alveolitis were seen in gp 2, which led to obstruction in the lumen of the bronchioles at 21 d p.i. Meanwhile, thickening in the interalveolar septa with mononuclear cells was seen in gps. 3 and 4 at 21d p.i. Conclusions The study shows 3 gps of rats injected with LHC alone or combined with garlic and ginseng extract, each group were divided into two sacrificed (15 and 21 d p.i.). Lambda cyhalothrin causes bronchial obstruction in the lungs of the rats (15 and 21 d p.i), which decreased into mild to

  13. An experimental and computational investigation into the gas-phase acidities of tyrosine and phenylalanine: three structures for deprotonated tyrosine.

    PubMed

    Bokatzian, Samantha S; Stover, Michele L; Plummer, Chelsea E; Dixon, David A; Cassady, Carolyn J

    2014-11-01

    Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at the phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.

  14. An Experimental and Computational Investigation into the Gas-Phase Acidities of Tyrosine and Phenylalanine: Three Structures for Deprotonated Tyrosine

    SciTech Connect

    Bokatzian, Samantha S.; Stover, Michele L.; Plummer, Chelsea E.; Dixon, David A.; Cassady, Carolyn J.

    2014-11-06

    Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at the phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.

  15. An experimental and computational investigation into the gas-phase acidities of tyrosine and phenylalanine: three structures for deprotonated tyrosine.

    PubMed

    Bokatzian, Samantha S; Stover, Michele L; Plummer, Chelsea E; Dixon, David A; Cassady, Carolyn J

    2014-11-01

    Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at the phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol. PMID:25299802

  16. Experimental FTIR and theoretical studies of gallic acid-acetonitrile clusters

    NASA Astrophysics Data System (ADS)

    Hirun, Namon; Dokmaisrijan, Supaporn; Tantishaiyakul, Vimon

    2012-02-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) has many possible conformers depending on the orientations of its three OH and COOH groups. The biological activity of polyphenolic compounds has been demonstrated to depend on their conformational characteristics. Therefore, experimental FTIR and theoretical studies of the GA-solvent clusters were performed to investigate the possible most favored conformation of GA. Acetonitrile (ACN) was selected as the solvent since its spectrum did not interfere with the OH stretching bands of GA. Also of importance was that these OH groups, in addition to the carboxyl group, of the GA are the most likely groups to interact with receptors. The solution of GA in the ACN solution was measured and the complex OH bands were deconvoluted to four component bands. These component bands corresponded to the three OH bands on the benzene ring and a broad band which is a combination band of mainly the OH of the COOH group and the inter- and intramolecular H-bonds from the OH groups on the ring. The conformations, relative stabilities and vibrational analysis of the GA monomers and the GA-ACN clusters were investigated using the B3LYP/6-311++G(2d,2p) method. Conformational analysis of the GA monomer yielded four most possible conformers, GA-I, GA-II, GA-III and GA-IV. These conformers were subsequently used for the study of the GA:ACN clusters at the 1:1, 1:2 and 1:4 mole ratios. The IR spectra of the most stable structures of these clusters were simulated and the vibrational wavenumbers of the OH and C dbnd O groups were compared with those from the experiment. The FTIR component bands were comparable to the computed OH bands of the GA-I-(ACN) 2, GA-IV-(ACN) 2 and GA-I-(ACN) 4 clusters. Furthermore, the C dbnd O stretching bands and the bands in the regions of 1800-1000 cm -1 obtained by computing and the experiment were similar for these clusters. Thus, GA-I and GA-IV are the most preferable conformations of GA in ACN and perhaps in the

  17. Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals

    PubMed Central

    Madlala, Hlengiwe Pretty; Van Heerden, Fanie Retief; Mubagwa, Kanigula; Musabayane, Cephas Tagumirwa

    2015-01-01

    Purpose The triterpene oleanolic acid (OA) is known to possess antihypertensive actions. In the present study we to compared the effects of the triterpene on mean arterial blood pressure (MAP) and kidney function following acute administration in normotensive animals with those of its related oleanane synthetic derivatives (brominated oleanolic acid, Br-OA and oleanolic acid methyl ester, Me-OA). We also used experimental models of hypertension to further explore the effects of sub-chronic oral OA treatment and evaluated influences on oxidative status. Methods OA was extracted from dried flower buds of Syzygium aromaticum using a previously validated protocol in our laboratory. Me-OA and Br-OA were synthesized according to a method described. Rats were supplemented with lithium chloride (12 mmol L-1) prior to experimentation in order to raise plasma lithium to allow measurements of lithium clearance and fractional excretion (FELi) as indices of proximal tubular Na+ handling. Anaesthetized animals were continuously infused via the right jugular with 0.077M NaCl. MAP was measured via a cannula inserted in the carotid artery, and urine was collected through a cannula inserted in the bladder. After a 3.5 h equilibration, MAP, urine flow, electrolyte excretion rates were determined for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods. OA, Me-OA and Br-OA were added to the infusate during the treatment period. We evaluated sub-chronic effects on MAP and kidney function in normotensive Wistar rats and in two animal models of hypertension, spontaneously hypertensive rats (SHR) and Dahl salt-sensitive (DSS) rats, during 9-week administration of OA (p.o.). Tissue oxidative status was examined in these animals at the end of the study. Increasing evidence suggests that and renal function disturbances and oxidative stress play major roles in the pathogenesis of hypertension. Results Acute infusion OA and oleanane derivatives displayed qualitatively similar effects

  18. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste.

    PubMed

    Imandi, Sarat Babu; Bandaru, Veera Venkata Ratnam; Somalanka, Subba Rao; Bandaru, Sita Ramalakshmi; Garapati, Hanumantha Rao

    2008-07-01

    Statistical experimental designs were applied for the optimization of medium constituents for citric acid production by Yarrowia lipolytica NCIM 3589 in solid state fermentation (SSF) using pineapple waste as the sole substrate. Using Plackett-Burman design, yeast extract, moisture content of the substrate, KH(2)PO(4) and Na(2)HPO(4) were identified as significant variables which highly influenced citric acid production and these variables were subsequently optimized using a central composite design (CCD). The optimum conditions were found to be yeast extract 0.34 (%w/w), moisture content of the substrate 70.71 (%), KH(2)PO(4) 0.64 (%w/w) and Na(2)HPO(4) 0.69 (%w/w). Citric acid production at these optimum conditions was 202.35 g/kg ds (g citric acid produced/kg of dried pineapple waste as substrate).

  19. Resveratrol Pretreatment Ameliorates TNBS Colitis in Rats

    PubMed Central

    Yildiz, Gulserap; Yildiz, Yuksel; Ulutas, Pinar A.; Yaylali, Aslı; Ural, Muruvvet

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease in humans constituting a major health concern today whose prevalence has been increasing over the world. Production of reactive oxygen species (ROS) and disturbed capacity of antioxidant defense in IBD subjects have been reported. Antioxidants may play a significant role in IBD treatment. This study aimed at evaluating ameliorative effects of intraperitoneal resveratrol pretreatment on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Thirty five Wistar-Albino female rats were divided equally into five groups. Inflammation was induced by the intrarectal administration of TNBS under anesthesia. Intraperitoneal administration of resveratrol (RSV) at a concentration of 10mg/kg/day for 5 days before the induction of colitis significantly reduced microscopy score and malondialdehyde (MDA) levels and increased glutathione peroxidase (GSH Px) activity compared to TNBS and vehicle groups. Also an insignificant increase in catalase (CAT) activity was observed in the RSV treated group compared to TNBS and vehicle groups. In this paper, the most recent patent on the identification and treatment of IBD was indicated. In conclusion, antioxidant RSV proved to have a beneficial effect on TNBS colitis in rats. In light of these advantageous results, the RSV can be considered as adjuvant agent in IBD treatments. PMID:26246013

  20. Soil solution response to experimentally reduced acid deposition in a forest ecosystem

    SciTech Connect

    Alewell, C.; Matzner, E.; Bredemeier, M.; Blanch, K.

