Science.gov

Sample records for acid amplification techniques

  1. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.

  2. In vitro amplification techniques for the detection of nucleic acids: new tools for the diagnostic laboratory.

    PubMed

    Persing, D H; Landry, M L

    1989-01-01

    The acceptance of nucleic acid probes as diagnostic tools for the clinical laboratory has been hampered by a number of factors, including laborious techniques and limited sensitivity. The focus of this review is on the recent development of amplification techniques to enhance the signal generated by nucleic acid-based detection systems. Three general areas are discussed: (1) amplification of target sequences using the polymerase chain reaction or the transcript amplification system, (2) amplification of the probe sequences using Q beta replicase, and (3) amplification of probe-generated signals with compound or "Christmas tree" probes. The hope of these new technologies is to simplify yet improve on the sensitivity of nucleic acid-based tests to enable them to attain a more prominent place in the diagnostic repertoire of the clinical laboratory.

  3. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for

  4. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  5. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

  6. Mycoplasma pneumoniae: Current Knowledge on Nucleic Acid Amplification Techniques and Serological Diagnostics.

    PubMed

    Loens, Katherine; Ieven, Margareta

    2016-01-01

    Mycoplasma pneumoniae (M. pneumoniae) belongs to the class Mollicutes and has been recognized as a common cause of respiratory tract infections (RTIs), including community-acquired pneumonia (CAP), that occur worldwide and in all age groups. In addition, M. pneumoniae can simultaneously or sequentially lead to damage in the nervous system and has been associated with a wide variety of other acute and chronic diseases. During the past 10 years, the proportion of LRTI in children and adults, associated with M. pneumoniae infection has ranged from 0 to more than 50%. This variation is due to the age and the geographic location of the population examined but also due to the diagnostic methods used. The true role of M. pneumoniae in RTIs remains a challenge given the many limitations and lack of standardization of the applied diagnostic tool in most cases, with resultant wide variations in data from different studies. Correct and rapid diagnosis and/or management of M. pneumoniae infections is, however, critical to initiate appropriate antibiotic treatment and is nowadays usually done by PCR and/or serology. Several recent reviews, have summarized current methods for the detection and identification of M. pneumoniae. This review will therefore provide a look at the general principles, advantages, diagnostic value, and limitations of the most currently used detection techniques for the etiological diagnosis of a M. pneumoniae infection as they evolve from research to daily practice. PMID:27064893

  7. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    PubMed Central

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-01-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  8. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  9. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection.

    PubMed

    Liu, Quanli; Lin, Xuexia; Lin, Luyao; Yi, Linglu; Li, Haifang; Lin, Jin-Ming

    2015-10-01

    Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation. One-step RT-PCR simplified the amplification step, while two-step RT-PCR was more sensitive and less vulnerable to the interference. Furthermore, instead of gel electrophoresis, microchip electrophoresis (MCE) for RNA assay was employed to realize high-throughput and rapid analysis. Finally, the results show that PCR-based or NASBA-based mRNA tests are valuable for HPV mRNA assay, which can be potentially applied for clinical diagnosis and prognosis of cervical and other anogenital carcinoma. PMID:26332096

  10. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection.

    PubMed

    Liu, Quanli; Lin, Xuexia; Lin, Luyao; Yi, Linglu; Li, Haifang; Lin, Jin-Ming

    2015-10-01

    Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation. One-step RT-PCR simplified the amplification step, while two-step RT-PCR was more sensitive and less vulnerable to the interference. Furthermore, instead of gel electrophoresis, microchip electrophoresis (MCE) for RNA assay was employed to realize high-throughput and rapid analysis. Finally, the results show that PCR-based or NASBA-based mRNA tests are valuable for HPV mRNA assay, which can be potentially applied for clinical diagnosis and prognosis of cervical and other anogenital carcinoma.

  11. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  12. Concordance study between one-step nucleic acid amplification and morphologic techniques to detect lymph node metastasis in papillary carcinoma of the thyroid.

    PubMed

    del Carmen, Sofía; Gatius, Sonia; Franch-Arcas, Guzmán; Baena, José Antonio; Gonzalez, Oscar; Zafon, Carlos; Cuevas, Dolors; Valls, Joan; Pérez, Angustias; Martinez, Mercedes; Ros, Susana; Macías, Carmen García; Iglesias, Carmela; Matías-Guiu, Xavier; de Álava, Enrique

    2016-02-01

    Tumor resection in papillary thyroid carcinoma (PTC) is often accompanied by lymph node (LN) removal of the central and lateral cervical compartments. One-step nucleic acid amplification (OSNA) is a polymerase chain reaction-based technique that quantifies cytokeratin 19 (CK19) messenger RNA copies. Our aim is to assess the value of OSNA in detection of LN metastases in PTC, in comparison with imprints and microscopic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue. A total of 387 LNs from 37 patients were studied. From each half LN, 2 imprints were taken and analyzed with hematoxylin and eosin (H&E) and CK19 immunostaining. One half of the LN was submitted to OSNA and one half to FFPE processing and H&E and CK19 staining. For concordance analysis, every single LN was considered as a case. A group of 11 cases with discordant results between OSNA and H&E/CK19 FFPE sections were subjected to additional FFPE serial sectioning and H&E and CK19 staining. We found a high degree of concordance between the assays used, with sensitivities ranging from 0.81 to 0.95, and specificities ranging from 0.87 and 0.98. OSNA allowed upstaging of patients from pN0 to pN1, in comparison with standard pathologic analysis. Identification of a metastatic LN with more than 15000 CK19 messenger RNA copies predicted the presence of a second LN with macrometastasis (<5000 copies). In summary, the study shows that OSNA application in sentinel or suspicious LN may be helpful in assessing nodal status in PTC patients.

  13. Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays

    PubMed Central

    Padley, David J; Heath, Alan B; Sutherland, Colin; Chiodini, Peter L; Baylis, Sally A

    2008-01-01

    Background In order to harmonize results for the detection and quantification of Plasmodium falciparum DNA by nucleic acid amplification technique (NAT)-based assays, a World Health Organization (WHO) collaborative study was performed, evaluating a series of candidate standard preparations. Methods Fourteen laboratories from 10 different countries participated in the collaborative study. Four candidate preparations based upon blood samples parasitaemic for P. falciparum were evaluated in the study. Sample AA was lyophilized, whilst samples BB, CC and DD were liquid/frozen preparations. The candidate standards were tested by each laboratory at a range of dilutions in four independent assays, using both qualitative and quantitative NAT-based assays. The results were collated and analysed statistically. Results Twenty sets of data were returned from the participating laboratories and used to determine the mean P. falciparum DNA content for each sample. The mean log10 "equivalents"/ml were 8.51 for sample AA, 8.45 for sample BB, 8.35 for sample CC, and 5.51 for sample DD. The freeze-dried preparation AA, was examined by accelerated thermal degradation studies and found to be highly stable. Conclusion On the basis of the collaborative study, the freeze-dried material, AA (NIBSC code No. 04/176) was established as the 1st WHO International Standard for P. falciparum DNA NAT-based assays and has been assigned a potency of 109 International Units (IU) per ml. Each vial contains 5 × 108 IU, equivalent to 0.5 ml of material after reconstitution. PMID:18652656

  14. Non-instrumented nucleic acid amplification assay

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Domingo, Gonzalo; Gerlach, Jay; Tang, Dennis; Harvey, Darrel; Talwar, Nick; Fichtenholz, Alex; van Lew, Bill; LaBarre, Paul

    2008-02-01

    We have developed components of a diagnostic disposable platform that has the dual purpose of providing molecular diagnostics at the point of care (POC) as well as stabilizing specimens for further analysis via a centralized surveillance system. This diagnostic is targeted for use in low-resource settings by minimally trained health workers. The disposable device does not require any additional instrumentation and will be almost as rapid and simple to use as a lateral flow strip test - yet will offer the sensitivity and specificity of nucleic acid amplification tests (NAATs). The low-cost integrated device is composed of three functional components: (1) a sample-processing subunit that generates clean and stabilized DNA from raw samples containing nucleic acids, (2) a NA amplification subunit, and (3) visual amplicon detection sub-unit. The device integrates chemical exothermic heating, temperature stabilization using phase-change materials, and isothermal nucleic acid amplification. The aim of developing this system is to provide pathogen detection with NAAT-level sensitivity in low-resource settings where there is no access to instrumentation. If a disease occurs, patients would be tested with the disposable in the field. A nucleic acid sample would be preserved within the spent disposable which could be sent to a central laboratory facility for further analysis if needed.

  15. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

    PubMed Central

    Linnes, J. C.; Rodriguez, N. M.; Liu, L.

    2016-01-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  16. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    PubMed

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  17. Collaborative study for establishment of a European Pharmacopoei Biological Reference Preparation (BRP) for B19 virus DNA testing of plasma pools by nucleic acid amplification technique.

    PubMed

    Nübling, C M; Daas, A; Buchheit, K H

    2004-01-01

    The goal of the collaborative study was to calibrate the B19 DNA content of a candidate Biological Reference Preparation (BRP) that is intended to be used for the validation of the analytical procedure, as threshold control and/or as quantitative reference material in the Nucleic Acid Amplification Technique (NAT) test of plasma pools for detection of B19 contamination. The candidate BRP was calibrated against the 1st International Standard for B19 DNA NAT assays. According to the European Pharmacopoeia monograph Human anti-D immunoglobulin, the threshold control needs to have a titre of 10( 4) IU/ml of B19 virus DNA. The lyophilised candidate BRP was prepared from 0.5 ml aliquots of a plasma pool spiked with B19 virus. The B19 virus originated from a "B19 virus window phase" blood donation (anti-B19 negative, B19-DNA high titre positive) and was diluted in a plasma pool tested negative by both serological and NAT assays for Hepatitis B Virus, Hepatitis C Virus and Human Immunodeficiency Virus 1 to obtain a B19-DNA concentration level in the range of 10( 6) copies/ml. The residual water content of the lyophilised candidate BRP was determined as 0.98 +/- 0.65% (mean +/- relative standard deviation). Sixteen laboratories (Official Medicine Control Laboratories, manufacturers of plasma derivatives, NAT test laboratories and NAT kit manufacturers) from nine countries participated. Participants were requested to test the candidate BRP and the International Standard (99/800) in four independent test runs on different days using their in-house qualitative and/or quantitative NAT methods. Sixteen laboratories reported results. Thirteen laboratories reported results from qualitative assays and 5 laboratories reported results from quantitative assays. Two laboratories reported results from both types of assay. For the qualitative assays a weighted combined potency of 5.64 log( 10) IU/ml with 95 per cent confidence limits of +/- 0.17 log( 10) which corresponds to 67 to 150

  18. Collaborative study for establishment of a European Pharmacopoei Biological Reference Preparation (BRP) for B19 virus DNA testing of plasma pools by nucleic acid amplification technique.

    PubMed

    Nübling, C M; Daas, A; Buchheit, K H

    2004-01-01

    The goal of the collaborative study was to calibrate the B19 DNA content of a candidate Biological Reference Preparation (BRP) that is intended to be used for the validation of the analytical procedure, as threshold control and/or as quantitative reference material in the Nucleic Acid Amplification Technique (NAT) test of plasma pools for detection of B19 contamination. The candidate BRP was calibrated against the 1st International Standard for B19 DNA NAT assays. According to the European Pharmacopoeia monograph Human anti-D immunoglobulin, the threshold control needs to have a titre of 10( 4) IU/ml of B19 virus DNA. The lyophilised candidate BRP was prepared from 0.5 ml aliquots of a plasma pool spiked with B19 virus. The B19 virus originated from a "B19 virus window phase" blood donation (anti-B19 negative, B19-DNA high titre positive) and was diluted in a plasma pool tested negative by both serological and NAT assays for Hepatitis B Virus, Hepatitis C Virus and Human Immunodeficiency Virus 1 to obtain a B19-DNA concentration level in the range of 10( 6) copies/ml. The residual water content of the lyophilised candidate BRP was determined as 0.98 +/- 0.65% (mean +/- relative standard deviation). Sixteen laboratories (Official Medicine Control Laboratories, manufacturers of plasma derivatives, NAT test laboratories and NAT kit manufacturers) from nine countries participated. Participants were requested to test the candidate BRP and the International Standard (99/800) in four independent test runs on different days using their in-house qualitative and/or quantitative NAT methods. Sixteen laboratories reported results. Thirteen laboratories reported results from qualitative assays and 5 laboratories reported results from quantitative assays. Two laboratories reported results from both types of assay. For the qualitative assays a weighted combined potency of 5.64 log( 10) IU/ml with 95 per cent confidence limits of +/- 0.17 log( 10) which corresponds to 67 to 150

  19. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  20. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.

    PubMed

    Ahmad, Farhan; Hashsham, Syed A

    2012-07-01

    Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10-20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics. PMID:22704369

  1. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  2. Weak value amplification via second-order correlated technique

    NASA Astrophysics Data System (ADS)

    Ting, Cui; Jing-Zheng, Huang; Xiang, Liu; Gui-Hua, Zeng

    2016-02-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05), the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).

  3. Replica amplification of nucleic acid arrays

    SciTech Connect

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  4. Signal amplification on microarrays: techniques and advances in tyramide signal amplification (TSA)

    NASA Astrophysics Data System (ADS)

    Adler, Karl E.; Tyler, Mary C.; Mikulskis, Alvydas; O'Malley, Mike; Broadbent, Jeff J.; Golenko, Eva E.; Johnson, Andy L.; Lott, Steve; Khimani, Anis H.; Bobrow, Mark N.

    2001-06-01

    Increased sensitivity for differential mRNA expression analysis on microarrays is rapidly becoming a serious need as the technology matures. Current techniques using direct cyanine labeled targets are effective for expression analysis of abundant mRNA sources but have limited utility for analysis where mRNA quantities are limited. Tyramide signal amplification (TSATM) applied to microarray detection provides dramatic improvements in sensitivity, allowing the reduction of sample sizes by as much as 200-fold. The technique includes hapten labeling of two separate RNA populations, microarray hybridization and detection of each hapten with sequential signal amplification steps. The system uses fluorescein and biotin nucleotide analogs as the hapten pair. Hybridized fluorescein and biotin labeled targets are sequentially reacted with horseradish peroxidase and cyanine 3 and cyanine 5 tyramides, resulting in the numerous depositions of these fluorophors on the array. Differential gene expression analysis of LNCaP and PC3 prostate cancer cell lines using one microgram of total RNA and TSA detection, indicates good correlation with results obtained starting with 100 micrograms ((mu) g) of total RNA in a conventional cyanine 3 and cyanine 5 nucleotide analog labeling and detection system (i.e., the direct method).

  5. Nucleic acid amplification using modular branched primers

    SciTech Connect

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  6. [Advance in loop-mediated isothermal amplification technique and its applications in point-of-care testing platforms].

    PubMed

    Guan, Li; Ma, Xue-Jun

    2014-07-01

    Loop-mediated isothermal amplification (LAMP) is a novel in vitro nucleic acid amplification method conducted under isothermal conditions with the advantages of high specificity, sensitivity, rapidity and easy detection. Since it was established in 2000, it has been widely applied in various fields of analytical science including the diagnosis of a variety of pathogens, identification of embryo sex, detection of genetically modified organisms and cancer gene identification. Additionally, significant progress has been made in the optimization of the LAMP method, such as accelerated reactions, simplified sample processing, the realization of multiplex amplification, and the enhanced specificity of reaction and detection methods. LAMP technology also shows much potential to be adopted as part of point-of-care testing platforms by the micromation, automation and integration with other technologies such as Lab-on-a-Chip and digital nucleic acid amplification. This review summarizes the latest advances in the LAMP technique and its applications in developing point-of-care testing platforms.

  7. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    PubMed

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-01

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications

  8. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    PubMed

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-01

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications.

  9. Ligation with nucleic acid sequence-based amplification.

    PubMed

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M; Artenstein, Andrew W; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays. PMID:22449695

  10. Acidic precipitation: a technical amplification of NAPAP's findings

    SciTech Connect

    Lefohn, A.S.; Krupa, S.V.

    1988-06-01

    In September 1987, NAPAP released a 4-volume, 925 page interim report that summarized the effects of acidic precipitation on crops, forests, aquatic ecosystems, visibility, and human health. Following the release of the report, APCA coordinated an international conference to provide a forum for the technical amplification of the conclusions reached in NAPAP's report. Scientists from the United States and Canada were invited to participate in the conference. The focus of the meeting was concerned only with the technical aspects of the NAPAP report. At the conference, there were important research concepts presented that may require further attention before definitive, bottom line statements can be made concerning the effects of acid precipitation on the environment. The purpose of this paper is to summarize the key technical points made at the conference and provide NAPAP with additional scientific inputs as it begins to prepare for its 1990 Final Assessment Report.

  11. Nucleic acid detection using G-quadruplex amplification methodologies.

    PubMed

    Roembke, Benjamin T; Nakayama, Shizuka; Sintim, Herman O

    2013-12-15

    In the last decade, there has been an explosion in the use of G-quadruplex labels to detect various analytes, including DNA/RNA, proteins, metals and other metabolites. In this review, we focus on strategies for the detection of nucleic acids, using G-quadruplexes as detection labels or as enzyme labels that amplify detection signals. Methods to detect other analytes are briefly mentioned. We highlight various strategies, including split G-quadruplex, hemin-G-quadruplex conjugates, molecular beacon G-quadruplex or inhibited G-quadruplex probes. The tandem use of G-quadruplex labels with various DNA-modifying enzymes, such as polymerases (used for rolling circle amplification), exonucleases and endonucleases, is also discussed. Some of the detection modalities that are discussed in this review include fluorescence, colorimetric, chemiluminescence, and electrochemical methods.

  12. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    PubMed Central

    Mauk, Michael G.; Liu, Changchun; Song, Jinzhao; Bau, Haim H.

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  13. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    PubMed Central

    Mauk, Michael G.; Liu, Changchun; Song, Jinzhao; Bau, Haim H.

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed. PMID:27600235

  14. Quantitative titration of nucleic acids by enzymatic amplification reactions run to saturation.

    PubMed Central

    Pannetier, C; Delassus, S; Darche, S; Saucier, C; Kourilsky, P

    1993-01-01

    In vitro enzymatic amplification of nucleic acids by PCR or other techniques is a very sensitive method to detect rare DNA segments. We present here a protocol that allows the rapid, sensitive and precise quantification of DNA molecules using PCR amplification run to saturation. The DNA (or cDNA) to be assayed is co-amplified with known amounts of an internal standard DNA. We show that the latter must be almost identical to the assayed DNA, otherwise quantification at the plateau is unreliable. The read-out of the amplification involves one or two additional oligonucleotides. Using fluorescent oligonucleotides as primers in run-off reactions together with an automated DNA sequencer, we could measure the level of expression of several genes, like the murine MHC class I H-2Kd or a specific T cell receptor beta chain transcript in the course of an immunization. mRNA levels were normalized by measuring in a similar manner the number of transcripts encoding the housekeeping gene HPRT. Finally, our procedure might allow the rapid analysis of a large number of samples at the same time, as illustrated by the simultaneous analysis of the mRNAs encoding the CD4 and CD8 murine T cell markers. PMID:8441670

  15. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS.

  16. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS).

    PubMed

    Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A

    2014-10-13

    Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists.

  17. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma.

    PubMed

    Ahmed, Sarah A; van de Sande, Wendy W J; Desnos-Ollivier, Marie; Fahal, Ahmed H; Mhmoud, Najwa A; de Hoog, G S

    2015-10-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples.

  18. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use.

  19. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. PMID:26706801

  20. Label-free detection of microRNA based on coupling multiple isothermal amplification techniques

    PubMed Central

    Zheng, Xiangjiang; Niu, Li; Wei, Di; Li, Xuemei; Zhang, Shusheng

    2016-01-01

    MicroRNA (miRNA) was a promising class of cancer biomarkers. Here we developed a label-free method for sensitive measurement of let-7d miRNA based on multiple amplification techniques. The primer will bind to the duplex strand DNA that was formed by stem-loop template and target let-7d to initiate strand displacement amplification (SDA) in tandem. The released single strand DNA will be a primer to bind the circular template to initiate rolling circle amplification (RCA). The products based on multiple amplifications will be detected by a standard fluorimeter with N-methyl mesoporphyrin IX (NMM) as the fluorescent indicator. The proposed method exhibited excellent selectivity and high sensitivity with a detection limit of as low as 1.5 × 10−13 M. Moreover, this methodology was used for the determination of biomolecules in real serum samples with satisfying results. PMID:27777399

  1. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-01

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity. PMID:27142084

  2. Detection of genetically modified organisms in foods by DNA amplification techniques.

    PubMed

    García-Cañas, Virginia; Cifuentes, Alejandro; González, Ramón

    2004-01-01

    In this article, the different DNA amplification techniques that are being used for detecting genetically modified organisms (GMOs) in foods are examined. This study intends to provide an updated overview (including works published till June 2002) on the principal applications of such techniques together with their main advantages and drawbacks in GMO detection in foods. Some relevant facts on sampling, DNA isolation, and DNA amplification methods are discussed. Moreover; these analytical protocols are discuissed from a quantitative point of view, including the newest investigations on multiplex detection of GMOs in foods and validation of methods.

  3. Real-time nucleic acid sequence-based amplification in nanoliter volumes.

    PubMed

    Gulliksen, Anja; Solli, Lars; Karlsen, Frank; Rogne, Henrik; Hovig, Eivind; Nordstrøm, Trine; Sirevåg, Reidun

    2004-01-01

    Real-time nucleic acid sequence-based amplification (NASBA) is an isothermal method specifically designed for amplification of RNA. Fluorescent molecular beacon probes enable real-time monitoring of the amplification process. Successful identification, utilizing the real-time NASBA technology, was performed on a microchip with oligonucleotides at a concentration of 1.0 and 0.1 microM, in 10- and 50-nL reaction chambers, respectively. The microchip was developed in a silicon-glass structure. An instrument providing thermal control and an optical detection system was built for amplification readout. Experimental results demonstrate distinct amplification processes. Miniaturized real-time NASBA in microchips makes high-throughput diagnostics of bacteria, viruses, and cancer markers possible, at reduced cost and without contamination.

  4. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection.

    PubMed

    Mauk, Michael G; Liu, Changchun; Sadik, Mohamed; Bau, Haim H

    2015-01-01

    Molecular (nucleic acid)-based diagnostics tests have many advantages over immunoassays, particularly with regard to sensitivity and specificity. Most on-site diagnostic tests, however, are immunoassay-based because conventional nucleic acid-based tests (NATs) require extensive sample processing, trained operators, and specialized equipment. To make NATs more convenient, especially for point-of-care diagnostics and on-site testing, a simple plastic microfluidic cassette ("chip") has been developed for nucleic acid-based testing of blood, other clinical specimens, food, water, and environmental samples. The chip combines nucleic acid isolation by solid-phase extraction; isothermal enzymatic amplification such as LAMP (Loop-mediated AMPlification), NASBA (Nucleic Acid Sequence Based Amplification), and RPA (Recombinase Polymerase Amplification); and real-time optical detection of DNA or RNA analytes. The microfluidic cassette incorporates an embedded nucleic acid binding membrane in the amplification reaction chamber. Target nucleic acids extracted from a lysate are captured on the membrane and amplified at a constant incubation temperature. The amplification product, labeled with a fluorophore reporter, is excited with a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such as available in a smartphone). For blood analysis, a companion filtration device that separates plasma from whole blood to provide cell-free samples for virus and bacterial lysis and nucleic acid testing in the microfluidic chip has also been developed. For HIV virus detection in blood, the microfluidic NAT chip achieves a sensitivity and specificity that are nearly comparable to conventional benchtop protocols using spin columns and thermal cyclers.

  5. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    PubMed

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  6. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    PubMed

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  7. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  8. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma

    PubMed Central

    Ahmed, Sarah A.; van de Sande, Wendy W. J.; Desnos-Ollivier, Marie; Fahal, Ahmed H.; Mhmoud, Najwa A.

    2015-01-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples. PMID:26246484

  9. Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma.

    PubMed

    Ahmed, Sarah A; van de Sande, Wendy W J; Desnos-Ollivier, Marie; Fahal, Ahmed H; Mhmoud, Najwa A; de Hoog, G S

    2015-10-01

    Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples. PMID:26246484

  10. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    PubMed

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.

  11. Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroid, and MLO nucleic acids.

    PubMed

    Levy, L; Lee, I M; Hadidi, A

    1994-10-01

    A rapid, simple method for preparing plant tissues infected with viruses, viroids, or MLOs using a commercial product known as Gene Releaser is described. The Gene Releaser polymeric matrix method produced plant extracts suitable for PCR amplification without the use of organic solvents, ethanol precipitation, or additional nucleic acid purification techniques. Modification of maceration methods and/or extraction buffers resulted in the PCR amplification of potato spindle tuber, apple scar skin, and dapple apple viroids, as well as, genomic segments of plum pox potyvirus, grapevine virus B, grapevine leafroll-associated virus III, and elm yellows MLO. These pathogens were amplified from tissue of woody and herbaceous hosts such as peach, apricot, apple, grapevine, elm, periwinkle and potato. The application of this product for use with intractable tissue avoids lengthy and laborious extraction procedures. In our hands, about 20 samples could be prepared for PCR or RT-PCR in 1-2 h versus 1-3 days. PMID:7868647

  12. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    SciTech Connect

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described.

  13. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method

    PubMed Central

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5’ end (Nr and N), whereas their 3’ end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C–65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 109 copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  14. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method.

    PubMed

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5' end (Nr and N), whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C-65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 10(9) copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  15. Immunocytochemistry versus nucleic acid amplification in fine needle aspirates and tissues of extrapulmonary tuberculosis

    PubMed Central

    Goel, Madhu Mati; Budhwar, Puja; Jain, Amita

    2012-01-01

    Background: Immunocytochemistry (ICC) is an established routine diagnostic adjunct to cytology and histology for tumor diagnosis but has received little attention for diagnosis of tuberculosis. Aims: To have an objective method of direct visualization of mycobacteria or their products in clinical extrapulmonary tuberculosis (EPTB) specimens, immunocytochemical localization of M. tuberculosis antigen by staining with species specific monoclonal antibody to 38-kDa antigen of Mycobacterium tuberculosis complex. Materials and Methods: Immunostaining with specific monoclonal antibody to 38-kDa antigen of Mycobacterium tuberculosis complex was done in fresh and archival fine needle aspirates and tissue granulomata of 302 cases of extrapulmonary tuberculosis and was compared with the molecular diagnostic i.e., nucleic amplification and conventional [Cytomorphology, Ziehl Neelsen (ZN) staining and culture] tests and 386 controls. Results: Diagnostic indices by Bayesian analysis for all types of archival and fresh material varied from 64 to 76% in nucleic acid amplification (NAA) and 96 to 98% in ICC. There was no significant difference in the diagnostic indices of ZN staining and/ or ICC in fresh or archival material whereas the sensitivity of NAA differed significantly in fresh versus archival material both in cytology (71.4% vs 52.1%) and histology (51.1% vs 38.8%). ICC can be easily used on archival smears and formalin-fixed paraffin-embedded tissue sections with almost equal sensitivity and specificity as with fresh material, in contrast to NAA which showed significant difference in test results on archival and fresh material. Conclusions: Low detection sensitivity of MTB DNA in archival material from known tuberculous cases showed the limitation of in-house NAA-based molecular diagnosis. ICC was found to be sensitive, specific and a better technique than NAA and can be used as an adjunct to conventional morphology and ZN staining for the diagnosis of EPTB in tissue

  16. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices

    PubMed Central

    Selck, David A.

    2016-01-01

    Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental

  17. Fluorescence detection in Lab-on-a-chip systems using ultrafast nucleic acid amplification methods

    NASA Astrophysics Data System (ADS)

    Gransee, Rainer; Schneider, Tristan; Elyorgun, Deniz; Strobach, Xenia; Schunck, Tobias; Gatscha, Theresia; Höth, Julian

    2014-05-01

    Today, nucleic amplification plays a key role in modern molecular biology allowing fast and specific laboratory diagnostics testing. An ultrafast microfluidic module (allowing 30 polymeric chain reaction (PCR) cycles in 6 minutes) based on an oscillating fluid plug concept was previously developed[1]. This system allows the amplification of native genomic deoxyribonucleic acid molecules (DNA) even from whole blood samples but still lacks some functionality compared to commercial bench top systems. This work presents the actual status of the renewed and advanced system, permitting the automated optical detection of not only the fluid plug position but also fluorescence detection. The system uses light emitting diodes (LED) for illumination and a low cost CMOS web-camera for optical detection. Image data processing allows the automated process control of the overall system components. Therefore, the system enables the performance of rapid and robust nucleic acid amplifications together with the integration of real time measurement technology. This allows the amplification and simultaneous quantification of the DNA molecules. The possibility to integrate swift nucleic amplification and optical detection into complex sample-to-answer analysis platforms opens up new pathways towards fast and transportable low-cost point of care devices.

  18. Detection of piscine nodaviruses by real-time nucleic acid sequence based amplification (NASBA).

    PubMed

    Starkey, William G; Millar, Rose Mary; Jenkins, Mary E; Ireland, Jacqueline H; Muir, K Fiona; Richards, Randolph H

    2004-05-01

    Nucleic acid sequence based amplification (NASBA) is an isothermal nucleic acid amplification procedure based on target-specific primers and probes, and the co-ordinated activity of 3 enzymes: AMV reverse transcriptase, RNase H, and T7 RNA polymerase. We have developed a real-time NASBA procedure for detection of piscine nodaviruses, which have emerged as major pathogens of marine fish. Viral RNA was isolated by guanidine thiocyanate lysis followed by purification on silica particles. Primers were designed to target sequences in the nodavirus capsid protein gene, yielding an amplification product of 120 nucleotides. Amplification products were detected in real-time with a molecular beacon (FAM labelled/methyl-red quenched) that recognised an internal region of the target amplicon. Amplification and detection were performed at 41 degrees C for 90 min in a Corbett Research Rotorgene. Based on the detection of cell culture-derived nodavirus, and a synthetic RNA target, the real-time NASBA procedure was approximately 100-fold more sensitive than single-tube RT-PCR. When used to test a panel of 37 clinical samples (negative, n = 18; positive, n = 19), the real-time NASBA assay correctly identified all 18 negative and 19 positive samples. In comparison, the RT-PCR procedure identified all 18 negative samples, but only 16 of the positive samples. These results suggest that real-time NASBA may represent a sensitive and specific diagnostic procedure for piscine nodaviruses.

  19. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification.

    PubMed

    Shah, Kamal G; Guelig, Dylan; Diesburg, Steven; Buser, Joshua; Burton, Robert; LaBarre, Paul; Richards-Kortum, Rebecca; Weigl, Bernhard

    2015-01-01

    Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters. PMID:26430883

  20. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification

    PubMed Central

    Shah, Kamal G.; Guelig, Dylan; Diesburg, Steven; Buser, Joshua; Burton, Robert; LaBarre, Paul; Richards-Kortum, Rebecca; Weigl, Bernhard

    2015-01-01

    Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters. PMID:26430883

  1. [Female genital surgery, G-spot amplification techniques--state of the science].

    PubMed

    Bachelet, J-T; Mojallal, A; Boucher, F

    2014-10-01

    The G-spot amplification is a process of "functional" intimate surgery consisting of a temporary physical increase of the size and sensitivity of the G-spot with a filler injected into the septum between the bladder and the vagina's anterior wall, in order to increase the frequency and importance of female orgasm during vaginal penetration. This surgical technique is based on the existence of an eponymous anatomical area described by Dr Gräfenberg in 1950, responsible upon stimulation of systematic orgasm different from the clitoral orgasm, referring to the vaginal orgasm as described by Freud in 1905. The purpose of this article is to review the scientific basis of the G-spot, whose very existence is currently a debated topic, and to discuss the role of G-spot amplification surgery.

  2. Detection of infectious salmon anaemia virus by real-time nucleic acid sequence based amplification.

    PubMed

    Starkey, William G; Smail, David A; Bleie, Hogne; Muir, K Fiona; Ireland, Jacqueline H; Richards, Randolph H

    2006-10-17

    We have developed a real-time nucleic acid sequence based amplification (NASBA) procedure for detection of infectious salmon anaemia virus (ISAV). Primers were designed to target a 124 nucleotide region of ISAV genome segment 8. Amplification products were detected in real-time with a molecular beacon (carboxyfluorescin [FAM]-labelled and methyl-red quenched) that recognised an internal region of the target amplicon. Amplification and detection were performed at 41 degrees C for 90 min in a Corbett Research Rotorgene. The real-time NASBA assay was compared to a conventional RT-PCR for ISAV detection. From a panel of 45 clinical samples, both assays detected ISAV in the same 19 samples. Based on the detection of a synthetic RNA target, the real-time NASBA procedure was approximately 100x more sensitive than conventional RT-PCR. These results suggest that real-time NASBA may represent a useful diagnostic procedure for ISAV.

  3. Detection of the food allergen celery via loop-mediated isothermal amplification technique.

    PubMed

    Zahradnik, Celine; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0% for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products.

  4. Sublimation of amino acids with enantiomeric excess amplification

    NASA Astrophysics Data System (ADS)

    Guillemin, Jean-Claude; Guillemin, Jean-Claude; Bellec, Aurelien

    The notion of chirality was first reported in 1848 by Pasteur, when he mechanically separated the two enantiomers of tartrate salts.[1] Amino acids are considered as the most important building blocks of life with sugars. On the Earth, the living systems are only composed of L- amino acids and D-sugars. Nowadays, the origin of homochirality on Earth is still unknown, and there are many theories trying to explain this phenomenon. Recently Cooks [2] and Feringa [3] reported that the sublimation of small amounts of L and D amino acid mixtures containing an excess of one of them leads to a huge enantiomeric excess (ee) enhancement of the sublimate. We reinvestigated these experiments to determine the rules leading to this enhancement. Starting from mixtures of L- and DL leucine we observed increasing and decreasing of the ee in function of the starting ratios. By the use of 13C derivatives, the origin of the sublimed enantiomers has been precised. Various parameters (L and D, or L and DL mixtures, dissolution in water before sublimation, . . . ) were studied. We also took into consideration the recently proposed hypothesis of the role played by the eutectic ee in the sublimation. [4] The application of these results to find an explanation of the enantiomeric excess in meteorites or in the Primitive Earth scenarios will be discussed. 1 Pasteur, L. Ann. Phys., 1848, 24, 442. 2 R. H. Perry, C. Wu, M. Nefliu, R. G. Cooks, Chem. Commun., 2007, 1071-1073. 3 S. P. Fletcher, R. B. C. Jagt, B. L. Feringa, Chem. Commun., 2007, 2578-2580. 4 D. G. Blackmond, M. Klussmannb Chem. Commun., 2007, 3990-3996.

  5. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  6. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes.

    PubMed

    Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2016-12-15

    Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC). PMID:27393827

  7. Quantitative detection of Aspergillus spp. by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Perlin, David S

    2013-01-01

    Rapid and quantitative detection of Aspergillus from clinical samples may facilitate an early diagnosis of invasive pulmonary aspergillosis (IPA). As nucleic acid-based detection is a viable option, we demonstrate that Aspergillus burdens can be rapidly and accurately detected by a novel real-time nucleic acid assay other than qPCR by using the combination of nucleic acid sequence-based amplification (NASBA) and the molecular beacon (MB) technology. Here, we detail a real-time NASBA assay to determine quantitative Aspergillus burdens in lungs and bronchoalveolar lavage (BAL) fluids of rats with experimental IPA.

  8. Detection of Dengue Viral RNA Using a Nucleic Acid Sequence-Based Amplification Assay

    PubMed Central

    Wu, Shuenn-Jue L.; Lee, Eun Mi; Putvatana, Ravithat; Shurtliff, Roxanne N.; Porter, Kevin R.; Suharyono, Wuryadi; Watts, Douglas M.; King, Chwan-Chuen; Murphy, Gerald S.; Hayes, Curtis G.; Romano, Joseph W.

    2001-01-01

    Faster techniques are needed for the early diagnosis of dengue fever and dengue hemorrhagic fever during the acute viremic phase of infection. An isothermal nucleic acid sequence-based amplification (NASBA) assay was optimized to amplify viral RNA of all four dengue virus serotypes by a set of universal primers and to type the amplified products by serotype-specific capture probes. The NASBA assay involved the use of silica to extract viral nucleic acid, which was amplified without thermocycling. The amplified product was detected by a probe-hybridization method that utilized electrochemiluminescence. Using normal human plasma spiked with dengue viruses, the NASBA assay had a detection threshold of 1 to 10 PFU/ml. The sensitivity and specificity of the assay were determined by testing 67 dengue virus-positive and 21 dengue virus-negative human serum or plasma samples. The “gold standard” used for comparison and evaluation was the mosquito C6/36 cell culture assay followed by an immunofluorescent assay. Viral infectivity titers in test samples were also determined by a direct plaque assay in Vero cells. The NASBA assay was able to detect dengue viral RNA in the clinical samples at plaque titers below 25 PFU/ml (the detection limit of the plaque assay). Of the 67 samples found positive by the C6/36 assay, 66 were found positive by the NASBA assay, for a sensitivity of 98.5%. The NASBA assay had a specificity of 100% based on the negative test results for the 21 normal human serum or plasma samples. These results indicate that the NASBA assay is a promising assay for the early diagnosis of dengue infections. PMID:11473994

  9. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform.

  10. Comparison of Three Nucleic Acid Amplification Assays of Cerebrospinal Fluid for Diagnosis of Cytomegalovirus Encephalitis

    PubMed Central

    Bestetti, Arabella; Pierotti, Chiara; Terreni, Mariarosa; Zappa, Alessandra; Vago, Luca; Lazzarin, Adriano; Cinque, Paola

    2001-01-01

    The diagnostic reliabilities of three cytomegalovirus (CMV) nucleic acid amplification assays of cerebrospinal fluid (CSF) were compared by using CSF samples from human immunodeficiency virus-infected patients with a postmortem histopathological diagnosis of CMV encephalitis (n = 15) or other central nervous system conditions (n = 16). By using a nested PCR assay, the quantitative COBAS AMPLICOR CMV MONITOR PCR, and the NucliSens CMV pp67 nucleic acid sequence-based amplification assay, sensitivities were 93.3, 86.6, and 93.3%, respectively, and specificities were 93.7, 93.7, and 87.5%, respectively. The COBAS AMPLICOR assay revealed significantly higher CMV DNA levels in patients with diffuse ventriculoencephalitis than in patients with focal periventricular lesions. PMID:11230445

  11. Anchoring Transitions of Liquid Crystals for Optical Amplification of Phospholipid Oxidation Inhibition by Ascorbic Acid.

    PubMed

    Zhang, Minmin; Jang, Chang-Hyun

    2015-01-01

    There is considerable evidence that the antioxidant property of ascorbic acid (AH) is effective for reducing oxidative stress of phospholipids. Herein, a liquid crystals (LCs)-based method was developed for the optical amplification of resistance to phospholipid oxidation by AH. Phospholipid peroxidation initiated by free radicals was monitored from a homeotropic-to-planar anchoring transition of LCs via polarized optical microscopy. Alternatively, consistent homeotropic anchoring of LCs was observed when the oxidation caused by free radicals was blocked by AH.

  12. Development of an in situ loop-mediated isothermal amplification technique for chromosomal localization of DNA sequences

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Wang, Shi; Zhang, Lingling; Huang, Xiaoting; Bao, Zhenmin

    2013-01-01

    In situ loop-mediated isothermal amplification (in situ LAMP) combines in situ hybridization and loop-mediated isothermal amplification (LAMP) techniques for chromosomal localization of DNA sequences. In situ LAMP is a method that is generally more specific and sensitive than conventional techniques such as fluorescence in situ hybridization (FISH), primed in situ labeling (PRINS), and cycling primed in situ labeling (C-PRINS). Here, we describe the development and application of in situ LAMP to identify the chromosomal localization of DNA sequences. To benchmark this technique, we successfully applied this technique to localize the major ribosomal RNA gene on the chromosomes of the Zhikong scallop ( Chlamys farreri).

