Science.gov

Sample records for acid amplification osna

  1. Molecular Investigation of Lymph Nodes in Colon Cancer Patients Using One-Step Nucleic Acid Amplification (OSNA)

    PubMed Central

    Güller, Ulrich; Zettl, Andreas; Worni, Mathias; Langer, Igor; Cabalzar-Wondberg, Daniela; Viehl, Carsten T; Demartines, Nicolas; Zuber, Markus

    2012-01-01

    BACKGROUND A new diagnostic system, called one-step nucleic acid amplification (OSNA), has recently been designed to detect cytokeratin 19 mRNA as a surrogate for lymph node metastases. The objective of this prospective investigation was to compare the performance of OSNA with both standard hematoxylin and eosin (H&E) analysis and intensive histopathology in the detection of colon cancer lymph node metastases. METHODS In total, 313 lymph nodes from 22 consecutive patients with stage I, II, and III colon cancer were assessed. Half of each lymph node was analyzed initially by H&E followed by an intensive histologic workup (5 levels of H&E and immunohistochemistry analyses, the gold standard for the assessment of sensitivity/specificity of OSNA), and the other half was analyzed using OSNA. RESULTS OSNA was more sensitive in detecting small lymph node tumor infiltrates compared with H&E (11 results were OSNA positive/H&E negative). Compared with intensive histopathology, OSNA had 94.5% sensitivity, 97.6% specificity, and a concordance rate of 97.1%. OSNA resulted in an upstaging of 2 of 13 patients (15.3%) with lymph node-negative colon cancer after standard H&E examination. CONCLUSIONS OSNA appeared to be a powerful and promising molecular tool for the detection of lymph node metastases in patients with colon cancer. OSNA had similar performance in the detection of lymph node metastases compared with intensive histopathologic investigations and appeared to be superior to standard histology with H&E. Most important, the authors concluded that OSNA may lead to a potential upstaging of >15% of patients with colon cancer. Cancer 2012. © 2012 American Cancer Society. PMID:22684906

  2. Molecular staging of lymph node-negative colon carcinomas by one-step nucleic acid amplification (OSNA) results in upstaging of a quarter of patients in a prospective, European, multicentre study

    PubMed Central

    Croner, R S; Geppert, C-I; Bader, F G; Nitsche, U; Späth, C; Rosenberg, R; Zettl, A; Matias-Guiu, X; Tarragona, J; Güller, U; Stürzl, M; Zuber, M

    2014-01-01

    Background: Current histopathological staging procedures in colon carcinomas depend on midline division of the lymph nodes with one section of haematoxylin & eosin (H&E) staining only. By this method, tumour deposits outside this transection line may be missed and could lead to understaging of a high-risk group of stage UICC II cases, which recurs in ∼20% of cases. A new diagnostic semiautomated system, one-step nucleic acid amplification (OSNA), detects cytokeratin (CK) 19 mRNA in lymph node metastases and enables the investigation of the whole lymph node. The objective of this study was to assess whether histopathological pN0 patients can be upstaged to stage UICC III by OSNA. Methods: Lymph nodes from patients who were classified as lymph node negative after standard histopathology (single (H&E) slice) were subjected to OSNA. A result revealing a CK19 mRNA copy number >250, which makes sure to detect mainly macrometastases and not isolated tumour cells (ITC) or micrometastases only, was regarded as positive for lymph node metastases based on previous threshold investigations. Results: In total, 1594 pN0 lymph nodes from 103 colon carcinomas (median number of lymph nodes per patient: 14, range: 1–46) were analysed with OSNA. Out of 103 pN0 patients, 26 had OSNA-positive lymph nodes, resulting in an upstaging rate of 25.2%. Among these were 6/37 (16.2%) stage UICC I and 20/66 (30.3%) stage UICC II patients. Overall, 38 lymph nodes were OSNA positive: 19 patients had one, 3 had two, 3 had three, and 1 patient had four OSNA-positive lymph nodes. Conclusions: OSNA resulted in an upstaging of over 25% of initially histopathologically lymph node-negative patients. OSNA is a standardised, observer-independent technique, allowing the analysis of the whole lymph node. Therefore, sampling bias due to missing investigation of certain lymph node tissue can be avoided, which may lead to a more accurate staging. PMID:24722182

  3. Comparative Study of the One-step Nucleic Acid Amplification Assay and Conventional Histological Examination for the Detection of Breast Cancer Sentinel Lymph Node Metastases.

    PubMed

    Terada, Mizuho; Niikura, Naoki; Tsuda, Banri; Masuda, Shinobu; Kumaki, Nobue; Tang, Xiaoyan; Okamura, Takuho; Saito, Yuki; Suzuki, Yasuhiro; Tokuda, Yutaka

    2014-09-01

    Intraoperative sentinel lymph node (SLN) biopsy is widely used in patients with early-stage breast cancer and is conventionally performed using hematoxylin and eosin-based histological examination. The one-step nucleic acid amplification (OSNA) assay is a molecular diagnostic tool and a semi-automated lymph node examination method. The purpose of this study was to compare the performance of the OSNA assay and conventional histological examination with frozen sections (FSs) by using 111 SLN biopsy samples from 89 patients at the Tokai University Hospital. The SLN samples were split into 3 slices: the middle slice was used for FS histological examination and the other slices were used for the OSNA assay. The McNemar test was used to compare the differences in the sensitivity and specificity between the OSNA assay and FS histological examination. The sensitivity of the OSNA assay (97.1%) was less than that of FS histological examination (100%), but this difference was not statistically significant (P = 0.125). The specificity of both the methods was identical (96.9%). Despite previously published results suggesting that the OSNA assay is as reliable as histological examinations, our results indicate that this assay often fails to detect micrometastases or isolated tumor cells in SLNs. PMID:25248427

  4. Nomogram including the total tumoral load in the sentinel nodes assessed by one-step nucleic acid amplification as a new factor for predicting nonsentinel lymph node metastasis in breast cancer patients.

    PubMed

    Rubio, Isabel T; Espinosa-Bravo, Martin; Rodrigo, Maxi; Amparo Viguri Diaz, Maria; Hardisson, David; Sagasta, Amaia; Dueñas, Basilio; Peg, Vicente

    2014-09-01

    Several models have been developed to predict non-sentinel nodes (NSLN) metastasis in patients with a positive sentinel node (SLN) that incorporates a standard pathology examination of the SLN. It has been reported that total tumoral load (TTL) in the SLNs assessed by one-step nucleic acid amplification (OSNA) is a predictive factor for additional NSLN metastasis in the axillary lymph node dissection (ALND). The objective was to develop a nomogram that predicts patient´s risk of additional NSLN metastasis incorporating TTL in the SLNs assessed by OSNA. Six hundred and ninety-seven consecutive patients with positive SLN evaluation by OSNA and a completion ALND were recruited. Pathologic features of the primary tumor and SLN metastases, including TTL were collected. Multivariate logistic regression identified factors predictive of non-SLN metastasis. A nomogram was developed with these variables and validated in an external cohort. On multivariate logistic regression analysis, tumor size, number of affected SLN, Her2 overexpression, lymphovascular invasion, and TTL were each associated with the likelihood of additional NSLN metastasis (p < 0.05). The overall predictive accuracy of the nomogram, as measured by the AUC was 0.7552 (95 %CI 0.7159-0.7945). When applied to the external cohort the nomogram was accurate with an AUC = 0.678 (95 %CI 0.621-0.736). This novel nomogram that incorporates TTL assessed by OSNA performs well and may help clinicians to make decisions about ALND for individual patients. Moreover, the standardization of pathologic assessment by OSNA may help to achieve interinstitutional reproducibility among nomograms. PMID:25164972

  5. One-step nucleic acid amplification assay for intraoperative prediction of advanced axillary lymph node metastases in breast cancer patients with sentinel lymph node metastasis

    PubMed Central

    KUBOTA, MICHIYO; KOMOIKE, YOSHIFUMI; HAMADA, MIKA; SHINZAKI, WATARU; AZUMI, TATSUYA; HASHIMOTO, YUKIHIKO; IMOTO, SHIGERU; TAKEYAMA, YOSHIFUMI; OKUNO, KIYOTAKA

    2016-01-01

    The one-step nucleic acid amplification (OSNA) assay is used to semiquantitatively measure the cytokeratin (CK)19 mRNA copy numbers of each sentinel lymph node (SLN) in breast cancer patients. The aim of the present study was to evaluate whether the diagnosis of ≥4 LN metastases is possible using the OSNA assay intraoperatively. Between May, 2010 and December, 2014, a total of 134 patients who underwent axillary lymph node dissection (ALND) of positive SLNs were analyzed. The total tumor load (TTL) was defined as the total CK19 mRNA copies of all positive SLNs. The correlation between TTL and ≥4 LN metastases was evaluated. Of the 134 patients, 31 (23.1%) had ≥4 LN metastases. TTL ≥5.4×104 copies/µl evaluated by receiver operator characteristic curve analysis was examined along with other clinicopathological variables. In the multivariate analysis, only TTL ≥5.4×104 copies/µl was correlated with ≥4 LN metastases (odds ratio = 2.95, 95% confidence interval: 1.17–7.97, P=0.022). Therefore, TTL assessed by the OSNA assay has the potential to be a predictor of ≥4 LN metastases and it may be useful for the selection of patients with positive SLNs in whom ALND may be safely omitted. PMID:26893855

  6. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  7. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  8. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique. PMID:25467448

  9. Electrical and Electrochemical Monitoring of Nucleic Acid Amplification

    PubMed Central

    Goda, Tatsuro; Tabata, Miyuki; Miyahara, Yuji

    2015-01-01

    Nucleic acid amplification is a gold standard technique for analyzing a tiny amount of nucleotides in molecular biology, clinical diagnostics, food safety, and environmental testing. Electrical and electrochemical monitoring of the amplification process draws attention over conventional optical methods because of the amenability toward point-of-care applications as there is a growing demand for nucleic acid sensing in situations outside the laboratory. A number of electrical and electrochemical techniques coupled with various amplification methods including isothermal amplification have been reported in the last 10 years. In this review, we highlight recent developments in the electrical and electrochemical monitoring of nucleic acid amplification. PMID:25798440

  10. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  11. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  12. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  13. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  14. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    PubMed

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  15. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

    PubMed Central

    Linnes, J. C.; Rodriguez, N. M.; Liu, L.

    2016-01-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  16. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    PubMed Central

    Mauk, Michael G.; Liu, Changchun; Song, Jinzhao; Bau, Haim H.

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  17. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. PMID:26706801

  18. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  19. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-01

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity. PMID:27142084

  20. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.

    PubMed

    Ahmad, Farhan; Hashsham, Syed A

    2012-07-01

    Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10-20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics. PMID:22704369

  1. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection.

    PubMed

    Mauk, Michael G; Liu, Changchun; Sadik, Mohamed; Bau, Haim H

    2015-01-01

    Molecular (nucleic acid)-based diagnostics tests have many advantages over immunoassays, particularly with regard to sensitivity and specificity. Most on-site diagnostic tests, however, are immunoassay-based because conventional nucleic acid-based tests (NATs) require extensive sample processing, trained operators, and specialized equipment. To make NATs more convenient, especially for point-of-care diagnostics and on-site testing, a simple plastic microfluidic cassette ("chip") has been developed for nucleic acid-based testing of blood, other clinical specimens, food, water, and environmental samples. The chip combines nucleic acid isolation by solid-phase extraction; isothermal enzymatic amplification such as LAMP (Loop-mediated AMPlification), NASBA (Nucleic Acid Sequence Based Amplification), and RPA (Recombinase Polymerase Amplification); and real-time optical detection of DNA or RNA analytes. The microfluidic cassette incorporates an embedded nucleic acid binding membrane in the amplification reaction chamber. Target nucleic acids extracted from a lysate are captured on the membrane and amplified at a constant incubation temperature. The amplification product, labeled with a fluorophore reporter, is excited with a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such as available in a smartphone). For blood analysis, a companion filtration device that separates plasma from whole blood to provide cell-free samples for virus and bacterial lysis and nucleic acid testing in the microfluidic chip has also been developed. For HIV virus detection in blood, the microfluidic NAT chip achieves a sensitivity and specificity that are nearly comparable to conventional benchtop protocols using spin columns and thermal cyclers. PMID:25626529

  2. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    PubMed

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  3. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  4. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    PubMed

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  5. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for

  6. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    PubMed

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-01

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications

  7. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  8. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform. PMID:26649493

  9. Suppression of Acid Diffusion in Chemical Amplification Resists by Molecular Control of Base Matrix Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Okazaki, Shinji

    1995-12-01

    Suppression of acid diffusion during post-exposure baking (PEB) of chemical amplification resists is investigated from the standpoint of molecular control of base matrix polymers. Negative-type chemical amplification resists composed of cresol novolak-based matrix polymers, acid-catalyzed crosslinkers of melamine resins, and acid generators of onium salts are prepared. The molecular weight distributions of the base matrix polymers are controlled by means of a precipitation method. The resists are exposed with electron beams in isolated lines to evaluate the acid diffusion characteristics. Dependence of pattern sizes on the PEB time clearly shows that acid diffusion determines the resist pattern sizes based on Fick's law. The diffusion coefficients of resists with base matrix polymers with small polydispersities are smaller than those of resists with base matrix polymers with large polydispersities. Acid diffusion can still be suppressed by applying base matrix polymers with small weight-average molecular weights and small polydispersities. Diffusion coefficients can be further decreased by using base matrix polymers with more p-cresol components. A diffusion mechanism is proposed based on acid diffusion channels composed of active OH-groups and vacancies in the base matrix polymers.

  10. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    PubMed Central

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61–65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique. PMID:26154567

  11. Quantitative nucleic acid amplification by digital PCR for clinical viral diagnostics.

    PubMed

    Zhang, Kuo; Lin, Guigao; Li, Jinming

    2016-09-01

    In the past few years, interest in the development of digital PCR (dPCR) as a direct nucleic acid amplification technique for clinical viral diagnostics has grown. The main advantages of dPCR over qPCR include: quantification of nucleic acid concentrations without a calibration curve, comparable sensitivity, superior quantitative precision, greater resistance to perturbations by inhibitors, and increased robustness to the variability of the target sequence. In this review, we address the application of dPCR to viral nucleic acid quantification in clinical applications and for nucleic acid quantification standardization. Further development is required to overcome the current limitations of dPCR in order to realize its widespread use for viral load measurements in clinical diagnostic applications. PMID:26845722

  12. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  13. Nuclemeter: a reaction-diffusion based method for quantifying nucleic acids undergoing enzymatic amplification.

    PubMed

    Liu, Changchun; Sadik, Mohamed M; Mauk, Michael G; Edelstein, Paul H; Bushman, Frederic D; Gross, Robert; Bau, Haim H

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  14. RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples.

    PubMed Central

    Morré, S A; Sillekens, P; Jacobs, M V; van Aarle, P; de Blok, S; van Gemen, B; Walboomers, J M; Meijer, C J; van den Brule, A J

    1996-01-01

    In the present study, the suitability of RNA amplification by nucleic acid sequence-based amplification (NASBA) for the detection of Chlamydia trachomatis infection was investigated. When comparing different primer sets for their sensitivities in NASBA, use of both the plasmid and omp1 targets resulted in a detection limit of 1 inclusion-forming unit (IFU), while the 16S rRNA appeared to be the most sensitive RNA target for amplification (10(-3) IFU). In contrast, for DNA amplification by PCR, the plasmid target was optimal (10(-2) IFU), which is 10 times less sensitive than rRNA NASBA. To exclude false negativity in NASBA detection because of inhibition of amplification and/or inefficient sample preparation, an internal standard was developed. The internal control was added prior to sample preparation. This 16S rRNA NASBA with an internal control was compared with a plasmid DNA PCR by using a group of C. trachomatis-negative (n = 41) and -positive (n = 37) cervical scrapings, as determined by enzyme immunoassay (EIA). In addition, urine samples from the EIA-positive women were tested (n = 17). Both NASBA and PCR assays were able to detect C. trachomatis in all EIA-positive cervical scrapings, the corresponding urine samples, and two samples from the EIA-negative group. The internal NASBA standard was found clearly in all EIA-negative samples. In conclusion, these results indicate that detection of C. trachomatis by RNA amplification by NASBA with an internal standard is a suitable and highly sensitive detection method, with potential use in the diagnosis of urogenital C. trachomatis infections with cervical scrapings as well as urine specimens. PMID:8940456

  15. Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs.

    PubMed

    Mader, Andreas; Riehle, Ulrike; Brandstetter, Thomas; Stickeler, Elmar; Ruehe, Juergen

    2012-11-19

    A universal NASBA assay is presented for simultaneous amplification of multiple microRNA (miRNA) and messengerRNA (mRNA) sequences. First, miRNA and mRNA sequences are reverse transcribed using tailed reverse transcription primer pairs containing a gene-specific and an non-specific region. For reverse transcription of small miRNA molecules a non-specific region is incorporated into a structured stem-loop reverse transcription primer. Second, a universal NASBA primer pair that recognizes the tagged cDNA molecules enables a simultaneous, transcription-based amplification reaction (NASBA) of all different cDNA molecules in one reaction. The NASBA products (RNA copies) are detected by gene-specific DNA probes immobilized on a biochip. By using the multiplex reverse transcription combined with the universal NASBA amplification up to 14 different mRNA and miRNA sequences can be specifically amplified and detected in parallel. In comparison with standard multiplex NASBA assays this approach strongly enhances the multiplex capacity of NASBA-based amplification reactions. Furthermore simultaneous assaying of different RNA classes can be achieved that might be beneficial for studying miRNA-based regulation of gene expression or for RNA-based tumor diagnostics. PMID:23140948

  16. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS. PMID:10520585

  17. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS).

    PubMed

    Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A

    2014-10-13

    Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists. PMID:25209570

  18. Effect of basic additives on sensitivity and diffusion of acid in chemical amplification resists

    NASA Astrophysics Data System (ADS)

    Asakawa, Koji; Ushirogouchi, Tohru; Nakase, Makoto

    1995-06-01

    The effect of amine additives in chemical amplification resists is discussed. Phenolic amines such as 4-aminophenol and 2-(4-aminophenyl)-2-(4-hydroxyphenyl) propane were investigated as model compounds from the viewpoint of sensitivity, diffusion and resolution. Equal molar amounts of acid and amine deactivated at the very beginning of post-exposure bake, and could not participate in decomposing the inhibitor as a catalyst. Only the acid which survived from the deactivation diffuses in the resist, decomposing the inhibitors from the middle to late stage of PEB. The basic additives reduce the diffusion range of the acid, especially for long-range diffusion, resulting in higher contrast at the interfaces between the exposed and unexposed areas. In addition, the amine concentration required is found to be less than the concentration which causes the resist sensitivity to start decreasing.

  19. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection. PMID:26202628

  20. Multiplex Nucleic Acid Amplification Test for Diagnosis of Dengue Fever, Malaria, and Leptospirosis

    PubMed Central

    Waggoner, Jesse J.; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K.; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz

    2014-01-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  1. Multiplex nucleic acid amplification test for diagnosis of dengue fever, malaria, and leptospirosis.

    PubMed

    Waggoner, Jesse J; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz; Pinsky, Benjamin A

    2014-06-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  2. Enzymatic Amplification of DNA/RNA Hybrid Molecular Beacon Signaling in Nucleic Acid Detection

    PubMed Central

    Jacroux, Thomas; Rieck, Daniel C.; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2012-01-01

    A rapid assay operable under isothermal or non-isothermal conditions is described wherein the sensitivity of a typical molecular beacon (MB) system is improved by utilizing thermostable RNase H to enzymatically cleave an MB comprised of a DNA stem and RNA loop (R/D-MB). Upon hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7x above background) due to an opening of the probe and concomitant reduction in the Förster resonance energy transfer efficiency. Addition of thermostable RNase H resulted in the cleavage of the RNA loop which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9x above background), resulting in a ~2–2.8 fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time PCR reactions by measuring enhancement of donor fluorescence upon R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  3. Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection.

    PubMed

    Jacroux, Thomas; Rieck, Daniel C; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2013-01-15

    A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods. PMID:23000602

  4. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends

    PubMed Central

    Zhang, Chunsun; Xing, Da

    2007-01-01

    The possibility of performing fast and small-volume nucleic acid amplification and analysis on a single chip has attracted great interest. Devices based on this idea, referred to as micro total analysis, microfluidic analysis, or simply ‘Lab on a chip’ systems, have witnessed steady advances over the last several years. Here, we summarize recent research on chip substrates, surface treatments, PCR reaction volume and speed, architecture, approaches to eliminating cross-contamination and control and measurement of temperature and liquid flow. We also discuss product-detection methods, integration of functional components, biological samples used in PCR chips, potential applications and other practical issues related to implementation of lab-on-a-chip technologies. PMID:17576684

  5. Considerations on the use of nucleic acid-based amplification for malaria parasite detection

    PubMed Central

    2011-01-01

    Background Nucleic acid amplification provides the most sensitive and accurate method to detect and identify pathogens. This is primarily useful for epidemiological investigations of malaria because the infections, often with two or more Plasmodium species present simultaneously, are frequently associated with microscopically sub-patent parasite levels and cryptic mixed infections. Numerous distinct equally adequate amplification-based protocols have been described, but it is unclear which to select for epidemiological surveys. Few comparative studies are available, and none that addresses the issue of inter-laboratory variability. Methods Blood samples were collected from patients attending malaria clinics on the Thai-Myanmar border. Frozen aliquots from 413 samples were tested independently in two laboratories by nested PCR assay. Dried blood spots on filter papers from the same patients were also tested by the nested PCR assay in one laboratory and by a multiplex PCR assay in another. The aim was to determine which protocol best detected parasites below the sensitivity level of microscopic examination. Results As expected PCR-based assays detected a substantial number of infected samples, or mixed infections, missed by microscopy (27 and 42 for the most sensitive assay, respectively). The protocol that was most effective at detecting these, in particular mixed infections, was a nested PCR assay with individual secondary reactions for each of the species initiated with a template directly purified from the blood sample. However, a lesser sensitivity in detection was observed when the same protocol was conducted in another laboratory, and this significantly altered the data obtained on the parasite species distribution. Conclusions The sensitivity of a given PCR assay varies between laboratories. Although, the variations are relatively minor, they primarily diminish the ability to detect low-level and mixed infections and are sufficient to obviate the main

  6. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  7. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  8. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM)

    PubMed Central

    Harshman, Dustin K.; Reyes, Roberto; Park, Tu San; You, David J.; Song, Jae-Young; Yoon, Jeong-Yeol

    2013-01-01

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 sec/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/µL or 105 genomes/µL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity. PMID:24140832

  9. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method

    PubMed Central

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5’ end (Nr and N), whereas their 3’ end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C–65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 109 copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  10. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  11. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method.

    PubMed

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5' end (Nr and N), whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C-65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 10(9) copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  12. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories.

    PubMed Central

    Noordhoek, G T; van Embden, J D; Kolk, A H

    1996-01-01

    Nucleic acid amplification to detect Mycobacterium tuberculosis in clinical specimens is increasingly used as a laboratory tool for the diagnosis of tuberculosis. However, the specificity and sensitivity of these tests may be questioned, and no standardized reagents for quality control assessment are available. To estimate the performance of amplification tests for routine diagnosis, we initiated an interlaboratory study involving 30 laboratories in 18 countries. We prepared blinded panels of 20 sputum samples containing no, 100, or 1,000 mycobacterial cells. Each laboratory was asked to detect M. tuberculosis by their routine method of nucleic acid amplification. Only five laboratories correctly identified the presence or absence of mycobacterial DNA in all 20 samples. Seven laboratories detected mycobacterial DNA in all positive samples, and 13 laboratories correctly reported the absence of DNA in the negative samples. Lack of specificity was more of a problem than lack of sensitivity. Reliability was not found to be associated with the use of any particular method. Reliable detection of M. tuberculosis in clinical samples by nucleic acid amplification techniques is possible, but many laboratories do not use adequate quality controls. This study underlines the need for good laboratory practice and reference reagents to monitor the performance of the whole assay, including pretreatment of clinical samples. PMID:8880513

  13. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.

    PubMed

    Li, Dandan; Cheng, Wei; Yan, Yurong; Zhang, Ye; Yin, Yibing; Ju, Huangxian; Ding, Shijia

    2016-01-01

    A functional nucleic acid-based amplification machine was designed for simple and label-free ultrasensitive colorimetric biosensing of microRNA (miRNA). The amplification machine was composed of a complex of trigger template and C-rich DNA modified molecular beacon (MB) and G-rich DNA (GDNA) as the probe, polymerase and nicking enzyme, and a dumbbell-shaped amplification template. The presence of target miRNA triggered MB mediated strand displacement to cyclically release nicking triggers, which led to a toehold initiated rolling circle amplification to produce large amounts of GDNAs. The formed GDNAs could stack with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, for catalyzing a colorimetric reaction. The modified MB improved the stringent target recognition and reduced background signal. The proposed sensing strategy showed very high sensitivity and selectivity with a wide dynamic range from 10 aM to 1.0 nM, and enabled successful visual analysis of trace amount of miRNA in real sample by the naked eye. This rapid and highly efficient signal amplification strategy provided a simple and sensitive platform for miRNA detection. It would be a versatile and powerful tool for clinical molecular diagnostics. PMID:26695292

  14. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  15. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  16. Multicenter Clinical Evaluation of the Novel Alere i Strep A Isothermal Nucleic Acid Amplification Test

    PubMed Central

    Russo, Michael E.; Jaggi, Preeti; Kline, Jennifer; Gluckman, William; Parekh, Amisha

    2015-01-01

    Rapid detection of group A beta-hemolytic streptococcus (GAS) is used routinely to help diagnose and treat pharyngitis. However, available rapid antigen detection tests for GAS have relatively low sensitivity, and backup testing is recommended in children. Newer assays are more sensitive yet require excessive time for practical point-of-care use as well as laboratory personnel. The Alere i strep A test is an isothermal nucleic acid amplification test designed to offer highly sensitive results at the point of care within 8 min when performed by nonlaboratory personnel. The performance of the Alere i strep A test was evaluated in a multicenter prospective trial in a Clinical Laboratory Improvement Amendments (CLIA)-waived setting in comparison to bacterial culture in 481 children and adults. Compared to culture, the Aleri i strep A test had 96.0% sensitivity and 94.6% specificity. Discrepant results were adjudicated by PCR and found the Alere i strep A test to have 98.7% sensitivity and 98.5% specificity. Overall, the Alere i strep A test could provide a one-step, rapid, point-of-care testing method for GAS pharyngitis and obviate backup testing on negative results. PMID:25972418

  17. Successful Combination of Nucleic Acid Amplification Test Diagnostics and Targeted Deferred Neisseria gonorrhoeae Culture

    PubMed Central

    Wind, Carolien M.; de Vries, Henry J. C.; Schim van der Loeff, Maarten F.; Unemo, Magnus

    2015-01-01

    Nucleic acid amplification tests (NAATs) are recommended for the diagnosis of N. gonorrhoeae infections because of their superior sensitivity. Increasing NAAT use causes a decline in crucial antimicrobial resistance (AMR) surveillance data, which rely on culture. We analyzed the suitability of the ESwab system for NAAT diagnostics and deferred targeted N. gonorrhoeae culture to allow selective and efficient culture based on NAAT results. We included patients visiting the STI Clinic Amsterdam, The Netherlands, in 2013. Patient characteristics and urogenital and rectal samples for direct N. gonorrhoeae culture, standard NAAT, and ESwab were collected. Standard NAAT and NAAT on ESwab samples were performed using the Aptima Combo 2 assay for N. gonorrhoeae and C. trachomatis. Two deferred N. gonorrhoeae cultures were performed on NAAT-positive ESwab samples after storage at 4°C for 1 to 3 days. We included 2,452 samples from 1,893 patients. In the standard NAAT, 107 samples were N. gonorrhoeae positive and 284 were C. trachomatis positive. The sensitivities of NAAT on ESwab samples were 83% (95% confidence interval [CI], 75 to 90%) and 87% (95% CI, 82 to 90%), respectively. ESwab samples were available for 98 of the gonorrhea-positive samples. Of these, 82% were positive in direct culture and 69% and 56% were positive in the 1st and 2nd deferred cultures, respectively (median storage times, 27 and 48 h, respectively). Deferred culture was more often successful in urogenital samples or when the patient had symptoms at the sampling site. Deferred N. gonorrhoeae culture of stored ESwab samples is feasible and enables AMR surveillance. To limit the loss in NAAT sensitivity, we recommend obtaining separate samples for NAAT and deferred culture. PMID:25832300

  18. Tissue donation and virus safety: more nucleic acid amplification testing is needed.

    PubMed

    Pruss, A; Caspari, G; Krüger, D H; Blümel, J; Nübling, C M; Gürtler, L; Gerlich, W H

    2010-10-01

    In tissue and organ transplantation, it is of great importance to avoid the transmission of blood-borne viruses to the recipient. While serologic testing for anti-human immunodeficiency virus (HIV)-1 and -2, anti-hepatitis C virus (HCV), hepatitis B surface antigen (HBsAg), anti-hepatitis B core antigen (HBc), and Treponema pallidum infection is mandatory, there is until now in most countries no explicit demand for nucleic acid amplification testing (NAT) to detect HIV, hepatitis B virus (HBV), and HCV infection. After a review of reports in the literature on viral transmission events, tissue-specific issues, and manufacturing and inactivation procedures, we evaluated the significance of HIV, HCV, and HBV detection using NAT  in  donors of various types of tissues and compared our results with the experiences of blood banking organizations. There is a significant risk of HIV, HCV, and HBV transmission by musculoskeletal tissues because of their high blood content and the high donor-recipient ratio. If no effective virus inactivation procedure for musculoskeletal tissue is applied, donors should be screened using NAT  for  HIV, HCV, and HBV. Serologically screened cardiovascular tissue carries a very low risk of HIV, HCV, or HBV transmission. Nevertheless, because effective virus inactivation is impossible (retention of tissue morphology) and the donor-recipient ratio may be as high as 1:10, we concluded that NAT  should be performed for HIV, HCV, and HBV as an additional safety measure. Although cornea allografts carry the lowest risk of transmitting HIV, HCV, and HBV  owing to corneal physiology, morphology, and the epidemiology of corneal diseases, NAT  for  HCV should still be performed. If the NAT  screening of a donor for HIV, HCV, and HBV is negative, quarantine storage of the donor tissue seems dispensable. In view of numerous synergistic effects with transfusion medicine, it would be advantageous for tissue banks to cooperate with blood

  19. A Fully Integrated Paperfluidic Molecular Diagnostic Chip for the Extraction, Amplification, and Detection of Nucleic Acids from Clinical Samples

    PubMed Central

    Rodriguez, Natalia M.; Wong, Winnie S.; Liu, Lena; Dewar, Rajan; Klapperich, Catherine M.

    2016-01-01

    Paper diagnostics have successfully been employed to detect the presence of antigens or small molecules in clinical samples through immunoassays; however, the detection of many disease targets relies on the much higher sensitivity and specificity achieved via nucleic acid amplification tests (NAAT). The steps involved in NAAT have recently begun to be explored in paper matrices, and our group, among others, has reported on paper-based extraction, amplification, and detection of DNA and RNA targets. Here, we integrate these paper-based NAAT steps onto a single paperfluidic chip in a modular, foldable system that allows for fully integrated fluidic handling from sample to result. We showcase the functionality of the chip by combining nucleic acid isolation, isothermal amplification, and lateral flow detection of human papillomavirus (HPV) 16 DNA directly from crude cervical specimens in under 1 hour for rapid, early detection of cervical cancer. The chip is made entirely of paper and adhesive sheets, making it low-cost, portable, and disposable, and offering the potential for a point-of-care molecular diagnostic platform even in remote and resource-limited settings. PMID:26785636

  20. Electrical Detection of Nucleic Acid Amplification Using an On-Chip Quasi-Reference Electrode and a PVC REFET

    PubMed Central

    2015-01-01

    Electrical detection of nucleic acid amplification through pH changes associated with nucleotide addition enables miniaturization, greater portability of testing apparatus, and reduced costs. However, current ion-sensitive field effect transistor methods for sensing nucleic acid amplification rely on establishing the fluid gate potential with a bulky, difficult to microfabricate reference electrode that limits the potential for massively parallel reaction detection. Here we demonstrate a novel method of utilizing a microfabricated solid-state quasi-reference electrode (QRE) paired with a pH-insensitive reference field effect transistor (REFET) for detection of real-time pH changes. The end result is a 0.18 μm, silicon-on-insulator, foundry-fabricated sensor that utilizes a platinum QRE to establish a pH-sensitive fluid gate potential and a PVC membrane REFET to enable pH detection of loop mediated isothermal amplification (LAMP). This technique is highly amendable to commercial scale-up, reduces the packaging and fabrication requirements for ISFET pH detection, and enables massively parallel droplet interrogation for applications, such as monitoring reaction progression in digital PCR. PMID:24940939

  1. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples.

    PubMed

    Rodriguez, Natalia M; Wong, Winnie S; Liu, Lena; Dewar, Rajan; Klapperich, Catherine M

    2016-02-21

    Paper diagnostics have successfully been employed to detect the presence of antigens or small molecules in clinical samples through immunoassays; however, the detection of many disease targets relies on the much higher sensitivity and specificity achieved via nucleic acid amplification tests (NAAT). The steps involved in NAAT have recently begun to be explored in paper matrices, and our group, among others, has reported on paper-based extraction, amplification, and detection of DNA and RNA targets. Here, we integrate these paper-based NAAT steps into a single paperfluidic chip in a modular, foldable system that allows for fully integrated fluidic handling from sample to result. We showcase the functionality of the chip by combining nucleic acid isolation, isothermal amplification, and lateral flow detection of human papillomavirus (HPV) 16 DNA directly from crude cervical specimens in less than 1 hour for rapid, early detection of cervical cancer. The chip is made entirely of paper and adhesive sheets, making it low-cost, portable, and disposable, and offering the potential for a point-of-care molecular diagnostic platform even in remote and resource-limited settings. PMID:26785636

  2. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection.

    PubMed

    Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions. PMID:26831931

  3. Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening.

    PubMed

    Vollmer, T; Knabbe, C; Dreier, J

    2015-10-01

    Acute primary cytomegalovirus (CMV) infections, which commonly occur asymptomatically among blood donors, represent a significant risk for serious morbidity in immunocompromised patients (a major group of transfusion recipients). We implemented a routine CMV pool screening procedure for plasma for the identification of CMV DNA-positive donors, and we evaluated the sensitivities and performance of different CMV DNA amplification systems. Minipools (MPs) of samples from 18,405 individual donors (54,451 donations) were screened for CMV DNA using the RealStar CMV PCR assay (Altona Diagnostic Technologies), with a minimum detection limit of 11.14 IU/ml. DNA was extracted with a high-volume protocol (4.8 ml, Chemagic Viral 5K kit; PerkinElmer) for blood donor pool screening (MP-nucleic acid testing [NAT]) and with the Nuclisens easyMAG system (0.5 ml; bioMérieux) for individual donation (ID)-NAT. In total, six CMV DNA-positive donors (0.03%) were identified by routine CMV screening, with DNA concentrations ranging from 4.35 × 10(2) to 4.30 × 10(3) IU/ml. Five donors already showed seroconversion and detectable IgA, IgM, and/or IgG antibody titers (IgA(+)/IgM(+)/IgG(-) or IgA(+)/IgM(+)/IgG(+)), and one donor showed no CMV-specific antibodies. Comparison of three commercial assays, i.e., the RealStar CMV PCR kit, the Sentosa SA CMV quantitative PCR kit (Vela Diagnostics), and the CMV R-gene PCR kit (bioMérieux), for MP-NAT and ID-NAT showed comparably good analytical sensitivities, ranging from 10.23 to 11.14 IU/ml (MP-NAT) or from 37.66 to 57.94 IU/ml (ID-NAT). The clinical relevance of transfusion-associated CMV infections requires further investigation, and the evaluated methods present powerful basic tools providing sensitive possibilities for viral testing. The application of CMV MP-NAT facilitated the identification of one donor with a window-phase donation during acute primary CMV infection. PMID:26202109

  4. Reverse Transcription Cross-Priming Amplification-Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus.

    PubMed

    Wang, Feng-Xue; Yuan, Dan-Yi; Jin, Ya-Nan; Hu, Lin; Sun, Zhi-Yong; He, Qian; Zhao, Shi-Hua; Zhan, Shu-Bai; Wen, Yong-Jun

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease particularly in neonatal piglets. In this study, a rapid method for detecting PEDV was developed based on cross-priming amplification and nucleic acid test strip(CPA-NATS). Five primers specific for the N gene sequence of PEDV were used for the cross-priming amplification. Detection of amplification products based on labeled probe primers was conducted with strip binding antibody of labeled markers. The CPA method was evaluated and compared with a PCR method. The reverse transcription CPA system was further optimized for detecting PEDV RNA in clinical specimens. Results showed that the method was highly specific for the detection of PEDV, and had the same sensitivity as PCR, with detection limit of 10(-6) diluted plasmid containing the target gene of PEDV. It was also successfully applied to detecting PEDV in clinical specimens. The reverse transcription CPA-NATS detection system established in this study offers a specific, sensitive, rapid, and simple detection tool for screening PEDV, which can contribute to strategies in the effective control of PEDV in swine. PMID:27090105

  5. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    PubMed

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings. PMID:27031184

  6. Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel.