    1997-05-01

    In order to measure and predict reversibility of soil solution acidification under experimentally reduced acid input, a manipulation study with artificial {open_quote}preindustrial{close_quote} throughfall was established. A roof was installed underneath the canopy in a Norway Spruce stand of the German Soiling area. Water failing onto the roof was adjusted to clean rain concentrations before redistribution. Soil solutions were collected with suction cup lysimeters at various depths and were analyzed for major ions. The response of soil solution chemistry in the upper soil (10 cm depth) to a reduction of N, SO{sub 4}, and H input was rapid. While NO{sub 3} concentration in deeper soil layers reached input levels after 2 yr of treatment, SO{sub 4} concentration in the seepage water at 1 m depth remained high relative to the reduced input due to a release of formerly stored S from the soil. Aluminum concentration followed a similar pattern as the SO{sub 4} concentrations. The ion concentrations in soil leachate were predicted reasonably well using the MAGIC model with the measured SO{sub 4} sorption isotherms and the throughfall fluxes as model input Although the parameters of the Langmuir isotherm had no significant influence to the prediction of SO{sub 4} concentration in the upper soil layer, they were crucial for the prediction of SO{sub 4} dynamics in deeper soil layers. The model predicted that the reversibility of soil acidification at the Soiling area is delayed for decades due to the release of soil SO{sub 4}. 38 refs., 5 figs., 4 tabs.

  1. Guided bone regeneration with local zoledronic acid and titanium barrier: An experimental study

    PubMed Central

    Dundar, Serkan; Ozgur, Cem; Yaman, Ferhan; Cakmak, Omer; Saybak, Arif; Ozercan, Ibrahim Hanifi; Alan, Hilal; Artas, Gokhan; Nacakgedigi, Onur

    2016-01-01

    The aim of this study was to evaluate the effects on new bone formation of autogenous blood alone or in combination with zoledronic acid (ZA), a β-tricalcium phosphate (β-TCP) graft or ZA plus a β-TCP graft placed under titanium barriers. For this purpose, eight adult male New Zealand white rabbits were used in the study, each with four titanium barriers fixed around four sets of nine holes drilled in the calvarial bones. The study included four groups, each containing 2 rabbits. In the autogenous blood (AB group), only autogeneous blood was placed under the titanium barriers. The three experimental groups were the AB+ZA group, with autogenous blood plus ZA, the AB+β-TCP group, with autogeneous blood plus a β-TCP graft, and the AB+β-TCP+ZA group, with autogeneous blood plus a β-TCP graft and ZA mixture under the titanium barriers. The animals were sacrificed after 3 months. The amounts of new bone formation identified histomorphometrically were found to be higher after 3 months than at the time of surgery in all groups. The differences between the groups were examined with histomorphometric analysis, and statistically significant differences were identified at the end of the 3 months. The bone formation rate in the AB+β-TCP+ZA group was determined to be significantly higher than that in the other groups (P<0.05). In the AB+ZA and AB+β-TCP groups, the bone formation rate was determined to be significantly higher than that in the AB group (P<0.05). No statistically significant difference in bone formation rate was observed between the AB+β-TCP and AB+ZA groups. Local ZA used with autogeneous blood and/or graft material appears to be a more effective method than the use of autogeneous blood or graft alone in bone augmentation executed with a titanium barrier. PMID:27698687

  2. Guided bone regeneration with local zoledronic acid and titanium barrier: An experimental study

    PubMed Central

    Dundar, Serkan; Ozgur, Cem; Yaman, Ferhan; Cakmak, Omer; Saybak, Arif; Ozercan, Ibrahim Hanifi; Alan, Hilal; Artas, Gokhan; Nacakgedigi, Onur

    2016-01-01

    The aim of this study was to evaluate the effects on new bone formation of autogenous blood alone or in combination with zoledronic acid (ZA), a β-tricalcium phosphate (β-TCP) graft or ZA plus a β-TCP graft placed under titanium barriers. For this purpose, eight adult male New Zealand white rabbits were used in the study, each with four titanium barriers fixed around four sets of nine holes drilled in the calvarial bones. The study included four groups, each containing 2 rabbits. In the autogenous blood (AB group), only autogeneous blood was placed under the titanium barriers. The three experimental groups were the AB+ZA group, with autogenous blood plus ZA, the AB+β-TCP group, with autogeneous blood plus a β-TCP graft, and the AB+β-TCP+ZA group, with autogeneous blood plus a β-TCP graft and ZA mixture under the titanium barriers. The animals were sacrificed after 3 months. The amounts of new bone formation identified histomorphometrically were found to be higher after 3 months than at the time of surgery in all groups. The differences between the groups were examined with histomorphometric analysis, and statistically significant differences were identified at the end of the 3 months. The bone formation rate in the AB+β-TCP+ZA group was determined to be significantly higher than that in the other groups (P<0.05). In the AB+ZA and AB+β-TCP groups, the bone formation rate was determined to be significantly higher than that in the AB group (P<0.05). No statistically significant difference in bone formation rate was observed between the AB+β-TCP and AB+ZA groups. Local ZA used with autogeneous blood and/or graft material appears to be a more effective method than the use of autogeneous blood or graft alone in bone augmentation executed with a titanium barrier.

  3. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique.

    PubMed

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua

    2016-08-15

    During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. PMID:27136728

  4. Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents.

    PubMed

    Rana, Tanmoy; Bera, Asit Kumar; Das, Subhashree; Pan, Diganta; Bandyopadhyay, Subhasish; Bhattacharya, Debasis; De, Sumanta; Sikdar, Sourav; Das, Subrata Kumar

    2010-04-01

    Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood. PMID:20122981

  5. Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents.

    PubMed

    Rana, Tanmoy; Bera, Asit Kumar; Das, Subhashree; Pan, Diganta; Bandyopadhyay, Subhasish; Bhattacharya, Debasis; De, Sumanta; Sikdar, Sourav; Das, Subrata Kumar

    2010-04-01

    Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood.

  6. Structural and spectroscopic characterization of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid with experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Cinar, Zeliha; Cinar, Mehmet

    2011-09-01

    In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C 7H 4F 2O 2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm -1 and 4000-5 cm -1, respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.

  7. Amelioration of nickel phytotoxicity in muck and mineral soils.

    PubMed

    Kukier, U; Chaney, R L

    2001-01-01

    In situ remediation (phytostabilization) is a cost-effective solution for restoring the productivity of metal-contaminated soils and protection of food chains. A pot experiment with wheat (Triticum aestivum L.), oat (Avena sativa L.), and redbeet (Beta vulgaris L.) was conducted to test the ability of limestone and hydrous ferric oxide (HFO) to ameliorate Ni phytotoxicity in two soils contaminated by particulate emissions from a nickel refinery. Quarry muck (Terric Haplohemist; 72% organic matter) contained 2210 mg kg(-1) of total Ni. The mineral soil, Welland silt loam (Typic Epiaquoll), was more contaminated (2930 mg Ni kg(-1)). Both soils were very strongly acidic, allowing the soil Ni to be soluble and phytotoxic. Nickel phytotoxicity of the untreated muck soil was not very pronounced and could be easily confused with symptoms of Mn deficiency that occurred in this soil even with Mn fertilization. Severe nickel phytotoxicity of the untreated mineral soil prevented any growth of redbeet, the most sensitive crop; even wheat, a relatively Ni-resistant species, was severely damaged. White banding indicative of Ni phytotoxicity was present on oat and wheat leaves grown on the acidic mineral soil. Soil Ni extracted with diethylenetriaminepentaacetic acid (DTPA) and 0.01 M Sr(NO3)2 was indicative of the ameliorative effect of amendments and correlated well with Ni concentrations in plant shoots. Making soils calcareous was an effective treatment to reduce plant-available Ni and remediate Ni phytotoxicity of these soils to all crops tested. The ameliorative effect of HFO was crop-specific and much less pronounced. PMID:11790001

  8. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats.