  13. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    PubMed

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification. PMID:20384918

  14. Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy

    SciTech Connect

    Rehault, Julien; Helbing, Jan; Zanirato, Vinicio; Olivucci, Massimo

    2011-03-28

    We demonstrate strong amplification of polarization-sensitive transient IR signals using a pseudo-null crossed polarizer technique first proposed by Keston and Lospalluto [Fed. Proc. 10, 207 (1951)] and applied for nanosecond flash photolysis in the visible by Che et al. [Chem. Phys. Lett. 224, 145 (1994)]. We adapted the technique to ultrafast pulsed laser spectroscopy in the infrared using photoelastic modulators, which allow us to measure amplified linear dichroism at kilohertz repetition rates. The method was applied to a photoswitch of the N-alkylated Schiff base family in order to demonstrate its potential of strongly enhancing sensitivity and signal to noise in ultrafast transient IR experiments, to simplify spectra and to determine intramolecular transition dipole orientations.

  15. Construction strategy for an internal amplification control for real-time diagnostic assays using nucleic Acid sequence-based amplification: development and clinical application.

    PubMed

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2004-12-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assays is presented. Construction proceeds in two phases. In the first phase, a double-stranded DNA molecule that contains nontarget sequences flanked by target sequences complementary to the NASBA primers is produced. At the 5' end of this DNA molecule is a T7 RNA polymerase binding sequence. In the second phase of construction, RNA transcripts are produced from the DNA by T7 RNA polymerase. This RNA is the IAC; it is amplified by the target NASBA primers and is detected by a molecular beacon probe complementary to the internal nontarget sequences. As a practical example, an IAC for use in an assay for the detection of Mycobacterium avium subsp. paratuberculosis is described, its incorporation and optimization within the assay are detailed, and its application to spiked and natural clinical samples is shown to illustrate the correct interpretation of the diagnostic results.

  16. Pyrosequencing on templates generated by asymmetric nucleic acid sequence-based amplification (asymmetric-NASBA).

    PubMed

    Jia, Huning; Chen, Zhiyao; Wu, Haiping; Ye, Hui; Yan, Zhengyu; Zhou, Guohua

    2011-12-21

    Pyrosequencing is an ideal tool for verifying the sequence of amplicons. To enable pyrosequencing on amplicons from nucleic acid sequence-based amplification (NASBA), asymmetric NASBA with unequal concentrations of T7 promoter primer and reverse transcription primer was proposed. By optimizing the ratio of two primers and the concentration of dNTPs and NTPs, the amount of single-stranded cDNA in the amplicons from asymmetric NASBA was found increased 12 times more than the conventional NASBA through the real-time detection of a molecular beacon specific to cDNA of interest. More than 20 bases have been successfully detected by pyrosequencing on amplicons from asymmetric NASBA using Human parainfluenza virus (HPIV) as an amplification template. The primary results indicate that the combination of NASBA with a pyrosequencing system is practical, and should open a new field in clinical diagnosis.

  17. Nuclemeter: A Reaction-Diffusion Based Method for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    PubMed Central

    Liu, Changchun; Sadik, Mohamed M.; Mauk, Michael G.; Edelstein, Paul H.; Bushman, Frederic D.; Gross, Robert; Bau, Haim H.

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  18. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  19. Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs.

    PubMed

    Mader, Andreas; Riehle, Ulrike; Brandstetter, Thomas; Stickeler, Elmar; Ruehe, Juergen

    2012-11-19

    A universal NASBA assay is presented for simultaneous amplification of multiple microRNA (miRNA) and messengerRNA (mRNA) sequences. First, miRNA and mRNA sequences are reverse transcribed using tailed reverse transcription primer pairs containing a gene-specific and an non-specific region. For reverse transcription of small miRNA molecules a non-specific region is incorporated into a structured stem-loop reverse transcription primer. Second, a universal NASBA primer pair that recognizes the tagged cDNA molecules enables a simultaneous, transcription-based amplification reaction (NASBA) of all different cDNA molecules in one reaction. The NASBA products (RNA copies) are detected by gene-specific DNA probes immobilized on a biochip. By using the multiplex reverse transcription combined with the universal NASBA amplification up to 14 different mRNA and miRNA sequences can be specifically amplified and detected in parallel. In comparison with standard multiplex NASBA assays this approach strongly enhances the multiplex capacity of NASBA-based amplification reactions. Furthermore simultaneous assaying of different RNA classes can be achieved that might be beneficial for studying miRNA-based regulation of gene expression or for RNA-based tumor diagnostics. PMID:23140948

  20. Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique

    SciTech Connect

    Moon, H. S.; Kim, E. B.; Park, S. E.; Park, C. Y.

    2006-10-30

    The authors have demonstrated the selection and the amplification of the components of an optical frequency comb using a femtosecond laser injectionlocking technique. The author used a mode-locked femtosecond Ti:sapphire laser as the master laser and a single-mode diode laser as the slave laser. The femtosecond laser injection-locking technique was applied to a filter for mode selection of the optical frequency comb and an amplifier for amplification of the selected mode. The authors could obtain the laser source selected only the desired mode of the optical frequency comb and amplified the power of the selected modes several thousand times.

  1. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification.

    PubMed

    Smith, Matthew C; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P

    2007-08-29

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R2 = 0.948) to fluorescein gradients ranging from 0.5 to 10 microM was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction. PMID:17719904

  2. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection. PMID:26202628

  3. Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection.

    PubMed

    Yates, S; Penning, M; Goudsmit, J; Frantzen, I; van de Weijer, B; van Strijp, D; van Gemen, B

    2001-10-01

    We have developed a hepatitis B virus (HBV) DNA detection and quantification system based on amplification with nucleic acid sequence-based amplification (NASBA) technology and real-time detection with molecular beacon technology. NASBA is normally applied to amplify single-stranded target RNA, producing RNA amplicons. In this work we show that with modifications like primer design, sample extraction method, and template denaturation, the NASBA technique can be made suitable for DNA target amplification resulting in RNA amplicons. A major advantage of our assay is the one-tube, isothermal nature of the method, which allows high-throughput applications for nucleic acid detection. The homogeneous real-time detection allows a closed-tube format of the assay, avoiding any postamplification handling of amplified material and therefore minimizing the risk of contamination of subsequent reactions. The assay has a detection range of 10(3) to 10(9) HBV DNA copies/ml of plasma or serum (6 logs), with good reproducibility and precision. Compared with other HBV DNA assays, our assay provides good sensitivity, a wide dynamic range, and high-throughput applicability, making it a viable alternative to those based on other amplification or detection methods.

  4. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism. PMID:27242766

  5. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis – Lost in the Jungle of Methods, Targets, and Assays?

    PubMed Central

    Nolte, Oliver

    2012-01-01

    Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of ‘pitfalls’ is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and

  6. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis - Lost in the Jungle of Methods, Targets, and Assays?

    PubMed

    Nolte, Oliver

    2012-01-01

    Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of 'pitfalls' is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and

  7. Multiplex Nucleic Acid Amplification Test for Diagnosis of Dengue Fever, Malaria, and Leptospirosis

    PubMed Central

    Waggoner, Jesse J.; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K.; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz

    2014-01-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  8. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.

    PubMed

    Hu, Juan; Zhang, Chun-yang

    2010-11-01

    Detection of specific DNA sequences is important to molecular biology research and clinical diagnostics. To improve the sensitivity of surface-enhanced Raman scattering spectroscopy (SERS), a variety of signal amplification methods has been developed, including Raman-active-dye, polymerase chain reaction (PCR) technology, molecular beacon, SERS-active substrates, and SERS-tag. However, the combination of rolling circle amplification (RCA) with SERS for nucleic acid detection has not been reported. Herein, we describe a new approach for nucleic acid detection by the combination of RCA reaction with SERS. Because of the binding of abundance repeated sequences of RCA products with gold nanoparticle (Au NP) and Rox-modified detection probes, SERS signal is significantly amplified and the detection limit of 10.0 pM might be achieved. The sensitivity of RCA-based SERS has increased by as much as 3 orders of magnitude as compared to PCR-based SERS and is also comparable with or even exceeds that of both RCA-based electrochemical and RCA-based fluorescent methods. This RCA-based SERS might discriminate perfect matched target DNA from 1-base mismatched DNA with high selectivity. The high sensitivity and selectivity of RCA-based SERS makes it a potential tool for early diagnosis of gene-related disease and also offers a great promise for multiplexed assays with DNA microarrays.

  9. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

    PubMed

    Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian

    2012-08-21

    An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.

  10. Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection.

    PubMed

    Jacroux, Thomas; Rieck, Daniel C; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2013-01-15

    A rapid assay operable under isothermal or nonisothermal conditions is described, where the sensitivity of a typical molecular beacon (MB) system is improved by using thermostable RNase H to enzymatically cleave an MB composed of a DNA stem and an RNA loop (R/D-MB). On hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7× above background) due to an opening of the probe and a concomitant reduction in the Förster resonance energy transfer efficiency. The addition of thermostable RNase H resulted in the cleavage of the RNA loop, which eliminated energy transfer. The cleavage step also released bound target DNA, enabling it to bind to another R/D-MB probe and rendering the approach a cyclic amplification scheme. Full processing of R/D-MBs maximized the fluorescence signal to the fullest extent possible (12.9× above background), resulting in an approximately 2- to 2.8-fold increase in the signal-to-noise ratio observed isothermally at 50 °C following the addition of RNase H. The probe was also used to monitor real-time polymerase chain reactions by measuring enhancement of donor fluorescence on R/D-MB binding to amplified pUC19 template dilutions. Hence, the R/D-MB-RNase H scheme can be applied to a broad range of nucleic acid amplification methods.

  11. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid.

    PubMed Central

    Collart, F R; Huberman, E

    1987-01-01

    The regulation of IMP dehydrogenase (IMPDH) was analyzed in Chinese hamster V79 cell variants that exhibit different degrees of resistance to the cytotoxic effect of mycophenolic acid, a specific inhibitor of IMPDH. Western blot (immunoblot) analysis with an IMPDH antiserum revealed a 14- to 27-fold increase in the amount of enzyme in the mycophenolic acid-resistant cells. The antiserum was also used to screen for a phage containing the IMPDH cDNA sequence from a lambda gt11 expression library. Northern blot (RNA blot) analyses of total cellular and poly(A)+ RNA showed that an IMPDH cDNA probe hybridized to a 2.2-kilobase transcript, the amount of which was associated with increased resistance. Southern blotting with the probe indicated an amplification of the IMPDH gene in the mycophenolic acid-resistant cells. Our findings suggest that the acquired mycophenolic acid resistance of the V79 cell variants is associated with increases in the amount and activity of IMPDH and the number of IMPDH gene copies. Images PMID:2890098

  12. Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus.

    PubMed

    Abd el-Galil, Khaled H; el-Sokkary, M A; Kheira, S M; Salazar, Andre M; Yates, Marylynn V; Chen, Wilfred; Mulchandani, Ashok

    2005-11-01

    A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5' noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.

  13. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends

    PubMed Central

    Zhang, Chunsun; Xing, Da

    2007-01-01

    The possibility of performing fast and small-volume nucleic acid amplification and analysis on a single chip has attracted great interest. Devices based on this idea, referred to as micro total analysis, microfluidic analysis, or simply ‘Lab on a chip’ systems, have witnessed steady advances over the last several years. Here, we summarize recent research on chip substrates, surface treatments, PCR reaction volume and speed, architecture, approaches to eliminating cross-contamination and control and measurement of temperature and liquid flow. We also discuss product-detection methods, integration of functional components, biological samples used in PCR chips, potential applications and other practical issues related to implementation of lab-on-a-chip technologies. PMID:17576684

  14. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens.

    PubMed

    Peterson, S W; Martin, I; Demczuk, W; Bharat, A; Hoang, L; Wylie, J; Allen, V; Lefebvre, B; Tyrrell, G; Horsman, G; Haldane, D; Garceau, R; Wong, T; Mulvey, M R

    2015-11-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  15. A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences.

    PubMed Central

    Blais, B W; Turner, G; Sooknanan, R; Malek, L T

    1997-01-01

    A nucleic acid sequence-based amplification system primarily targeting mRNA from the Listeria monocytogenes hlyA gene was developed. This system enabled the detection of low numbers (< 10 CFU/g) of L. monocytogenes cells inoculated into a variety of dairy and egg products after 48 h of enrichment in modified listeria enrichment broth. PMID:8979357

  16. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  17. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip.

    PubMed

    Shen, Feng; Davydova, Elena K; Du, Wenbin; Kreutz, Jason E; Piepenburg, Olaf; Ismagilov, Rustem F

    2011-05-01

    In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader

  18. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  19. Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids.

    PubMed

    Lv, Yifan; Cui, Liang; Peng, Ruizi; Zhao, Zilong; Qiu, Liping; Chen, Huapei; Jin, Cheng; Zhang, Xiao-Bing; Tan, Weihong

    2015-12-01

    Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies.

  20. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM)

    PubMed Central

    Harshman, Dustin K.; Reyes, Roberto; Park, Tu San; You, David J.; Song, Jae-Young; Yoon, Jeong-Yeol

    2013-01-01

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 sec/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/µL or 105 genomes/µL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity. PMID:24140832

  1. Individual donor nucleic acid amplification testing for detection of West Nile virus.

    PubMed

    Lee, Dong-Hun; Mathew, John; Pfahler, Wolfram; Ma, Dongling; Valinsky, Jay; Prince, Alfred M; Andrus, Linda

    2005-10-01

    We have developed an economical, high-throughput nucleic acid amplification test (NAT) for blood-borne viruses, suitable for use in the screening of plasma samples from individual blood donors. This assay system includes a semiautomated procedure, using 96-well glass fiber plates for the extraction of viral nucleic acids from plasma and "universal beacon" technology which permits the detection of all genotypes of highly variable viruses (e.g., human immunodeficiency virus and hepatitis C virus). In this detection system, two fluorescent- detection technologies were employed successfully in a single tube: molecular beacon for West Nile virus (WNV) detection using a 6-carboxyfluorescein fluorophore and TaqMan for internal control detection using a VIC fluorophore. To establish proof of concept, we focused on the development of a robust individual donor NAT for WNV. The assay showed no reactivity to 15 other viruses tested or to 420 blood donor samples from the WNV pre-epidemic season. No cross-contamination was observed on an alternating positive-/negative-well test. The sensitivity (limit of detection, 95%) of the assay for WNV is between 3.79 and 16.3 RNA copies/ml, depending on which material was used as a standard. The assay detected all positive blood donation samples identified by the Roche WNV NAT. The assay can be performed qualitatively for screening and quantitatively for confirmation.

  2. An FEL design for gamma-gamma colliders based on chirped pulse amplification techniques

    SciTech Connect

    Kim, K.J.; Xie, M.; Sessler, A.M.

    1995-12-31

    A next generation e{sup +}-e{sup -} linear collider in the TeV range can be converted into a {gamma}-{gamma} collider by converting it to e{sup -}-e{sup -} operation and then generating {gamma}-rays via Compton backscattering with optical beams. This provides unique access to some areas of fundamental physics as well as highly desirable redundancy to the collisions. The required optical beam (with a wavelength of about 1 micron) must have very high peak power, (about 1 TW) as well as average power (about 10 kW). To achieve a 1 : 1 conversion from an electron to {gamma}-quantum, each micropulse must contain about one Joule and must be about one picosecond long, the micropulse peak power being about one Terawatt. To match the electron beam pulse structure, a macropulse consists of a sequence of about one hundred micropulses separated by about one nanosecond, and the macropulses am repeated at a rate of about 100 Hz. Thus, the time average power is about 10 kW propose and analyze a promising scheme to produce the required optical beam based on the chirped pulse amplification technique. In this scheme, a low power optical beam of the same time structure required for the {gamma}-{gamma} collider is passed through a grating pair to stretch and chirp the picosecond micropulses to about one nanosecond, so that each macropulse will be an almost continuous, 100 nanosecond long pulse, but with chirps (from red to blue) within each nanosecond. The optical beam is then amplified in an FEL, driven by an intense electron beam from an induction linac. The amplified beam is then passed through another grating pair to compress the micropulses, thus recovering the original time structure, but containing about one Joule per micropulse. The requirements for electron beams, about 100 MeV energy, 1 kA current, 50 mm-mrad rms emittance, 10{sup -3} energy spread, are consistent with the state-of-the-art induction linac technology.

  3. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.

    PubMed

    Li, Dandan; Cheng, Wei; Yan, Yurong; Zhang, Ye; Yin, Yibing; Ju, Huangxian; Ding, Shijia

    2016-01-01

    A functional nucleic acid-based amplification machine was designed for simple and label-free ultrasensitive colorimetric biosensing of microRNA (miRNA). The amplification machine was composed of a complex of trigger template and C-rich DNA modified molecular beacon (MB) and G-rich DNA (GDNA) as the probe, polymerase and nicking enzyme, and a dumbbell-shaped amplification template. The presence of target miRNA triggered MB mediated strand displacement to cyclically release nicking triggers, which led to a toehold initiated rolling circle amplification to produce large amounts of GDNAs. The formed GDNAs could stack with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, for catalyzing a colorimetric reaction. The modified MB improved the stringent target recognition and reduced background signal. The proposed sensing strategy showed very high sensitivity and selectivity with a wide dynamic range from 10 aM to 1.0 nM, and enabled successful visual analysis of trace amount of miRNA in real sample by the naked eye. This rapid and highly efficient signal amplification strategy provided a simple and sensitive platform for miRNA detection. It would be a versatile and powerful tool for clinical molecular diagnostics.

  4. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  5. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  6. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  7. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification

    PubMed Central

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5′ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5′ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5′ end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism. PMID:27242766

  8. Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A.

    PubMed

    Moore, Catherine; Hibbitts, Sam; Owen, Neil; Corden, Sally A; Harrison, Graham; Fox, Julie; Gelder, Colin; Westmoreland, Diana

    2004-12-01

    The development and introduction of effective treatment for influenza A in the form of neuraminidase inhibitors have made the rapid diagnosis of infection important especially in high-risk populations. The aim of this study was to develop a real-time nucleic acid sequenced based amplification (NASBA) using a molecular beacon that could detect a wide range of influenza A subtypes and strains in a single reaction by targeting a conserved region of the influenza genome, and to evaluate its sensitivity and specificity against traditional laboratory techniques on a range of clinical samples usefulness during the 2003/2004 influenza season. The results demonstrated the assay to be highly sensitive and specific, detecting <0.1 TCID50 of virus stock. Three hundred eighty-nine clinical samples were tested in total from two patient groups. Overall, the real-time NASBA assay detected 64% (66/103) more influenza positive samples than cell culture and direct immunofluorescence (IF) and, therefore, was shown to be more sensitive in detecting influenza A in a wide range of respiratory samples than traditional methods. In conclusion, the real-time influenza A assay demonstrated clinical usefulness in both hospital and community populations.

  9. Early detection of Mycobacterium tuberculosis complex in BACTEC MGIT cultures using nucleic acid amplification.

    PubMed

    Lin, S Y; Hwang, S C; Yang, Y C; Wang, C F; Chen, Y H; Chen, T C; Lu, P L

    2016-06-01

    We evaluated the application of nucleic acid amplification (NAA) in liquid cultures for the early detection of Mycobacterium tuberculosis. The Cobas TaqMan MTB test, IS6110 real-time PCR, and hsp65 PCR-restriction fragment length polymorphism (RFLP) analysis were used to detect BACTEC MGIT 960 (MGIT) cultures on days 3, 5, 7, and 14. The procedure was initially tested with a reference strain, H37Rv (ATCC 27294). Subsequently, 200 clinical specimens, including 150 Acid Fast bacillus (AFB) smear-positive and 50 AFB smear-negative samples, were examined. The Cobas TaqMan MTB test and IS6110-based PCR analysis were able to detect M. tuberculosis after 1 day when the inoculum of H37Rv was >3 x 10(-2) CFU/ml. After a 5-day incubation in the MGIT system, all three NAA assays had a positive detection regardless of the inoculum size. After a 1-day incubation of the clinical specimens in the MGIT system, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the Cobas TaqMan MTB assay were 70.2%, 100%, 100%, and 82.3% respectively. For IS6110-based PCR analysis, these values were 63.1%, 100%, 100%, and 78.9%, and were 88.1%, 100%, 100%, and 92.1% respectively for hsp65 PCR-RFLP analysis. After a 3-day incubation, the specificity and PPV were 100% for all three NAA tests; the Cobas TaqMan MTB assay had the best sensitivity (97.6%) and NPV (98.3%). The sensitivity, specificity, PPV, and NPV for conventional culture analysis were 98.8%, 100%, 100%, and 99.1%. Thus, NAA may be useful for the early detection of M. tuberculosis after 3 days in MGIT.

  10. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification.

    PubMed

    Fykse, Else M; Skogan, Gunnar; Davies, William; Olsen, Jaran Strand; Blatny, Janet M

    2007-03-01

    A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.

  11. Successful Combination of Nucleic Acid Amplification Test Diagnostics and Targeted Deferred Neisseria gonorrhoeae Culture

    PubMed Central

    Wind, Carolien M.; de Vries, Henry J. C.; Schim van der Loeff, Maarten F.; Unemo, Magnus

    2015-01-01

    Nucleic acid amplification tests (NAATs) are recommended for the diagnosis of N. gonorrhoeae infections because of their superior sensitivity. Increasing NAAT use causes a decline in crucial antimicrobial resistance (AMR) surveillance data, which rely on culture. We analyzed the suitability of the ESwab system for NAAT diagnostics and deferred targeted N. gonorrhoeae culture to allow selective and efficient culture based on NAAT results. We included patients visiting the STI Clinic Amsterdam, The Netherlands, in 2013. Patient characteristics and urogenital and rectal samples for direct N. gonorrhoeae culture, standard NAAT, and ESwab were collected. Standard NAAT and NAAT on ESwab samples were performed using the Aptima Combo 2 assay for N. gonorrhoeae and C. trachomatis. Two deferred N. gonorrhoeae cultures were performed on NAAT-positive ESwab samples after storage at 4°C for 1 to 3 days. We included 2,452 samples from 1,893 patients. In the standard NAAT, 107 samples were N. gonorrhoeae positive and 284 were C. trachomatis positive. The sensitivities of NAAT on ESwab samples were 83% (95% confidence interval [CI], 75 to 90%) and 87% (95% CI, 82 to 90%), respectively. ESwab samples were available for 98 of the gonorrhea-positive samples. Of these, 82% were positive in direct culture and 69% and 56% were positive in the 1st and 2nd deferred cultures, respectively (median storage times, 27 and 48 h, respectively). Deferred culture was more often successful in urogenital samples or when the patient had symptoms at the sampling site. Deferred N. gonorrhoeae culture of stored ESwab samples is feasible and enables AMR surveillance. To limit the loss in NAAT sensitivity, we recommend obtaining separate samples for NAAT and deferred culture. PMID:25832300

  12. A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

    PubMed Central

    LaBarre, Paul; Hawkins, Kenneth R.; Gerlach, Jay; Wilmoth, Jared; Beddoe, Andrew; Singleton, Jered; Boyle, David; Weigl, Bernhard

    2011-01-01

    Background Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation). Methodology/Principal Findings In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. Conclusions/Significance We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes. PMID:21573065

  13. A Fully Integrated Paperfluidic Molecular Diagnostic Chip for the Extraction, Amplification, and Detection of Nucleic Acids from Clinical Samples

    PubMed Central

    Rodriguez, Natalia M.; Wong, Winnie S.; Liu, Lena; Dewar, Rajan; Klapperich, Catherine M.

    2016-01-01

    Paper diagnostics have successfully been employed to detect the presence of antigens or small molecules in clinical samples through immunoassays; however, the detection of many disease targets relies on the much higher sensitivity and specificity achieved via nucleic acid amplification tests (NAAT). The steps involved in NAAT have recently begun to be explored in paper matrices, and our group, among others, has reported on paper-based extraction, amplification, and detection of DNA and RNA targets. Here, we integrate these paper-based NAAT steps onto a single paperfluidic chip in a modular, foldable system that allows for fully integrated fluidic handling from sample to result. We showcase the functionality of the chip by combining nucleic acid isolation, isothermal amplification, and lateral flow detection of human papillomavirus (HPV) 16 DNA directly from crude cervical specimens in under 1 hour for rapid, early detection of cervical cancer. The chip is made entirely of paper and adhesive sheets, making it low-cost, portable, and disposable, and offering the potential for a point-of-care molecular diagnostic platform even in remote and resource-limited settings. PMID:26785636

  14. Detection of Salmonella invA by isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) in Zambia.

    PubMed

    Isogai, Emiko; Makungu, Chitwambi; Yabe, John; Sinkala, Patson; Nambota, Andrew; Isogai, Hiroshi; Fukushi, Hideto; Silungwe, Manda; Mubita, Charles; Syakalima, Michelo; Hang'ombe, Bernard Mudenda; Kozaki, Shunji; Yasuda, Jun

    2005-01-01

    The isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) is a new isothermal DNA amplification method composed of exo Bca DNA polymerase, RNaseH and DNA-RNA chimeric primers. We detected invA of Salmonella from chicken carcasses, egg yolk and cattle fecal samples. Fifty-three of 59 isolates were invA-positive in ICAN-chromatostrip detection. The result was consistent with those obtained by standard PCR. Salmonella invA was detected in 12 of 14 carcass rinses by ICAN, while in 7 of 14 rinses by standard PCR. These results indicate that ICAN is an efficient, sensitive and simple system to detect invA of Salmonella species in developing countries such as Zambia.

  15. Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening.

    PubMed

    Vollmer, T; Knabbe, C; Dreier, J

    2015-10-01

    Acute primary cytomegalovirus (CMV) infections, which commonly occur asymptomatically among blood donors, represent a significant risk for serious morbidity in immunocompromised patients (a major group of transfusion recipients). We implemented a routine CMV pool screening procedure for plasma for the identification of CMV DNA-positive donors, and we evaluated the sensitivities and performance of different CMV DNA amplification systems. Minipools (MPs) of samples from 18,405 individual donors (54,451 donations) were screened for CMV DNA using the RealStar CMV PCR assay (Altona Diagnostic Technologies), with a minimum detection limit of 11.14 IU/ml. DNA was extracted with a high-volume protocol (4.8 ml, Chemagic Viral 5K kit; PerkinElmer) for blood donor pool screening (MP-nucleic acid testing [NAT]) and with the Nuclisens easyMAG system (0.5 ml; bioMérieux) for individual donation (ID)-NAT. In total, six CMV DNA-positive donors (0.03%) were identified by routine CMV screening, with DNA concentrations ranging from 4.35 × 10(2) to 4.30 × 10(3) IU/ml. Five donors already showed seroconversion and detectable IgA, IgM, and/or IgG antibody titers (IgA(+)/IgM(+)/IgG(-) or IgA(+)/IgM(+)/IgG(+)), and one donor showed no CMV-specific antibodies. Comparison of three commercial assays, i.e., the RealStar CMV PCR kit, the Sentosa SA CMV quantitative PCR kit (Vela Diagnostics), and the CMV R-gene PCR kit (bioMérieux), for MP-NAT and ID-NAT showed comparably good analytical sensitivities, ranging from 10.23 to 11.14 IU/ml (MP-NAT) or from 37.66 to 57.94 IU/ml (ID-NAT). The clinical relevance of transfusion-associated CMV infections requires further investigation, and the evaluated methods present powerful basic tools providing sensitive possibilities for viral testing. The application of CMV MP-NAT facilitated the identification of one donor with a window-phase donation during acute primary CMV infection.

  16. Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening

    PubMed Central

    Knabbe, C.; Dreier, J.

    2015-01-01

    Acute primary cytomegalovirus (CMV) infections, which commonly occur asymptomatically among blood donors, represent a significant risk for serious morbidity in immunocompromised patients (a major group of transfusion recipients). We implemented a routine CMV pool screening procedure for plasma for the identification of CMV DNA-positive donors, and we evaluated the sensitivities and performance of different CMV DNA amplification systems. Minipools (MPs) of samples from 18,405 individual donors (54,451 donations) were screened for CMV DNA using the RealStar CMV PCR assay (Altona Diagnostic Technologies), with a minimum detection limit of 11.14 IU/ml. DNA was extracted with a high-volume protocol (4.8 ml, Chemagic Viral 5K kit; PerkinElmer) for blood donor pool screening (MP-nucleic acid testing [NAT]) and with the Nuclisens easyMAG system (0.5 ml; bioMérieux) for individual donation (ID)-NAT. In total, six CMV DNA-positive donors (0.03%) were identified by routine CMV screening, with DNA concentrations ranging from 4.35 × 102 to 4.30 × 103 IU/ml. Five donors already showed seroconversion and detectable IgA, IgM, and/or IgG antibody titers (IgA+/IgM+/IgG− or IgA+/IgM+/IgG+), and one donor showed no CMV-specific antibodies. Comparison of three commercial assays, i.e., the RealStar CMV PCR kit, the Sentosa SA CMV quantitative PCR kit (Vela Diagnostics), and the CMV R-gene PCR kit (bioMérieux), for MP-NAT and ID-NAT showed comparably good analytical sensitivities, ranging from 10.23 to 11.14 IU/ml (MP-NAT) or from 37.66 to 57.94 IU/ml (ID-NAT). The clinical relevance of transfusion-associated CMV infections requires further investigation, and the evaluated methods present powerful basic tools providing sensitive possibilities for viral testing. The application of CMV MP-NAT facilitated the identification of one donor with a window-phase donation during acute primary CMV infection. PMID:26202109

  17. Signal amplification architecture for electrochemical aptasensor based on network-like thiocyanuric acid/gold nanoparticle/ssDNA.

    PubMed

    Chen, Zhengbo; Li, Lidong; Tian, Yu; Mu, Xiaojiao; Guo, Lin

    2012-01-01

    In this work, we described signal amplification architecture for electronic aptamer-based sensor (E-AB), which is applicable to a wide range of aptamers. Herein, we only take lysozyme as the representative sensing target. The amplification method was based on the network of thiocyanuric acid (TCA)/gold nanoparticles (AuNPs) modified with ssDNA. The binding event can be detected by a decrease in the integrated charge of the surface-bound [Ru(NH(3))(6)](3+) which electrostatically absorbed onto the negatively charged phosphate backbones of DNA. In the presence of target molecules, a large amount of TCA/AuNP/ssDNA network associated with [Ru(NH(3))(6)](3+) would be removed from the electrode surface, leading to a significant decrease of redox current. Cyclic voltammetry (CV) signals of [Ru(NH(3))(6)](3+) provides quantitative measures of the concentrations of lysozyme, with a linear calibration ranging from 5 pM to 1 nM and a detection limit is 0.1 pM. The detection limit of the proposed sensor is one order of magnitude and three orders of magnitude more sensitive than the detection limits in the absence of TCA (5 pM) and in the absence of TCA/AuNP/ssDNA network (0.5 nM). This amplification method is promising for broad potential application in clinic assay and various protein analysis.

  18. Evaluation of nucleic acid sequence based amplification using fluorescence resonance energy transfer (FRET-NASBA) in quantitative detection of Aspergillus 18S rRNA.

    PubMed

    Park, Chulmin; Kwon, Eun-Young; Shin, Na-Young; Choi, Su-Mi; Kim, Si-Hyun; Park, Sun Hee; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong

    2011-01-01

    We attempted to apply fluorescence resonance energy transfer technology to nucleic acid sequence-based amplification (FRET-NASBA) on the platform of the LightCycler system to detect Aspergillus species. Primers and probes for the Aspergillus 18S rRNA were newly designed to avoid overlapping with homologous sequences of human 18s rRNA. NASBA using molecular beacon (MB) showed non-specific results which have been frequently observed from controls, although it showed higher sensitivity (10(-2) amol) than the FRET. FRET-NASBA showed a sensitivity of 10(-1) amol and a high fidelity of reproducibility from controls. As FRET technology was successfully applied to the NASBA assay, it could contribute to diverse development of the NASBA assay. These results suggest that FRET-NASBA could replace previous NASBA techniques in the detection of Aspergillus.

  19. Torque Teno Virus 10 Isolated by Genome Amplification Techniques from a Patient with Concomitant Chronic Lymphocytic Leukemia and Polycythemia Vera

    PubMed Central

    Chu, Charles C; Zhang, Lu; Dhayalan, Arjun; Agagnina, Briana M; Magli, Amanda R; Fraher, Gia; Didier, Sebastien; Johnson, Linda P; Kennedy, William J; Damle, Rajendra N; Yan, Xiao-Jie; Patten, Piers E M; Teichberg, Saul; Koduru, Prasad; Kolitz, Jonathan E; Allen, Steven L; Rai, Kanti R; Chiorazzi, Nicholas

    2011-01-01

    An infectious etiology has been proposed for many human cancers, but rarely have specific agents been identified. One difficulty has been the need to propagate cancer cells in vitro to produce the infectious agent in detectable quantity. We hypothesized that genome amplification from small numbers of cells could be adapted to circumvent this difficulty. A patient with concomitant chronic lymphocytic leukemia (CLL) and polycythemia vera (PV) requiring therapeutic phlebotomy donated a large amount of phlebotomized blood to test this possibility. Using genome amplification methods, we identified a new isolate (BIS8-17) of torque teno virus (TTV) 10. The presence of blood isolate sequence 8-17 (BIS8-17) in the original plasma was confirmed by polymerase chain reaction (PCR), validating the approach, since TTV is a known plasma virus. Subsequent PCR testing of plasmas from additional patients showed that BIS8-17 had a similar incidence (~20%) in CLL (n = 48) or PV (n = 10) compared with healthy controls (n = 52). CLL cells do not harbor BIS8-17; PCR did not detect it in CLL peripheral blood genomic deoxyribonucleic acid (DNA) (n = 20). CLL patient clinical outcome or prognostic markers (immunoglobulin heavy chain variable region [IGHV ] mutation, CD38 or zeta-chain associated protein kinase 70kDa [ZAP-70]) did not correlate with BIS8-17 infection. Although not causative to our knowledge, this is the first reported isolation and detection of TTV in either CLL or PV. TTV could serve as a covirus with another infectious agent or TTV variant with rearranged genetic components that contribute to disease pathogenesis. These results prove that this method identifies infectious agents and provides an experimental methodology to test correlation with disease. PMID:21953418

  20. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine. PMID:26513289

  1. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine.

  2. Point-of-care multiplexed assays of nucleic acids using microcapillary-based loop-mediated isothermal amplification.

    PubMed

    Zhang, Yi; Zhang, Lu; Sun, Jiashu; Liu, Yulei; Ma, Xingjie; Cui, Shangjin; Ma, Liying; Xi, Jianzhong Jeff; Jiang, Xingyu

    2014-07-15

    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings. PMID:24937125

  3. On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria.

    PubMed

    Kunze, A; Dilcher, M; Abd El Wahed, A; Hufert, F; Niessner, R; Seidel, M

    2016-01-01

    This work presents an on-chip isothermal nucleic acid amplification test (iNAAT) for the multiplex amplification and detection of viral and bacterial DNA by a flow-based chemiluminescence microarray. In a principle study, on-chip recombinase polymerase amplification (RPA) on defined spots of a DNA microarray was used to spatially separate the amplification reaction of DNA from two viruses (Human adenovirus 41, Phi X 174) and the bacterium Enterococcus faecalis, which are relevant for water hygiene. By establishing the developed assay on the microarray analysis platform MCR 3, the automation of isothermal multiplex-amplification (39 °C, 40 min) and subsequent detection by chemiluminescence imaging was realized. Within 48 min, the microbes could be identified by the spot position on the microarray while the generated chemiluminescence signal correlated with the amount of applied microbe DNA. The limit of detection (LOD) determined for HAdV 41, Phi X 174, and E. faecalis was 35 GU/μL, 1 GU/μL, and 5 × 10(3) GU/μL (genomic units), which is comparable to the sensitivity reported for qPCR analysis, respectively. Moreover the simultaneous amplification and detection of DNA from all three microbes was possible. The presented assay shows that complex enzymatic reactions like an isothermal amplification can be performed in an easy-to-use experimental setup. Furthermore, iNAATs can be potent candidates for multipathogen detection in clinical, food, or environmental samples in routine or field monitoring approaches.

  4. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOEpatents

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  5. Validation of Internal Controls for Extraction and Amplification of Nucleic Acids from Enteric Viruses in Water Samples ▿ †

    PubMed Central

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-01-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls. PMID:21602369

  6. Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-07-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls.

  7. Detection and quantification of the red tide dinoflagellate Karenia brevis by real-time nucleic acid sequence-based amplification.

    PubMed

    Casper, Erica T; Paul, John H; Smith, Matthew C; Gray, Michael

    2004-08-01

    Nucleic acid sequence-based amplification (NASBA) is an isothermal method of RNA amplification that has been previously used in clinical diagnostic testing. A real-time NASBA assay has been developed for the detection of rbcL mRNA from the red tide dinoflagellate Karenia brevis. This assay is sensitive to one K. brevis cell and 1.0 fg of in vitro transcript, with occasional detection of lower concentrations of transcript. The assay did not detect rbcL mRNA from a wide range of nontarget organisms and environmental clones, while 10 strains (all tested) of K. brevis were detected. By the use of standard curves based on time to positivity, concentrations of K. brevis in environmental samples were predicted by NASBA and classified into different levels of blooms per the Florida Fish and Wildlife Conservation Commission (FWC) system. NASBA classification matched FWC classification (based on cell counts) 72% of the time. Those samples that did not match were off by only one class. NASBA is sensitive, rapid, and effective and may be used as an additional or alternative method to detect and quantify K. brevis in the marine environment. PMID:15294808

  8. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP.

    PubMed

    Shamsipur, Mojtaba; Farzin, Leila; Tabrizi, Mahmoud Amouzadeh; Shanehsaz, Maryam

    2016-12-01

    A "signal off" voltammetric aptasensor was developed for the sensitive and selective detection of ultra-low levels of adenosine triphosphate (ATP). For this purpose, a new strategy based on the principle of recognition-induced switching of aptamers from DNA/DNA duplex to DNA/target complex was designed using thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) as the signal amplifying nano-platforms. Owing to the small size, high surface-to-volume ratio and good conductivity, quantum dots were immobilized on the electrode surface for signal amplification. In this work, methylene blue (MB) adsorbed to DNA was used as a sensitive redox reporter. The intensity of voltammetric signal of MB was found to decrease linearly upon ATP addition over a concentration range of 0.1nM to 1.6μM with a correlation coefficient of 0.9924. Under optimized conditions, the aptasensor was able to selectively detect ATP with a limit of detection of 45pM at 3σ. The results also demonstrated that the QDs-based amplification strategy could be feasible for ATP assay and presented a potential universal method for other small biomolecular aptasensors. PMID:27612836

  9. Bringing Laboulbeniales into the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi.

    PubMed

    Haelewaters, Danny; Gorczak, Michał; Pfliegler, Walter P; Tartally, András; Tischer, Marta; Wrzosek, Marta; Pfister, Donald H

    2015-12-01

    Laboulbeniales is one of the most peculiar orders of Ascomycota. These fungi are characterized by an ectoparasitic life-style on arthropods, determinate growth, lack of an asexual stage, high species richness, and intractability to culture. The order Laboulbeniales, sister to Pyxidiophorales, has only recently been assigned a separate class, the Laboulbeniomycetes, based on very few ribosomal DNA sequences. So far, DNA isolations and PCR amplifications have proven difficult. Here, we provide details of isolation techniques and the application of commercially available kits that enable efficient and reliable genetic analyses of these fungi. We provide 43 newly generated Laboulbeniales ribosomal DNA sequences, among which are the first published sequences for species in the genera Gloeandromyces, Herpomyces, Laboulbenia, Monoicomyces, and Polyandromyces. DNA extractions were possible using from 1 to 30 thalli from hosts preserved in ethanol (70-100 %). In two cases, we successfully isolated DNA from thalli on dried insect collections. Laboulbeniales molecular systematics could be substantially enhanced through these improved methods by allowing more complete sampling of both taxa and gene regions. PMID:26734547

  10. Loop mediated isothermal amplification combined with nucleic acid lateral flow strip for diagnosis of cyprinid herpes virus-3.