    PubMed

    Loens, K; van Loon, A M; Coenjaerts, F; van Aarle, Y; Goossens, H; Wallace, P; Claas, E J C; Ieven, M

    2012-03-01

    An external quality assessment (EQA) panel consisting of a total of 48 samples in bronchoalveolar lavage (BAL) fluid or transport medium was prepared in collaboration with Quality Control for Molecular Diagnostics (QCMD) (www.qcmd.org). The panel was used to assess the proficiency of the three laboratories that would be responsible for examining the 6,000 samples to be collected in the GRACE Network of Excellence (www.grace-lrti.org). The main objective was to decide on the best-performing testing approach for the detection of influenza viruses A and B, parainfluenza virus types 1 to 3, respiratory syncytial virus (RSV), human metapneumovirus, coronavirus, rhinovirus, adenovirus, Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila by nucleic acid amplification techniques (NAATs). Two approaches were chosen: (i) laboratories testing samples using their in-house procedures for extraction and amplification and (ii) laboratories using their in-house amplification procedures on centrally extracted samples. Furthermore, three commercially available multiplex NAAT tests-the ResPlex (Qiagen GmbH, Hilden, Germany), RespiFinder plus (PathoFinder, Maastricht, The Netherlands), and RespiFinder Smart 21 (PathoFinder) tests-were evaluated by examination of the same EQA panel by the manufacturer. No large differences among the 3 laboratories were noticed when the performances of the assays developed in-house in combination with the in-house extraction procedures were compared. Also, the extraction procedure (central versus local) had little effect on performance. However, large differences in amplification efficacy were found between the commercially available tests; acceptable results were obtained by using the PathoFinder assays. PMID:22170925

  7. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine. PMID:26513289

  8. Point-of-care multiplexed assays of nucleic acids using microcapillary-based loop-mediated isothermal amplification.

    PubMed

    Zhang, Yi; Zhang, Lu; Sun, Jiashu; Liu, Yulei; Ma, Xingjie; Cui, Shangjin; Ma, Liying; Xi, Jianzhong Jeff; Jiang, Xingyu

    2014-07-15

    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings. PMID:24937125

  9. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOEpatents

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  10. A silver-free, single-sheet imaging medium based on acid amplification.

    PubMed

    Marshall, John L; Telfer, Stephen J; Young, Michael A; Lindholm, Edward P; Minns, Richard A; Takiff, Larry

    2002-08-30

    We describe a photographic medium that uses acid-amplified imaging (AAI) rather than silver halide development to amplify a latent image. The latent image is captured when small amounts of superacid are generated by the photolysis of iodonium salts sensitized by cationic dyes. During thermal processing, the quantity of acid is multiplied in a process catalyzed by strong acid, resulting in a much larger amount of a weaker acid. Acid-sensitive indicator dyes that diffuse into regions where acid has been produced form a colored image. The AAI system is not sufficiently sensitive for direct use in cameras but is suitable for many printing applications. PMID:12169657

  11. Detection of human enteric viruses in oysters by in vivo and in vitro amplification of nucleic acids.

    PubMed Central

    Chung, H; Jaykus, L A; Sobsey, M D

    1996-01-01

    This study describes the detection of enteroviruses and hepatitis A virus in 31 naturally contaminated oyster specimens by nucleic acid amplification and oligonucleotide probing. Viruses were extracted by adsorption-elution-precipitation from 50-g oyster samples harvested from an area receiving sewage effluent discharge. Ninety percent of each extract was inoculated into primate kidney cell cultures for virus isolation and infectivity assay. Viruses in the remaining 10% of oyster extract that was not inoculated into cell cultures were further purified and concentrated by a procedure involving Freon extraction, polyethylene glycol precipitation, and Pro-Cipitate precipitation. After 3 to 4 weeks of incubation, RNA was extracted from inoculated cultures that were negative for cytopathic effects (CPE). These RNA extracts and the RNA from virions purified and concentrated directly from oyster extracts were subjected to reverse transcriptase PCR (RT-PCR) with primer pairs for human enteroviruses and hepatitis A virus. The resulting amplicons were confirmed by internal oligonucleotide probe hybridization. For the portions of oyster sample extracts inoculated into cell cultures, 12 (39%) were positive for human enteroviruses by CPE and 6 (19%) were positive by RT-PCR and oligoprobing of RNA extracts from CPE-negative cell cultures. For the remaining sample portions tested by direct RT-PCR and oligoprobing after further concentration, five (about 16%) were confirmed to be positive for human enteroviruses. Hepatitis A virus was also detected in RNA extracts of two CPE-positive samples by RT-PCR and oligoprobing. Combining the data from all three methods, enteric viruses were detected in 18 of 31 (58%) samples. Detection by nucleic acid methods increased the number of positive samples by 50% over detection by CPE in cell culture. Hence, nucleic acid amplification methods increase the detection of noncytopathic human enteric viruses in oysters. PMID:8837433

  12. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP.

    PubMed

    Shamsipur, Mojtaba; Farzin, Leila; Tabrizi, Mahmoud Amouzadeh; Shanehsaz, Maryam

    2016-12-01

    A "signal off" voltammetric aptasensor was developed for the sensitive and selective detection of ultra-low levels of adenosine triphosphate (ATP). For this purpose, a new strategy based on the principle of recognition-induced switching of aptamers from DNA/DNA duplex to DNA/target complex was designed using thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) as the signal amplifying nano-platforms. Owing to the small size, high surface-to-volume ratio and good conductivity, quantum dots were immobilized on the electrode surface for signal amplification. In this work, methylene blue (MB) adsorbed to DNA was used as a sensitive redox reporter. The intensity of voltammetric signal of MB was found to decrease linearly upon ATP addition over a concentration range of 0.1nM to 1.6μM with a correlation coefficient of 0.9924. Under optimized conditions, the aptasensor was able to selectively detect ATP with a limit of detection of 45pM at 3σ. The results also demonstrated that the QDs-based amplification strategy could be feasible for ATP assay and presented a potential universal method for other small biomolecular aptasensors. PMID:27612836

  13. Rapid Point-of-Care Isothermal Amplification Assay for the Detection of Malaria without Nucleic Acid Purification

    PubMed Central

    Modak, Sayli S.; Barber, Cheryl A.; Geva, Eran; Abrams, William R.; Malamud, Daniel; Ongagna, Yhombi Serge Yvon

    2016-01-01

    Malaria remains one of the most prevalent infectious diseases and results in significant mortality. Isothermal amplification (loop-mediated isothermal amplification) is used to detect malarial DNA at levels of ~1 parasite/µL blood in ≤30 minutes without the isolation of parasite nucleic acid from subject’s blood or saliva. The technique targets the mitochondrial cytochrome oxidase subunit 1 gene and is capable of distinguishing Plasmodium falciparum from Plasmodium vivax. Malarial diagnosis by the gold standard microscopic examination of blood smears is generally carried out only after moderate-to-severe symptoms appear. Rapid diagnostic antigen tests are available but generally require infection levels in the range of 200–2,000 parasites/µL for a positive diagnosis and cannot distinguish if the disease has been cleared due to the persistence of circulating antigen. This study describes a rapid and simple molecular assay to detect malarial genes directly from whole blood or saliva without DNA isolation. PMID:26819557

  14. Acid-Breakable Resin-Based Chemical Amplification Positive Resist for Electron-Beam Mastering: Design and Lithographic Performance

    NASA Astrophysics Data System (ADS)

    Sakamizu, Toshio; Shiraishi, Hiroshi

    2004-07-01

    A positive chemical amplification resist based on acid-catalyzed fragmentation of acetal groups in its main chain has been developed as a means of reducing line-edge roughness. The resist consists of an acid generator, an acid-diffusion controller and an acid-breakable (AB) resin that is synthesized through a co-condensation reaction between polyphenol and aromatic multifunctional vinylether compound. The effects of the fractionation of AB resins on resin properties and line-edge roughness (LER) are evaluated. Although AB resins have wide molecular weight distributions, the density of acetal groups in this AB resin is found to be almost constant except in the lower molecular weight components. The resist with a fractionated resin from which such components are removed provides high-resolution patterns (70-nm-wide pit) with fairly low LER. AFM analysis shows that the surface roughness (SR) of the resist with the fractionated resin is smaller than that of a resist using nonfractionated AB resin, and that the SR value is not altered throughout the range of exposure doses up to just below the start of dissolution. By using the fractionated AB resin, the AB resin-based resist (ABR) is capable of forming sub-100 nm L/S patterns with less than 5 nm of LER (3σ).

  15. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  16. Review of nucleic acid amplification tests and clinical prediction rules for diagnosis of tuberculosis in acute care facilities.

    PubMed

    Chitnis, Amit S; Davis, J Lucian; Schecter, Gisela F; Barry, Pennan M; Flood, Jennifer M

    2015-10-01

    Tuberculosis (TB) remains an important cause of hospitalization and mortality in the United States. Prevention of TB transmission in acute care facilities relies on prompt identification and implementation of airborne isolation, rapid diagnosis, and treatment of presumptive pulmonary TB patients. In areas with low TB burden, this strategy may result in inefficient utilization of airborne infection isolation rooms (AIIRs). We reviewed TB epidemiology and diagnostic approaches to inform optimal TB detection in low-burden settings. Published clinical prediction rules for individual studies have a sensitivity ranging from 81% to 100% and specificity ranging from 14% to 63% for detection of culture-positive pulmonary TB patients admitted to acute care facilities. Nucleic acid amplification tests (NAATs) have a specificity of >98%, and the sensitivity of NAATs varies by acid-fast bacilli sputum smear status (positive smear, ≥95%; negative smear, 50%-70%). We propose an infection prevention strategy using a clinical prediction rule to identify patients who warrant diagnostic evaluation for TB in an AIIR with an NAAT. Future studies are needed to evaluate whether use of clinical prediction rules and NAATs results in optimized utilization of AIIRs and improved detection and treatment of presumptive pulmonary TB patients. PMID:26166303

  17. On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria.

    PubMed

    Kunze, A; Dilcher, M; Abd El Wahed, A; Hufert, F; Niessner, R; Seidel, M

    2016-01-01

    This work presents an on-chip isothermal nucleic acid amplification test (iNAAT) for the multiplex amplification and detection of viral and bacterial DNA by a flow-based chemiluminescence microarray. In a principle study, on-chip recombinase polymerase amplification (RPA) on defined spots of a DNA microarray was used to spatially separate the amplification reaction of DNA from two viruses (Human adenovirus 41, Phi X 174) and the bacterium Enterococcus faecalis, which are relevant for water hygiene. By establishing the developed assay on the microarray analysis platform MCR 3, the automation of isothermal multiplex-amplification (39 °C, 40 min) and subsequent detection by chemiluminescence imaging was realized. Within 48 min, the microbes could be identified by the spot position on the microarray while the generated chemiluminescence signal correlated with the amount of applied microbe DNA. The limit of detection (LOD) determined for HAdV 41, Phi X 174, and E. faecalis was 35 GU/μL, 1 GU/μL, and 5 × 10(3) GU/μL (genomic units), which is comparable to the sensitivity reported for qPCR analysis, respectively. Moreover the simultaneous amplification and detection of DNA from all three microbes was possible. The presented assay shows that complex enzymatic reactions like an isothermal amplification can be performed in an easy-to-use experimental setup. Furthermore, iNAATs can be potent candidates for multipathogen detection in clinical, food, or environmental samples in routine or field monitoring approaches. PMID:26624222

  18. Detection of hepatitis C virus ribonucleic acid in the serum by amplification with polymerase chain reaction.

    PubMed Central

    Kato, N; Yokosuka, O; Omata, M; Hosoda, K; Ohto, M

    1990-01-01

    Hepatitis C virus (HCV) RNA was detected in the sera of patients with non-A, non-B chronic liver disease by polymerase chain reaction (PCR). RNA was extracted from the serum, reverse transcribed to cDNA, and amplified by PCR. With this method, 30 patients with non-A, non-B chronic liver disease and 10 healthy subjects were tested. HCV RNA was detected in 13 of 16 (81%) anti-HCV-positive patients and also in 7 of 14 (50%) anti-HCV-negative patients, but in none of 10 anti-HCV-negative healthy subjects. Specificity of this method was confirmed by direct sequencing of amplified cDNA segment. The nucleotide sequences (37 nucleotides) obtained from 15 patients showed only 68-78% homology compared with the prototype HCV nucleotide sequence. In addition, of 15 nucleotide sequences, there were 12 different types. But the translated amino acid sequences (12 amino acids) showed 83-100% homology compared with the prototype HCV amino acid sequence. These data suggest the majority of anti-HCV-positive patients are carriers of HCV. But to detect all the viremic patients, the anti-HCV antibody testing may be insufficient. Direct detection of HCV RNA may be useful in the study of virus replication and its association with various liver diseases. Images PMID:2173727

  19. Molecular cytogenetics by polymerase catalyzed amplification or in situ labelling of specific nucleic acid sequences

    SciTech Connect

    Bolund, L.; Brandt, C.; Hindkjaer, J.; Koch, J.; Koelvraa, S.; Pedersen, S. )

    1993-01-01

    The Polymerase Chain Reaction (PCR) can be performed on isolated cells or chromosomes and the product can be analyzed by DNA technology or by FISH to test metaphases. The authors have good experiences analyzing aberrant chromosomes by FACS sorting, PCR with degenerated primers and painting of test metaphases with the PCR product. They also utilize polymerases for PRimed IN Situ labelling (PRINS) of specific nucleic acid sequences. In PRINS oligonucleotides are hybridized to their target sequences and labeled nucleotides are incorporated at the site of hybridization with the oligonucleotide as primer. PRINS may eventually allow the study of individual genes, gene expression and even somatic mutations (in mRNA) in single cells.

  20. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses.

    PubMed

    Lanciotti, R S; Kerst, A J

    2001-12-01

    The development and application of nucleic acid sequence-based amplification (NASBA) assays for the detection of West Nile (WN) and St. Louis encephalitis (SLE) viruses are reported. Two unique detection formats were developed for the NASBA assays: a postamplification detection step with a virus-specific internal capture probe and electrochemiluminescence (NASBA-ECL assay) and a real-time assay with 6-carboxyfluorescein-labeled virus-specific molecular beacon probes (NASBA-beacon assay). The sensitivities and specificities of these NASBA assays were compared to those of a newly described standard reverse transcription (RT)-PCR and TaqMan assays for SLE virus and to a previously published TaqMan assay for WN virus. The NASBA assays demonstrated exceptional sensitivities and specificities compared to those of virus isolation, the TaqMan assays, and standard RT-PCR, with the NASBA-beacon assay yielding results in less than 1 h. These assays should be of utility in the diagnostic laboratory to complement existing diagnostic testing methodologies and as a tool in conducting flavivirus surveillance in the United States. PMID:11724870

  1. Gonorrhoea Diagnostic and Treatment Uncertainties: Risk Factors for Culture Negative Confirmation after Positive Nucleic Acid Amplification Tests

    PubMed Central

    Vyth, Rebecka; Leval, Amy; Eriksson, Björn; Ericson, Eva-Lena; Marions, Lena; Hergens, Maria-Pia

    2016-01-01

    Gonorrhoea incidence has increased substantially in Stockholm during the past years. These increases have coincided with changes in testing practice from solely culture-based to nucleic acid amplification tests (NAAT). Gonorrhoea NAAT is integrated with Chlamydia trachomatis testing and due to opportunistic screening for chlamydia, testing prevalence for gonorrhoea has increased substantially in the Stockholm population. The aim of this study was to examine epidemiological risk-factors for discordant case which are NAAT positive but culture negative. These discordant cases are especially problematic as they give rise to diagnostic and treatment uncertainties with risk for subsequent sequelae. All gonorrhoea cases from Stockholm county during 2011–2012 with at least one positive N. gonorrhoea NAAT test and follow-up cultures were included (N = 874). Data were analysed using multivariate and stratified logistic regression models. Results showed that women were 4-times more likely (OR 4.9; 95% CI 2.4–6.7) than men to have discordant cultures. Individuals tested for gonorrhoea without symptoms were 2.3 times more likely (95% CI 1.5–3.5) than those with symptoms to be discordant. NAAT method and having one week or more between NAAT and culture testing were also indicative of an increased likelihood for discordance. Using NAAT should be based on proper clinical or epidemiological indications and, when positive, followed-up with a culture-based test within one week if possible. Routine gonorrhoea testing is not recommended in low prevalence populations. PMID:27152704

  2. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV.

    PubMed

    Nguyen Van, J C; Caméléna, F; Dahoun, M; Pilmis, B; Mizrahi, A; Lourtet, J; Behillil, S; Enouf, V; Le Monnier, A

    2016-05-01

    The rapid and accurate detection of influenza virus in respiratory specimens is required for optimal management of patients with acute respiratory infections. Because of the variability of the symptoms and the numerous other causes of influenza-like illness, the diagnosis of influenza cannot be made on the basis of clinical criteria alone. Thus, rapid influenza diagnostic tests have been developed such as the Alere i Influenza A&B isothermal nucleic acid assay. We prospectively evaluated the performance of the Alere i Influenza A&B assay in comparison with our routine Xpert Flu/RSV assay. Positive samples were subtyped according to the protocol from the National Influenza Center (Paris, France). A total of 96 respiratory nasal swab samples were analyzed: with both methods, 38 were positive and 56 were negative. Samples were prospectively collected from January 20 to April 8, 2015, from patient (86 adult and 10 pediatric patients) presenting with an influenza-like illness through the French influenza season. In comparison with the Xpert Flu/RSV assay, the overall sensitivity and specificity of the Alere i Influenza A&B assay were 95% and 100%, respectively. Our results indicate that the Alere i Influenza A&B assay has a good overall analytical performance and a high degree of concordance with the PCR-based Xpert Flu/RSV assay. The Alere i Influenza A&B isothermal nucleic acid amplification test is a powerful tool for influenza detection due to its high sensitivity and specificity as well as its ability to generate results within 15min. PMID:26899154

  3. Nucleic acid-amplification testing for hepatitis B in cornea donors.

    PubMed

    Fornés, Maria Gema; Jiménez, Maria Angustias; Eisman, Marcela; Gómez Villagrán, Jose Luis; Villalba, Rafael

    2016-06-01

    Careful donor selection and implementation of tests of appropriate sensitivity and specificity are of paramount importance for minimizing the risk of transmitting infectious diseases from donors to corneal allograft recipients. Reported cases of viral transmission with corneal grafts are very unusual. Nevertheless potential virus transmission through the engraftment cannot be ruled out. According to European Guideline 2006/17/EC, screening for antibodies for Hepatitis B core antigen (anti HBc) is mandatory, and when this test is positive, some criteria must be established before using corneas. Despite the continuous progress in screening tests, donors carrying an occult hepatitis B infection (OBI) can cause transplant-transmitted hepatitis B. To date, Nucleic Acid Testing (NAT) is not an obligatory assay in corneal tissue setting neither in our country nor in the rest of European countries. Herein, we report three cornea donors that were rejected with the diagnosis of OBI through the testing of sensitive NAT and the serological profile of Hepatitis B virus. The aim of this report is to emphasize the need to include NAT in new reviews of EU Tissues and Cells Directives in order to increase level of security in tissue donation as well as not to reject a high number of donors with isolated profile of anti HBc in geographical areas with high prevalence of Hepatitis B, that could be rejected without a true criterion of Hepatitis B infection. PMID:26685699

  4. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism. PMID:27242766

  5. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays

    PubMed Central

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S.; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E.; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D.; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA. PMID:26562415

  6. Monitoring of Chlamydia trachomatis infections after antibiotic treatment using RNA detection by nucleic acid sequence based amplification.

    PubMed Central

    Morré, S A; Sillekens, P T; Jacobs, M V; de Blok, S; Ossewaarde, J M; van Aarle, P; van Gemen, B; Walboomers, J M; Meijer, C J; van den Brule, A J

    1998-01-01

    AIM: To investigate the value of RNA detection by nucleic acid sequence based amplification (NASBA) for the monitoring of Chlamydia trachomatis infections after antibiotic treatment. METHODS: Cervical smears (n = 97) and urine specimens (n = 61) from 25 C trachomatis positive female patients were analysed for the presence of C trachomatis 16S ribosomal RNA (rRNA) by NASBA and C trachomatis plasmid DNA by the polymerase chain reaction (PCR) before and up to five weeks after antibiotic treatment. RESULTS: Chlamydia trachomatis RNA was found in all cervical smears taken before antibiotic treatment (n = 24) and in two smears taken one week after antibiotic treatment; no C trachomatis RNA was detected after two weeks or more. In contrast, C trachomatis DNA was found in all such specimens before treatment, and 21 of 25, six of 21, and five of 20 smears were found to be positive at one, two, and three weeks after treatment, respectively. After four weeks, only one of six smears was positive, and this smear had been negative in the two preceding weeks. Of the 61 urine samples investigated, C trachomatis DNA and C trachomatis RNA were found in all before treatment (n = 15), whereas one week after treatment four of 15 were C trachomatis DNA positive and C trachomatis RNA was detected in one sample only. CONCLUSIONS: These data show that RNA detection by NASBA can be used successfully to monitor C trachomatis infections after antibiotic treatment. Furthermore, it might be possible to use urine specimens as a test of cure because neither C. trachomatis DNA or RNA could be detected two weeks or more after treatment. PMID:9850338

  7. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification.

    PubMed

    Liu, Shufeng; Wei, Wenji; Wang, Yanqun; Fang, Li; Wang, Li; Li, Feng

    2016-06-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the development of isothermal and ultrasensitive electrochemical DNA biosensor is very essential for biological studies and medical diagnostics. Herein, the autonomous cascade DNA replication strategy was effectively married with the enzyme/gold nanoparticle-based post-amplification strategy to promote the detection performance toward target DNA. A hairpin DNA probe (HP) is designed that consists of an overhang at 3'-end as the recognition unit for target DNA, a recognition site for nicking endonuclease, and an alkane spacer to terminate polymerization reaction. The autonomous DNA replication-scission-displacement reaction operated by the nicking endonuclease/KF polymerase induced the autocatalytic opening of HP, which was then specifically bound by the enzyme/gold nanoparticles for further dual-signal amplification toward target-related sensing events. A low detection limit of 0.065fM with an excellent selectivity toward target DNA could be achieved. The proposed biosensor could be also easily regenerated for target detection. The developed biosensor creates an opportunity for the effective coupling of the target replication with post-amplification strategies and thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. PMID:26849348

  8. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.

    PubMed

    Schlappi, Travis S; McCalla, Stephanie E; Schoepp, Nathan G; Ismagilov, Rustem F

    2016-08-01

    Detecting nucleic acids (NAs) at zeptomolar concentrations (few molecules per milliliter) currently requires expensive equipment and lengthy processing times to isolate and concentrate the NAs into a volume that is amenable to amplification processes, such as PCR or LAMP. Shortening the time required to concentrate NAs and integrating this procedure with amplification on-device would be invaluable to a number of analytical fields, including environmental monitoring and clinical diagnostics. Microfluidic point-of-care (POC) devices have been designed to address these needs, but they are not able to detect NAs present in zeptomolar concentrations in short time frames because they require slow flow rates and/or they are unable to handle milliliter-scale volumes. In this paper, we theoretically and experimentally investigate a flow-through capture membrane that solves this problem by capturing NAs with high sensitivity in a short time period, followed by direct detection via amplification. Theoretical predictions guided the choice of physical parameters for a chitosan-coated nylon membrane; these predictions can also be applied generally to other capture situations with different requirements. The membrane is also compatible with in situ amplification, which, by eliminating an elution step enables high sensitivity and will facilitate integration of this method into sample-to-answer detection devices. We tested a wide range of combinations of sample volumes and concentrations of DNA molecules using a capture membrane with a 2 mm radius. We show that for nucleic acid detection, this approach can concentrate and detect as few as ∼10 molecules of DNA with flow rates as high as 1 mL/min, handling samples as large as 50 mL. In a specific example, this method reliably concentrated and detected ∼25 molecules of DNA from 50 mL of sample. PMID:27429181

  9. Construction of a colicin E1-R factor composite plasmid in vitro: means for amplification of deoxyribonucleic acid.

    PubMed Central

    Tanaka, T; Weisblum, B

    1975-01-01

    A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of

  10. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  11. Mixed-Dye-Based Label-Free and Sensitive Dual Fluorescence for the Product Detection of Nucleic Acid Isothermal Multiple-Self-Matching-Initiated Amplification.

    PubMed

    Ding, Xiong; Wu, Wenshuai; Zhu, Qiangyuan; Zhang, Tao; Jin, Wei; Mu, Ying

    2015-10-20

    Visual detections based on fluorescence and the color changes under natural light are two promising product detections for isothermal nucleic acid amplifications (INAAs) such as the isothermal multiple-self-matching-initiated amplification (IMSA) as point-of-care testing techniques. However, the currently used approaches have shortcomings in application. For the former, fluorescence changes recognized by naked eye may be indistinguishable because of single fluorescence emitted and strong background noise, which requires empirical preset of cutoff intensity values. For the latter, visual detection sensitivity under natural light is not comparable to that based on fluorescence. Herein, hydroxyl naphthol blue (HNB) and SYBR Green I (SG) were coupled to acquire a label-free dual fluorescence for the visual product detection of IMSA. The mixed-dye-loaded off-chip (tube-based) and on-chip (microfluidic chip-based) IMSAs for the detection of hepatitis B virus were conducted. The results demonstrated that this dual fluorescence could realize distinguishable fluorescent color changes to improve visual detection sensitivity and avoid the preset of cutoff values. Moreover, the mixed dye is stable when kept at room temperature and compatible with the IMSA's reagents without a contamination-prone step of opening tubes after amplification. Also, this coupled dye inherits the advantages of achieving color changes under natural light from HNB and real-time detection from SG. In conclusion, the mixed-dye-based dual fluorescence has a potential in the point-of-care testing application for realizing off-chip and on-chip product detection of IMSA, loop-mediated isothermal amplification (LAMP), or other INAAs. PMID:26383158

  12. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification

    PubMed Central

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5′ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5′ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5′ end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism. PMID:27242766

  13. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. PMID:26761615

  14. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  15. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.

    PubMed

    Bi, Sai; Jia, Xiaoqiang; Ye, Jiayan; Dong, Ying

    2015-09-15

    Gold nanomaterials promise a wide range of potential applications in chemical and biological sensing, imaging, and catalysis. In this paper, we demonstrate a facile method for room-temperature synthesis of gold nanostars (AuNSs) with a size of ~50 nm via seeded growth. Significantly, the AuNSs are found to have high light-scattering properties, which are successfully used as labels for sensitive and selective detection of nucleic acids and proteins by using exonuclease III (Exo III) as a biocatalyst. For DNA detection, the binding of targets to the functionalized AuNS probes leads to the Exo III-stimulated cascade recycling amplification. As a result, a large amount of AuNSs are released from magnetic nanoparticles (MNPs) into solution, providing a greatly enhanced light-scattering signal for amplified sensing process. Moreover, a binding-induced DNA three-way junction (DNA TWJ) is introduced to thrombin detection, in which the binding of two aptamers to thrombin triggers assembly of the DNA motifs and initiates the subsequent DNA strand displacement reaction (SDR) and Exo III-assisted cascade recycling amplification. The detection limits of 89 fM and 5.6 pM are achieved for DNA and thrombin, respectively, which are comparable to or even exceed that of the reported isothermal amplification methods. It is noteworthy that based on the DNA TWJ strategy the sequences are independent on target proteins. Additionally, the employment of MNPs in the assays can not only simplify the operations but also improve the detection sensitivity. Therefore, the proposed amplified light-scattering assay with high sensitivity and selectivity, acceptable accuracy, and satisfactory versatility of analytes provides various applications in bioanalysis. PMID:25950939

  16. Enzymatic amplification-free nucleic acid hybridisation sensing on nanostructured thick-film electrodes by using covalently attached methylene blue.

    PubMed

    García-González, Raquel; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2015-09-01

    Amplification-free (referring to enzymatic amplification step) detection methodologies are increasing in biosensor development due to the need of faster and simpler protocols. However, for maintaining sensitivity without this step, highly detectable molecules or very sensitive detection techniques are required. The nanostructuration of transducer surfaces with carbon nanotubes (CNTs), gold nanoparticles (AuNPs) or both in nanohybrid configurations has been employed in this work for DNA hybridisation sensing purposes. Methylene blue (MB), covalently attached to single stranded DNA, (ssDNA) was incubated with a complementary sequence immobilized on nanostructured screen-printed electrodes (AuSPEs). Although CNTs can increase notoriously the signal of the marker, adsorptive properties should also be considered when bioassays are performed because non-specific adsorption (NSA) phenomena are magnified. In this work, strategies for decreasing NSA were thoroughly evaluated for the detection of Mycoplasma pneumoniae (MP) on CNTs-nanostructured screen-printed electrodes. Among them, the employ of UV-radiation or long incubation times (72h) allowed obtaining higher signals for the complementary strand with respect to the non-complementary one. The use of CNTs/AuNPs nanohybrids, together with the use of streptavidin-biotin (ST-B) interaction allows the higher differentiation (with a 3.5 ratio) in the genosensing of M. pneumoniae. PMID:26003686

  17. Molecular diagnostics in a teacup: Non-Instrumented Nucleic Acid Amplification (NINA) for rapid, low cost detection of Salmonella enterica

    PubMed Central

    KUBOTA, Ryo; LABARRE, Paul; WEIGL, Bernhard H; LI, Yong; HAYDOCK, Paul; JENKINS, Daniel M

    2014-01-01

    We report on the use of a novel non-instrumented platform to enable a Loop Mediated isothermal Amplification (LAMP) based assay for Salmonella enterica. Heat energy is provided by addition of a small amount (<150 g) of boiling water, and the reaction temperature is regulated by storing latent energy at the melting temperature of a lipid-based engineered phase change material. Endpoint classification of the reaction is achieved without opening the reaction tube by observing the fluorescence of sequence-specific FRET-based assimilating probes with a simple handheld fluorometer. At or above 22°C ambient temperature the non-instrumented devices could maintain reactions above a threshold temperature of 61°C for over 90 min—significantly longer than the 60 min reaction time. Using the simple format, detection limits were less than 20 genome copies for reactions run at ambient temperatures ranging from 8 to 36°C. When used with a pre-enrichment step and non-instrumented DNA extraction device, trace contaminations of Salmonella in milk close to 1 CFU/mL could be reliably detected. These findings illustrate that the non- instrumented amplification approach is a simple, viable, low-cost alternative for field-based food and agricultural diagnostics or clinical applications in developing countries. PMID:25477717

  18. Comparison of an rRNA‐based and DNA‐based nucleic acid amplification test for the detection of Chlamydia trachomatis in trachoma

    PubMed Central

    Yang, Jon L; Schachter, Julius; Moncada, Jeanne; Habte, Dereje; Zerihun, Mulat; House, Jenafir I; Zhou, Zhaoxia; Hong, Kevin C; Maxey, Kathryn; Gaynor, Bruce D; Lietman, Thomas M

    2007-01-01

    Background/Aim The World Health Organisation (WHO) hopes to achieve global elimination of trachoma, still the leading cause of preventable blindness worldwide, in part through mass antibiotic treatment. DNA‐based nucleic acid amplification tests (NAATs) are currently used to evaluate the success of treatment programmes by measuring the prevalence of C trachomatis infection. Some believe that newer ribosomal RNA (rRNA)‐based tests may be much more sensitive since bacterial rRNA is present in amounts up to 10 000 times that of genomic DNA. Others believe that rRNA‐based tests are instead less sensitive but more specific, due to the presence of dead or subviable organisms that the test may not detect. This study compares an rRNA‐based test to a DNA‐based test for the detection of ocular C trachomatis infection in children living in trachoma‐endemic villages. Methods An rRNA‐based amplification test and DNA‐based polymerase chain reaction (PCR) were performed on swab specimens taken from the right upper tarsal conjunctiva of 56 children aged 0–10 years living in two villages in Amhara, Ethiopia. Results The rRNA‐based test detected ocular C trachomatis infection in 35 (63%) subjects compared with 22 (39%) detected by PCR (McNemar's test, p = 0.0002). The rRNA‐based test gave positive results for all subjects that were positive by PCR, and also detected infection in 13 (23%) additional subjects. Conclusion The rRNA‐based test appears to have significantly greater sensitivity than PCR for the detection of ocular chlamydial infection in children in trachoma‐endemic villages. Using the rRNA‐based test, we may be able to detect infection that was previously missed with PCR. Past studies using DNA‐based tests to assess prevalence of infectious trachoma following antibiotic treatment may have underestimated the true prevalence of infection. PMID:17050583

  19. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet.

    PubMed

    Liu, Meiling; Chen, Qiong; Lai, Cailang; Zhang, Youyu; Deng, Jianhui; Li, Haitao; Yao, Shouzhuo

    2013-10-15

    A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe₃O₄@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe₃O₄@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 μM, 0.5-50 μM, 1-300 μM and 0.3-250 μM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 μM with the detection limits of 1, 0.1, 0.2 and 0.05 μM (S/N=3), respectively. PMID:23651571

  20. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  1. Isothermal DNA amplification in vitro: the helicase-dependent amplification system.

    PubMed

    Jeong, Yong-Joo; Park, Kkothanahreum; Kim, Dong-Eun

    2009-10-01

    Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification. PMID:19629390

  2. Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    PubMed Central

    Gulliksen, Anja; Keegan, Helen; Martin, Cara; O'Leary, John; Solli, Lars A.; Falang, Inger Marie; Grønn, Petter; Karlgård, Aina; Mielnik, Michal M.; Johansen, Ib-Rune; Tofteberg, Terje R.; Baier, Tobias; Gransee, Rainer; Drese, Klaus; Hansen-Hagge, Thomas; Riegger, Lutz; Koltay, Peter; Zengerle, Roland; Karlsen, Frank; Ausen, Dag; Furuberg, Liv

    2012-01-01

    The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection. PMID:22235204

  3. Indole-3-acetic acid biosensor based on G-rich DNA labeled AuNPs as chemiluminescence probe coupling the DNA signal amplification

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Mei, Zhenghua; Wang, Zhouping; He, Yunhua

    2012-09-01

    A highly sensitive chemiluminescence (CL) method for detection of phytohormone indole-3-acetic acid (IAA) was developed by using G-rich DNA labeled gold nanoparticles (AuNPs) as CL probe coupling the DNA signal amplification technology. The IAA antibody was immobilized on carboxyl terminated magnetic beads (MBs). In the presence of IAA, antibody labeled AuNPs were captured by antibody functionalized MBs. The DNA on AuNPs is released by a ligand exchange process induced by the addition of DTT. The released DNA is then acted as the linker and hybridized with the capture DNA on MBs and probe DNA on AuNPs CL probe. The CL signal is obtained via the instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxyl-phenylglyoxal (TMPG), and the G-rich DNA on AuNPs CL probe. IAA can be detected in the concentration range from 0.02 ng/mL to 30 ng/mL, and the limit of detection is 0.01 ng/mL.

  4. Arabidopsis triphosphate tunnel metalloenzyme2 is a negative regulator of the salicylic acid-mediated feedback amplification loop for defense responses.