    PubMed

    Eady, Tiffany N; Khoutorova, Larissa; Obenaus, Andre; Mohd-Yusof, Alena; Bazan, Nicolas G; Belayev, Ludmila

    2014-02-01

    Recently we have shown that docosahexaenoic acid complexed to albumin (DHA-Alb) is neuroprotective after experimental stroke in young rats. The purpose of this study was to determine whether treatment with DHA-Alb would be protective in aged rats after focal cerebral ischemia. Isoflurane/nitrous oxide-anesthetized normothermic (brain temperature 36-36.5°C) Sprague-Dawley aged rats (18-months old) received 2h middle cerebral artery occlusion (MCAo) by poly-l-lysine-coated intraluminal suture. The neurological status was evaluated during occlusion (60min) and on days 1, 2, 3 and 7 after MCAo; a grading scale of 0-12 was employed. DHA (5mg/kg), Alb (0.63g/kg), DHA-Alb (5mg/kg+0.63g/kg) or saline was administered i.v. 3h after onset of stroke (n=8-10 per group). Ex vivo T2-weighted imaging (T2WI) of the brains was conducted on an 11.7T MRI on day 7 and 3D reconstructions were generated. Infarct volumes and number of GFAP (reactive astrocytes), ED-1 (activated microglia/microphages), NeuN (neurons)-positive cells and SMI-71 (positive vessels) were counted in the cortex and striatum at the level of the central lesion. Physiological variables were entirely comparable between groups. Animals treated with DHA-Alb showed significantly improved neurological scores compared to vehicle rats; 33% improvement on day 1; 39% on day 2; 41% on day 3; and 45% on day 7. Total and cortical lesion volumes computed from T2WI were significantly reduced by DHA-Alb treatment (62 and 69%, respectively). In addition, treatment with DHA-Alb reduced cortical and total brain infarction while promoting cell survival. We conclude that DHA-Alb therapy is highly neuroprotective in aged rats following focal cerebral ischemia and has potential for the effective treatment of ischemic stroke in aged individuals. PMID:24063996

  9. Experimental study on the estrogen-like effect of boric Acid.

    PubMed

    Wang, Yadong; Zhao, Yingzheng; Chen, Xiaoyu

    2008-02-01

    There are now considerable evidences that boric acid has reproductive and developmental toxicity, but it is uncertain whether such toxicity is caused by estrogen-like effect. Our objective is to determine the estrogen-like effect of boric acid. Proliferation assay of MCF-7 human breast cancer cells, uterotrophic assay, measure assay of the estradiol (E2), proliferation assay of mucous membrane cells, and assay of estrogen receptor were conducted in this study. Boric acid could increase the weight of uterus of ovariectomized SD rats and the height of epithelium cells of mucous membrane, enhance the expression of the proliferating cell nucleus antigen, and reduce the density of estrogen receptors. However, boric acid could not affect the level of estradiol in serum and stimulate the proliferation of MCF-7 human breast cancer cells. In this study, boric acid exhibited the estrogen-like effect in vivo.

  10. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  11. Plasma and skeletal muscle amino acids following severe burn injury in patients and experimental animals.

    PubMed Central

    Stinnett, J D; Alexander, J W; Watanabe, C; MacMillan, B G; Fischer, J E; Morris, M J; Trocki, O; Miskell, P; Edwards, L; James, H

    1982-01-01

    This study describes and analyzes sequential changes in plasma and skeletal muscle free amino acids following severe burn injury. Plasma free amino acids were determined in children (n = 9) with burns averaging 60% total body surface area and were compared with laboratory beagles (n = 44) which received a flame burn totaling 30% of their body surface area. In addition, needle biopsy specimens were obtained from the semitendonosus muscle in the animals to determine free intracellular amino acids. In both patients and animals the amount of total free amino acids in plasma fell following burn, suggesting relative protein deficiency. This drop was primarily due to a 47% drop in nonessential amino acids. However, plasma phenylalanine was consistently higher than normal following burn, and was strongly associated with death and weight loss in both animals and patients, especially when analyzed as a ratio with tyrosine. This finding suggested excessive catabolism, hepatic dysfunction, or both. Plasma levels of several amino acids correlated significantly with weight loss. Alterations in muscle free amino acids generally were similar to plasma amino acids. Exceptions were muscle alanine and glycine which strongly correlated with weight loss. However, the determination of muscle free amino acid profiles did not yield clinically useful information not available from plasma profiles. Plasma levels of liver enzymes suggested progressive hepatic dysfunction. These studies show that the laboratory beagle is a good model for studying the metabolic alterations of amino acids that accompany burn injury, since they mimic humans in many parameters which appear to be most useful with respect to clinical evaluation. PMID:7055386

  12. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli.

    PubMed

    Ranganathan, Sridhar; Tee, Ting Wei; Chowdhury, Anupam; Zomorrodi, Ali R; Yoon, Jong Moon; Fu, Yanfen; Shanks, Jacqueline V; Maranas, Costas D

    2012-11-01

    Increasing demands for petroleum have stimulated sustainable ways to produce chemicals and biofuels. Specifically, fatty acids of varying chain lengths (C₆-C₁₆) naturally synthesized in many organisms are promising starting points for the catalytic production of industrial chemicals and diesel-like biofuels. However, bio-production of fatty acids from plants and other microbial production hosts relies heavily on manipulating tightly regulated fatty acid biosynthetic pathways. In addition, precursors for fatty acids are used along other central metabolic pathways for the production of amino acids and biomass, which further complicates the engineering of microbial hosts for higher yields. Here, we demonstrate an iterative metabolic engineering effort that integrates computationally driven predictions and metabolic flux analysis techniques to meet this challenge. The OptForce procedure was used for suggesting and prioritizing genetic manipulations that overproduce fatty acids of different chain lengths from C₆ to C₁₆ starting with wild-type E. coli. We identified some common but mostly chain-specific genetic interventions alluding to the possibility of fine-tuning overproduction for specific fatty acid chain lengths. In accordance with the OptForce prioritization of interventions, fabZ and acyl-ACP thioesterase were upregulated and fadD was deleted to arrive at a strain that produces 1.70 g/L and 0.14 g fatty acid/g glucose (∼39% maximum theoretical yield) of C₁₄₋₁₆ fatty acids in minimal M9 medium. These results highlight the benefit of using computational strain design and flux analysis tools in the design of recombinant strains of E. coli to produce free fatty acids. PMID:23036703

  13. Dietary Amelioration of Helicobacter Infection

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wallace, Alison J.

    2015-01-01

    We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on: (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H. pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H. pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability and cultural acceptability. This review therefore highlights specific foods, food components, and food products, grouped as follows: bee products (e.g. honey and propolis), probiotics, dairy products, vegetables, fruits, oils, essential oils, and herbs, spices and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and pre-clinical evidence must now be followed up with rationally designed, unambiguous human trials. PMID:25799054

  14. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  15. Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds.

    PubMed

    Blank, J G; Miller, G H; Ahrens, M J; Winans, R E

    2001-01-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process. PMID:11296518

  16. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation

    PubMed Central

    Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana

    2015-01-01

    A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393

  17. 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations 1. Chelsea soil humic acid.

    SciTech Connect

    Gassman, Paul; Hatcher, Patrick G.; Faulon, Jean-Loup Michel; Simpson, Andre; Goddard, William A., III; Diallo, Mamadou S.; Johnson, James H. Jr.