    PubMed

    Soliman, Hatem; El-Matbouli, Mansour

    2010-02-01

    An improved loop mediated isothermal amplification (LAMP) assay for rapid, sensitive and specific detection of cyprinid herpes virus-3 (CyHV-3), also known as koi herpes virus (KHV), was developed. The lower detection limit of the CyHV-3-LAMP assay is 10 fg DNA which equivalent to 30 copies of CyHV-3 genome. Nucleic acid lateral flow assay was used for visual detection of the LAMP products. The LAMP- nucleic acid lateral flow assay relies on DNA hybridization technology and antigen-antibody reactions in combination with LAMP. For application of this assay, the biotinylated LAMP product was hybridized with a FITC-labelled specific probe for 5 min. The resulting DNA complex could be visualised as purple band at the strip test line within 5 min of sample exposure. The nucleic acid lateral flow analysis of the LAMP product was equivalent in sensitivity but more rapid than the conventional agarose gel electrophoresis. The combination of LAMP assay with the nucleic acid lateral flow analysis can simplify the diagnosis and screening of CyHV-3 as it is simple, requires very little training, does not require specialized equipment such as a thermal cycler, the results are read visually with no need to run a gel and has a high sensitivity and specificity.

  11. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly.

    PubMed

    Song, Weiling; Zhang, Qiao; Sun, Wenbo

    2015-02-11

    An ultrasensitive protocol for fluorescent detection of DNA is designed by combining the template enhanced hybridization process (TEHP) with Rolling Circle Amplification (RCA) and Catalytic Hairpin Assembly (CHA), showing a remarkable amplification efficiency.

  12. Real-time nucleic acid sequence-based amplification using molecular beacons for detection of enterovirus RNA in clinical specimens.

    PubMed

    Landry, Marie L; Garner, Robin; Ferguson, David

    2005-07-01

    Real-time nucleic acid sequence-based amplification (NASBA) using molecular beacon technology (NASBA-beacon) was compared to standard NASBA with postamplification hybridization using electrochemiluminescently labeled probes (NASBA-ECL) for detection of enteroviruses (EV) in 133 cerebrospinal fluid and 27 stool samples. NASBA-ECL and NASBA-beacon were similar in sensitivity, detecting 55 (100%) and 52 (94.5%) EV-positive samples, respectively. There were no false positives. Both NASBA assays were significantly more sensitive than culture. Real-time NASBA-beacon reagents and equipment rental were more expensive than those for NASBA-ECL; however, time to result was shortened by 1.5 h, hands-on time was reduced by 25 min, and the assay was much simpler for technologists to learn and perform.

  13. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    PubMed

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP. PMID:24880871

  14. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    PubMed

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.

  15. Implementation of Oral and Rectal Gonococcal and Chlamydial Nucleic Acid Amplification-Based Testing as a Component of Local Health Department Activities.

    PubMed

    Nall, Jennifer; Barr, Breona; McNeil, Candice J; Bachmann, Laura H

    2016-10-01

    From January 1, 2014, to May 31, 2015, 452 individuals received extragenital nucleic acid amplification-based Neisseria gonorrhoeae and Chlamydia trachomatis testing through public health venues. Seventy-four individuals (16%) tested positive for Neisseria gonorrhoeae and/or Chlamydia trachomatis at an extragenital site and 40 (54%) would not have been effectively diagnosed and treated in the absence of extragenital testing.

  16. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  17. On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria.

    PubMed

    Kunze, A; Dilcher, M; Abd El Wahed, A; Hufert, F; Niessner, R; Seidel, M

    2016-01-01

    This work presents an on-chip isothermal nucleic acid amplification test (iNAAT) for the multiplex amplification and detection of viral and bacterial DNA by a flow-based chemiluminescence microarray. In a principle study, on-chip recombinase polymerase amplification (RPA) on defined spots of a DNA microarray was used to spatially separate the amplification reaction of DNA from two viruses (Human adenovirus 41, Phi X 174) and the bacterium Enterococcus faecalis, which are relevant for water hygiene. By establishing the developed assay on the microarray analysis platform MCR 3, the automation of isothermal multiplex-amplification (39 °C, 40 min) and subsequent detection by chemiluminescence imaging was realized. Within 48 min, the microbes could be identified by the spot position on the microarray while the generated chemiluminescence signal correlated with the amount of applied microbe DNA. The limit of detection (LOD) determined for HAdV 41, Phi X 174, and E. faecalis was 35 GU/μL, 1 GU/μL, and 5 × 10(3) GU/μL (genomic units), which is comparable to the sensitivity reported for qPCR analysis, respectively. Moreover the simultaneous amplification and detection of DNA from all three microbes was possible. The presented assay shows that complex enzymatic reactions like an isothermal amplification can be performed in an easy-to-use experimental setup. Furthermore, iNAATs can be potent candidates for multipathogen detection in clinical, food, or environmental samples in routine or field monitoring approaches. PMID:26624222

  18. Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector.

    PubMed

    Tong, Yanhong; McCarthy, Kaitlin; Kong, Huimin; Lemieux, Bertrand

    2012-11-01

    We have developed a rapid and simple molecular test, the IsoGlow HSV Typing assay, for the detection and typing of herpes simplex virus (type 1 and 2) from genital or oral lesions. Clinical samples suspended in viral transport mediums are simply diluted and then added to a helicase-dependent amplification master mix. The amplification and detection were performed on a portable fluorescence detector called the FireFly instrument. Detection of amplification products is based on end-point analysis using cycling probe technology. An internal control nucleic acid was included in the amplification master mix to monitor the presence of amplification inhibitors in the samples. Because the device has only two fluorescence detection channels, two strategies were developed and compared to detect the internal control template: internal control detected by melting curve analysis using a dual-labeled probe, versus internal control detection using end-point fluorescence release by a CPT probe at a lower temperature. Both have a total turnaround time of about 1 hour. Clinical performance relative to herpes viral culture was evaluated using 176 clinical specimens. Both formats of the IsoGlow HSV typing assay had sensitivities comparable to that of the Food and Drug Administration-cleared IsoAmp HSV (BioHelix Corp., Beverly MA) test and specificity for the two types of HSV comparable to that of ELVIS HSV (Diagnostic Hybrids, Athens, OH).

  19. fM to aM nucleic acid amplification for molecular diagnostics in a non-stick-coated metal microfluidic bioreactor.

    PubMed

    Huang, Guoliang; Huang, Qin; Ma, Li; Luo, Xianbo; Pang, Biao; Zhang, Zhixin; Wang, Ruliang; Zhang, Junqi; Li, Qi; Fu, Rongxin; Ye, Jiancheng

    2014-12-05

    A sensitive DNA isothermal amplification method for the detection of DNA at fM to aM concentrations for pathogen identification was developed using a non-stick-coated metal microfluidic bioreactor. A portable confocal optical detector was utilized to monitor the DNA amplification in micro- to nanoliter reaction assays in real-time, with fluorescence collection near the optical diffraction limit. The non-stick-coated metal microfluidic bioreactor, with a surface contact angle of 103°, was largely inert to bio-molecules, and DNA amplification could be performed in a minimum reaction volume of 40 nL. The isothermal nucleic acid amplification for Mycoplasma pneumoniae identification in the non-stick-coated microfluidic bioreactor could be performed at a minimum DNA template concentration of 1.3 aM, and a detection limit of three copies of genomic DNA was obtained. This microfluidic bioreactor offers a promising clinically relevant pathogen molecular diagnostic method via the amplification of targets from only a few copies of genomic DNA from a single bacterium.

  20. Source-control techniques for acid mine drainage

    SciTech Connect

    Hill, R.D.; Wilmoth, R.C.

    1985-10-01

    The potential for production of acidic discharges from mining activities is related to the pyritic concentration in the overburden and to the available alkalinity. Exposure of the pyritic material to weathering causes oxidation and the release of sulfuric acid. Source control techniques include pyrite segregation the selective burial, use of bacteriacides to retard bacterial catalysis, use of alkaline reagents to provide in-situ treatment, and the use of treatment systems to neutralize acidic drainages.

  1. Comparative detection of rotavirus RNA by conventional RT-PCR, TaqMan RT-PCR and real-time nucleic acid sequence-based amplification.

    PubMed

    Mo, Qiu-Hua; Wang, Hai-Bo; Tan, Hua; Wu, Bi-Mei; Feng, Zi-Li; Wang, Qi; Lin, Ji-Can; Yang, Ze

    2015-03-01

    Rotavirus is one of the major viral pathogens leading to diarrhea. Diagnosis has been conducted by either traditional cultural, serological methods or molecular biology techniques, which include RT-PCR and nucleic acid sequence-based amplification (NASBA). However, their differences regarding accuracy and sensitivity remain unknown. In this study, an in-house conventional RT-PCR assay and more importantly, an in-house real-time NASBA (RT-NASBA) were established, and compared with a commercial TaqMan RT-PCR assay. The results showed that all of these methods were able to detect and distinguish rotavirus from other diarrhea viruses with a 100% concordance rate during the course of an evaluation on 20 clinical stool samples. However, RT-NASBA was much quicker than the other two methods. More importantly, the limit of detection of RT-NASBA could reach seven copies per reaction and was one to two logs lower than that of conventional RT-PCR and TaqMan RT-PCR. These results indicate that this in-house assay was more sensitive, and thus could be used as an efficient diagnosis tool for rotavirus. To the best of our knowledge, this is the first direct comparison among three different assays for the detection of rotavirus. These findings would provide implication for the rational selection of diagnosis tool for rotavirus.

  2. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).

    PubMed

    Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix

    2010-04-01

    For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems. PMID:20300675

  3. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).

    PubMed

    Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix

    2010-04-01

    For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems.

  4. A collaborative study to establish the 1st WHO International Standard for human cytomegalovirus for nucleic acid amplification technology.

    PubMed

    Fryer, Jacqueline F; Heath, Alan B; Minor, Philip D

    2016-07-01

    Variability in the performance of nucleic acid amplification technology (NAT)-based assays presents a significant problem in the diagnosis and management of human cytomegalovirus (HCMV) infections. Here we describe a collaborative study to evaluate the suitability of candidate reference materials to harmonize HCMV viral load measurements in a wide range of NAT assays. Candidate materials comprised lyophilized Merlin virus, liquid Merlin virus, liquid AD169 virus, and purified HCMV Merlin DNA cloned into a bacterial artificial chromosome. Variability in the laboratory mean HCMV concentrations determined for virus samples across the different assays was 2 log10. Variability for the purified DNA sample was higher (>3 log10). The agreement between laboratories was markedly improved when the potencies of the liquid virus samples were expressed relative to the lyophilized virus candidate. In contrast, the agreement between laboratories for the purified DNA sample was not improved. Results indicated the suitability of the lyophilized Merlin virus preparation as the 1st WHO International Standard for HCMV for NAT. It was established in October 2010, with an assigned potency of 5 × 10(6) International Units (IU) (NIBSC code 09/162). It is intended to be used to calibrate secondary references, used in HCMV NAT assays, in IU. PMID:27179913

  5. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses.

    PubMed

    Lanciotti, R S; Kerst, A J

    2001-12-01

    The development and application of nucleic acid sequence-based amplification (NASBA) assays for the detection of West Nile (WN) and St. Louis encephalitis (SLE) viruses are reported. Two unique detection formats were developed for the NASBA assays: a postamplification detection step with a virus-specific internal capture probe and electrochemiluminescence (NASBA-ECL assay) and a real-time assay with 6-carboxyfluorescein-labeled virus-specific molecular beacon probes (NASBA-beacon assay). The sensitivities and specificities of these NASBA assays were compared to those of a newly described standard reverse transcription (RT)-PCR and TaqMan assays for SLE virus and to a previously published TaqMan assay for WN virus. The NASBA assays demonstrated exceptional sensitivities and specificities compared to those of virus isolation, the TaqMan assays, and standard RT-PCR, with the NASBA-beacon assay yielding results in less than 1 h. These assays should be of utility in the diagnostic laboratory to complement existing diagnostic testing methodologies and as a tool in conducting flavivirus surveillance in the United States.

  6. Nucleic acid-amplification testing for hepatitis B in cornea donors.

    PubMed

    Fornés, Maria Gema; Jiménez, Maria Angustias; Eisman, Marcela; Gómez Villagrán, Jose Luis; Villalba, Rafael

    2016-06-01

    Careful donor selection and implementation of tests of appropriate sensitivity and specificity are of paramount importance for minimizing the risk of transmitting infectious diseases from donors to corneal allograft recipients. Reported cases of viral transmission with corneal grafts are very unusual. Nevertheless potential virus transmission through the engraftment cannot be ruled out. According to European Guideline 2006/17/EC, screening for antibodies for Hepatitis B core antigen (anti HBc) is mandatory, and when this test is positive, some criteria must be established before using corneas. Despite the continuous progress in screening tests, donors carrying an occult hepatitis B infection (OBI) can cause transplant-transmitted hepatitis B. To date, Nucleic Acid Testing (NAT) is not an obligatory assay in corneal tissue setting neither in our country nor in the rest of European countries. Herein, we report three cornea donors that were rejected with the diagnosis of OBI through the testing of sensitive NAT and the serological profile of Hepatitis B virus. The aim of this report is to emphasize the need to include NAT in new reviews of EU Tissues and Cells Directives in order to increase level of security in tissue donation as well as not to reject a high number of donors with isolated profile of anti HBc in geographical areas with high prevalence of Hepatitis B, that could be rejected without a true criterion of Hepatitis B infection. PMID:26685699

  7. Genomic detection of human immunodeficiency virus (HIV) by nucleic acid amplification test in a frequent platelet donor during the pre-seroconversion period.

    PubMed

    Pondé, Robério Amorim de Almeida

    2011-11-01

    Since serological donor-screening tests for HIV were introduced in 1985, the safety of donated blood components has improved dramatically. However, these tests do not completely prevent the risk of transfusion-associated HIV infection related to the use of blood donated during the pre-seroconversion window period. Testing based on nucleic acid amplification is being implemented to screen for HIV-infected blood donated during this period, which has reduced the probability of transmitting HIV through transfusion by shortening the window period. This article describes a case of acute HIV-1 infection, detected using a nucleic acid amplification test (NAT) in a repeat blood donor who donated during the pre-seroconversion window period and whose antigen and anti-HIV antibody expression was observed after molecular marker detection. In addition, the possible route of infection is discussed based on the patient's history, and finally, the need for NAT technology for blood donor screening is emphasized.

  8. Evaluation of a real-time nucleic acid sequence-based amplification assay using molecular beacons for detection of human immunodeficiency virus type 1.

    PubMed

    McClernon, D R; Vavro, C; St Clair, M

    2006-06-01

    We evaluated the performance characteristics of a new, real-time nucleic acid sequence-based amplification (NASBA) assay that incorporates molecular beacon technology for detection of human immunodeficiency virus type 1 (HIV-1). The quantitative results were comparable to those obtained with three leading commercially available assays. The analytical sensitivity was 37 IU/ml. The NASBA assay detected clinically relevant recombinant viruses and all group M HIV-1 subtypes.

  9. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  10. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.

    PubMed

    Milot, Marie-Hélène; Marchal-Crespo, Laura; Green, Christopher S; Cramer, Steven C; Reinkensmeyer, David J

    2010-03-01

    Performance errors drive motor learning for many tasks. Some researchers have suggested that reducing performance errors with haptic guidance can benefit learning by demonstrating correct movements, while others have suggested that artificially increasing errors will force faster and more complete learning. This study compared the effect of these two techniques--haptic guidance and error amplification--as healthy subjects learned to play a computerized pinball-like game. The game required learning to press a button using wrist movement at the correct time to make a flipper hit a falling ball to a randomly positioned target. Errors were decreased or increased using a robotic device that retarded or accelerated wrist movement, based on sensed movement initiation timing errors. After training with either error amplification or haptic guidance, subjects significantly reduced their timing errors and generalized learning to untrained targets. However, for a subset of more skilled subjects, training with amplified errors produced significantly greater learning than training with the reduced errors associated with haptic guidance, while for a subset of less skilled subjects, training with haptic guidance seemed to benefit learning more. These results suggest that both techniques help enhanced performance of a timing task, but learning is optimized if training subjects with the appropriate technique based on their baseline skill level.

  11. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    PubMed

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  12. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays

    PubMed Central

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S.; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E.; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D.; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA. PMID:26562415

  13. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. PMID:22986206

  14. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain.

  15. Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other Neisseria species.

    PubMed

    Tabrizi, Sepehr N; Unemo, Magnus; Limnios, Athena E; Hogan, Tiffany R; Hjelmevoll, Stig-Ove; Garland, Susanne M; Tapsall, John

    2011-10-01

    Molecular detection of Neisseria gonorrhoeae in extragenital samples may result in false-positive results due to cross-reaction with commensal Neisseria species or Neisseria meningitidis. This study examined 450 characterized clinical culture isolates, comprising 216 N. gonorrhoeae isolates and 234 isolates of nongonococcal Neisseria species (n = 218) and 16 isolates of other closely related bacteria, with six commercial nucleic acid amplification tests (NAATs). The six NAATs tested were Gen-Probe APTIMA COMBO 2 and APTIMA GC, Roche COBAS Amplicor CT/NG and COBAS 4800 CT/NG tests, BD ProbeTec GC Qx amplified DNA assay, and Abbott RealTime CT/NG test. All assays except COBAS Amplicor CT/NG test where four (1.9%) isolates were not detected showed a positive result with all N. gonorrhoeae isolates (n = 216). Among the 234 nongonococcal isolates examined, initial results from all assays displayed some false-positive results due to cross-reactions. Specifically, the COBAS Amplicor and ProbeTec tests showed the highest number of false-positive results, detecting 33 (14.1%) and 26 (11%) nongonococcal Neisseria isolates, respectively. On the first testing, APTIMA COMBO 2, APTIMA GC, Abbott RealTime, and Roche COBAS 4800 showed lower level of cross-reactions with five (2.1%), four (1.7%), two (1%), and two (1%) of the isolates showing low-level positivity, respectively. Upon retesting of these nine nongonococcal isolates using freshly cultured colonies, none were positive by the APTIMA COMBO 2, Abbott RealTime, or COBAS 4800 test. In conclusion, the COBAS Amplicor and ProbeTec tests displayed high number of false-positive results, while the remaining NAATs showed only sporadic low-level false-positive results. Supplementary testing for confirmation of N. gonorrhoeae NAATs remains recommended with all samples tested, in particular those from extragenital sites.

  16. Adaptation of a visualized loop-mediated isothermal amplification technique for field detection of Plasmodium vivax infection

    PubMed Central

    2011-01-01

    Background Loop-mediated isothermal amplification (LAMP) is a high performance method for detecting DNA and holds promise for use in the molecular detection of infectious pathogens, including Plasmodium spp. However, in most malaria-endemic areas, which are often resource-limited, current LAMP methods are not feasible for diagnosis due to difficulties in accurately interpreting results with problems of sensitive visualization of amplified products, and the risk of contamination resulting from the high quantity of amplified DNA produced. In this study, we establish a novel visualized LAMP method in a closed-tube system, and validate it for the diagnosis of malaria under simulated field conditions. Methods A visualized LAMP method was established by the addition of a microcrystalline wax-dye capsule containing the highly sensitive DNA fluorescence dye SYBR Green I to a normal LAMP reaction prior to the initiation of the reaction. A total of 89 blood samples were collected on filter paper and processed using a simple boiling method for DNA extraction, and then tested by the visualized LAMP method for Plasmodium vivax infection. Results The wax capsule remained intact during isothermal amplification, and released the DNA dye to the reaction mixture only when the temperature was raised to the melting point following amplification. Soon after cooling down, the solidified wax sealed the reaction mix at the bottom of the tube, thus minimizing the risk of aerosol contamination. Compared to microscopy, the sensitivity and specificity of LAMP were 98.3% (95% confidence interval (CI): 91.1-99.7%) and 100% (95% CI: 88.3-100%), and were in close agreement with a nested polymerase chain reaction method. Conclusions This novel, cheap and quick visualized LAMP method is feasible for malaria diagnosis in resource-limited field settings. PMID:21693031

  17. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification.

    PubMed

    Liu, Shufeng; Wei, Wenji; Wang, Yanqun; Fang, Li; Wang, Li; Li, Feng

    2016-06-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the development of isothermal and ultrasensitive electrochemical DNA biosensor is very essential for biological studies and medical diagnostics. Herein, the autonomous cascade DNA replication strategy was effectively married with the enzyme/gold nanoparticle-based post-amplification strategy to promote the detection performance toward target DNA. A hairpin DNA probe (HP) is designed that consists of an overhang at 3'-end as the recognition unit for target DNA, a recognition site for nicking endonuclease, and an alkane spacer to terminate polymerization reaction. The autonomous DNA replication-scission-displacement reaction operated by the nicking endonuclease/KF polymerase induced the autocatalytic opening of HP, which was then specifically bound by the enzyme/gold nanoparticles for further dual-signal amplification toward target-related sensing events. A low detection limit of 0.065 fM with an excellent selectivity toward target DNA could be achieved. The proposed biosensor could be also easily regenerated for target detection. The developed biosensor creates an opportunity for the effective coupling of the target replication with post-amplification strategies and thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine.

  18. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum.

    PubMed

    Schneider, Petra; Wolters, Liselotte; Schoone, Gerard; Schallig, Henk; Sillekens, Peter; Hermsen, Rob; Sauerwein, Robert

    2005-01-01

    Determination of the number of malaria parasites by routine or even expert microscopy is not always sufficiently sensitive for detailed quantitative studies on the population dynamics of Plasmodium falciparum, such as intervention or vaccine trials. To circumvent this problem, two more sensitive assays, real-time quantitative nucleic acid sequence-based amplification (QT-NASBA) and real-time quantitative PCR (QT-PCR) were compared for quantification of P. falciparum parasites. QT-NASBA was adapted to molecular beacon real-time detection technology, which enables a reduction of the time of analysis and of contamination risk while retaining the specificity and sensitivity of the original assay. Both QT-NASBA and QT-PCR have a sensitivity of 20 parasites/ml of blood, but QT-PCR requires a complicated DNA extraction procedure and the use of 500 microl of venous blood to achieve this sensitivity, compared to 50 microl of finger prick blood for real-time QT-NASBA. Both techniques show a significant correlation to microscopic parasite counts, and the quantification results of the two real-time assays are significantly correlated for in vitro as well as in vivo samples. However, in comparison to real-time QT-PCR, the results of real-time QT-NASBA can be obtained 12 h earlier, with relatively easy RNA extraction and use of finger prick blood samples. The prospective development of multiplex QT-NASBA for detection of various P. falciparum developmental stages increases the value of QT-NASBA for malaria studies. Therefore, for studies requiring sensitive and accurate detection of P. falciparum parasites in large numbers of samples, the use of real-time QT-NASBA is preferred over that of real-time QT-PCR.

  19. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.

    PubMed

    Schlappi, Travis S; McCalla, Stephanie E; Schoepp, Nathan G; Ismagilov, Rustem F

    2016-08-01

    Detecting nucleic acids (NAs) at zeptomolar concentrations (few molecules per milliliter) currently requires expensive equipment and lengthy processing times to isolate and concentrate the NAs into a volume that is amenable to amplification processes, such as PCR or LAMP. Shortening the time required to concentrate NAs and integrating this procedure with amplification on-device would be invaluable to a number of analytical fields, including environmental monitoring and clinical diagnostics. Microfluidic point-of-care (POC) devices have been designed to address these needs, but they are not able to detect NAs present in zeptomolar concentrations in short time frames because they require slow flow rates and/or they are unable to handle milliliter-scale volumes. In this paper, we theoretically and experimentally investigate a flow-through capture membrane that solves this problem by capturing NAs with high sensitivity in a short time period, followed by direct detection via amplification. Theoretical predictions guided the choice of physical parameters for a chitosan-coated nylon membrane; these predictions can also be applied generally to other capture situations with different requirements. The membrane is also compatible with in situ amplification, which, by eliminating an elution step enables high sensitivity and will facilitate integration of this method into sample-to-answer detection devices. We tested a wide range of combinations of sample volumes and concentrations of DNA molecules using a capture membrane with a 2 mm radius. We show that for nucleic acid detection, this approach can concentrate and detect as few as ∼10 molecules of DNA with flow rates as high as 1 mL/min, handling samples as large as 50 mL. In a specific example, this method reliably concentrated and detected ∼25 molecules of DNA from 50 mL of sample. PMID:27429181

  20. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  1. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Giang Nguyen, Dang; Phat Huynh, Trong; Lam, Quang Vinh

    2016-09-01

    In the present work a low cost technique for preparation of gold nanoparticles (AuNPs) using microwave heating was developed. The effect of different elements (precursor reagents, irradiation time, and microwave radiation power) on the final morphology of AuNPs obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by transmission electron microscopy, UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy, and powder x-ray diffraction. The results showed that to some extent the above-mentioned characterizations influenced the size of synthetized nanoparticles and application of microwave heating has many advantages such as low cost, rapid preparation and highly uniform particles. As an application in quartz crystal microbalance (QCM) immunosensor, AuNPs are conjugated with the Escherichia coli (E.coli) O157:H7 antibodies for signal amplification to detect E.coli O157:H7 bacteria residual in QCM system.

  2. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant–Associated Fungi

    PubMed Central

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-01-01

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant–associated fungi due to the similar homologies of sequences in primer–annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3′ end of the primer–binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant–associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant–associated fungi. PMID:27600711

  3. Reporter-triggered isothermal exponential amplification strategy in ultrasensitive homogeneous label-free electrochemical nucleic acid biosensing.

    PubMed

    Nie, Ji; Zhang, De-Wen; Zhang, Fang-Ting; Yuan, Fang; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-06-14

    A simple and novel reporter-triggered isothermal exponential amplification reaction (R-EXPAR) integrated with a miniaturized electrochemical device was developed, which achieved excellent improvement (five orders of magnitude) of sensitivity toward reporter, G-quadruplex. This R-EXPAR strategy has been successfully implemented to construct a homogeneous label-free electrochemical sensor for ultrasensitive DNA detection.

  4. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  5. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate.

  6. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons.

    PubMed

    Churruca, E; Girbau, C; Martínez, I; Mateo, E; Alonso, R; Fernández-Astorga, A

    2007-06-10

    A nucleic acid sequence-based amplification (NASBA) assay based on molecular beacons was used for real-time detection of Campylobacter jejuni and Campylobacter coli in samples of chicken meat. A set of specific primers and beacon probe were designed to target the 16S rRNA of both species. The real-time NASBA protocol including the RNA isolation was valid for both of the cell suspensions in buffered saline and the artificially contaminated chicken meat samples. The presence of rRNA could be correlated with cellular viability, following inactivation of the bacteria by heating, in inoculated chicken meat samples but not in RNase-free cell suspensions.

  7. [Recombinase Polymerase Amplification and its Applications in Parasite Detection].

    PubMed

    ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui

    2015-10-01

    Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection.

  8. [Recombinase Polymerase Amplification and its Applications in Parasite Detection].

    PubMed

    ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui

    2015-10-01

    Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection. PMID:26931046

  9. Performance of reversed transcription loop-mediated isothermal amplification technique detecting EV71: a systematic review with meta-analysis.

    PubMed

    Lei, Xiaoying; Wen, Hongling; Zhao, Li; Yu, Xuejie

    2014-04-01

    Human enterovirus 71 (EV71) is the major etiological agent of hand, foot and mouth disease (HFMD), which is a common infectious disease in young children. Studies in the past have shown that reversed transcription loop-mediated isothermal amplification (RT-LAMP) was a rapid approach for the detection of EV71 in HFMD. This meta-analysis study is to evaluate the diagnostic role of RT-LAMP in detecting EV71 infection. A comprehensive literature research of PubMed, Embase, Wan Fang Data, and Chinese National Knowledge Infrastructure databases was conducted on articles aiming at the diagnostic performance of RT-LAMP in EV71 detection published before February 10, 2014. Data from selected studies were pooled to yield the summary sensitivity, specificity, positive and negative likelihood ratio (PLR, NLR), diagnostic odds ratio (DOR), and receiver operating characteristic (SROC) curve by using STATA VERSION 12.0 software. Ten studies including a total of 907 clinical samples were of high quality in this meta-analysis. Overall, the pooled sensitivity, specificity, PLR, NLR, DOR, and the area under the SROC curve was 0.99 (0.97, 1.00), 0.97 (0.94, 1.00), 5.90 (95% CI: 3.90-8.94), 0.20 (95% CI: 0.14-0.29), and 1.00 (95% CI: 0.99-1.00), respectively. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. Despite inter-study variability, the test performance of RT-LAMP was consistent with real-time RT-PCR in detecting EV71. This meta-analysis suggests that RT-LAMP is a useful diagnostic tool with high sensitivity and specificity for detecting EV71. PMID:24815384

  10. Performance of reversed transcription loop-mediated isothermal amplification technique detecting EV71: a systematic review with meta-analysis.

    PubMed

    Lei, Xiaoying; Wen, Hongling; Zhao, Li; Yu, Xuejie

    2014-04-01

    Human enterovirus 71 (EV71) is the major etiological agent of hand, foot and mouth disease (HFMD), which is a common infectious disease in young children. Studies in the past have shown that reversed transcription loop-mediated isothermal amplification (RT-LAMP) was a rapid approach for the detection of EV71 in HFMD. This meta-analysis study is to evaluate the diagnostic role of RT-LAMP in detecting EV71 infection. A comprehensive literature research of PubMed, Embase, Wan Fang Data, and Chinese National Knowledge Infrastructure databases was conducted on articles aiming at the diagnostic performance of RT-LAMP in EV71 detection published before February 10, 2014. Data from selected studies were pooled to yield the summary sensitivity, specificity, positive and negative likelihood ratio (PLR, NLR), diagnostic odds ratio (DOR), and receiver operating characteristic (SROC) curve by using STATA VERSION 12.0 software. Ten studies including a total of 907 clinical samples were of high quality in this meta-analysis. Overall, the pooled sensitivity, specificity, PLR, NLR, DOR, and the area under the SROC curve was 0.99 (0.97, 1.00), 0.97 (0.94, 1.00), 5.90 (95% CI: 3.90-8.94), 0.20 (95% CI: 0.14-0.29), and 1.00 (95% CI: 0.99-1.00), respectively. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. Despite inter-study variability, the test performance of RT-LAMP was consistent with real-time RT-PCR in detecting EV71. This meta-analysis suggests that RT-LAMP is a useful diagnostic tool with high sensitivity and specificity for detecting EV71.

  11. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  12. Ground-based intercomparison of nitric acid measurement techniques

    NASA Astrophysics Data System (ADS)

    Fehsenfeld, Fred C.; Huey, L. Greg; Sueper, Donna T.; Norton, Richard B.; Williams, Eric J.; Eisele, Fred L.; Mauldin, R. Lee; Tanner, David J.

    1998-02-01

    An informal intercomparison of gas-phase nitric acid (HNO3) measuring techniques was carried out. The intercomparison involved two new chemical ionization mass spectrometers (CIMSs) that have been developed for the measurement of HNO3 along with an older, more established filter pack (FP) technique. The filter pack was composed of a teflon prefilter which collected aerosols followed by a nylon filter which collected the gas-phase HNO3. The study was carried out during the late winter and early spring of 1996 at a site located on the western edge of the Denver metropolitan area. Throughout the study the two CIMS techniques were in general agreement. However, under certain conditions the HNO3 levels obtained from the nylon filter of the FP gave values for the gas-phase concentration of HNO3 that were somewhat higher than that recorded by the two CIMS systems. The formation of ammonium nitrate (NH4NO3) containing aerosols is common during the colder months in this area. An analysis of these results suggests that the HNO3 collected by the nylon filter in the FP suffers an interference associated with the disproportionation of NH4NO3 from aerosols containing that compound that were initially collected on the teflon prefilter. This problem with the FP technique has been suggested from results obtained in previous intercomparisons.

  13. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.

    PubMed

    Bi, Sai; Jia, Xiaoqiang; Ye, Jiayan; Dong, Ying

    2015-09-15

    Gold nanomaterials promise a wide range of potential applications in chemical and biological sensing, imaging, and catalysis. In this paper, we demonstrate a facile method for room-temperature synthesis of gold nanostars (AuNSs) with a size of ~50 nm via seeded growth. Significantly, the AuNSs are found to have high light-scattering properties, which are successfully used as labels for sensitive and selective detection of nucleic acids and proteins by using exonuclease III (Exo III) as a biocatalyst. For DNA detection, the binding of targets to the functionalized AuNS probes leads to the Exo III-stimulated cascade recycling amplification. As a result, a large amount of AuNSs are released from magnetic nanoparticles (MNPs) into solution, providing a greatly enhanced light-scattering signal for amplified sensing process. Moreover, a binding-induced DNA three-way junction (DNA TWJ) is introduced to thrombin detection, in which the binding of two aptamers to thrombin triggers assembly of the DNA motifs and initiates the subsequent DNA strand displacement reaction (SDR) and Exo III-assisted cascade recycling amplification. The detection limits of 89 fM and 5.6 pM are achieved for DNA and thrombin, respectively, which are comparable to or even exceed that of the reported isothermal amplification methods. It is noteworthy that based on the DNA TWJ strategy the sequences are independent on target proteins. Additionally, the employment of MNPs in the assays can not only simplify the operations but also improve the detection sensitivity. Therefore, the proposed amplified light-scattering assay with high sensitivity and selectivity, acceptable accuracy, and satisfactory versatility of analytes provides various applications in bioanalysis.

  14. Detection of Vibrio cholerae by isothermal cross-priming amplification combined with nucleic acid detection strip analysis.

    PubMed

    Zhang, Xia; Du, Xin-Jun; Guan, Chun; Li, Ping; Zheng, Wen-Jie; Wang, Shuo

    2015-08-01

    Vibrio cholerae is a water- and food-borne human pathogen, and V. cholerae serotypes O1 and O139 have attracted attention because of their severe pathogenesis. However, non-O1, non-O139 cholera vibrios (NCVs) were also recently recognized as having virulence properties. In this study, we developed a cross-priming amplification (CPA) method for the detection of all serotypes of V. cholerae. The specificity of the CPA method was tested using a panel of 60 different bacterial strains. All of the V. cholerae strains showed positive results, and 41 other types of bacteria gave negative results. The limit of detection of the CPA method was 79.28 fg of genomic DNA, 4.2 × 10(2) CFU/ml for bacteria in pure culture, and 5.6 CFU per 25 g of sample with pre-enrichment. This method showed a higher sensitivity than the loop-mediated isothermal amplification (LAMP) method did and was more convenient to perform. These results indicate that the CPA method can be used for the rapid preliminary screening of V. cholerae.

  15. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique.

    PubMed

    Lesparre, Fabien; Gomes, Jean Thomas; Délen, Xavier; Martial, Igor; Didierjean, Julien; Pallmann, Wolfgang; Resan, Bojan; Druon, Frederic; Balembois, François; Georges, Patrick

    2016-04-01

    A two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated. The second amplifier stage designed for high energy using the divided pulse technique allows us to generate a recombined output pulse energy of 2 mJ at 12.5 kHz with a pulse duration of 6 ps corresponding to a peak power of 320 MW. Average powers ranging from 25 to 55 W with repetition rates varying from 12.5 to 500 kHz have been demonstrated. PMID:27192304

  16. Advanced Techniques for the Amplification of Sub -100-FEMTOSECOND Pulses in TITANIUM:SAPPHIRE-BASED Laser Systems

    NASA Astrophysics Data System (ADS)

    Rudd, James Vanhartness

    This dissertation is concerned with the design, construction, and characterization of a Ti:sapphire-based kHz-amplifier system. The main goals are to (1) expand upon our knowledge of the dispersive properties of grating and prism sequences; (2) improve our understanding of how this dispersion affects an optical pulse; and (3) determine the limits to the contrast of this system by studying the pulse shape of the oscillator; and (4) study the noise properties of the oscillator. All four of these studies will help us re-design and build an improved kHz-amplifier system. However, the knowledge gained will be generally applicable to any chirped-pulse amplifier system. Specifically, the Ti:sapphire oscillator's noise characteristics are presented and compared with those of the better known colliding-pulse modelocked laser in order to determine its suitability as a short-pulse source. Also, we investigate the determination of the pulse shape using autocorrelation techniques. By using a high-dynamic-range autocorrelation in conjunction with a spectrum we show how pulse shapes can be more accurately determined. We find that oscillators and amplifiers can produce both hyperbolic -secant-squared and gaussian pulses by using the proper design. The role of dispersion in shaping the pulse, both in the oscillator and amplifier systems, is expanded beyond the present state-of-the-art. The knowledge gained in these studies is applied in the design of a kilohertz-repetition rate, chirped-pulse amplifier system capable of amplifying 40-fs, 0.45 mJ pulses of light. Finally, future ways of improving the performance of the system are presented in the conclusion.

  17. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds.

    PubMed Central

    Pérez-Llarena, F J; Liras, P; Rodríguez-García, A; Martín, J F

    1997-01-01

    A regulatory gene (ccaR), located within the cephamycin gene cluster of Streptomyces clavuligerus, is linked to a gene (blp) encoding a protein similar to a beta-lactamase-inhibitory protein. Expression of ccaR is required for cephamycin and clavulanic acid biosynthesis in S. clavuligerus. The ccaR-encoded protein resembles the ActII-ORF4, RedD, AfsR, and DnrI regulatory proteins of other Streptomyces species, all of which share several motifs. Disruption of ccaR by targeted double recombination resulted in the loss of the ability to synthesize cephamycin and clavulanic acid. Complementation of the disrupted mutant with ccaR restored production of both secondary metabolites. ccaR was expressed as a monocistronic transcript at 24 and 48 h in S. clavuligerus cultures (preceding the phase of antibiotic accumulation), but no transcript hybridization signals were observed at 72 or 96 h. This expression pattern is consistent with those of regulatory proteins required for antibiotic biosynthesis. Amplification of ccaR in S. clavuligerus resulted in a two- to threefold increase in the production of cephamycin and clavulanic acid. PMID:9068654

  18. Non-Instrumented Nucleic Acid Amplification (NINA) for Rapid Detection of Ralstonia solanacearum Race 3 Biovar 2

    PubMed Central

    Kubota, Ryo; LaBarre, Paul; Singleton, Jered; Beddoe, Andy; Weigl, Bernhard H.; Alvarez, Anne M.; Jenkins, Daniel M.