    PubMed

    Ung, Huoi; Moeder, Wolfgang; Yoshioka, Keiko

    2014-10-01

    The triphosphate tunnel metalloenzyme (TTM) superfamily represents a group of enzymes that is characterized by their ability to hydrolyze a range of tripolyphosphate substrates. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes, AtTTM1, AtTTM2, and AtTTM3. Although AtTTM3 has previously been reported to have tripolyphosphatase activity, recombinantly expressed AtTTM2 unexpectedly exhibited pyrophosphatase activity. AtTTM2 knockout mutant plants exhibit an enhanced hypersensitive response, elevated pathogen resistance against both virulent and avirulent pathogens, and elevated accumulation of salicylic acid (SA) upon infection. In addition, stronger systemic acquired resistance compared with wild-type plants was observed. These enhanced defense responses are dependent on SA, PHYTOALEXIN-DEFICIENT4, and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. Despite their enhanced pathogen resistance, ttm2 plants did not display constitutively active defense responses, suggesting that AtTTM2 is not a conventional negative regulator but a negative regulator of the amplification of defense responses. The transcriptional suppression of AtTTM2 by pathogen infection or treatment with SA or the systemic acquired resistance activator benzothiadiazole further supports this notion. Such transcriptional regulation is conserved among TTM2 orthologs in the crop plants soybean (Glycine max) and canola (Brassica napus), suggesting that TTM2 is involved in immunity in a wide variety of plant species. This indicates the possible usage of TTM2 knockout mutants for agricultural applications to generate pathogen-resistant crop plants. PMID:25185123

  5. Quantitation of HIV-1 RNA viral load using nucleic acid sequence based amplification methodology and comparison with other surrogate markers for disease progression.

    PubMed

    Sitnik, R; Pinho, J R

    1998-01-01

    In this study, HIV-1 viral blood quantitation determined by Nucleic Acid Sequence Based Amplification (NASBA) was compared with other surrogate disease progression markers (antigen p24, CD4/CD8 cell counts and beta-2 microglobulin) in 540 patients followed up at São Paulo, SP, Brazil. HIV-1 RNA detection was statistically associated with the presence of antigen p24, but the viral RNA was also detected in 68% of the antigen p24 negative samples, confirming that NASBA is much more sensitive than the determination of antigen p24. Regarding other surrogate markers, no statistically significant association with the detection of viral RNA was found. The reproducibility of this viral load assay was assessed by 14 runs of the same sample, using different reagents batches. Viral load values in this sample ranged from 5.83 to 6.27 log (CV = 36%), less than the range (0.5 log) established to the determination of significant viral load changes. PMID:9698880

  6. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay.

    PubMed

    Rutjes, Saskia A; van den Berg, Harold H J L; Lodder, Willemijn J; de Roda Husman, Ana Maria

    2006-08-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection assays for viruses in water are often repressed by inhibitory factors present in the environment, like humic acids and heavy metals. To study the effect of environmental inhibitors on the performance of nucleic acid sequence-based amplification (NASBA), we developed a real-time norovirus NASBA targeting part of the RNA-dependent RNA polymerase (RdRp) gene. Specificity of the assay was studied with 33 divergent clones that contained part of the targeted RdRp gene of noroviruses from 15 different genogroups. Viral RNA originated from commercial oysters, surface waters, and sewage treatment plants in The Netherlands. Ninety-seven percent of the clones derived from human noroviruses were detected by real-time NASBA. Two clones containing animal noroviruses were not detected by NASBA. We compared the norovirus detection by real-time NASBA with that by conventional reverse transcriptase PCR (RT-PCR) with large-volume river water samples and found that inhibitory factors of RT-PCR had little or no effect on the performance of the norovirus NASBA. This consequently resulted in a higher sensitivity of the NASBA assay than of the RT-PCR. We show that by combining an efficient RNA extraction method with real-time NASBA the sensitivity of norovirus detection in water samples increased at least 100 times, which consequently has implications for the outcome of the infectious risk assessment. PMID:16885286

  7. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S

    2010-04-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected rats at 1, 24, 48, 72, and 96 h postinfection and five uninfected rats at the end of the experiment. Total nucleic acid (TNA) was extracted on an easyMAG instrument. A primer-molecular beacon set targeting 28S rRNA was designed to detect Aspergillus spp. The results were compared to those of quantitative PCR (qPCR) (18S rDNA) and quantitative culture. The analytical sensitivity of the real-time NASBA assay was <1 CFU/assay. A linear range of detection was demonstrated over 5 log units of conidia (10 to 10(5) spores). Both NASBA and qPCR showed a progressive increase in lung tissue burdens, while the CFU counts were stable over time. The fungal burdens in BAL fluid were more variable and not indicative of a progressive infection. The results of both real-time assays correlated well for both sample types (r = 0.869 and P < 0.0001 for lung tissue, r = 0.887 and P < 0.0001 for BAL fluid). For all whole-blood specimens, NASBA identified Aspergillus-positive samples in the group from which samples were collected at 72 h postinfection (three of five samples) and the group from which samples were collected at 96 h postinfection (five of five samples), but no positive results were obtained by culture or PCR. Real-time NASBA is highly sensitive and useful for the detection of Aspergillus in an experimental model of IPA. PMID:20129972

  8. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  9. Influenza A virus drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid amplification assay in the season 2014/15.

    PubMed

    Huzly, Daniela; Korn, Klaus; Bierbaum, Sibylle; Eberle, Björn; Falcone, Valeria; Knöll, Antje; Steininger, Philipp; Panning, Marcus

    2016-09-01

    The influenza season 2014/15 was dominated by drift variants of influenza A(H3N2), which resulted in a reduced vaccine effectiveness. It was not clear if the performance of commercial nucleic-acid-based amplification (NAT) assays for the detection of influenza was affected. The purpose of this study was to perform a real-life evaluation of two commercial NAT assays. During January-April 2015, we tested a total of 665 samples from patients with influenza-like illness using the Fast Track Diagnostics Respiratory pathogens 21, a commercial multiplex kit, (cohorts 1 and 2, n = 563 patients) and the Xpert Flu/RSV XC assay (cohort 3, n = 102 patients), a single-use cartridge system. An in-house influenza real-time RT-PCR (cohort 1) and the RealStar Influenza RT-PCR 1.0 Kit (cohort 2 and 3) served as reference tests. Compared to the reference assay, an overall agreement of 95.9 % (cohort 1), 95 % (cohort 2), and 98 % (cohort 3) was achieved. A total of 24 false-negative results were observed using the Fast Track Diagnostics Respiratory pathogens 21 kit. No false-negative results occurred using the Xpert Flu/RSV XC assay. The Fast Track Diagnostics Respiratory pathogens 21 kit and the Xpert Flu/RSV XC assay had sensitivities of 90.7 % and 100 % and specificities of 100 % and 94.1 %, respectively, compared to the RealStar 1.0 kit. Upon modification of the Fast Track Diagnostics Respiratory pathogens 21 kit, the sensitivity increased to 97.3 %. Influenza virus strains circulating during the 2014/15 season reduced the detection sensitivity of a commercial NAT assay, and continuous monitoring of test performance is therefore necessary. PMID:27316440

  10. HIV Screening via Fourth-Generation Immunoassay or Nucleic Acid Amplification Test in the United States: A Cost-Effectiveness Analysis

    PubMed Central

    Long, Elisa F.

    2011-01-01

    Background At least 10% of the 56,000 annual new HIV infections in the United States are caused by individuals with acute HIV infection (AHI). It unknown whether the health benefits and costs of routine nucleic acid amplification testing (NAAT) are justified, given the availability of newer fourth-generation immunoassay tests. Methods Using a dynamic HIV transmission model instantiated with U.S. epidemiologic, demographic, and behavioral data, I estimated the number of acute infections identified, HIV infections prevented, quality-adjusted life years (QALYs) gained, and the cost-effectiveness of alternative screening strategies. I varied the target population (everyone aged 15-64, injection drug users [IDUs] and men who have sex with men [MSM], or MSM only), screening frequency (annually, or every six months), and test(s) utilized (fourth-generation immunoassay only, or immunoassay followed by pooled NAAT). Results Annual immunoassay testing of MSM reduces incidence by 9.5% and costs <$10,000 per QALY gained. Adding pooled NAAT identifies 410 AHI per year, prevents 9.6% of new cases, costs $92,000 per QALY gained, and remains <$100,000 per QALY gained in settings where undiagnosed HIV prevalence exceeds 4%. Screening IDUs and MSM annually with fourth-generation immunoassay reduces incidence by 13% with cost-effectiveness <$10,000 per QALY gained. Increasing the screening frequency to every six months reduces incidence by 11% (MSM only) or 16% (MSM and IDUs) and costs <$20,000 per QALY gained. Conclusions Pooled NAAT testing every 12 months of MSM and IDUs in the United States prevents a modest number of infections, but may be cost-effective given sufficiently high HIV prevalence levels. However, testing via fourth-generation immunoassay every six months prevents a greater number of infections, is more economically efficient, and may obviate the benefits of acute HIV screening via NAAT. PMID:22110698

  11. Evaluation of a Viral Microarray Based on Simultaneous Extraction and Amplification of Viral Nucleotide Acid for Detecting Human Herpesviruses and Enteroviruses

    PubMed Central

    Zhang, Chunxiu; Yang, Xiaomeng; Zhao, Yan; Dong, Rui; Zhou, Jiajing; Gai, Zhongtao

    2015-01-01

    In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5’-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses’ detection. PMID:25774509

  12. Diagnosis of Tuberculosis by Using a Nucleic Acid Amplification Test in an Urban Population with High HIV Prevalence in the United States

    PubMed Central

    Kobayashi, Miwako; Ray, Susan M.; Hanfelt, John; Wang, Yun F.

    2014-01-01

    Background Use of nucleic acid amplification tests (NAAT) for the diagnosis of Mycobacterium tuberculosis (TB) has been recommended on respiratory specimens submitted for acid-fast bacilli (AFB) testing. It also helps distinguish between TB and non-tuberculous mycobacteria (NTM) species in a setting where NTM rates are relatively high. The purposes of this study are to describe the trend and characteristics of all AFB smear-positive respiratory samples that underwent amplified Mycobacterium tuberculosis direct (MTD) testing, a type of NAAT, and to evaluate the clinical utility and necessity of the test for diagnosis of TB in a population with high-HIV prevalence. Methods Prospective diagnostic testing and retrospective data analyses were conducted on all AFB smear-positive respiratory samples that underwent MTD testing from 2001 to 2011 at Grady Memorial Hospital (GMH), Atlanta, USA. The test performance was compared to culture. Results A total of 2,240 AFB smear-positive specimens from 1,412 patients were tested and analyzed in the study. The proportion of specimens that were culture-positive for TB was 28.5%. Sensitivity, specificity, positive predictive value, and negative predictive value of the MTD were 99.0%, 98.0%, 95.3% and 99.6%, respectively. A downward trend was observed in the yearly numbers as well as the proportions of MTD-positive specimens during the study period (p<0.01). There were 2,027 (90.5%) specimens from patients with known HIV status, of which 70.6% was HIV positive and the majority of them (81.8%) had CD4 counts of less than 200 cells/µL. HIV-positives were more likely to have NTM compared to HIV negatives (67.7% vs. 35.4%, p<0.01). Conclusion Despite the decrease in the incidence of TB, NAAT continues to be an accurate and important diagnostic test in a population with high HIV prevalence, and it differentiates TB and NTM organisms. PMID:25340424

  13. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  14. Evaluation of the NucliSens Basic Kit for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Genital Tract Specimens Using Nucleic Acid Sequence-Based Amplification of 16S rRNA

    PubMed Central

    Mahony, J. B.; Song, X.; Chong, S.; Faught, M.; Salonga, T.; Kapala, J.

    2001-01-01

    We evaluated a new RNA amplification and detection kit, the NucliSens Basic Kit (Organon Teknika), for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae in genitourinary specimens. The Basic Kit provides an open platform for RNA amplification and detection and contains isolation reagents for nucleic acid extraction, nucleic acid sequence-based amplification (NASBA) reagents (enzymes and buffers), and a generic ruthenium-labeled probe for electrochemiluminescent (ECL) detection of amplified product. Using freshly purified and titrated stocks of C. trachomatis and N. gonorrhoeae and in vitro-generated RNA transcripts for sensitivity determinations, the Basic Kit detected 1 inclusion-forming unit of C. trachomatis, 1 CFU of N. gonorrhoeae, and 100 RNA molecules of 16S rRNA for both bacteria. The clinical performance of the Basic Kit was evaluated by testing a total of 250 specimens for N. gonorrhoeae by culture and NASBA and a total of 96 specimens for C. trachomatis by PCR and NASBA. The Basic Kit detected 139 of 142 N. gonorrhoeae culture-positive specimens and gave a negative result for 73 of 74 culture-negative specimens, for a sensitivity and specificity of 97.9 and 98.7%, respectively. For C. trachomatis, the Basic Kit detected 24 of 24 PCR-positive specimens and gave a negative result for 71 of 72 PCR-negative specimens, for a sensitivity and specificity of 100 and 98.6%, respectively. The Basic Kit also detected specimens containing both N. gonorrhoeae and C. trachomatis, using a multiplex NASBA assay using primers for both bacteria. The NucliSens Basic Kit offers a versatile platform for the development of sensitive RNA detection assays for sexually transmitted diseases. PMID:11283067

  15. Enzymatic signal amplification of molecular beacons for sensitive DNA detection

    PubMed Central

    Li, Jianwei Jeffery; Chu, Yizhuo; Lee, Benjamin Yi-Hung; Xie, Xiaoliang Sunney

    2008-01-01

    Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay. PMID:18304948

  16. Early amplification options.

    PubMed

    Gabbard, Sandra Abbott; Schryer, Jennifer

    2003-01-01

    Children with permanent hearing loss have been remediated with hearing amplification devices for decades. The influx of young infants identified with hearing loss through successful newborn hearing screening programs has established a need for amplification resources for infants within the first six months of life. For the approximately two of every 1000 infants born who are identified with bilateral hearing loss [Mehl and Thomson, 1998, Pediatrics 101, p. e4], the use of amplification is commonly the first step in treating the sequella of their loss. The use of hearing aids, combined with early intervention, has been shown to significantly improve the speech and language skills of young children with hearing loss [Yoshinaga-Itano, 2000, Seminars in Hearing 21, p. 309]. Speech and language delays have contributed to compromised academic performance of school aged children with hearing loss [Johnson et al., 1997, Educational Audiology Handbook, Singular Publishing, San Diego]. Most hard-of-hearing and deaf children use hearing aids and other assistive listening devices every day throughout their lifetime and the life expectancy of a hearing aid is only five to eight years. The current challenge for pediatric audiologists is selecting and evaluating the available amplification to provide the best options for children and their families. Amplification technology has seen an explosion in growth the past few years and the options continue to expand rapidly. This article examines currently available amplification technology and reviews the selection criteria that may be used for infants and young children. Issues such as style, type, amplification features, signal processing strategies, and verification and validation tools are also discussed. PMID:14648816

  17. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  18. Quantum Feedback Amplification

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2016-04-01

    Quantum amplification is essential for various quantum technologies such as communication and weak-signal detection. However, its practical use is still limited due to inevitable device fragility that brings about distortion in the output signal or state. This paper presents a general theory that solves this critical issue. The key idea is simple and easy to implement: just a passive feedback of the amplifier's auxiliary mode, which is usually thrown away. In fact, this scheme makes the controlled amplifier significantly robust, and furthermore it realizes the minimum-noise amplification even under realistic imperfections. Hence, the presented theory enables the quantum amplification to be implemented at a practical level. Also, a nondegenerate parametric amplifier subjected to a special detuning is proposed to show that, additionally, it has a broadband nature.

  19. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  20. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    PubMed

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation. PMID:26950646

  1. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

    PubMed Central

    Uyttendaele, M; Schukkink, R; van Gemen, B; Debevere, J

    1995-01-01

    An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples. PMID:7747955

  2. On soliton amplification

    NASA Technical Reports Server (NTRS)

    Leibovich, S.; Randall, J. D.

    1979-01-01

    The paper considers a modified Korteweg-de Vries equation that permits wave amplification or damping. A 'terminal similarity' solution is identified for large times in amplified systems. Numerical results are given which confirm that the terminal similarity solution is a valid local approximation for mu t sufficiently large and positive, even though the approximation is not uniformly valid in space.

  3. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  4. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant–Associated Fungi

    PubMed Central

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-01-01

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant–associated fungi due to the similar homologies of sequences in primer–annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3′ end of the primer–binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant–associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant–associated fungi. PMID:27600711

  5. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    PubMed

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening. PMID:27498854

  6. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  7. Gravitomagnetic amplification in cosmology

    SciTech Connect

    Tsagas, Christos G.

    2010-02-15

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.

  8. Light amplification using semiconductors

    SciTech Connect

    Dupuis, R.D.

    1987-06-01

    During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

  9. Voltage Amplification using Plasma

    SciTech Connect

    Farias, E. E.; Cavalcanti, G. H.; Santiago, M. A. M.

    2006-12-04

    The purpose of this work is to present experimental results about voltage amplification using plasma produced by a simple neon lamp, series connected with a signal generator and discrete circuit elements. The main advantage of employing plasma as an amplifier is due to its ability to drive larger power and potentially to operate in a larger frequency range compared with traditional amplifiers. Our results show that both, the voltage gain and the frequency range where the gain is bigger than one, are related to the plasma density which may be adjusted by a proper control of electrical discharge conditions. The plasma produced into the neon lamp exhibits a diode characteristic that is the principal responsible by the nonlinear plasma response. The amplification occurs when the plasma shows a negative conductance. In this regime the lamp works as an active amplifier and voltage gain higher than 18 was obtained.

  10. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    PubMed Central

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-01-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  11. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  12. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  13. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  14. Polymerase chain reaction coupling with magnetic nanoparticles-based biotin-avidin system for amplification of chemiluminescent detection signals of nucleic acid.

    PubMed

    Li, Zhiyang; He, Lei; He, Nongyue; Deng, Yan; Shi, Zhiyang; Wang, Hua; Li, Song; Liu, Hongna; Wang, Zhifei; Wang, Daxin

    2011-02-01

    A novel method was established through the detection of chemiluminescent signals of nucleic acid hybridization based on magnetic nanoparticles (MNPs) and PCR. 5' amino- modified specific probes were immobilized on the surface of silanized MNPs by Schiff reaction between amino and aldehyde group. The probes were used to capture the synthetic biotin-dUTP-labeled DNA fragments which were obtained by polymerase chain reaction (PCR). Then these complexes were bonded with streptavidin-modified alkaline phosphatase (SA-AP). Finally the chemiluminescent signals were detected by adding 3-(2'-spiroadamantane)- 4-methoxy -4-(3"-phosphoryloxy) phenyl-1, 2-dioxetane (AMPPD) which was the substrate reagent of AP. The concentration of probes which were immobilized on the surface of MNPs was studied, how to reduce the adsorption of SA-AP on the surface of MNPs was also researched. It was shown that 12.5 pmol of probes were immobilized on 1 mg of MNPs. Aldehyde-MNPs modified with probes could adsorb SA-AP, affecting the sensitivity of chemiluminescene consequently. Reduction of aldehyde group by sodium borohydride and blocking the bare position of MNPs with bovine serum albumin (BSA) could decrease the background of chemiluminescence, and this method has good specificity in detection of chloramphenicol acetyltransferase (CAT) gene. PMID:21456141

  15. Evidence of high-elevation amplification versus Arctic amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  16. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  17. Evidence of high-elevation amplification versus Arctic amplification.

    PubMed

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  18. NASBA: A detection and amplification system uniquely suited for RNA

    SciTech Connect

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal: sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.

  19. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  20. Molecular amplification assays for the detection of flaviviruses.

    PubMed

    Lanciotti, Robert S

    2003-01-01

    Over the past 10 years, a number of molecular amplification assays have been developed for the detection of flaviviruses. Most of these assays utilize the reverse transcriptase-polymerase chain reaction (RT-PCR) as the amplification format with detection by either agarose gel electrophoresis and ethidium bromide staining or hybridization with molecular probes. Recently, a modification of the standard RT-PCR using fluorescent-labeled oligonucleotide probes for detection (TaqMan) has been described. As a result, several assays for detecting flaviviruses have been developed using this approach. In addition, another amplification format, nucleic acid sequence based amplification (NASBA), has been developed and utilized for the detection of several flaviviruses. The various assay formats will be described and their utility discussed. PMID:14714430

  1. Cost-Effectiveness of Pooled Nucleic Acid Amplification Testing for Acute HIV Infection after Third-Generation HIV Antibody Screening and Rapid Testing in the United States: A Comparison of Three Public Health Settings

    PubMed Central

    Hutchinson, Angela B.; Patel, Pragna; Sansom, Stephanie L.; Farnham, Paul G.; Sullivan, Timothy J.; Bennett, Berry; Kerndt, Peter R.; Bolan, Robert K.; Heffelfinger, James D.; Prabhu, Vimalanand S.; Branson, Bernard M.

    2010-01-01

    Background Detection of acute HIV infection (AHI) with pooled nucleic acid amplification testing (NAAT) following HIV testing is feasible. However, cost-effectiveness analyses to guide policy around AHI screening are lacking; particularly after more sensitive third-generation antibody screening and rapid testing. Methods and Findings We conducted a cost-effectiveness analysis of pooled NAAT screening that assessed the prevention benefits of identification and notification of persons with AHI and cases averted compared with repeat antibody testing at different intervals. Effectiveness data were derived from a Centers for Disease Control and Prevention AHI study conducted in three settings: municipal sexually transmitted disease (STD) clinics, a community clinic serving a population of men who have sex with men, and HIV counseling and testing sites. Our analysis included a micro-costing study of NAAT and a mathematical model of HIV transmission. Cost-effectiveness ratios are reported as costs per quality-adjusted life year (QALY) gained in US dollars from the societal perspective. Sensitivity analyses were conducted on key variables, including AHI positivity rates, antibody testing frequency, symptomatic detection of AHI, and costs. Pooled NAAT for AHI screening following annual antibody testing had cost-effectiveness ratios exceeding US$200,000 per QALY gained for the municipal STD clinics and HIV counseling and testing sites and was cost saving for the community clinic. Cost-effectiveness ratios increased substantially if the antibody testing interval decreased to every 6 months and decreased to cost-saving if the testing interval increased to every 5 years. NAAT was cost saving in the community clinic in all situations. Results were particularly sensitive to AHI screening yield. Conclusions Pooled NAAT screening for AHI following negative third-generation antibody or rapid tests is not cost-effective at recommended antibody testing intervals for high-risk persons

  2. Complement amplification revisited.

    PubMed

    Lutz, Hans U; Jelezarova, Emiliana

    2006-01-01

    Complement amplification in blood takes place not only on activating surfaces, but in plasma as well, where it is maintained primarily by C3b2-IgG complexes. Regular products of C3 activation in serum, these complexes are inherently very efficient precursors of the alternative pathway C3 convertase. Moreover, they can bind properdin bivalently, thus creating preferred sites for convertase formation. C3b2-IgG complexes have a half-life that is substantially longer than that of free C3b, since both C3b molecules are partially protected from inactivation by factor H and I. These complexes are preferentially generated on certain naturally occurring and induced antibodies that exhibit a paratope-independent affinity for C3/C3b. Such antibodies are known to stimulate alternative complement pathway activation. We have assembled the evidence for the generation and the functional potency of the C3b2-IgG complexes, which have been studied during the last two decades. We illustrate their roles in immune complex solubilization, phagocytosis, immune response, and their ability to initiate devastating effects in ischemia/reperfusion and in aggravating inflammation. PMID:16023211

  3. Why ring regenerative amplification (regen)?

    NASA Astrophysics Data System (ADS)

    Yanovsky, V.; Felix, C.; Mourou, G.

    2002-06-01

    We show that ring cavity regenerative amplifiers (regens) have distinct advantages over the linear ones for applications in chirped pulse amplification. Larger energy, better contrast and better isolation from the oscillator are experimentally demonstrated.

  4. Why ring regenerative amplification (regen)?

    NASA Astrophysics Data System (ADS)

    Yanovsky, V.; Felix, C.; Mourou, G.

    We show that ring cavity regenerative amplifiers (regens) have distinct advantages over the linear ones for applications in chirped pulse amplification. Larger energy, better contrast and better isolation from the oscillator are experimentally demonstrated.

  5. [Recombinase Polymerase Amplification and its Applications in Parasite Detection].

    PubMed

    ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui

    2015-10-01

    Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection. PMID:26931046

  6. Significance of Matrix Metalloproteinase 9 Expression as Supporting Marker to Cytokeratin 19 mRNA in Sentinel Lymph Nodes in Breast Cancer Patients

    PubMed Central

    Murawski, Marek; Woźniak, Marta; Duś-Szachniewicz, Kamila; Kołodziej, Paweł; Rzeszutko, Marta; Ziółkowski, Piotr

    2016-01-01

    One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive sentinel lymph node diagnosis. The objective of this study was to evaluate the significance of matrix metalloproteinase 9 expression by immunohistochemistry as supporting marker to cytokeratin 19 mRNA in sentinel lymph nodes in breast cancer patients and to relate this expression with clinicopathological data. This study was conducted on fresh sentinel lymph nodes obtained from 40 patients with tumors classified as carcinoma of no special type. The presence of metastatic cells in the slices of lymph nodes was evaluated by immunohistochemistry using antibodies for CK19 and MMP-9. Expression of CK19 and MMP-9 in lymph nodes was also confirmed by means of Western blot analysis. Results indicated that the strongest correlation with CK19 mRNA was displayed by MMP-9, CK19 (by immunohistochemistry, IHC), and nodal metastases (p < 0.001). Higher histological grading also positively correlated with CK19 mRNA, however that correlation was less significant. Since MMP-9 shows very strong correlation with CK19 mRNA in breast carcinoma of no special type metastases, expression of MMP-9 in sentinel lymph nodes should be considered as useful method whenever OSNA analysis is not available. PMID:27110764

  7. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  8. Chromosomal destabilization during gene amplification.

    PubMed Central

    Ruiz, J C; Wahl, G M

    1990-01-01

    Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability. Images PMID:2188107

  9. Quantitative Molecular Analysis of Sentinel Lymph Node May Be Predictive of Axillary Node Status in Breast Cancer Classified by Molecular Subtypes

    PubMed Central

    Buglioni, Simonetta; Di Filippo, Franco; Terrenato, Irene; Casini, Beatrice; Gallo, Enzo; Marandino, Ferdinando; Maini, Carlo L.; Pasqualoni, Rossella; Botti, Claudio; Di Filippo, Simona; Pescarmona, Edoardo; Mottolese, Marcella

    2013-01-01

    To determine the performance of intraoperative one-step nucleic acid amplification (OSNA) assay in detecting sentinel lymph node metastases compared to postoperative histology taking into account breast cancer molecular classification and to evaluate whether the level of cytokeratin 19 mRNA copy number may be useful in predicting the likelihood of a positive axillary lymph node dissection. OSNA assay was performed in a prospective series of 903 consecutive sentinel lymph nodes from 709 breast cancer patients using 2 alternate slices of each sentinel lymph node. The remaining 2 slices were investigated by histology. Cytokeratin 19 mRNA copy number, which distinguishes negative cases (<250 copies), micrometastases (+, ≥250≤5000 copies) and macrometastases (++, >5000 copies), was compared to axillary lymph node dissection status and to the biological tumor profile. Concordance between OSNA and histopathology was 95%, specificity 95% and sensitivity 93%. Multiple Corresponce Analysis and logistic regression evidenced that positive axillary lymph node dissection was significantly associated with a higher cytokeratin 19 mRNA copy number (>5000; p<0.0001), HER2 subtype (p = 0.007) and lymphovascular invasion (p<0.0001). Conversely, breast cancer patients with cytokeratin 19 mRNA copy number <2000 mostly presented a luminal subtype and a negative axillary lymph node dissection. We confirmed that OSNA assay can provide standardized and reproducible results and that it represents a fast and quantitative tool for intraoperative evaluation of sentinel lymph node. Omission of axillary lymph node dissection could be proposed in patients presenting a sentinel lymph node with a cytokeratin 19 mRNA copy number <2000 and a Luminal tumor phenotype. PMID:23533593

  10. Feedback Amplification of Neutrophil Function.

    PubMed

    Németh, Tamás; Mócsai, Attila

    2016-06-01

    As the first line of innate immune defense, neutrophils need to mount a rapid and robust antimicrobial response. Recent studies implicate various positive feedback amplification processes in achieving that goal. Feedback amplification ensures effective migration of neutrophils in shallow chemotactic gradients, multiple waves of neutrophil recruitment to the site of inflammation, and the augmentation of various effector functions of the cells. We review here such positive feedback loops including intracellular and autocrine processes, paracrine effects mediated by lipid (LTB4), chemokine, and cytokine mediators, and bidirectional interactions with the complement system and with other immune and non-immune cells. These amplification mechanisms are not only involved in antimicrobial immunity but also contribute to neutrophil-mediated tissue damage under pathological conditions. PMID:27157638

  11. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  12. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  13. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Kattnig, Daniel R.; Evans, Emrys W.; Déjean, Victoire; Dodson, Charlotte A.; Wallace, Mark I.; MacKenzie, Stuart R.; Timmel, Christiane R.; Hore, P. J.

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.

  14. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  15. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  16. Chronic centrosome amplification without tumorigenesis

    PubMed Central

    Vitre, Benjamin; Holland, Andrew J.; Kulukian, Anita; Shoshani, Ofer; Hirai, Maretoshi; Wang, Yin; Maldonado, Marcus; Cho, Thomas; Boubaker, Jihane; Swing, Deborah A.; Tessarollo, Lino; Evans, Sylvia M.; Fuchs, Elaine; Cleveland, Don W.

    2015-01-01

    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase–mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation. PMID:26578792

  17. Isothermal amplification of insect DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about 1 hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. The power of LAMP is being used by researchers ...

  18. Isothermal Amplification of Insect DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about one hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. LAMP eliminates the need for temperature cycl...

  19. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella. PMID:25419812

  20. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  1. Sequence dependence of isothermal DNA amplification via EXPAR

    PubMed Central

    Qian, Jifeng; Ferguson, Tanya M.; Shinde, Deepali N.; Ramírez-Borrero, Alissa J.; Hintze, Arend; Adami, Christoph; Niemz, Angelika

    2012-01-01

    Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naïve Bayes classification. The methods identified well and poorly performing EXPAR templates with 67–70% sensitivity and 77–80% specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. PMID:22416064

  2. Double regenerative amplification of picosecond pulses

    NASA Astrophysics Data System (ADS)

    Bai, Zhen-ao; Chen, Li-yuan; Bai, Zhen-xu; Chen, Meng; Li, Gang

    2012-04-01

    An double Nd:YAG regenerative amplification picosecond pulse laser is demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regenerative amplification technology, using BBO crystal as PC electro-optic crystal. The laser obtained is 20.71ps pulse width at 10 KHz repetition rate, and the energy power is up to 4W which is much larger than the system without pre-amplification. This result will lay a foundation for the following amplification.

  3. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  4. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  5. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  6. Rolling circle amplification detection of RNA and DNA

    DOEpatents

    Christian, Allen T.; Pattee, Melissa S.; Attix, Cristina M.; Tucker, James D.

    2004-08-31

    Rolling circle amplification (RCA) has been useful for detecting point mutations in isolated nucleic acids, but its application in cytological preparations has been problematic. By pretreating cells with a combination of restriction enzymes and exonucleases, we demonstrate RCA in solution and in situ to detect gene copy number and single base mutations. It can also detect and quantify transcribed RNA in individual cells, making it a versatile tool for cell-based assays.

  7. PCR microfluidic devices for DNA amplification.

    PubMed

    Zhang, Chunsun; Xu, Jinliang; Ma, Wenli; Zheng, Wenling

    2006-01-01

    The miniaturization of biological and chemical analytical devices by micro-electro-mechanical-systems (MEMS) technology has posed a vital influence on such fields as medical diagnostics, microbial detection and other bio-analysis. Among many miniaturized analytical devices, the polymerase chain reaction (PCR) microchip/microdevices are studied extensively, and thus great progress has been made on aspects of on-chip micromachining (fabrication, bonding and sealing), choice of substrate materials, surface chemistry and architecture of reaction vessel, handling of necessary sample fluid, controlling of three or two-step temperature thermocycling, detection of amplified nucleic acid products, integration with other analytical functional units such as sample preparation, capillary electrophoresis (CE), DNA microarray hybridization, etc. However, little has been done on the review of above-mentioned facets of the PCR microchips/microdevices including the two formats of flow-through and stationary chamber in spite of several earlier reviews [Zorbas, H. Miniature continuous-flow polymerase chain reaction: a breakthrough? Angew Chem Int Ed 1999; 38 (8):1055-1058; Krishnan, M., Namasivayam, V., Lin, R., Pal, R., Burns, M.A. Microfabricated reaction and separation systems. Curr Opin Biotechnol 2001; 12:92-98; Schneegabeta, I., Köhler, J.M. Flow-through polymerase chain reactions in chip themocyclers. Rev Mol Biotechnol 2001; 82:101-121; deMello, A.J. DNA amplification: does 'small' really mean 'efficient'? Lab Chip 2001; 1: 24N-29N; Mariella, Jr. R. MEMS for bio-assays. Biomed Microdevices 2002; 4 (2):77-87; deMello AJ. Microfluidics: DNA amplification moves on. Nature 2003; 422:28-29; Kricka, L.J., Wilding, P. Microchip PCR. Anal BioAnal Chem 2003; 377:820-825]. In this review, we survey the advances of the above aspects among the PCR microfluidic devices in detail. Finally, we also illuminate the potential and practical applications of PCR microfluidics to some fields such

  8. Cascade DNA nanomachine and exponential amplification biosensing.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. PMID:26042874

  9. Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection

    PubMed Central

    Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  10. Simple system for isothermal DNA amplification coupled to lateral flow detection.

    PubMed

    Roskos, Kristina; Hickerson, Anna I; Lu, Hsiang-Wei; Ferguson, Tanya M; Shinde, Deepali N; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  11. Telomerase Repeated Amplification Protocol (TRAP)

    PubMed Central

    Mender, Ilgen; Shay, Jerry W.

    2016-01-01

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al., 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC- counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al., 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  12. Resonant primordial gravitational waves amplification

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Sasaki, Misao

    2016-01-01

    We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR) to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.

  13. Heralded amplification of photonic qubits.

    PubMed

    Bruno, Natalia; Pini, Vittorio; Martin, Anthony; Verma, Varun B; Nam, Sae Woo; Mirin, Richard; Lita, Adriana; Marsili, Francesco; Korzh, Boris; Bussières, Félix; Sangouard, Nicolas; Zbinden, Hugo; Gisin, Nicolas; Thew, Rob

    2016-01-11

    We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances. PMID:26832244

  14. Chemical Amplification with Encapsulated Reagents

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Koemer, Steffi; Craig, Stephen; Lin, Shirley; Rudkevich, Dmitry M.; Rebek, Julius, Jr.

    2002-01-01

    Autocatalysis and chemical amplification are characteristic properties of living systems, and they give rise to behaviors such as increased sensitivity, responsiveness, and self-replication. Here we report a synthetic system in which a unique form of compartmentalization leads to nonlinear, autocatalytic behavior. The compartment is a reversibly formed capsule in which a reagent is sequestered. Reaction products displace the reagent from the capsule into solution and the reaction rate is accelerated. The resulting self-regulation is sensitive to the highly selective molecular recognition properties of the capsule.

  15. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles.

    PubMed

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha; Almutairi, Adah

    2015-12-11

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  16. Isolation and Amplification of mRNA within a Simple Microfluidic Lab on a Chip

    PubMed Central

    Reinholt, Sarah J.; Behrent, Arne; Greene, Cassandra; Kalfe, Ayten; Baeumner, Antje J.