    2003-07-01

    This paper describes an integrated experimental and computational framework for developing 3-D structural models for humic acids (HAs). This approach combines experimental characterization, computer assisted structure elucidation (CASE), and atomistic simulations to generate all 3-D structural models or a representative sample of these models consistent with the analytical data and bulk thermodynamic/structural properties of HAs. To illustrate this methodology, structural data derived from elemental analysis, diffuse reflectance FT-IR spectroscopy, 1-D/2-D {sup 1}H and {sup 13}C solution NMR spectroscopy, and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QqTOF MS) are employed as input to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA). These models are subsequently used as starting 3-D structures to carry out constant temperature-constant pressure molecular dynamics simulations to estimate their bulk densities and Hildebrand solubility parameters. Surprisingly, only a few model isomers are found to exhibit molecular compositions and bulk thermodynamic properties consistent with the experimental data. The simulated {sup 13}C NMR spectrum of an equimolar mixture of these model isomers compares favorably with the measured spectrum of Chelsea soil HA.

  18. Oral Probiotic Microcapsule Formulation Ameliorates Non-Alcoholic Fatty Liver Disease in Bio F1B Golden Syrian Hamsters

    PubMed Central

    Bhathena, Jasmine; Martoni, Christopher; Kulamarva, Arun; Tomaro-Duchesneau, Catherine; Malhotra, Meenakshi; Paul, Arghya; Urbanska, Aleksandra Malgorzata; Prakash, Satya

    2013-01-01

    The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a methionine deficient/choline devoid diet to induce non-alcoholic fatty liver disease. Results, for the first time, show significant clinical benefits in experimental animals. Examination of lipids show that concentrations of hepatic free cholesterol, esterified cholesterol, triglycerides and phospholipids were significantly lowered in treated animals. In addition, serum total cholesterol, triglycerides, uric acid and insulin resistance were found to decrease in treated animals. Liver histology evaluations showed reduced fat deposits. Western blot analysis shows significant differences in expression levels of key liver enzymes in treated animals. In conclusion, these findings suggest the excellent potential of using an oral probiotic formulation to ameliorate NAFLD. PMID:23554890

  19. The Role of Uric Acid in Kidney Fibrosis: Experimental Evidences for the Causal Relationship

    PubMed Central

    Kim, Il Young; Lee, Dong Won; Kwak, Ihm Soo

    2014-01-01

    Hyperuricemia is a common finding in chronic kidney disease due to decreased uric acid clearance. The role of uric acid as a risk factor for chronic kidney disease has been largely debated, and recent studies suggested a role of uric acid in the causation and progression of kidney fibrosis, a final common pathway in chronic kidney disease. Uric acid and xanthine oxidase may contribute to kidney fibrosis mainly by inducing inflammation, endothelial dysfunction, oxidative stress, and activation of the renin-angiotensin system. Besides, hyperuricemia induces alterations in renal hemodynamics via afferent arteriolopathy and contributes to the onset and progression of kidney fibrosis. Xanthine oxidase inhibitors may prevent kidney damage via lowering uric acid and/or inhibiting xanthine oxidase. However, there is still no sufficient evidence from interventional clinical researches supporting the causal relationship between uric acid and kidney fibrosis. The effect and role of xanthine oxidase inhibitors in preventing kidney fibrosis and chronic kidney disease progression must be further explored by performing future large scale clinical trials. PMID:24877124

  20. Tetradecylthioacetic acid increases fat metabolism and improves cardiac function in experimental heart failure.

    PubMed

    Øie, Erik; Berge, Rolf K; Ueland, Thor; Dahl, Christen P; Edvardsen, Thor; Beitnes, Jan Otto; Bohov, Pavol; Aukrust, Pål; Yndestad, Arne

    2013-02-01

    Changes in myocardial metabolism, including a shift from fatty acid to glucose utilization and changes in fatty acid availability and composition are characteristics of heart failure development. Tetradecylthioacetic acid (TTA) is a fatty acid analogue lacking the ability to undergo mitochondrial β-oxidation. TTA promotes hepatic proliferation of mitochondria and peroxisomes and also decreases serum triglycerides and cholesterol in animals. We investigated the effect of TTA, in combination with a high-fat or regular diet, in a rat model of post-myocardial infarction heart failure. TTA had a beneficial effect on cardiac function in post-myocardial infarction heart failure without affecting myocardial remodeling. These effects of TTA on myocardial function were accompanied by decreased free fatty acids in plasma, increased myocardial proportion of n-3 polyunsaturated fatty acids (PUFA) and a decreased proportion of n-6 PUFA. Myocardial enzyme gene expression during TTA treatment suggested that the increase in n-3 PUFA could reflect increased n-3 PUFA synthesis and inadequately increased n-3 PUFA β-oxidation. Based on our data, it is unlikely that the changes are secondary to alterations in other tissues as plasma and liver showed an opposite pattern with decreased n-3 PUFA during TTA treatment. The present study suggests that TTA may improve myocardial function in heart failure, potentially involving its ability to decrease the availability of FFA and increase the myocardial proportion of n-3 PUFA. PMID:23266898

  1. Fucoidan Extracts Ameliorate Acute Colitis.

    PubMed

    Lean, Qi Ying; Eri, Rajaraman D; Fitton, J Helen; Patel, Rahul P; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent

  2. Mitochondrial Pharmaceutics: A New Therapeutic Strategy to Ameliorate Oxidative Stress in Alzheimer's Disease.

    PubMed

    Ajith, Thekkuttuparambil A; Padmajanair, Gangadharan

    2015-01-01

    Association between amyloid-β (Aβ) toxicity, mitochondrial dysfunction, oxidative stress and neuronal damage has been demonstrated in the pathophysiology of Alzheimer's disease (AD). In the early stages of the disease, the defect in energy metabolism was found to be severe. This may probably due to the Aβ and ROS-induced declined activity of complexes in electron transport chain (ETC) as well as damages to mitochondrial DNA. Though clinically inconclusive, supplementation with antioxidants is reported to be beneficial especially in the early stages of the disease. A mild to moderate improvement in dementia is possible with therapy using antioxidants viz coenzyme Q10 (ubiquinone), α -lipoic acid, selenium, omega-3 fatty acids and vitamin E, emphasize their possible role as an adjuvant with the existing conventional treatment. Since mitochondrial dysfunction has been observed, a new therapeutic strategy called as 'Mitochondrial Medicine' which is aimed to maintain the energy production as well as to ameliorate the enhanced apoptosis of nerve cells, has been developed. Mitochondrial CoQ10, Szeto-Schiller peptide-31 and superoxide dismutase/ catalase mimetic, EUK-207 were the mitochondrial targeted agents demonstrated in experimental studies. This article discusses the mitochondrial impairment and the possible mitochondria targeted therapeutic intervention in AD. PMID:25986626

  3. Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor

    PubMed Central

    Gu, Ming; Zhao, Ping; Huang, Jinwen; Zhao, Yuanyuan; Wang, Yahui; Li, Yin; Li, Yifei; Fan, Shengjie; Ma, Yue-Ming; Tong, Qingchun; Yang, Li; Ji, Guang; Huang, Cheng

    2016-01-01

    Background and purpose: Silymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis, and other types of toxic liver damage. Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. Experimental approach: C57BL/6 mice were fed high-fat diet (HFD) for 3 months to induce obesity, insulin resistance, hyperlipidaemia, and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. Farnesyl X receptor (FXR) and nuclear factor kappa B (NF-κB) transactivities were analyzed in liver using a gene reporter assay based on quantitative RT-PCR. Key results: Silymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signaling, which was enhanced by FXR activation. Conclusion and implications: Our results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signaling. PMID:27733832

  4. Long-term ascorbic acid administration causes anticonvulsant activity during moderate and long-duration swimming exercise in experimental epilepsy.