    2014-01-01

    We report on the use of a non-instrumented device for the implementation of a loop-mediated amplification (LAMP) based assay for the select-agent bacterial-wilt pathogen Ralstonia solanacearum race 3 biovar 2. Heat energy is generated within the device by the exothermic hydration of calcium oxide, and the reaction temperature is regulated by storing latent energy at the melting temperature of a renewable lipid-based engineered phase-change material. Endpoint detection of the LAMP reaction is achieved without opening the reaction tube by observing the fluorescence of an innovative FRET-based hybridization probe with a simple custom fluorometer. Non-instrumented devices could maintain reactions near the design temperature of 63°C for at least an hour. Using this approach DNA extracted from the pathogen could be detected at fewer than ten copies within a 25 μL reaction mix, illustrating the potential of these technologies for simple, powerful agricultural diagnostics in the field. Furthermore, the assay was just as reliable when implemented in a tropical environment at 31°C as it was when implemented in an air-conditioned lab maintained at 22°C, illustrating the potential value of the technology for field conditions in the tropics and subtropics. PMID:25485176

  19. Comparison of an rRNA‐based and DNA‐based nucleic acid amplification test for the detection of Chlamydia trachomatis in trachoma

    PubMed Central

    Yang, Jon L; Schachter, Julius; Moncada, Jeanne; Habte, Dereje; Zerihun, Mulat; House, Jenafir I; Zhou, Zhaoxia; Hong, Kevin C; Maxey, Kathryn; Gaynor, Bruce D; Lietman, Thomas M

    2007-01-01

    Background/Aim The World Health Organisation (WHO) hopes to achieve global elimination of trachoma, still the leading cause of preventable blindness worldwide, in part through mass antibiotic treatment. DNA‐based nucleic acid amplification tests (NAATs) are currently used to evaluate the success of treatment programmes by measuring the prevalence of C trachomatis infection. Some believe that newer ribosomal RNA (rRNA)‐based tests may be much more sensitive since bacterial rRNA is present in amounts up to 10 000 times that of genomic DNA. Others believe that rRNA‐based tests are instead less sensitive but more specific, due to the presence of dead or subviable organisms that the test may not detect. This study compares an rRNA‐based test to a DNA‐based test for the detection of ocular C trachomatis infection in children living in trachoma‐endemic villages. Methods An rRNA‐based amplification test and DNA‐based polymerase chain reaction (PCR) were performed on swab specimens taken from the right upper tarsal conjunctiva of 56 children aged 0–10 years living in two villages in Amhara, Ethiopia. Results The rRNA‐based test detected ocular C trachomatis infection in 35 (63%) subjects compared with 22 (39%) detected by PCR (McNemar's test, p = 0.0002). The rRNA‐based test gave positive results for all subjects that were positive by PCR, and also detected infection in 13 (23%) additional subjects. Conclusion The rRNA‐based test appears to have significantly greater sensitivity than PCR for the detection of ocular chlamydial infection in children in trachoma‐endemic villages. Using the rRNA‐based test, we may be able to detect infection that was previously missed with PCR. Past studies using DNA‐based tests to assess prevalence of infectious trachoma following antibiotic treatment may have underestimated the true prevalence of infection. PMID:17050583

  20. A novel colonic anastomosis technique involving fixed polyglycolic acid mesh

    PubMed Central

    Aysan, Erhan; Bektas, Hasan; Ersoz, Feyzullah; Sari, Serkan; Kaygusuz, Arslan

    2010-01-01

    Background: Polyglycolic acid mesh (PAM) reinforcement of colonic anastomoses were evaluated. Methods: Twenty female albino rabbits were divided into two groups. Each rabbit underwent segmental colonic resection with single-layer anastomosis. In one group of rabbits, PAM of length equal to the circumference of the anastomosis was applied. Rabbits were sacrificed on postoperative day 10 and peritoneal adhesions, anastomosis burst pressure, and anastomosis histopathological characteristics were evaluated. Results: The average burst pressure for the control and PAM groups was 149±15.95 mmHgand 224±124.5 mmHg, respectively (p=0.578). All control anastomoses burst, whereas only five (50%) PAM anastomoses burst (p<0.03). There was no anastomotic leakage in the control group, whereas three PAM group anastomoses leaked (p=0.210). The collagen fiber density and amount of neovascularization were lower in the PAM than the control group (p=0.001 and p=0.002, respectively). The average peritoneal adhesion value was 1.6±0.51 in the control group and 2.9±0.31 in the PAM group (p<0.0001). Conclusion: The new fixed PAM-reinforced anastomosis technique resulted in an increased risk of anastomosis leakage and peritoneal adhesion, but also higher in non-burst anastomoses. PMID:21072268

  1. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  2. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully.

  3. DNA extraction, preservation, and amplification.

    PubMed

    Knebelsberger, Thomas; Stöger, Isabella

    2012-01-01

    The effectiveness of DNA barcoding as a routine practice in biodiversity research is strongly dependent on the quality of the source material, DNA extraction method, and selection of adequate primers in combination with optimized polymerase chain reaction (PCR) conditions. For the isolation of nucleic acids, silica-gel membrane methods are to be favored because they are easy to handle, applicable for high sample throughput, relatively inexpensive, and provide high DNA quality, quantity, and purity which are pre-requisites for successful PCR amplification and long-term storage of nucleic acids in biorepositories, such as DNA banks. In this section, standard protocols and workflow schemes for sample preparation, DNA isolation, DNA storage, PCR amplification, PCR product quality control, and PCR product cleanup are proposed and described in detail. A PCR troubleshooting and primer design section may help to solve problems that hinder successful amplification of the desired barcoding gene region.

  4. Enzymatic electrochemical detection of epidemic-causing Vibrio cholerae with a disposable oligonucleotide-modified screen-printed bisensor coupled to a dry-reagent-based nucleic acid amplification assay.

    PubMed

    Yu, Choo Yee; Ang, Geik Yong; Chan, Kok Gan; Banga Singh, Kirnpal Kaur; Chan, Yean Yean

    2015-08-15

    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.

  5. Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection

    PubMed Central

    Roskos, Kristina; Hickerson, Anna I.; Lu, Hsiang-Wei; Ferguson, Tanya M.; Shinde, Deepali N.; Klaue, Yvonne; Niemz, Angelika

    2013-01-01

    Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden. PMID:23922706

  6. Hybrid Chirped Pulse Amplification

    SciTech Connect

    Jovanovic, I; Barty, C P J

    2002-05-07

    We present a novel chirped pulse amplification method which combines optical parametric amplification and laser amplification. We have demonstrated this hybrid CPA concept with a combination of beta-barium borate and Ti:sapphire. High-efficiency, multi-terawatt compatible amplification is achieved without gain narrowing and without electro-optic modulators using a simple commercial pump laser.

  7. Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate.

    PubMed

    Shin, Yong; Perera, Agampodi Promoda; Wong, Chee Chung; Park, Mi Kyoung

    2014-01-21

    Here, we present a silicon microfluidic system for the purification and extraction of nucleic acids from human body fluid samples utilizing a dimethyl adipimidate (DMA)-based solid-phase extraction method. We propose DMA, which has been used as an amino-reactive cross-linking agent within cells and proteins, as a non-chaotropic reagent for the capture of nucleic acids to overcome the limitations of existing chaotropic and non-chaotropic techniques such as low binding efficiency, PCR inhibition and so on. DMA contains bi-functional imidoesters that form reversible cross-linking structures with DNA therefore providing a high surface-area to volume ratio for capturing DNA without structurally modifying microfluidic channels. In this work, we have first demonstrated highly efficient capture and purification of genomic DNA (T24 cell line) with DMA using a label-free silicon microring resonator sensor device. In addition, we observed the improvement of the DNA amplification efficiency by using the proposed technique for both the genetic (HRAS) and epigenetic (RARβ) analysis of DNA biomarkers. Particularly, we confirmed that the DMA-based solid-phase extraction technique can be applied for the extraction of genomic DNA with higher purity (p < 0.001) using human body fluids (blood and urine) in silicon microfluidic devices compared to other chaotropic methods. Therefore, the proposed technique would be able to harmonize with a micro-total analysis system platform for the analysis of genetic and epigenetic DNA biomarkers related to human diseases in the field of point-of-care (POC) diagnostic applications. PMID:24263404

  8. [Viral safety of biologicals: evaluation of hepatitis C virus (HCV) nucleic acid amplification test (NAT) assay and development of concentration method of HCV for sensitive detection by NAT].

    PubMed

    Uchida, Eriko; Yamaguchi, Teruhide

    2010-02-01

    The most important issue for the safety of biological products and blood products derived from human sources is how to prevent transmission of infectious agents. The hepatitis C virus (HCV) is a major public health problem due to its high prevalence. HCV is mainly transmitted by exposure to blood and highly infectious during the early window period with extremely low viral loads. Therefore it is important to develop more sensitive detection methods for HCV. In the case of blood products, both serological test and nucleic acid amplification test (NAT) are required to detect HCV. Since NAT is highly sensitive, establishment of a new standard is required for validation of NAT assay. NAT guideline and establishment of the standard for HCV RNA and HCV genotype panel is introduced in this review. On the other hand, to enhance the sensitivity of virus detection by NAT, a novel viral concentration method using polyethyleneimine (PEI)-conjugated magnetic beads (PEI beads) was developed. PEI beads concentration method is applicable to a wide range of viruses including HCV. Studies using the national standard for HCV RNA, HCV genotype panel and seroconversion panel, suggest that virus concentration method using PEI-beads is useful for improvement of the sensitivity of HCV detection by NAT and applicable to donor screening for HCV.

  9. Development of Real-Time Multiplex Nucleic Acid Sequence-Based Amplification for Detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in Respiratory Specimens▿

    PubMed Central

    Loens, K.; Beck, T.; Ursi, D.; Overdijk, M.; Sillekens, P.; Goossens, H.; Ieven, M.

    2008-01-01

    Real-time multiplex isothermal nucleic acid sequence-based amplification (NASBA) was developed to detect Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens using the NucliSens Basic Kit (bioMérieux, Boxtel, The Netherlands). Oligonucleotide primers were derived from the M. pneumoniae, C. pneumoniae, and Legionella pneumophila 16S rRNA. For real-time detection, molecular beacons were used. Specificity was established on a panel of bacterial strains. The analytical sensitivity of the assay was determined by testing dilutions of wild-type in vitro-generated RNA in water and dilutions of reference strains in lysis buffer or added to pools of respiratory specimens. Subsequently, a limited number of M. pneumoniae-, C. pneumoniae-, and L. pneumophila-positive and -negative clinical specimens were analyzed. Specific detection of the 16S rRNA of the three organisms was achieved. The analytical sensitivity of the multiplex NASBA on spiked respiratory specimens was slightly diminished compared to the results obtained with the single-target (mono) real-time assays. We conclude that the proposed real-time multiplex NASBA assay, although less sensitive than the real-time mono NASBA assay, is a promising tool for the detection of M. pneumoniae, C. pneumoniae, and Legionella spp. in respiratory specimens, regarding handling, speed, and number of samples that can be analyzed in a single run. PMID:18032625

  10. Point-Counterpoint: A Nucleic Acid Amplification Test for Streptococcus pyogenes Should Replace Antigen Detection and Culture for Detection of Bacterial Pharyngitis.

    PubMed

    Pritt, Bobbi S; Patel, Robin; Kirn, Thomas J; Thomson, Richard B

    2016-10-01

    Nucleic acid amplification tests (NAATs) have frequently been the standard diagnostic approach when specific infectious agents are sought in a clinic specimen. They can be applied for specific agents such as S. pyogenes, or commercial multiplex NAATs for detection of a variety of pathogens in gastrointestinal, bloodstream, and respiratory infections may be used. NAATs are both rapid and sensitive. For many years, S. pyogenes testing algorithms used a rapid and specific group A streptococcal antigen test to screen throat specimens, followed, in some clinical settings, by a throat culture for S. pyogenes to increase the sensitivity of its detection. Now S. pyogenes NAATs are being used with increasing frequency. Given their accuracy, rapidity, and ease of use, should they replace antigen detection and culture for the detection of bacterial pharyngitis? Bobbi Pritt and Robin Patel of the Mayo Clinic, where S. pyogenes NAATs have been used for well over a decade with great success, will explain the advantages of this approach, while Richard (Tom) Thomson and Tom Kirn of the NorthShore University HealthSystem will discuss their concerns about this approach to diagnosing bacterial pharyngitis.

  11. Quantitation of HIV-1 RNA viral load using nucleic acid sequence based amplification methodology and comparison with other surrogate markers for disease progression.

    PubMed

    Sitnik, R; Pinho, J R

    1998-01-01

    In this study, HIV-1 viral blood quantitation determined by Nucleic Acid Sequence Based Amplification (NASBA) was compared with other surrogate disease progression markers (antigen p24, CD4/CD8 cell counts and beta-2 microglobulin) in 540 patients followed up at São Paulo, SP, Brazil. HIV-1 RNA detection was statistically associated with the presence of antigen p24, but the viral RNA was also detected in 68% of the antigen p24 negative samples, confirming that NASBA is much more sensitive than the determination of antigen p24. Regarding other surrogate markers, no statistically significant association with the detection of viral RNA was found. The reproducibility of this viral load assay was assessed by 14 runs of the same sample, using different reagents batches. Viral load values in this sample ranged from 5.83 to 6.27 log (CV = 36%), less than the range (0.5 log) established to the determination of significant viral load changes. PMID:9698880

  12. Development of conventional and real-time nucleic acid sequence-based amplification assays for detection of Chlamydophila pneumoniae in respiratory specimens.

    PubMed

    Loens, K; Beck, T; Goossens, H; Ursi, D; Overdijk, M; Sillekens, P; Ieven, M

    2006-04-01

    Isothermal nucleic acid sequence-based amplification (NASBA) was applied to the detection of Chlamydophila pneumoniae 16S rRNA by using the NucliSens basic kit (bioMérieux, Boxtel, The Netherlands). The assay was originally developed as a conventional NASBA assay with electrochemiluminescence detection and was subsequently adapted to a real-time NASBA format by using a molecular beacon. C. pneumoniae RNA prepared from a plasmid construct was used to assess the analytical sensitivity of the assay. The sensitivity of the NASBA assay was 10 molecules of in vitro wild-type C. pneumoniae RNA and 0.1 inclusion-forming unit (IFU) of C. pneumoniae. In spiked respiratory specimens, the sensitivity of the C. pneumoniae NASBA assay varied between 0.1 and 1 IFU/100 mul sample, depending on the type of specimen. Finally, conventional and real-time NASBA were applied to respiratory specimens previously tested by PCR. A 100% concordance between the test results was obtained.

  13. Arabidopsis Triphosphate Tunnel Metalloenzyme2 Is a Negative Regulator of the Salicylic Acid-Mediated Feedback Amplification Loop for Defense Responses1[W][OPEN

    PubMed Central

    Ung, Huoi; Moeder, Wolfgang; Yoshioka, Keiko

    2014-01-01

    The triphosphate tunnel metalloenzyme (TTM) superfamily represents a group of enzymes that is characterized by their ability to hydrolyze a range of tripolyphosphate substrates. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes, AtTTM1, AtTTM2, and AtTTM3. Although AtTTM3 has previously been reported to have tripolyphosphatase activity, recombinantly expressed AtTTM2 unexpectedly exhibited pyrophosphatase activity. AtTTM2 knockout mutant plants exhibit an enhanced hypersensitive response, elevated pathogen resistance against both virulent and avirulent pathogens, and elevated accumulation of salicylic acid (SA) upon infection. In addition, stronger systemic acquired resistance compared with wild-type plants was observed. These enhanced defense responses are dependent on SA, PHYTOALEXIN-DEFICIENT4, and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. Despite their enhanced pathogen resistance, ttm2 plants did not display constitutively active defense responses, suggesting that AtTTM2 is not a conventional negative regulator but a negative regulator of the amplification of defense responses. The transcriptional suppression of AtTTM2 by pathogen infection or treatment with SA or the systemic acquired resistance activator benzothiadiazole further supports this notion. Such transcriptional regulation is conserved among TTM2 orthologs in the crop plants soybean (Glycine max) and canola (Brassica napus), suggesting that TTM2 is involved in immunity in a wide variety of plant species. This indicates the possible usage of TTM2 knockout mutants for agricultural applications to generate pathogen-resistant crop plants. PMID:25185123

  14. Selective adsorption and chiral amplification of amino acids in vermiculite clay-implications for the origin of biochirality.

    PubMed

    Fraser, Donald G; Fitz, Daniel; Jakschitz, T; Rode, Bernd M

    2011-01-21

    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH(3)Cl ions forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. n-Propyl NH(3)Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligomerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.

  15. Single Cell Transcriptome Amplification with MALBAC

    PubMed Central

    Tan, Longzhi; Tang, Fuchou; Xie, X. Sunney

    2015-01-01

    Recently, Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) has been developed for whole genome amplification of an individual cell, relying on quasilinear instead of exponential amplification to achieve high coverage. Here we adapt MALBAC for single-cell transcriptome amplification, which gives consistently high detection efficiency, accuracy and reproducibility. With this newly developed technique, we successfully amplified and sequenced single cells from 3 germ layers from mouse embryos in the early gastrulation stage, and examined the epithelial-mesenchymal transition (EMT) program among cells in the mesoderm layer on a single-cell level. PMID:25822772

  16. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    PubMed

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. PMID:26311237

  17. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S

    2010-04-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected rats at 1, 24, 48, 72, and 96 h postinfection and five uninfected rats at the end of the experiment. Total nucleic acid (TNA) was extracted on an easyMAG instrument. A primer-molecular beacon set targeting 28S rRNA was designed to detect Aspergillus spp. The results were compared to those of quantitative PCR (qPCR) (18S rDNA) and quantitative culture. The analytical sensitivity of the real-time NASBA assay was <1 CFU/assay. A linear range of detection was demonstrated over 5 log units of conidia (10 to 10(5) spores). Both NASBA and qPCR showed a progressive increase in lung tissue burdens, while the CFU counts were stable over time. The fungal burdens in BAL fluid were more variable and not indicative of a progressive infection. The results of both real-time assays correlated well for both sample types (r = 0.869 and P < 0.0001 for lung tissue, r = 0.887 and P < 0.0001 for BAL fluid). For all whole-blood specimens, NASBA identified Aspergillus-positive samples in the group from which samples were collected at 72 h postinfection (three of five samples) and the group from which samples were collected at 96 h postinfection (five of five samples), but no positive results were obtained by culture or PCR. Real-time NASBA is highly sensitive and useful for the detection of Aspergillus in an experimental model of IPA. PMID:20129972

  18. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification.

    PubMed

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S

    2010-04-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected rats at 1, 24, 48, 72, and 96 h postinfection and five uninfected rats at the end of the experiment. Total nucleic acid (TNA) was extracted on an easyMAG instrument. A primer-molecular beacon set targeting 28S rRNA was designed to detect Aspergillus spp. The results were compared to those of quantitative PCR (qPCR) (18S rDNA) and quantitative culture. The analytical sensitivity of the real-time NASBA assay was <1 CFU/assay. A linear range of detection was demonstrated over 5 log units of conidia (10 to 10(5) spores). Both NASBA and qPCR showed a progressive increase in lung tissue burdens, while the CFU counts were stable over time. The fungal burdens in BAL fluid were more variable and not indicative of a progressive infection. The results of both real-time assays correlated well for both sample types (r = 0.869 and P < 0.0001 for lung tissue, r = 0.887 and P < 0.0001 for BAL fluid). For all whole-blood specimens, NASBA identified Aspergillus-positive samples in the group from which samples were collected at 72 h postinfection (three of five samples) and the group from which samples were collected at 96 h postinfection (five of five samples), but no positive results were obtained by culture or PCR. Real-time NASBA is highly sensitive and useful for the detection of Aspergillus in an experimental model of IPA.

  19. SISH/CISH or qPCR as alternative techniques to FISH for determination of HER2 amplification status on breast tumors core needle biopsies: a multicenter experience based on 840 cases

    PubMed Central

    2013-01-01

    Background Until now, FISH has been the gold standard technique to identify HER2 amplification status in ambiguous cases of breast cancer. Alternative techniques have been developed to increase the capacities of investigating HER2 amplification status. The aims of this multicenter study in a large series of breast cancer patients were to prospectively compare the level of performance of CISH, SISH, and qPCR alternative techniques on paraffin-embedded core biopsies with “gold standard FISH” for evaluation of HER2 amplification status. Methods This study was performed on 840 cases scored by immunohistochemistry (IHC): 0=317 (38%), 1+=183 (22%), 2+=109 (13%), 3+=231 (27%). Each of the 15 French centers participating in the study analyzed 56 breast carcinoma cases diagnosed on fixed paraffin-embedded core biopsies. HER2 amplification status was determined by commercially available FISH used as the reference technique with determination of the HER2/CEN17 ratio or HER2 copy number status. The alternative techniques performed on the same cases were commercially available SISH or CISH and a common qPCR method especially designed for the study including a set of 10 primer pairs: 2 for HER2 (exons 8 and 26), 5 to evaluate chromosome 17 polysomy TAOK1, UTP6, MRM1, MKS1, SSTR2 and 3 for diploidy control TSN, LAP3 and ADAMTS16. Results The concordance between IHC and FISH was 96% to 95% based on the HER2/CEN17 ratio (n=766) or HER2 copy number (n=840), respectively. The concordance of the alternative techniques with FISH was excellent: 97% and 98% for SISH (498 and 587 cases), 98% and 75% for CISH (108 and 204 cases) and 95% and 93% (699 and 773 cases) for qPCR based on the HER2/CEN17 ratio or HER2 copy number, respectively. Similarly, sensitivity ranged from 99% to 95% for SISH, 100% to 99% for CISH and 89% to 80% for qPCR. The concordance with FISH (ratio) in the 2+ cases was 89% for SISH, 100% for CISH and 93% for qPCR. Conclusion These alternative techniques showed an

  20. Chemical amplification based on fluid partitioning

    SciTech Connect

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  1. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials.

    PubMed

    Wu, Peiwen; Yu, Yang; McGhee, Claire E; Tan, Li Huey; Lu, Yi

    2014-12-10

    In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.

  2. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  3. Evaluation of a viral microarray based on simultaneous extraction and amplification of viral nucleotide acid for detecting human herpesviruses and enteroviruses.

    PubMed

    Liu, Yi; Duan, Chunhong; Zhang, Chunxiu; Yang, Xiaomeng; Zhao, Yan; Dong, Rui; Zhou, Jiajing; Gai, Zhongtao

    2015-01-01

    In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5'-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses' detection.

  4. Influenza A virus drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid amplification assay in the season 2014/15.

    PubMed

    Huzly, Daniela; Korn, Klaus; Bierbaum, Sibylle; Eberle, Björn; Falcone, Valeria; Knöll, Antje; Steininger, Philipp; Panning, Marcus

    2016-09-01

    The influenza season 2014/15 was dominated by drift variants of influenza A(H3N2), which resulted in a reduced vaccine effectiveness. It was not clear if the performance of commercial nucleic-acid-based amplification (NAT) assays for the detection of influenza was affected. The purpose of this study was to perform a real-life evaluation of two commercial NAT assays. During January-April 2015, we tested a total of 665 samples from patients with influenza-like illness using the Fast Track Diagnostics Respiratory pathogens 21, a commercial multiplex kit, (cohorts 1 and 2, n = 563 patients) and the Xpert Flu/RSV XC assay (cohort 3, n = 102 patients), a single-use cartridge system. An in-house influenza real-time RT-PCR (cohort 1) and the RealStar Influenza RT-PCR 1.0 Kit (cohort 2 and 3) served as reference tests. Compared to the reference assay, an overall agreement of 95.9 % (cohort 1), 95 % (cohort 2), and 98 % (cohort 3) was achieved. A total of 24 false-negative results were observed using the Fast Track Diagnostics Respiratory pathogens 21 kit. No false-negative results occurred using the Xpert Flu/RSV XC assay. The Fast Track Diagnostics Respiratory pathogens 21 kit and the Xpert Flu/RSV XC assay had sensitivities of 90.7 % and 100 % and specificities of 100 % and 94.1 %, respectively, compared to the RealStar 1.0 kit. Upon modification of the Fast Track Diagnostics Respiratory pathogens 21 kit, the sensitivity increased to 97.3 %. Influenza virus strains circulating during the 2014/15 season reduced the detection sensitivity of a commercial NAT assay, and continuous monitoring of test performance is therefore necessary. PMID:27316440

  5. Rapid real-time nucleic Acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections.

    PubMed

    Zhao, Yanan; Park, Steven; Kreiswirth, Barry N; Ginocchio, Christine C; Veyret, Raphaël; Laayoun, Ali; Troesch, Alain; Perlin, David S

    2009-07-01

    Bloodstream infections (BSIs) are a significant cause of morbidity and mortality. Successful patient outcomes are diminished by a failure to rapidly diagnose these infections and initiate appropriate therapy. A rapid and reliable diagnostic platform of high sensitivity is needed for the management of patients with BSIs. The combination of an RNA-dependent nucleic acid sequence-based amplification and molecular beacon (NASBA-MB) detection system in multiplex format was developed to rapidly detect medically important BSI organisms. Probes and primers representing pan-gram-negative, pan-gram-positive, pan-fungal, pan-Candida, and pan-Aspergillus organisms were established utilizing 16S and 28S rRNA targets for bacteria and fungi, respectively. Two multiplex panels were developed to rapidly discriminate bacterial or fungal infections at the subkingdom/genus level with a sensitivity of 1 to 50 genomes. A clinical study was performed to evaluate the accuracy of this platform by evaluating 570 clinical samples from a tertiary-care hospital group using blood bottle samples. The sensitivity, specificity, and Youden's index values for pan-gram-positive detection and pan-gram-negative detection were 99.7%, 100%, 0.997 and 98.6%, 95.9%, 0.945, respectively. The positive predictive values (PPV) and the negative predictive values (NPV) for these two probes were 100, 90.7, and 99.4, 99.4, respectively. Pan-fungal and pan-Candida probes showed 100% sensitivity, specificity, PPV, and NPV, and the pan-Aspergillus probe showed 100% NPV. Robust signals were observed for all probes in the multiplex panels, with signal detection in <15 min. The multiplex real-time NASBA-MB assay provides a valuable platform for the rapid and specific diagnosis of bloodstream pathogens, and reliable pathogen identification and characterization can be obtained in under 3 h.

  6. HIV Screening via Fourth-Generation Immunoassay or Nucleic Acid Amplification Test in the United States: A Cost-Effectiveness Analysis

    PubMed Central

    Long, Elisa F.

    2011-01-01

    Background At least 10% of the 56,000 annual new HIV infections in the United States are caused by individuals with acute HIV infection (AHI). It unknown whether the health benefits and costs of routine nucleic acid amplification testing (NAAT) are justified, given the availability of newer fourth-generation immunoassay tests. Methods Using a dynamic HIV transmission model instantiated with U.S. epidemiologic, demographic, and behavioral data, I estimated the number of acute infections identified, HIV infections prevented, quality-adjusted life years (QALYs) gained, and the cost-effectiveness of alternative screening strategies. I varied the target population (everyone aged 15-64, injection drug users [IDUs] and men who have sex with men [MSM], or MSM only), screening frequency (annually, or every six months), and test(s) utilized (fourth-generation immunoassay only, or immunoassay followed by pooled NAAT). Results Annual immunoassay testing of MSM reduces incidence by 9.5% and costs <$10,000 per QALY gained. Adding pooled NAAT identifies 410 AHI per year, prevents 9.6% of new cases, costs $92,000 per QALY gained, and remains <$100,000 per QALY gained in settings where undiagnosed HIV prevalence exceeds 4%. Screening IDUs and MSM annually with fourth-generation immunoassay reduces incidence by 13% with cost-effectiveness <$10,000 per QALY gained. Increasing the screening frequency to every six months reduces incidence by 11% (MSM only) or 16% (MSM and IDUs) and costs <$20,000 per QALY gained. Conclusions Pooled NAAT testing every 12 months of MSM and IDUs in the United States prevents a modest number of infections, but may be cost-effective given sufficiently high HIV prevalence levels. However, testing via fourth-generation immunoassay every six months prevents a greater number of infections, is more economically efficient, and may obviate the benefits of acute HIV screening via NAAT. PMID:22110698

  7. Intercomparison of Nitrous Acid (HONO) Measurement Techniques during SHARP

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Meng, Q.; Dibb, J. E.; Lefer, B. L.; Rappenglueck, B.; Ren, X.; Stutz, J.; Zhang, R.

    2010-12-01

    HONO is regarded as a potentially important radical precursor in a number of diverse environments ranging from polar to semi-tropical. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by five different measurement techniques. Techniques used were long path differential optical absorption spectroscopy (DOAS), long-path absorption photometry (LoPAP), mist chamber (MC), quantum cascade laser and ionization detection-chemical ionization mass spectrometry. Various combinations of techniques were in operation during the whole period from 15 April through 31 May 2009 with a common measurement period extending from 16 to 28 May. All instruments recorded a similar diurnal pattern of HONO concentrations with higher mean values from the in-situ techniques than either the low- or mid-path DOAS. The largest differences among techniques were found during the afternoon with measurements from the in-situ techniques higher than either the low- or mid-path DOAS. Principal components analysis using measurements of trace species was used to identify possible sources of interference in the chemical measurements. Two major components were identified: one associated with primary, mainly traffic related pollutants and the other with photochemical species. The afternoon differences between DOAS and MC and the U Miami LoPAP were found to be most strongly associated with the photochemical component. The results for comparison between DOAS and MC are in accord with those found previously during August-September 2006. All instruments showed some association between measurement differences and the primary component. Further details and associations with air coming from different areas of the Houston airshed will also be presented.

  8. An integrated lateral flow assay for effective DNA amplification and detection at the point of care.

    PubMed

    Choi, Jane Ru; Hu, Jie; Gong, Yan; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-10

    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future. PMID:27010033

  9. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region.

    PubMed

    Stramski, Dariusz; Reynolds, Rick A; Kaczmarek, Sławomir; Uitz, Julia; Zheng, Guangming

    2015-08-01

    Spectrophotometric measurement of particulate matter retained on filters is the most common and practical method for routine determination of the spectral light absorption coefficient of aquatic particles, ap(λ), at high spectral resolution over a broad spectral range. The use of differing geometrical measurement configurations and large variations in the reported correction for pathlength amplification induced by the particle/filter matrix have hindered adoption of an established measurement protocol. We describe results of dedicated laboratory experiments with a diversity of particulate sample types to examine variation in the pathlength amplification factor for three filter measurement geometries; the filter in the transmittance configuration (T), the filter in the transmittance-reflectance configuration (T-R), and the filter placed inside an integrating sphere (IS). Relationships between optical density measured on suspensions (ODs) and filters (ODf) within the visible portion of the spectrum were evaluated for the formulation of pathlength amplification correction, with power functions providing the best functional representation of the relationship for all three geometries. Whereas the largest uncertainties occur in the T method, the IS method provided the least sample-to-sample variability and the smallest uncertainties in the relationship between ODs and ODf. For six different samples measured with 1 nm resolution within the light wavelength range from 400 to 700 nm, a median error of 7.1% is observed for predicted values of ODs using the IS method. The relationships established for the three filter-pad methods are applicable to historical and ongoing measurements; for future work, the use of the IS method is recommended whenever feasible. PMID:26368092

  10. Study of an Acid-Free Technique for the Preparation of Glycyrrhetinic Acid from Ammonium Glycyrrhizinate in Subcritical Water.

    PubMed

    Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I

    2015-11-01

    The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances. PMID:26749800

  11. MYCN Gene Amplification

    PubMed Central

    Yoshimoto, Maisa; Caminada de Toledo, Silvia Regina; Monteiro Caran, Eliana Maria; de Seixas, Maria Teresa; de Martino Lee, Maria Lucia; de Campos Vieira Abib, Simone; Vianna, Sonia Maria Rossi; Schettini, Sergio Thomaz; Anderson Duffles Andrade, Joyce

    1999-01-01

    Neuroblastoma is the second most common solid tumor occurring in children. Amplification of the MYCN oncogene is associated with poor prognosis. To identify neuroblastoma tumors with MYCN amplification, we studied the number of copies of MYCN in interphase cells by fluorescence in situ hybridization in 20 neuroblastoma patients. MYCN amplification appeared in 7 tumor specimens. Interphase and metaphase studies showed a tumor cell population with both forms of amplification, double minutes and homogeneously staining regions, in two patients. These patients showed a smaller tumor cell subpopulation with the presence of more than one homogeneously staining region, suggesting that gene amplification was undergoing karyotype evolution. PMID:10550298

  12. Gene promoter hypermethylation is found in sentinel lymph nodes of breast cancer patients, in samples identified as positive by one-step nucleic acid amplification of cytokeratin 19 mRNA.

    PubMed

    Martín-Sánchez, E; Pernaut-Leza, E; Mendaza, S; Cordoba, A; Vicente-Garcia, F; Monreal-Santesteban, I; Vizcaino, J Pérez; De Cerio, M J Díaz; Perez-Janices, N; Blanco-Luquin, I; Escors, D; Ulazia-Garmendia, A; Guerrero-Setas, D

    2016-07-01

    We analysed the promoter methylation status of five genes, involved in adhesion (EPB41L3, TSLC-1), apoptosis (RASSF1, RASSF2) or angiogenesis (TSP-1), in intraoperative sentinel lymph node (SLN) biopsy samples from patients with breast cancer, that had been processed by the one-step nucleic acid amplification (OSNA) technique. SLN resection is performed to estimate the risk of tumour cells in the clinically negative axilla, to avoid unnecessary axillary lymph node dissection. OSNA is currently one of the eligible molecular methods for detecting tumour cells in SLNs. It is based on the quantitative evaluation of cytokeratin 19 mRNA which allows distinguishing between macrometastasis, micrometastasis and isolated tumour cells, on the basis of the quantity of tumour cells present. There have been no prior studies on the question whether or not samples processed by OSNA can be used for further molecular studies, including epigenetic abnormalities which are some of the most important molecular alterations in breast cancer. Genomic DNA was extracted from samples obtained from 50 patients diagnosed with primary breast cancer. The content of tumour cells in SLNs was evaluated by OSNA, and the promoter methylation status of the selected genes was analysed by methylation-specific PCR. All were found to be hypermethylated to a variable degree, and RASSF1 hypermethylation was significantly associated with macrometastasis, micrometastasis and isolated tumour cells (p = 0.002). We show that samples used for OSNA are suitable for molecular studies, including gene promoter methylation. These samples provide a new source of material for the identification of additional biomarkers. PMID:27097811

  13. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  14. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  15. Detection of Chlamydia trachomatis by isothermal ramification amplification method: a feasibility study.

    PubMed

    Zhang, Wandi; Cohenford, Menashi; Lentrichia, Brian; Isenberg, Henry D; Simson, Elkin; Li, Hengjin; Yi, Jizu; Zhang, David Y

    2002-01-01

    Chlamydia trachomatis is the leading cause of sexually transmitted disease in the United States. Effective screening for this agent can facilitate prompt treatment and prevent its sequelae. The recent introduction of liquid-based cytology has made possible the simultaneous screening of cervical intraepithelial lesions and detection of C. trachomatis in a single collection vial. In this study we determined whether cytological fluid could support DNA-based amplification for the detection of C. trachomatis. Three methods were compared, including ramification amplification (RAM), real-time PCR with molecular beacon, and Abbott's ligase chain reaction (LCx). RAM is a novel, recently introduced, isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. Our results show that RAM can detect as few as 10 C. trachomatis elementary bodies in less than 2 h, comparable to results with real-time PCR. Thirty clinical specimens collected in PreservCyt solution were tested by LCx, real-time PCR, and RAM. Among 30 specimens, 15 were positive by PCR and LCx and 14 were positive by RAM. One specimen missed by RAM had an inadequate amount of residual cellular material. Our results show that nucleic acid amplification methods can serve to detect C. trachomatis and presumably other sexually transmitted agents in cytological fluid and that the RAM assay can be an alternative to PCR and LCx because of its simplicity and isothermal amplification.

  16. Sensitivity of individual-donation and minipool nucleic acid amplification test options in detecting window period and occult hepatitis B virus infections

    PubMed Central

    Vermeulen, Marion; Coleman, Charl; Mitchel, Josephine; Reddy, Ravi; van Drimmelen, Harry; Ficket, Tracy; Lelie, Nico

    2016-01-01

    BACKGROUND Several comparison studies showed that the Ultrio assay (Novartis Diagnostics) used in individual-donation nucleic acid amplification testing (ID-NAT) format was as sensitive as the TaqScreen assay (Roche) on minipools of six donations (MP6), but the sensitivity of HBV DNA detection has been improved in the new Ultrio Plus version of the assay. A head-to-head comparison study was designed to compare the clinical sensitivity of the Ultrio and Ultrio Plus assay in ID, MP4, and MP8 formats using TaqScreen MP6 as a reference assay. STUDY DESIGN AND METHODS Plasma samples of 107 hepatitis B surface antigen (HBsAg)-negative, HBV ID-NAT (Ultrio) positive-yield samples and 29 HBV DNA–negative, HBsAg-positive samples were used for comparison of NAT options in replicate testing of dilutions. Viral loads and relative sensitivities were determined by probit analysis against the Eurohep standard. RESULTS Ultrio Plus detected a significantly (p < 0.00001) higher proportion of replicate assays on HBV NAT yields (77%) than Ultrio ID (62%) and TaqScreen MP6 (47%), whereas Ultrio Plus MP4 and MP8 detected 53 and 41%, respectively. On HBsAg-yield samples missed by Ultrio screening, the reactivity rate increased significantly (p < 0.0001) from 23% in Ultrio to 65% in Ultrio Plus and further to 72% (p = 0.10) in the TaqScreen assay. The overall improvement factor of the analytical sensitivity offered by the target enhancer reagent in the Ultrio Plus assay was 2.5 (2.0–3.1)-fold on the Ultrio yield samples, but 43 (11–350)-fold on the HBsAg yields. In ID-NAT format the analytical sensitivity of TaqScreen relative to Ultrio Plus was 2.0 (1.0–4.2), 0.9 (0.7–1.3), and 1.6 (0.9–3.0) on the Eurohep standard, HBV NAT–, and HBsAg-yield samples respectively. CONCLUSION The clinical sensitivity of the currently available commercial NAT methods is mainly driven by the pool size. PMID:23621791

  17. The hydrochloric acid-pumice microabrasion technique in the treatment of post-orthodontic decalcification.

    PubMed

    Welbury, R R; Carter, N E

    1993-08-01

    A significant number of patients exhibit white spots of enamel decalcification after orthodontic treatment, despite the use of preventive regimes. The hydrochloric acid-pumice micro-abrasion technique offers a method for improving the appearance of these lesions where they are cosmetically unacceptable. The clinical procedure is described and the effects of the technique upon the dental structures are discussed.

  18. Weak value amplification considered harmful

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher; Combes, Joshua

    2014-03-01

    We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.

  19. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses

    PubMed Central

    Treff, Nathan R.; Su, Jing; Tao, Xin; Northrop, Lesley E.; Scott, Richard T.

    2011-01-01

    Methods of comprehensive microarray-based aneuploidy screening in single cells are rapidly emerging. Whole-genome amplification (WGA) remains a critical component for these methods to be successful. A number of commercially available WGA kits have been independently utilized in previous single-cell microarray studies. However, direct comparison of their performance on single cells has not been conducted. The present study demonstrates that among previously published methods, a single-cell GenomePlex WGA protocol provides the best combination of speed and accuracy for single nucleotide polymorphism microarray-based copy number (CN) analysis when compared with a REPLI-g- or GenomiPhi-based protocol. Alternatively, for applications that do not have constraints on turnaround time and that are directed at accurate genotyping rather than CN assignments, a REPLI-g-based protocol may provide the best solution. PMID:21177337

  20. A modified staining technique for arbuscular mycorrhiza compatible with molecular probes.

    PubMed

    Pitet, M; Camprubí, A; Calvet, C; Estaún, V

    2009-02-01

    The effects of the different steps of the root staining on the arbuscular mycorrhizal (AM) fungal rDNA extraction and amplification have been assessed. The results obtained using molecular techniques are compared with those obtained from fresh, non-stained leek roots. A modified staining procedure that eliminates heating, the use of hydrochloric acid and trypan blue, has been proved to be the most adequate to observe the AM colonisation in different plant species with/without lignified roots allowing at the same time the subsequent rDNA extraction and amplification from the stained roots. The staining technique decreased the sensitivity of the process and a higher number of roots had to be used to obtain enough material for a positive amplification. The extraction and amplification process was reliable up to 3 days after staining. A week after staining, the amplification was not dependable and after 2 weeks there was no amplification from stained material.

