Science.gov

Sample records for acid amplification technologies

  1. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

  2. A collaborative study to establish the 1st WHO International Standard for human cytomegalovirus for nucleic acid amplification technology.

    PubMed

    Fryer, Jacqueline F; Heath, Alan B; Minor, Philip D

    2016-07-01

    Variability in the performance of nucleic acid amplification technology (NAT)-based assays presents a significant problem in the diagnosis and management of human cytomegalovirus (HCMV) infections. Here we describe a collaborative study to evaluate the suitability of candidate reference materials to harmonize HCMV viral load measurements in a wide range of NAT assays. Candidate materials comprised lyophilized Merlin virus, liquid Merlin virus, liquid AD169 virus, and purified HCMV Merlin DNA cloned into a bacterial artificial chromosome. Variability in the laboratory mean HCMV concentrations determined for virus samples across the different assays was 2 log10. Variability for the purified DNA sample was higher (>3 log10). The agreement between laboratories was markedly improved when the potencies of the liquid virus samples were expressed relative to the lyophilized virus candidate. In contrast, the agreement between laboratories for the purified DNA sample was not improved. Results indicated the suitability of the lyophilized Merlin virus preparation as the 1st WHO International Standard for HCMV for NAT. It was established in October 2010, with an assigned potency of 5 × 10(6) International Units (IU) (NIBSC code 09/162). It is intended to be used to calibrate secondary references, used in HCMV NAT assays, in IU.

  3. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    PubMed

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  4. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M.; Zhang, Kun

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  5. Higher specificity of nucleic acid sequence-based amplification isothermal technology than of real-time PCR for quantification of HIV-1 RNA on dried blood spots.

    PubMed

    Mercier-Delarue, Severine; Vray, Muriel; Plantier, Jean Christophe; Maillard, Theodora; Adjout, Zidan; de Olivera, Fabienne; Schnepf, Nathalie; Maylin, Sarah; Simon, Francois; Delaugerre, Constance

    2014-01-01

    Dried blood spots (DBS) are widely proposed as a plasma surrogate for monitoring antiretroviral treatment efficacy based on the HIV-1 RNA level (viral load [VL]) in resource-limited settings. Interfering coamplification of cell-associated HIV-1 DNA during reverse transcription (RT)-PCR can be avoided by using nucleic acid sequence-based amplification (NASBA) technology, which is based on an RNA template and isothermic conditions. We analyzed VL values obtained with DBS and plasma samples by comparing isothermic NASBA (NucliSENS EasyQ HIV-1 V2.0; bioMérieux) with real-time RT-PCR (Cobas TaqMan HIV-1 V2.0; Roche). Samples from 197 HIV-1-infected patients were tested (non-B subtypes in 51% of the cases). Nucleic acid extractions were performed by use of NucliSENS EasyMAG (bioMérieux) and Cobas AmpliPrep (Roche) before the NASBA and RT-PCR quantifications, respectively. Both quantification assays have lower limits of detection of 20 (1.3) and 800 (2.9) log10 copies/ml (log) in plasma and DBS, respectively. The mean (DBS minus plasma) differences were -0.39 and -0.46 log, respectively, for RT-PCR and NASBA. RT-PCR on DBS identified virological failure in 122 of 126 patients (sensitivity, 97%) and viral suppression in 58 of 70 patients (specificity, 83%), yielding 12 false-positive results (median, 3.2 log). NASBA on DBS identified virological failure in 85 of 96 patients (sensitivity, 89%) and viral suppression in 95 of 97 patients (specificity, 98%) and yielded 2 false-positive results (3.0 log for both). Both technologies detected HIV-1 RNA in DBS at a threshold of 800 copies/ml. This higher specificity of NASBA technology could avoid overestimation of poor compliance or the emergence of resistance when monitoring antiretroviral efficacy with the DBS method.