    2014-01-01

    The major modules for realizing molecular biological assays in a micro total analysis system (μTAS) were developed for the detection of pathogenic organisms. The specific focus was the isolation and amplification of eukaryotic messenger RNA (mRNA) within a simple, single-channel device for very low RNA concentrations that could then be integrated with detection modules. The hsp70 mRNA from Cryptosporidium parvum was used as a model analyte. Important points of study were surface chemistries within poly(methyl methacrylate) (PMMA) microfluidic channels that enabled specific and sensitive mRNA isolation and amplification reactions for very low mRNA concentrations. Optimal conditions were achieved when the channel surface was carboxylated via UV/ozone treatment followed by the immobilization of polyamidoamine (PAMAM) dendrimers on the surface, thus increasing the immobilization efficiency of the thymidine oligonucleotide, oligo(dT)25, and providing a reliable surface for the amplification reaction, importantly, without the need for blocking agents. Additional chemical modifications of the remaining active surface groups were studied to avoid non-specific capturing of nucleic acids and hindering of the mRNA amplification at low RNA concentrations. Amplification of the mRNA was accomplished using nucleic acid sequence-based amplification (NASBA), an isothermal, primer-dependent technique. Positive controls consisting of previously generated NASBA amplicons could be diluted 1015 fold and still result in successful on-chip re-amplification. Finally, the successful isolation and amplification of mRNA from as few as 30 C. parvum oocysts was demonstrated directly on-chip and compared to bench-top devices. This is the first proof of successful mRNA isolation and NASBA-based amplification of mRNA within a simple microfluidic device in relevant analytical volumes. PMID:24328414

  17. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  18. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  19. An evaluation of direct PCR amplification

    PubMed Central

    Hall, Daniel E.; Roy, Reena

    2014-01-01

    Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837

  20. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  1. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population.

    PubMed

    Ota, Kaede V; McGowan, Karin L

    2012-04-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens. PMID:22259201

  2. Clostridium difficile Testing Algorithms Using Glutamate Dehydrogenase Antigen and C. difficile Toxin Enzyme Immunoassays with C. difficile Nucleic Acid Amplification Testing Increase Diagnostic Yield in a Tertiary Pediatric Population

    PubMed Central

    McGowan, Karin L.

    2012-01-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens. PMID:22259201

  3. Chirality Amplification in Tactoids of Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Lavrentovich, Oleg

    2014-03-01

    We demonstrate an effective chirality amplification based on the long-range forces, extending over the scales of tens of micrometers, much larger than the single molecule (nanometer) scale. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) that represent water solutions of achiral disc-like molecules. Minute quantities of chiral molecules such as amino acid L-alanine and limonene added to the droplets of LCLC lead to chiral amplification characterized by an increase of optical activity by a factor of 103 - 104. This effect allows one to discriminate and detect the absolute configuration of chiral molecules in an aqueous system, thus opening new possibilities in biosensing and other biological applications.

  4. Approaches towards molecular amplification for sensing.

    PubMed

    Goggins, Sean; Frost, Christopher G

    2016-06-01

    Diagnostic assays that rely on molecular interactions have come a long way; from initial reversible detection systems towards irreversible reaction indicator-based methods. More recently, the emergence of innovative molecular amplification methodologies has revolutionised sensing, allowing diagnostic assays to achieve ultra-low limits of detection. There have been a significant number of molecular amplification approaches developed over recent years to accommodate the wide variety of analytes that require sensitive detection. To celebrate this achievement, this comprehensive critical review has been compiled to give a broad overview of the many different approaches used to attain amplification in sensing with an aim to inspire the next generation of diagnostic assays looking to achieve the ultimate detection limit. This review has been created with the focus on how each conceptually unique molecular amplification methodology achieves amplification, not just its sensitivity, while highlighting any key processes. Excluded are any references that were not found to contain an obvious molecular amplifier or amplification component, or that did not use an appropriate signal readout that could be incorporated into a sensing application. Additionally, methodologies where amplification is achieved through advances in instrumentation are also excluded. Depending upon the type of approach employed, amplification strategies are divided into four categories: target, label, signal or receptor amplification. More recent, more complex protocols combine a number of approaches and are therefore categorised by which amplification component described within was considered as the biggest advancement. The advantages and disadvantages of each methodology are discussed along with any limits of detection, if stated in the original article. Any subsequent use of the methodology within sensing or any other application is also mentioned to draw attention to its practicality. The importance of

  5. Tsunami Amplification due to Focusing

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Kanoglu, U.; Titov, V. V.; Aydin, B.; Spillane, M. C.; Synolakis, C. E.

    2012-12-01

    Tsunami runup measurements over the periphery of the Pacific Ocean after the devastating Great Japan tsunami of 11 March 2011 showed considerable variation in far-field and near-field impact. This variation of tsunami impact have been attributed to either directivity of the source or by local topographic effects. Directivity arguments alone, however, cannot explain the complexity of the radiated patterns in oceans with trenches and seamounts. Berry (2007, Proc. R. Soc. Lond. A 463, 3055-3071) discovered how such underwater features may concentrate tsunamis into cusped caustics and thus cause large local amplifications at specific focal points. Here, we examine focusing and local amplification, not by considering the effects of underwater diffractive lenses, but by considering the details of the dipole nature of the initial profile, and propose that certain regions of coastline are more at-risk, not simply because of directivity but because typical tsunami deformations create focal regions where abnormal tsunami wave height can be registered (Marchuk and Titov, 1989, Proc. IUGG/IOC International Tsunami Symposium, Novosibirsk, USSR). In this work, we present a new general analytical solution of the linear shallow-water wave equation for the propagation of a finite-crest-length source over a constant depth without any restriction on the initial profile. Unlike the analytical solution of Carrier and Yeh (2005, Comp. Mod. Eng. & Sci. 10(2), 113-121) which was restricted to initial conditions with Gaussian profiles and involved approximation, our solution is not only exact, but also general and allows the use of realistic initial waveform such as N-waves as defined by Tadepalli and Synolakis (1994, Proc. R. Soc. Lond. A 445, 99-112). We then verify our analytical solution for several typical wave profiles, both with the NOAA tsunami forecast model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng. 124(4), 157-171) which is validated and verified through

  6. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  7. Measuring the amplification of attention.

    PubMed

    Blaser, E; Sperling, G; Lu, Z L

    1999-09-28

    An ambiguous motion paradigm, in which the direction of apparent motion is determined by salience (i.e., the extent to which an area is perceived as figure versus ground), is used to assay the amplification of color by attention to color. In the red-green colored gratings used in these experiments, without attention instructions, salience depends on the chromaticity difference between colored stripes embedded in the motion sequence and the yellow background. Selective attention to red (or to green) alters the perceived direction of motion and is found to be equivalent to increasing the physical redness (or greenness) by 25-117%, depending on the observer and color. Whereas attention to a color drastically alters the salience of that color, it leaves color appearance unchanged. A computational model, which embodies separate, parallel pathways for object perception and for salience, accounts for 99% of the variance of the experimental data. PMID:10500237

  8. Mechanisms of Metal-Induced Centrosome Amplification

    PubMed Central

    Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here, we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide. PMID:21118148

  9. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  10. An integrated lateral flow assay for effective DNA amplification and detection at the point of care.

    PubMed

    Choi, Jane Ru; Hu, Jie; Gong, Yan; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-10

    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future. PMID:27010033

  11. Chemical amplification of magnetic field effects relevant to avian magnetoreception.

    PubMed

    Kattnig, Daniel R; Evans, Emrys W; Déjean, Victoire; Dodson, Charlotte A; Wallace, Mark I; Mackenzie, Stuart R; Timmel, Christiane R; Hore, P J

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. PMID:27001735

  12. Novel chemical amplification positive-resist material for EB lithography

    NASA Astrophysics Data System (ADS)

    Kihara, Naoko; Ushirogouchi, Tohru; Tada, Tsukasa; Naito, Takuya; Saito, Satoshi; Sasaki, Osamu

    1992-06-01

    This paper reports on a novel three-component chemical amplification positive resist system for EB lithography composed of a novolak resin, an acid generator, and a newly synthesized dissolution inhibitor. We synthesized a novel dissolution inhibitor named CP-TBOC (1), which contains a tert-butoxycarbonyl (t-BOC) group and a lactone ring, to obtain resist materials with high sensitivity and high contrast. The t-BOC group of this dissolution inhibitor effectively decomposed by an acid catalyzed thermal reaction as the other conventional dissolution inhibitors. In addition to this decomposition, the lactone ring of the decomposed product was spontaneously cleft in an aqueous base to generate carboxylic acid, further enhancing the solubility to alkaline developers. The subsequent cleavage in an aqueous developer was investigated by UV-visible spectroscopy. The highest EB sensitivity was obtained at a CP-TBOC concentration of approximately 4.7 X 10-4 mol/g.

  13. Efficient PCR amplification by an unnatural base pair system.

    PubMed

    Kimoto, Michiko; Kawai, Rie; Mitsui, Tsuneo; Yokoyama, Shigeyuki; Hirao, Ichiro

    2008-01-01

    Expansion of the genetic alphabet by an unnatural base pair system enables the site-specific incorporation of extra functional components into nucleic acids and proteins. In this system, PCR amplification of DNA templates containing unnatural base pairs is essential for modern biotechnology. We present a new unnatural base pair system, in which DNA duplexes containing the unnatural base pairs can be efficiently amplified by PCR. The system also provides a method for the site-specific incorporation of functional components into amplified DNA fragments by PCR, using unnatural base substrates linked with functional groups of interest. PMID:18776457

  14. Cochlear amplification, outer hair cells and prestin

    PubMed Central

    Dallos, Peter

    2008-01-01

    Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has likely co-evolved with a novel hair cell type, the outer hair cell and its constituent membrane protein, prestin. Cylindrical outer hair cells are motile and their somatic length changes are voltage driven and powered by prestin. One of the central outstanding problems in mammalian cochlear neurobiology is the relation between the two amplification processes. PMID:18809494

  15. Amplification of large artificial chromosomes.

    PubMed Central

    Smith, D R; Smyth, A P; Moir, D T

    1990-01-01

    Yeast artificial chromosome cloning is an attractive technology for genomic mapping studies because very large DNA segments can be readily propagated. However, detailed analyses often require the extensive application of blotting-hybridization techniques because artificial chromosomes are normally present at only one copy per haploid genome. We have developed a cloning vector and host strain that alleviate this problem by permitting copy number amplification of artificial chromosomes. The vector includes a conditional centromere that can be turned on or off by changing the carbon source. Strong selective pressure for extra copies of the artificial chromosome can be applied by selecting for the expression of a heterologous thymidine kinase gene. When this system was used, artificial chromosomes ranging from about 100 to 600 kilobases in size were readily amplified 10- to 20-fold. The selective conditions did not induce obvious rearrangements in any of the clones tested. Reactivation of the centromere in amplified artificial chromosome clones resulted in stable maintenance of an elevated copy number for 20 generations. Applications of copy number control to various aspects of artificial chromosome analysis are addressed. Images PMID:2236036

  16. Solid state Raman image amplification

    NASA Astrophysics Data System (ADS)

    Calmes, Lonnie K.; Murray, James T.; Austin, William L.; Powell, Richard C.

    1998-07-01

    Lite Cycles has developed a new type of eye-safe, range-gated, lidar sensing element based on Solid-state Raman Image Amplification (SSRIA) in a solid-state optical crystal. SSRIA can amplify low-level infrared images with gains greater than 106 with the addition of only quantum-limited noise. The high gains from SSRIA can compensate for low quantum efficiency detectors and can reduce the need for detector cooling. The range-gate of SSRIA is controlled by the pulsewidth of the pump laser and can be as short as 30 - 100 cm for nanosecond pulses and less than 5 mm if picosecond pulses are used. SSRIA results in higher SNR images throughout a broad range of incident light levels, in contrast to the increasing noise factor with reduced gain in image intensified CCDs. A theoretical framework for the optical resolution of SSRIA is presented and it is shown that SSRIA can produce higher resolution than ICCDs. SSRIA is also superior in rejecting unwanted sunlight background, further increasing image SNR, and can be used for real-time optical signal processing. Applications for military use include eye-safe imaging lidars that can be used for autonomous vehicle identification and targeting.

  17. Loop-mediated isothermal amplification (LAMP) for the rapid detection of Mycoplasma genitalium.

    PubMed

    Edwards, Thomas; Burke, Patricia; Smalley, Helen B; Gillies, Liz; Longhurst, Denise; Vipond, Barry; Hobbs, Glyn

    2015-09-01

    Mycoplasma genitalium is a sexually transmissible, pathogenic bacterium and a significant cause of nongonococcal urethritis in both men and women. Due to the difficulty of the culture of M. genitalium from clinical samples, the laboratory diagnosis of M. genitalium infection is almost exclusively carried out using nucleic acid amplification tests. Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification technology, utilising a set of 4 primers specific to 6 distinct regions of the target DNA sequence, in order to amplify target DNA in a highly specific and rapid manner. A LAMP assay was designed to the pdhD gene of M. genitalium, and the limit of detection of the assay was determined as 10 fg of M. genitalium genomic DNA, equating to ~16 copies of the M. genitalium genome, which was equally sensitive as a gold standard 16S rRNA polymerase chain reaction assay. PMID:26072150

  18. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  19. The Spatial Pattern of Cochlear Amplification

    PubMed Central

    Fisher, Jonathan A.N.; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C.; Hudspeth, A.J.

    2012-01-01

    SUMMARY Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces. PMID:23217746

  20. A Simple Structure for Signal Amplification

    NASA Astrophysics Data System (ADS)

    Ding, Wan-Xiang; Gu, Chang-Gui; Liang, Xiao-Ming

    2016-02-01

    It has been found that a triple-node feed-forward motif has a function of signal amplification, where two input nodes receive the external weak signal and jointly modulate the response of the third output node [Liang et al., Phys. Rev. E 88 (2013) 012910]. We here show that the signal amplification can be further enhanced by adding a link between the two input nodes in the feed-forward motif. We further reveal that the coupling strength of the link regulates the enhancement of signal amplification in the modified feed-forward motif. We finally analyze the mechanism of signal amplification of such simple structure. Supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning under Grant No. QD2015016, the National Natural Science Foundation of China under Grant Nos. 11505114 and 11305078

  1. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES - Book Chapter

    EPA Science Inventory

    This book chapter contains the following headings and subheadings: Introduction; Experimental Approach - Precautions, Template, Primers, Reaction Conditions, Enhancers, Post Amplification; Procedures - Template DNA, Basic PCR, Thermal Cycle Parameters, Enzyme Addition, Agarose Ge...

  2. Centrosome amplification and cancer: Branching out

    PubMed Central

    Godinho, Susana A

    2015-01-01

    Despite being a common feature of human cancer, the role of supernumerary centrosomes in tumourigenesis is still poorly understood. We have recently described a novel role for centrosome amplification in promoting cell invasion that could impact tumor progression.

  3. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique. PMID:27015468

  4. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  5. False-Positive Transcription-Mediated Amplification Assay Detection of West Nile Virus in Blood from a Patient with Viremia Caused by an Usutu Virus Infection▿

    PubMed Central

    Gaibani, Paolo; Pierro, Anna Maria; Cavrini, Francesca; Rossini, Giada; Landini, Maria Paola; Sambri, Vittorio

    2010-01-01

    Detection of West Nile virus (WNV) by nucleic acid amplification technology (NAAT) is used widely to screen blood and organ donations in areas where WNV is endemic. We report a false-positive result of a WNV transcription-mediated amplification assay (TMA) in a patient with viremia that was caused by Usutu virus, a mosquito-borne flavivirus. PMID:20592138

  6. Rolling circle amplification of metazoan mitochondrialgenomes

    SciTech Connect

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  7. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  8. Amplification uncertainty relation for probabilistic amplifiers

    NASA Astrophysics Data System (ADS)

    Namiki, Ryo

    2015-09-01

    Traditionally, quantum amplification limit refers to the property of inevitable noise addition on canonical variables when the field amplitude of an unknown state is linearly transformed through a quantum channel. Recent theoretical studies have determined amplification limits for cases of probabilistic quantum channels or general quantum operations by specifying a set of input states or a state ensemble. However, it remains open how much excess noise on canonical variables is unavoidable and whether there exists a fundamental trade-off relation between the canonical pair in a general amplification process. In this paper we present an uncertainty-product form of amplification limits for general quantum operations by assuming an input ensemble of Gaussian-distributed coherent states. It can be derived as a straightforward consequence of canonical uncertainty relations and retrieves basic properties of the traditional amplification limit. In addition, our amplification limit turns out to give a physical limitation on probabilistic reduction of an Einstein-Podolsky-Rosen uncertainty. In this regard, we find a condition that probabilistic amplifiers can be regarded as local filtering operations to distill entanglement. This condition establishes a clear benchmark to verify an advantage of non-Gaussian operations beyond Gaussian operations with a feasible input set of coherent states and standard homodyne measurements.

  9. Onshore seismic amplifications due to bathymetric features

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.

    2016-08-01

    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  10. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP).

    PubMed

    Chander, Yogesh; Koelbl, Jim; Puckett, Jamie; Moser, Michael J; Klingele, Audrey J; Liles, Mark R; Carrias, Abel; Mead, David A; Schoenfeld, Thomas W

    2014-01-01

    Meeting the goal of providing point of care (POC) tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol) is a thermostable viral enzyme that enables true POC use in clinics or in the field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP) for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations. Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst) and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular detection of

  11. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  12. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    PubMed

    Boyle, David S; McNerney, Ruth; Teng Low, Hwee; Leader, Brandon Troy; Pérez-Osorio, Ailyn C; Meyer, Jessica C; O'Sullivan, Denise M; Brooks, David G; Piepenburg, Olaf; Forrest, Matthew S

    2014-01-01

    Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays

  13. Remote fiber sensors and optical amplification

    NASA Astrophysics Data System (ADS)

    Pontes, M. J.; Coelho, Thiago V. N.; Carvalho, Joel P.; Santos, J. L.; Guerreiro, A.

    2013-11-01

    This work discusses remote fiber sensors enabled by optical amplification. Continuous wave numerical modeling based on the propagation of pumps and signal lasers coupled to optical fibers explores Raman amplification schemes to predict the sensor's behavior. Experimental analyses report the results to a temperature remote optical sensor with 50 km distance between the central unit and the sensor head. An electrical interrogation scheme is used due to their low cost and good time response. Different architectures in remote sensor systems are evaluated, where diffraction gratings are the sensor element. A validation of calculated results is performed by experimental analyses and, as an application, the noise generated by Raman amplification in the remote sensors systems is simulated applying such numerical modeling. The analyses of sensors systems based on diffraction gratings requires optical broadband sources to interrogate the optical sensor unit, mainly in long period gratings that shows a characteristic rejection band. Therefore, the sensor distance is limited to a few kilometers due to the attenuation in optical fibers. Additional attenuation is introduced by the sensor element. Hence, to extend the distance in the optical sensor system, the optical amplification system is needed to compensate the losses in the optical fibers. The Raman amplification technology was selected mainly due to the flexibility in the gain bandwidth. The modeling can be applied to sensor systems that monitor sites located at long distances, or in places that the access is restricted due to harsh environment conditions in such cases conventional sensors are relatively fast deteriorated.

  14. Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP)

    PubMed Central

    Rane, Tushar D.; Chen, Liben; Zec, Helena C.; Wang, Tza-Huei

    2015-01-01

    Digital nucleic acid detection is rapidly becoming a popular technique for ultra-sensitive and quantitative detection of nucleic acid molecules in a wide range of biomedical studies. Digital polymerase chain reaction (PCR) remains the most popular way of conducting digital nucleic acid detection. However, due to the need for thermocycling, digital PCR is difficult to implement in a streamlined manner on a single microfluidic device, leading to complex fragmented workflows and multiple separate devices and instruments. Loop-mediated isothermal amplification (LAMP) is an excellent isothermal alternative to PCR with potentially better specificity than PCR through the use of multiple primer sets for a nucleic acid target. Here we report a microfluidic droplet device implementing all the steps required for digital nucleic acid detection including droplet generation, incubation and in-line detection for digital LAMP. As compared to microchamber or droplet array-based digital assays, continuous flow operation of this device eliminates the constraints on the number of total reactions by the footprint of the device and the analysis throughput by the time for lengthy incubation and transfers of materials between instruments. PMID:25431886

  15. Amplification, redundancy, and quantum Chernoff information.

    PubMed

    Zwolak, Michael; Riedel, C Jess; Zurek, Wojciech H

    2014-04-11

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment. PMID:24765928

  16. Heralded photon amplification for quantum communication

    NASA Astrophysics Data System (ADS)

    Osorio, C. I.; Bruno, N.; Sangouard, N.; Zbinden, H.; Gisin, N.; Thew, R. T.

    2012-08-01

    Heralded noiseless amplification based on single-photon sources and linear optics is ideally suited for long-distance quantum communication tasks based on discrete variables. We experimentally demonstrate such an amplifier, operating at telecommunication wavelengths. Coherent amplification is performed with a gain of G=1.98±0.20 for a state with a maximum expected gain G=2. We also demonstrate that there is no need for a stable phase reference between the initial signal state and the local auxiliary photons used by the amplifier. We discuss these results in the context of experimental device-independent quantum key distribution based on heralded qubit amplification, and we highlight several key challenges for its realization.

  17. Time varying arctic climate change amplification

    SciTech Connect

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  18. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  19. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    PubMed

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics. PMID:26492469

  20. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    PubMed Central

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  1. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  2. Loop-mediated amplification accelerated by stem primers.

    PubMed

    Gandelman, Olga; Jackson, Rebecca; Kiddle, Guy; Tisi, Laurence

    2011-01-01

    Isothermal nucleic acid amplifications (iNAATs) have become an important alternative to PCR for in vitro molecular diagnostics in all fields. Amongst iNAATs Loop-mediated amplification (LAMP) has gained much attention over the last decade because of the simplicity of hardware requirements. LAMP demonstrates performance equivalent to that of PCR, but its application has been limited by the challenging primer design. The design of six primers in LAMP requires a selection of eight priming sites with significant restrictions imposed on their respective positioning and orientation. In order to relieve primer design constraints we propose an alternative approach which uses Stem primers instead of Loop primers and demonstrate the application of STEM-LAMP in assaying for Clostridium difficile, Listeria monocytogenes and HIV. Stem primers used in LAMP in combination with loop-generating and displacement primers gave significant benefits in speed and sensitivity, similar to those offered by Loop primers, while offering additional options of forward and reverse orientations, multiplexing, use in conjunction with Loop primers or even omission of one or two displacement primers, where necessary. Stem primers represent a valuable alternative to Loop primers and an additional tool for IVD assay development by offering more choices for primer design at the same time increasing assay speed, sensitivity, and reproducibility. PMID:22272122

  3. Social amplification of risk: a conceptual framework

    SciTech Connect

    Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S.

    1988-06-01

    One of the most perplexing problems in risk analysis is why some relatively minor risks or risk events, as assessed by technical experts, often elicit strong public concerns and result in substantial impacts upon society and economy. This article sets forth a conceptual framework that seeks to link systematically the technical assessment of risk with psychological, sociological, and cultural perspectives of risk perception and risk-related behavior. The main thesis is that hazards interact with psychological, social, institutional, and cultural processes in ways that may amplify or attenuate public responses to the risk or risk event. A structural description of the social amplification of risk is now possible. Amplification occurs at two stages: in the transfer of information about the risk, and in the response mechanisms of society. Signals about risk are processed by individual and social amplification stations, including the scientist who communicates the risk assessment, the news media, cultural groups, interpersonal networks, and others. Key steps of amplifications can be identified at each stage. The amplified risk leads to behavioral responses, which, in turn, result in secondary impacts. Models are presented that portray the elements and linkages in the proposed conceptual framework.

  4. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  5. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  6. Quantum Amplification by Superradiant Emission of Radiation

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly A.; Yuan, Luqi; Scully, Marlan O.

    2013-10-01

    A laser generates light through stimulated emission of radiation and requires population inversion. Quantum interference can yield lasing without inversion. However, such phase-sensitive quantum amplification still requires some atomic population in the excited state. Here, we present a new kind of quantum amplifier based on collective superradiant emission which does not need any population in the excited state. We show that parametric resonance between the driving (e.g., infrared) field and collective superradiant oscillations of the atomic polarization can yield light amplification at high (e.g., XUV) frequencies. To achieve gain, one must suppress a time-dependent Stark shift caused by the driving field. The resulting superradiant amplifier is many orders of magnitude more efficient than the usual nonlinear multiphoton excitation and holds promise for a new kind of generator of high-frequency coherent radiation. In addition to a detailed analytical analysis, confirmed by numerical simulations, we provide a physically appealing explanation of the quantum amplification by superradiant emission of radiation (QASER) operation in terms of coupled classical oscillators. We also present an experiment that demonstrates the QASER amplification mechanism in an electronic circuit, which, to the best of our knowledge, is the first experimental demonstration of the difference combination resonance.

  7. Detection of Cochlear Amplification and Its Activation

    PubMed Central

    Dong, Wei; Olson, Elizabeth S.

    2013-01-01

    The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source. PMID:23972858

  8. Desert Amplification in a Warming Climate.

    PubMed

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  9. Shock wave amplification by fabric materials

    NASA Astrophysics Data System (ADS)

    Thom, C. G.; Cronin, D. S.

    2009-04-01

    It has been shown that, when exposed to air shock waves, soft materials such as fabrics can lead to amplification of the peak pressure measured on a reflecting surface behind the fabric. This occurs for a wide range of fabric configurations, including those used in soft-ballistic protection. The goal of this study was to validate a numerical model to develop an improved understanding of this phenomenon and investigate different fabric parameters, including density, permeability and standoff, and their influence on blast amplification. The investigation of fabric parameters was carried out using numerical simulations in an explicit finite element code with coupled fluid-structure interaction. The benefit of this method was the ability to isolate individual parameters. The model predicted similar trends to existing experimental data, though the numerically predicted peak pressures were consistently higher than the experimental values. The parametric study showed that low permeability fabrics result in the highest pressure amplifications. At areal densities on the order 100 g/m2, typical of single layer fabrics, amplification also increased with areal density for low permeability materials.

  10. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  11. Rapid microfluidic thermal cycler for nucleic acid amplification

    SciTech Connect

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  12. Adapting Enzyme-Free DNA Circuits to the Detection of Loop-Mediated Isothermal Amplification Reactions

    PubMed Central

    Li, Bingling; Chen, Xi; Ellington, Andrew D.

    2012-01-01

    Loop-mediated isothermal amplification of DNA (LAMP) is a powerful isothermal nucleic acid amplification technique that can accumulate ~109 copies from less than 10 copies of input template within an hour or two. Unfortunately, while the amplification reactions are extremely powerful, the quantitative detection of LAMP products is still analytically difficult. In this article, in order to both improve the specificity of LAMP detection and to make direct readout of LAMP amplification simpler and much more reliable, we have developed a non-enzymatic nucleic acid circuit (catalyzed hairpin assembly, CHA) that can both amplify and integrate the specific sequence signals present in LAMP amplicons. Through a hairpin acceptor, one of the four loop products amplified from the LAMP is transduced to an active catalyst ssDNA which can in turn trigger a CHA reaction. After CHA detection, even less than 10 molecules/μL model templates (M13mp18) can produce significant signal, and both non-specific template and parasitic amplicons cannot bring interference at all. More importantly, to further enhance the specificity, we have designed a dual-CHA circuit that only gave positive responses in presence of two LAMP loops. The AND-GATE detector will act as a simultaneous, specific readout of the LAMP product, rather than of competing and parasitic amplicons. PMID:22947054

  13. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay. PMID:25981257

  14. Rise of chemical amplification resists from laboratory curiosity to paradigm enabling Moore's Law

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi

    2008-03-01

    The concept of chemical amplification resists was proposed from IBM Research about 25 years ago. Although initially considered laboratory curiosity even within IBM, the tBOC resist based on acid-catalyzed deprotection was employed in a negative mode in mass production of 1 Mbit DRAMs by deep UV lithography in IBM in the mid 80's. Development of positive 248 nm resists faced a devastating postexposure delay problem, which threatened the future of chemical amplification resists. Tracing the cause to contamination of the resist film surface with airborne basic substances resulted in development of environmentally stable resist systems, which cemented the industry-wide acceptance of chemical amplification resists, enabling the semiconductor industry to follow the Moore's law. The migration from 248 to 193 nm necessitated abandonment of the etch-resistant but absorbing phenolic structure and introduction of alicyclic structures for transparency and etch resistance. Several platforms were developed, including polymethacrylates, all-norbornene systems, cycloolefin-maleic anhydride co- and terpolymers (COMA), and vinyl ether-maleic anhydride (VEMA) systems. Replacement of phenol with carboxylic acid for transparency and aqueous base development resulted in swelling. Lactones were incorporated to increase the polarity of hydrophobic alicyclic polymers. Hexafluoroalcohol was introduced to replace carboxylic acid and became employed ubiquitously in 157 nm resists, for transparency and base development. Although 157 nm lithography has been abandoned, the fluoroalcohol group has been heavily utilized in dry and wet 193 nm resists and immersion topcoats, and as additives for surface segregation. The chemical amplification resists initially developed for 1 μm patterning can now print <30 nm features. The question is how far chemical amplification resists can go in terms of resolution, maintaining sensitivity (or even increasing the sensitivity) while improving line edge

  15. Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1

    PubMed Central

    Singleton, Jered; Osborn, Jennifer L.; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens. PMID:25426953

  16. Multiplex Strand Invasion Based Amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae.

    PubMed

    Eboigbodin, Kevin E; Hoser, Mark J

    2016-01-01

    Nucleic acid amplification tests have become a common method for diagnosis of STIs due to their improved sensitivity over immunoassays and traditional culture-based methods. Isothermal nucleic acid amplification methods offer significant advantages over polymerase chain reaction (PCR) because they do not require sophisticated instruments needed for thermal cycling of PCR. We recently reported a novel isothermal nucleic acid amplification method, Strand Invasion-Based Amplification (SIBA), which exhibited high analytical sensitivity and specificity for amplification of DNA. However, because the reactions were detected using an intercalating dye, this method was only suitable for amplifying a single genomic target. Here, we report the development of multiplexed SIBA (mSIBA) that allows simultaneous detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and an internal control in the same reaction tube. SIBA is compatible with probes, allowing the detection of multiple DNA targets in the same reaction tube. The IC was developed to assess the quality of the isolated DNA and the integrity of the enzyme system, as well as to test oligonucleotides. The mSIBA assay retained high analytical sensitivity and specificity for the detection of CT and NG. The development of mSIBA enables rapid screening for CT and NG within point-of-care or central laboratory settings. PMID:26837460

  17. Multiplex Strand Invasion Based Amplification (mSIBA) assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae

    PubMed Central

    Eboigbodin, Kevin E.; Hoser, Mark J.

    2016-01-01

    Nucleic acid amplification tests have become a common method for diagnosis of STIs due to their improved sensitivity over immunoassays and traditional culture-based methods. Isothermal nucleic acid amplification methods offer significant advantages over polymerase chain reaction (PCR) because they do not require sophisticated instruments needed for thermal cycling of PCR. We recently reported a novel isothermal nucleic acid amplification method, Strand Invasion-Based Amplification (SIBA), which exhibited high analytical sensitivity and specificity for amplification of DNA. However, because the reactions were detected using an intercalating dye, this method was only suitable for amplifying a single genomic target. Here, we report the development of multiplexed SIBA (mSIBA) that allows simultaneous detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and an internal control in the same reaction tube. SIBA is compatible with probes, allowing the detection of multiple DNA targets in the same reaction tube. The IC was developed to assess the quality of the isolated DNA and the integrity of the enzyme system, as well as to test oligonucleotides. The mSIBA assay retained high analytical sensitivity and specificity for the detection of CT and NG. The development of mSIBA enables rapid screening for CT and NG within point-of-care or central laboratory settings. PMID:26837460

  18. Post-Fragmentation Whole Genome Amplification-Based Method

    NASA Technical Reports Server (NTRS)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have

  19. AFB (Acid-Fast Bacillus) Smear and Culture

    MedlinePlus

    ... Mycobacteria Smear; Mycobacteria Culture; TB NAAT Formal name: Acid-Fast Bacillus Smear and Culture and Sensitivity; Mycobacteria tuberculosis Nucleic Acid Amplification Test Related tests: TB Screening Tests ; Bacterial ...

  20. Amplification effects in optomechanics via weak measurements

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Tao; Song, He-Shan

    2014-07-01

    We revisit the scheme of single-photon weak-coupling optomechanics using postselection, proposed by Pepper, Ghobadi, Jeffrey, Simon, and Bouwmeester [Phys. Rev. Lett. 109, 023601 (2012), 10.1103/PhysRevLett.109.023601], by analyzing the exact solution of the dynamical evolution. Positive and negative amplification effects of the displacement of the mirror's position can be generated when the Kerr phase is considered. This effect occurs when the postselected state of the photon is orthogonal to the initial state, which cannot be explained by the usual weak measurement results. The amplification effect can be further modulated by a phase shifter, and the maximal displacement state can appear within a short evolution time.

  1. Flexible operability and amplification of gray pulses.

    PubMed

    Li, Xingliang; Zhang, Shumin; Han, Mengmeng; Zhang, Huaxing; Wen, Fang; Yang, Zhenjun

    2014-07-15

    We have investigated experimentally the flexible production and amplification of gray pulses for the first time to our knowledge. Switchable wavelengths, tunable pulse-widths, and adjustable contrasts have all been obtained in a fiber laser. Amplification of gray pulses was also experimentally investigated in detail. The contrast of the pulses could also be increased in an amplifier. The robust stability that results from the interactions between adjacent harmonic mode locking counterparts of gray pulses was found to last for up to ten hours. To the best of our knowledge, the gray pulses trains we have generated are the most stable achieved to date in an all-fiber laser system. This finding can be used as a guide for the establishment of robust gray pulses as laser sources. PMID:25121665

  2. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems. PMID:24873435

  3. Thermoelectric amplification of phonons in graphene

    NASA Astrophysics Data System (ADS)

    Dompreh, K. A.; Mensah, N. G.; Mensah, S. Y.; Fosuhene, S. K.

    2016-06-01

    Amplification of acoustic in-plane phonons due to an external temperature gradient (∇T) in single-layer graphene (SLG) was studied theoretically. The threshold temperature gradient (∇ T ) 0 g and the threshold voltage (V T ) 0 g in SLG were evaluated. For T = 77 K , the calculated value for (∇ T ) 0 g = 746.8 K / cm and (V T ) 0 g = 6.6 mV . The calculation was done in the hypersound regime. Further, the dependence of the normalized amplification ( Γ / Γ 0 ) on the frequency ω q and ∇ T / T were evaluated numerically and presented graphically. The calculated threshold temperature gradient (V T ) 0 g for SLG was higher than that obtained for homogeneous semiconductors (n-InSb) (∇ T ) 0 hom ≈ 10 3 K / cm , superlattices (∇ T ) 0 S L ≈ 384 K / cm , and cylindrical quantum wire (∇ T ) 0 c q w ≈ 10 2 K / cm . This makes SLG a much better material for thermoelectric phonon amplification.

  4. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-01

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration. PMID:24921669

  5. Colossal magnetoelectric effect induced by parametric amplification

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Geng, Yunlong; Takeuchi, Ichiro

    2015-11-01

    We describe the use of parametric amplification to substantially increase the magnetoelectric (ME) coefficient of multiferroic cantilevers. Parametric amplification has been widely used in sensors and actuators based on optical, electronic, and mechanical resonators to increase transducer gain. In our system, a microfabricated mechanical cantilever with a magnetostrictive layer is driven at its fundamental resonance frequency by an AC magnetic field. The resulting actuation of the cantilever at the resonance frequency is detected by measuring the voltage across a piezoelectric layer in the same cantilever. Concurrently, the spring constant of the cantilever is modulated at twice the resonance frequency by applying an AC voltage across the piezoelectric layer. The spring constant modulation results in parametric amplification of the motion of the cantilever, yielding a gain in the ME coefficient. Using this method, the ME coefficient was amplified from 33 V/(cm Oe) to 2.0 MV/(cm Oe), an increase of over 4 orders of magnitude. This boost in the ME coefficient directly resulted in an enhancement of the magnetic field sensitivity of the device from 6.0 nT /√{Hz } to 1.0 nT /√{Hz } . The enhancement in the ME coefficient and magnetic field sensitivity demonstrated here may be beneficial for a variety actuators and sensors based on resonant multiferroic devices.

  6. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers.

    PubMed

    Du, Yan; Hughes, Randall A; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D; Li, Bingling

    2015-01-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device. PMID:26050646

  7. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    NASA Astrophysics Data System (ADS)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  8. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    PubMed Central

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-01-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20–100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device. PMID:26050646

  9. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  10. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform

    PubMed Central

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  11. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    PubMed

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  12. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles.