    PubMed

    Tutkun, Erkut; Arslan, Gokhan; Soslu, Recep; Ayyildiz, Mustafa; Agar, Erdal

    2015-01-01

    The benefits of regular exercise on brain health are undeniable. Long-term exercise increases the production of reactive oxygen species in brain. Therefore, athletes often consume antioxidant supplements to remedy exercise-related damage and fatigue during exercise. The aim of this study is to evaluate the role of ascorbic acid in the effects of different intensities of swimming exercise on the brain susceptibility to experimental epilepsy in rats. Ascorbic acid was administered intraperitoneally (ip) during three different swimming exercise programme for 90 days (15 min, 30 min, 90 min/day). The anticonvulsant activity regarding the frequency of epileptiform activity appeared in the 80 min after 500 units intracortical penicillin injection in 30 min and 90 min/day exercise groups. The administration of ascorbic acid (100 mg/kg, ip) did not alter the anticonvulsant properties seen in the in short-duration (15 min/day) swimming exercise group. The amplitude of epileptiform activity also became significant in the 110 and 120 min after penicillin injection in the moderate (30 min/day) and long duration (60 min/day) groups, respectively. The results of the present study provide electrophysiologic evidence that long-term administration of ascorbic acid causes anticonvulsant activities in the moderate and long-duration swimming exercise. Antioxidant supplementation such as ascorbic acid might be suggested for moderate and long-duration swimming exercise in epilepsy. PMID:26232995

  5. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  6. Vibration test methods and their experimental research on the performance of the lead-acid battery

    NASA Astrophysics Data System (ADS)

    He, Baoxiang; Wang, Hua; He, Xie

    2014-12-01

    As we know, Lead-acid battery is difficult to balance many factors such as the accuracy and the on-line testing requirement. The detecting system, as stated in this article, is based on the vibration test procedure, dynamically following the electrochemical process of the Lead-acid Battery, and collects the real-time state parameters for calculation, analysis and judgment. It also quantizes precisely the degradation and chargeability of the battery and therefore self-adapts to the ideal target values. During the test, it has not charged and discharged large current to the lead-acid battery, it only plus a smaller and shorter time of impulse voltage signal on both ends of lead-acid battery, so the battery measured is damage free, and the system energy consumption is small; Using the load compensation technology, it has solved the influence of load on the test results. What's more, the load characteristics are improved at the same time, it realized the online detection. The vibration detection is based on the adaptive fuzzy inference model which has taken various factors into account, concerning the choices of input aspects which may influence the output value. It realized a number of Lead-acid Battery voltage self-adaption and accomplished a variety of high-precise tests.

  7. Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K

    NASA Astrophysics Data System (ADS)

    Kutsuna, Shuzo; Hori, Hisao

    Equilibrium partial pressures of trifluoroacetic acid ( P C(O)OH) over aqueous trifluoroacetic acid test solutions were determined at 278.15, 288.15, and 298.15 K. The concentration of undissociated trifluoroacetic acid ( C C(O)OH) in each test solution was determined by means of attenuated total reflection IR spectroscopy and window factor analysis. From the linear relationship between P C(O)OH and C C(O)OH, the Henry's law constant of trifluoroacetic acid ( KH) at 298.15 K was determined to be 5800±700 mol dm -3 atm -1 and KH at temperature T in K was determined to be KH=5780 exp[-4120×(1/298.15-1/ T)] in mol dm -3 atm -1. The KH value at 298.15 K was 0.65 times the reported value [Bowden, D.J., Clegg, S.L., Brimblecombe, P., 1996. The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere. Chemosphere 32, 405-420] for p Ka=0.47 and it was equal to that for p Ka=0.2.

  8. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    PubMed

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  9. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    NASA Astrophysics Data System (ADS)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime; Rindzevicius, Tomas; Svendsen, Winnie E.; Rozlosnik, Noemi; Boisen, Anja; Martínez, Fernando

    2013-03-01

    This Letter involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple 'one pot' synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N-layered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6-31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid conjugate presented herein is believed to lead the way to new potential applications as carbon nanotube-based drug delivery systems.

  10. An experimental study of tissue reaction to hyaluronic acid (Restylane) and polymethylmethacrylate (Metacrill) in the mouse.

    PubMed

    Rosa, Simone C; Macedo, Jefferson L S; Magalhães, Albino V

    2012-10-01

    The aging skin is a challenge for medical science. Plastic surgeons and dermatologists are called every day to solve problems like filling wrinkles or folds. The material used must be biocompatible because abnormal reactions may cause catastrophic results. This study analyzes the biological behavior of polymethylmethacrylate (Metacrill) and hyaluronic acid (Restylane), using a histopathologic study in mice. A prospective study was performed using 40 mice for each substance: polymethylmethacrylate or hyaluronic acid was injected into the right ear, the left ear been used as a control. Histopathologic analyses of the right ear, liver, and kidney were performed at intervals during the study and revealed the development of a granulomatous reaction with fibrosis and absorption of spheres and signs of liver and kidney sistematization for polymethylmethacrylate. A discrete cellular reaction, with less formation of fibrosis, and no giant cells were seen in the mice injected with hyaluronic acid.

  11. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    PubMed

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  12. Experimental investigation on effects of acid/base waters on the bottom sediment of Kaita Cove (Hiroshima, Japan)

    NASA Astrophysics Data System (ADS)

    Touch, Narong; Hibino, Tadashi; Ueno, Kohei; Fukui, Shogo

    2013-12-01

    The decomposition of organic matter existing in bottom sediment produces reduced substances, and this has an influence on the water environment. Recently, it has been pointed out that the water environment can be improved after covering the bottom sediment with alkaline material. In this study, we experimentally investigate the effects of acid and base waters (hydrogen peroxide and calcium oxide solutions, respectively) on bottom sediment. The bottom sediment of Kaita Cove (Hiroshima, Japan) was mixed and stirred with the acid or base water, and then the dissolved carbon content (DCC), the pH, and the ammonium nitrogen (NH4-N) of the overlying solution were analyzed along with the particle size distribution, particulate carbon content (PCC), and particulate nitrogen content (PNC) of the sediment. It was found that particulate organic matter was decomposed under acid water conditions, leading to large decreases in PCC and PNC, and to large increases in pH, DCC, and NH4-N. Importantly, there were no variations in PCC, PNC, or particle size under base water conditions. However, there were increases in NH4-N, and large amounts of DCC remained in the overlying solution. It is evident from the experimental results that base water conditions enhanced both the elution of nutrient salts and the dissolved organic matter from the sediment, but retarded the decomposition of organic matter. These are considered as important factors associated with the improvement of water environments.

  13. Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid.

    PubMed

    Jun-Bo, Liu; Yang, Shi; Shan-Shan, Tang; Rui-Fa, Jin

    2015-03-01

    The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol-imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC-WPBE/6-31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol-imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol-imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.

  14. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  15. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  16. Theoretical and experimental investigations on the structures of purified clay and acid-activated clay

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wen, Xiao-Dong; Li, Junfen; Yang, Liming

    2006-07-01

    The purified and acidified montmorillonite clay were characterized by XRD, BET and TPD. These results show that acidified clay is provided with more surface area and acid sites. For NH 3-TPD, molecular NH 3 desorption on purified clay and acidified clay occurs at temperatures with 873 and 1000 K, respectively. It is shown for the existence for strong acid sites. By two reactions of the tetrahydropyranylation of n-propanol and the esterification of cyclo-2-pentene with acetic acid, it is shown that the acidified clay displays better catalytic activity for above two organic reactions. By density-functional theory (DFT) method, we have analyzed the structures of different substituted montmorillonite and the effect sorption behavior of Na + in different montmorillonite models. The result shows that the process of substitution will occur apart from octahedral aluminums. The adsorption of NH 3 on clay surfaces have been investigated using TPD and DFT. This is shown that acid sites locate at round the octahedral aluminums, and substitution of Al 3+ for tetrahedral Si will be favorable to NH 3 adsorption.