  1. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique

    PubMed Central

    Wang, Yi; Wang, Yan; Luo, Lijuan; Liu, Dongxin; Luo, Xia; Xu, Yanmei; Hu, Shoukui; Niu, Lina; Xu, Jianguo; Ye, Changyun

    2015-01-01

    Shigella and Salmonella are frequently isolated from various food samples and can cause human gastroenteritis. Here, a novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully established and validated for simultaneous detection of Shigella strains and Salmonella strains in only a single reaction. Two sets of MERT-LAMP primers for 2 kinds of pathogens were designed from ipaH gene of Shigella spp. and invA gene of Salmonella spp., respectively. Under the constant condition at 63°C, the positive results were yielded in as short as 12 min with the genomic DNA extracted from the 19 Shigella strains and 14 Salmonella strains, and the target pathogens present in a sample could be simultaneously identified based on distinct fluorescence curves in real-time format. Accordingly, the multiplex detection assay significantly reduced effort, materials and reagents used, and amplification and differentiation were conducted at the same time, obviating the use of postdetection procedures. The analytical sensitivity of MERT-LAMP was found to be 62.5 and 125 fg DNA/reaction with genomic templates of Shigella strains and Salmonella strains, which was consist with normal LAMP assay, and at least 10- and 100-fold more sensitive than that of qPCR and conventional PCR approaches. The limit of detection of MERT-LAMP for Shigella strains and Salmonella strains detection in artificially contaminated milk samples was 5.8 and 6.4 CFU per vessel. In conclusion, the MERT-LAMP methodology described here demonstrated a potential and valuable means for simultaneous screening of Shigella and Salmonella in a wide variety of samples. PMID:26697000

  2. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5' end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5' end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5' end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique's simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis. PMID:27468284

  3. Rolling circle amplification of metazoan mitochondrialgenomes

    SciTech Connect

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  4. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique.

    PubMed

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua

    2016-08-15

    During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. PMID:27136728

  5. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.

    PubMed

    Xue, Qingwang; Lv, Yanqin; Cui, Hui; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2015-01-26

    An autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a "caged" inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.

  6. Evaluation of a field-portable DNA microarray platform and nucleic acid amplification strategies for the detection of arboviruses, arthropods, and bloodmeals.

    PubMed

    Grubaugh, Nathan D; Petz, Lawrence N; Melanson, Vanessa R; McMenamy, Scott S; Turell, Michael J; Long, Lewis S; Pisarcik, Sarah E; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L; Lee, John S

    2013-02-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors.

  7. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  8. Evaluation of the NucliSens Basic Kit for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Genital Tract Specimens Using Nucleic Acid Sequence-Based Amplification of 16S rRNA

    PubMed Central

    Mahony, J. B.; Song, X.; Chong, S.; Faught, M.; Salonga, T.; Kapala, J.

    2001-01-01

    We evaluated a new RNA amplification and detection kit, the NucliSens Basic Kit (Organon Teknika), for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae in genitourinary specimens. The Basic Kit provides an open platform for RNA amplification and detection and contains isolation reagents for nucleic acid extraction, nucleic acid sequence-based amplification (NASBA) reagents (enzymes and buffers), and a generic ruthenium-labeled probe for electrochemiluminescent (ECL) detection of amplified product. Using freshly purified and titrated stocks of C. trachomatis and N. gonorrhoeae and in vitro-generated RNA transcripts for sensitivity determinations, the Basic Kit detected 1 inclusion-forming unit of C. trachomatis, 1 CFU of N. gonorrhoeae, and 100 RNA molecules of 16S rRNA for both bacteria. The clinical performance of the Basic Kit was evaluated by testing a total of 250 specimens for N. gonorrhoeae by culture and NASBA and a total of 96 specimens for C. trachomatis by PCR and NASBA. The Basic Kit detected 139 of 142 N. gonorrhoeae culture-positive specimens and gave a negative result for 73 of 74 culture-negative specimens, for a sensitivity and specificity of 97.9 and 98.7%, respectively. For C. trachomatis, the Basic Kit detected 24 of 24 PCR-positive specimens and gave a negative result for 71 of 72 PCR-negative specimens, for a sensitivity and specificity of 100 and 98.6%, respectively. The Basic Kit also detected specimens containing both N. gonorrhoeae and C. trachomatis, using a multiplex NASBA assay using primers for both bacteria. The NucliSens Basic Kit offers a versatile platform for the development of sensitive RNA detection assays for sexually transmitted diseases. PMID:11283067

  9. A novel method to inject hyaluronic acid: the Fern Pattern Technique.

    PubMed

    van Eijk, Tom; Braun, Martin

    2007-08-01

    Nonanimal Stabilized Hyaluronic Acid (NASHA) has proven itself as one of the safest, most versatile dermal fillers with a high patient and physician satisfaction. The authors describe a novel technique to inject Restylane (NASHA) in the dermis for optimal correction of dynamic facial lines. Mobile facial folds represent a greater challenge for correction using standard injection techniques. The injection technique described is named the Fern Pattern Technique. The purpose of the Fern Pattern Technique is to use Restylane in such a way that it becomes a skin stiffening agent, rather than a simple filler in order to provide optimal correction for lines that deepen with expressive facial movements. The Fern Pattern Technique also uses less material to provide a correction that is not visible at rest or during dynamic movement for lines that deepen during a smile, as well as the dynamic lower nasolabial fold.

  10. The spatial pattern of cochlear amplification.

    PubMed

    Fisher, Jonathan A N; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C; Hudspeth, A J

    2012-12-01

    Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces.

  11. The Spatial Pattern of Cochlear Amplification

    PubMed Central

    Fisher, Jonathan A.N.; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C.; Hudspeth, A.J.

    2012-01-01

    SUMMARY Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces. PMID:23217746

  12. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M. S. A.

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20-30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications.

  13. A review of the different techniques for solid surface acid-base characterization.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-09-18

    In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).

  14. TECHNIQUES AND METHODS FOR THE DETERMINATION OF HALOACETIC ACIDS IN POTABLE WATER

    EPA Science Inventory

    Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water suppli...

  15. Interactive Effects of Growth Regulators, Carbon Sources, pH on Plant Regeneration and Assessment of Genetic Fidelity Using Single Primer Amplification Reaction (SPARS) Techniques in Withania somnifera L.

    PubMed

    Fatima, Nigar; Ahmad, Naseem; Ahmad, Iqbal; Anis, Mohammad

    2015-09-01

    An improved and methodical in vitro shoot morphogenic approach through axillary bud multiplication was established in a drug yielding plant, Withania somnifera L. Effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 2-isopentenyladenine (2iP), and thidiazuron (TDZ)] either singly or in combination with α-napthalene acetic acid (NAA), indole-3-butyric acid (IBA), and indole-3-acetic acid (IAA) in Murashige and Skoog (MS) medium were tested. The highest regeneration frequency (90 %) with optimum number of shoots (32 ± 0.00)/explant were obtained on MS medium fortified with 2.5 μM 6-benzyladenine (BA) and 0.5 μM NAA and 30 g/l sucrose at pH 5.8. Among the tried TDZ concentrations, 0.5 μM resulted in maximum number of shoots (20.4 ± 0.40)/explant after 4 weeks of exposure. The proliferating shoot cultures established by repeated subculturing of the mother explants on the hormone-free medium produced the highest shoot number (29.4 ± 0.40) with shoot length (6.80 ± 0.12 cm)/explant at fourth subculture passage, which a decline in shoot proliferation was recorded. Different concentrations of NAA were tested for ex vitro rooting of microshoots. The maximum percentage of rooting 100 % with maximum roots (18.3 ± 0.1) was achieved in soilrite when basal portion of the microshoots were treated with 200 μM (NAA) for 15 min per shoot. The plantlets went through hardening phase in a growth chamber, prior to ex vitro transfer. The PCR-based single primer amplification reaction (SPAR) methods which include random amplified polymorphic DNA (RAPD) and direct amplification of minisatellite DNA (DAMD) markers has been used for assessment of genetic stability of micropropagated plantlets. No variation was observed in DNA fingerprinting patterns among the micropropagated and the donor plants illustrating their genetic uniformity.

  16. Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

    PubMed Central

    Ikenaga, Makoto; Sakai, Masao

    2014-01-01

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3′ end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes. PMID:25030190

  17. Application of Locked Nucleic Acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures.

    PubMed

    Ikenaga, Makoto; Sakai, Masao

    2014-09-17

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide-PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3' end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide-PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.

  18. Simultaneous determination of iron (II) and ascorbic acid in pharmaceuticas based on flow sandwich technique.

    PubMed

    Vakh, Christina; Freze, Elena; Pochivalov, Alexsey; Evdokimova, Ekaterina; Kamencev, Mihail; Moskvin, Leonid; Bulatov, Andrey

    2015-01-01

    The simple and easy performed flow system based on sandwich technique has been developed for the simultaneous separate determination of iron (II) and ascorbic acid in pharmaceuticals. The implementation of sandwich technique assumed the injection of sample solution between two selective reagents and allowed the carrying out in reaction coil two chemical reactions simultaneously: iron (II) with 1,10-phenanthroline and ascorbic acid with sodium 2,6-dichlorophenolindophenol. For achieving of excellent repeatability and considerable reagent saving the various parameters such as flow rate, sample and reagent volumes, reaction coil length were also optimized. The limits of detection (LODs) obtained by using the developed flow sandwich-type approach were 0.2 mg L(-1) for iron (II) and 0.7 mg L(-1) for ascorbic acid. The suggested approach was validated according to the following parameters: linearity and sensitivity, precision, recoveries and accuracy. The sampling frequency was 41 h(-1). PMID:25862995

  19. Comparing the Titrations of Mixed-Acid Solutions Using Dropwise and Constant-Flow Techniques

    NASA Astrophysics Data System (ADS)

    Charlesworth, Paul; Seguin, Matthew J.; Chesney, David J.

    2003-11-01

    A mixed-acid solution containing hydrochloric and phosphoric acids was used to determine the error associated with performing a real-time titration. The results were compared against those obtained by performing the titration in a more traditional dropwise addition of titrant near the equivalence points. It was found that the real-time techniques resulted in significantly decreased analysis times while maintaining a low experimental error. The constant-flow techniques were implemented into two different levels of chemistry. It was found that students could successfully utilize the modified experiments. Problems associated with the techniques, major sources of error, and their solutions are discussed. In both cases, the use of the constant-flow setup has increased student recollection of key concepts, such as pKa determination, proper indicator choice, and recognizing the shape of specific titration curves by increasing student interest in the experiment.

  20. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons.

    PubMed

    Weusten, Jos J A M; Carpay, Wim M; Oosterlaken, Tom A M; van Zuijlen, Martien C A; van de Wiel, Paul A

    2002-03-15

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay.

  1. Rapid isothermal detection of Phytophthora species on plant samples using recombinase polymerase amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently several isothermal amplification techniques have been developed that are extremely tolerant towards inhibitors present in many plant extracts. Recombinase polymerase amplification (RPA) assays for the genus Phytophthora have been developed which provide a simple and rapid method to macerate...

  2. Enzymatic signal amplification of molecular beacons for sensitive DNA detection.

    PubMed

    Li, Jianwei Jeffery; Chu, Yizhuo; Lee, Benjamin Yi-Hung; Xie, Xiaoliang Sunney

    2008-04-01

    Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay.

  3. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification.

    PubMed

    Kong, Rong-Mei; Zhang, Xiao-Bing; Zhang, Liang-Liang; Huang, Yan; Lu, Dan-Qing; Tan, Weihong; Shen, Guo-Li; Yu, Ru-Qin

    2011-01-01

    This work reports the development of a new molecular beacon-based junction sensing system with highly sensitive DNA detection and a strong capability to identify SNPs. The single linear probe typically labels the midsection of the oligonucleotide, but our next-generation junction sensing system uses a hairpin-structured MB with labels on each end of the oligonucleotide to maintain the cleaving activity of our newly designed ssDNA-cleaved endonuclease, Nt.BbvCI, rather than the typical dsDNA-cleaved endonuclease. These design improvements guarantee a true and efficient target-triggered enzymatic recycling amplification process in our sensing system. They also afford a faster and more sensitive response toward target DNA than the first-generation junction sensing system.

  4. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  5. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay. PMID:25981257

  6. Investigation of Nalidixic Acid Resistance Mechanism in Salmonella enterica Using Molecular Simulation Techniques.

    PubMed

    Preethi, B; Shanthi, V; Ramanathan, K

    2015-09-01

    The emergence of nalidixic acid-resistant strains of Salmonella typhimurium remains to be a major public health problem. In particular, the substitution of Asn in place of Asp at the 87 loci in the GyrA of S. typhimurium was experimentally stated for nalidixic acid resistance. However, the data on the possible mechanism of nalidixic acid resistance are limited. In this study, I-Mutant2.0 and DUET program were employed to explore the impact of mutation on the stability of GyrA protein. Subsequently, molecular simulation techniques were employed to provide detailed information on the nalidixic acid-resistant associates with the D87N mutation in the GyrA of S. typhimurium. The binding free energy data depicts that nalidixic acid forms stable complex only with native-type GyrA than mutant (D87N) type GyrA protein. Moreover, our results theoretically suggest that hydrogen bonding formed by the Arg91 is certainly responsible for the GyrA of S. typhimurium drug selectivity. It is hoped that these evidences are immensely important for the development of new antibiotic and to overcome the nalidixic acid resistance in the near future. PMID:26208690

  7. Surface-enhanced Raman scattering (SERS) spectroscopy technique for lactic acid in serum measurement

    NASA Astrophysics Data System (ADS)

    Chiang, Hui Hua Kenny; Hsu, Po Hsiang

    2005-08-01

    Highly sensitive measurement of biomolecules is very important in clinical diagnosis and biomedical sensing. Spectroscopic methods have played important roles in biomedical sensing system developments. Recent development in surface enhanced Raman scattering (SERS) method has greatly enhanced the weak Raman signals of biomolecules and has provided great potentials for real time measurement of biomolecules of body fluid. In addition, Raman measurement has the advantage of not requiring extrinsic fluorescent marker for labeling purpose. In this study, we have pioneered in the development of SERS spectroscopic measurement technique for serum lactic acid, which is one of the most important metabolic parameter in blood. We have fabricated Ag colloidal nanoparticles to enhance the weak Raman signal of lactic acid in serum. The diameter of the Ag nanoparticle is 20 nm, the nanoparticles concentration is 109particles/ml. We have observed the SERS characteristic peak of lactic acid at 1285~1480cm-1 under 632.8 nm HeNe laser excitation. We have demonstrated the measurement of the lactic acid in filtered serum in the physiological concentration range 5x10-3~22x10-3 mole/L, which is hundred times lower than the detectible range using traditional Raman approach. The serum samples with were measured in a specially designed reflector type sample holder to form a multiple reflection of excitation laser through the sample, between a reflector and a notch filter. In conclusion, this research demonstrates the feasibility of using Ag SERS technique for measuring the lactic acid at physical concentration and establishes the platform technique for human body fluid measurements.

  8. Study of nucleic acid-ligand interactions by capillary electrophoretic techniques: A review.

    PubMed

    Neaga, I O; Bodoki, E; Hambye, S; Blankert, B; Oprean, R

    2016-01-01

    The understanding of nucleic acids-ligand (proteins, nucleic acids or various xenobiotics) interactions is of fundamental value, representing the basis of complex mechanisms that govern life. The development of improved therapeutic strategies, as well as the much expected breakthroughs in case of currently untreatable diseases often relies on the elucidation of such biomolecular interactions. Capillary electrophoresis (CE) is becoming an indispensable analytical tool in this field of study due to its high versatility, ease of method development, high separation efficiency, but most importantly due to its low sample and buffer volume requirements. Most often the availability of the compounds of interest is severely limited either by the complexity of the purification procedures or by the cost of their synthesis. Several reviews covering the investigation of protein-protein and protein-xenobiotics interactions by CE have been published in the recent literature; however none of them promotes the use of these techniques in the study of nucleic acid interactions. Therefore, various CE techniques applicable for such interaction studies are discussed in detail in the present review. The paper points out the particular features of these techniques with respect the estimation of the binding parameters, in analytical signal acquisition and data processing, as well as their current shortcomings and limitations.

  9. Immunochemical Assays and Nucleic-Acid Detection Techniques for Clinical Diagnosis of Prostate Cancer

    PubMed Central

    Kanyong, Prosper; Rawlinson, Sean; Davis, James

    2016-01-01

    Prostate cancer (PCa) is a significant cause of morbidity and mortality and the most common cancer in men in Europe, North America, and some parts of Africa. The established methods for detecting PCa are normally based on tests using Prostate Specific Antigen (PSA) in blood, Prostate cancer antigen 3 (PCA3) in urine and tissue Alpha-methylacyl-CoA racemase (AMACR) as tumour markers in patient samples. Prior to the introduction of PSA in clinics, prostatic acid phosphatase (PAP) was the most widely used biomarker. An early diagnosis of PCa through the detection of these biomarkers requires the availability of simple, reliable, cost-effective and robust techniques. Immunoassays and nucleic acid detection techniques have experienced unprecedented growth in recent years and seem to be the most promising analytical tools. This growth has been driven in part by the surge in demand for near-patient-testing systems in clinical diagnosis. This article reviews immunochemical assays, and nucleic-acid detection techniques that have been used to clinically diagnose PCa. PMID:26958088

  10. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  11. Quantum Feedback Amplification

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2016-04-01

    Quantum amplification is essential for various quantum technologies such as communication and weak-signal detection. However, its practical use is still limited due to inevitable device fragility that brings about distortion in the output signal or state. This paper presents a general theory that solves this critical issue. The key idea is simple and easy to implement: just a passive feedback of the amplifier's auxiliary mode, which is usually thrown away. In fact, this scheme makes the controlled amplifier significantly robust, and furthermore it realizes the minimum-noise amplification even under realistic imperfections. Hence, the presented theory enables the quantum amplification to be implemented at a practical level. Also, a nondegenerate parametric amplifier subjected to a special detuning is proposed to show that, additionally, it has a broadband nature.

  12. Capture and Amplification by Tailing and Switching (CATS)

    PubMed Central

    Turchinovich, Andrey; Surowy, Harald; Serva, Andrius; Zapatka, Marc; Lichter, Peter; Burwinkel, Barbara

    2014-01-01

    Massive parallel sequencing (MPS) technologies have paved the way into new areas of research including individualized medicine. However, sequencing of trace amounts of DNA or RNA still remains a major challenge, especially for degraded nucleic acids like circulating DNA. This together with high cost and time requirements impedes many important applications of MPS in medicine and fundamental science. We have established a fast, cheap and highly efficient protocol called ‘Capture and Amplification by Tailing and Switching’ (CATS) to directly generate ready-to-sequence libraries for MPS from nanogram and picogram quantities of both DNA and RNA. Furthermore, those DNA libraries are strand-specific, can be prepared within 2–3 h and do not require preliminary sample amplification steps. To exemplify the capacity of the technique, we have generated and sequenced DNA libraries from hundred-picogram amounts of circulating nucleic acids isolated from human blood plasma, one nanogram of mRNA-enriched total RNA from cultured cells and few nanograms of bisulfite-converted DNA. The approach for DNA library preparation from minimal and fragmented input described here will find broad application in diverse research areas such as translational medicine including therapy monitoring, prediction, prognosis and early detection of various human disorders and will permit high-throughput DNA sequencing from previously inaccessible material such as minute forensic and archeological samples. PMID:24922482

  13. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  14. Hydrochloric acid/pumice microabrasion technique for the removal of enamel pigmentation.

    PubMed

    Kilpatrick, N M; Welbury, R R

    1993-04-01

    Products for lightening teeth are appearing on the market with ever-increasing frequency. Heavy advertising, coupled with heightened public awareness and expectations of an aesthetically pleasing smile, have resulted in increased patient demand for treatment to improve all types of tooth discoloration. Although it is the role of the dental profession to provide the services demanded by the consumer, it is also our duty to be discerning and to re-assess continually the techniques we use, for both efficacy and safety. To do this, long-term follow up of clinical techniques is essential. This paper contains the clinical results of teeth treated over 4.5 years using the hydrochloric acid/pumice microabrasion technique to remove enamel opacities and pigmentation. The subject under discussion is that of enamel discoloration: intrinsic staining with its origins in dentine, such as that caused by the ingestion of tetracycline antibiotics during odontogenesis, is not amenable to this form of surface treatment.

  15. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    PubMed

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation.

  16. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  17. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  18. On soliton amplification

    NASA Technical Reports Server (NTRS)

    Leibovich, S.; Randall, J. D.

    1979-01-01

    The paper considers a modified Korteweg-de Vries equation that permits wave amplification or damping. A 'terminal similarity' solution is identified for large times in amplified systems. Numerical results are given which confirm that the terminal similarity solution is a valid local approximation for mu t sufficiently large and positive, even though the approximation is not uniformly valid in space.

  19. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  20. A blanching technique for intradermal injection of the hyaluronic acid Belotero.

    PubMed

    Micheels, Patrick; Sarazin, Didier; Besse, Stéphanie; Sundaram, Hema; Flynn, Timothy C

    2013-10-01

    With the proliferation of dermal fillers in the aesthetic workplace have come instructions from various manufacturers regarding dermal placement. Determination of injection needle location in the dermis has in large part been based on physician expertise, product and needle familiarity, and patient-specific skin characteristics. An understanding of the precise depth of dermal structures may help practitioners improve injection specificity. Unlike other dermal fillers that suggest intradermal and deep dermal injection planes, a new hyaluronic acid with a cohesive polydensified matrix may be more appropriate for the superficial dermis because of its structure and its high degree of integration into the dermis. To that end, the authors designed a small study to quantify the depth of the superficial dermis by means of ultrasound and histology. Using ultrasound resources, the authors determined the depths of the epidermis, the dermis, and the reticular dermis in the buttocks of six patients; the authors then extrapolated the depth of the superficial reticular dermis. Histologic studies of two of the patients showed full integration of the product in the reticular dermis. Following determination of injection depths and filler integration, the authors describe a technique ("blanching") for injection of the cohesive polydensified matrix hyaluronic acid into the superficial dermis. At this time, blanching is appropriate only for injection of the cohesive polydensified matrix hyaluronic acid known as Belotero Balance in the United States, although it may have applications for other hyaluronic acid products outside of the United States.

  1. A denuder technique for the measurement of nitrous acid in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Febo, A.; Perrino, C.; Cortiello, M.

    A new denuder set-up for the measurement of nitrous acid in polluted atmospheres is described here. The set-up is composed of one tetrachloromercurate-coated denuder for the removal of SO 2 and two downstream sodium carbonate-coated denuders for the determination of nitrous acid by the differential technique [Febo et al., 19, 1517-1530 1990]. The removal of SO 2 is necessary in order to avoid the formation of artifact nitrite on the sulfite layer which results from the interaction between atmospheric SO 2 and the Na 2CO 3 coating. Because of this mechanism, the measurement of HONO by means of the previously used NaClNa 2CO 3Na 2CO 3 denuder set-up is heavily biased in all cases when SO 2 and NO 2 are present at high concentration levels (e.g. urban environments).

  2. Effect of temperature on acid-base equilibria in separation techniques. A review.

    PubMed

    Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B

    2015-08-19

    Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC.

  3. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  4. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    PubMed

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening. PMID:27498854

  5. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  6. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    SciTech Connect

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  7. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    SciTech Connect

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

  8. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    PubMed

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  9. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    PubMed

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis.

  10. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform

    PubMed Central

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  11. Hybrid chirped-pulse amplification.

    PubMed

    Jovanovic, Igor; Ebbers, Christopher A; Barty, C P J

    2002-09-15

    Conversion efficiency in optical parametric chirped-pulse amplification is limited by spatiotemporal characteristics of the pump pulse. We have demonstrated a novel hybrid chirped-pulse amplification scheme that uses a single pump pulse and combines optical parametric amplification and laser amplification to achieve high gain, high conversion efficiency, and high prepulse contrast without utilization of electro-optic modulators. We achieved an overall conversion efficiency of 37% from the hybrid amplification system at a center wavelength of 820nm. Generation of multiterawatt pulses is possible by use of this simple method and commercial Q -switched pump lasers.

  12. Light amplification using semiconductors

    SciTech Connect

    Dupuis, R.D.

    1987-06-01

    During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

  13. Flux amplification in SSPX

    NASA Astrophysics Data System (ADS)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  14. Gravitomagnetic amplification in cosmology

    SciTech Connect

    Tsagas, Christos G.

    2010-02-15

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.

  15. Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zheng, Hong; Li, Ling; Wu, Yuqin; Chen, Jinlong; Zhuo, Shujuan; Zhu, Changqing

    2006-06-01

    A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL -1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL -1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL -1, 3.4 ng mL -1 and 2.9 ng mL -1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.

  16. Structural investigation of frozen-hydrated Omp C specimens prepared by the fatty acid monolayer technique

    SciTech Connect

    Chang, C.F.; Glaeser, R.M.

    1983-01-01

    Omp C (M.W. approx.36,000) is one of the major proteins in the outer membrane of E. coli. Trimeric Omp C forms a pore allowing small hydrophilic molecules to diffuse across the membrane. Specimens studied are prepared by reconstituting purified Omp C trimers with lipid A (the core structure of the outer membrane lipopolysaccharide). These specimens form 2-D periodic arrays with a size of approx.0.5 ..mu..m on edge. Initial structural investigations on negatively stained Omp C specimens have been reported by Grano et al. A preliminary structural analysis of frozen-hydrated Omp C is presented, using specimens prepared by a modification of the stearic-acid monolayer technique of Hayward et al. Stearate monolayers can successfully squeeze out the bulk water on the surface of the EM grid only at relatively high concentrations of Ca/sup + +/ and high pH. In the current study, the authors replaced the stearic acid with behenic acid, CH/sub 3/(CH/sub 2/)/sub 20/COOH, which can adhere to a suitably prepared EM grid from a subphase of distilled water.

  17. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    PubMed

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (p<0.05). Groups 7 and 9 provided similar results to group 2, but the results of those groups were different when compared with groups 8 and 10. The use of 6% HP and 10% CP associated with daily or weekly fluoridation regimens did not increase the susceptibility of enamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  18. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  19. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA. PMID:26517245

  20. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid.

    PubMed

    Yang, Jing; Xu, Xinxin; Liu, Gang

    2012-11-20

    Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosynthetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein of penT belongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenum doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane.

  1. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy.

    PubMed

    Liu, Minbo; Zhang, Lijuan; Xu, Yawei; Yang, Pengyuan; Lu, Haojie

    2013-07-25

    We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.

  2. Performance of self-collected penile-meatal swabs compared to clinician-collected urethral swabs for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Mycoplasma genitalium by nucleic acid amplification assays.

    PubMed

    Dize, Laura; Barnes, Perry; Barnes, Mathilda; Hsieh, Yu-Hsiang; Marsiglia, Vincent; Duncan, Della; Hardick, Justin; Gaydos, Charlotte A

    2016-10-01

    Men were enrolled in a study to assess the performance and acceptability of self-collected penile meatal swabs as compared to clinician-collected urethral swabs for sexually transmitted infections (STIs). We expected penile-meatal swabs to perform favorably to urethral swabs for Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Trichomonas vaginalis (TV), and Mycoplasma genitalium (MG) detection by nucleic acid amplification assays (NAATs). Of 203 swab pairs tested; for CT, penile-meatal swab sensitivity was 96.8% and specificity was 98.8%. NG sensitivity and specificity were 100% and 98.9%, respectively. For TV, sensitivity was 85.0% and specificity was 96.7%. For MG sensitivity and specificity were 79.3% and 99.4%, respectively. No significant statistical differences between sample type accuracy (CT: P=0.625; NG: P=0.248; TV: P=0.344; and MG: P=0.070) existed. Most men, 90.1%, reported self-collection of penile-meatal swabs as "Very Easy" or "Easy". Self-collected penile-meatal swabs appeared acceptable for NAAT STI detection and an acceptable collection method by men. PMID:27497595

  3. Development of a quantitative real-time nucleic acid sequence-based amplification assay with an internal control using molecular beacon probes for selective and sensitive detection of human rhinovirus serotypes.

    PubMed

    Sidoti, Francesca; Bergallo, Massimiliano; Terlizzi, Maria Elena; Piasentin Alessio, Elsa; Astegiano, Sara; Gasparini, Giorgio; Cavallo, Rossana

    2012-03-01

    Evidence demonstrating that human rhinovirus (HRV) disease is not exclusively limited to the upper airways and may cause lower respiratory complications, together with the frequency of HRV infections and the increasing number of immunocompromised patients underline the need for rapid and accurate diagnosis of HRV infections. In this study, we developed the first quantitative real-time nucleic acid sequence-based amplification assay with an internal control using molecular beacon probes for selective and sensitive detection of human rhinovirus serotypes. We described a simple method to accurately quantify RNA target by computing the time to positivity (TTP) values for HRV RNA. Quantification capacity was assessed by plotting these TTP values against the starting number of target molecules. By using this simple method, we have significantly increased the diagnostic accuracy, precision, and trueness of real-time NASBA assay. Specificity of the method was verified in both in silico and experimental studies. Moreover, for assessment of clinical reactivity of the assay, NASBA has been validated on bronchoalveolar lavage (BAL) specimens. Our quantitative NASBA assay was found to be very specific, accurate, and precise with high repeatability and reproducibility.

  4. Whole Genome Amplification from Blood Spot Samples.

    PubMed

    Sørensen, Karina Meden

    2015-01-01

    Whole genome amplification is an invaluable technique when working with DNA extracted from blood spots, as the DNA obtained from this source often is too limited for extensive genetic analysis. Two techniques that amplify the entire genome are common. Here, both are described with focus on the benefits and drawbacks of each system. However, in order to obtain the best possible WGA result the quality of input DNA extracted from the blood spot is essential, but also time consumption, flexibility in format and elution volume and price of the technology are factors influencing system choice. Here, three DNA extraction techniques are described and the above aspects are compared between the systems.

  5. Effects of Acidity and Stress on Stomach Motility, Assessed by Biomagnetic Technique: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Córdova-Fraga, T.; Sosa-Aquino, M.; Huerta-Franco, R.; Vargas-Luna, M.; Gutiérrez-Juárez, G.; Bernal-Alvarado, J.

    2004-09-01

    The human stomach is a J shaped hollowed organ that undergoes a variable luminal volume without significant pressure changes. This organ has two valves: the cardiac localized in the upper part, and the pillory on the lower part of the organ respectively. The main functions of these valves are to storage, carry, triturate and empty the lumen content. However, their activity could be affected for different agents such as chemical stimulus (alcoholic beverages) and psychological stress. In this contribution we show by the first time, the importance of biomagnetic signal technique in order to measure the human stomach peristaltic frequency in healthy subjects who were evaluated in basal conditions, and after to be submitted at the effects of: acidity caused by alcoholic beverages and psychological stress.

  6. Improved lead recovery and sulphate removal from used lead acid battery through electrokinetic technique.

    PubMed

    Soundarrajan, C; Sivasankar, A; Maruthamuthu, S; Veluchamy, A

    2012-05-30

    This paper presents improvement in lead (Pb) recovery and sulphate removal from used Pb acid battery (ULAB) through Electrokinetic technique, a process aimed to eliminate environmental pollution that arises due to emission of gases and metal particles from the existing high temperature pyrometallurgical process. Two different cell configurations, (1) one with Nafion membrane placed between anode and middle compartments and Agar membrane between cathode and middle compartments and (2) another with only Agar membrane placed between both sides of the middle compartments were designed for the Pb and sulphate separation from ULAB. This paper concludes that the cell with only Agar membranes performed better than the cell with Nafion and Agar membranes in combinations and also explains the mechanism underlying the chemical and electrochemical processes in the cell.

  7. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  8. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  9. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects.

    PubMed

    Grant, Nicholas E

    2016-01-01

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<10(12) cm(-3)).

  10. A radioisotopic technique for analysis of free fatty acid reesterification in human adipose tissue.

    PubMed

    Leibel, R L; Hirsch, J

    1985-01-01

    Reesterification rates of free fatty acids (FFA) formed by intracellular triglyceride hydrolysis in small fragments of human adipose tissue were measured. Subcutaneous gluteal adipose tissue, obtained by needle biopsy, was incubated in a buffered albumin medium containing [3H]palmitate and [14C]glucose, each of high specific activity. In triglycerides (TG) and diglycerides (DG) synthesized by the tissue, [14C]glucose is incorporated exclusively into the glyceride-glycerol moiety, and 3H appears solely in the esterified fatty acids. Since rates of TG and DG synthesis can be determined from 14C accumulation rates in these molecules, the total amounts of FFA esterified can also be calculated. The difference between this estimate of total FFA esterification and the moles of [3H]palmitate esterified to these molecules represents the amount of unlabeled FFA from ongoing TG hydrolysis that was reesterified during the incubation. FFA recycling by the reesterification pathway is an important mechanism for the control of the quantity and proportions of FFA and glycerol leaving the human adipocyte. Fasting and beta-adrenergic stimulation reduce the fraction of endogenously released FFA that are reesterified from resting values of 30-40% to 8-21%, thereby increasing the molar ratio of FFA to glycerol leaving the adipocyte. The technique described can be employed to monitor sequential changes in this important metabolic cycle in humans under a wide range of nutritional and clinical circumstances.

  11. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples. PMID:25822163

  12. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  13. Rat adipose tissue amino acid metabolism in vivo as assessed by microdialysis and arteriovenous techniques.

    PubMed

    Kowalski, T J; Wu, G; Watford, M

    1997-09-01

    In fed, anesthetized rats, microdialysis demonstrated a net release of glycerol, glutamine, serine, tyrosine, and taurine and a net uptake of glutamate, aspartate, glycine, and arginine across the inguinal adipose depot. However, the results also indicated excessive proteolysis associated with implantation of the microdialysis probe, and a novel arteriovenous difference technique was developed. Arteriovenous difference across the inguinal fat pat demonstrated a net uptake of glucose and a net release of lactate and glycerol. Starvation (48 h) resulted in higher rates of glycerol and lactate release with lower rates of glucose uptake. A net uptake of triacylglycerol was seen in starved-refed animals. Net glutamine, tyrosine, and taurine release was seen in fed and starved animals, but in starved-refed animals taurine and serine were the only amino acids showing significant release. No significant net uptake or release of ammonia, pyruvate, or alanine was observed. These experiments confirm that adipose tissue is a site of glutamine synthesis and suggest that the principal substrates are derived from intracellular proteolysis. The results also demonstrate the viability of an arteriovenous difference technique for the study of adipose tissue in the rat.

  14. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment. PMID:23485423

  15. The effectiveness of a modified hydrochloric acid-quartz-pumice abrasion technique on fluorosis stains: a case report.

    PubMed

    Erdogan, G

    1998-02-01

    Endemic dental fluorosis is a form of enamel hypoplasia characterized by moderate-to-severe staining of the tooth surface. Since 1916, numerous investigators have used hydrochloric acid alone on fluorosis stains. More recently, 18% hydrochloric acid-pumice microabrasion has been used to achieve color modification. The main disadvantage of this procedure is the high concentration and low viscosity of hydrochloric acid, which can cause damage to oral and dental tissues. To eliminate this problem, quartz particles can be mixed with the hydrochloric acid. The quartz particles prevent the hydrochloric acid from flowing uncontrollablely by altering it to a gel-like form. A modified 18% hydrochloric acid-quartz-pumice abrasion technique was used to remove fluorine stains from vital teeth in a teenager.

  16. Evidence of high-elevation amplification versus Arctic amplification.

    PubMed

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  17. Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater.

    PubMed

    Chen, Da; Liu, Fuqiang; Zong, Lidan; Sun, Xiaowen; Zhang, Xiaopeng; Zhu, Changqing; Tao, Xuewen; Li, Aimin

    2016-07-15

    An integrated adsorptive technique combining an m-cresol adsorption unit, an acid retardation unit and an m-toluidine adsorption unit in sequence was designed to recover m-cresol and m-toluidine from highly acidic and salty m-cresol manufacturing wastewater. In the first column packed with hypercrosslinked polymeric resin (NDA-99), most m-cresol was captured through π-π and hydrogen-bonding interactions as well as the salting-out effect, while m-toluidine was not absorbed due to protonation. To separate acid from salt, an acid retardation unit was introduced successively to adsorb sulfuric acid by strong base anion exchange resin (201×7). After the acid retardation unit and mild neutralization reaction, the last column filled with NDA-99 was applied to trap neutral m-toluidine from the salty effluent. Moreover, the eluent of the acid retardation unit was utilized as the regenerant to recover m-toluidine, and the recycled high-acidity and low-salinity solution of m-toluidine was directly used to produce m-cresol as the raw material. Therefore, the proposed method not only efficiently recycled m-cresol and m-toluidine, but also reduced the consumption of alkali dramatically (saving 0.1628t/t wastewater). These findings will inspire design of integrated adsorptive techniques for treating complex organic wastewater with high efficiency and low cost. PMID:27037473

  18. NASBA: A detection and amplification system uniquely suited for RNA

    SciTech Connect

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal: sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.

  19. Nomogram including the total tumoral load in the sentinel nodes assessed by one-step nucleic acid amplification as a new factor for predicting nonsentinel lymph node metastasis in breast cancer patients.

    PubMed

    Rubio, Isabel T; Espinosa-Bravo, Martin; Rodrigo, Maxi; Amparo Viguri Diaz, Maria; Hardisson, David; Sagasta, Amaia; Dueñas, Basilio; Peg, Vicente

    2014-09-01

    Several models have been developed to predict non-sentinel nodes (NSLN) metastasis in patients with a positive sentinel node (SLN) that incorporates a standard pathology examination of the SLN. It has been reported that total tumoral load (TTL) in the SLNs assessed by one-step nucleic acid amplification (OSNA) is a predictive factor for additional NSLN metastasis in the axillary lymph node dissection (ALND). The objective was to develop a nomogram that predicts patient´s risk of additional NSLN metastasis incorporating TTL in the SLNs assessed by OSNA. Six hundred and ninety-seven consecutive patients with positive SLN evaluation by OSNA and a completion ALND were recruited. Pathologic features of the primary tumor and SLN metastases, including TTL were collected. Multivariate logistic regression identified factors predictive of non-SLN metastasis. A nomogram was developed with these variables and validated in an external cohort. On multivariate logistic regression analysis, tumor size, number of affected SLN, Her2 overexpression, lymphovascular invasion, and TTL were each associated with the likelihood of additional NSLN metastasis (p < 0.05). The overall predictive accuracy of the nomogram, as measured by the AUC was 0.7552 (95 %CI 0.7159-0.7945). When applied to the external cohort the nomogram was accurate with an AUC = 0.678 (95 %CI 0.621-0.736). This novel nomogram that incorporates TTL assessed by OSNA performs well and may help clinicians to make decisions about ALND for individual patients. Moreover, the standardization of pathologic assessment by OSNA may help to achieve interinstitutional reproducibility among nomograms. PMID:25164972

  20. Development of a nucleic acid sequence-based amplification assay that uses gag-based molecular beacons to distinguish between human immunodeficiency virus type 1 subtype C and C' infections in Ethiopia.

    PubMed

    Ayele, Workenesh; Pollakis, Georgios; Abebe, Almaz; Fisseha, Bitew; Tegbaru, Belete; Tesfaye, Girma; Mengistu, Yohannes; Wolday, Dawit; van Gemen, Bob; Goudsmit, Jaap; Dorigo-Zetsma, Wendelien; de Baar, Michel P

    2004-04-01

    A gag-based molecular beacon assay utilizing real-time nucleic acid sequence-based amplification technology has been developed to differentiate between the two genetic subclusters of human immunodeficiency virus type 1 (HIV-1) subtype C (C and C') circulating in Ethiopia. Of 41 samples, 36 could be classified as C or C' by sequencing of the gag gene. All 36 isolates were correctly identified by the gag beacon test. Three isolates with genomes that were recombinant in gag were unambiguously typed as belonging to the C' subcluster. Further analysis revealed that these contained the most sequence homology with a reference subcluster C' sequence in the target region of the beacon and hence were correct for the analyzed region. For one sample, sequencing and gag molecular beacon results did not match, while another isolate could not be detected at all by the beacon assay. Overall, high levels of sensitivity and specificity were achieved for both beacons (90.5% sensitivity and 100% specificity for the C beacon and 100% sensitivity and 95.2% specificity for the C' beacon). The availability of a diagnostic test which can quickly and reliably discriminate between C and C' HIV-1 infections in Ethiopia is an important first step toward studying their respective biological characteristics. As the assay is specific to the Ethiopian HIV-1 subtype C epidemic, it will contribute to characterizing the circulating viruses in this population, thereby generating the information necessary for the development of a potential efficacious HIV-1 vaccine appropriate for the Ethiopian context.