    PubMed

    Jin, Mingliang; Liu, Xia; van den Berg, Albert; Zhou, Guofu; Shui, Lingling

    2016-08-19

    Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10(-18) mol l(-1) for t-DNA has been achieved. PMID:27378514

  13. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jin, Mingliang; Liu, Xia; van den Berg, Albert; Zhou, Guofu; Shui, Lingling

    2016-08-01

    Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10‑18 mol l‑1 for t-DNA has been achieved.

  14. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification.

    PubMed

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-01-01

    In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM) due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification. PMID:26295049

  15. Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface

    NASA Astrophysics Data System (ADS)

    Yun, Yongju; Gellman, Andrew J.

    2015-06-01

    The homochirality of biomolecules is a signature of life on Earth and has significant implications in, for example, the production of pharmaceutical compounds. It has been suggested that biomolecular homochirality may have arisen from the amplification of a spontaneously formed small enantiomeric excess (e.e.). Many minerals exhibit naturally chiral surfaces and so adsorption has been proposed as one possible mechanism for such an amplification of e.e. Here we show that when gas-phase mixtures of D- and L-aspartic acid are exposed to an achiral Cu(111) surface, a small e.e. in the gas phase, e.e.g, leads to an amplification of the e.e. on the surface, e.e.s, under equilibrium conditions. Adsorption-induced amplification of e.e. does not require a chiral surface. The dependence of e.e.s on e.e.g has been modelled successfully using a Langmuir-like adsorption isotherm that incorporates the formation of homochiral adsorbate clusters on the surface.

  16. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme.

    PubMed

    Tang, Longhua; Liu, Yang; Ali, Md Monsur; Kang, Dong Ku; Zhao, Weian; Li, Jinghong

    2012-06-01

    Rapid detection of ultralow amount of biomarkers in a biologically complex mixture remains a major challenge. Herein, we report a novel aptamer-based protein detection assay that integrates two signal amplification processes, namely, polymerase-mediated rolling-circle amplification (RCA) and DNA enzyme-catalyzed colorimetric reaction. The target biomarker is captured in a sandwich assay by primary aptamer-functionalized microbeads (MBs) and a secondary aptamer that is connected to a RCA primer/circular template complex. RCA reaction, which amplifies the single biomarker binding events by a factor of hundreds to thousands (the first amplification) produces a long DNA molecule containing multiple DNAzyme units. The peroxidase-like DNAzyme catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (the second amplification), which generates a blue-green colorimetric signal. This new biosensing platform permits the ultrasensitive, label-free, colorimetric detection of biomarker in real time. Using platelet-derived growth factor B-chain (PDGF-BB) as a model system, we demonstrated that our assay can detect a protein marker specifically in a serum-containing medium, at a concentration as low as 0.2 pg/mL in ∼2 h, which rivals traditional assays such as ELISA. We anticipate this simple methodology for biomarker detection can find utility in point-of-care applications. PMID:22533853

  17. Chirality amplification and detection by tactoids of lyotropic chromonic liquid crystals.

    PubMed

    Peng, Chenhui; Lavrentovich, Oleg D

    2015-10-01

    Detection of chiral molecules requires amplification of chirality to measurable levels. Typically, amplification mechanisms are considered at the microscopic scales of individual molecules and their aggregates. Here we demonstrate chirality amplification and visualization of structural handedness in water solutions of organic molecules that extends over the scale of many micrometers. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) formed in water solutions of achiral disc-like molecules. The nematic LCLC coexists with its isotropic counterpart, forming elongated tactoids; the spatial confinement causes a structural twist even when the material is nonchiral. Minute quantities of chiral molecules such as the amino acid l-alanine and limonene transform the racemic array of left- and right-twisted tactoids into a homochiral set. The left and right chiral enantiomers are readily distinguished from each other as the induced structural handedness is visualized through a simple polarizing microscope observation. The effect is important for developing our understanding of chirality amplification mechanisms; it also might open up new possibilities in biosensing. PMID:26238525

  18. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases

    PubMed Central

    Liu, Changchun; Geva, Eran; Mauk, Michael; Qiu, Xianbo; Abrams, William R.; Malamud, Daniel; Curtis, Kelly; Owen, S. Michele; Bau, Haim H.

    2015-01-01

    A simple, point of care, inexpensive, disposable cassette for the detection of nucleic acids extracted from pathogens was designed, constructed, and tested. The cassette utilizes a single reaction chamber for isothermal amplification of nucleic acids. The chamber is equipped with an integrated, flow-through, Flinders Technology Associates (Whatman FTA®) membrane for the isolation, concentration, and purification of DNA and/or RNA. The nucleic acids captured by the membrane are used directly as templates for amplification without elution, thus simplifying the cassette’s flow control. The FTA membrane also serves another critical role—enabling the removal of inhibitors that dramatically reduce detection sensitivity. Thermal control is provided with a thin film heater external to the cassette. The amplification process was monitored in real time with a portable, compact fluorescent reader. The utility of the integrated, single-chamber cassette was demonstrated by detecting the presence of HIV-1 in oral fluids. The HIV RNA was reverse transcribed and subjected to loop-mediated, isothermal amplification (LAMP). A detection limit of less than 10 HIV particles was demonstrated. The cassette is particularly suitable for resource poor regions, where funds and trained personnel are in short supply. The cassette can be readily modified to detect nucleic acids associated with other pathogens borne in saliva, urine, and other body fluids as well as in water and food. PMID:21455542

  19. On the role of temperature feedbacks for Arctic amplification

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Mauritsen, Thorsten

    2013-04-01

    The amplification of global climate changes at the poles is a well-known feature of the climate system mentioned already by Arrhenius (1896). It has been linked to the surface-albedo feedback, changes in atmospheric and oceanic heat convergence, water vapour and cloud feedbacks and the albedo effect of black carbon on snow (Serreze and Barry, 2011). We here focus on the role of temperature feedbacks, which have received rather little attention in recent debates. The basic temperature feedback is the Planck feedback or the increase in the Earth's blackbody radiation due to a uniform temperature increase. Since the blackbody radiation scales with the fourth power of temperature, stronger warming is necessary in cold regions to balance a globally uniform radiative forcing. The second temperature feedback is caused by changes in the vertical atmospheric temperature structure: In the Tropics, deep convection leads to warming aloft being larger than at the surface, which causes a greater increase in outgoing longwave radiation compared a vertically uniform forcing and thus constitutes a negative feedback mechanism. In the Arctic, where warming is amplified at the surface, the lapse-rate feedback is positive (Wetherald and Manabe, 1975). We use CMIP5 model output and radiative Kernels to investigate the zonal distribution of temperature feedbacks. Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground Philos. Mag. J. Sci., 5, pp. 237-276 Serreze, M.C. and Barry, R.G. (2011) . Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77(1-2), pp. 85-96 Wetherald, R. and Manabe, S. (1975). The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 23 pp 2044-2059

  20. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  1. Amplification of human papillomavirus DNA sequences by using conserved primers.

    PubMed Central

    Gregoire, L; Arella, M; Campione-Piccardo, J; Lancaster, W D

    1989-01-01

    The polymerase chain reaction has potential for use in the detection of small amounts of human papillomavirus (HPV) viral nucleic acids present in clinical specimens. However, new HPV types for which no probes exist would remain undetected by using type-specific primers for the polymerase chain reaction before hybridization. Primers corresponding to highly conserved HPV sequences may be useful for detecting low amounts of known HPV DNA as well as new HPV types. Here we analyze a pair of primers derived from conserved sequences within the E1 open reading frame for HPV sequence amplification by using the polymerase chain reaction. The longest perfect homology among HPV sequences is a 12-mer within the first exon of E1M. A region of conserved amino acids coded by the E1 open reading frame allowed the detection of another highly conserved region about 850 base pairs downstream. Two 21-mers derived from these conserved regions were used to amplify sequences from all HPV DNAs used as templates. The amplified DNA was shown to be specific for HPV sequences within the E1 open reading frame. DNA from HPVs whose sequences were not available were amplified by using these two primers. HPV DNA sequences in clinical specimens could also be amplified with the primers. Images PMID:2556429

  2. A phaseguided passive batch microfluidic mixing chamber for isothermal amplification.

    PubMed

    Hakenberg, Sydney; Hügle, Matthias; Weidmann, Manfred; Hufert, Frank; Dame, Gregory; Urban, Gerald A

    2012-11-01

    With a view to developing a rapid pathogen detection system utilizing isothermal nucleic acid amplification, the necessary micro-mixing step is innovatively implemented on a chip. Passive laminar flow mixing of two 6.5 μl batches differing in viscosity is performed within a microfluidic chamber. This is achieved with a novel chip space-saving phaseguide design which allows, for the first time, the complete integration of a passive mixing structure into a target chamber. Sequential filling of batches prior to mixing is demonstrated. Simulation predicts a reduction of diffusive mixing time from hours down to one minute. A simple and low-cost fabrication method is used which combines dry film resist technology and direct wafer bonding. Finally, an isothermal nucleic acid detection assay is successfully implemented where fluorescence results are measured directly from the chip after a one minute mixing sequence. In combination with our previous work, this opens up the way towards a fully integrated pathogen detection system in a lab-on-a-chip format. PMID:22952055

  3. Social amplification of risk: An empirical study

    SciTech Connect

    Burns, W.; Slovic, P. ) Kasperson, R.; Kasperson, J.; Renn, O.; Emani, S. )

    1990-09-01

    The social amplification of risk is a theoretical framework that addresses an important deficiency of formal risk assessment methods and procedures. Typically assessments of risk from technological mishaps have been based upon the expected number of people who could be killed or injured or the amount of property that might be damaged. The diverse and consequential impacts that followed in the aftermath of the Three Mile Island accident make it clear that risk assessments that exclude the role of public perceptions of risk will greatly underestimate the potential costs of certain types of hazards. The accident at Three Mile Island produced no direct fatalities and few, if any, expected deaths due to cancer, yet few other accidents in history have had such costly societal impacts. The experience of amplified impacts argues for the development of a broadened theoretical and methodological perspective capable of integrating technical assessment of risk with public perceptions. This report presents the results to date in an ongoing research effort to better understand the complex processes by which adverse events produce impacts. In particular this research attempts to construct a framework that can account for those events that have produced, or are capable of producing, greater societal impacts than would be forecast by traditional risk assessment methods. This study demonstrates that the social amplification of risk involves interactions between sophisticated technological hazards, public and private institutions, and subtle individual and public perceptions and behaviors. These factors, and the variables underlying the intricate processes of social amplification that occur in modern society, are not fully defined and clarified in this report. 19 refs., 9 figs., 10 tabs.

  4. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  5. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  6. Raman Amplification in Plasma: Thermal Effects

    SciTech Connect

    Farmer, John; Ersfeld, Bernhard; Jaroszynski, Dino

    2009-01-22

    The impact of thermal effects on Raman amplification in plasma is investigated theoretically. It is shown that damping and the shift in plasma resonance at finite temperature can alter the evolution of the amplified pulse and lead to pulse compression which is not predicted by the cold plasma model. Although thermal effects can lead to a reduction in the efficiency of the interaction, this can be ameliorated by using a chirped pump. In this case thermal effects can be beneficial and suppress the development of the train of pulses that develops behind the amplified pulse, as observed in the cold plasma model.

  7. Internal entanglement amplification by external interactions

    SciTech Connect

    Peskin, Uri; Huang Zhen; Kais, Sabre

    2007-07-15

    We propose a scheme to control the level of entanglement between two fixed spin-1/2 systems by interaction with a third particle. For specific designs, entanglement is shown to be 'pumped' into the system from the surroundings even when the spin-spin interaction within the system is small or nonexistent. The effect of the external particle on the system is introduced by including a dynamic spinor in the Hamiltonian. Controlled amplification of the internal entanglement to its maximum value is demonstrated. The possibility of entangling noninteracting spins in a stationary state is also demonstrated by coupling each one of them to a flying qubit in a quantum wire.

  8. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  9. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  10. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging.

    PubMed

    Cheng, Wei; Yan, Feng; Ding, Lin; Ju, Huangxian; Yin, Yibing

    2010-04-15

    A cascade signal amplification strategy was proposed for detection of protein target at ultralow concentration by combining the rolling circle amplification (RCA) technique with oligonucleotide functionalized quantum dots (QDs), multiplex binding of the biotin-strepavidin system, and anodic stripping voltammetric detection. The RCA product containing tandem-repeat sequences could serve as excellent template for periodic assembly of QDs, which presented per protein recognition event to numerous quantum dot tags for electrochemical readout. Both the RCA and the multiplex binding system showed remarkable amplification efficiency, very little nonspecific adsorption, and low background signal. Using human vascular endothelial growth factor as a model protein, the designed strategy could quantitatively detect protein down to 16 molecules in a 100 microL sample with a linear calibration range from 1 aM to 1 pM and was amenable to quantification of protein target in complex biological matrixes. The proposed cascade signal amplification strategy would become a powerful tool for proteomics research and clinical diagnostics. PMID:20345087

  11. Explanatory model for sound amplification in a stethoscope

    NASA Astrophysics Data System (ADS)

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with opportunities to not only better understand the amplification mechanism of a stethoscope, but also to strengthen their understanding of sound, pressure, waves, resonance modes, etc.

  12. Quantum noise in parametric amplification under phase-mismatched conditions

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2016-05-01

    This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The equations of motion of the quantum-mechanical field operators, which include phase mismatch under unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive amplification.

  13. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  14. Improved PCR Amplification of Broad Spectrum GC DNA Templates

    PubMed Central

    Guido, Nicholas; Starostina, Elena; Leake, Devin; Saaem, Ishtiaq

    2016-01-01

    Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10–90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content. PMID:27271574

  15. Brillouin amplification and processing of the Rayleigh scattered signal.

    PubMed

    Mermelstein, David; Shacham, Eliashiv; Biton, Moran; Sternklar, Shmuel

    2015-07-15

    Brillouin amplification of Rayleigh scattering is demonstrated using two different configurations. In the first technique, the Rayleigh scattering and amplification occurs simultaneously in the same fiber. In the second technique, the amplification takes place in a second fiber. The differences between the two techniques are delineated. Using the second technique, we demonstrate single-sideband off-resonant Brillouin amplification of the Rayleigh signal. This technique is shown to enhance the SNR of a signal that is due to vibration-induced strain on the fiber. PMID:26176464

  16. Gene transcript amplification from cell lysates in continuous-flow microfluidic devices.

    PubMed

    Gonzalez, Asensio; Ciobanu, Doina; Sayers, Michael; Sirr, Noel; Dalton, Tara; Davies, Mark

    2007-10-01

    Continuous-flow analysis, where samples circulate encapsulated in a carrier fluid is an attractive alternative to batch processing for high-throughput devices that use the polymerase chain reaction (PCR). Challenges of continuous-flow prototypes include the hydrodynamic and biological incompatibility of the carrier fluid, microchannel fouling, sample carryover and the integration of a nucleic acid extraction and reverse transcription step. We tested two homemade, continuous-flow thermocycler microdevices for amplification of reverse-transcribed messages from cell lysates without nucleic acid extraction. Amplification yield and specificity were assessed with state-of-the-art, real-time quantitative equipment. Carryover contamination between consecutive samples was absent. Amplification specificity and interference by genomic DNA were optimized by primer design. Robust detection of the low-copy transcript CLIC5 from 18 cells per microliter is demonstrated in cultured lymphoblasts. The results prove the concept that the development of micro-total analysis systems (micro-TAS) for continuous gene expression directly from cell suspensions is viable with current technology. PMID:17492382

  17. Ultrasensitive electrochemical strategy for trace detection of APE-1 via triple signal amplification strategy.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Yaqin; Xiang, Yu; Yuan, Ruo; Yuan, Yali; Liao, Ni

    2013-03-15

    A novel ultrasensitive electrochemical immunoassay for the determination of apurinic/apyrimidinic endonuclease (APE-1) using a three-step signal amplification process was reported in this work. The first-step signal amplification process was based on the labeled biotinylated alkaline phosphatase (bio-AP) on the nickel hexacyanoferrates nanoparticle-decorated Au nanochains (Ni-AuNCs) toward the biocatalysis of ascorbic acid 2-phosphate (AA-P) to in-situ produce ascorbic acid (AA). Then the signal was further amplified by electrochemical oxidation of the in-situ-produced AA because of the catalysis of Ni-AuNCs. Finally, with the nanochain-modified streptavidin (SA), the stoichiometry of bio-AP could be increased through the specific and high affinity interaction of streptavidin-biotin. On the other hand, a kind of organic material (PTC-NH(2)), owing the amino-functionalized interface and unique electrochemical properties, as matrix for primary antibodies (Ab(1)) immobilization could lower the background current signal and enhance the amount of immobilized Ab(1). With a sandwich-type immunoreaction, the triple signal amplification greatly enhanced the sensitivity for the detection of APE-1. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.01-100 pg/mL with an extremely low detection limit of 3.9 fg/mL (signal/noise=3). PMID:22981009

  18. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  19. Boosting riboswitch efficiency by RNA amplification

    PubMed Central

    Emadpour, Masoumeh; Karcher, Daniel; Bock, Ralph

    2015-01-01

    Riboswitches are RNA sensors that regulate gene expression in response to binding of small molecules. Although they conceptually represent simple on/off switches and, therefore, hold great promise for biotechnology and future synthetic biology applications, the induction of gene expression by natural riboswitches after ligand addition or removal is often only moderate and, consequently, the achievable expression levels are not very high. Here, we have designed an RNA amplification-based system that strongly improves the efficiency of riboswitches. We have successfully implemented the method in a biological system for which currently no efficient endogenous tools for inducible (trans)gene expression are available: the chloroplasts of higher plants. We further show that an HIV antigen whose constitutive expression from the chloroplast genome is deleterious to the plant can be inducibly expressed under the control of the RNA amplification-enhanced riboswitch (RAmpER) without causing a mutant phenotype, demonstrating the potential of the method for the production of proteins and metabolites that are toxic to the host cell. PMID:25824954

  20. A PARAMETER STUDY FOR BAROCLINIC VORTEX AMPLIFICATION

    SciTech Connect

    Raettig, Natalie; Klahr, Hubert; Lyra, Wladimir E-mail: klahr@mpia.de

    2013-03-10

    Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation timescales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as {beta} = -dln s/dln r = 1/2. Values we expect in protoplanetary disks are between {beta} = 0.5-2.0 The amplification-rate of the perturbations, {Gamma}, appears to be proportional to {beta}{sup 2} and thus proportional to the square of the Brunt-Vaeisaelae frequency ({Gamma}{proportional_to}{beta}{sup 2}{proportional_to}N {sup 2}). The saturation level of Reynolds stresses, on the other hand, seems to be proportional to {beta}{sup 1/2}. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.

  1. Primordial magnetic field amplification from turbulent reheating

    SciTech Connect

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2010-08-01

    We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.

  2. Optimization of noncollinear optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  3. Induction of gene amplification in Plasmodium falciparum

    SciTech Connect

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  4. Current state and future perspectives of loop-mediated isothermal amplification (LAMP)-based diagnosis of filamentous fungi and yeasts.

    PubMed

    Niessen, Ludwig

    2015-01-01

    Loop-mediated isothermal amplification is a rather novel method of enzymatic deoxyribonucleic acid amplification which can be applied for the diagnosis of viruses, bacteria, and fungi. Although firmly established in viral and bacterial diagnosis, the technology has only recently been applied to a noteworthy number of species in the filamentous fungi and yeasts. The current review gives an overview of the literature so far published on the topic by discussing the different groups of fungal organisms to which the method has been applied. Moreover, the method is described in detail as well as the different possibilities available for signal detection and quantification and sample preparation. Future perspective of loop-mediated isothermal amplification-based assays is discussed in the light of applicability for fungal diagnostics. PMID:25492418

  5. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    NASA Astrophysics Data System (ADS)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  6. Optofluidic analysis system for amplification-free, direct detection of Ebola infection.

    PubMed

    Cai, H; Parks, J W; Wall, T A; Stott, M A; Stambaugh, A; Alfson, K; Griffiths, A; Mathies, R A; Carrion, R; Patterson, J L; Hawkins, A R; Schmidt, H

    2015-01-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care. PMID:26404403

  7. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA. PMID:26517245

  8. Coordinated movement of the three rows of outer hair cells is essential for cochlear amplification

    NASA Astrophysics Data System (ADS)

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-12-01

    The process known as cochlear amplification is realized by coordinated movement of the outer hair cells (OHCs) in response to changes in their membrane potential. In this process, the displacement amplitude of the basilar membrane (BM) is thought to be increased, thereby leading to the high sensitivity, wide dynamic range and sharp frequency selectivity of our hearing. Unfortunately, however, OHCs are vulnerable to noise exposure, ototoxic acid, aging and so on. Previous studies have shown that exposure to intense noise causes functional loss of OHCs from the innermost row (i.e., close to the modiolus) to the outermost row (i.e., close to the cochlear wall). On the contrary, by other traumatic stimuli such as ototoxic acid, aging and ischemia, such loss of OHCs has been reported to occur from the outermost row toward the innermost row. However, how the cochlear amplification changes when coordinated movement of OHCs is impaired, that is when the OHCs in one, two or all three rows have become dysfunctional, remains unclear. In the present study, therefore, a finite element (FE) model of the gerbil cochlea, which takes the motility of OHCs into account, was developed based on our previous FE model. Using this model, changes in the displacement amplitude of the BM due to the functional loss of OHCs in one, two or all three rows were investigated and the effects of incoordination of the three rows of OHCs on cochlear amplification were estimated. Results showed that the displacement amplitude of the BM significantly decreased when either the innermost row or the outermost row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  9. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    PubMed

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. PMID:27130353

  10. Solid-state Raman image amplification

    NASA Astrophysics Data System (ADS)

    Calmes, Lonnie Kirkland

    Amplification of low-light-level optical images is important for extending the range of lidar systems that image and detect objects in the atmosphere and underwater. The use of range-gating to produce images of particular range bins is also important in minimizing the image degradation due to light that is scattered backward from aerosols, smoke, or water along the imaging path. For practical lidar systems that must be operated within sight of unprotected observers, eye safety is of the utmost importance. This dissertation describes a new type of eye-safe, range-gated lidar sensing element based on Solid-state Raman Image Amplification (SSRIA) in a solid- state optical crystal. SSRIA can amplify low-level images in the eye-safe infrared at 1.556 μm with gains up to 106 with the addition of only quantum- limited noise. The high gains from SSRIA can compensate for low quantum efficiency detectors and can reduce the need for detector cooling. The range-gate of SSRIA is controlled by the pulsewidth of the pump laser and can be as short as 30-100 cm, using pump pulses of 2-6.7 nsec FWHM. A rate equation theoretical model is derived to help in the design of short pulsed Raman lasers. A theoretical model for the quantum noise properties of SSRIA is presented. SSRIA results in higher SNR images throughout a broad range of incident light levels, in contrast to the increasing noise factor with reduced gain in image intensified CCD's. A theoretical framework for the optical resolution of SSRIA is presented and it is shown that SSRIA can produce higher resolution than ICCD's. SSRIA is also superior in rejecting unwanted sunlight background, further increasing image SNR. Lastly, SSRIA can be combined with optical pre-filtering to perform optical image processing functions such as high-pass filtering and automatic target detection/recognition. The application of this technology to underwater imaging, called Marine Raman Image Amplification (MARIA) is also discussed. MARIA

  11. Signal Amplification of Bioassay Using Zinc Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  12. Amplification sans bruit d'images optiques

    NASA Astrophysics Data System (ADS)

    Gigan, S.; Delaubert, V.; Lopez, L.; Treps, N.; Maitre, A.; Fabre, C.

    2004-11-01

    Nous utilisons un Oscillateur Paramétrique Optique (OPO) pompé sous le seuil dans le but d'amplifier une image multimode transverse sans dégradation du rapport signal à bruit. Le dispositif expérimental met en œuvre un OPO de type II triplement résonant et semi-confocal pour le faisceau amplifié. L'existence d'effets quantiques lors de l'amplification multimode dans un tel dispositif a été montrée expérimentalement. Plus généralement, ceci nous a amené à étudier les propriétés quantiques transverses des faisceaux lumineux amplifiés. Une telle étude peut trouver des applications non seulement en imagerie, mais également dans le traitement quantique de l'information.

  13. Amplification of autoimmune disease by infection

    PubMed Central

    Posnett, David N; Yarilin, Dmitry

    2005-01-01

    Reports of infection with certain chronic persistent microbes (herpesviruses or Chlamydiae) in human autoimmune diseases are consistent with the hypothesis that these microbes are reactivated in the setting of immunodeficiency and often target the site of autoimmune inflammation. New experimental animal models demonstrate the principle. A herpesvirus or Chlamydia species can be used to infect mice with induced transient autoimmune diseases. This results in increased disease severity and even relapse. The evidence suggests that the organisms are specifically imported to the inflammatory sites and cause further tissue destruction, especially when the host is immunosuppressed. We review the evidence for the amplification of autoimmune inflammatory disease by microbial infection, which may be a general mechanism applicable to many human diseases. We suggest that patients with autoimmune disorders receiving immunosuppressing drugs should benefit from preventive antiviral therapy. PMID:15743493

  14. Parametric amplification by coupled flux qubits

    SciTech Connect

    Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Meyer, H.-G.; Il'ichev, E.

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  15. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    PubMed Central

    Chandler, Darrell P.; Bryant, Lexi; Griesemer, Sara B.; Gu, Rui; Knickerbocker, Christopher; Kukhtin, Alexander; Parker, Jennifer; Zimmerman, Cynthia; George, Kirsten St.; Cooney, Christopher G.

    2012-01-01

    This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  16. Dispersion compensation in chirped pulse amplification systems

    SciTech Connect

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  17. Optical filtering enabled by cascaded parametric amplification.

    PubMed

    McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P

    2016-06-27

    A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581

  18. Optimizing biased semiconductor superlattices for terahertz amplification

    SciTech Connect

    Lei, Xiaoli; Wang, Dawei; Wu, Zhaoxin; Dignam, M. M.

    2014-08-11

    Over the past 15 yr or more, researchers have been trying to achieve gain for electromagnetic fields in the terahertz frequency region using biased semiconductor superlattices, but with little success. In this work, we employ our model of the excitonic states in biased GaAs/Al{sub 0.3}Ga{sub 0.7}As semiconductor superlattices to find the optimal structures for amplification of terahertz radiation. In particular, we determine the optimum well width, barrier width, and bias field for terahertz fields with frequencies ranging from 1 to 4 terahertz. We find that gain coefficients on the order of 40 cm{sup −1} should be achievable over most of this frequency range.

  19. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  20. Light amplification in semiconductor-superconductor structures

    NASA Astrophysics Data System (ADS)

    Marjieh, Raja; Sabag, Evyatar; Hayat, Alex

    2016-02-01

    We study a new effect of Cooper-pair-based two-photon gain in semiconductor-superconductor structures, showing broadband enhancement of ultrafast two-photon amplification. We further show that with the superconducting enhancement, at moderately high seed intensities, the two-photon gain contribution approaches that of the one-photon gain. A full quantum-optical model of singly- and fully-stimulated two-photon emission is developed. Our results provide new insights on nonlinear light-matter interaction in the superconducting state, including the possibility of coherent control in two-photon semiconductor-superconductor devices. The theoretically-demonstrated effects can have important implications in optoelectronics and in coherent-control applications.

  1. Loss induced amplification of graphene plasmons.

    PubMed

    Lin, Xiao; Li, Rujiang; Gao, Fei; Li, Erping; Zhang, Xianmin; Zhang, Baile; Chen, Hongsheng

    2016-02-15

    This Letter introduces a new mechanism to reverse and control the effect of losses in the plasmonic systems by using a coupled parity-time symmetric graphene waveguide with complex potentials. In order to explore the uncharted properties of parity-time symmetric graphene plasmons, this Letter analytically shows the plasmonic parity-time symmetry breaking in the coupled graphene waveguide by Sommerfeld integration. This phase transition leads to the distinct spatial propagation behaviors of graphene plasmons in the exact or broken parity-time symmetric phase driven by a point source. Particularly, a loss induced plasmonic amplification, as a characteristic of exceptional point behavior, is for the first time, to the best of our knowledge, revealed in the realm of graphene plasmonics. PMID:26872162

  2. Beyond the diffraction limit via optical amplification.

    PubMed

    Kellerer, Aglaé N; Ribak, Erez N

    2016-07-15

    In a previous article [Astron. Astrophys.561, A118 (2014)], we suggested a method to overcome the diffraction limit behind a telescope. We discuss and extend recent numerical simulations and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with an above-average ratio of stimulated to spontaneous photons. The analysis shows that the diffraction limit of a telescope is surpassed by a factor of 10 for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons. More simulations must be performed to account for the bunching of spontaneous photons. PMID:27420490

  3. Explanatory Model for Sound Amplification in a Stethoscope

    ERIC Educational Resources Information Center

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  4. Amplification of seismic waves by the Seattle basin, Washington State

    USGS Publications Warehouse

    Pratt, T.L.; Brocher, T.M.; Weaver, C.S.; Creager, K.C.; Snelson, C.M.; Crosson, R.S.; Miller, K.C.; Trehu, A.M.

    2003-01-01

    Recordings of the 1999 Mw 7.6 Chi-Chi (Taiwan) earthquake, two local earthquakes, and five blasts show seismic-wave amplification over a large sedimentary basin in the U.S. Pacific Northwest. For weak ground motions from the Chi-Chi earthquake, the Seattle basin amplified 0.2- to 0.8-Hz waves by factors of 8 to 16 relative to bedrock sites west of the basin. The amplification and peak frequency change during the Chi-Chi coda: the initial S-wave arrivals (0-30 sec) had maximum amplifications of 12 at 0.5-0.8 Hz, whereas later arrivals (35-65 sec) reached amplifications of 16 at 0.3-0.5 Hz. Analysis of local events in the 1.0- to 10.0-Hz frequency range show fourfold amplifications for 1.0-Hz weak ground motion over the Seattle basin. Amplifications decrease as frequencies increase above 1.0 Hz, with frequencies above 7 Hz showing lower amplitudes over the basin than at bedrock sites. Modeling shows that resonance in low-impedance deposits forming the upper 550 m of the basin beneath our profile could cause most of the observed amplification, and the larger amplification at later arrival times suggests surface waves also play a substantial role. These results emphasize the importance of shallow deposits in determining ground motions over large basins.

  5. The Quantum Theory of Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Hussain, N. A.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, < {a}^+{a}^+ >=<{a}{a }> = < {a}^+>=<{a }>=0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.

  6. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  7. Topographical and geological amplification: case studies and engineering implications

    USGS Publications Warehouse

    Celebi, M.

    1991-01-01

    Topographical and geological amplification that occurred during past earthquakes are quantified using spectral ratios of recorded motions. Several cases are presented from the 1985 Chilean and Mexican earthquakes as well as the 1983 Coalinga (California) and 1987 Supersition Hills (California) earthquake. The strong motions recorded in Mexico City during the 1985 Michoacan earthquake are supplemented by ambient motions recorded within Mexico City to quantify the now well known resonating frequencies of the Mexico City lakebed. Topographical amplification in Canal Beagle (Chile), Coalinga and Superstition Hills (California) are quantified using the ratios derived from the aftershocks following the earthquakes. A special dense array was deployed to record the aftershocks in each case. The implications of both geological and topographical amplification are discussed in light of current code provisions. The observed geological amplifications has already influenced the code provisions. Suggestions are made to the effect that the codes should include further provisions to take the amplification due to topography into account. ?? 1991.

  8. The development of nanostructure assisted isothermal amplification in biosensors.

    PubMed

    Duan, Ruixue; Lou, Xiaoding; Xia, Fan

    2016-03-21

    Developing simple and inexpensive methods to ultrasensitively detect biomarkers is important for medical diagnosis, food analysis and environmental security. In recent years, isothermal amplifications with sensitivity, high speed, specificity, accuracy, and automation have been designed based on interdisciplinary approaches among chemistry, biology, and materials science. In this article, we summarize the advances in nanostructure assisted isothermal amplification in the past two decades for the detection of commercial biomarkers, or biomarkers extracted from cultured cells or patient samples. This article has been divided into three parts according to the ratio of target-to-signal probe in the detection strategy, namely, the N : N amplification ratio, the 1 : N amplification ratio, and the 1 : N(2) amplification ratio. PMID:26812957

  9. A QUANTITATIVE MODEL OF ERROR ACCUMULATION DURING PCR AMPLIFICATION

    PubMed Central

    Pienaar, E; Theron, M; Nelson, M; Viljoen, HJ

    2006-01-01

    The amplification of target DNA by the polymerase chain reaction (PCR) produces copies which may contain errors. Two sources of errors are associated with the PCR process: (1) editing errors that occur during DNA polymerase-catalyzed enzymatic copying and (2) errors due to DNA thermal damage. In this study a quantitative model of error frequencies is proposed and the role of reaction conditions is investigated. The errors which are ascribed to the polymerase depend on the efficiency of its editing function as well as the reaction conditions; specifically the temperature and the dNTP pool composition. Thermally induced errors stem mostly from three sources: A+G depurination, oxidative damage of guanine to 8-oxoG and cytosine deamination to uracil. The post-PCR modifications of sequences are primarily due to exposure of nucleic acids to elevated temperatures, especially if the DNA is in a single-stranded form. The proposed quantitative model predicts the accumulation of errors over the course of a PCR cycle. Thermal damage contributes significantly to the total errors; therefore consideration must be given to thermal management of the PCR process. PMID:16412692

  10. Characteristics of low E a 193-nm chemical amplification resists

    NASA Astrophysics Data System (ADS)

    Ogata, Toshiyuki; Kinoshita, Yohei; Furuya, Sanae; Matsumaru, Shogo; Takahashi, Motoki; Shiono, Daiju; Dazai, Takahiro; Hada, Hideo; Shirai, Masamitsu

    2006-03-01

    Polymers with methyl acetal ester moiety in the side chain as acid labile protecting group were synthesized and their thermal property, plasma stability and chemical amplification (CA) positive-tone resist characteristics were investigated. 2-Admantyloxymethyl (AdOM) groups in the copolymer indicated lower glass transition temperatures and higher thermal decomposition temperatures than those of 2-methyl-2-admantyl (MAd) groups in the copolymer. AdOM polymer film showed smooth surface roughness after Ar plasma exposure compared with MAd polymer film due to the high thermal stability. The activation energies (E a) of these deprotection reactions were calculated from Arrhenius plots of these deprotection reaction rate constants. In the low post exposure bake (PEB) temperature region, the E a of these resists decreased in the order MAd > AdOM. The low E a methyl acetal resists displayed good thermal flow resist characteristics for contact holes printing. In addition, the low E a methyl acetal resist achieved a wide exposure latitude of 8.1 % and depth of focus of 400 nm for printing 80 nm 1:1 dense line pattern using NSR-306C (NA 0.78, 2/3 annular). Furthermore, the 65 nm 1:1 dense lines using ASML XT1400 (NA 0.93, C-Quad) for low E a methyl acetal resist pattern showed no tapered and no footing profiles and small roughness on the lines pattern sidewall was observed.

  11. Hendra virus detection using Loop-Mediated Isothermal Amplification.

    PubMed

    Foord, Adam J; Middleton, Deborah; Heine, Hans G

    2012-04-01

    Hendra virus (HeV) is a zoonotic paramyxovirus endemic in Australian Pteropus bats (fruit bats or flying foxes). Although bats appear to be unaffected by the virus, HeV can spread from fruit bats to horses, causing severe disease. Human infection results from close contact with the blood, body fluids and tissues of infected horses. HeV is a biosecurity level 4 (BSL-4) pathogen, with a high case-fatality rate in humans and horses. Current assays for HeV detection require complex instrumentation and are generally time consuming. The aim of this study was to develop a Loop-Mediated Isothermal Amplification (LAMP) assay to detect nucleic acid from all known HeV strains in horses without the requirement for complex laboratory equipment. A LAMP assay targeting a conserved region of the HeV P-gene was combined with a Lateral Flow Device (LFD) for detection of amplified product. All HeV isolates, the original HeV isolated in 1994 as well as the most recent isolates from 2011 were detected. Analytical sensitivity and specificity of the HeV-LAMP assay was equal to a TaqMan assay developed previously. Significantly, these assays detected HeV in horses before clinical signs were observed. The combined LAMP-LFD procedure is a sensitive method suitable for HeV diagnosis in a resource-limited situation or where rapid test results are critical. PMID:22327143

  12. Clinical application of somatosensory amplification in psychosomatic medicine

    PubMed Central

    Nakao, Mutsuhiro; Barsky, Arthur J

    2007-01-01

    Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same. The specific role of

  13. 78 FR 66940 - Regulatory Requirements for Hearing Aid Devices and Personal Sound Amplification Products; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Sound Amplification Products; Draft Guidance for Industry and Food and Drug Administration Staff... Hearing Aid Devices and Personal Sound Amplification Products.'' This draft guidance clarifies the distinction between hearing aids and personal sound amplification products (PSAPs), as well as the...