  17. Sulfidization of Au(111) from thioacetic acid: an experimental and theoretical study.

    PubMed

    Fischer, Jeison A; Zoldan, Vinícius C; Benitez, Guillermo; Rubert, Aldo A; Ramirez, Eduardo A; Carro, Pilar; Salvarezza, Roberto C; Pasa, André A; Vela, Maria E

    2012-10-30

    We have studied the adsorption of thioacetic acid (TAAH) on Au(111) from solution deposition. The close proximity of the SH groups to CO groups makes this molecule very attractive for exploring the effect of the functional group on the stability of the S-C and S-Au bonds. Although thioacetic acid was supposed to decompose slowly in water by hydrolysis supplying hydrogen sulfide, this behavior is not expected in nonpolar solvents such as toluene or hexane. Therefore, we have used these solvents for TAAH self-assembly on the Au(111) surface. The characterization of the adsorbates has been done by electrochemical techniques, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM). We have found that even in nonpolar solvents thioacetic acid decomposes to S. The results have been discussed on the basis that the adsorbed species suffer a cleavage on the Au surface, leaving the S attached to it. The dissociation is a spontaneous process that reaches the final state very fast once it is energetically favorable, as can be interpreted from DFT calculations. The thioacetic acid adsorption reveals the strong effect that produces a functional group and the key role of the S-H bond cleavage in the self-assembly process. PMID:23002810

  18. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  19. Prevention of postoperative pericardial adhesions with a hyaluronic acid coating solution. Experimental safety and efficacy studies.

    PubMed

    Mitchell, J D; Lee, R; Hodakowski, G T; Neya, K; Harringer, W; Valeri, C R; Vlahakes, G J

    1994-06-01

    Postoperative pericardial adhesions complicate reoperative cardiac procedures. Topical application of solutions containing hyaluronic acid have been shown to reduce adhesions after abdominal and orthopedic surgery. The mechanism by which hyaluronic acid solutions prevent adhesion formation is unknown but may be due to a cytoprotective effect on mesothelial surfaces, which would limit intraoperative injury. In this study, we tested the efficacy and safety of hyaluronic acid coating solutions for the prevention of postoperative intrapericardial adhesion formation. Eighteen mongrel dogs underwent median sternotomy and pericardiotomy followed by a standardized 2-hour protocol of forced warm air desiccation and abrasion of the pericardial and epicardial surfaces. Group 1 (n = 6) served as untreated control animals. Group 2 (n = 6) received topical administration of 0.4% hyaluronic acid in phosphate-buffered saline solution at the time of pericardiotomy, at 20-minute intervals during the desiccation/abrasion protocol, and at pericardial closure. The total test dose was less than 1% of the circulating blood volume. Group 3 (n = 6) served as a vehicle control, receiving phosphate-buffered saline solution as a topical agent in a fashion identical to that used in group 2. At resternotomy 8 weeks after the initial operation, the intrapericardial adhesions were graded on a 0 to 4 severity scale at seven different areas covering the ventricular, atrial, and great vessel surfaces. In both the untreated control (group 1, mean score 3.2 +/- 0.4) and vehicle control (group 3, mean score 3.3 +/- 0.2) animals, dense adhesions were encountered. In contrast, animals treated with the hyaluronic acid solution (group 2, mean score 0.8 +/- 0.3) characteristically had no adhesions or filmy, transparent adhesions graded significantly less severe than either the untreated control (group 2 versus group 1, p < 0.001) or vehicle control (group 2 versus group 3, p < 0.001) animals. In separate

  20. Acido-base behavior of hydroxamic acids: experimental and ab initio studies on hydroxyureas.

    PubMed

    Vrcek, Ivana Vinković; Kos, Ivan; Weitner, Tin; Birus, Mladen

    2008-11-20

    The values of Ka, DeltaSa, and DeltaHa for deprotonation of hydroxyurea (HU) and N-methylhydroxyurea (NMHU), as targeted compounds, and for betainohydroxamic acid, were potentiometrically determined. Although NMHU has two and HU even three deprotonation sites, the measurements confirm that they behave as weak acids with a single pK a approximately 10. Comparison with analogous thermodynamic parameters previously determined for series of monohydroxamic acids reveals deviations from a DeltaSa, vs DeltaHa plot for HU and NMHU, raising the question of the dissociation site of hydroxureas in water. In addition to the deprotonation of the hydroxyl oxygen, ab initio calculations performed at the MP2/6-311++G(d,p) level of theory for these two compounds indicate a notable participation of the nitrogen deprotonation site in HU. The calculations for the isolated, monohydrate, trihydrate, and decahydrate molecular and anionic forms of hydroxyureas support the importance of hydrogen bonding in the gas and aqueous phases. The hydroxylamino nitrogen in HU is the most acidic site in water, contributing approximately 94% to the overall deprotonation process at 25 degrees C. On the contrary, the hydroxylamino oxygen is by far the most favored deprotonation site in NMHU, contributing almost 100% in aqueous medium. The predicted participations of two deprotonation sites in HU, calculated at the MP2/6-311++G(d,p) level of theory, combined with the calculated relative reaction enthalpy and entropy for the deprotonation, satisfactorily explain the observed deviation from linearity of DeltaHa vs DeltaSa, plot. There is no such a simple explanation for acid-base behavior of NMHU.

  1. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters.

    PubMed

    Kowalczykowski, S C; Paul, L S; Lonberg, N; Newport, J W; McSwiggen, J A; von Hippel, P H

    1986-03-25

    Many biologically important proteins bind nonspecifically, and often cooperatively, to single-or double-stranded nucleic acid lattices in discharging their physiological functions. This binding can generally be described in thermodynamic terms by three parameters: n, the binding site size; K, the intrinsic binding constant; omega, the binding cooperativity parameter. The experimental determination of these parameters often appears to be straightforward but can be fraught with conceptual and methodological difficulties that may not be readily apparent. In this paper we describe and analyze a number of approaches that can be used to measure these protein-nucleic acid interaction parameters and illustrate these methods with experiments on the binding of T4-coded gene 32 (single-stranded DNA binding) protein to various nucleic acid lattices. We consider the following procedures: (i) the titration of a fixed amount of lattice (nucleic acid) with added ligand (protein); (ii) the titration of a fixed amount of ligand with added lattice; (iii) the determination of ligand binding affinities at very low levels of lattice saturation; (iv) the analysis of ligand cluster size distribution on the lattice; (v) the analysis of ligand binding to lattices of finite length. The applicability and limitations of each approach are considered and discussed, and potential pitfalls are explicitly pointed out.

  2. 3-D Structural Modeling of Humic Acids through Experimental Characterization, Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Chelsea Soil Humic Acid

    SciTech Connect

    Diallo, Mamadou S.; Simpson, Andre; Gassman, Paul L.; Faulon, Jean Loup; Johnson, Jr., James H.; Goddard, III, William A.; Hatcher, Patrick G.

    2003-05-01

    This paper describes an integrated experimental and computational framework for developing 3-D structural models for humic acids (HAs). This approach combines experimental characterization, computer assisted structure elucidation (CASE), and atomistic simulations to generate all 3-D structural models or a representative sample of these models consistent with the analytical data and bulk thermodynamic/structural properties of HAs. To illustrate this methodology, structural data derived from elemental analysis, diffuse reflectance FT-IR spectroscopy, 1-D/2-D | 1H and 13C solution NMR spectroscopy, and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QqTOF MS) are employed as input to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA). These models are subsequently used as starting 3-D structures to carry out constant temperature-constant pressure molecular dynamics simulations to estimate their bulk densities and Hildebrand solubility parameters. Surprisingly, only a few model isomers are found to exhibit molecular compositions and bulk thermodynamic properties consistent with the experimental data. The simulated 13C NMR spectrum of * Corresponding author phone: (626)395-2730; fax: (626)585-0918; e-mail: diallo@wag.caltech.edu and mdiallo@howard.edu. Present address: Materials and Process Simulation Center,BeckmanInstitute 139-74, California Institute of Technology, Pasadena, CA 91125. † California Institute of Technology. ‡ Howard University. § University of Toronto. Pacific Northwest National Laboratory. ^ Sandia National Laboratories. # The Ohio State University. ã xxxx American Chemical Society PAGE EST: 11 10.1021/es0259638 CCC: $25.00 Published on Web 00/00/0000 an equimolar mixture of these model isomers compares favorably with the measured spectrum of Chelsea soil HA.