  6. Non-instrumented nucleic acid amplification assay

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Domingo, Gonzalo; Gerlach, Jay; Tang, Dennis; Harvey, Darrel; Talwar, Nick; Fichtenholz, Alex; van Lew, Bill; LaBarre, Paul

    2008-02-01

    We have developed components of a diagnostic disposable platform that has the dual purpose of providing molecular diagnostics at the point of care (POC) as well as stabilizing specimens for further analysis via a centralized surveillance system. This diagnostic is targeted for use in low-resource settings by minimally trained health workers. The disposable device does not require any additional instrumentation and will be almost as rapid and simple to use as a lateral flow strip test - yet will offer the sensitivity and specificity of nucleic acid amplification tests (NAATs). The low-cost integrated device is composed of three functional components: (1) a sample-processing subunit that generates clean and stabilized DNA from raw samples containing nucleic acids, (2) a NA amplification subunit, and (3) visual amplicon detection sub-unit. The device integrates chemical exothermic heating, temperature stabilization using phase-change materials, and isothermal nucleic acid amplification. The aim of developing this system is to provide pathogen detection with NAAT-level sensitivity in low-resource settings where there is no access to instrumentation. If a disease occurs, patients would be tested with the disposable in the field. A nucleic acid sample would be preserved within the spent disposable which could be sent to a central laboratory facility for further analysis if needed.

  7. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.

  8. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  9. Nucleic Acid Amplification Testing for Neisseria gonorrhoeae

    PubMed Central

    Whiley, David M.; Tapsall, John W.; Sloots, Theo P.

    2006-01-01

    Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review. PMID:16436629

  10. Classroom Amplification Technology: Theory and Practice.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.

    2000-01-01

    This article reviews some relevant events in the development of acoustical standards for classrooms, describes classroom challenges to providing clear acoustical signals to children in classrooms, and outlines amplification solutions to some of those classroom challenges. Solutions include personal amplification devices and use of signal-to-noise…

  11. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use.

  12. Nucleic acid amplification: Alternative methods of polymerase chain reaction

    PubMed Central

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md. Nur; Islam, Sumaiya; Chowdhury, Md. Alimuddin

    2013-01-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically. PMID:24302831

  13. Nucleic acid amplification: Alternative methods of polymerase chain reaction.

    PubMed

    Fakruddin, Md; Mannan, Khanjada Shahnewaj Bin; Chowdhury, Abhijit; Mazumdar, Reaz Mohammad; Hossain, Md Nur; Islam, Sumaiya; Chowdhury, Md Alimuddin

    2013-10-01

    Nucleic acid amplification is a valuable molecular tool not only in basic research but also in application oriented fields, such as clinical medicine development, infectious diseases diagnosis, gene cloning and industrial quality control. A comperehensive review of the literature on the principles, applications, challenges and prospects of different alternative methods of polymerase chain reaction (PCR) was performed. PCR was the first nucleic acid amplification method. With the advancement of research, a no of alternative nucleic acid amplification methods has been developed such as loop mediated isothermal amplification, nucleic acid sequence based amplification, strand displacement amplification, multiple displacement amplification. Most of the alternative methods are isothermal obviating the need for thermal cyclers. Though principles of most of the alternate methods are relatively complex than that of PCR, they offer better applicability and sensitivity in cases where PCR has limitations. Most of the alternate methods still have to prove themselves through extensive validation studies and are not available in commercial form; they pose the potentiality to be used as replacements of PCR. Continuous research is going on in different parts of the world to make these methods viable technically and economically.

  14. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  15. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  16. Application of a Non-amplification based Technology to Detect Invasive Fungal Pathogens

    PubMed Central

    Hsu, Joe L.; Binkley, Jon; Clemons, Karl V.; Stevens, David A.; Nicolls, Mark R.; Holodniy, Mark

    2014-01-01

    Current diagnostic techniques for fungal diseases could be improved with respect to sensitivity, specificity and timeliness. To address this clinical need, we adapted a non-amplification based nucleic acid detection technology to identify fungal pathogens. We demonstrate a high-specificity, detection sensitivity, reproducibility and multiplex capacity for detecting fungal strains. PMID:24359934

  17. Towards Improved Accuracy of Bordetella pertussis Nucleic Acid Amplification Tests

    PubMed Central

    2012-01-01

    In many clinical microbiology laboratories, nucleic acid amplification tests such as PCR have become the routine methods for the diagnosis of pertussis. While PCR has greatly increased the ability of laboratories to detect Bordetella pertussis infections, it has also been associated with false-positive results that can, given the tendency of B. pertussis to cause outbreaks, result in unnecessary and costly control measures. The species specificity of Bordetella gene targets and their number of copies per genome greatly impact the performance characteristics of nucleic acid amplification tests for B. pertussis. It is crucial that laboratorians recognize these characteristics, to limit false-positive test results and prevent pseudo-outbreaks. PMID:22442315