  14. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings. PMID:27063012

  15. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides. PMID:25253912

  16. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples. PMID:25822163

  17. Simultaneous detection of RNA and DNA targets based on multiplex isothermal amplification.

    PubMed

    Dobnik, David; Morisset, Dany; Lenarčič, Rok; Ravnikar, Maja

    2014-04-01

    The detection of pathogenic microorganisms present in food, feed, plant, and other samples is important for providing safe food as well as for preventing the spread of microbes. The genome of pathogens is made of DNA or RNA, therefore a multiplex diagnostics tool would ideally be able to amplify and detect both RNA and DNA targets in parallel. With this goal we have developed an isothermal nucleic acid sequence based amplification [NASBA] implemented microarray analysis (NAIMA) procedure, suitable for the simultaneous multiplex amplification of RNA and DNA targets, coupled with the detection on ArrayTubes. The method is demonstrated to be very sensitive and specific for the detection of two economically important quarantine plant pathogens of potato, the potato spindle tuber viroid (RNA target) and Ralstonia solanacearum (DNA target). Because of its isothermal amplification and simple detection equipment, the method is also applicable for on-site analyses. NAIMA can be used in any domain where there is the need to detect RNA and DNA targets simultaneously. PMID:24625323

  18. Detection of the food allergen celery via loop-mediated isothermal amplification technique.

    PubMed

    Zahradnik, Celine; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0% for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products. PMID:24880868

  19. Equipment-free incubation of recombinase polymerase amplification reactions using body heat.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-01-01

    The development of isothermal amplification platforms for nucleic acid detection has the potential to increase access to molecular diagnostics in low resource settings; however, simple, low-cost methods for heating samples are required to perform reactions. In this study, we demonstrated that human body heat may be harnessed to incubate recombinase polymerase amplification (RPA) reactions for isothermal amplification of HIV-1 DNA. After measuring the temperature of mock reactions at 4 body locations, the axilla was chosen as the ideal site for comfortable, convenient incubation. Using commonly available materials, 3 methods for securing RPA reactions to the body were characterized. Finally, RPA reactions were incubated using body heat while control RPA reactions were incubated in a heat block. At room temperature, all reactions with 10 copies of HIV-1 DNA and 90% of reactions with 100 copies of HIV-1 DNA tested positive when incubated with body heat. In a cold room with an ambient temperature of 10 degrees Celsius, all reactions containing 10 copies or 100 copies of HIV-1 DNA tested positive when incubated with body heat. These results suggest that human body heat may provide an extremely low-cost solution for incubating RPA reactions in low resource settings. PMID:25372030

  20. A paramagnetic-reporter two-particle system for amplification-free detection of DNA in serum.

    PubMed

    Thomson, David A C; Cooper, Matthew A

    2013-12-15

    Quantitative nucleic acid detection is used extensively in the management of many pathogenic infections, where viral or bacterial nucleic acid copy number relates directly to disease prognosis. Temperature-cycle or isothermal amplification formats offer excellent performance, but their requirement for purified nucleic acid and accurate temperature control increases costs and renders their migration to resource-limited environments problematic. In contrast, amplification-free nucleic acid assays could allow simplified system design, resulting in reduced costs. In this study, we report a amplification-free herpes simplex virus (HSV) assay where oligoethylene glycol methacrylate (OEGMA) grafted ssDNA capture-probes on paramagnetic nanoparticles are coupled with reporter-probe-modified fluorescent nanoparticles in a target-dependent manner. Following assay and reagent optimization, a sub-pM (25 amol) limit of detection could be achieved in buffer and also in neat, undiluted serum, representing a 160-fold improvement over that achieved using convention detection with a fluorescence plate reader. Equivalent performance in serum and buffer offers the opportunity for simplified diagnostic device design for resource-limited environments. PMID:23954855

  1. Mechanism of gene amplification via yeast autonomously replicating sequences.

    PubMed

    Sehgal, Shelly; Kaul, Sanjana; Dhar, M K

    2015-01-01

    The present investigation was aimed at understanding the molecular mechanism of gene amplification. Interplay of fragile sites in promoting gene amplification was also elucidated. The amplification promoting sequences were chosen from the Saccharomyces cerevisiae ARS, 5S rRNA regions of Plantago ovata and P. lagopus, proposed sites of replication pausing at Ste20 gene locus of S. cerevisiae, and the bend DNA sequences within fragile site FRA11A in humans. The gene amplification assays showed that plasmid bearing APS from yeast and human beings led to enhanced protein concentration as compared to the wild type. Both the in silico and in vitro analyses were pointed out at the strong bending potential of these APS. In addition, high mitotic stability and presence of TTTT repeats and SAR amongst these sequences encourage gene amplification. Phylogenetic analysis of S. cerevisiae ARS was also conducted. The combinatorial power of different aspects of APS analyzed in the present investigation was harnessed to reach a consensus about the factors which stimulate gene expression, in presence of these sequences. It was concluded that the mechanism of gene amplification was that AT rich tracts present in fragile sites of yeast serve as binding sites for MAR/SAR and DNA unwinding elements. The DNA protein interactions necessary for ORC activation are facilitated by DNA bending. These specific bindings at ORC promote repeated rounds of DNA replication leading to gene amplification. PMID:25685838

  2. Mechanism of Gene Amplification via Yeast Autonomously Replicating Sequences

    PubMed Central

    Dhar, M. K.

    2015-01-01

    The present investigation was aimed at understanding the molecular mechanism of gene amplification. Interplay of fragile sites in promoting gene amplification was also elucidated. The amplification promoting sequences were chosen from the Saccharomyces cerevisiae ARS, 5S rRNA regions of Plantago ovata and P. lagopus, proposed sites of replication pausing at Ste20 gene locus of S. cerevisiae, and the bend DNA sequences within fragile site FRA11A in humans. The gene amplification assays showed that plasmid bearing APS from yeast and human beings led to enhanced protein concentration as compared to the wild type. Both the in silico and in vitro analyses were pointed out at the strong bending potential of these APS. In addition, high mitotic stability and presence of TTTT repeats and SAR amongst these sequences encourage gene amplification. Phylogenetic analysis of S. cerevisiae ARS was also conducted. The combinatorial power of different aspects of APS analyzed in the present investigation was harnessed to reach a consensus about the factors which stimulate gene expression, in presence of these sequences. It was concluded that the mechanism of gene amplification was that AT rich tracts present in fragile sites of yeast serve as binding sites for MAR/SAR and DNA unwinding elements. The DNA protein interactions necessary for ORC activation are facilitated by DNA bending. These specific bindings at ORC promote repeated rounds of DNA replication leading to gene amplification. PMID:25685838

  3. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  4. A mechanism of gene amplification driven by small DNA fragments.

    PubMed

    Mukherjee, Kuntal; Storici, Francesca

    2012-01-01

    DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature. PMID

  5. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis.

    PubMed

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K; Klapperich, Catherine M

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10(-2) pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883

  6. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care.

    PubMed

    Lillis, Lorraine; Siverson, Joshua; Lee, Arthur; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Lehman, Dara A; Boyle, David S

    2016-04-01

    Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 μL to 5 μL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures. PMID:26854117

  7. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  8. Amplification of Spin Waves by Thermal Spin-Transfer Torque

    NASA Astrophysics Data System (ADS)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2011-11-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used in magnetostatic microwave delay lines in the 1-2 GHz frequency range. The amplification is attributed to the action of a thermal spin-transfer torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin-Seebeck effect. The experimental data are interpreted with a spin-wave model that gives an amplification gain in very good agreement with the data.

  9. Preparation of DNA-containing extract for PCR amplification

    DOEpatents

    Dunbar, John M.; Kuske, Cheryl R.

    2006-07-11

    Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.

  10. Raman amplification in the coherent wave-breaking regime.

    PubMed

    Farmer, J P; Pukhov, A

    2015-12-01

    In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer. PMID:26764840

  11. Small sample whole-genome amplification

    NASA Astrophysics Data System (ADS)

    Hara, Christine; Nguyen, Christine; Wheeler, Elizabeth; Sorensen, Karen; Arroyo, Erin; Vrankovich, Greg; Christian, Allen

    2005-11-01

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  12. Active amplification by critical oscillators in hearing

    NASA Astrophysics Data System (ADS)

    Julicher, Frank

    2004-03-01

    The ear posesses exquisit abilities to detect sounds over a wide range of frequencies with an extraordinary dynamic range. From the faintest sounds that we hear to the loudest noises, the sound pressure varies over twelve orders of magnitude. It has been first proposed by Thomas Gold in 1948 that passive resonating elements alone cannot explain these abilities of the ear. The observation, that the ears of seemingly all vertebrates exhibit spontaneous sound emissions, so called oto-acoustic emissions, adds evidence to the idea that hearing is based on active mechanisms for signal amplification and detection which for different species are based on the same principles. It has been suggested that the active properties and the observed nonlinearities in the ear's response can be explained by assuming that the cochlea contains dynamical systems operating in the vicinity of the critical point of an oscillating instability. A sound stimulus excites deformations of the basilar membrane which travel along the choclea towards the apex. The combination of this travelling wave with properties of critical oscillators leads to a scenario where sound excites nonlinear waves in the cochlea. The large dynamic range of hearing then results from compressive power law responses of these nonlinear excitations.

  13. Small Sample Whole-Genome Amplification

    SciTech Connect

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  14. Macroscopic Velocity Amplification in Stacked Disks

    NASA Astrophysics Data System (ADS)

    Murthy, Srividya; White, Gary

    2015-04-01

    When a small sphere rests atop a larger sphere (for example, a basketball with a tennis ball balanced on top), and both are released from a height, the resulting ``velocity amplification'' of the small sphere when the pair rebound from a hard floor, is a staple of the physics demonstration toolkit--usually impressive, sometimes dangerous. While this phenomenon has been studied in the literature in some detail, we set out to explore this effect by constructing a device involving stacked disks falling in a plane, fashioned after an online design by Wayne Peterson of Brigham Young University. When two disks, stacked edge to edge atop one another and confined to a vertical plane, are dropped, the top disk rebounds to a much greater height than it started from, as expected. In this talk, we report on experiments conducted by dropping the disks and recording the heights to which they rise on rebound, and the comparison of these results with our theoretical predictions and computer simulations. Frances E. Walker Fellowship.

  15. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    PubMed

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  16. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    PubMed

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas. PMID:26198403

  17. Ultrabroadband noncollinear optical parametric amplification with LBO crystal.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2008-11-10

    Ultrabroadband visible noncollinear optical parametric amplification (NOPA) was achieved in an LBO crystal, with a continuum seed pulse generated from a sapphire plate. The spectral bandwidth of the amplified visible pulse was about 200 nm, which can support sub-5 fs pulse amplification. An amplified output of 0.21 microJ with an average gain of about 210 was achieved. This provides, to the best of our knowledge, the first-time demonstration of such broadband amplification with a biaxial nonlinear optical crystal. Both the simulation and experimental results indicate that the LBO has a great potential as nonlinear medium in power amplifier for TW to PW noncollinear optical parametric chirped pulse amplification (NOPCPA) systems. PMID:19581976

  18. Three-dimensional Simulation of Backward Raman Amplification

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch

    2005-11-12

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.

  19. Isothermal DNA amplification strategies for duplex microorganism detection.

    PubMed

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2015-05-01

    A valid solution for micro-analytical systems is the selection of a compatible amplification reaction with a simple, highly-integrated efficient design that allows the detection of multiple genomic targets. Two approaches under isothermal conditions are presented: recombinase polymerase amplification (RPA) and multiple displacement amplification (MDA). Both methods were applied to a duplex assay specific for Salmonella spp. and Cronobacter spp., with excellent amplification yields (0.2-8.6 · 10(8) fold). The proposed approaches were successfully compared to conventional PCR and tested for the milk sample analysis as a microarray format on a compact disc (support and driver). Satisfactory results were obtained in terms of resistance to inhibition, selectivity, sensitivity (10(1)-10(2)CFU/mL) and reproducibility (below 12.5%). The methods studied are efficient and cost-effective, with a high potential to automate microorganisms detection by integrated analytical systems working at a constant low temperature. PMID:25529713

  20. Preliminary Lidar Experiment to Study the Backscatter Amplification

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2016-06-01

    Long-term continuous measurements for detection relative backscatter amplification on a horizontal path of 2 km long are performed by using a specific micro pulse lidar. The laser beam path is limited by a solid obstacle. The lidar is located next to an ultrasonic anemometer that measures 3D wind velocity and temperature; the laser spot on the obstacle is observed by using a telephoto lens. The results showed that the backscatter amplification has a clear diurnal variation. Moreover, the backscatter amplification was completely absent in the morning and evening under neutral stratification in the atmospheric surface layer. At night and in the daytime there was a significant increase of the backscatter amplification coefficient.

  1. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  2. DNA amplification is rare in normal human cells

    SciTech Connect

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R. ); Smith, H.S.; Hancock, M.C. )

    1990-03-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10{sup 8} cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency.

  3. Amplification of surface temperature trends and variability in thetropical atmosphere

    SciTech Connect

    Santer, B.D.; Wigley, T.M.L.; Mears, C.; Wentz, F.J.; Klein,S.A.; Seidel, D.J.; Taylor, K.E.; Thorne, P.W.; Wehner, M.F.; Gleckler,P.J.; Boyle, J.S.; Collins, W.D.; Dixon, K.W.; Doutriaux, C.; Free, M.; Fu, Q.; Hansen, J.E.; Jones, G.S.; Ruedy, R.; Karl, T.R.; Lanzante, J.R.; Meehl, G.A.; Ramaswamy, V.; Russell, G.; Schmidt, G.A.

    2005-08-11

    The month-to-month variability of tropical temperatures is larger in the troposphere than at the Earth's surface. This amplification behavior is similar in a range of observations and climate model simulations, and is consistent with basic theory. On multi-decadal timescales, tropospheric amplification of surface warming is a robust feature of model simulations, but occurs in only one observational dataset. Other observations show weak or even negative amplification. These results suggest that either different physical mechanisms control amplification processes on monthly and decadal timescales, and models fail to capture such behavior, or (more plausibly) that residual errors in several observational datasets used here affect their representation of long-term trends.

  4. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  5. Nonlinearity management in fiber transmission systems with hybrid amplification

    NASA Astrophysics Data System (ADS)

    Ania-Castañón, J. D.; Nasieva, I. O.; Kurukitkoson, N.; Turitsyn, S. K.; Borsier, C.; Pincemin, E.

    2004-04-01

    Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case.

  6. Detection of biological molecules using chemical amplification and optical sensors

    SciTech Connect

    Antwerp, W.P. van; Mastrototaro, J.J.

    2000-01-04

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  7. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  8. Simulation study of electron response amplification in coherent electron cooling

    SciTech Connect

    Hao Y.; Litvinenko, V.N.

    2012-05-20

    In Coherent Electron Cooling (CEC), it is essential to study the amplification of electron response to a single ion in the FEL process, in order to proper align the electron beam and the ion beam in the kicker to maximize the cooling effect. In this paper, we use Genesis to simulate the amplified electron beam response of single ion in FEL amplification process, which acts as Green's function of the FEL amplifier.

  9. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    PubMed

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes. PMID:26099605

  10. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  11. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  12. Linear field amplification for magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Trindade, I. G.; Fermento, R.; Sousa, J. B.; Chaves, R. C.; Cardoso, S.; Freitas, P. P.

    2008-05-01

    In this article, we describe the fabrication and characterization of a spin valve (SV) magnetoresistive (MR) sensor, located in the gap of two magnetically soft flux guides (FGs) that enhance the sensor magnetic field sensitivity, while keeping in the sensor a quasilinear Barkhausen-noise-free response. Top pinned SV sensors were fabricated into stripes, having lengths of 100μm and widths of 2 and 3μm, by optical lithography and ion-milling etching. The FGs consisted of poles and yokes of an amorphous alloy of Co88.4Zr3.3Nb8.3, prepared by physical vapor deposition and were lithographically defined by a lift-off process. The SV sensor MR responses to applied uniform magnetic fields Ha, when either isolated or located in the gap of two types of FGs, were characterized in terms of the saturation field, coercive force, and sensitivity. The impact of the FG geometry in the magnetic field amplification and sensor response characteristics were studied. Magnetic force microscopy analysis was performed to identify the presence of multidomain states in the FGs and of a remanent field in their gap. SV sensors in the gap of FGs using long poles and having a sensing area of 1000μm2 exhibit a linear sensitivity of 50mV/Oe in the field range of a couple of oersteds. The SV sensor in the gap of magnetically soft FGs exhibits enhanced hysteresis, characterized by a coercive force of approximately 1Oe. Two schemes are proposed to reduce the hysteresis in the sensor response.

  13. Thermodynamic analysis of quantum light amplification

    NASA Astrophysics Data System (ADS)

    Boukobza, E.; Tannor, D. J.

    2006-12-01

    Thermodynamics of a three-level maser was studied in the pioneering work of Scovil and Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)]. In this work we consider the same three-level model, but treat both the matter and the light quantum mechanically. Specifically, we analyze an extended (three-level) dissipative (ED) Jaynes-Cummings model (JCM) within the framework of a quantum heat engine, using formulas for heat flux and power in bipartite systems introduced in our previous work [E. Boukobza and D. J. Tannor Phys. Rev. A 74, 063823 (2006)] Amplification of the selected cavity mode occurs even in this simple model, as seen by a positive steady state power. However, initial field coherence is lost, as seen by the decaying off-diagonal field density matrix elements, and by the Husimi-Kano Q function. We show that after an initial transient time the field’s entropy rises linearly during the operation of the engine, which we attribute to the dissipative nature of the evolution and not to matter-field entanglement. We show that the second law of thermodynamics is satisfied in two formulations (Clausius, Carnot) and that the efficiency of the ED JCM heat engine agrees with that defined intuitively by Scovil and Schulz-DuBois. Finally, we compare the steady state heat flux and power of the fully quantum model with the semiclassical counterpart of the ED JCM, and derive the engine efficiency formula of Scovil and Schulz-DuBois analytically from fundamental thermodynamic fluxes.

  14. Amplification of ultra-short laser pulses via resonant backward Raman amplification in plasma

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Andreev, A.

    2016-08-01

    In this paper, we have examined the possibility of using resonant backward Raman amplification (BRA) as an efficient mechanism in amplifying the low intensity ultra-short ( ≤ fs ) pulses using plasma as intermediate amplifying medium; such pulses are anticipated to get produced in the form of the secondary sources at ALPS (Attosecond Light Pulse Source) center of ELI (Extreme Light Infrastructure). In preliminary assessment of the scheme, the analytical expressions for the pump/seed laser pulses and plasma characteristic features are obtained which concisely describe the parameter regime of resonant BRA applicability in achieving significant amplification. The consistency of the scheme in the context of ELI-ALPS sources has been validated through particle in cell (PIC) simulations. The peak intensity of the amplified seed pulse predicted via simulation results is found in reasonable agreement with the analytical estimates. Utilizing these analytical expressions as a basis in perspective of ELI-ALPS parameter access, a specific example displaying the key plasma and laser parameters for amplifying weak seed pulse has been configured; the limitations and conceivable remedies in resonant BRA implementation have also been highlighted.

  15. Multiple pathways of selected gene amplification during adaptive mutation.

    PubMed

    Kugelberg, Elisabeth; Kofoid, Eric; Reams, Andrew B; Andersson, Dan I; Roth, John R

    2006-11-14

    In a phenomenon referred to as "adaptive mutation," a population of bacterial cells with a mutation in the lac operon (lac-) accumulates Lac+ revertants during prolonged exposure to selective growth conditions (lactose). Evidence was provided that selective conditions do not increase the mutation rate but instead favor the growth of rare cells with a duplication of the leaky lac allele. A further increase in copy number (amplification) improves growth and increases the likelihood of a sequence change by adding more mutational targets to the clone (cells and lac copies per cell). These duplications and amplifications are described here. Before selection, cells with large (134-kb) lac duplications and long junction sequences (>1 kb) were common (0.2%). The same large repeats were found after selection in cells with a low-copy-number lac amplification. Surprisingly, smaller repeats (average, 34 kb) were found in high-copy-number amplifications. The small-repeat duplications form when deletions modify a preexisting large-repeat duplication. The shorter repeat size allowed higher lac amplification and better growth on lactose. Thus, selection favors a succession of gene-amplification types that make sequence changes more probable by adding targets. These findings are relevant to genetic adaptation in any biological systems in which fitness can be increased by adding gene copies (e.g., cancer and bacterial drug resistance). PMID:17082307

  16. Role of Atmospheric Transport on the Arctic Amplification: Adjusting Role

    NASA Astrophysics Data System (ADS)

    KUG, J.; Yim, B.; Jin, F.

    2013-12-01

    It is controversial whether the atmospheric transport plays a role in arctic amplification. Recently, Hwang et al. (2011) showed that the magnitude of the arctic amplification is negatively correlated with anomalous poleward atmospheric transport. That is, when the arctic amplification is strong (weak), the atmospheric transport plays a negative (positive) role in the arctic amplification. In this study, it is discussed what is a physical mechanism to determine the role of atmospheric transport and relation with the arctic amplification. Here, we suggest adjusting roles of atmospheric transport. The strength of local feedback over the Arctic determines zonal wind changes. The zonal wind changes are determined by two factors. The first one is polar cap cooling, and second is surface warming. They play opposite roles. So, there will be two different zonal wind responses in high-latitude to the greenhouse warming. Depending on the zonal wind response, the atmospheric transport can play a different role because the zonal wind changes can organize synoptic eddy feedbacks including heat flux, which largely contributes to poleward energy transport. We show here that when polar cap cooling is strong, and surface warming over Arctic is relatively weak, the Jet stream tends to be shifted poleward, so it leads to poleward atmospheric transport. On the other hand, when the surface warming is too strong, it lead to southward shift of Jet stream and equatorward atmospheric transport, which paly a negative role in the Arctic amplification.

  17. Mechanical amplification by hair cells in the semicircular canals

    PubMed Central

    Rabbitt, Richard D.; Boyle, Richard; Highstein, Stephen M.

    2010-01-01

    Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes ∼97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below ∼5°/s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s). PMID:20133682

  18. Empirical evidence for acceleration-dependent amplification factors

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-specific amplification factors, Fa and Fv, used in current U.S. building codes decrease with increasing base acceleration level as implied by the Loma Prieta earthquake at 0.1g and extrapolated using numerical models and laboratory results. The Northridge earthquake recordings of 17 January 1994 and subsequent geotechnical data permit empirical estimates of amplification at base acceleration levels up to 0.5g. Distance measures and normalization procedures used to infer amplification ratios from soil-rock pairs in predetermined azimuth-distance bins significantly influence the dependence of amplification estimates on base acceleration. Factors inferred using a hypocentral distance norm do not show a statistically significant dependence on base acceleration. Factors inferred using norms implied by the attenuation functions of Abrahamson and Silva show a statistically significant decrease with increasing base acceleration. The decrease is statistically more significant for stiff clay and sandy soil (site class D) sites than for stiffer sites underlain by gravely soils and soft rock (site class C). The decrease in amplification with increasing base acceleration is more pronounced for the short-period amplification factor, Fa, than for the midperiod factor, Fv.

  19. Problems encountered when defining Arctic amplification as a ratio.

    PubMed

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  20. Oncogene-like induction of cellular invasion from centrosome amplification

    PubMed Central

    Godinho, Susana A.; Picone, Remigio; Burute, Mithila; Dagher, Regina; Su, Ying; Leung, Cheuk T.; Polyak, Kornelia; Brugge, Joan S.; Thery, Manuel; Pellman, David

    2014-01-01

    Centrosome amplification has long been recognized as a feature of human tumors, however its role in tumorigenesis remains unclear1. Centrosome amplification is poorly tolerated by non-transformed cells, and, in the absence of selection, extra centrosomes are spontaneously lost2. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumors3, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumor progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behavior is similar to that induced by overexpression of the breast cancer oncogene ErbB24 and indeed enhances invasiveness triggered by ErbB2. We show that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation. PMID:24739973

  1. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products.

    PubMed

    Toubanaki, Dimitra K; Athanasiou, Evita; Karagouni, Evdokia

    2016-08-01

    Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity. PMID:27255490

  2. Rapid and sensitive detection of Taura syndrome virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    Kiatpathomchai, Wansika; Jareonram, Wansadaj; Jitrapakdee, Sarawut; Flegel, T W

    2007-12-01

    Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay is a novel method of gene amplification that amplifies nucleic acid with high specificity, sensitivity and rapidity, which can be applied for disease diagnosis in shrimp aquaculture. The method is performed under isothermal conditions with a set of four specially designed primers that recognize six distinct sequences of the target. In this study, using the RT-LAMP method, a protocol for detecting Taura syndrome virus which is a causative agent of Penaeus vannamei was developed. Time and temperature conditions for detection of TSV were optimized for 60min at 63 degrees C. The nucleic acids of other shrimp pathogens (yellow head virus; YHV and white spot syndrome; WSSV) were not amplified by this RT-LAMP system. The detection of TSV using RT-LAMP was 10 times more sensitive than the RT-PCR but less sensitive than nested RT-PCR. However this system was more convenient, rapid, and does not require sophisticated PCR machine. PMID:17643501

  3. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  4. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  5. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  6. Regulation of ribosomal DNA amplification by the TOR pathway

    PubMed Central

    Jack, Carmen V.; Cruz, Cristina; Hull, Ryan M.; Keller, Markus A.; Ralser, Markus; Houseley, Jonathan

    2015-01-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions. PMID:26195783

  7. Somatic amplifications and deletions in genome of papillary thyroid carcinomas.

    PubMed

    Passon, Nadia; Bregant, Elisa; Sponziello, Marialuisa; Dima, Maria; Rosignolo, Francesca; Durante, Cosimo; Celano, Marilena; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2015-11-01

    Somatic gene copy number variation contributes to tumor progression. Using comparative genomic hybridization (CGH) array, the presence of genomic imbalances was evaluated in a series of 27 papillary thyroid carcinomas (PTCs). To detect only somatic imbalances, for each sample, the reference DNA was from normal thyroid tissue of the same patient. The presence of the BRAF V600E mutation was also evaluated. Both amplifications and deletions showed an uneven distribution along the entire PTC cohort; amplifications were more frequent than deletions (mean values of 17.5 and 7.2, respectively). Number of aberration events was not even among samples, the majority of them occurring only in a small fraction of PTCs. Most frequent amplifications were detected at regions 2q35, 4q26, and 4q34.1, containing FN1, PDE5A, and GALNTL6 genes, respectively. Most frequent deletions occurred at regions 6q25.2, containing OPMR1 and IPCEF1 genes and 7q14.2, containing AOAH and ELMO1 genes. Amplification of FN1 and PDE5A genomic regions was confirmed by quantitative PCR. Frequency of amplifications and deletions was in relationship with clinical features and BRAF mutation status of tumor. In fact, according to the American Joint Committee on Cancer stage and American Thyroid Association (ATA) risk classification, amplifications are more frequent in higher risk samples, while deletions tend to prevail in the lower risk tumors. Analysis of single aberrations according to the ATA risk grouping shows that amplifications containing PDE5A, GALNTL6, DHRS3, and DOCK9 genes are significantly more frequent in the intermediate/high risk group than in the low risk group. Thus, our data would indicate that analysis of somatic genome aberrations by CGH array can be useful to identify additional prognostic variables. PMID:25863487

  8. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cc06143a Click here for additional data file.

    PubMed Central

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha

    2015-01-01

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  9. Magnetic Amplification by Magnetized Cosmic Rays in Supernova Remnant Shocks

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Spitkovsky, Anatoly

    2010-07-01

    X-ray observations of synchrotron rims in supernova remnant (SNR) shocks show evidence of efficient electron acceleration and strong magnetic field amplification (a factor of ~100 between the upstream and downstream medium). This amplification may be due to plasma instabilities driven by shock-accelerated particles or cosmic rays (CRs), as they propagate ahead of the shocks. One candidate process is the cosmic ray current-driven (CRCD) instability caused by the electric current of "unmagnetized" CRs (i.e., CRs whose Larmor radii are much larger than the length scale of the CRCD modes) propagating parallel to the upstream magnetic field. Particle-in-cell (PIC) simulations have shown that the back-reaction of the amplified field on CRs would limit the amplification factor of this instability to less than ~10 in galactic SNRs (not including the additional field compression at the shock). In this paper, we study the possibility of further amplification driven near shocks by "magnetized" CRs, whose Larmor radii are smaller than the length scale of the field that was previously amplified by the CRCD instability. We find that additional amplification can occur due to a new instability, driven by the CR current perpendicular to the field, which we term the perpendicular current-driven instability (PCDI). We derive the growth rate of this instability and, using PIC simulations, study its non-linear evolution. We show that the maximum amplification of PCDI is determined by the disruption of CR current, which happens when CR Larmor radii in the amplified field become comparable to the length scale of the instability. We find that, in regions close to the shock, PCDI grows on scales smaller than the scales of the CRCD instability, and, therefore, it results in larger amplification of the field (amplification factor up to ~45). One possible observational signature of PCDI is the characteristic dependence of the amplified field on the shock velocity, B 2 vprop v 2 sh, which

  10. MAGNETIC AMPLIFICATION BY MAGNETIZED COSMIC RAYS IN SUPERNOVA REMNANT SHOCKS

    SciTech Connect

    Riquelme, Mario A.; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.ed

    2010-07-10

    X-ray observations of synchrotron rims in supernova remnant (SNR) shocks show evidence of efficient electron acceleration and strong magnetic field amplification (a factor of {approx}100 between the upstream and downstream medium). This amplification may be due to plasma instabilities driven by shock-accelerated particles or cosmic rays (CRs), as they propagate ahead of the shocks. One candidate process is the cosmic ray current-driven (CRCD) instability caused by the electric current of 'unmagnetized' CRs (i.e., CRs whose Larmor radii are much larger than the length scale of the CRCD modes) propagating parallel to the upstream magnetic field. Particle-in-cell (PIC) simulations have shown that the back-reaction of the amplified field on CRs would limit the amplification factor of this instability to less than {approx}10 in galactic SNRs (not including the additional field compression at the shock). In this paper, we study the possibility of further amplification driven near shocks by 'magnetized' CRs, whose Larmor radii are smaller than the length scale of the field that was previously amplified by the CRCD instability. We find that additional amplification can occur due to a new instability, driven by the CR current perpendicular to the field, which we term the perpendicular current-driven instability (PCDI). We derive the growth rate of this instability and, using PIC simulations, study its non-linear evolution. We show that the maximum amplification of PCDI is determined by the disruption of CR current, which happens when CR Larmor radii in the amplified field become comparable to the length scale of the instability. We find that, in regions close to the shock, PCDI grows on scales smaller than the scales of the CRCD instability, and, therefore, it results in larger amplification of the field (amplification factor up to {approx}45). One possible observational signature of PCDI is the characteristic dependence of the amplified field on the shock velocity, B {sup

  11. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  12. Solid Phase DNA Amplification: A Simple Monte Carlo Lattice Model

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois; Slater, Gary W.; Mayer, Pascal

    2003-03-01

    Recently, a new type of PCR called solid phase DNA amplification, has been introduced where surface-bound instead of freely-diffusing primers are used to amplify DNA. This type of amplification is limited to two-dimensional surfaces and therefore allows the easy parallelization of the PCR process in a single system. Furthermore, solid phase DNA amplification could provide an alternate route to DNA target implantation on DNA chips for genomic studies. We propose a simple Lattice Monte Carlo model of solid phase DNA amplification. We study the growth, stability and morphology of isolated PCR colonies under various conditions. Our results indicate that, in most cases, solid phase DNA amplification is characterized by a geometric growth and a rather sharp size distribution. These results are qualitatively different those obtained for liquid PCR processes which are usually characterized (at least initially) by an exponential growth and a broad population distribution. Various non-ideal effects are studied, and we demonstrate that such effects do not generally change the nature of the process, except in extreme cases.

  13. Problems encountered when defining Arctic amplification as a ratio

    PubMed Central

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  14. Problems encountered when defining Arctic amplification as a ratio

    NASA Astrophysics Data System (ADS)

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  15. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities.

    PubMed

    Saba, M; Ciuti, C; Bloch, J; Thierry-Mieg, V; André, R; Dang, le S; Kundermann, S; Mura, A; Bongiovanni, G; Staehli, J L; Deveaud, B

    2001-12-13

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-micrometer-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature. PMID:11742394

  16. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  17. Evaluating the displacement amplification factors of concentrically braced steel frames

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Mussa; Zaree, Mahdi

    2013-12-01

    According to seismic design codes, nonlinear performance of structures is considered during strong earthquakes. Seismic design provisions estimate the maximum roof and story drifts occurring during major earthquakes by amplifying the drifts computed from elastic analysis at the prescribed seismic force level with a displacement amplification factor. The present study tries to evaluate the displacement amplification factors of conventional concentric braced frames (CBFs) and buckling restrained braced frames (BRBFs). As such, static nonlinear (pushover) analysis and nonlinear dynamic time history analysis have been performed on the model buildings with single and double bracing bays, and different stories and brace configurations (chevron V, invert V, and X bracing). It is observed that the displacement amplification factors for BRBFs are higher than that of CBFs. Also, the number of bracing bays and height of buildings have a profound effect on the displacement amplification factors. The evaluated ratios between displacement amplification factors and response modification factors are from 1 to 1.12 for CBFs and from 1 to 1.4 for BRBFs.

  18. Modeling Loss Amplification After Devastating Disasters

    NASA Astrophysics Data System (ADS)

    Boissonnade, A. C.; Muir Wood, R.

    2008-05-01

    With the catastrophic events that occurred in 2004 and 2005 came the realization that Catastrophic (Cat) loss models were not properly modeling insured losses and their associated uncertainty. One reason was that major catastrophes were generally characterized by losses caused by the primary initiating events. Such approaches are not adequate when losses can result from the compounded impacts of scenarios of secondary cascading events (physical, economic, social and political) that can have much larger impacts than those due to the primary events themselves. Situations where more and more cascading events can occur will result in different outcomes, some leading to extreme loss events, generally referred as Super Cats. These situations occurred in December 2004 with the Sumatra earthquake and tsunami and in August 2005 with hurricane Katrina and resulting New Orleans flooding. A review of historical events shows that these events are not exceptions. Modeling such scenarios adds new levels of complexity and different perspectives in the understanding of characterizing and assessing impacts of catastrophic events. Modeling economic consequences of extreme events can be improved by developing scenarios of cascades of secondary events triggered by the primary event(s). The likelihood of each scenario should be modeled, along with the hazards of primary and secondary events and resulting losses with their impacts to the different stakeholders. In addition, it is also important to model the impacts of the hazards on the infrastructure and the resulting disruption to the residents and the local economy because these can result in additional losses. This paper describes current work with the goals of better modeling the full economic impacts from catastrophic events, and of a more comprehensive treatment of uncertainty. We will present approaches for modeling loss amplification that account for all the ways in which the cost incurred for a certain level of damage due to a

  19. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    SciTech Connect

    Zhou, Yuchun; Rahman, Samia N.; Hall, David; Lo, Yu-Hwa; Liu, Yu-Hsin; Sham, L. J.

    2015-01-19

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions of the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.

  20. Measurement-based noiseless linear amplification for quantum communication

    NASA Astrophysics Data System (ADS)

    Chrzanowski, H. M.; Walk, N.; Haw, J. Y.; Thearle, O.; Assad, S. M.; Janousek, J.; Hosseini, S.; Ralph, T. C.; Symul, T.; Lam, P. K.

    2014-11-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require non-trivial experimental techniques such as noiseless amplification. We show that noiseless amplification could be achieved by performing a post-selective filtering of measurement outcomes. We termed this protocol measurement-based noiseless linear amplification (MBNLA). We apply this protocol to entanglement that suffers transmission loss of up to the equivalent of 100km of optical fibre and show that it is capable of distilling entanglement to a level stronger than that achievable by transmitting a maximally entangled state through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime via MBNLA. Compared to its physical counterpart, MBNLA not only is easier in term of implementation, but also allows one to achieve near optimal probability of success.