  1. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Astrophysics Data System (ADS)

    Kirk, Lindsay Christine

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature for an axisymmetric cone geometry were examined separately to determine the individual effects on the first mode amplification. The DAKOTA optimization software package was then used to optimize the geometry to maximize the amplification of waves at first mode frequencies and to minimize the amplification of the waves at second mode frequencies, as computed by the 2D STABL hypersonic boundary layer stability analysis tool. This was accomplished by allowing all geometric parameters in the sensitivity study to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. During this process, boundary layer edge properties were recorded to investigate any correlations. Results of the sensitivity analysis indicate that an axisymmetric cone with a sharp nose or an axisymmetric cone with a high degree of concave curvature under the Mach 6 freestream conditions used here will cause the largest amplification of first mode instability waves.

  2. Emerging techniques for ultrasensitive protein analysis.

    PubMed

    Yang, Xiaolong; Tang, Yanan; Alt, Ryan R; Xie, Xiaoyu; Li, Feng

    2016-06-21

    Many important biomarkers for devastating diseases and biochemical processes are proteins present at ultralow levels. Traditional techniques, such as enzyme-linked immunosorbent assays (ELISA), mass spectrometry, and protein microarrays, are often not sensitive enough to detect proteins with concentrations below the picomolar level, thus requiring the development of analytical techniques with ultrahigh sensitivities. In this review, we highlight the recent advances in developing novel techniques, sensors, and assays for ultrasensitive protein analysis. Particular attention will be focused on three classes of signal generation and/or amplification mechanisms, including the uses of nanomaterials, nucleic acids, and digital platforms. PMID:26898911

  3. SERUM VITAMIN B12, IRON AND FOLIC ACID DEFICIENCIES IN OBESE INDIVIDUALS SUBMITTED TO DIFFERENT BARIATRIC TECHNIQUES

    PubMed Central

    SILVA, Rafaella de Andrade; MALTA, Flávia Monteiro França; CORREIA, Maria Flora Ferreira Sampaio Carvalho; BURGOS, Maria Goretti Pessoa de Araújo

    2016-01-01

    ABSTRACT Background: Different surgical techniques to combat obesity combine malabsorption with restrictive procedures and can lead to metabolic problems, such as micronutrient deficiencies. Aim: Assess vitamin B12, iron and folic acid deficiencies associated with the lifestyle of obese individuals having been submitted to different bariatric techniques. Methods: A retrospective analysis was performed using the electronic charts of patients submitted to bariatric surgery involving adjustable gastric banding and Roux-en-Y gastric bypass at the São João Hospital Center in the city of Porto, Portugal, between 2005 and 2010. The following data were collected: surgical technique, sex, age, marital status, serum concentrations of vitamin B12, iron and folic acid and postoperative lifestyle. A 5% significance level was used for the statistical analysis (p<0.05). Results: Among 286 individuals evaluated, females accounted for 90.9% of the overall sample (both techniques). Gastric banding was performed more (68.9%), but greater nutrient deficiencies were found following gastric bypass. Iron was the most prevalent deficiency (21.3%), followed by vitamin B12 (16.9%) and folic acid (4.5%). Mild to moderate alcohol intake, adherence to the diet and the use of multivitamins reduced the frequency, but did not avoid micronutrient deficiency. Conclusion: Vitamin B12, iron and folic acid deficiencies were found in the first and second year following the two bariatric techniques analyzed and were more frequent among individuals submitted to gastric bypass. PMID:27683779

  4. Differentiating Milk and Non-milk Proteins by UPLC Amino Acid Fingerprints Combined with Chemometric Data Analysis Techniques.

    PubMed

    Lu, Weiying; Lv, Xiaxia; Gao, Boyan; Shi, Haiming; Yu, Liangli Lucy

    2015-04-22

    Amino acid fingerprinting combined with chemometric data analysis was used to differentiate milk and non-milk proteins in this study. Microwave-assisted hydrolysis and ultraperformance liquid chromatography (UPLC) were used to obtain the amino acid fingerprints. Both univariate and multivariate chemometrics methods were applied for differentiation. The confidence boundary of amino acid concentration, principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA) of the amino acid fingerprints demonstrated that there were significant differences between milk proteins and inexpensive non-milk protein powders from other biological sources including whey, peanut, corn, soy, fish, egg yolk, beef extract, collagen, and cattle bone. The results indicate that the amino acid compositions with the chemometric techniques could be applied for the detection of potential protein adulterants in milk.

  5. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  6. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  7. Acute arsenic poisoning treated by intravenous dimercaptosuccinic acid (DMSA) and combined extrarenal epuration techniques.

    PubMed

    Hantson, Philippe; Haufroid, Vincent; Buchet, Jean-Pierre; Mahieu, Paul

    2003-01-01

    Arsenic poisoning was diagnosed in a 26-year-old man who had been criminally intoxicated over the last two weeks preceding admission by the surreptitious oral administration of probably 10 g of arsenic trioxide (As2O3). The patient developed severe manifestations of toxic hepatitis and pancreatitis, and thereafter neurological disorders, respiratory distress, acute renal failure, and cardiovascular disturbances. In addition to supportive therapy, extrarenal elimination techniques and chelating agents were used. Dimercaprol (BAL) and dimercaptosuccinic acid (DMSA or succimer) were used simultaneously as arsenic chelating agents for two days, and thereafter DMSA was used alone. DMSA was administered by intravenous (20 mg/kg/d for five days, then 10 mg/kg/d for six days) and intraperitoneal route. Intravenous DMSA infusion was well tolerated and resulted in an increase in arsenic blood concentration immediately after the infusion. Continuous venovenous hemofiltration combined with hemodialysis, and peritoneal dialysis were proposed to enhance arsenic elimination. It was calculated that over an 11-day period 14.5 mg arsenic were eliminated by the urine, 26.7 mg by hemodialysis, 17.8 mg by peritoneal dialysis, and 7.8 mg by continuous venovenous hemofiltration. These amounts appeared negligible with regard to the probable ingested dose. The patient died on day 26 from the consequences of multiple organ failure, with subarachnoid hemorrhage and generalized infection caused by Aspergillus fumigatus.

  8. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    PubMed

    Yuvaraja, K; Khanam, Jasmina

    2014-08-01

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  9. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  10. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  11. Development of experimental techniques to study protein and nucleic acid structures

    SciTech Connect

    Trewhella, J.; Bradbury, E.M.; Gupta, G.; Imai, B.; Martinez, R.; Unkefer, C.

    1996-04-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to develop experimental tools for structural biology, specifically those applicable to three-dimensional, biomolecular-structure analysis. Most biological systems function in solution environments, and the ability to study proteins and polynucleotides under physiologically relevant conditions is of paramount importance. The authors have therefore adopted a three-pronged approach which involves crystallographic and nuclear magnetic resonance (NMR) spectroscopic methods to study protein and DNA structures at high (atomic) resolution as well as neutron and x-ray scattering techniques to study the complexes they form in solution. Both the NMR and neutron methods benefit from isotope labeling strategies, and all provide experimental data that benefit from the computational and theoretical tools being developed. The authors have focused on studies of protein-nucleic acid complexes and DNA hairpin structures important for understanding the regulation of gene expression, as well as the fundamental interactions that allow these complexes to form.

  12. Spectrophotometric Determination of the Dissociation Constant of an Acid-Base Indicator Using a Mathematical Deconvolution Technique

    ERIC Educational Resources Information Center

    Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.

    2005-01-01

    A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…

  13. Titration of strong and weak acids by sequential injection analysis technique.

    PubMed

    Maskula, S; Nyman, J; Ivaska, A

    2000-05-31

    A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol. PMID:18967966

  14. Titration of strong and weak acids by sequential injection analysis technique.

    PubMed

    Maskula, S; Nyman, J; Ivaska, A

    2000-05-31

    A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.

  15. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.

    PubMed

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2014-02-15

    Gamma-ray irradiation of novel hydrogels was used to develop a biocompatible hydrogel system for skin tissue engineering. These novel hydrogels are composed of natural polymers including hyaluronic acid (HA) and chondroitin sulfate (CS), and the synthetic polymer, poly(vinyl alcohol) (PVA). The γ-ray irradiation method has advantages, such as relatively simple manipulation without need of any extra reagents for polymerization and cross-linking. We synthesized HA and CS derivatives with polymerizable residues. The HA/CS/PVA hydrogels with various compositions were prepared by using γ-ray irradiation technique and their physicochemical properties were investigated to evaluate the feasibility of their use as artificial skin substitutes. HA/CS/PVA hydrogels showed an 85-88% degree of gelation under 15 kGy radiation. All HA/CS/PVA hydrogels exhibited more than 90% water content and reached an equilibrium swelling state within 24h. Hydrogels with higher concentrations of hyaluronidase solution and HA/CS content had proportionally higher enzymatic degradation rates. The drug release behaviors from HA/CS/PVA hydrogels were influenced by the composition of the hydrogel and drug properties. Exposure of human keratinocyte (HaCaT) culture to the extracts of HA/CS/PVA hydrogels did not significantly affect the cell viability. All HaCaT cell cultures exposed to the extracts of HA/CS/PVA hydrogels exhibited greater than 92% cell viability. The HaCaT growth in HA/CS/PVA hydrogels gradually increased as a function of culture time. After 7 days, the HaCaT cells in all HA/CA/PVA hydrogels exhibited more than 80% viability compared to the control group HaCaT culture on a culture plate. PMID:24507324

  16. Use of ramification amplification assay for detection of Escherichia coli O157:H7 and other E. coli Shiga toxin-producing strains.

    PubMed

    Li, Fan; Zhao, Chunyan; Zhang, Wandi; Cui, Shenghui; Meng, Jianghong; Wu, Josephine; Zhang, David Y

    2005-12-01

    Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) strains are important human pathogens that are mainly transmitted through the food chain. These pathogens have a low infectious dose and may cause life-threatening illnesses. However, detection of this microorganism in contaminated food or a patient's stool specimens presents a diagnostic challenge because of the low copy number in the sample. Often, a more sensitive nucleic acid amplification method, such as PCR, is required for rapid detection of this microorganism. Ramification amplification (RAM) is a recently introduced isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. In this study, we synthesized a circular probe specific for the Shiga toxin 2 gene (stx(2)). Our results showed that as few as 10 copies of stx(2) could be detected, indicating that the RAM assay was as sensitive as conventional PCR. We further tested 33 isolates of E coli O157:H7, STEC, Shigella dysenteriae, and nonpathogenic E. coli by RAM assay. Results showed that all 27 STEC isolates containing the stx(2) gene were identified by RAM assay, while S. dysenteriae and nonpathogenic E. coli isolates were undetected. The RAM results were 100% in concordance with those of PCR. Because of its simplicity and isothermal amplification, the RAM assay could be a useful method for detecting STEC in food and human specimens.

  17. A general solution for opening double-stranded DNA for isothermal amplification

    PubMed Central

    Chen, Gangyi; Dong, Juan; Yuan, Yi; Li, Na; Huang, Xin; Cui, Xin; Tang, Zhuo

    2016-01-01

    Nucleic acid amplification is the core technology of molecular biology and genetic engineering. Various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). However, most of these methods can only detect single stranded nucleic acid. Herein, we put forward a simple solution for opening double-stranded DNA for isothermal detection methods. The strategy employs recombination protein from E. coli (RecA) to form nucleoprotein complex with single-stranded DNA, which could scan double-stranded template for homologous sites. Then, the nucleoprotein can invade the double-stranded template to form heteroduplex in the presence of ATP, resulting in the strand exchange. The ATP regeneration system could be eliminated by using high concentration of ATP, and the 3′-OH terminal of the invasion strand can be recognized by other DNA modifying enzymes such as DNA polymerase or DNA ligase. Moreover, dATP was found to be a better cofactor for RecA, which make the system more compatible to DNA polymerase. The method described here is a general solution to open dsDNA, serving as a platform to develop more isothermal nucleic acids detection methods for real DNA samples based on it. PMID:27687498

  18. Chirped pulse amplification of 300 fs pulses in an Alexandrite regenerative amplifier

    SciTech Connect

    Pessot, M.; Squier, J.; Bado, P.; Mourou, G. ); Harter, D.J. )

    1989-01-01

    The authors demonstrate the amplification of femtosecond dye laser pulses up to the 3.5 mJ level in an alexandrite regenerative amplifier. An expansion/compression system using diffraction gratings allows chirped pulse amplification techniques to be used to produce peak powers upwards of 1 GW. Limitations in the chirped pulse amplification of ultrashort pulses due to intracavity dispersive elements are discussed.

  19. Amplification of stimulated Brillouin scattering of two collinear pulsed laser beams with orthogonal polarizations.

    PubMed

    Shi, Jinwei; Chen, Xudong; Ouyang, Min; Liu, Juan; Liu, Dahe

    2009-06-10

    A polarization-controlling device was developed based on the fact that there can be a time delay between the seeder and the pumping beams during the amplification of a stimulated Brillouin scattering signal. The device causes two coaxially transmitted pulsed beams with orthogonal polarizations to have the same polarization in order to implement amplification by the pumping effect. An experiment showed that good pumping amplification can be achieved by using this technique. PMID:19516374

  20. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  1. [Fatty acid variation in yellowfin tuna, spotted weakfish and Florida pompano when submitted to six cooking techniques].

    PubMed

    Castro-González, María Isabel; Maafs-Rodríguez, Ana Gabriela; Romo Pérez-Gil, Fernando

    2013-03-01

    The aim of the present study was to analyze the effect of six cooking techniques (steamed, foiled, foiled with banana leaf, baked, microwave-cooked and light frying) in the fatty acid content of Thunnus albacore (yellowfin tuna), Cynoscionnebulosus (spotted weakfish) and Trachinotuscarolinus (Florida pompano). After cooking the fish fillets, fatty acid analyses were performed using gas chromatography. Total lipids increased in all cooking techniques in tunaand spotted weakfish. Saturated fatty acids of tuna and spotted weakfish increased in three cooking techniques, while in Florida pompano only gas oven raised their content. Lightly frying generated the highest content of n-3 in tuna and spotted weakfish, and the lowest in Florida pompano, specie that presented less variation. In tuna fish, the most recommended cooking techniques are foiled with aluminum and microwave oven; for spotted weakfish, foiled with banana leaf; while Florida pompano can be prepared using all cooking methods except gas oven. This information is useful to enrich data from chemical composition tables, in which concentrations are usually presented in raw food. PMID:24167961

  2. [Fatty acid variation in yellowfin tuna, spotted weakfish and Florida pompano when submitted to six cooking techniques].

    PubMed

    Castro-González, María Isabel; Maafs-Rodríguez, Ana Gabriela; Romo Pérez-Gil, Fernando

    2013-03-01

    The aim of the present study was to analyze the effect of six cooking techniques (steamed, foiled, foiled with banana leaf, baked, microwave-cooked and light frying) in the fatty acid content of Thunnus albacore (yellowfin tuna), Cynoscionnebulosus (spotted weakfish) and Trachinotuscarolinus (Florida pompano). After cooking the fish fillets, fatty acid analyses were performed using gas chromatography. Total lipids increased in all cooking techniques in tunaand spotted weakfish. Saturated fatty acids of tuna and spotted weakfish increased in three cooking techniques, while in Florida pompano only gas oven raised their content. Lightly frying generated the highest content of n-3 in tuna and spotted weakfish, and the lowest in Florida pompano, specie that presented less variation. In tuna fish, the most recommended cooking techniques are foiled with aluminum and microwave oven; for spotted weakfish, foiled with banana leaf; while Florida pompano can be prepared using all cooking methods except gas oven. This information is useful to enrich data from chemical composition tables, in which concentrations are usually presented in raw food.

  3. Recovery and STR amplification of DNA from RFLP membranes.

    PubMed

    Steadman, Shelly A; McDonald, J David; Andrews, John S; Watson, Nigel D

    2008-03-01

    Restriction fragment length polymorphism (RFLP) techniques were utilized in the forensic DNA community until the mid 1990s when less labor-intensive polymerase chain reaction short tandem repeat (PCR STR) techniques became available. During the transition from RFLP technology to PCR-based STR platforms, a method for comparing RFLP profiles to STR profiles was not developed. While the preferred approach for applying new technology to old cases would be to analyze the original biological stain, this is not always possible. For unsolved cases that previously underwent RFLP analysis, the only DNA remaining may be restriction cut and bound to nylon membranes. These studies investigate several methods for obtaining STR profiles from membrane bound DNA, including removal of bound DNA with bases, acids, detergents, various chemicals, and conventional cell extraction solutions. Direct multiplex STR amplification of template in the membrane-bound state was also explored. A partial STR profile was obtained from DNA that was recovered from an archived membrane using conventional extraction buffer components, indicating promise for recovering useful STR information from RFLP membranes that have been maintained in long-term frozen storage. PMID:18366567

  4. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  5. A near-infrarod spectroscopy technique for the control of fermentation processes: An application to lactic acid fermentation.

    PubMed

    Vaccari, G; Dosi, E; Campi, A L; Mantovani, G; González-Vara Y R, A; Matteuzzi, D

    1994-04-25

    A near-infrared (NIR) spectroscopy technique for the control of lactic acid fermentation process has been proposed. Lactic acid, glucose, and biomass concentrations were determined by the NIR spectroscopy method. The three parameters examined were closely correlated to the results obtained with classical laboratory procedures. Moreover, the conditions for the on-line utilization of the NIR spectroscopy measurement system were pointed out. The great versatility of the NIR spectroscopy should permit its use for other fermentation processes. (c) 1994 John Wiley & Sons, Inc.

  6. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    PubMed

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.

  7. Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.

    PubMed

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  8. Direct amplification of casework bloodstains using the Promega PowerPlex(®) 21 PCR amplification system.

    PubMed

    Gray, Kerryn; Crowle, Damian; Scott, Pam

    2014-09-01

    A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of

  9. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis.

    PubMed

    Hu, Chong; Yue, Wanqing; Yang, Mengsu

    2013-11-21

    Signal generation and amplification based on nanomaterials and microfluidic techniques have both attracted considerable attention separately due to the demands for ultrasensitive and high-throughput detection of biomolecules. This article reviews the latest development of signal amplification strategies based on nanoparticles for bioanalysis and their integration and applications in microfluidic systems. The applications of nanoparticles in bioanalysis were categorized based on the different approaches of signal amplification, and the microfluidic techniques were summarized based on cell analysis and biomolecule detection with a focus on the integration of nanoparticle-based amplification in microfluidic devices for ultrasensitive bioanalysis. The advantages and limitations of the combination of nanoparticles-based amplification with microfluidic techniques were evaluated, and the possible developments for future research were discussed.

  10. Chromatographic techniques coupled with mass spectrometry for the determination of organic acids in the study of autism.

    PubMed

    Kałużna-Czaplińska, Joanna; Zurawicz, Ewa; Jóźwik, Jagoda

    2014-08-01

    Chromatographic methods find application in the diagnostics and prognosis of diseases. They are used in finding new biomarkers, which may result in early medical intervention. Early diagnosis and intervention are especially important in the case of diseases of unknown etiology. One of these is autism. Autism is a neurodevelopmental disorder characterized by severe impairment in reciprocal social interaction and communication and a pattern of repetitive or stereotyped behavior. Organic acids are intermediate metabolites of all major groups of organic cellular components and can play a role in the pathogenesis of autism. This review presents information about abnormal levels of some organic acids observed in the urine of children with autism and determination of acids with the use of chromatographic techniques. 342 literature sources on frequency (2005-2012) of the use of chromatographic methods in the determination of organic compounds in various body fluids were searched.

  11. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared.

  12. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  13. Chromosomal destabilization during gene amplification.

    PubMed Central

    Ruiz, J C; Wahl, G M

    1990-01-01

    Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability. Images PMID:2188107

  14. Tidal amplification of seabed light

    NASA Astrophysics Data System (ADS)

    Bowers, D. G.; Brubaker, J. M.

    2010-09-01

    Because solar irradiance decreases approximately exponentially with depth in the sea, the increase in irradiance at the seabed from mid to low tide is greater than the decrease from mid to high tide. Summed over a day, this can lead to a net amplification of seabed irradiance in tidal waters compared to nontidal waters with the same mean depth and transparency. In this paper, this effect is quantified by numerical and analytical integration of the Lambert-Beer equation to derive the ratio of daily total seabed irradiance with and without a tide. Greatest amplification occurs in turbid water with large tidal range and low tide occurring at noon. The theoretical prediction is tested against observations of seabed irradiance in the coastal waters of North Wales where tidal amplification of seabed light by up to a factor of 7 is both observed and predicted. Increasing the strength of tidal currents tends to increase the turbidity of the water and hence reduce the light reaching the seabed, but this effect is made less by increasing tidal amplification, especially when low water is in the middle of the day. The ecological implications of tidal amplification are discussed. The productivity of benthic algae will be greater than that predicted by simple models which calculate seabed irradiance using the mean depth of water alone. Benthic algae are also able to live at greater depths in tidal waters than in nontidal waters with the same transparency.

  15. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  16. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities.

    PubMed

    Arenz, Brett E; Schlatter, Dan C; Bradeen, James M; Kinkel, Linda L

    2015-10-01

    A blocking primer set based on the technique described by Vestheim and Jarman (2008) was developed to reduce amplification of non-target plant DNA when conducting metagenomic studies on bacterial endophyte communities. Bacterial amplification efficiency was increased 300-fold compared to standard PCR in an Illumina-based study of Sorghastrum nutans leaves.

  17. MALARIA DIAGNOSIS BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) IN THAILAND

    PubMed Central

    OCKER, Ronja; PROMPUNJAI, Yongyut; CHUTIPONGVIVATE, Salakchit; KARANIS, Panagiotis

    2016-01-01

    The loop-mediated isothermal amplification method (LAMP) is a recently developed molecular technique that amplifies nucleic acid under isothermal conditions. For malaria diagnosis, 150 blood samples from consecutive febrile malaria patients, and healthy subjects were screened in Thailand. Each sample was diagnosed by LAMP, microscopy and nested polymerase chain reaction (nPCR), using nPCR as the gold standard. Malaria LAMP was performed using Plasmodiumgenus and Plasmodium falciparum specific assays in parallel. For the genus Plasmodium, microscopy showed a sensitivity and specificity of 100%, while LAMP presented 99% of sensitivity and 93% of specificity. For P. falciparum, microscopy had a sensitivity of 95%, and LAMP of 90%, regarding the specificity; and microscopy presented 93% and LAMP 97% of specificity. The results of the genus-specific LAMP technique were highly consistent with those of nPCR and the sensitivity of P. falciparum detection was only marginally lower. PMID:27074321

  18. New Insights into Amino Acid Preservation in the Early Oceans using Modern Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J.

    2015-12-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), α-aminoisobutyric acid (α-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only α-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced greater preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a steady

  19. New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Brinton, Karen L.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Bada, Jeffrey L.

    2015-01-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a

  20. Gene amplification and insecticide resistance.

    PubMed

    Bass, Chris; Field, Linda M

    2011-08-01

    Pesticide resistance in arthropods has been shown to evolve by two main mechanisms, the enhanced production of metabolic enzymes, which bind to and/or detoxify the pesticide, and mutation of the target protein, which makes it less sensitive to the pesticide. One route that leads to enhanced metabolism is the duplication or amplification of the structural gene(s) encoding the detoxifying enzyme, and this has now been described for the three main families (esterases, glutathione S-transferases and cytochrome P450 monooxygenases) implicated in resistance. More recently, a direct or indirect role for gene duplication or amplification has been described for target-site resistance in several arthropod species. This mini-review summarises the involvement of gene duplication/amplification in the insecticide/acaricide resistance of insect and mite pests and highlights recent developments in this area in relation to P450-mediated and target-site resistance.

  1. Demonstrating the benefits and pitfalls of various acidity characterization techniques by a case study on bimodal aluminosilicates.

    PubMed

    Van Oers, Cynthia J; Góra-Marek, Kinga; Prelot, Bénédicte; Datka, Jerzy; Meynen, Vera; Cool, Pegie

    2014-02-25

    A new combination of a volumetric with a dynamic method to investigate the acidity properties of aluminosilicates is introduced. In the first step, the total acidity is determined volumetrically by the measurement of two-cycle adsorption (TCA) isotherms with ammonia as a probe, directly followed by a dynamic temperature-programmed desorption (TPD) experiment to define the acid strength distribution. Furthermore, the results obtained by the new direct combination of TCA and TPD are validated by comparison with an in-situ FTIR (Fourier transform infrared) study with the same probe molecule on the same materials. Both acidity characterization techniques are compared, and we comment on their complementarity, benefits, and pitfalls. The material under investigation is a new type of bimodal microporous and mesoporous material with zeolitic characteristics, synthesized by a mesotemplate-free method. The acidic nature of the novel material is compared to two reference materials: a crystalline zeolite and a mesoporous aluminum incorporated mesocellular foam (Al-MCF) with amorphous characteristics.

  2. Reliable amplification of actin genes facilitates deep-level phylogeny.

    PubMed

    Voigt, K; Wöstemeyer, J

    2000-09-01

    The gene for actin as a highly conserved and functionally essential genetic element is developing into a major tool for phylogenetic analysis within a broad organismic range. We therefore propose a set of universally applicable primers that allow reliable amplification of actin genes. For primer construction the amino acid sequences of 57 actin genes comprising fungi, animals, plants and protists were analysed, aligned and used for the definition of six well-conserved regions which are suitable as priming sites in PCR amplification experiments. Ten primers were designed for specific in vitro amplification of actin gene fragments from a wide range of microorganisms. The corresponding gene fragments provide a strong basis to isolate nearly complete actin genes for further molecular characterization and for establishing phylogenies based on actin gene trees.

  3. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Kattnig, Daniel R.; Evans, Emrys W.; Déjean, Victoire; Dodson, Charlotte A.; Wallace, Mark I.; MacKenzie, Stuart R.; Timmel, Christiane R.; Hore, P. J.

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.

  4. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  5. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  6. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  7. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  8. Effect of acid etching time and technique on bond strength of an etch-and-rinse adhesive.

    PubMed

    Faria-e-Silva, André L; Silva, João L; Almeida, Thauanna G; Veloso, Francielle B; Ribeiro, Sandra M; Andrade, Tiago D; Vilas-Boas, Bruna V; Martins, Marisa C; Menezes, Murilo S

    2011-01-01

    The aim of this study was to evaluate the effect of acid etching time and technique on bond strength of a two-step etch-and-rinse adhesive system to dentin and enamel. Thirty human third molars were mesio-distally sectioned, parallel to the long axis of each tooth, in two halves. Buccal/lingual surfaces were abraded to obtain both flat exposed enamel and dentine. The etchant was applied with and without the use of dispensing tips provided by manufacturer. When the tip was not used, the etchant was agitated (active) over the substrate or left undisturbed (passive). The etchings were done for 15 or 30s. After rinsing the acid, the adhesive XP Bond (Dentsply Caulk, Milford, DE, USA) was applied and light-cured. Resin composite cylinders were built up on dentin and enamel substrates. A shear load was applied to the samples at a crosshead speed of 0.5 mm/min until failure. Data were statistically analyzed by three-way ANOVA and Tukey test (alpha = 0.05). There was no difference between the etching techniques in bonding to enamel. Application with the tip or active without the tip promoted higher bond strength to dentin than passive application. Extending the etching time reduced the bond strength to dentin and did not alter the values for enamel. The passive application without tips produced the lowest bond strength when the etchant was applied for 15s. All techniques demonstrated similar values for application during 30s. The acid etching time and technique significantly influence the bond strength of etch-and-rinse adhesive to dentin. PMID:22010410

  9. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  10. Whole genome amplification in preimplantation genetic diagnosis.

    PubMed

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products.

  11. Electrochemical technique and copper-promoted transformations: selective hydroxylation and amination of arylboronic acids.

    PubMed

    Qi, Hong-Lin; Chen, Dong-Song; Ye, Jian-Shan; Huang, Jing-Mei

    2013-08-01

    An efficient and selective electrosynthesis of phenols and anilines from arylboronic acids in aqueous ammonia is achieved in an undivided cell. By simply changing the concentration of aqueous ammonia and the anode potential, good yields of phenols and anilines can be obtained chemoselectively with high reaction rates. We propose that anodic oxidation could have played an important role in these transformations. PMID:23808633

  12. The Effects of Animation Technique on Teaching of Acids and Bases Topics

    ERIC Educational Resources Information Center

    Dasdemir, Ikramettin; Doymus, Kemal; Simsek, Ümit; Karaçöp, Ataman

    2008-01-01

    This study has been carried out in order to determine the effect of computer animations in teaching acid and base topics in science and technology courses on the academic success of the primary school students and the opinions of students related to teaching with the animations. This research was conducted by the participation of 55 students from…

  13. Folic acid absorption determined by a single stool sample test--a double-isotope technique. The folic acid absorption capacity in children

    SciTech Connect

    Hjelt, K. )

    1989-10-01

    The fractional folic acid absorption (FAFol) was determined in 66 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST) as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.8 years (mean 6.3 years). The test dose was administered orally and consisted of 50 micrograms of (3H)folic acid (monoglutamate) (approximately 20 muCi), carmine powder, and 2 mg 51CrCl3 (approximately 1.25 muCi) as the unabsorbable tracer. The whole-body radiation given to a 1-year-old child averaged 4.8 mrad only. The stool and napkin contents were collected and homogenized by the addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin contents, as well as 300 ml chromium sulfuric acid (75% vol/vol) containing the standards, were counted for the content of 51Cr in a broad-based well counter. The quantity of (3H)folic acid was determined by liquid scintillation, after duplicate distillation. Estimated by SSST, the FAFol, which employs the stool with the highest content of 51Cr corresponding to the most carmine-colored stool, correlated closely with the FAFol based on complete stool collection (r = 0.96, n = 39, p less than 0.0001). The reproducibility of FAFol determined by SSST was assessed from repeated tests in 18 patients. For a mean of 81%, the SD was 4.6%, which corresponded to a coefficient of variation of 5.7%.

  14. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops.

  15. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-15

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  16. Chronic centrosome amplification without tumorigenesis

    PubMed Central

    Vitre, Benjamin; Holland, Andrew J.; Kulukian, Anita; Shoshani, Ofer; Hirai, Maretoshi; Wang, Yin; Maldonado, Marcus; Cho, Thomas; Boubaker, Jihane; Swing, Deborah A.; Tessarollo, Lino; Evans, Sylvia M.; Fuchs, Elaine; Cleveland, Don W.

    2015-01-01

    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase–mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation. PMID:26578792

  17. Measurement-based noiseless linear amplification for quantum communication

    NASA Astrophysics Data System (ADS)

    Chrzanowski, H. M.; Walk, N.; Haw, J. Y.; Thearle, O.; Assad, S. M.; Janousek, J.; Hosseini, S.; Ralph, T. C.; Symul, T.; Lam, P. K.

    2014-11-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require non-trivial experimental techniques such as noiseless amplification. We show that noiseless amplification could be achieved by performing a post-selective filtering of measurement outcomes. We termed this protocol measurement-based noiseless linear amplification (MBNLA). We apply this protocol to entanglement that suffers transmission loss of up to the equivalent of 100km of optical fibre and show that it is capable of distilling entanglement to a level stronger than that achievable by transmitting a maximally entangled state through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime via MBNLA. Compared to its physical counterpart, MBNLA not only is easier in term of implementation, but also allows one to achieve near optimal probability of success.

  18. Determination of deoxyribonucleic acids by a resonance light scattering technique and its application

    NASA Astrophysics Data System (ADS)

    Jie, Nianqin; Jia, Guifang; Hou, Shicong; Xiong, Yanmei; Dong, Yanhong

    2003-12-01

    For the first time, acetamiprid has been used to determine nucleic acid (DNA) using the resonance light scattering (RLS). The RLS of acetamiprid was greatly enhanced by DNA in the range of pH 1.6-1.8. A RLS peak at 313 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0-11.0 μg ml -1 with the detection limit of 20 ng ml -1. The nucleic acids in synthetic sample and in rice seedling extraction were determined satisfactorily. The interaction mechanism of acetamiprid and DNA is discussed. Mechanism studies show that the enhanced RLS is due to the aggregation of acetamiprid in the presence of DNA.

  19. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zheng, Yonghong; Liang, Jiaman; Long, Sha; Chen, Xianping; Tan, Kejun

    2016-04-01

    A simple, highly sensitive resonance light scattering (RLS) method for the detection of perfluorooctanoic acid (PFOA) has been developed based on the interaction with crystal violet (CV). It was found that PFOA can form complexes with CV in acid medium resulting in remarkable enhancement of the RLS intensity of the system. And the enhanced RLS intensities are in proportion to the concentration of PFOA in the range of 0.1-25.0 μmol/L (R2 = 0.9998), with a detection limit of 11.0 nmol/L (S/N = 3). In this work, the optimum reaction conditions and the interferences of foreign substances were investigated. The reaction mechanism between CV and PFOA was also studied by the absorption spectrum and scanning electron microscope (SEM). This method is successfully applied to the determination of PFOA in tap water and Jialing river water samples with RSD ≤ 4.04%.

  20. Anion-exchange separation techniques with methanol-water solutions of hydrochloric and nitric acids.

    PubMed

    Morrow, R J

    1966-09-01

    Mixed methanol-water systems were shown to be of use in the analysis of samples containing 500-mg amounts of metallic impurities for rare earths and actinides. Detailed study of the hydrochloric acid-methanol system led to improved separation of einsteinium and californium from americium and curium as well as to lanthanideactinide separations. Comparisons of elution orders are also drawn between these systems and the corresponding lithium salt systems, with emphasis on ion-hydration theories.

  1. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

    PubMed Central

    Pini, Núbia-Inocencya-Pavesi; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-01-01

    Background This study evaluated the effects of the acids used in the microabrasion on enamel. Material and Methods Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Results Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Conclusions Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Key words:Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy. PMID:26535098

  2. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  3. Strand Invasion Based Amplification (SIBA®): A Novel Isothermal DNA Amplification Technology Demonstrating High Specificity and Sensitivity for a Single Molecule of Target Analyte

    PubMed Central

    Hoser, Mark J.; Mansukoski, Hannu K.; Morrical, Scott W.; Eboigbodin, Kevin E.

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2′-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella. PMID:25419812

  4. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  5. Improvement of solubility and dissolution rate of poorly water-soluble salicylic acid by a spray-drying technique.

    PubMed

    Kawashima, Y; Saito, M; Takenaka, H

    1975-01-01

    Spray drying techniques have been applied to improve the solubility and dissolution rate of poorly water-soluble salicylic acid. Spray drying of the acid dispersed in acacia solutions resulted in as much as a 50% improvement in the solubility of the product. Solubility improvement was closely related not only to the concentration of acacia but also the amount of amorphous material in the spray-dried products. The heat of solution was inversely related to these parameters. The dissolution rate of spray-dried product was almost instantaneous being about 60 times faster than that of the original powder. A great improvement in the wettability of the spray-dried material seemed to be mainly responsible for the increase of dissolution rate.

  6. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique.

    PubMed

    Nichols, J W; Deamer, D W

    1980-04-01

    The net proton-hydroxyl permeability of large unilamellar liposomes has been measured by an acid-base pulse titration technique and has been determined to be several orders of magnitude greater than that measured for other monovalent ions. This permeability is relatively insensitive to variations in lipid composition. Proton permeability and hydroxyl permeability vary with pH 6 to 8, and this variation can occur in the absence of alterations in surface charge density resulting from titrations of acidic and basic groups on the lipids. In order to account for the exceptionally high proton-hydroxyl permeability with respect to other monovalent ions, we propose that protons or hydroxyls or both interact with clusters of hydrogen-bonded water molecules in the lipid bilayer, such that they are transferred across the bilayer by rearrangement of hydrogen bonds in a manner similar to their transport in water and ice.

  7. Sequence dependence of isothermal DNA amplification via EXPAR

    PubMed Central

    Qian, Jifeng; Ferguson, Tanya M.; Shinde, Deepali N.; Ramírez-Borrero, Alissa J.; Hintze, Arend; Adami, Christoph; Niemz, Angelika

    2012-01-01

    Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naïve Bayes classification. The methods identified well and poorly performing EXPAR templates with 67–70% sensitivity and 77–80% specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. PMID:22416064

  8. Effect of acid etching time and technique on interfacial characteristics of the adhesive-dentin bond using differential staining.

    PubMed

    Wang, Yong; Spencer, Paulette

    2004-06-01

    Dentin bonding using the total-etch method has been claimed to be technique-sensitive. The aim of this study is to examine the effect of acid-etch variations on the dentin demineralization and interfacial structure of the adhesive-dentin bond using a differential staining technique. Single Bond adhesive with 35% phosphoric acid gel was used. The occlusal one-third of the crown was removed from 60 extracted, unerupted human third molars. Smear layers were created by abrading the dentin with 600 grit SiC under water for 30 s. The prepared teeth were randomly assigned to four groups according to etching time (Group 1, 10 s; Group 2, 15 s; Group 3, 30 s; Group 4, 60 s). In each group, the etching gel was: (i) applied and spread to the dentin surface and left to stand undisturbed; (ii) applied and gently agitated during etching; (iii) applied without using dispensing tips for the syringe and left for the same period as above. After rinsing, the etched dentin was then treated with the adhesive per manufacturers' instructions. 3-5 micro m thin sections of the adhesive/dentin (a/d) interface were cut with a microtome and stained with Goldner's trichrome. Stained, thin sections from each prepared tooth were imaged with light microscopy. The depth and extent of dentin demineralization, and the a/d interdiffusion zone were clearly visible by this differential staining microtechnique. The thickness of the interdiffusion zone increased as a function of etching time. However, the etchant gel application methods have a significant influence on dentin demineralization. Although agitating acid gel facilitates the penetration and etching into dentin, it should not be recommended, especially for longer etching time. These results indicated that the etching technique has a large effect on the profile of both dentin demineralization and interfacial structure.

  9. Optimization of noncollinear optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  10. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D

  11. In vitro study of damaging effects of 2,4-dichlorophenoxyacetic acid on DNA structure by spectroscopic and voltammetric techniques.

    PubMed

    Ahmadi, Farhad; Bakhshandeh, Fatemeh

    2009-10-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a genotoxic organochlorinated herbicide, and its interaction with DNA was studied by UV/Vis, fluorescence, circular dichroism viscosity measurements, and alternative current voltammetry techniques. Using these analyses, the binding constant of 2,4-D to DNA has been calculated by two different techniques. The binding constant of 2,4-D to DNA calculated by fluorescence and circular dichroism spectra was found to be 3.5 x 10(3) M(-1) and 5.02 x 10(3) M(-1), respectively. Analyses of fluorescence spectra, viscosity measurements, and alternative current voltammetry interactions indicated that 2,4-D is a groove binder of DNA. Ethidium bromide displacement studies revealed that 2,4-D does not have any effect on ethidium bromide-bound DNA, which is indicative of groove binding.

  12. Spectrophotometric techniques to determine tranexamic acid: Kinetic studies using ninhydrin and direct measuring using ferric chloride

    NASA Astrophysics Data System (ADS)

    Arayne, M. Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Mirza, Agha Zeeshan; Zuberi, M. Hashim

    2008-11-01

    Two simple and sensitive spectrophotometric methods in ultraviolet and visible region are described for the determination of tranexamic acid in pure form and pharmaceutical preparations. The first method is based on the reaction of the drug with ninhydrin at boiling temperature and by measuring the increase in absorbance at 575 nm as a function of time. The initial rate, rate constant and fixed time (120 min) procedures were used for constructing the calibration graphs to determine the concentration of the drug, which showed a linear response over the concentration range 16-37 μg mL -1 with correlation coefficient " r" 0.9997, 0.996, 0.9999, LOQ 6.968, 7.138, 2.462 μgmL -1 and LOD 2.090, 2.141 and 0.739 μgmL -1, respectively. In second method tranexamic acid was reacted with ferric chloride solution, yellowish orange colored chromogen showed λ max at 375 nm showing linearity in the concentration range of 50-800 μg mL -1 with correlation coefficient " r" 0.9997, LOQ 6.227 μgmL -1 and LOD 1.868 μgmL -1. The variables affecting the development of the color were optimized and the developed methods were validated statistically and through recovery studies. These results were also verified by IR and NMR spectroscopy. The proposed methods have been successfully applied to the determination of tranexamic acid in commercial pharmaceutical formulation.