  18. Increased amplification success from forensic samples with locked nucleic acids.

    PubMed

    Ballantyne, Kaye N; van Oorschot, Roland A H; Mitchell, R John

    2011-08-01

    Inadequate sample quantities and qualities can commonly result in poor DNA amplification success rates for forensic case samples. In some instances, modifying the PCR protocol or components may assist profiling by overcoming inhibition, or reducing the threshold required for successful amplification and detection. Incorporation of locked nucleic acids (LNAs) into PCR primers has previously been shown to increase amplification success for a range of non-forensic sample types and applications. To investigate their use in a forensic context, the PCR primers for four commonly used STR loci have been redesigned to include LNA bases. The modified LNA primers provided significantly increased amplification success when compared to standard DNA primers, with both high-quality buccal samples and simulated forensic casework samples. Peak heights increased by as much as 5.75× for the singleplex amplifications. When incorporated into multiplexes, the LNA primers continued to outperform standard DNA primers, with increased ease of optimisation, and increased amplification success. The use of LNAs in PCR primers can greatly assist the profiling of a range of samples, and increase success rates from challenging forensic samples.

  19. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  20. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    PubMed

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  1. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  2. Fluorescence detection in Lab-on-a-chip systems using ultrafast nucleic acid amplification methods

    NASA Astrophysics Data System (ADS)

    Gransee, Rainer; Schneider, Tristan; Elyorgun, Deniz; Strobach, Xenia; Schunck, Tobias; Gatscha, Theresia; Höth, Julian

    2014-05-01

    Today, nucleic amplification plays a key role in modern molecular biology allowing fast and specific laboratory diagnostics testing. An ultrafast microfluidic module (allowing 30 polymeric chain reaction (PCR) cycles in 6 minutes) based on an oscillating fluid plug concept was previously developed[1]. This system allows the amplification of native genomic deoxyribonucleic acid molecules (DNA) even from whole blood samples but still lacks some functionality compared to commercial bench top systems. This work presents the actual status of the renewed and advanced system, permitting the automated optical detection of not only the fluid plug position but also fluorescence detection. The system uses light emitting diodes (LED) for illumination and a low cost CMOS web-camera for optical detection. Image data processing allows the automated process control of the overall system components. Therefore, the system enables the performance of rapid and robust nucleic acid amplifications together with the integration of real time measurement technology. This allows the amplification and simultaneous quantification of the DNA molecules. The possibility to integrate swift nucleic amplification and optical detection into complex sample-to-answer analysis platforms opens up new pathways towards fast and transportable low-cost point of care devices.

  3. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection.

    PubMed

    Tang, Ruihua; Yang, Hui; Gong, Yan; You, MinLi; Liu, Zhi; Choi, Jane Ru; Wen, Ting; Qu, Zhiguo; Mei, Qibing; Xu, Feng

    2017-03-29

    Nucleic acid testing (NAT) has been widely used for disease diagnosis, food safety control and environmental monitoring. At present, NAT mainly involves nucleic acid extraction, amplification and detection steps that heavily rely on large equipment and skilled workers, making the test expensive, time-consuming, and thus less suitable for point-of-care (POC) applications. With advances in paper-based microfluidic technologies, various integrated paper-based devices have recently been developed for NAT, which however require off-chip reagent storage, complex operation steps and equipment-dependent nucleic acid amplification, restricting their use for POC testing. To overcome these challenges, we demonstrate a fully disposable and integrated paper-based sample-in-answer-out device for NAT by integrating nucleic acid extraction, helicase-dependent isothermal amplification and lateral flow assay detection into one paper device. This simple device allows on-chip dried reagent storage and equipment-free nucleic acid amplification with simple operation steps, which could be performed by untrained users in remote settings. The proposed device consists of a sponge-based reservoir and a paper-based valve for nucleic acid extraction, an integrated battery, a PTC ultrathin heater, temperature control switch and on-chip dried enzyme mix storage for isothermal amplification, and a lateral flow test strip for naked-eye detection. It can sensitively detect Salmonella typhimurium, as a model target, with a detection limit of as low as 10(2) CFU ml(-1) in wastewater and egg, and 10(3) CFU ml(-1) in milk and juice in about an hour. This fully disposable and integrated paper-based device has great potential for future POC applications in resource-limited settings.