  3. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  4. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models.

    PubMed

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.

  5. Influence of clavulanic acid on the activity of amoxicillin against an experimental Streptococcus pneumoniae-Staphylococcus aureus mixed respiratory infection.

    PubMed Central

    Smith, G M; Boon, R J; Beale, A S

    1990-01-01

    An experimental respiratory infection caused by Streptococcus pneumoniae was established in weanling rats by intrabronchial instillation. Treatment of this infection with amoxicillin rapidly eliminated the pneumococci from the lung tissue. A beta-lactamase-producing strain of Staphylococcus aureus, when inoculated in a similar manner, did not persist adequately in the lungs long enough to permit a reasonable assessment of the therapy, but staphylococcal survival was extended in the lungs of rats infected 24 h previously with S. pneumoniae. Amoxicillin therapy was relatively ineffective against the pneumococci in this polymicrobial infection and had no effect on the growth of S. aureus. In contrast, amoxicillin-clavulanic acid eliminated the pneumococci from the lung tissue and brought about a reduction in the numbers of staphylococci. The data illustrate the utility of this model for the study of polymicrobial lung infections and demonstrate the role of amoxicillin-clavulanic acid in the treatment of polymicrobial infections involving beta-lactamase-producing bacteria. PMID:2327767

  6. Experimental analysis of lead-in-air sources in lead-acid battery manufacture.

    PubMed

    Caplan, K J; Knutson, G W

    1979-07-01

    Plant-scale experimental sampling programs were carried out to determine the contribution to the lead-in-air exposure from (a) fork-truck transport of pasted plates in racks and (b) manual loading and unloading of plates from racks. Fork-truck transport was found not significant under "clean" conditions. Manual loading and unloading was found significant.

  7. Efficacy of teat dips containing a hypochlorous acid germicide against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C

    1996-09-01

    Two teat dip formulations containing sodium dichloroisocyanurate, which released hypochlorous acid (2800 ppm) as the active ingredient, were tested for efficacy against new Staphylococcus aureus and Streptococcus agalactiae IMI using an experimental challenge model. Product 1 reduced the number of new Staph. aureus IMI by 73.6% and reduced the number of new Strep. agalactiae IMI by 65.1%. Product 2 reduced the number of new Staph. aureus IMI by 69.0% and reduced the number of new Strep. agalactiae IMI by 63.5%. No adverse effects on teat skin condition were observed over the course of the studies. PMID:8899537

  8. [Experimental assessment of biodegradable polyglycolic and polylactic acid polymers for medical use].

    PubMed

    Kulakov, A A; Grigor'ian, A S; Arkhipov, A V

    2013-01-01

    Interrelations of biodegradable poliglicolic and polilactic acid polymers in various proportions implanted in standardized bone defects were evaluated in animal model with 40 Wister line rats. During 10 month follow-up period bone capsule surrounded all implants, but timing of bone formation and bone quality varied significantly being optimal in LactoSorb group. Destructive features of polymers were also seen in implant-bone contact area defined as inflammation, fibrous tissue formation and cell dystrophy. PMID:24300698

  9. Iron-rich drinking water and ascorbic acid supplementation improved hemolytic anemia in experimental Wistar rats.

    PubMed

    Chaturvedi, Richa; Chattopadhyay, Pronobesh; Banerjee, Saumen; Bhattacharjee, Chira R; Raul, Prasanta; Borah, Kusum; Singh, Lokendra; Veer, Vijay

    2014-11-01

    Anemia is a frequent problem in both the primary and secondary health care programs. In contrast, most areas of northeast India are vulnerable to iron toxicity. In the present study, we documented the effect of administration of iron rich water on hemolytic anemia in a Wistar rats' animal model. Hemolytic anemia was induced by phenyl hydrazine through intraperitoneal route and diagnosed by the lowering of blood hemoglobin. After inducing the hemolytic anemia, 24 Wistar rats (n = 6 in four groups) were randomly assigned to 1 mg/l, 5 mg/l, and 10 mg/l ferric oxide iron along with 1 mg/ml ascorbic acid administered through drinking water; a control group was treated with iron-free water. The hematological and biochemical parameters, iron levels in liver, spleen, and kidney were estimated after 30 d of treatment. In the group treated with 5 mg/l iron and ascorbic acid, a significant increase of serum iron and ferritin, and a decrease of TIBC (total iron binding capacity) were observed without changes in other biochemical parameters and histopathological findings. However, in the group treated with 10 mg/l iron and ascorbic acid, hematological changes with significantly higher values for white blood cell count, serum glutamic phospho transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, glucose, splenic, and liver iron content, indicate potential toxicity at this supplementation level. Data suggest that the optimum concentration of iron (5 mg/l) and ascorbic acid solution may improve anemic conditions and may be therapeutically beneficial in the treatment of iron deficiency anemia without any negative impact, while 10 mg/l in drinking water seems to be the threshold for the initiation of toxicity.

  10. Imaging of experimental myocardial infarction with technetium-99m 2,3-dimercaptosuccinic acid

    SciTech Connect

    Karlsberg, R.P.; Milne, N.; Lyons, K.P.; Aronow, W.S.

    1981-03-01

    We have studied the use of Tc-99m-labeled 2,3-dimercaptosuccinic acid(Tc-99m DMSA) to scintigraph acute myocardial infaction after coronary occlusion in dogs. Optimal images were obtained 5 hr after injection of radiotracer, with consistent delineation 48 hr after occlusion. Delivery of tracer was dependent on blood flow. Uptake of tracer correlated to extent of infarction as determined by the myocardial depletion of creatine kinase. Myocardial Tc-99m DMSA was protein-bound.

  11. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.

    PubMed

    Brisson, Lydie; El Bakkali-Taheri, Nadia; Giorgi, Michel; Fadel, Antoine; Kaizer, József; Réglier, Marius; Tron, Thierry; Ajandouz, El Hassan; Simaan, A Jalila

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket. PMID:22711330

  12. The efficacy of monoisoamyl ester of dimercaptosuccinic acid in chronic experimental arsenic poisoning in mice.

    PubMed

    Flora, S J S; Kannan, G M; Pant, B P; Jaiswal, D K

    2003-01-01

    The therapeutic efficacy of monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new monoester of 2,3-dimercaptosuccinic acid on arsenic induced oxidative stress in liver and kidneys, alterations in hematopoietic system and depletion of arsenic burden was assessed, in mice. Three different doses of MiADMSA (25, 50 or 100 mg/kg) for five consecutive days were administered in chronically arsenic exposed mice (10 ppm in drinking water for six months). Oral administration of MiADMSA particularly at a dose of 50 mg/kg, produced relatively more pronounced beneficial effects on the inhibited blood delta-aminolevulinic acid dehydratase (ALAD), biochemical variables indicative of hepatic and renal oxidative stress and depletion of arsenic concentration in blood, liver and kidneys, compared with intraperitoneal administration of the drug. The treatment with MiADMSA although, produced essential metals imbalance which could be a restrictive factor for the possible therapeutic use of this compound in chronic arsenic poisoning and thus require further exploration.