  1. Amplification of spin waves by the spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2012-04-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet (YIG) subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used to study volume or surface magnetostatic waves in the 1-2 GHz frequency range. Amplification gains larger than 20 are observed in a YIG film heated by a current of 20 mA in a Pt layer in a simple YIG/Pt bilayer. The amplification is attributed to the action of a spin-transfer thermal torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin Seebeck effect. The experimental data are interpreted with a spin-wave model.

  2. An Intrinsically Digital Amplification Scheme for Hearing Aids

    NASA Astrophysics Data System (ADS)

    Blamey, Peter J.; Macfarlane, David S.; Steele, Brenton R.

    2005-12-01

    Results for linear and wide-dynamic range compression were compared with a new 64-channel digital amplification strategy in three separate studies. The new strategy addresses the requirements of the hearing aid user with efficient computations on an open-platform digital signal processor (DSP). The new amplification strategy is not modeled on prior analog strategies like compression and linear amplification, but uses statistical analysis of the signal to optimize the output dynamic range in each frequency band independently. Using the open-platform DSP processor also provided the opportunity for blind trial comparisons of the different processing schemes in BTE and ITE devices of a high commercial standard. The speech perception scores and questionnaire results show that it is possible to provide improved audibility for sound in many narrow frequency bands while simultaneously improving comfort, speech intelligibility in noise, and sound quality.

  3. Detection of Mycobacterium tuberculosis by PCR amplification with pan-Mycobacterium primers and hybridization to an M. tuberculosis-specific probe.

    PubMed Central

    Tevere, V J; Hewitt, P L; Dare, A; Hocknell, P; Keen, A; Spadoro, J P; Young, K K

    1996-01-01

    Nucleic acid amplification techniques such as the PCR are very useful in the rapid diagnosis of infections by Mycobacterium tuberculosis. However, recent studies have shown that the accuracy of results can vary widely when tests are performed with nonstandardized reagents. We have developed a PCR assay for the detection of M. tuberculosis that is both rapid and accurate. The assay reagents are standardized and quality controlled. False-positive results due to carryover contamination are prevented by the incorporation of dUTP coupled with uracil-N-glycosylase restriction. This assay also employs pan-Mycobacterium amplification primers, allowing for flexibility in the mycobacterial species that can be identified from a single amplification reaction. The amplification is very sensitive; amplification products generated from as few as three bacteria can be detected by agarose gel electrophoresis. DNAs isolated from 33 of 34 mycobacterial species tested were amplified efficiently. Only DNA from Mycobacterium simiae did not amplify. The amplification is also very specific. Amplification products were generated only from the DNAs of bacteria in closely related genera such as Corynebacterium. The nonmycobacterial amplicons do not pose a problem, as they do not hybridize to mycobacterium-specific probes. Hybridization of amplicons to an M. tuberculosis-specific probe allows for the unambiguous identification of M. tuberculosis complex organisms. The clinical performance of this PCR assay was evaluated against that of culture in 662 respiratory specimens. Sensitivities of 100 and 73.1% were obtained from smear-positive and -negative respiratory specimens, respectively. The corresponding specificities were 100 and 99.8%. The high sensitivity and specificity, coupled with the potential for detecting a wide range of mycobacteria, make this assay a useful tool in the clinical management of mycobacterial infections. PMID:8815108

  4. Successful diagnosis of tuberculous lymphadenitis by loop-mediated isothermal amplification of cutaneous samples from an ulcerated surface lesion: a case report

    PubMed Central

    2014-01-01

    Introduction Tuberculous lymphadenitis is the most frequent form of extrapulmonary tuberculous. Although nucleic acid amplification assays such as polymerase chain reaction have recently become mainstream techniques for diagnosing tuberculous lymphadenitis, they are still not routinely performed in developing countries because of their high costs and complicated procedures. Case presentation We describe a case of tuberculous lymphadenitis in a 79-year-old Japanese man who had been on continuous hemodialysis for end-stage renal disease. We employed loop-mediated isothermal amplification and the procedure for ultrarapid extraction to develop a fast and easy-to-perform procedure for diagnosing tuberculous lymphadenitis. Conclusions The commercially available loop-mediated isothermal amplification assay kit and a rapid purification procedure enabled us to identify and amplify a Mycobacterium tuberculosis–specific gene within just 1.5 hours. PMID:25030753

  5. Site amplification at Avcılar, Istanbul

    NASA Astrophysics Data System (ADS)

    Ergin, M.; Özalaybey, S.; Aktar, M.; Yalçin, M. N.

    2004-10-01

    Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being ˜90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3-1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100-150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.

  6. A geostatistical approach to mapping site response spectral amplifications

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Tanaka, Y.; Tanaka, H.

    2010-01-01

    If quantitative estimates of the seismic properties do not exist at a location of interest then the site response spectral amplifications must be estimated from data collected at other locations. Currently, the most common approach employs correlations of site class with maps of surficial geology. Analogously, correlations of site class with topographic slope can be employed where the surficial geology is unknown. Our goal is to identify and validate a method to estimate site response with greater spatial resolution and accuracy for regions where additional effort is warranted. This method consists of three components: region-specific data collection, a spatial model for interpolating seismic properties, and a theoretical method for computing spectral amplifications from the interpolated seismic properties. We consider three spatial interpolation schemes: correlations with surficial geology, termed the geologic trend (GT), ordinary kriging (OK), and kriging with a trend (KT). We estimate the spectral amplifications from seismic properties using the square root of impedance method, thereby linking the frequency-dependent spectral amplifications to the depth-dependent seismic properties. Thus, the range of periods for which this method is applicable is limited by the depth of exploration. A dense survey of near-surface S-wave slowness (Ss) throughout Kobe, Japan shows that the geostatistical methods give more accurate estimates of Ss than the topographic slope and GT methods, and the OK and KT methods perform equally well. We prefer the KT model because it can be seamlessly integrated with geologic maps that cover larger regions. Empirical spectral amplifications show that the region-specific data achieve more accurate estimates of observed median short-period amplifications than the topographic slope method. ?? 2010 Elsevier B.V.

  7. Spin-current signal amplification by a geometrical ratchet

    NASA Astrophysics Data System (ADS)

    Abdullah, Ranjdar M.; Vick, Andrew J.; Murphy, Benedict A.; Hirohata, Atsufumi

    2014-12-01

    We report the demonstration of spin-current amplification in a lateral spin-valve with a non-local configuration. A geometrical ratchet has been implemented in a non-magnetic nanowire bridging two ferromagnetic nanowires. Such geometry induces a difference in resistivity for diffusive electrons travelling in opposite directions by differentiating the scattering coefficients. This difference amplifies the total spin current by a factor of more than 7. Amplification by a geometrical ratchet can be predicted by simple two channel electrical transport calculations and provides a method to increase the efficiency of pure spin current flow in lateral spin valves.

  8. Influence of environmental noise on the weak value amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-05-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  9. Ultra-broad bandwidth parametric amplification at degeneracy.

    PubMed

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  10. Backward Raman amplification in the Langmuir wavebreaking regime

    SciTech Connect

    Toroker, Z.; Malkin, V. M.; Fisch, N. J.

    2014-11-15

    In plasma-based backward Raman amplifiers, the output pulse intensity increases with the input pump pulse intensity, as long as the Langmuir wave mediating energy transfer from the pump to the seed pulse remains intact. However, at high pump intensity, the Langmuir wave breaks, at which point the amplification efficiency may no longer increase with the pump intensity. Numerical simulations presented here, employing a one-dimensional Vlasov-Maxwell code, show that, although the amplification efficiency remains high when the pump only mildly exceeds the wavebreaking threshold, the efficiency drops precipitously at larger pump intensities.

  11. Divided-pulse amplification to the joule level.

    PubMed

    Webb, Benjamin; Azim, Ahmad; Bodnar, Nathan; Chini, Michael; Shah, Lawrence; Richardson, Martin

    2016-07-01

    Divided-pulse amplification (DPA) has proven to be a valuable tool in scaling the peak power of diode-pumped ytterbium-doped amplifiers to beyond the single-pulse threshold for parasitic nonlinear effects. DPA enables the amplification of picosecond pulses in solid-state amplifiers with limited bandwidth beyond the single-pulse damage threshold. In this Letter, we demonstrate DPA of picosecond pulses in a flashlamp-pumped Nd:YAG amplifier for the first time, to the best of our knowledge, yielding a combined pulse energy of 167 mJ. PMID:27367113

  12. Methods for microbial DNA extraction from soil for PCR amplification.

    PubMed

    Yeates, C; Gillings, M R; Davison, A D; Altavilla, N; Veal, D A

    1998-05-14

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size. PMID:12734590

  13. Influence of environmental noise on the weak value amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-08-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  14. Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA.

    PubMed

    Thomson, David A C; Tee, Ernest H L; Tran, Nguyen T D; Monteiro, Michael J; Cooper, Matthew A

    2012-06-11

    Sensitive and quantitative nucleic acid testing from complex biological samples is now an important component of clinical diagnostics. Whereas nucleic acid amplification represents the gold standard, its utility in resource-limited and point-of-care settings can be problematic due to assay interferants, assay time, engineering constraints, and costs associated with both wetware and hardware. In contrast, amplification-free nucleic acid testing can circumvent these limitations by enabling direct target hybridization within complex sample matrices. In this work, we grew random copolymer brushes from the surface of silica-coated magnetic nanoparticles using azide-modified and hydroxyl oligo ethylene glycol methacrylate (OEGMA) monomers. The azide-functionalized polymer brush was first conjugated, via copper-catalyzed azide/alkyne cycloaddition (CuAAC), with herpes simplex virus (HSV)-specific oligonucleotides and then with alkyne-substituted polyethylene glycol to eliminate all residual azide groups. Our methodology enabled control over brush thickness and probe density and enabled multiple consecutive coupling reactions on the particle grafted brush. Brush- and probe-modified particles were then combined in a 20 min hybridization with fluorescent polystyrene nanoparticles modified with HSV-specific reporter probes. Following magnetic capture and washing, the particles were analyzed with an aggregate fluorescence measurement, which yielded a limit of detection of 6 pM in buffer and 60 pM in 50% fetal bovine serum. Adoption of brush- and probe-modified particles into a particle counting assay will result in the development of diagnostic assays with significant improvements in sensitivity. PMID:22612382

  15. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclical amplification with beads (PMCAb)

    USGS Publications Warehouse

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/−mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  16. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    PubMed Central

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-01-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care. PMID:26404403

  17. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology. PMID:27010123

  18. Real-Time Duplex Applications of Loop-Mediated AMPlification (LAMP) by Assimilating Probes

    PubMed Central

    Kubota, Ryo; Jenkins, Daniel M.

    2015-01-01

    Isothermal nucleic-acid amplification methods such as Loop-Mediated isothermal AMPlification (LAMP) are increasingly appealing alternatives to PCR for use in portable diagnostic system due to the low cost, weight, and power requirements of the instrumentation. As such, interest in developing new probes and other functionality based on the LAMP reaction has been intense. Here, we report on the development of duplexed LAMP assays for pathogen detection using spectrally unique Assimilating Probes. As proof of principle, we used a reaction for Salmonella enterica as a model coupled with a reaction for λ-phage DNA as an internal control, as well as a duplexed assay to sub-type specific quarantine strains of the bacterial wilt pathogen Ralstonia solanacearum. Detection limits for bacterial DNA analyzed in individual reactions was less than 100 genomic equivalents in all cases, and increased by one to two orders of magnitude when reactions were coupled in duplexed formats. Even so, due to the more robust activity of newly available strand-displacing polymerases, the duplexed assays reported here were more powerful than analogous individual reactions reported only a few years ago, and represent a significant advance for incorporation of internal controls to validate assay results in the field. PMID:25741765

  19. Real-time duplex applications of loop-mediated AMPlification (LAMP) by assimilating probes.

    PubMed

    Kubota, Ryo; Jenkins, Daniel M

    2015-01-01

    Isothermal nucleic-acid amplification methods such as Loop-Mediated isothermal AMPlification (LAMP) are increasingly appealing alternatives to PCR for use in portable diagnostic system due to the low cost, weight, and power requirements of the instrumentation. As such, interest in developing new probes and other functionality based on the LAMP reaction has been intense. Here, we report on the development of duplexed LAMP assays for pathogen detection using spectrally unique Assimilating Probes. As proof of principle, we used a reaction for Salmonella enterica as a model coupled with a reaction for λ-phage DNA as an internal control, as well as a duplexed assay to sub-type specific quarantine strains of the bacterial wilt pathogen Ralstonia solanacearum. Detection limits for bacterial DNA analyzed in individual reactions was less than 100 genomic equivalents in all cases, and increased by one to two orders of magnitude when reactions were coupled in duplexed formats. Even so, due to the more robust activity of newly available strand-displacing polymerases, the duplexed assays reported here were more powerful than analogous individual reactions reported only a few years ago, and represent a significant advance for incorporation of internal controls to validate assay results in the field. PMID:25741765

  20. Transient amplification limits noise suppression in biochemical networks

    NASA Astrophysics Data System (ADS)

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  1. Transient amplification limits noise suppression in biochemical networks.

    PubMed

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function. PMID:26871109

  2. Magnetic Field Amplification by Cosmic Rays in Supernova Remnant Shocks

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Spitkovsky, A.

    2010-02-01

    Cosmic rays (CRs) accelerated in supernova remnant (SNR) shocks are though to produce significant magnetic field amplification (a factor of 100 in their downstream medium). This amplification is believed to be caused by plasma instabilities driven by CRs as they stream in front of the shocks. Using particle-in-cell plasma simulations, we investigate possible instabilities, considering arbitrary angles between the CR streaming and the magnetic field. In the limit of quasi-parallel propagation, we recover Bell's cosmic ray current-driven (CRCD) instability. In the quasi-perpendicular case we find a new instability, the perpendicular current-driven (PCD) instability, and elucidate its physical nature. The PCD instability is driven by CRs protruding into regions of pre-amplified transverse field, which is likely to occur near the shocks. We study the expected saturation mechanisms of these instabilities for the case of SNR shocks. We find that the maximum amplification factor of the PCD instability is 50 in the upstream medium of the shocks, which is 5 times larger than the one corresponding to the CRCD instability. This result shows that CR-driven instabilities would play an essential role in the magnetic amplification inferred from SNR shock observations.

  3. Direct Extraction and Amplification of DNA from Soil.

    ERIC Educational Resources Information Center

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  4. Chirped-pulse amplification of 100-fsec pulses.

    PubMed

    Pessot, M; Squier, J; Mourou, G; Harter, D J

    1989-08-01

    Chirped-pulse amplification is used to generate 2-mJ pulses of 106-fsec duration in an alexandrite amplifier. Compression of the optical pulse is achieved by using a sequence of intracavity prisms in conjunction with diffraction gratings. This allows for the compensation of both linear and quadratic contributions to the dispersion from the amplifier. PMID:19752971

  5. Parametric amplification of soliton steering in optical lattices.

    PubMed

    Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A

    2004-05-15

    We report on the effect of parametric amplification of spatial soliton swinging in Kerr-type nonlinear media with longitudinal and transverse periodic modulation of the linear refractive index. The parameter areas are found where the soliton center motion is analogous to the motion of a parametrically driven pendulum. This effect has potential applications for controllable soliton steering. PMID:15181999

  6. Modeling and simulation of ultra-short pulse amplification

    NASA Astrophysics Data System (ADS)

    Pflaum, Christoph; Hartmann, Rainer; Rahimi, Zhabiz

    2016-03-01

    Ultra-short pulses with high average power are required for a variety of technical and medical applications. Single, multi-pass, and regenerative amplifiers are used, in order to increase the power of ultra-short lasers. Typical laser crystals for such amplifiers include Ti:Sapphire or Yb:YAG laser crystals. Difficulties in the amplification of ultra-short pulses include gain narrowing effects and dispersion effects in the laser crystal. In particular, these complications arise, when a pulse stretcher is needed before amplification of the laser beam. We present a technique to model and simulate the amplification of ultra-short pulses. This technique allows to model both gain narrowing effects and decrease of beam quality caused by amplification of the laser beam. This requires a detailed 3-dimensional simulation of population inversion. Gain narrowing effects are taken into account by analyzing the gain of the spectrum of the laser beam. It is important to distinguish amplifiers with one or only two passes and a regenerative amplifier. These two different kind of amplifiers are modeled by different approaches. A regenerative amplifier is modeled by a set of time dependent rate equations. However, a single pass amplifier is modeled by a set of spatial dependent rate equations. In both cases, a system of rate equations arises from spectral discretization of the laser beam. Detailed simulation results are presented.

  7. Heralded amplification for precision measurements with spin ensembles

    SciTech Connect

    Brunner, Nicolas; Polzik, Eugene S.; Simon, Christoph

    2011-10-15

    We propose a simple heralded amplification scheme for small rotations of the collective spin of an ensemble of particles. Our protocol makes use of two basic primitives for quantum memories, namely, partial mapping of light onto an ensemble, and conversion of a collective spin excitation into light. The proposed scheme should be realizable with current technology, with potential applications to atomic clocks and magnetometry.

  8. Amplification and characterization of the retinoblastoma gene VNTR by PCR.

    PubMed Central

    Scharf, S J; Bowcock, A M; McClure, G; Klitz, W; Yandell, D W; Erlich, H A

    1992-01-01

    VNTR regions are informative genetic markers for linkage mapping and individual identification. Using PCR, we have developed a procedure for the enzymatic amplification of the VNTR located in the 16th intron of the human retinoblastoma (RB1) gene. We have also prepared a nonisotopically labeled oligonucleotide probe which facilitates detection of the amplification products. In examining 250 individuals from four different populations, we have detected 11 alleles ranging from 650 to 1,800 bp in size. The core repeat is approximately 50 bp in length. On the basis of the observed allele frequencies for Caucasian, African-American, and Hispanic populations from the United States and for the Mexican Hispanic population, the heterozygosities have been calculated to be 62%, 75%, 61%, and 50%, respectively. The observed genotype frequencies do not deviate from the values expected under Hardy-Weinberg equilibrium. The effect of varying primer sequences, annealing temperature, and cycle number on the amplification are also discussed. Amplification of this marker may also prove useful for detecting the heterozygosity loss that is associated with tumor formation in retinoblastoma. Images Figure 4 Figure 2 Figure 3 Figure 5 PMID:1734717

  9. An Inexpensive Group FM Amplification System for the Classroom.

    ERIC Educational Resources Information Center

    Worner, William A.

    1988-01-01

    An inexpensive FM amplification system was developed to enhance auditory learning in classrooms for the hearing impaired. Evaluation indicated that the system equalizes the sound pressure level throughout the room, with the increased sound pressure level falling in the range of 70 to 73 decibels. (Author/DB)

  10. Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification.

    PubMed

    Liu, Che-Hung; Chen, Qi; Liu, Chang-Hua; Zhong, Zhaohui

    2016-02-10

    In a modern wireless communication system, signal amplification is critical for overcoming losses during multiple data transformations/processes and long-distance transmission. Common mode and differential mode are two fundamental amplification mechanisms, and they utilize totally different circuit configurations. In this paper, we report a new type of dual-gate graphene ambipolar device with capability of operating under both common and differential modes to realize signal amplification. The signal goes through two stages of modulation where the phase of signal can be individually modulated to be either in-phase or out-of-phase at two stages by exploiting the ambipolarity of graphene. As a result, both common and differential mode amplifications can be achieved within one single device, which is not possible in the conventional circuit configuration. In addition, a common-mode rejection ratio as high as 80 dB can be achieved, making it possible for low noise circuit application. These results open up new directions of graphene-based ambipolar electronics that greatly simplify the RF circuit complexity and the design of multifunction device operation. PMID:26808093

  11. Pulse Recycling and Weak Value Amplification for Precision Metrology

    NASA Astrophysics Data System (ADS)

    Graham, Trent; Byard, Courtney; Kwiat, Paul; Jordan, Andrew

    2015-05-01

    Weak-value measurements have been shown to be useful for making precision optical measurements, owing to the huge amplification of tiny effects which is achievable with the technique (Hosten 2008, Dixon 2009, Egan 2012, Viza 2013). This amplification is especially helpful in the case where technical noise limits the resolution. However, if the intrinsic shot noise limits the resolution, weak-value measurements offer no advantage because the amplification is achieved via a postselection which discards most of the photons input into the measuring system. The reduction in photon number cancels the increase in signal from the amplification, and the resolution is not increased. To overcome this, we implement a method for recycling the discarded photons. We show that, for a given number of photons input to the system, recycling gives an improvement over the resolution of a conventional measurement. Our work with a simple double-pass recycling system demonstrated a 1.4x improvement over the standard shot-noise limit. We also present our work toward achieving a many-pass recycling system, for which we expect a five-fold improvement over the shot-noise limit. Such a weak-measurement recycling system could be combined with quantum states to further enhance the achievable resolution.

  12. Preferential amplification of rising versus falling frequency whistler mode signals

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Harid, V.; Spasojevic, M.; Gołkowski, M.; Inan, U. S.

    2015-01-01

    Analysis of ground-based ELF/VLF observations of injected whistler mode waves from the 1986 Siple Station experiment demonstrates the preferential magnetospheric amplification of rising over descending frequency-time ramps. From examining conjugate region receptions of ±1 kHz/s frequency-time ramps, we find that rising ramps generate an average total power 1.9 times higher than that of falling frequency ramps when both are observed during a transmission. And in 17% of receptions, only rising ramps are observed above the noise floor. Furthermore, the amplification ratio inversely correlates with the noise and total signal power. Using a narrowband Vlasov-Maxwell numerical simulation, we explore the preferential amplification due to differences in linear growth rate as a function of frequency, relative to the frequency which maximizes the linear growth rate for a given anisotropy, and in nonlinear phase trapping. These results contribute to the understanding of magnetospheric wave amplification and the preference for structured rising elements in chorus.

  13. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    PubMed

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection. PMID:27347606

  14. Cross Species Amplification of Microsatellite Markers in Fragaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellites or simple sequence repeats (SSRs) are one of the most preferred DNA-based tools for variety identification and linkage mapping. The objective of this study was to develop expressed sequence tag (EST)-SSR primers in Fragaria and determine their cross species amplification in fourteen ...

  15. Evaluation of Modified Yfiler™ Amplification Strategy for Compromised Samples

    PubMed Central

    Sturk, Kimberly A.; Coble, Michael D.; Barritt, Suzanne M.; Irwin, Jodi A.

    2009-01-01

    Aim To characterize the data produced using a modified amplification protocol for the AmpFℓSTR® Yfiler™ PCR Amplification Kit (Applied Biosystems) and explore the potential of Y-chromosomal short tandem repeat (Y-STR) recovery from severely degraded skeletal remains encountered at the Armed Forces DNA Identification Laboratory. Methods Experiments were performed using two sets of Yfiler™ amplification parameters. One set of parameters reflected the manufacturer’s recommendations. The second set of parameters included twice the recommended Taq concentration and 6 additional cycles. Recovery of authentic alleles and the incidence of drop-in alleles were assessed for 3 data sets: 8 different quantities of pristine DNA, 8 artificially-degraded samples, and 31 non-probative case samples. Results Samples tested with both protocols from all 3 data sets yielded twice as many authentic alleles under the modified parameters than under the standard parameters (62% vs 31%), with only a nominal associated increase in the occurrence of non-authentic alleles (1.36% of all alleles detected). When applied to a range of representative casework samples, the modified protocol leveraged 9 or more reproducible alleles from over half of the specimens tested. Conclusion Reproducible and informative Y-STR profiles can be recovered from a broad range of degraded and inhibited skeletal remains extracts when a commercially available kit is employed under modified amplification parameters. PMID:19480019

  16. Sound Field Amplification and Listening Behaviour in the Classroom.

    ERIC Educational Resources Information Center

    McSporran, Eileen; Butterworth, Yvonne; Rowson, Vivienne J.

    1997-01-01

    Asserts that the acoustical environment of the classroom is an important variable in the listening and psychoeducational function, both for children with hearing loss and those with normal hearing. Reports the results of a test of a sound amplification system in two primary classes; indicates the benefits of the system. (DSK)

  17. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  18. New Technologies in Amplification: Applications to the Pediatric Population.

    ERIC Educational Resources Information Center

    Kopun, Judy

    1995-01-01

    Discussion of technological advances in amplification for children with hearing impairments focuses on the advantages and limitations of fitting children with devices that have features such as dynamic-range compression, multiband signal processing, multimemory capability, digital feedback reduction, and frequency transposition. (Author/DB)

  19. Experimental observation of amplification death via asymmetric gain

    NASA Astrophysics Data System (ADS)

    Chitsazi, Mahboobeh; Factor, Samuel; Schindler, Joseph; Ramezani, Hamidreza; Ellis, Fred; Kottos, Tsampikos

    2015-03-01

    The amplification action of two coupled RLC circuits is experimentally controlled via a spatially inhomogeneous gain. Specifically we have demonstrated that increasing the overall gain of an unstable RLC circuit can result in its stabilization. This counterintuitive phenomenon has its roots in managing impedance matching and thus can be applicable to a variety of wave systems.

  20. Relay studies: Existing data, current testing and cabinet amplification

    SciTech Connect

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1988-01-01

    The seismic fragility of most electrical equipment is governed by the malfunction of relays. This paper discusses the combined study being performed at BNL by evaluating existing fragility test data, conducting a new relay test program and estimating the cabinet amplification at relay locations. Existing test data for relays have been collected and evaluated at BNL. The data base consists of results from a wide variety of test programs - single frequency, single axis, multifrequency, multiaxis tests. For most relays, the non-operating condition controls the chatter fragility limit. In order to characterize the effect of various parameters on the relay seismic capacity, a test program has been initiated at BNL. Selected test specimens will be tested to determine the influence of frequency of vibration, direction of motion, adjustments of relay parts, among others, on the relay capacities. The amplification study involves computing dynamic amplification factors at various device locations in motor control centers and switchgear cabinets. Fragility and high level qualification data have been used for this purpose. This paper includes a summary of the amplification results. 4 refs., 6 figs., 1 tab.

  1. Dichroism for orbital angular momentum using parametric amplification

    NASA Astrophysics Data System (ADS)

    Lowney, J.; Roger, T.; Faccio, D.; Wright, E. M.

    2014-11-01

    We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.

  2. Identification of genetic elements associated with EPSPS gene amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved to confer resistance to glyphosate, the world's most important herbicide, in the wee...

  3. OOPS! Retractions, Corrections, and Amplifications in Online Environments.

    ERIC Educational Resources Information Center

    Ojala, Marydee

    1996-01-01

    Examines the practice and implications of issuing corrections, retractions, and amplifications in online databases. All database producers do not provide mechanisms to accommodate retractions and corrections, and it can be difficult for a searcher to find evidence of error correction. Sidebars illustrate both the lack of and evidence of…

  4. Loss of KLF14 triggers centrosome amplification and tumorigenesis

    PubMed Central

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  5. Loss of KLF14 triggers centrosome amplification and tumorigenesis.

    PubMed

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  6. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  7. Soil amplification with a strong impedance contrast: Boston, Massachusetts

    USGS Publications Warehouse

    Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric

    2016-01-01

    In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern

  8. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.

    PubMed

    Vishwanathan, Nandita; Le, Huong; Jacob, Nitya M; Tsao, Yung-Shyeng; Ng, Sze-Wai; Loo, Bernard; Liu, Zhong; Kantardjieff, Anne; Hu, Wei-Shou

    2014-03-01

    Dihydrofolate reductase (DHFR) system is used to amplify the product gene to multiple copies in Chinese Hamster Ovary (CHO) cells for generating cell lines which produce the recombinant protein at high levels. The physiological changes accompanying the transformation of the non-protein secreting host cells to a high producing cell line is not well characterized. We performed transcriptome analysis on CHO cells undergoing the selection and amplification processes. A host CHO cell line was transfected with a vector containing genes encoding the mouse DHFR (mDHFR) and a recombinant human IgG (hIgG). Clones were isolated following selection and subcloned following amplification. Control cells were transfected with a control plasmid which did not have the hIgG genes. Although methotrexate (MTX) amplification increased the transcript level of the mDHFR gene significantly, its effect on both hIgG heavy and light chain genes was more modest. The subclones appeared to retain the transcriptome signatures of their parental clones, however, their productivity varied among those derived from the same clone. The transcript levels of hIgG transgenes of all subclones fall in a narrower range than the product titer, alluding to the role of many functional attributes, other than transgene transcript, on productivity. We cross examined functional class enrichment during selection and amplification as well as between high and low producers and discerned common features among them. We hypothesize that the role of amplification is not merely increasing transcript levels, but also enriching survivors which have developed the cellular machinery for secreting proteins, leading to an increased frequency of isolating high-producing clones. We put forward the possibility of assembling a hyper-productivity gene set through comparative transcriptome analysis of a wide range of samples. PMID:24108600

  9. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones.

    PubMed

    Enríquez Denton, M; Wienecke, J; Zhang, M; Hultborn, H; Kirkwood, P A

    2012-07-01

    The role of persistent inward currents (PICs) in cat respiratory motoneurones (phrenic inspiratory and thoracic expiratory) was investigated by studying the voltage-dependent amplification of central respiratory drive potentials (CRDPs), recorded intracellularly, with action potentials blocked with the local anaesthetic derivative, QX-314. Decerebrate unanaesthetized or barbiturate-anaesthetized preparations were used. In expiratory motoneurones, plateau potentials were observed in the decerebrates, but not under anaesthesia. For phrenic motoneurones, no plateau potentials were observed in either state (except in one motoneurone after the abolition of the respiratory drive by means of a medullary lesion), but all motoneurones showed voltage-dependent amplification of the CRDPs, over a wide range of membrane potentials, too wide to result mainly from PIC activation. The measurements of the amplification were restricted to the phase of excitation, thus excluding the inhibitory phase. Amplification was found to be greatest for the smallest CRDPs in the lowest resistance motoneurones and was reduced or abolished following intracellular injection of the NMDA channel blocker, MK-801. Plateau potentials were readily evoked in non-phrenic cervical motoneurones in the same (decerebrate) preparations. We conclude that the voltage-dependent amplification of synaptic excitation in phrenic motoneurones is mainly the result of NMDA channel modulation rather than the activation of Ca2+ channel mediated PICs, despite phrenic motoneurones being strongly immunohistochemically labelled for CaV1.3 channels. The differential PIC activation in different motoneurones, all of which are CaV1.3 positive, leads us to postulate that the descending modulation of PICs is more selective than has hitherto been believed. PMID:22495582

  10. Association between somatic amplification, anxiety, depression, stress and migraine

    PubMed Central

    2013-01-01

    Background The aim of this study is to investigate the associations between migraine related disability and somatosensory amplification, depression, anxiety, and stress. Method Fifty-five migraine patients who applied to the outpatient unit of the Neurology Department of Acibadem University School of Medicine, Maslak Hospital in Istanbul, Turkey, and twenty-eight subjects without migraine were recruited for the study. The participants were asked to complete a sociodemographic form, Migraine Disability Assessment Scale (MIDAS), Depression Anxiety Stress Scale, Somatosensory Amplification Scale (SSAS). Results Somatosensory amplification scores were significantly higher in the migraineurs than in the control group (29.85+/−6.63 vs 26.07+/−7.1; p=0.027). Somatosensory amplification scores and depression scores were significantly higher in migraineurs with moderate and severe disability than in patients with minimal and mild disability (31.7+/−6.4 vs 27.71+/−5.49; p=0.01, 11.27+/−8.7 vs 7.38+/−8.11; p=0.04, respectively). A significant positive correlation was found between the frequency of migraine attacks for at least three consecutive months (MIDAS A scores) and the SSAS scores (r=0.363, p=0.007) in migraineurs. The MIDAS total scores were also significantly correlated with the DASS depression subcale scores (r=0.267, p=0.04), and the DASS stress subscale scores (r=0.268, p=0.05). Conclusion Psychological factors, and vulnerability to bodily sensations may incease the burden of migraine. We point out that the timely assessing of somatic amplification and the evaluation of mental status would help improve the quality of life of in migraineurs. PMID:23799958

  11. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  12. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  13. New perspectives on microbial community distortion after whole-genome amplification

    EPA Science Inventory

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  14. Rapid isothermal detection of Phytophthora species on plant samples using recombinase polymerase amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently several isothermal amplification techniques have been developed that are extremely tolerant towards inhibitors present in many plant extracts. Recombinase polymerase amplification (RPA) assays for the genus Phytophthora have been developed which provide a simple and rapid method to macerate...

  15. Nucleic acid detection system and method for detecting influenza

    SciTech Connect

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  16. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification

    PubMed Central

    Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.

    2015-01-01

    DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of

  17. Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification

    NASA Astrophysics Data System (ADS)

    Yang, D. L.; Pun, E. Y. B.; Lin, H.

    2009-10-01

    K+-Na+ ion-exchanged channel waveguide amplifiers have been fabricated in Tm3+-doped acid-resistant aluminum germanate glasses. The optical and relative gains of a 3.15-cm-long waveguide channel were achieved to be 4.05 and 2.29 dB at 1.482 μm wavelength under 110 mW 793 nm laser excitation, respectively. After compensating the propagation loss, an internal gain of 1.50 dB and a remarkable gain coefficient of 0.48 dB/cm were obtained, which reveals a definite S-band signal amplification in the low phonon energy glass waveguide. As an expectation, UV-radiation-sensitive glass waveguide should promote the developments of gain-flatten S-band waveguide amplifiers, infrared UV-writing grating waveguide lasers, and compact multifunctional integrated optical devices.

  18. Evolutionary dynamics and population control during in vitro selection and amplification with multiple targets.

    PubMed Central

    Shi, Hua; Fan, Xiaochun; Ni, Zhuoyu; Lis, John T

    2002-01-01

    Iterative cycles of in vitro selection and amplification allow rare functional nucleic acid molecules, aptamers, to be isolated from large sequence pools. Here we present an analysis of the progression of a selection experiment that simultaneously yielded two families of RNA aptamers against two disparate targets: the intended target protein (B52/SRp55) and the partitioning matrix. We tracked the sequence abundance and binding activity to reveal the enrichment of the aptamers through successive generations of selected pools. The two aptamer families showed distinct trajectories of evolution, as did members within a single family. We also developed a method to control the relative abundance of an aptamer family in selected pools. This method, involving specific ribonuclease digestion, can be used to reduce the background selection for aptamers that bind the matrix. Additionally, it can be used to isolate a full spectrum of aptamers in a sequential and exhaustive manner for all the different targets in a mixture. PMID:12458799

  19. MALARIA DIAGNOSIS BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) IN THAILAND

    PubMed Central

    OCKER, Ronja; PROMPUNJAI, Yongyut; CHUTIPONGVIVATE, Salakchit; KARANIS, Panagiotis

    2016-01-01

    The loop-mediated isothermal amplification method (LAMP) is a recently developed molecular technique that amplifies nucleic acid under isothermal conditions. For malaria diagnosis, 150 blood samples from consecutive febrile malaria patients, and healthy subjects were screened in Thailand. Each sample was diagnosed by LAMP, microscopy and nested polymerase chain reaction (nPCR), using nPCR as the gold standard. Malaria LAMP was performed using Plasmodiumgenus and Plasmodium falciparum specific assays in parallel. For the genus Plasmodium, microscopy showed a sensitivity and specificity of 100%, while LAMP presented 99% of sensitivity and 93% of specificity. For P. falciparum, microscopy had a sensitivity of 95%, and LAMP of 90%, regarding the specificity; and microscopy presented 93% and LAMP 97% of specificity. The results of the genus-specific LAMP technique were highly consistent with those of nPCR and the sensitivity of P. falciparum detection was only marginally lower. PMID:27074321

  20. Design and Application of Rolling Circle Amplification for a Tumor-Specific Drug Carrier.

    PubMed

    Kim, Jong Hwan; Jang, Mihue; Kim, Young-Je; Ahn, Hyung Jun

    2015-10-01

    It is challenging to design rolling circle amplification (RCA) for tumor-selective delivery of drugs. Here, we devise a doxorubicin nanocarrier composed of RCA products, cholesterol-DNA, and folate-DNA conjugates. RCA products, designed to contain tandem repeats of short hairpin DNA, employ the repeated sequences complementary to both DNA conjugates, and thus RCA products/cholesterol-DNA/folate-DNA complexes, generated via sequential base pairing processes, acquire the amphiphilic properties that facilitate self-assembly into the highly condensed nanoparticles (RCA nanoparticles). Doxorubicin-loaded RCA nanoparticles, especially with high cargo capacity, release drugs to the environment with the aid of acidity and show selective cytotoxicity to cancer cells. Particularly, the condensed structures enable RCA nanoparticles to be resistant to nucleases in the blood. These results show that RCA nanoparticles have great potential as a doxorubicin carrier for targeted cancer therapy, and furthermore, our strategy provides an alternative tool to exploit RCA techniques on drug delivery systems. PMID:26361253

  1. Renewable Microcolumns for Automated DNA Purification and Flow-through Amplification: From Sediment Samples through Polymerase Chain Reaction

    SciTech Connect

    Bruckner-Lea, Cindy J. ); Tsukuda, Toyoko ); Dockendorff, Brian P. ); Follansbee, James C. ); Kingsley, Mark T. ); Ocampo, Catherine O.; Stults, Jennie R.; Chandler, Darrell P.