  13. Nitrous Acid: Intercomparison of techniques and Implications of measurements for photochemistry

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Dibb, J. E.; Stutz, J.; Tsai, J.; Ren, X.; Wood, E. C.; Zhang, R.; Lee, B.; Levy, M. E.; Rappenglueck, B.; Lefer, B. L.; Oakes, M. M.; Olaguer, E.

    2013-12-01

    Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower (MT) at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil- (UVVIS) absorption photometry (SC-AP), long-path absorption photometry (LOPAP), mist chamber/ ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS) and ion drift -chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation during the period from 15 April through 31 May 2009. This study comparing methods is unique in that it compares several techniques entirely at ambient conditions in a polluted atmosphere. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night and lower values during the day throughout the entire measurement period. Highest values were observed in the final two weeks of the campaign. The MC-IC, SC-AP, and QC-TILDAS, and to a lesser extent the DOAS, tracked each other most closely. Largest differences between pairs of measurements were evident during the day for concentrations < ~100 ppt. Above ~ 200 ppt, concentrations from the SC-AP, MC-IC and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. Relationships between HONO and other gas phase and aerosol species will also be considered.

  14. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence

    PubMed Central

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5′ end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5′ end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5′ end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique’s simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis. PMID:27468284

  15. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    PubMed

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors.

    J Drugs Dermatol. 2016;15(9):1076-1082. PMID:27602969

  16. Identification of 4-deoxythreonic acid present in human urine by combining HPLC and NMR techniques

    PubMed Central

    Appiah-Amponsah, Emmanuel; Shanaiah, Narasimhamurthy; Nagana Gowda, G. A.; Owusu-Sarfo, Kwadwo; Ye, Tao; Raftery, Daniel

    2010-01-01

    The 1H NMR spectrum of urine exhibits a large number of detectable and quantifiable metabolites and hence urine metabolite profiling is potentially useful for the study of systems biology and the discovery of biomarkers for drug development or clinical applications. While a number of metabolites (50–100) are readily detectable in urine by NMR, a much larger number is potentially available if lower concentration species can be detected unambiguously. Lower concentration metabolites are thought to be more specific to certain disease states and thus it is important to detect these metabolites with certainty. We report the identification of 4-deoxythreonic acid, a relatively low concentration endogenous metabolite that has not been previously identified in the 1H NMR spectrum of human urine. The complimentary use of HPLC and NMR spectroscopy facilitated the unequivocal and non-invasive identification of the molecule in urine which is complicated by extensive peak overlap and multiple, similar resonances from other metabolites such as 3-hydroxybutanoic acid. High-resolution detection and good sensitivity were achieved by the combination of multiple chromatographic fraction collection, sample pre-concentration, and the use of a cryogenically cooled NMR probe. PMID:19615840

  17. System for portable nucleic acid testing in low resource settings

    NASA Astrophysics Data System (ADS)

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  18. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  19. Circulating nucleic acids in plasma and serum: applications in diagnostic techniques for noninvasive prenatal diagnosis

    PubMed Central

    Gahan, Peter B

    2013-01-01

    The analysis of fetal nucleic acids in maternal blood 13 years ago has led to the initiation of noninvasive methods for the early determination of fetal gender, rhesus D status, and a number of aneuploid disorders and hemoglobinopathies. Subsequently, a comparatively large quantity of fetal DNA and RNA has been demonstrated in amniotic fluid as well as small amounts in premature infant saliva. The DNA and RNA in amniotic fluid has permitted an analysis of core transcriptomes, whilst the DNA and RNA in saliva allows the early detection and treatment monitoring of fetal developmental problems. These aspects are discussed together with the methodology and limits of analysis for noninvasive prenatal diagnosis in predictive, preventive, and personalized medicine. PMID:23637563

  20. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by

  1. Modeling and simulation of ultra-short pulse amplification

    NASA Astrophysics Data System (ADS)

    Pflaum, Christoph; Hartmann, Rainer; Rahimi, Zhabiz

    2016-03-01

    Ultra-short pulses with high average power are required for a variety of technical and medical applications. Single, multi-pass, and regenerative amplifiers are used, in order to increase the power of ultra-short lasers. Typical laser crystals for such amplifiers include Ti:Sapphire or Yb:YAG laser crystals. Difficulties in the amplification of ultra-short pulses include gain narrowing effects and dispersion effects in the laser crystal. In particular, these complications arise, when a pulse stretcher is needed before amplification of the laser beam. We present a technique to model and simulate the amplification of ultra-short pulses. This technique allows to model both gain narrowing effects and decrease of beam quality caused by amplification of the laser beam. This requires a detailed 3-dimensional simulation of population inversion. Gain narrowing effects are taken into account by analyzing the gain of the spectrum of the laser beam. It is important to distinguish amplifiers with one or only two passes and a regenerative amplifier. These two different kind of amplifiers are modeled by different approaches. A regenerative amplifier is modeled by a set of time dependent rate equations. However, a single pass amplifier is modeled by a set of spatial dependent rate equations. In both cases, a system of rate equations arises from spectral discretization of the laser beam. Detailed simulation results are presented.

  2. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  3. Frequency domain optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-05-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength.

  4. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  5. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    SciTech Connect

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  6. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    USGS Publications Warehouse

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  7. Pulsed electromembrane extraction for analysis of derivatized amino acids: A powerful technique for determination of animal source of gelatin samples.

    PubMed

    Rezazadeh, Maryam; Yamini, Yadollah; Seidi, Shahram; Aghaei, Ali

    2015-05-01

    Differentiation of animal sources of gelatin is required for many reasons such as some anxieties about bovine spongiform encephalopathy or a ban on consuming porcine gelatin in some religions. In the present work, an efficient method is introduced for determination of animal origin of gelatin samples. The basis of this procedure is the application of pulsed electric field for extraction, preconcentration, and analysis of derivatized amino acids in gelatin. To this end, after derivatization of amino acids of interest by means of o-phthalaldehyde (OPA) for enhancing their ultraviolet (UV) absorbance as well as increasing their lipophilicities, a 137V electric field was applied for 20min with 10min(-1) frequency to make the analytes migrate through a 200µm organic liquid membrane into an aqueous acceptor phase. Finally, the acceptor phase was analyzed by HPLC-UV. The proposed technique offered a high efficiency for analysis of amino acids, regarding 43% and 79% as extraction recoveries and 25ng mL(-1) and 50ng mL(-1) as limits of detection (LODs) for asparagine and glutamine, respectively. Therefore, due to sample cleanup ability of the proposed method and obtained preconcentration factors (29 and 53 for asparagine and glutamine, respectively), it could be carried out for differentiation of animal origins of gelatin samples, even if only small amounts of samples are available or in complicated media of foodstuffs and medicament.

  8. [Study of photocatalytic performance of TiO2 membrane for oleic acid by FTIR-ATR technique].

    PubMed

    Lin, Hua-xiang; Wang, Xu-xu; Dai, Wen-xin; Fu, Xian-zhi

    2005-07-01

    The TiO2 membranes were prepared on glass, ceramic tile and aluminum pieces by Sol-Gel and PVD methods. A fast and exact evaluation on the photocatalytic self-cleaning performance of the membrane materials was achieved by FTIR-ATR technique using oleic acid which was laid on the surface of the membrane. The hydrophilic property of the samples was also determined by the contact angle with water. The results showed that both the TiO2 membrane prepared on glass by the Sol-Gel and PVD methods displayed good photo-induced hydrophilic property and degradation activity of oleic acid, and no difference in hydrophilic property, but the former was a little superior to the latter in photocatalytic activity. The photocatalytic conversion of oleic acid on the TiO2/glass, TiO2/ceramic tile and TiO2 aluminum piece were 92%, 85% and 46%, respectively after illumination 3.5 h, showing a distinct effect of support material property on TiO2 photocatalytic performance. The results suggested that the photocatalytic activity of TiO2 membrane coated on insulator support was higher than that coated on conductor support.

  9. First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina.

    PubMed

    Urbieta, M Sofía; González Toril, E; Aguilera, A; Giaveno, M Alejandra; Donati, E

    2012-07-01

    Two acidic hot springs close to the crater of Copahue Volcano (Neuquén, Argentina) are the source of the Río Agrio. The river runs several kilometres before flowing into Caviahue Lake. Along the river, temperature, iron, other metal and proton concentrations decrease gradually with distance downstream. From the source to the lake and depending on the season, pH can rise from 1.0 (or even less) to about 4.0, while temperature values decrease from 70°C to 15°C. Water samples were taken from different stations on the river selected according to their physicochemical parameters. In order to assess prokaryotic biodiversity throughout the water column, different and complementary molecular biology techniques were used, mainly in situ hybridisation and 16S rRNA gene cloning and sequencing. All microorganisms found are typical of acidic environments. Sulphur-oxidizing bacteria like Acidithiobacillus thiooxidans and Acidithiobacillus albertensis were detected in every station. Moderately thermophile iron- and sulphur-oxidizing bacteria like members of Alicyclobacillus and Sulfobacillus genera were also ubiquitous. Strict iron-oxidizing bacteria like Leptospirillum and Ferrimicrobium were present at the source of the river, but disappeared downstream where iron concentrations were much lower. Iron-oxidizing, mesophilic Ferroplasma spp. were the main archaea found. The data presented in this work represent the first molecular assessment of this rare natural acidic environment.

  10. Spheromak Impedance and Current Amplification

    SciTech Connect

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  11. Structural and spectroscopic characterization of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid with experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Cinar, Zeliha; Cinar, Mehmet

    2011-09-01

    In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C 7H 4F 2O 2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm -1 and 4000-5 cm -1, respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.

  12. Signal Amplification of Bioassay Using Zinc Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  13. Rolling circle amplification detection of RNA and DNA

    DOEpatents

    Christian, Allen T.; Pattee, Melissa S.; Attix, Cristina M.; Tucker, James D.

    2004-08-31

    Rolling circle amplification (RCA) has been useful for detecting point mutations in isolated nucleic acids, but its application in cytological preparations has been problematic. By pretreating cells with a combination of restriction enzymes and exonucleases, we demonstrate RCA in solution and in situ to detect gene copy number and single base mutations. It can also detect and quantify transcribed RNA in individual cells, making it a versatile tool for cell-based assays.

  14. A Novel Technique to Detect EGFR Mutations in Lung Cancer.

    PubMed

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-05-23

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples.

  15. A Novel Technique to Detect EGFR Mutations in Lung Cancer.

    PubMed

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-01-01

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples. PMID:27223277

  16. A Novel Technique to Detect EGFR Mutations in Lung Cancer

    PubMed Central

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-01-01

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples. PMID:27223277

  17. Development of techniques to test crop species and cultivars for relative sensitivity to acid rain

    SciTech Connect

    Dubay, D.T.; Ferreli, R.E.; Heagle, A.S.; Heck, W.W.

    1985-01-01

    The objectives of this study are to develop a screening procedure to identify sensitive species and cultivars and to determine whether levels of rain acidity which occur in agricultural areas can suppress yield. The screening procedure consists of three stages. In the first stage, young plants are exposed for 1 h to simulated rain at pH 5.5 or 2.5. Cultivars are ranked for percentage foliar injury 2 d after exposure. In the second stage, plants are exposed to 15 1-h simulated rain treatments at pH 5.5, 3.5, or 2.5 over a 3-wk period; Plant shoots are harvested 2 d after the final exposure and dried to a constant weight. Cultivars are ranked on the percentage change in biomass in the pH 3.5 and 2.5 treatments compared to biomass in the pH 5.5 treatment. Relative cultivar sensitivity rankings from stage one and two are then compared. The third stage will consist of field tests with species identified as sensitive in stage two. Relatively sensitive and resistant cultivars will be exposed to simulated rain at a range of pH levels from the seedling stage until maturity. Dose-yield response relationships will be determined.

  18. Simultaneous diffuse reflectance infrared determination of clavulanic acid and amoxicillin using multivariate calibration techniques.

    PubMed

    Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Ferrão, Marco Flores; da Silva, Fabiana Ernestina Barcellos; Müller, Edson Irineu; Flores, Erico Marlon de Moraes

    2012-06-01

    A method for simultaneous determination of clavulanic acid (CA) and amoxicillin (AMO) in commercial tablets was developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and multivariate calibration. Twenty-five samples (10 commercial and 15 synthetic) were used as a calibration set and 15 samples (10 commercial and 5 synthetic) were used for a prediction set. Calibration models were developed using partial least squares (PLS), interval PLS (iPLS), and synergy interval PLS (siPLS) algorithms. The best algorithm for CA determination was siPLS model with spectra divided in 30 intervals and combinations of 2 intervals. This model showed a root mean square error of prediction (RMSEP) of 5.1 mg g(-1). For AMO determination, the best siPLS model was obtained with spectra divided in 10 intervals and combinations of 4 intervals. This model showed a RMSEP of 22.3 mg g(-1). The proposed method was considered as a suitable for the simultaneous determination of CA and AMO in commercial pharmaceuticals products.

  19. Models and methods to characterize site amplification from a pair of records

    USGS Publications Warehouse

    Safak, E.

    1997-01-01

    The paper presents a tutorial review of the models and methods that are used to characterize site amplification from the pairs of rock- and soil-site records, and introduces some new techniques with better theoretical foundations. The models and methods discussed include spectral and cross-spectral ratios, spectral ratios for downhole records, response spectral ratios, constant amplification factors, parametric models, physical models, and time-varying filters. An extensive analytical and numerical error analysis of spectral and cross-spectral ratios shows that probabilistically cross-spectral ratios give more reliable estimates of site amplification. Spectral ratios should not be used to determine site amplification from downhole-surface recording pairs because of the feedback in the downhole sensor. Response spectral ratios are appropriate for low frequencies, but overestimate the amplification at high frequencies. The best method to be used depends on how much precision is required in the estimates.

  20. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.

    PubMed

    Ali, M Monsur; Li, Feng; Zhang, Zhiqing; Zhang, Kaixiang; Kang, Dong-Ku; Ankrum, James A; Le, X Chris; Zhao, Weian

    2014-05-21

    Rolling circle amplification (RCA) is an isothermal enzymatic process where a short DNA or RNA primer is amplified to form a long single stranded DNA or RNA using a circular DNA template and special DNA or RNA polymerases. The RCA product is a concatemer containing tens to hundreds of tandem repeats that are complementary to the circular template. The power, simplicity, and versatility of the DNA amplification technique have made it an attractive tool for biomedical research and nanobiotechnology. Traditionally, RCA has been used to develop sensitive diagnostic methods for a variety of targets including nucleic acids (DNA, RNA), small molecules, proteins, and cells. RCA has also attracted significant attention in the field of nanotechnology and nanobiotechnology. The RCA-produced long, single-stranded DNA with repeating units has been used as template for the periodic assembly of nanospecies. Moreover, since RCA products can be tailor-designed by manipulating the circular template, RCA has been employed to generate complex DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA based metamaterials. These functional RCA based nanotechnologies have been utilized for biodetection, drug delivery, designing bioelectronic circuits and bioseparation. In this review, we introduce the fundamental engineering principles used to design RCA nanotechnologies, discuss recently developed RCA-based diagnostics and bioanalytical tools, and summarize the use of RCA to construct multivalent molecular scaffolds and nanostructures for applications in biology, diagnostics and therapeutics.

  1. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.

    PubMed

    Ali, M Monsur; Li, Feng; Zhang, Zhiqing; Zhang, Kaixiang; Kang, Dong-Ku; Ankrum, James A; Le, X Chris; Zhao, Weian

    2014-05-21

    Rolling circle amplification (RCA) is an isothermal enzymatic process where a short DNA or RNA primer is amplified to form a long single stranded DNA or RNA using a circular DNA template and special DNA or RNA polymerases. The RCA product is a concatemer containing tens to hundreds of tandem repeats that are complementary to the circular template. The power, simplicity, and versatility of the DNA amplification technique have made it an attractive tool for biomedical research and nanobiotechnology. Traditionally, RCA has been used to develop sensitive diagnostic methods for a variety of targets including nucleic acids (DNA, RNA), small molecules, proteins, and cells. RCA has also attracted significant attention in the field of nanotechnology and nanobiotechnology. The RCA-produced long, single-stranded DNA with repeating units has been used as template for the periodic assembly of nanospecies. Moreover, since RCA products can be tailor-designed by manipulating the circular template, RCA has been employed to generate complex DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA based metamaterials. These functional RCA based nanotechnologies have been utilized for biodetection, drug delivery, designing bioelectronic circuits and bioseparation. In this review, we introduce the fundamental engineering principles used to design RCA nanotechnologies, discuss recently developed RCA-based diagnostics and bioanalytical tools, and summarize the use of RCA to construct multivalent molecular scaffolds and nanostructures for applications in biology, diagnostics and therapeutics. PMID:24643375

  2. Capture and Direct Amplification of DNA on Chitosan Microparticles in a Single PCR-Optimal Solution.

    PubMed

    Pandit, Kunal R; Nanayakkara, Imaly A; Cao, Weidong; Raghavan, Srinivasa R; White, Ian M

    2015-11-01

    While nucleic acid amplification tests have great potential as tools for rapid diagnostics, complicated sample preparation requirements inhibit their use in near-patient diagnostics and low-resource-setting applications. Recent advancements in nucleic acid purification have leveraged pH-modulated charge switching polymers to reduce the number of steps required for sample preparation. The polycation chitosan (pKa 6.4) has been used to efficiently purify DNA by binding nucleic acids in acidic buffers and then eluting them at a pH higher than 8.0. Though it is an improvement over conventional methods, this multistep procedure has not transformed the application of nucleic acid amplification assays. Here we describe a simpler approach using magnetic chitosan microparticles that interact with DNA in a manner that has not been reported before. The microparticles capture DNA at a pH optimal for PCR (8.5) just as efficiently as at low pH. Importantly, the captured DNA is still accessible by polymerase, enabling direct amplification from the microparticles. We demonstrate quantitative PCR from DNA captured on the microparticles, thus eliminating nearly all of the sample preparation steps. We anticipate that this new streamlined method for preparing DNA for amplification will greatly expand the diagnostic applications of nucleic acid amplification tests.

  3. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  4. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  5. A direct in situ fingerprinting method for acid rock drainage using voltammetric techniques with a single renewable gold microelectrode.

    PubMed

    Nuzzio, Donald B; Zettler, Erik R; Aguilera, Angeles; Amaral-Zettler, Linda A

    2011-04-15

    Electrochemistry allows for rapid identification of multiple metals and other chemical complexes common in acid rock drainage (ARD) systems. Voltammetric scans using a single gold microelectrode of water samples from geochemically distinct areas of the Río Tinto (RT) in southwestern Spain were clearly recognizable in the field and in samples stored at room temperature for over 6 months. Major voltammetric peaks of iron(III) and copper(II) were identified on a single constantly renewable gold microelectrode. Confirmation of these peaks was performed by spiking with standard metal solutions in the laboratory. This voltammetric technique is a rapid, direct and inexpensive in situ method for identification of water sources and their chemical characteristics, as well as an economical way to monitor environmental changes and remediation efforts.

  6. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use

    PubMed Central

    2012-01-01

    Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must

  7. Weak value amplification is suboptimal for estimation and detection.

    PubMed

    Ferrie, Christopher; Combes, Joshua

    2014-01-31

    We show by using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of single parameter estimation and signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values (all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the system observable. Finally, we give precise quantitative conditions for when weak measurement (measurements without postselection or anomalously large weak values) can mitigate the effect of uncharacterized technical noise in estimation.

  8. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-01

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.

  9. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-01

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level. PMID:25828705

  10. Chemical Amplification with Encapsulated Reagents

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Koemer, Steffi; Craig, Stephen; Lin, Shirley; Rudkevich, Dmitry M.; Rebek, Julius, Jr.

    2002-01-01

    Autocatalysis and chemical amplification are characteristic properties of living systems, and they give rise to behaviors such as increased sensitivity, responsiveness, and self-replication. Here we report a synthetic system in which a unique form of compartmentalization leads to nonlinear, autocatalytic behavior. The compartment is a reversibly formed capsule in which a reagent is sequestered. Reaction products displace the reagent from the capsule into solution and the reaction rate is accelerated. The resulting self-regulation is sensitive to the highly selective molecular recognition properties of the capsule.

  11. Thermoacoustic amplification of photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Bijnen, F. G. C.; Dongen, J. v.; Reuss, J.; Harren, F. J. M.

    1996-06-01

    The thermoacoustic effect is used to amplify the photoacoustic signal induced by trace gas absorption of CO2 laser radiation. The acoustic wave pattern in a thermoacoustic amplifier coupled to a photoacoustic cell is represented in terms of electric transmission lines. Predictions of this model have resulted in a prototype thermoacoustic-photoacoustic (TAPA) detector to get a better understanding of this combination. The photoacoustic signal strength of the TAPA cell was linear with the trace gas density in the cell. Within this study we observed for the TAPA cell a higher PA signal than generated by a normal PA cell. Design criteria for better thermoacoustic amplification of photoacoustic signal are discussed.

  12. Pulse Recycling and Weak Value Amplification for Precision Metrology

    NASA Astrophysics Data System (ADS)

    Graham, Trent; Byard, Courtney; Kwiat, Paul; Jordan, Andrew

    2015-05-01

    Weak-value measurements have been shown to be useful for making precision optical measurements, owing to the huge amplification of tiny effects which is achievable with the technique (Hosten 2008, Dixon 2009, Egan 2012, Viza 2013). This amplification is especially helpful in the case where technical noise limits the resolution. However, if the intrinsic shot noise limits the resolution, weak-value measurements offer no advantage because the amplification is achieved via a postselection which discards most of the photons input into the measuring system. The reduction in photon number cancels the increase in signal from the amplification, and the resolution is not increased. To overcome this, we implement a method for recycling the discarded photons. We show that, for a given number of photons input to the system, recycling gives an improvement over the resolution of a conventional measurement. Our work with a simple double-pass recycling system demonstrated a 1.4x improvement over the standard shot-noise limit. We also present our work toward achieving a many-pass recycling system, for which we expect a five-fold improvement over the shot-noise limit. Such a weak-measurement recycling system could be combined with quantum states to further enhance the achievable resolution.

  13. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    PubMed

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  14. Lidar measurements of atmospheric backscattering amplification

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Razenkov, I. A.

    2016-02-01

    Results of long-term continuous measurements of the atmospheric backscattering amplification coefficient on a 2-km-long near-ground path with the use of a two-channel micropulse lidar based on a waveguide laser are presented. It is shown that the backscattering amplification coefficient has a pronounced daily variation. In the night and in the afternoon, atmospheric backscattering amplification is maximal and the amplification coefficient can exceed 2. The amplification is low or absent in morning and evening hours at neutral temperature stratification in the near-ground layer of the atmosphere. The backscattering amplification coefficient increases with an increase in the structure constant of the air refracting index and variance of the image jitter of the illumination spot created by the probing laser beam on the wall of a 2-km-distant building.

  15. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE PAGES

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.; Kumar-Sinha, Chandan

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  16. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    PubMed Central

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology. PMID:27144304

  17. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples.

    PubMed

    Rhee, Minsoung; Light, Yooli K; Meagher, Robert J; Singh, Anup K

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology. PMID:27144304

  18. Microporous Poly(L-Lactic Acid) Membranes Fabricated by Polyethylene Glycol Solvent-Cast/Particulate Leaching Technique

    PubMed Central

    Selvam, Shivaram; Chang, Wenji V.; Nakamura, Tamako; Samant, Deedar M.; Thomas, Padmaja B.; Trousdale, Melvin D.; Mircheff, Austin K.; Schechter, Joel E.

    2009-01-01

    With the eventual goal of developing a tissue-engineered tear secretory system, we found that primary lacrimal gland acinar cells grown on solid poly(L-lactic acid) (PLLA) supports expressed the best histiotypic morphology. However, to be able to perform vectorial transport functions, epithelia must be supported by a permeable substratum. In the present study, we describe the use of a solvent-cast/particulate leaching technique to fabricate microporous PLLA membranes (mpPLLAm) from PLLA/polyethylene glycol blends. Scanning electron microscopy revealed pores on both the air-cured (∼4 μm) and glass-cured sides (<2 μm) of the mpPLLAm. Diffusion studies were performed with mpPLLAm fabricated from 57.1% PLLA/42.9% polyethylene glycol blends to confirm the presence of channelized pores. The data reveal that glucose, L-tryptophan, and dextran (a high molecular weight glucose polymer) readily permeate mpPLLAm. Diffusion of the immunoglobulin G through the mpPLLAm decreased with time, suggesting the possible adsorption and occlusion of the pores. Cells cultured on the mpPLLAm (57.1/42.9 wt%) grew to subconfluent monolayers but retained histiotypic morphological and physiological characteristics of lacrimal acinar cells in vivo. Our results suggest that mpPLLAm fabricated using this technique may be useful as a scaffold for a bioartificial lacrimal gland device. PMID:19260769

  19. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique123

    PubMed Central

    Tang, Minghua; McCabe, George P; Elango, Rajavel; Pencharz, Paul B; Ball, Ronald O; Campbell, Wayne W

    2014-01-01

    Background: Data on the protein requirements of elderly adults are limited, because it is impractical to conduct repeated nitrogen balance protocols in these vulnerable humans. Objective: This study was designed to determine the dietary protein requirement of elderly women by using the recently developed minimally invasive indicator amino acid oxidation (IAAO) technique. Design: Six white women aged 80–87 y [mean ± SEM: 82 ± 1 y and body mass index (in kg/m2) 26 ± 2] completed a 3-d protocol 7 times. Each woman consumed an adaptation diet for 2 d and on day 3 consumed a complete test diet with a crystalline amino acid mixture containing 1 of 7 protein intakes (0.1, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8 g · kg−1 · d−1) tested randomly. A group-based protein requirement was assessed by using a nonlinear mixed model of protein intake and l-[1-13C]phenylalanine oxidation. The breakpoint, at which there was no further decline in the rate of appearance of 13C in the breath, was used as an index of the mean protein requirement. Results: The mean protein requirement (95% CI) was 0.85 (0.60, 1.09) g · kg−1 · d−1. This requirement is 29% higher than the current Estimated Average Requirement (EAR) for adults of 0.66 g · kg−1 · d−1 based on the nitrogen balance technique, although the 95% CI includes the current EAR. The corresponding adequate protein allowance of 1.15 (0.77, 1.54) g · kg−1 · d−1 is 44% higher, although the 95% CI includes the Recommended Dietary Allowance (RDA) of 0.80 g · kg−1 · d−1. Conclusions: Notwithstanding uncertainty about the validity of the use of the IAAO technique to assess protein requirements, the results of this study with octogenarian women suggest that the current EAR and RDA for elderly women may be underestimated. The limitations of this short-term, noninvasive method underscore the need for new research that uses alternative experimental designs and measuring physiologic, morphologic, and health

  20. Picrotoxin inhibition mechanism of a gamma-aminobutyric acid A receptor investigated by a laser-pulse photolysis technique.

    PubMed

    Ramakrishnan, Latha; Hess, George P

    2005-06-14

    The gamma-aminobutyric acid(A) (GABA(A)) receptor, a major inhibitory neurotransmitter receptor, belongs to a family of membrane-bound proteins that regulate signal transmission between approximately 10(12) cells of the nervous system. It plays a major role in many neurological disorders, including epilepsy. It is the target of many pharmacological agents, including the convulsant picrotoxin. Here, we present the mechanism of inhibition by picrotoxin of the rat alpha1beta2gamma2L GABA(A) receptor investigated using rapid kinetic techniques in combination with whole-cell current recordings. The following new results were obtained by using transient kinetic techniques, the cell-flow method and the laser-pulse photolysis (LaPP) technique with a microsecond to millisecond time resolution. (i) The apparent dissociation constant of picrotoxin for the open-channel form of the receptor was approximately 5 times higher than that of the closed-channel form. (ii) Picrotoxin increased the channel-closing rate constant (k(cl)) approximately 4-fold, while the rate constant for channel opening (k(op)) remained essentially unaffected. (iii) The mechanism indicates that picrotoxin binds to an allosteric site of the receptor with higher affinity for the closed-channel form than for the open-channel form and thereby inhibits the receptor by decreasing 4-fold its channel-opening equilibrium constant [Phi(I)(-)(1) = k(op(I))/k(cl(I))]. (iv) The mechanism further indicates that compounds that bind with equal affinity to the picrotoxin-binding site on the open-channel form of the receptor and the closed-channel form will not affect the channel-opening equilibrium and can, therefore, displace picrotoxin and prevent inhibition of the GABA(A) receptor by picrotoxin. Such compounds may be therapeutically useful in counteracting the effects of compounds and diseases that unfavorably affect the channel-opening equilibrium of the receptor channel.

  1. Dynamics and control of DNA sequence amplification.

    PubMed

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions. PMID:25362284

  2. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  3. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  4. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  5. Trophic amplification of climate warming.

    PubMed

    Kirby, Richard R; Beaugrand, Gregory

    2009-12-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.

  6. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population.

    PubMed

    Ota, Kaede V; McGowan, Karin L

    2012-04-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens.

  7. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    PubMed

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam.

  8. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP).

    PubMed

    Zhang, Xuzhi; Lowe, Stuart B; Gooding, John Justin

    2014-11-15

    The loop-mediated isothermal amplification (LAMP) technique has the potential to revolutionize molecular biology because it allows DNA amplification under isothermal conditions and is highly compatible with point-of-care analysis. To achieve efficient genetic analysis of samples, the method of real-time or endpoint determination selected to monitor the biochemical reaction is of great importance. In this paper we briefly review progress in the development of monitoring methods for LAMP.

  9. Chirality Amplification in Tactoids of Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Lavrentovich, Oleg

    2014-03-01

    We demonstrate an effective chirality amplification based on the long-range forces, extending over the scales of tens of micrometers, much larger than the single molecule (nanometer) scale. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) that represent water solutions of achiral disc-like molecules. Minute quantities of chiral molecules such as amino acid L-alanine and limonene added to the droplets of LCLC lead to chiral amplification characterized by an increase of optical activity by a factor of 103 - 104. This effect allows one to discriminate and detect the absolute configuration of chiral molecules in an aqueous system, thus opening new possibilities in biosensing and other biological applications.

  10. Small Sample Whole-Genome Amplification

    SciTech Connect

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  11. Small sample whole-genome amplification

    NASA Astrophysics Data System (ADS)

    Hara, Christine; Nguyen, Christine; Wheeler, Elizabeth; Sorensen, Karen; Arroyo, Erin; Vrankovich, Greg; Christian, Allen

    2005-11-01

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  12. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  13. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  14. Approaches towards molecular amplification for sensing.

    PubMed

    Goggins, Sean; Frost, Christopher G

    2016-06-01

    Diagnostic assays that rely on molecular interactions have come a long way; from initial reversible detection systems towards irreversible reaction indicator-based methods. More recently, the emergence of innovative molecular amplification methodologies has revolutionised sensing, allowing diagnostic assays to achieve ultra-low limits of detection. There have been a significant number of molecular amplification approaches developed over recent years to accommodate the wide variety of analytes that require sensitive detection. To celebrate this achievement, this comprehensive critical review has been compiled to give a broad overview of the many different approaches used to attain amplification in sensing with an aim to inspire the next generation of diagnostic assays looking to achieve the ultimate detection limit. This review has been created with the focus on how each conceptually unique molecular amplification methodology achieves amplification, not just its sensitivity, while highlighting any key processes. Excluded are any references that were not found to contain an obvious molecular amplifier or amplification component, or that did not use an appropriate signal readout that could be incorporated into a sensing application. Additionally, methodologies where amplification is achieved through advances in instrumentation are also excluded. Depending upon the type of approach employed, amplification strategies are divided into four categories: target, label, signal or receptor amplification. More recent, more complex protocols combine a number of approaches and are therefore categorised by which amplification component described within was considered as the biggest advancement. The advantages and disadvantages of each methodology are discussed along with any limits of detection, if stated in the original article. Any subsequent use of the methodology within sensing or any other application is also mentioned to draw attention to its practicality. The importance of

  15. The MDM2 gene amplification database.

    PubMed Central

    Momand, J; Jung, D; Wilczynski, S; Niland, J

    1998-01-01

    The p53 tumor suppressor gene is inactivated in human tumors by several distinct mechanisms. The best characterized inactivation mechanisms are: (i) gene mutation; (ii) p53 protein association with viral proteins; (iii) p53 protein association with the MDM2 cellular oncoprotein. The MDM2 gene has been shown to be abnormally up-regulated in human tumors and tumor cell lines by gene amplification, increased transcript levels and enhanced translation. This communication presents a brief review of the spectrum of MDM2 abnormalities in human tumors and compares the tissue distribution of MDM2 amplification and p53 mutation frequencies. In this study, 3889 samples from tumors or xenografts from 28 tumor types were examined for MDM2 amplification from previously published sources. The overall frequency of MDM2 amplification in these human tumors was 7%. Gene amplification was observed in 19 tumor types, with the highest frequency observed in soft tissue tumors (20%), osteosarcomas (16%) and esophageal carcinomas (13%). Tumors which showed a higher incidence of MDM2 amplification than p53 mutation were soft tissue tumors, testicular germ cell cancers and neuro-blastomas. Data from studies where both MDM2 amplification and p53 mutations were analyzed within the same samples showed that mutations in these two genes do not generally occur within the same tumor. In these studies, 29 out of a total of 33 MDM2 amplification-positive tumors had wild-type p53. We hypothesize that heretofore uncharacterized carcinogens favor MDM2 amplification over p53 mutations in certain tumor types. A database listing the MDM2 gene amplifications is available on the World Wide Web at http://www. infosci.coh.org/mdm2 . Charts of MDM2 amplification frequencies and comparisons with p53 genetic alterations are also available at this Web site. PMID:9671804

  16. Development of a rapid and specific loop-mediated isothermal amplification detection method that targets Marek's disease virus meq gene.

    PubMed

    Wei, Xiuying; Shi, Xingming; Zhao, Yan; Zhang, Jing; Wang, Mei; Liu, Changjun; Cui, Hongyu; Hu, Shunlei; Quan, Yanming; Chen, Hongyan; Wang, Yunfeng

    2012-08-01

    A rapid, sensitive and specific loop-mediated isothermal amplification (LAMP) method was developed and evaluated for the detection of Marek's disease virus (MDV) by amplification of conserved MDV meq gene sequences. LAMP is an innovative technique that allows the rapid detection of targeted nucleic acid sequences under isothermal conditions without the need for complex instrumentation. In this study, meq gene sequences were amplified successfully from different MDV strains by LAMP within 60min and no cross-reactivity was observed in a panel of related viruses that were associated with diseases of chickens. The detection limit of LAMP was 3.2 copies/million cells compared with 320 copies/million cells required for conventional PCR. Positive detection rates were assessed using either LAMP or PCR by examination of feather follicles that were collected from chickens infected experimentally with either strain J-1 (n=20) or strain Md5 (n=17), In addition to these samples, three isolates that were suspected to have been infected in the clinic were also tested. Results showed that the positive detection rate for LAMP was 95% (38/40), compared with 87.5% (35/40) and 90% (38/40) for strains J-1 and Md5 by PCR, respectively. These results indicated that the LAMP assay was more sensitive, rapid and specific than conventional PCR for the detection of MDV. This easy-to-perform technique will be useful for the detection of MDV and will aid in the establishment of disease control protocols.

  17. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  18. Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug-phospholipids complex technique.

    PubMed

    Li, Jin; Liu, Pan; Liu, Jian-Ping; Yang, Ji-Kun; Zhang, Wen-Li; Fan, Yong-Qing; Kan, Shu-Ling; Cui, Yan; Zhang, Wen-Jing

    2013-01-01

    This study investigated phospholipids complex (PC) loaded pellets of poorly permeable Salvianolic acid B (SalB), in which PC was to improve the liposolubility and permeability of SalB. Transmission electron microscopy observation, differential scanning calorimetry measurement, infrared spectroscopy analysis, n-octanol/water partition coefficient study, and foam cell permeability research were employed to prove the complex formation. Pellets containing SalB phospholipids complex (SalB-PC) were prepared via extrusion/spheronization technique. The optimal pellets obtained with 30% SalB-PC, 15% Kollidon®CL-SF, 15% Flowlac®100, and 40% MCC exhibited a very homogeneous size distribution, the shortest disintegration time, highest crushing force, appreciable spherical shape, and a fast drug release behavior. Following hydration, the droplet size distribution of SalB-PC pellets was nearly same to its PC (85.4±16 and 73.5±12nm). In vivo performance showed SalB-PC pellets presented significantly larger AUC(0-)(t), which was 0.58 times more than that of physical mixtures (PMs) and 1.57 times more than that of SalB pellets. C(max) of SalB-PC pellets were also increased by 0.26-fold and 0.80-fold as that of PMs and SalB pellets, respectively. In conclusion, extrusion/spheronization could be a suitable technique to prepare PC loaded pellets, which could effectively preserve the properties of PC to improve the permeability and bioavailability of highly water-soluble drug.

  19. Backaction amplification and quantum limits in optomechanical measurements.

    PubMed

    Verlot, P; Tavernarakis, A; Briant, T; Cohadon, P-F; Heidmann, A

    2010-04-01

    Optical interferometry is by far the most sensitive displacement measurement technique available, with sensitivities at the 10(-20) m/square root(Hz) level in the large-scale gravitational-wave interferometers currently in operation. Second-generation interferometers will experience a tenfold improvement in sensitivity and be mainly limited by quantum noise, close to the standard quantum limit (SQL), once considered as the ultimate displacement sensitivity achievable by interferometry. In this Letter, we experimentally demonstrate one of the techniques envisioned to go beyond the SQL: amplification of a signal by radiation-pressure backaction in a detuned cavity.

  20. Raman laser amplification in preformed and ionizing plasmas

    SciTech Connect

    Clark, D S; Fisch, N J

    2004-09-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm{sup 2} and pulse lengths of less than 100 fs could be accessible by this technique for 1 {micro}m lasers--an improvement of 10{sup 4}-10{sup 5} in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm{sup 2} range.

  1. Parametric amplification in single-walled carbon nanotube nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Chiang; Zhong, Zhaohui

    2011-08-01

    The low quality factor (Q) of single-walled carbon nanotube (SWNT) resonators has limited their sensitivity in sensing application. To this end, we employ the technique of parametric amplification by modulating the spring constant of SWNT resonators at twice the resonant frequency and achieve 10 times Q enhancement. The highest Q obtained at room temperature is around ˜700, which is 3-4 times better than previous Q record reported for doubly clamped SWNT resonators. Furthermore, efficient parametric amplification is found to only occur in the catenary vibration regime. Our results open up the possibility to employ light-weight and high-Q carbon nanotube resonators in single molecule and atomic mass sensing.

  2. Technique development for characterization of metalloorganics in acid-base-neutral fractions of heavy petroleum residues: Topical report

    SciTech Connect

    Pearson, C.D.; Green, J.B.

    1988-01-01

    A novel approach for the characterization of metallorganic compounds in heavy petroleum residues has been developed. Wilmington 1000/sup 0/ F+ and Mayan 925/sup 0/ F+ residues and hydrotreated products were separated into acid-base-neutral (ABN) fractions by a unique nonaqueous ion-exchange technique developed at NIPER. The metal complexes in the feeds, hydrotreated products and ABN fractions were then characterized by determining the total vanadium and nickel and by measuring the vanadium and nickel porphyrin content of each fraction. Molecular weight distribution profiles of the vanadium and nickel compounds in the feed, 400/sup 0/C hydrotreated product and corresponding ABN fractions were obtained by size exclusion chromatography/inductively coupled plasma. The majority of the metal appeared to be in non-porphyrinic form. The vanadium and nickel complexes were distributed into all of the ABN fractions. In the feed and the whole hydrotreated products the porphyrin levels decreased as hydrotreating temperatures increased. In contrast to previously reported work, porphyrins do not always decrease when hydrotreated. The amount of porphyrins in certain ABN fractions increased after hydrotreating at moderate temperatures. The Mayan V and Ni complexes were more resistant to hydrotreating than the Wilmington metal complexes; in particular, the high molecular weight Mayan metal complexes were more resistant to hydrotreating than the high molecular weight Wilmington metal complexes. 15 refs., 11 figs., 10 tabs.