  13. Experimental and theoretical study of the inclusion complexes of 3-carboxycoumarin acid with β- and 2-hydroxypropyl-β-cyclodextrins

    NASA Astrophysics Data System (ADS)

    Tablet, Cristina; Minea, Liliana; Dumitrache, Luigi; Hillebrand, Mihaela

    2012-06-01

    The association process of a host-guest system, cyclodextrins (CyD) - 3-carboxycoumarin acid (3CCA) was followed by means of UV-vis, circular dichroism and steady-state fluorescence spectroscopies in buffer solution at pH = 1. The experimental data were analyzed in order to get information on the stoichiometry, the equilibrium constants and the geometry of the inclusion complexes. In the circular dichroism spectra, a positive induced signal was obtained reflecting that the guest penetrates the cavity in such a way that the transition moment of the electronic band is quasi parallel to the host main axis. The experimental data are supported by the DFT and TDDFT (B3LYP/6-31G) calculations performed on the isolated ligand and by TDDFT (ZINDO) calculations carried out on the supramolecular ligand-cyclodextrin system.

  14. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  15. Hydroxybenzoic acid isomers and the cardiovascular system.

    PubMed

    Juurlink, Bernhard H J; Azouz, Haya J; Aldalati, Alaa M Z; AlTinawi, Basmah M H; Ganguly, Paul

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates' dictum of 'Let food be your medicine and medicine your food' can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  16. Ascorbic acid levels of aqueous humor of dogs after experimental phacoemulsification.

    PubMed

    De Biaggi, Christianni P; Barros, Paulo S M; Silva, Vanessa V; Brooks, Dennis E; Barros, Silvia B M

    2006-01-01

    Phacoemulsification has been successfully employed in humans and animals for lens extraction. This ultrasonic extracapsular surgical technique induces hydroxyl radical formation in the anterior chamber, which accumulates despite irrigation and aspiration. In this paper we determined the total antioxidant status of aqueous humor after phacoemulsification by measuring aqueous humor ascorbic acid levels. Mixed-breed dogs (n = 11; weighing about 10 kg) with normal eyes as determined by slit-lamp biomicroscopy, applanation tonometry, and indirect ophthalmoscopy had phacoemulsification performed in one eye with the other eye used as a control. Samples of aqueous humor were obtained by anterior chamber paracentesis before surgery and at days 1, 2, 3, 7, and 15 after surgery. Total aqueous humor antioxidant status was inferred from the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis (2-amidopropane) chlorine. Ascorbic acid concentrations were measured by high-pressure liquid chromatography with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by anova followed by the paired t-test. Total antioxidant capacity was reduced from 48 to 27 min during the first 24 h with a gradual increase thereafter, remaining statistically lower than the control eye until 7 days postoperatively. Reduced levels of ascorbic acid followed this reduction in antioxidant capacity (from 211 to 99 microm after 24 h), remaining lower than the control eye until 15 days postoperatively. Protein concentration in aqueous humor increased from 0.62 mg/mL to 30.8 mg/mL 24 h after surgery, remaining statistically lower than the control eye until 15 days postoperatively. Paracentesis alone did not significantly alter the parameters measured. These results indicate that after phacoemulsification, the aqueous humor ascorbic acid levels and antioxidant defenses in aqueous humor are reduced, indirectly corroborating free radical

  17. Acid-base strength and acidochromism of some dimethylamino-azinium iodides. An integrated experimental and theoretical study.

    PubMed

    Benassi, Enrico; Carlotti, Benedetta; Fortuna, Cosimo G; Barone, Vincenzo; Elisei, Fausto; Spalletti, Anna

    2015-01-15

    The effects of pH on the spectral properties of stilbazolium salts bearing dimethylamino substituents, namely, trans isomers of the iodides of the dipolar E-[2-(4-dimethylamino)styryl]-1-methylpyridinium, its branched quadrupolar analogue E,E-[2,6-di-(p-dimethylamino)styryl]-1-methylpyridinium, and three analogues, chosen to investigate the effects of the stronger quinolinium acceptor, the longer butadiene π bridge, or both, were investigated through a joint experimental and computational approach. A noticeable acidochromism of the absorption spectra (interesting for applications) was observed, with the basic and protonated species giving intensely colored and transparent solutions, respectively. The acid–base equilibrium constants for the protonation of the dimethylamino group in the ground state (pKa) were experimentally derived. Theoretical calculations according to the thermodynamic Born-Haber cycle provided pKa values in good agreement with the experimental values. The very low fluorescence yield did not allow a direct investigation of the changes in the acid-base properties in the excited state (pKa*) by fluorimetric titrations. Their values were derived by quantum-mechanical calculations and estimated experimentally on the basis of the Förster cycle.

  18. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cyrański, Michał K.; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jarosław J.; Żukowska, GraŻyna Z.; Sporzyński, Andrzej

    2008-03-01

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Møller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science.

  19. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods.

    PubMed

    Cyrański, Michał K; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jarosław J; Zukowska, Grazyna Z; Sporzyński, Andrzej

    2008-03-28

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293 K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Moller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science. PMID:18376948

  20. Theoretical and experimental study of valence photoelectron spectrum of D,L-alanine amino acid.

    PubMed

    Farrokhpour, H; Fathi, F; De Brito, A Naves

    2012-07-01

    In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.

  1. TRANEXAMIC ACID ACTION ON LIVER REGENERATION AFTER PARTIAL HEPATECTOMY: EXPERIMENTAL MODEL IN RATS

    PubMed Central

    SOBRAL, Felipe Antonio; DAGA, Henrique; RASERA, Henrique Nogueira; PINHEIRO, Matheus da Rocha; CELLA, Igor Furlan; MORAIS, Igor Henrique; MARQUES, Luciana de Oliveira; COLLAÇO, Luiz Martins

    2016-01-01

    ABSTRACT Background: Different lesions may affect the liver resulting in harmful stimuli. Some therapeutic procedures to treat those injuries depend on liver regeneration to increase functional capacity of this organ. Aim: Evaluate the effects of tranexamic acid on liver regeneration after partial hepatectomy in rats. Method: 40 rats (Rattus norvegicus albinus, Rodentia mammalia) of Wistar-UP lineage were randomly divided into two groups named control (CT) and tranexamic acid (ATX), with 20 rats in each. Both groups were subdivided, according to liver regeneration time of 32 h or seven days after the rats had been operated. The organ regeneration was evaluated through weight and histology, stained with HE and PCNA. Results: The average animal weight of ATX and CT 7 days groups before surgery were 411.2 g and 432.7 g, and 371.3 g and 392.9 g after the regeneration time, respectively. The average number of mitotic cells stained with HE for the ATX and CT 7 days groups were 33.7 and 32.6 mitosis, and 14.5 and 14.9 for the ATX and CT 32 h groups, respectively. When stained with proliferating cell nuclear antigen, the numbers of mitotic cells counted were 849.7 for the ATX 7 days, 301.8 for the CT 7 days groups, 814.2 for the ATX 32 hand 848.1 for the CT 32 h groups. Conclusion: Tranexamic acid was effective in liver regeneration, but in longer period after partial hepatectomy. PMID:27438036

  2. Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model.

    PubMed

    Chaudhary, Priya; Marracci, Gail; Galipeau, Danielle; Pocius, Edvinas; Morris, Brooke; Bourdette, Dennis

    2015-12-15

    Cortical lesions are a crucial part of MS pathology and it is critical to determine that new MS therapies have the ability to alter cortical inflammatory lesions given the differences between white and gray matter lesions. We tested lipoic acid (LA) in a mouse focal cortical EAE model. Brain sections were stained with antibodies against CD4, CD11b and galectin-3. Compared with vehicle, treatment with LA significantly decreased CD4+ and galectin-3+ immune cells in the brain. LA treated mice had fewer galectin-3+ cells with no projections indicating decrease in the number of infiltrating monocytes. LA significantly reduces inflammation in a focal cortical model of MS. PMID:26616873

  3. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  4. Experimental test of the superheavy fission hypothesis in acid residues from the allende meteorite

    SciTech Connect

    Flynn, G.J.

    1982-01-01

    A description of a series of experiments to find evidence to confirm or contradic