    2001-12-01

    There is an increasing need for field-portable systems for the detection and characterization of microorganisms in the environment. Nucleic acids analysis is frequently the method of choice for discriminating between bacteria in complex systems, but standard protocols are difficult to automate and current microfluidic devices are not configured specifically for environmental sample analysis. In this report, we describe the development of an integrated DNA purification and PCR amplification system and demonstrate its use for the automated purification and amplification of Geobacter chapelli DNA (genomic DNA or plasmid targets) from sediments. The system includes renewable separation columns for the automated capture and release of microparticle purification matrices, and can be easily reprogrammed for new separation chemistries and sample types. The DNA extraction efficiency for the automated system ranged from 3 to 25 percent, depending on the length and concentration of the DNA target . The system was more efficient than batch capture methods for the recovery of dilute genomic DNA even though the reagen volumes were smaller than required for the batch procedure. The automated DNA concentration and purification module was coupled to a flow-through, Peltier-controlled DNA amplification chamber, and used to successfully purify and amplify genomic and plasmid DNA from sediment extracts. Cleaning protocols were also developed to allow reuse of the integrated sample preparation system, including the flow-through PCR tube.

  2. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification.

    PubMed

    Yin, Bin-Cheng; Liu, Yu-Qiang; Ye, Bang-Ce

    2012-03-21

    Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescent form. Herein, we take advantage of the duplex-specific nuclease (DSN) to create a new signal-amplifying mechanism, duplex-specific nuclease signal amplification (DSNSA), to increase the detection sensitivity of molecular beacons (Taqman probes). DSN nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, thus, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules. We further demonstrate the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples. Our experimental results showed a quantitative measurement of sequence-specific miRNAs with the detection limit in the femtomolar range, nearly 5 orders of magnitude lower than that of conventional molecular beacons. This amplification strategy also demonstrated a high selectivity for discriminating differences between miRNA family members. Considering the superior sensitivity and specificity, as well as the multiplex and simple-to-implement features, this method promises a great potential of becoming a routine tool for simultaneously quantitative analysis of multiple miRNAs in tissues or cells, and supplies valuable information for biomedical research and clinical early diagnosis. PMID:22394262

  3. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification.

    PubMed

    Liu, Shufeng; Wei, Wenji; Sun, Xinya; Wang, Li

    2016-09-15

    In this article, a simple, highly sensitive and selective electrochemical DNAzyme sensor for Pb(2+) was developed on the basis of a 8-17 DNAzyme cleavage-induced template-independent polymerization and alkaline phosphatase amplification strategy. The hairpin-like substrate strand (HP DNA) of 8-17 DNAzyme was firstly immobilized onto the electrode. In the presence of Pb(2+) and the catalytic strand of 8-17 DNAzyme, the HP DNA could be cleaved to expose the free 3'-OH terminal, which could be then utilized for the cascade operation by terminal deoxynucleotidyl transferase (TdTase) for the base extension to incorporate biotinylated dUTP (dUTP-biotin). The further conjugated streptavidin-labeled alkaline phosphatase (SA-ALP) then catalyzed conversion of electrochemically inactive 1-naphthyl phosphate (1-NP) for the generation of electrochemical response signal. The currently fabricated Pb(2+) sensor effectively combines triply cascade amplification effects including cyclic Pb(2+)-dependent DNAzyme cleavage, TdTase-mediated base extension and enzymatic catalysis of ALP. An impressive detection limit of 0.043nM toward Pb(2+) with an excellent selectivity could be ultimately obtained, which was superior than most of the electrochemical methods. Thus, the developed amplification strategy opens a promising avenue for the detection of metal ions and may extend for the detection of other nucleic acid-related analytes. PMID:27093488

  4. Amplification of target-specific, ligation-dependent circular probe.

    PubMed

    Zhang, D Y; Brandwein, M; Hsuih, T C; Li, H

    1998-05-12

    We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes 'locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to 'rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein-Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a

  5. Optimization of extraction and PCR amplification of RNA extracts from paraffin-embedded tissue in different fixatives.

    PubMed

    Koopmans, M; Monroe, S S; Coffield, L M; Zaki, S R

    1993-07-01

    A method was developed for fast and efficient isolation of RNA from paraffin-embedded tissue sections for subsequent PCR analysis. This method is based on the binding of RNA to acid-treated glass beads in the presence of a high molarity of guanidinium salt. It can be completed within an hour, and obviates the need for dewaxing and phenol/chloroform extractions. The effect of various fixatives and fixation times was tested and the amplification of actin mRNA fragments ranging in length from 82 to 507 bp was used to demonstrate the presence of RNA in the extracts. The method was compared to existing extraction techniques by studying the quality of the templates for reverse-transcriptase polymerase chain reaction amplification (RT-PCR), using virus-infected and mock-infected paraffin-embedded cell pellets as a model. PCR amplification of cellular and viral RNA was successful for RNA isolated by use of all extraction techniques, although the glass bead method was preferred for its simplicity and rapidity. Specimens fixed with formalin were found to be suitable for PCR, but the best results were obtained with acetone-fixed paraffin-embedded material. Dewaxing of tissue sections had no effect on the yield and quality of RNA extractions, and further purification of the extracts using gel filtration did not improve the results. After the protocols were optimized, rotavirus-infected cell pellets were used to demonstrate that extraction and amplification of dsRNA was possible. The information obtained from the studies with the model system was used for extraction of toroviral and rotaviral RNA from archival intestinal material. These data indicate that paraffin-embedded archival tissue can be used for RT-PCR analysis, adding an important technique to diagnostic pathology and retrospective studies. PMID:8396155

  6. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  7. Visual detection of H3 subtype avian influenza viruses by reverse transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background Recent epidemiological investigation of different HA subtypes of avian influenza viruses (AIVs) shows that the H3 subtype is the most predominant among low pathogenic AIVs (LPAIVs), and the seasonal variations in isolation of H3 subtype AIVs are consistent with that of human H3 subtype influenza viruses. Consequently, the development of a rapid, simple, sensitive detection method for H3 subtype AIVs is required. The loop-mediated isothermal amplification (LAMP) assay is a simple, rapid, sensitive and cost-effective nucleic acid amplification method that does not require any specialized equipment. Results A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect the H3 subtype AIVs visually. Specific primer sets target the sequences of the hemagglutinin (HA) gene of H3 subtype AIVs were designed, and assay reaction conditions were optimized. The established assay was performed in a water bath for 50 minutes, and the amplification result was visualized directly as well as under ultraviolet (UV) light reflections. The detection limit of the RT-LAMP assay was 0.1pg total RNA of virus, which was one hundred-fold higher than that of RT-PCR. The results on specificity indicated that the assay had no cross-reactions with other subtype AIVs or avian respiratory pathogens. Furthermore, a total of 176 clinical samples collected from birds at the various live-bird markets (LBMs) were subjected to the H3-subtype-specific RT-LAMP (H3-RT-LAMP). Thirty-eight H3 subtype AIVs were identified from the 176 clinical samples that were consistent with that of virus isolation. Conclusions The newly developed H3-RT-LAMP assay is simple, sensitive, rapid and can identify H3 subtype AIVs visually. Consequently, it will be a very useful screening assay for the surveillance of H3 subtype AIVs in underequipped laboratories as well as in field conditions. PMID:21729297

  8. [Detection of the Zaire Subtype of the Ebola Virus by Isothermal Multiple Self-matching Initiated Amplification].

    PubMed

    Li, Xinna; Nie, Kai; Wang, Ji; Zhang, Dan; Guan, Li; Liu, Jun; Ke, Yuehua; Zhou, Hangyu; Ma, Xuejun

    2016-01-01

    Given the Ebola outbreak in West Africa and the risks of spread to other regions, a rapid, sensitive and simple method for the detection of the Ebola virus (EBOV) is of great significance for the prevention and control of Ebola. We developed a simple colorimetric isothermal multiple self-matching initiated amplification (IMSA) for rapid detection of the Zaire subtype of the Ebola virus (EBOV-Z). This method employed six primers that recognized seven sites of the EBOV-Z nucleoprotein gene for amplification of nucleic acids under isothermal conditions at 63 degrees C for 1 h. Amplification products were detected through visual inspection of color change by pre-addition of hydroxyl naphthol blue dye. Relative sensitivity was validated by detection of serial tenfold dilutions of virus-like particles containing the partial EBOV-Z nucleoprotein gene and mock clinical sample. Specificity of IMSA was validated by detection of the plasma of 30 healthy volunteers, the dengue virus, and Japanese encephalitis virus. IMSA had comparable sensitivity to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and cross-reaction with human plasma or other viruses was not observed. Reverse transcription-isothermal multiple self-matching initiated amplification (RT-IMSA) was also evaluated and compared in parallel with the commercial RT-qPCR kit for detection of EBOV-suspected samples of human blood in Sierra Leone. Sensitivity and specificity of the RT-IMSA was 91.4% and 100%, respectively. These data suggest that RT-IMSA is a valuable tool for the detection of the EBOV with the distinct advantages of simplicity and low cost compared with RT-qPCR. PMID:27295876

  9. Amplification of Stokes signals with phase conjugation by combined laser and SBS amplifiers

    SciTech Connect

    Bel'dyugin, Igor' M; Efimkov, V F; Zubarev, I G; Mikhailov, S I; Sobolev, V B

    2007-01-31

    Various schemes for amplification of Stokes signals are investigated. Some new systems, such as an SBS amplifier in the transient amplification regime and a combined laser amplifier-SBS amplifier, are proposed and realised. Conditions are found under which amplification is accompanied by small distortions of the spatial structure of a signal. A two-pass system for small-signal amplification with phase conjugation is developed by using a PC mirror in the combined amplification system. The gains up to 10{sup 16} were obtained for the phase conjugation quality {approx}80%, the output energy {approx}1 J, and pulse duration {approx}30 ns. (nonlinear optical phenomena)

  10. Raman amplification in plasma: Wavebreaking and heating effects

    SciTech Connect

    Farmer, J. P.; Ersfeld, B.; Jaroszynski, D. A.

    2010-11-15

    A three-wave model has been developed to investigate the influence of wavebreaking and thermal effects on the Raman amplification in plasma. This has been benchmarked against a particle-in-cell code with positive results. A new regime, the 'thermal chirp' regime, has been identified and illustrated. Here the shift in plasma resonance due to heating of the plasma by a monochromatic pump allows a probe pulse to be amplified and compressed without significant pump depletion. In regimes where damping dominates, it is found that inverse bremsstrahlung dominates at high densities, and improved growth rates may be achieved by preheating the plasma. At low densities or high pump intensities, wavebreaking acts to limit amplification. The inclusion of thermal effects can dramatically reduce the peak attainable intensity because of the reduced wavebreaking limit at finite temperatures.

  11. Amplification, Decoherence, and the Acquisition of Information by Spin Environments.

    PubMed

    Zwolak, Michael; Riedel, C Jess; Zurek, Wojciech H

    2016-01-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond. PMID:27193389

  12. Whole genome amplification - Review of applications and advances

    SciTech Connect

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  13. Weak value amplification via second-order correlated technique

    NASA Astrophysics Data System (ADS)

    Ting, Cui; Jing-Zheng, Huang; Xiang, Liu; Gui-Hua, Zeng

    2016-02-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05), the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).

  14. Separate TRP channels mediate amplification and transduction in drosophila

    NASA Astrophysics Data System (ADS)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  15. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  16. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-05-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.

  17. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.

    PubMed

    Holzinger, Tobias; Emmert, Thomas; Polifke, Wolfgang

    2014-11-01

    Identifying optimum design parameters and operating conditions of thermoacoustic engines or refrigerators is crucial for the further development of such devices. This publication proposes an optimization criterion for the stack of a thermoacoustic device with the objective of maximizing the amplification of acoustic energy by the stack. For this purpose, the stack is described as an acoustic multi-port, represented mathematically by its scattering matrix. It is shown how the scattering matrix may be deduced from the standard thermo-acoustic governing equations. Then an acoustic power balance is deduced from the scattering matrix. The spectral norm and the eigenvectors of the scattering matrix identify optimal acoustic states. Stack design operating parameters and frequencies with maximum amplification of acoustic power are identified for various stack configurations. The corresponding acoustic states are interpreted physically. PMID:25373945

  18. DC-driven thermoelectric Peltier device for precise DNA amplification

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Shigeo; Suzuki, Tadzunu; Inoue, Kazuhito; Azumi, Yoshitaka

    2015-05-01

    Using a DC-driven Peltier device, we fabricated a DNA amplification system [polymerase chain reaction (PCR) system] with the aim of increasing its speed and precision. The Peltier device had a well block sandwiched by Bi2Se0.37Te2.36 as an N-type thermoelectric material and Bi0.59Sb1.30Te3 as a P-type material. The well block was directly controlled by the electric current, leading to a high thermal response. Using the Peltier device with the well block, we performed thermal cycles of a PCR, and we demonstrated that our PCR system produces a smaller amount of nonspecific products for the genome DNA (gDNA) of Arabidopsis thaliana, leading to a more precise DNA amplification system.

  19. Amplification of intrinsic fluctuations by the Lorenz equations

    NASA Astrophysics Data System (ADS)

    Fox, Ronald F.; Elston, T. C.

    1993-07-01

    Macroscopic systems (e.g., hydrodynamics, chemical reactions, electrical circuits, etc.) manifest intrinsic fluctuations of molecular and thermal origin. When the macroscopic dynamics is deterministically chaotic, the intrinsic fluctuations may become amplified by several orders of magnitude. Numerical studies of this phenomenon are presented in detail for the Lorenz model. Amplification to macroscopic scales is exhibited, and quantitative methods (binning and a difference-norm) are presented for measuring macroscopically subliminal amplification effects. In order to test the quality of the numerical results, noise induced chaos is studied around a deterministically nonchaotic state, where the scaling law relating the Lyapunov exponent to noise strength obtained for maps is confirmed for the Lorenz model, a system of ordinary differential equations.

  20. Electromagnetic biaxial microscanner with mechanical amplification at resonance.

    PubMed

    Cho, Ah Ran; Han, Aleum; Ju, Suna; Jeong, Haesoo; Park, Jae-Hyoung; Kim, Inhoi; Bu, Jong-Uk; Ji, Chang-Hyeon

    2015-06-29

    We present the design, fabrication, and measurement results of an electromagnetic biaxial microscanner with mechanical amplification mechanism. A gimbaled scanner with two distinct single-crystal silicon layer thicknesses and integrated copper coils has been fabricated with combination of surface and bulk micromachining processes. A magnet assembly consisting of an array of permanent magnets and a pole piece has been placed under the substrate to provide high strength lateral magnetic field oriented 45° to two perpendicular scanning axes. Micromirror has been supported by additional gimbal to implement a mechanical amplification. A 1.2mm-diameter mirror with aluminum reflective surface has been actuated at 60Hz for vertical scan and at 21kHz for horizontal scan. Maximum scan angle of 36.12° at 21.19kHz and 17.62° at 60Hz have been obtained for horizontal and vertical scans, respectively. PMID:26191691

  1. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  2. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    PubMed Central

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-01-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond. PMID:27193389

  3. Strong coupling and parametric amplification in mechanical modes of graphene

    NASA Astrophysics Data System (ADS)

    Mathew, John; Patel, Raj; Borah, Abhinandan; Vijayaraghavan, Rajamani; Deshmukh, Mandar

    We demonstrate strong dynamical coupling and parametric amplification in mechanical modes of a graphene drum using an all electrical configuration. Low tension in the system allows large electrostatic tunability of the modes thus enabling dynamic pumping experiments. In the strong coupling regime a red detuned pump gives rise to new eigenmodes having highly tunable mode splitting (cooperativity ~60) with coherent energy transfer. The coupling is also used to amplify the modes under the action of a blue detuned pump. In addition, self-oscillations and parametric amplification of the fundamental vibrational mode is demonstrated with a gain of nearly 3. The low mass and high frequency of these atomically thin resonators could prove useful for studying mode coupling in the quantum regime.

  4. Measurement-based noiseless linear amplification for quantum communication

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Helen M.; Walk, Nathan; Assad, Syed M.; Janousek, Jiri; Hosseini, Sara; Ralph, Timothy C.; Symul, Thomas; Lam, Ping Koy

    2014-04-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require advanced experimental techniques such as noiseless amplification. Recently, it was shown that the benefits of noiseless amplification could be extracted by performing a post-selective filtering of the measurement record to improve the performance of quantum key distribution. We apply this protocol to entanglement degraded by transmission loss of up to the equivalent of 100 km of optical fibre. We measure an effective entangled resource stronger than that achievable by even a maximally entangled resource passively transmitted through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime. The measurement-based noiseless linear amplifier offers two advantages over its physical counterpart: ease of implementation and near-optimal probability of success. It should provide an effective and versatile tool for a broad class of entanglement-based quantum communication protocols.

  5. Nanoparticle amplification via photothermal unveiling of cryptic collagen binding sites

    PubMed Central

    Lo, Justin H.; von Maltzahn, Geoffrey; Douglass, Jacqueline; Park, Ji-Ho; Sailor, Michael J.; Ruoslahti, Erkki

    2013-01-01

    The success of nanoparticle-based cancer therapies ultimately depends on their ability to selectively and efficiently accumulate in regions of disease. Outfitting nanoparticles to actively target tumor-specific markers has improved specificity, yet it remains a challenge to amass adequate therapy in a selective manner. To help address this challenge, we have developed a mechanism of nanoparticle amplification based on stigmergic (environment-modifying) signalling, in which a “Signalling” population of gold nanorods induces localized unveiling of cryptic collagen epitopes, which are in turn targeted by “Responding” nanoparticles bearing gelatin-binding fibronectin fragments. We demonstrate that this two-particle system results in significantly increased, selective recruitment of responding particles. Such amplification strategies have the potential to overcome limitations associated with single-particle targeting by leveraging the capacity of nanoparticles to interact with their environment to create abundant new binding motifs. PMID:24177171

  6. Spin noise amplification and giant noise in optical microcavity

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, A. V.; Lagoudakis, P. V.

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  7. Amplification, attenuation, and dispersion of sound in inhomogeneous flows

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    First order effects of gradients in nonuniform potential flows of a compressible gas are included in a dispersion relation for sound waves. Three nondimensional numbers, the ratio of the change in the kinetic energy in one wavelength to the thermal energy of the gas, the ratio of the change in the total energy in one wavelength to the thermal energy, and the ratio of the dillatation frequency (the rate of expansion per unit volume) to the acoustic frequency, play a role in the separation of the effects of flow gradients into isotropic and anisotropic effects. Dispersion and attenuation (or amplification) of sound are found to be proportional to the wavelength for small wavelength, and depend on the direction of wave propagation relative to flow gradients. Modification of ray acoustics for the effects of flow gradients is suggested, and conditions for amplification and attenuation of sound are discussed.

  8. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2016-05-01

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointed out.

  9. Drought-induced amplification of Saint Louis encephalitis virus, Florida.

    PubMed

    Shaman, Jeffrey; Day, Jonathan F; Stieglitz, Marc

    2002-06-01

    We used a dynamic hydrology model to simulate water table depth (WTD) and quantify the relationship between Saint Louis encephalitis virus (SLEV) transmission and hydrologic conditions in Indian River County, Florida, from 1986 through 1991, a period with an SLEV epidemic. Virus transmission followed periods of modeled drought (specifically low WTDs 12 to 17 weeks before virus transmission, followed by a rising of the water table 1 to 2 weeks before virus transmission). Further evidence from collections of Culex nigripalpus (the major mosquito vector of SLEV in Florida) suggests that during extended spring droughts vector mosquitoes and nestling, juvenile, and adult wild birds congregate in selected refuges, facilitating epizootic amplification of SLEV. When the drought ends and habitat availability increases, the SLEV-infected Cx. nigripalpus and wild birds disperse, initiating an SLEV transmission cycle. These findings demonstrate a mechanism by which drought facilitates the amplification of SLEV and its subsequent transmission to humans. PMID:12023912

  10. Divided-pulse nonlinear amplification and simultaneous compression

    SciTech Connect

    Hao, Qiang; Zhang, Qingshan; Sun, Tingting; Chen, Jie; Wang, Yuqing; Guo, Zhengru; Yang, Kangwen; Guo, Zhanhua; Zeng, Heping

    2015-03-09

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at room temperature.

  11. Narrow band amplification of light carrying orbital angular momentum.

    PubMed

    Borba, G C; Barreiro, S; Pruvost, L; Felinto, D; Tabosa, J W R

    2016-05-01

    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F = 3) ↔ 6P3/2(F' = 2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states. PMID:27137618

  12. Surface instability of binary compounds caused by sputter yield amplification

    SciTech Connect

    Mark Bradley, R.

    2012-06-01

    It is demonstrated that the flat surface of a binary material that is subjected to normal-incidence ion bombardment can be unstable even if the curvature dependence of the sputter yields is negligibly small. This unforeseen instability is brought about by sputter yield amplification, and it results in the formation of a disordered array of nanodots with the lighter of the two atomic species concentrated at the peaks of the dots.

  13. A Window into Domain Amplification Through Piccolo in Teleost Fish

    PubMed Central

    Nonet, Michael L.

    2012-01-01

    I describe and characterize the extensive amplification of the zinc finger domain of Piccolo selectively in teleost fish. Piccolo and Bassoon are partially functionally redundant and play roles in regulating the pool of neurotransmitter-filled synaptic vesicles present at synapses. In mice, each protein contains two N-terminal zinc finger domains that have been implicated in interacting with synaptic vesicles. In all teleosts examined, both the Bassoon and Piccolo genes are duplicated. Both teleost bassoon genes and one piccolo gene show very similar domain structure and intron-exon organization to their mouse homologs. In contrast, in piccolo b a single exon that encodes a zinc finger domain is amplified 8 to 16 times in different teleost species. Analysis of the amplified exons suggests they were added and/or deleted from the gene as individual exons in rare events that are likely the result of unequal crossovers between homologous sequences. Surprisingly, the structure of the repeats from cod and zebrafish suggest that amplification of this exon has occurred independently multiple times in the teleost lineage. Based on the structure of the exons, I propose a model in which selection for high sequence similarity at the 5′ and 3′ ends of the exon drives amplification of the repeats and diversity in repeat length likely promotes the stability of the repeated exons by minimizing the likelihood of mispairing of adjacent repeat sequences. Further analysis of piccolo b in teleosts should provide a window through which to examine the process of domain amplification. PMID:23173084

  14. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  15. Adiabatic Amplification of Plasmons and Demons in 2D Systems.

    PubMed

    Sun, Zhiyuan; Basov, D N; Fogler, M M

    2016-08-12

    We theoretically investigate charged collective modes in a two-dimensional conductor with hot electrons where the instantaneous mode frequencies gradually increase or decrease with time. We show that the loss compensation or even amplification of the modes may occur. We apply our theory to two types of collective modes in graphene, the plasmons and the energy waves, which can be probed in optical pump-probe experiments. PMID:27563987

  16. Parametric amplification in AgGaSe2

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Gettemy, Donald J.; Hietanen, Jack R.; Iannini, Rebecca A.

    1989-01-01

    AgGaSe2 has been grown, annealed, and characterized for the mid-IR. Characterization includes measurement of the average power-limiting factors including absorption and the variation of the refractive indices with temperature. Using specially annealed crystals 20 mm long and a Ho:YAG pump, parametric amplification at 3.39 microns has achieved a gain of 2.9 with a peak power input of only 8 MW/sq cm.

  17. MYC Amplification in Angiosarcoma Arising from an Arteriovenous Graft Site

    PubMed Central

    Paral, Kristen M.; Raca, Gordana; Krausz, Thomas

    2015-01-01

    Angiosarcoma arising in association with an arteriovenous graft (AVG) or fistula is a unique clinicopathologic scenario that appears to be gaining recognition in the literature. Among reported cases, none has described high-level MYC gene amplification, a genetic aberration that is increasingly unifying the various clinicopathologic subdivisions of angiosarcoma. We therefore report the MYC gene status in a case of angiosarcoma arising at an AVG site. PMID:26682080

  18. Selective inhibition of DNA amplification in nonadhering Mycoplasma pneumoniae cultures

    SciTech Connect

    Zigangirova, N.A.; Solov`eva, S.V.; Rakovskaya, I.V.

    1995-08-01

    Inhibition of amplification of various genome regions of Mycoplasma pneumoniae was observed in the polymerase chain reaction, and was dependent on cultivation conditions. A protein stably associated with DNA is responsible for the inhibitory effect. It is assumed that when the protein selectively associates with separate DNA regions, it can inhibit genes encoding pathogenicity factors, thus promoting mycoplasma transformation into persistent variants. 16 refs., 2 figs.

  19. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  20. Adiabatic Amplification of Plasmons and Demons in 2D Systems

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We theoretically investigate charged collective modes in a two-dimensional conductor with hot electrons where the instantaneous mode frequencies gradually increase or decrease with time. We show that the loss compensation or even amplification of the modes may occur. We apply our theory to two types of collective modes in graphene, the plasmons and the energy waves, which can be probed in optical pump-probe experiments.

  1. Stimulated Raman amplification, oscillation, and linewidth in barium nitrate

    NASA Technical Reports Server (NTRS)

    McCray, Christopher J.; Chyba, Thomas H.

    1998-01-01

    Measurements of Raman gain in a Ba(NO3)2 crystal are reported at 532 nm using a Raman oscillator/amplifier arrangement for differential absorption lidar measurements of ozone. The experimentally determined gain coefficient will be compared with theoretical results. The effect of single and multi-longitudinal mode pumping upon the amplification process will be discussed. Measurement of the Raman linewidth for 1st 2nd and 3d stokes shifts arc presented.

  2. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  3. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  4. Field and Current Amplification in the SSPX Spheromak

    SciTech Connect

    Hill, D N; Blumer, R H; Cohen, B I; Hooper, E B; McLean, H S; Moller, J; Pearlstein, L D; Ryutov, D D; Stallard, B W; Wood, R D; Woodruff, S; Holcomb, C T; Jarboe, T; Bellan, P; Romero-Talamas, C

    2002-10-08

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, <{beta}{sub e}>-4% and core {chi}{sub e} {approx} 30m{sup 2}/s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification.

  5. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    PubMed

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis. PMID:23272258

  6. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  7. Visualization of Drosophila melanogaster chorion genes undergoing amplification

    SciTech Connect

    Osheim, Y.N.; Miller, O.L. Jr.; Beyer, A.L.

    1988-07-01

    The authors visualized by electron microscopy the preferential amplification of Drosophila chorion genes in late-stage follicle cells. Chromatin spreads revealed large clusters of actively transcribed genes of the appropriate size, spacing, and orientation for chorion genes that were expressed with the correct temporal specificity. Occasionally the active genes were observed within or contiguous with intact replicons and replication forks. In every case, our micrographs are consistent with the hypothesis that the central region of each chorion domain contains a replication origin(s) used during the amplification event. In one case, a small replication bubble was observed precisely at the site of the essential region of the X chromosome amplification control element. The micrographs also suggest that forks at either end of a replicon frequently progress very different distances, presumably due to different times in initiation or different rates of movement. It appears that all chorion genes (even those coding for minor proteins) are transcribed in a ''fully on'' condition, albeit for varied durations, and that if replication fork passage does inactivate a promoter, it does so very transiently. Furthermore, a DNA segment containing one active gene is likely to have an additional active gene(s). Surprisingly, during the time frame of expected maximum activity, approximately half of the chorion sequences appear transciptionally inactive.

  8. Enhanced sequencing coverage with digital droplet multiple displacement amplification

    PubMed Central

    Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.

    2016-01-01

    Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978

  9. Raman amplification in plasma: thermal effects and damping

    NASA Astrophysics Data System (ADS)

    Farmer, J. P.; Ersfeld, B.; Raj, G.; Jaroszynski, D. A.

    2009-05-01

    The role of thermal effects on Raman amplification are investigated. The direct effects of damping on the process are found to be limited, leading only to a decrease from the peak output intensity predicted by cold plasma models. However, the shift in plasma resonance due to the Bohm-Gross shift can have a much larger influence, changing the required detuning between pump and probe and introducing an effective chirp through heating of the plasma by the pump pulse. This "thermal chirp" can both reduce the efficiency of the interaction and alter the evolution of the amplified probe, avoiding the increase in length observed in the linear regime without significant pump depletion. The influence of this chirp can be reduced by using a smaller ratio of laser frequency to plasma frequency, which simultaneously increases the growth rate of the probe and decreases the shift in plasma resonance. As such, thermal effects only serve to suppress the amplification of noise at low growth rates. The use of a chirped pump pulse can be used to suppress noise for higher growth rates, and has a smaller impact on the peak output intensity for seeded amplification. For the parameter ranges considered, Landau damping was found to be negligible, as Landau damping rates are typically small, and the low collisionality of the plasma causes the process to saturate quickly.

  10. Diagnosis of Brugian Filariasis by Loop-Mediated Isothermal Amplification

    PubMed Central

    Poole, Catherine B.; Tanner, Nathan A.; Zhang, Yinhua; Evans, Thomas C.; Carlow, Clotilde K. S.

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis. PMID:23272258

  11. Microsatellites Cross-Species Amplification across Some African Cichlids.

    PubMed

    Bezault, Etienne; Rognon, Xavier; Gharbi, Karim; Baroiller, Jean-Francois; Chevassus, Bernard

    2012-01-01

    The transfer of the genomic resources developed in the Nile tilapia, Oreochromis niloticus, to other Tilapiines sensu lato and African cichlid would provide new possibilities to study this amazing group from genetics, ecology, evolution, aquaculture, and conservation point of view. We tested the cross-species amplification of 32 O. niloticus microsatellite markers in a panel of 15 species from 5 different African cichlid tribes: Oreochromines (Oreochromis, Sarotherodon), Boreotilapiines (Tilapia), Chromidotilapines, Hemichromines, and Haplochromines. Amplification was successfully observed for 29 markers (91%), with a frequency of polymorphic (P(95)) loci per species around 70%. The mean number of alleles per locus and species was 3.2 but varied from 3.7 within Oreochromis species to 1.6 within the nontilapia species. The high level of cross-species amplification and polymorphism of the microsatellite markers tested in this study provides powerful tools for a wide range of molecular genetic studies within tilapia species as well as for other African cichlids. PMID:22701809

  12. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  13. Soliton amplification and reshaping in optical fibers with variable dispersion

    NASA Astrophysics Data System (ADS)

    Chu, P. L.; Malomed, Boris A.; Peng, G. D.

    1996-08-01

    We look for a setup providing optimum amplification and reshaping of short solitons in a lossy optical fiber. We consider a reshaper model combining a pointlike amplifier and a segment of a variable-dispersion fiber whose length is comparable with the soliton's dispersion length. The objective is to find reshaping configurations with a minimum length providing for release of a chirpless duly amplified soliton into the bulk fiber. In most cases the input pulse is taken as a soliton with no chirp, but chirped input pulses are tested as well. Two particular types of variable dispersion constant and linear. The main part of the analysis is done semianalytically by means of the variational approximation. Direct numerical simulations are also performed at some values of the parameters to permit us to examine the accuracy of the approximation (which proves to be good). It is found that the amplifier placed at the input edge of the reshaper always gives better results than the one at the output. The minimum necessary length of the variable-dispersion segment proves to be a decreasing function of the amplification factor. It is found that the performance characteristics are only weakly sensitive to a particular choice of the configuration within a given type of variable dispersion, so the actual choice can be determined by convenience of fabrication. The obtained results can be applied as well to optimize compression of solitons (without amplification) by variable-dispersion fibers.

  14. Disturbance amplification in boundary layers over thin wall films

    NASA Astrophysics Data System (ADS)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer A.

    2016-02-01

    In single-fluid boundary layers, streaks can amplify at sub-critical Reynolds numbers and initiate early transition to turbulence. Introducing a wall film of different viscosities can appreciably alter the stability of the base flow and, in particular, the transient growth of the perturbation streaks. The formalism of seminorms is used to identify optimal disturbances which maximize the kinetic energy in the two-fluid flow. An examination of optimal growth over a range of viscosity ratios of the film relative to the outer flow reveals three distinct regimes of amplification, each associated with a particular combination of the eigenfunctions. In order to elucidate the underlying amplification mechanisms, a model problem is formulated: An initial value problem is solved using an eigenfunction expansion and is used to compute the evolution of pairs of eigenfunctions. By appropriately selecting the pair, the initial value problem qualitatively reproduces the temporal evolution of the optimal disturbance, and provides an unambiguous explanation of the dynamics. Two regimes of transient growth are attributed to the evolution of the interface mode along with free-stream vortical modes; the third regime is due to the evolution of the interface and a discrete mode. The results demonstrate that a lower-viscosity film can effectively reduce the efficacy of the lift-up mechanism and, as a result, transient growth of disturbances. However, another mechanism of amplification of wall-normal vorticity arises due to the deformation of the two-fluid interface and becomes dominant below a critical viscosity ratio.

  15. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  16. Three-dimensional topographic amplification of seismic motion: Engineering Applications

    NASA Astrophysics Data System (ADS)

    Assimaki, D.; Mohammadi, K.

    2012-12-01

    Topography effects are associated with the presence of strong topographic relief; documented observations during strong seismic events have shown that structures on the tops of hills, ridges, and canyons had suffered greater damage than similar structures at the hill bases or on level ground. While there is qualitative agreement between theory and observations on topography effects, there is clear quantitative discrepancy: numerical predictions of crest-to-base amplification factors rarely exceed the value of 2, while amplification values observed in the field are as high as 10. We here investigate the focusing and scattering of seismic waves in 3D features by means of a systematic parametric study of the seismic response of idealized geometries on the surface of homogeneous elastic half space using finite differences, to quantify the role of geometry, material properties and ground motion characteristics in the predicted ground surface response. We specifically focus on pyramid (convex) geometries and elastic homogeneous material behavior, and use Ricker wavelets as vertical and oblique incident pulses on ground surface. Results are compared to analytical solutions and thereafter extended to account for soil layering, nonlinear response and broadband incident motion characteristics. We then develop geometry, material and ground motion dependent dimensionless amplification factors that can multiply flat ground surface response spectra and account for topography effects as part of engineering design code provisions.omparison of the scattered wavefield complexity emanating at the vertex and toe of a 45deg single slope upon incidence of a vertical, a forward and a backward oblique wave.

  17. Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe

    2016-09-01

    Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection. PMID:27493138

  18. Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) Generic Site Amplification for Graphic Site Amplification

    USGS Publications Warehouse

    Boore, David

    2016-01-01

    This short note contains two contributions related to deriving depth‐dependent velocity and density models for use in computing generic crustal amplifications. The first contribution is a method for interpolating two velocity profiles to obtain a third profile with a time‐averaged velocity  to depth Z that is equal to a specified value (e.g., for shear‐wave velocity VS,  for Z=30  m, in which the subscript S has been added to indicate that the average is for shear‐wave velocities). The second contribution is a procedure for obtaining densities from VS. The first contribution is used to extend and revise the Boore and Joyner (1997) generic rock VS model, for which , to a model with the more common . This new model is then used with the densities from the second contribution to compute crustal amplifications for a generic site with .

  19. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification.

    PubMed

    Itonaga, Masahiro; Matsuzaki, Ibu; Warigaya, Kenji; Tamura, Takaaki; Shimizu, Yuki; Fujimoto, Masakazu; Kojima, Fumiyoshi; Ichinose, Masao; Murata, Shin-Ichi

    2016-01-01

    Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation. PMID:26999437

  20. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    PubMed Central

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908