  3. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-01

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides.

  4. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  5. Brillouin Amplification--A Powerful New Scheme for Microwave Photonic Communications

    NASA Technical Reports Server (NTRS)

    Yao, S.; Maleki, L.

    1997-01-01

    We introduce the Brillouin selective sideband amplification technique and demonstrate many important applications of this technique in photonic microwave systems, including efficient phase modulation to amplitude modulation conversion, photonic frequency multiplication, photonic signal mixing with gain, and frequency multiplied signal up conversion.

  6. Development of rapid isothermal amplification assays for Phytophthora species from plant tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real time ...

  7. Chemical amplification of magnetic field effects relevant to avian magnetoreception.

    PubMed

    Kattnig, Daniel R; Evans, Emrys W; Déjean, Victoire; Dodson, Charlotte A; Wallace, Mark I; Mackenzie, Stuart R; Timmel, Christiane R; Hore, P J

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. PMID:27001735

  8. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences.

    PubMed

    Strien, Juliane; Sanft, Juliane; Mall, Gita

    2013-07-01

    PCR is a commonly used and highly efficient technique in biomolecular laboratories for specific amplification of DNA. However, successful DNA amplification can be very time consuming and troublesome because many factors influence PCR efficiency. Especially GC-rich DNA complicates amplification because of generation of secondary structures that hinder denaturation and primer annealing. We investigated the impact of previously recommended additives such as dimethylsulfoxide (DMSO), magnesium chloride (MgCl2), bovine serum albumin (BSA), or formamide. Furthermore, we tested company-specific substances as Q-Solution, High GC Enhancer, and Hi-Spec; various actively promoted polymerases as well as different PCR conditions for their positive effects on DNA amplification of templates with moderate and extremely high CG-content. We found considerable differences of specificity and quantity of product between different terms. In this article, we introduce conditions for optimized PCR to help resolve problems amplifying moderate to high GC-rich templates.

  9. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  10. Linking Arctic amplification and local feedbacks

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-11-01

    Climate simulations show that as the Earth warms, the Arctic warms more than the average global warming. However, models differ on how much more the Arctic warms, and although scientists have proposed a variety of mechanisms to explain the Arctic warming amplification, there is no consensus on the main reasons for it. To shed light on this issue, Hwang et al. investigated the relationship between Arctic amplification and poleward energy transport and local Arctic feedbacks, such as changes in cloud cover or ice loss, across a group of models. The researchers noted that differences in atmospheric energy transport did not explain the ranges of polar amplification; rather, models with more amplification showed less energy transport into high latitudes. The authors found that decreasing energy transport is due to a coupled relationship between Arctic amplification and energy transport: Arctic amplification reduces the equator-to-pole temperature gradient, which strongly decreases energy transport. They suggest that this coupled relationship should be taken into account in studies of Arctic amplification. (Geophysical Research Letters, doi:10.1029/2011GL048546, 2011)

  11. Cochlear amplification, outer hair cells and prestin

    PubMed Central

    Dallos, Peter

    2008-01-01

    Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has likely co-evolved with a novel hair cell type, the outer hair cell and its constituent membrane protein, prestin. Cylindrical outer hair cells are motile and their somatic length changes are voltage driven and powered by prestin. One of the central outstanding problems in mammalian cochlear neurobiology is the relation between the two amplification processes. PMID:18809494

  12. Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques.

    PubMed

    Vervaeck, A; Monteyne, T; Siepmann, F; Boone, M N; Van Hoorebeke, L; De Beer, T; Siepmann, J; Remon, J P; Vervaet, C

    2015-11-01

    The aim of the present study was to evaluate the solid state characteristics, drug release and stability of fatty acid-based formulations after processing via prilling and solid lipid extrusion. Myristic acid (MA), stearic acid (SA) and behenic acid (BA) were used as matrix formers combined with metoprolol tartrate (MPT) as model drug. The prilling process allowed complete dissolution of MPT in the molten fatty acid phase, generating semi-crystalline MPT and the formation of hydrogen bonds between drug and fatty acids in the solid prills. In contrast, as solid lipid extrusion (SLE) induced only limited melting of the fatty acids, molecular interaction with the drug was inhibited, yielding crystalline MPT. Although the addition of a low melting fatty acid allowed more MPT/fatty acid interaction during extrusion, crystalline MPT was detected after processing. Mathematical modeling revealed that the extrudates exhibited a higher apparent drug/water mobility than prills of the same composition, probably due to differences in the inner systems' structure. Irrespective of the processing method, mixed fatty acid systems (e.g. MA/BA) exhibited a lower matrix porosity, resulting in a slower drug release rate. Solid state analysis of these systems indicated that the crystalline structure of the fatty acids was maintained after SLE, while prilling generated a reduced MA crystallinity. Binary MPT/fatty acid systems processed via extrusion showed better stability during storage at 40 °C than the corresponding prills. Although mixed fatty acid systems were stable at 25 °C, stability problems were encountered during storage at 40 °C: a faster release was obtained from the prills, whereas drug release from the extrudates was slower.

  13. Loop-mediated isothermal amplification (LAMP) for the rapid detection of Mycoplasma genitalium.

    PubMed

    Edwards, Thomas; Burke, Patricia; Smalley, Helen B; Gillies, Liz; Longhurst, Denise; Vipond, Barry; Hobbs, Glyn

    2015-09-01

    Mycoplasma genitalium is a sexually transmissible, pathogenic bacterium and a significant cause of nongonococcal urethritis in both men and women. Due to the difficulty of the culture of M. genitalium from clinical samples, the laboratory diagnosis of M. genitalium infection is almost exclusively carried out using nucleic acid amplification tests. Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification technology, utilising a set of 4 primers specific to 6 distinct regions of the target DNA sequence, in order to amplify target DNA in a highly specific and rapid manner. A LAMP assay was designed to the pdhD gene of M. genitalium, and the limit of detection of the assay was determined as 10 fg of M. genitalium genomic DNA, equating to ~16 copies of the M. genitalium genome, which was equally sensitive as a gold standard 16S rRNA polymerase chain reaction assay. PMID:26072150

  14. Balanced amplification: a new mechanism of selective amplification of neural activity patterns.

    PubMed

    Murphy, Brendan K; Miller, Kenneth D

    2009-02-26

    In cerebral cortex, ongoing activity absent a stimulus can resemble stimulus-driven activity in size and structure. In particular, spontaneous activity in cat primary visual cortex (V1) has structure significantly correlated with evoked responses to oriented stimuli. This suggests that, from unstructured input, cortical circuits selectively amplify specific activity patterns. Current understanding of selective amplification involves elongation of a neural assembly's lifetime by mutual excitation among its neurons. We introduce a new mechanism for selective amplification without elongation of lifetime: "balanced amplification." Strong balanced amplification arises when feedback inhibition stabilizes strong recurrent excitation, a pattern likely to be typical of cortex. Thus, balanced amplification should ubiquitously contribute to cortical activity. Balanced amplification depends on the fact that individual neurons project only excitatory or only inhibitory synapses. This leads to a hidden feedforward connectivity between activity patterns. We show in a detailed biophysical model that this can explain the cat V1 observations.

  15. A Simple Structure for Signal Amplification

    NASA Astrophysics Data System (ADS)

    Ding, Wan-Xiang; Gu, Chang-Gui; Liang, Xiao-Ming

    2016-02-01

    It has been found that a triple-node feed-forward motif has a function of signal amplification, where two input nodes receive the external weak signal and jointly modulate the response of the third output node [Liang et al., Phys. Rev. E 88 (2013) 012910]. We here show that the signal amplification can be further enhanced by adding a link between the two input nodes in the feed-forward motif. We further reveal that the coupling strength of the link regulates the enhancement of signal amplification in the modified feed-forward motif. We finally analyze the mechanism of signal amplification of such simple structure. Supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning under Grant No. QD2015016, the National Natural Science Foundation of China under Grant Nos. 11505114 and 11305078

  16. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES - Book Chapter

    EPA Science Inventory

    This book chapter contains the following headings and subheadings: Introduction; Experimental Approach - Precautions, Template, Primers, Reaction Conditions, Enhancers, Post Amplification; Procedures - Template DNA, Basic PCR, Thermal Cycle Parameters, Enzyme Addition, Agarose Ge...

  17. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  18. Development of a loop-mediated isothermal amplification method for rapid detection of pigeon circovirus.

    PubMed

    Tsai, Shinn Shyong; Chang, Yeng Ling; Huang, Yen Li; Liu, Hung Jen; Ke, Guan Ming; Chiou, Chwei Jang; Hsieh, Yao Ching; Chang, Tsung Chou; Cheng, Li Ting; Chuang, Kuo Pin

    2014-05-01

    There are no effective antiviral treatments for pigeon circovirus (PiCV); thus, rapid diagnosis is critical for effective control of the disease caused by this virus. The recent development of a novel LAMP technique that amplifies nucleic acids rapidly with high specificity and sensitivity under isothermal conditions has overcome some of the deficiencies of nucleic-acid-based diagnostic tests. We established a LAMP method for rapid detection of PiCV using two pairs of primers that were designed from PiCV and compared its sensitivity and specificity with that of PCR. Amplification by LAMP was optimal at 63 °C for 60 min. The detection limit was nearly 0.5 pg of PiCV DNA, making it ten times more sensitive than PCR. There was no cross-reaction with porcine circovirus type 2 (PCV2), pigeon Trichomonas gallinae, or pigeon herpesvirus (PHV) under the same conditions. The assay also successfully detected the pathogen DNA in the tissues of infected pigeons. This is the first report indicating that LAMP is a valuable, rapid method of detecting PiCV with high sensitivity and specificity. PMID:24193953

  19. Development of a loop-mediated isothermal amplification method for rapid detection of pigeon circovirus.

    PubMed

    Tsai, Shinn Shyong; Chang, Yeng Ling; Huang, Yen Li; Liu, Hung Jen; Ke, Guan Ming; Chiou, Chwei Jang; Hsieh, Yao Ching; Chang, Tsung Chou; Cheng, Li Ting; Chuang, Kuo Pin

    2014-05-01

    There are no effective antiviral treatments for pigeon circovirus (PiCV); thus, rapid diagnosis is critical for effective control of the disease caused by this virus. The recent development of a novel LAMP technique that amplifies nucleic acids rapidly with high specificity and sensitivity under isothermal conditions has overcome some of the deficiencies of nucleic-acid-based diagnostic tests. We established a LAMP method for rapid detection of PiCV using two pairs of primers that were designed from PiCV and compared its sensitivity and specificity with that of PCR. Amplification by LAMP was optimal at 63 °C for 60 min. The detection limit was nearly 0.5 pg of PiCV DNA, making it ten times more sensitive than PCR. There was no cross-reaction with porcine circovirus type 2 (PCV2), pigeon Trichomonas gallinae, or pigeon herpesvirus (PHV) under the same conditions. The assay also successfully detected the pathogen DNA in the tissues of infected pigeons. This is the first report indicating that LAMP is a valuable, rapid method of detecting PiCV with high sensitivity and specificity.

  20. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  1. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting

    SciTech Connect

    Fernández-Gómez, Manuel J.; Nogales, Rogelio; Plante, Alain; Plaza, César; Fernández, José M.

    2015-01-15

    Highlights: • A set of techniques was used to characterize humic acids content of vermicomposts. • The properties of the humic acids produced from different waste mixtures were similar. • This set of techniques allowed distinguishing the humic acids of each vermicomposts. • Increasing humic acid contents in initial mixtures would produce richer vermicomposts. - Abstract: A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV–visible spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) {sup 13}C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs.

  2. Sensitive and rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimps by loop-mediated isothermal amplification.

    PubMed

    Sun, Zhao-Feng; Hu, Chao-Qun; Ren, Chun-Hua; Shen, Qi

    2006-01-01

    A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) is a novel, sensitive and rapid technique, which can be applied for disease diagnosis in aquaculture. Using the LAMP method, a highly specific and sensitive diagnostic system for infectious hypodermal and hematopoietic necrosis virus (IHHNV) detection was designed. A set of four primers was designed by targeting the IHHNV genome DNA. By the detection system, target DNA was amplified and visualized on agarose gel within 60min under isothermal condition at 64 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by the white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. The assay had a detection limit of 5-500 copies of DNA template with gel electrophoresis, SYBR Green I and white turbidity with naked-eye inspection. The detection sensitivity of LAMP was 100-fold higher than the PCR. A diagnostic procedure which is rapid and highly sensitive was developed for IHHNV detection.

  3. Onshore seismic amplifications due to bathymetric features

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.

    2016-08-01

    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  4. Amplification uncertainty relation for probabilistic amplifiers

    NASA Astrophysics Data System (ADS)

    Namiki, Ryo

    2015-09-01

    Traditionally, quantum amplification limit refers to the property of inevitable noise addition on canonical variables when the field amplitude of an unknown state is linearly transformed through a quantum channel. Recent theoretical studies have determined amplification limits for cases of probabilistic quantum channels or general quantum operations by specifying a set of input states or a state ensemble. However, it remains open how much excess noise on canonical variables is unavoidable and whether there exists a fundamental trade-off relation between the canonical pair in a general amplification process. In this paper we present an uncertainty-product form of amplification limits for general quantum operations by assuming an input ensemble of Gaussian-distributed coherent states. It can be derived as a straightforward consequence of canonical uncertainty relations and retrieves basic properties of the traditional amplification limit. In addition, our amplification limit turns out to give a physical limitation on probabilistic reduction of an Einstein-Podolsky-Rosen uncertainty. In this regard, we find a condition that probabilistic amplifiers can be regarded as local filtering operations to distill entanglement. This condition establishes a clear benchmark to verify an advantage of non-Gaussian operations beyond Gaussian operations with a feasible input set of coherent states and standard homodyne measurements.

  5. Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification.

    PubMed

    Wang, Yonghong; Jiang, Lun; Leng, Qinggang; Wu, Yaohui; He, Xiaoxiao; Wang, Kemin

    2016-03-15

    In this work, we design a new simple and highly sensitive strategy for electrochemical detection of glutathione (GSH) via mercury ion (Hg(2+)) triggered hybridization chain reaction (HCR) signal amplification. It is observed that in the absence of GSH, a specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination can fold into hairpin structures. While in the presence of GSH, it thus can be chelated with Hg(2+), resulting in Hg(2+) released from the T-Hg(2+)-T hairpin complex which then forms into ssDNA structure to further hybridize with the surface-immobilized capture DNA probe on the gold electrode with a sticky tail left. The presence of two hairpin helper probes through HCR leads to the formation of extended dsDNA superstructure on the electrode surface, which therefore causes the intercalation of numerous electroactive species ([Ru(NH3)6](3+)) into the dsDNA grooves, followed by a significantly amplified signal output whose intensity is related to the concentration of the GSH. Taking advantage of merits of enzyme-free amplification power of the HCR, the inherent high sensitivity of the electrochemical technique, and label-free detection which utilizes an electroactive species as a signaling molecule that binds to the anionic phosphate backbone of DNA strands via electrostatic force, not only does the proposed strategy enable sensitive detection of GSH, but show high selectivity against other amino acid, making our method a simple and sensitive addition to the amplified GSH detection. PMID:26528805

  6. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    PubMed Central

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  7. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    PubMed

    Lucchi, Naomi W; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.

  8. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    PubMed

    Lucchi, Naomi W; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  9. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols

    EPA Science Inventory

    Methodology for detection of native (underivitized) amino acids in atmospheric aerosols has been developed. This article describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southe...

  10. Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification

    SciTech Connect

    Dixon, P. Ben; Starling, David J.; Jordan, Andrew N.; Howell, John C.

    2009-05-01

    We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam's transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 400{+-}200 frad and the linear travel of a piezo actuator down to 14{+-}7 fm.

  11. Multiple displacement amplification for preimplantation genetic diagnosis of fragile X syndrome.

    PubMed

    Lee, H-S; Kim, M J; Lim, C K; Cho, J W; Song, I O; Kang, I S

    2011-01-01

    Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples that have genetic risks. Despite the many advantages provided by PGD, there are several problems, including amplification failure, allele drop-out and amplification inefficiency. We evaluated multiple displacement amplification (MDA) for PGD of the fragile X syndrome. Whole genome amplification was performed using MDA. MDA products were subjected to fluorescent PCR of fragile X mental retardation-1 (FMR1) CGG repeats, amelogenin and two polymorphic markers. In the pre-clinical tests, the amplification rates of the FMR1 CGG repeat, DXS1215 and FRAXAC1 were 84.2, 87.5 and 75.0%, respectively, while the allele dropout rates were 31.3, 57.1 and 50.0%, respectively. In two PGD treatment cycles, 20 embryos among 30 embryos were successfully diagnosed as 10 normal embryos, four mutated embryos and six heterozygous carriers. Three healthy embryos were transferred to the uterus; however, no clinical pregnancy was achieved. Our data indicate that MDA and fluorescent PCR with four loci can be successfully applied to PGD for fragile X syndrome. Advanced methods for amplification of minuscule amounts of DNA could improve the sensitivity and reliability of PGD for complicated single gene disorders. PMID:22095609

  12. Multiple displacement amplification for preimplantation genetic diagnosis of fragile X syndrome.

    PubMed

    Lee, H-S; Kim, M J; Lim, C K; Cho, J W; Song, I O; Kang, I S

    2011-11-17

    Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples that have genetic risks. Despite the many advantages provided by PGD, there are several problems, including amplification failure, allele drop-out and amplification inefficiency. We evaluated multiple displacement amplification (MDA) for PGD of the fragile X syndrome. Whole genome amplification was performed using MDA. MDA products were subjected to fluorescent PCR of fragile X mental retardation-1 (FMR1) CGG repeats, amelogenin and two polymorphic markers. In the pre-clinical tests, the amplification rates of the FMR1 CGG repeat, DXS1215 and FRAXAC1 were 84.2, 87.5 and 75.0%, respectively, while the allele dropout rates were 31.3, 57.1 and 50.0%, respectively. In two PGD treatment cycles, 20 embryos among 30 embryos were successfully diagnosed as 10 normal embryos, four mutated embryos and six heterozygous carriers. Three healthy embryos were transferred to the uterus; however, no clinical pregnancy was achieved. Our data indicate that MDA and fluorescent PCR with four loci can be successfully applied to PGD for fragile X syndrome. Advanced methods for amplification of minuscule amounts of DNA could improve the sensitivity and reliability of PGD for complicated single gene disorders.

  13. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms.

    PubMed Central

    Werner, C. A.; Döhner, H.; Joos, S.; Trümper, L. H.; Baudis, M.; Barth, T. F.; Ott, G.; Möller, P.; Lichter, P.; Bentz, M.

    1997-01-01

    Gene amplification is one of the molecular mechanisms resulting in the up-regulation of gene expression. In non-Hodgkin's lymphomas, such gene amplifications have been identified rarely. Using comparative genomic hybridization, a technique that has proven to be very sensitive for the detection of high-level DNA amplifications, we analyzed 108 cases of B-cell neoplasms (42 chronic B-cell leukemias, 5 mantle cell lymphomas, and 61 aggressive B-cell lymphomas). Twenty-four high-level amplifications were identified in 13% of the patients and mapped to 15 different genomic regions. Regions most frequently amplified were bands Xq26-28, 2p23-24, and 2p14-16 as well as 18q21 (three times each). Amplification of several proto-oncogenes and a cell cycle control gene (N-MYC (two cases), BCL2, CCND2, and GLI) located within the amplified regions was demonstrated by Southern blot analysis or fluorescence in situ hybridization to interphase nuclei of tumor cells. These data demonstrate that gene amplifications in B-cell neoplasms are much more frequent than previously assumed. The identification of highly amplified DNA regions and genes included in the amplicons provides important information for further analyses of genetic events involved in lymphomagenesis. Images Figure 2 Figure 3 PMID:9250147

  14. Isothermal solid-phase amplification system for detection of Yersinia pestis.

    PubMed

    Mayboroda, Olena; Gonzalez Benito, Angel; Sabaté del Rio, Jonathan; Svobodova, Marketa; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K; Katakis, Ioanis

    2016-01-01

    DNA amplification is required for most molecular diagnostic applications, but conventional polymerase chain reaction (PCR) has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the recombinase polymerase amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work, RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 h at a constant temperature of 37 °C. Single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) sequences were detected, achieving detection limits of 4.04*10(-13) and 3.14*10(-16) M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.

  15. Isothermal solid-phase amplification system for detection of Yersinia pestis.

    PubMed

    Mayboroda, Olena; Gonzalez Benito, Angel; Sabaté del Rio, Jonathan; Svobodova, Marketa; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K; Katakis, Ioanis

    2016-01-01

    DNA amplification is required for most molecular diagnostic applications, but conventional polymerase chain reaction (PCR) has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the recombinase polymerase amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work, RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 h at a constant temperature of 37 °C. Single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) sequences were detected, achieving detection limits of 4.04*10(-13) and 3.14*10(-16) M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets. PMID:26563112

  16. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  17. Unknown sequence amplification: Application to in vitro genome walking in Chlamydia trachomatis L2

    SciTech Connect

    Copley, C.G.; Boot, C.; Bundell, K.; McPheat, W.L. )

    1991-01-01

    A recently described technique, Chemical Genetics' unknown sequence amplification method, which requires only one specific oligonucleotide, has broadened the applicability of the polymerase chain reaction to DNA of unknown sequence. The authors have adapted this technique to the study of the genome of Chlamydia trachomatis, an obligate intracellular bacterium, and describe modifications that significantly improve the utility of this approach. These techniques allow for rapid genomic analysis entirely in vitro, using DNA of limited quantity of purity.

  18. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  19. Analysis of Reaction between α-Lipoic Acid and 2-Chloro-1-methylquinolinium Tetrafluoroborate Used as a Precolumn Derivatization Technique in Chromatographic Determination of α-Lipoic Acid.

    PubMed

    Godlewska, Magdalena; Odachowska, Angelika; Turkowicz, Monika; Karpinska, Joanna

    2015-01-01

    The present study offers results of analysis concerning the course of reaction between reduced α-lipoic acid (LA) and 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT). In water environments, the reaction between CMQT and hydrophilic thiols proceeds very rapidly and the resultant products are stable. For the described analysis, optimum reaction conditions, such as concentration of the reducing agent, environment pH, and concentration of the reagent were carefully selected. The spectrophotometric assay was carried out measuring absorbance at λ = 348 nm (i.e., the spectral band of the obtained reaction product). Furthermore, the calibration curve of lipoic acid was registered. It was concluded that the Lambert-Beer law was observed within the range 1-10 μmol L(-1). Later, the reaction between LA and CMQT was used as precolumn derivatization in a chromatographic determination of the lipoic acid in the range 2.5-50 μmol L(-1). Practical applicability of the designed methods was evaluated by determining lipoic acid in Revitanerv pharmaceutical preparation which contains 300 mg LA in a single capsule. The error of the determination did not exceed 0.5% in relation to the declared value. PMID:26504616

  20. Analysis of Reaction between α-Lipoic Acid and 2-Chloro-1-methylquinolinium Tetrafluoroborate Used as a Precolumn Derivatization Technique in Chromatographic Determination of α-Lipoic Acid

    PubMed Central

    Godlewska, Magdalena; Odachowska, Angelika; Turkowicz, Monika; Karpinska, Joanna

    2015-01-01

    The present study offers results of analysis concerning the course of reaction between reduced α-lipoic acid (LA) and 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT). In water environments, the reaction between CMQT and hydrophilic thiols proceeds very rapidly and the resultant products are stable. For the described analysis, optimum reaction conditions, such as concentration of the reducing agent, environment pH, and concentration of the reagent were carefully selected. The spectrophotometric assay was carried out measuring absorbance at λ = 348 nm (i.e., the spectral band of the obtained reaction product). Furthermore, the calibration curve of lipoic acid was registered. It was concluded that the Lambert-Beer law was observed within the range 1–10 μmol L−1. Later, the reaction between LA and CMQT was used as precolumn derivatization in a chromatographic determination of the lipoic acid in the range 2.5–50 μmol L−1. Practical applicability of the designed methods was evaluated by determining lipoic acid in Revitanerv pharmaceutical preparation which contains 300 mg LA in a single capsule. The error of the determination did not exceed 0.5% in relation to the declared value. PMID:26504616

  1. Nanofluidic redox cycling amplification for the selective detection of catechol.

    PubMed

    Wolfrum, Bernhard; Zevenbergen, Marcel; Lemay, Serge

    2008-02-15

    We have developed a chip-based nanofluidic device to amplify the electrochemical signal of catechols by orders of magnitude. The amplification is based on rapid redox cycling between plane parallel electrodes inside a nanochannel. We show that it is possible to monitor the signal of only a few hundred molecules residing in the active area of the nanofluidic sensor. Furthermore, due to the nanochannel design, the sensor is immune to interference by molecules undergoing irreversible redox reactions. We demonstrate the selectivity of the device by detecting catechol in the presence of ascorbic acid, whose oxidized form is only stable for a short time. The interference of ascorbic acid is usually a challenge in the detection of catecholamines in biological samples.

  2. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography.

    PubMed

    Abedi, Abdol-Samad; Mohammadi, Abdorreza; Azadniya, Ebrahim; Mortazavian, Amir Mohammad; Khaksar, Ramin

    2014-01-01

    A rapid and reliable method for direct determination of sorbic and benzoic acids in milk products was developed by dispersive liquid-liquid microextraction (DLLME) and gas chromatography with flame ionisation detector (GC-FID). A response surface methodology (RSM) based on a central composite design (CCD) was applied for optimisation of the main variables, such as volume of extraction and dispersive solvents, pH and salt effect. The primary extraction of sorbic and benzoic acids were performed in 8 mL NaOH (0.1 M) in a closed-vessel system. Carrez solutions (potassium hexaferrocyanide and zinc acetate) were used for protein sedimentation. The best simultaneous extraction efficiency was identified using acetone and 1-octanal as dispersive and extraction solvents, respectively. For DLLME, central composite design resulted in the optimised values of microextraction parameters as follows: 475 µL of dispersive and 60 µL of extraction solvents, 2 g NaCl at pH 2.5. Under optimum conditions, the calibration curve was linear over the range 0.1-50 μg mL(-1) and the square of correlation coefficient (R(2)) was 0.9992 for sorbic acid and 0.9994 for benzoic acid. Relative standard deviation (RSD %) was 6.1% and 3.1% (n = 5) for sorbic and benzoic acids, respectively. Limits of detection were 150 ng g(-1) for sorbic acid and 140 ng g(-1) for benzoic acid and recoveries were 88% and 103.7% respectively. Good reproducibility (RSD %), short extraction time and no matrix interference were advantages of the proposed method which was successfully applied to the determination of sorbic and benzoic acids in milk products. PMID:24397823

  3. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids.

    PubMed

    Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth

    2013-01-30

    The production of microparticles using a supercritical carbon dioxide based PGSS technique (CriticalMix™) has been exploited to develop blended systems targeted at pulmonary delivery. Hence, PEG based polymers of different molecular weights (1000-6000 Da) were blended in situ with fatty acids (stearic, palmitic or myristic acid) or with commercially available PEG-stearates. The effect of the different thermodynamic properties of the polymers was evaluated by characterising the microparticles produced in terms of their melting temperature by conventional DSC and in the presence of high pressure CO(2) using a high pressure variable volume view cell. The microparticles produced were also assessed by SEM and particle size distribution. It is well known that as the molecular weight of the PEG chains increases, so does the viscosity of the melt and this leads to an increase in the particle size. In the paper we show that blending with myristic acid provides optimal control of particle size when the blend is sprayed from scCO(2) leading to high yields in the optimal aerodynamic size range of 2-5 μm for the deep lung delivery. The highest yield and smallest particles (~5 μm) were produced with a blend of PEG 3000 and myristic acid (1:1) whereas the batches containing palmitic acid and stearic acid showed lower yields and larger particle sizes.

  4. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    PubMed

    Boyle, David S; McNerney, Ruth; Teng Low, Hwee; Leader, Brandon Troy; Pérez-Osorio, Ailyn C; Meyer, Jessica C; O'Sullivan, Denise M; Brooks, David G; Piepenburg, Olaf; Forrest, Matthew S

    2014-01-01

    Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays

  5. Detection of infections with hepatitis B virus, hepatitis C virus, and human immunodeficiency virus by analyses of dried blood spots - performance characteristics of the ARCHITECT system and two commercial assays for nucleic acid amplification

    PubMed Central

    2013-01-01

    Background Nowadays, dried blood spots (DBS) are primarily used to obtain diagnostic access to risk collectives such as intravenous drug users, who are prone to infections with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Before DBS analyses can be used in this diagnostic context, however, a comprehensive evaluation of its performance characteristics must be conducted. To the best of our knowledge, the current study presents for the first time such essential data for the Abbott ARCHITECT system, which is currently the worldwide leading platform in this field of infection diagnostics. Methods The investigation comprised 1,762 paired serum/DBS samples and a total of 3,524 determinations with the Abbott ARCHITECT HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24-antigen/anti-HIV 1/2 assays as well as with the artus HBV LC PCR and VERSANT HCV RNA qualitative (TMA) tests. Results In the context of DBS testing, a specificity of 100% was recorded for the seven serological and molecular biological assays. The analytical sensitivity of HBsAg, anti-HBc, anti-HBs, anti-HCV, HIV-1-p24-antigen/anti-HIV 1/2, HBV DNA, and HCV RNA detections in DBS eluates was 98.6%, 97.1%, 97.5%, 97.8%, 100%, 93%, and 100%, respectively. Discussion/conclusions The results obtained indicate that it is today possible to reliably detect HBsAg, anti-HBc, anti-HBs, anti-HCV and HIV-1-p24 antigen/anti-HIV 1/2 with state-of-the-art analytical systems such as the Abbott ARCHITECT in DBS eluates even when a comparatively high elution volume of 1,000 μl is used. They also provide evidence for the inherent analytical limits of DBS testing, which primarily concern the anti-HBc/anti-HBs system for individuals with HIV infections and nucleic acid tests with relatively low analytical sensitivity. PMID:23497102

  6. A mathematical approach to estimate the efficacy of individual-donation and minipool nucleic acid amplification test options in preventing transmission risk by window period and occult hepatitis B virus infections

    PubMed Central

    Vermeulen, Marion; van Drimmelen, Harry; Coleman, Charl; Mitchel, Josephine; Reddy, Ravi; Lelie, Nico

    2016-01-01

    BACKGROUND Sensitivity data from a head-to-head comparison study in South Africa were used to compare the efficacy of the Ultrio Plus assay in individual-donation (ID) and minipool (MP)4 and MP8 formats with that of TaqScreen MP6 in preventing hepatitis B virus (HBV) transmission risk. STUDY DESIGN AND METHODS The replicate nucleic acid test (NAT) results on 106 HBV NAT (Ultrio)-yield samples and 29 HBV DNA (Ultrio)-negative, hepatitis B surface antigen (HBsAg)-positive samples were used to determine the viral load in copies/mL against the Eurohep HBV standard by probit analysis. Random viral load distributions were established in 32 pre-HBsAg window period (WP), 15 post-HBsAg WP, and 56 occult HBV infection (OBI) donations. Regression analysis of log viral load and Poisson distribution statistics of infectious HBV particles in blood components was used to predict infectivity and efficacy of NAT options in removing HBV transmission risk. RESULTS For red blood cell transfusions (20 mL of plasma), the modeling predicted an Ultrio Plus ID-NAT efficacy of 68 and 83% in removing WP and (antibody to hepatitis B surface antigen–negative) OBI transmission risk, respectively, compared to 52 and 49% by TaqScreen MP6. For 200 mL of fresh-frozen plasma the estimated efficacy levels by these ID- and MP6-NAT options reduced to 57 and 44% for WP and to 67 and 34% for OBI donations, respectively. CONCLUSION The efficacy of the currently available commercial NAT systems in reducing HBV transmission risk is mainly driven by the pool size and the transfusion plasma volume. The modeled OBI transmission risk and NAT efficacy levels were in line with those recently reported in three lookback studies and give more insight in the incremental safety provided by HBsAg and antibody to hepatitis B core antigen testing of ID-NAT screened blood. PMID:24749834

  7. A novel, one-step amplification and oligonucleotide ligation procedure for multiplex genetic typing

    SciTech Connect

    Eggerding, F.A.

    1994-09-01

    A new technique, coupled amplification and oligonucleotide ligation (CAL), has been developed for simultaneous multiplex amplification and genotyping of DNA. CAL is a biphasic method which combines in one assay DNA amplification by the polymerase chain reaction (PCR) with DNA genotyping by the oligonucleotide ligation assay (OLA). By virtue of a difference in the melting temperatures of PCR primer-target DNA and OLA probe-target DNA hybrids, the method allows preferential amplification of DNA during stage I and oligonucleotide ligation during stage II of the reaction. In stage I target DNA is amplified using high-melting primers in a two-step PCR cycle that employs a 72{degrees}C anneal-elongation step. In stage II genotyping of PCR products by competitive oligonucleotide ligation with oligonucleotide probes located between PCR primers is accomplished by several cycles of denaturation at 94{degrees}C followed by anneal-ligation at 55{degrees}C. Ligation products are fluorochrome-labeled at their 3{prime}-ends and analyzed electrophoretically on a fluorescent DNA sequencer. The CAL procedure has been used for multiplex detection of 30 cystic fibrosis mutations and for analysis of ras gene point mutations. Because mutation detection occurs concurrently with target amplification, the technique is rapid, highly sensitive and specific, easily automatable, and requires minimal sample processing.

  8. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  9. Remote fiber sensors and optical amplification

    NASA Astrophysics Data System (ADS)

    Pontes, M. J.; Coelho, Thiago V. N.; Carvalho, Joel P.; Santos, J. L.; Guerreiro, A.

    2013-11-01

    This work discusses remote fiber sensors enabled by optical amplification. Continuous wave numerical modeling based on the propagation of pumps and signal lasers coupled to optical fibers explores Raman amplification schemes to predict the sensor's behavior. Experimental analyses report the results to a temperature remote optical sensor with 50 km distance between the central unit and the sensor head. An electrical interrogation scheme is used due to their low cost and good time response. Different architectures in remote sensor systems are evaluated, where diffraction gratings are the sensor element. A validation of calculated results is performed by experimental analyses and, as an application, the noise generated by Raman amplification in the remote sensors systems is simulated applying such numerical modeling. The analyses of sensors systems based on diffraction gratings requires optical broadband sources to interrogate the optical sensor unit, mainly in long period gratings that shows a characteristic rejection band. Therefore, the sensor distance is limited to a few kilometers due to the attenuation in optical fibers. Additional attenuation is introduced by the sensor element. Hence, to extend the distance in the optical sensor system, the optical amplification system is needed to compensate the losses in the optical fibers. The Raman amplification technology was selected mainly due to the flexibility in the gain bandwidth. The modeling can be applied to sensor systems that monitor sites located at long distances, or in places that the access is restricted due to harsh environment conditions in such cases conventional sensors are relatively fast deteriorated.

  10. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  11. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation. PMID:27098519

  12. Novel CE-MS technique for detection of high explosives using perfluorooctanoic acid as a MEKC and mass spectrometric complexation reagent.

    PubMed

    Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi

    2016-01-01

    To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples.

  13. Time varying arctic climate change amplification

    SciTech Connect

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  14. Parametric Amplification of Scattered Atom Pairs

    SciTech Connect

    Campbell, Gretchen K.; Mun, Jongchul; Boyd, Micah; Streed, Erik W.; Ketterle, Wolfgang; Pritchard, David E.

    2006-01-20

    We have observed parametric generation and amplification of ultracold atom pairs. A {sup 87}Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k{sub 0} and spontaneously scattered into two final states with quasimomenta k{sub 1} and k{sub 2}. Furthermore, when a seed of atoms was first created with quasimomentum k{sub 1} we observed parametric amplification of scattered atoms pairs in states k{sub 1} and k{sub 2} when the phase-matching condition was fulfilled. This process is analogous to optical parametric generation and amplification of photons and could be used to efficiently create entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in moving lattices observed in recent experiments.

  15. Amplification, Redundancy, and Quantum Chernoff Information

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-04-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  16. Amplification, redundancy, and quantum Chernoff information.

    PubMed

    Zwolak, Michael; Riedel, C Jess; Zurek, Wojciech H

    2014-04-11

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  17. Technique for measuring picomolar amounts of bound and unbound amino acids obtained from myogenic cell cultures of skeletal muscle

    SciTech Connect

    Bullaro, J.C.

    1981-10-01

    A procedure is described that compares the isotope dilution method of measuring picomolar amounts of amino acids obtained from cellular extracts with a direct method of analysis. Evidence is provided that shows that the direct method is at least as accurate as the isotope dilution method. In addition the direct method is as expedient an requires but a single isotope and fewer chromatograms for analysis. A procedure also is described for selecting the appropriate conditions for dansylation and for measuring the loss of dansyl amino acid due to decomposition.

  18. Analysis of numerical stability and amplification matrices: Fourth-order Runge-Kutta methods

    NASA Technical Reports Server (NTRS)

    Kennedy, E. W.

    1979-01-01

    Amplification matrices, numerical kernels, stable, and exponentially stable numerical solutions are examined. The various techniques involved in these concepts are applied to certain systems that have Jordan forms, which are nondiagonal, with particular interest in the case of imaginary or zero eigenvalues.

  19. Preparation of surface imprinted material of single enantiomer of mandelic acid with a new surface imprinting technique and study on its chiral recognition and resolution properties.

    PubMed

    Gao, Baojiao; Chen, Lulu; Li, Yanbin

    2016-04-22

    A surface imprinted material of the single enantiomer of mandelic acid with high performance was successfully prepared with a new surface imprinting technique of synchronously graft-polymerizing and molecule imprinting, and its enantiomeric recognition and resolution properties were investigated. Micro-sized silica gel particles were first modified with coupling agent γ-mercaptopropyl trimethoxysilane (MPMS), obtaining the modified particles MPMS-SiO2 on which mercapto groups were introduced. A surface initiating system of -SH/BPO was constituted with the mercapto group (-SH) on MPMS-SiO2 particles and dibenzoyl peroxide (BPO) in N,N-dimethyl formamide (DMF) solution. In DMF solution, (R)-mandelic acid molecule was used as the template and the functional monomer hydroxyethyl methylacrylate (HEMA) were combined together by right of multi-site hydrogen bonds. The free radicals produced on MPMS-SiO2 particles initiate HEMA molecules around (R)-mandelic acid molecules and the crosslinking agent N,N'-Methylenebisacrylamide (MBA) to produce graft/crosslinking-polymerization. At the same time, the template (R)-mandelic acid molecules were enveloped within the thin grafted polymer layer on the surfaces of SiO2 particles, obtaining (R)-mandelic acid surface imprinted material MIP-PHEMA/SiO2. The experimental results show that MIP-PHEMA/SiO2 particles have excellent enantiomeric recognition and resolution ability. The binding capacity of MIP-PHEMA/SiO2 particles for (R)-mandelic acid reaches up to 278 mg/g. As the resolution experiment of a racemic mixture was carried out with MIP-PHEMA/SiO2 particles as solid adsorbent, relative another enantiomer, (S)-mandelic acid, the selectivity coefficient of the imprinted particles for (R)-mandelic acid is 5.02. As a consequence, the two enantiomers were well separated, and the optical purities (ee values) of the supernatant and eluant get up to 44% (corresponding to (S)-mandelic acid excess) and 85% (corresponding to (R

  20. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.