  4. Ligation with nucleic acid sequence-based amplification.

    PubMed

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M; Artenstein, Andrew W; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays.

  5. Instrument-free nucleic acid amplification assays for global health settings

    NASA Astrophysics Data System (ADS)

    LaBarre, Paul; Boyle, David; Hawkins, Kenneth; Weigl, Bernhard

    2011-06-01

    Many infectious diseases that affect global health are most accurately diagnosed through nucleic acid amplification and detection. However, existing nucleic acid amplification tests are too expensive and complex for most low-resource settings. The small numbers of centralized laboratories that exist in developing countries tend to be in urban areas and primarily cater to the affluent. In contrast, rural area health care facilities commonly have only basic equipment and health workers have limited training and little ability to maintain equipment and handle reagents.1 Reliable electric power is a common infrastructure shortfall. In this paper, we discuss a practical approach to the design and development of non-instrumented molecular diagnostic tests that exploit the benefits of isothermal amplification strategies. We identify modular instrument-free technologies for sample collection, sample preparation, amplification, heating, and detection. By appropriately selecting and integrating these instrument-free modules, we envision development of an easy to use, infrastructure independent diagnostic test that will enable increased use of highly accurate molecular diagnostics at the point of care in low-resource settings.

  6. Instrument-free nucleic acid amplification assays for global health settings

    PubMed Central

    LaBarre, Paul; Boyle, David; Hawkins, Kenneth; Weigl, Bernhard

    2014-01-01

    Many infectious diseases that affect global health are most accurately diagnosed through nucleic acid amplification and detection. However, existing nucleic acid amplification tests are too expensive and complex for most low-resource settings. The small numbers of centralized laboratories that exist in developing countries tend to be in urban areas and primarily cater to the affluent. In contrast, rural area health care facilities commonly have only basic equipment and health workers have limited training and little ability to maintain equipment and handle reagents.1 Reliable electric power is a common infrastructure shortfall. In this paper, we discuss a practical approach to the design and development of non-instrumented molecular diagnostic tests that exploit the benefits of isothermal amplification strategies. We identify modular instrument-free technologies for sample collection, sample preparation, amplification, heating, and detection. By appropriately selecting and integrating these instrument-free modules, we envision development of an easy to use, infrastructure independent diagnostic test that will enable increased use of highly accurate molecular diagnostics at the point of care in low-resource settings. PMID:25089171

  7. RNA internal standard synthesis by nucleic acid sequence-based amplification for competitive quantitative amplification reactions.

    PubMed

    Lo, Wan-Yu; Baeumner, Antje J

    2007-02-15

    Nucleic acid sequence-based amplification (NASBA) reactions have been demonstrated to successfully synthesize new sequences based on deletion and insertion reactions. Two RNA internal standards were synthesized for use in competitive amplification reactions in which quantitative analysis can be achieved by coamplifying the internal standard with the wild type sample. The sequences were created in two consecutive NASBA reactions using the E. coli clpB mRNA sequence as model analyte. The primer sequences of the wild type sequence were maintained, and a 20-nt-long segment inside the amplicon region was exchanged for a new segment of similar GC content and melting temperature. The new RNA sequence was thus amplifiable using the wild type primers and detectable via a new inserted sequence. In the first reaction, the forwarding primer and an additional 20-nt-long sequence was deleted and replaced by a new 20-nt-long sequence. In the second reaction, a forwarding primer containing as 5' overhang sequence the wild type primer sequence was used. The presence of pure internal standard was verified using electrochemiluminescence and RNA lateral-flow biosensor analysis. Additional sequence deletion in order to shorten the internal standard amplicons and thus generate higher detection signals was found not to be required. Finally, a competitive NASBA reaction between one internal standard and the wild type sequence was carried out proving its functionality. This new rapid construction method via NASBA provides advantages over the traditional techniques since it requires no traditional cloning procedures, no thermocyclers, and can be completed in less than 4 h.

  8. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    PubMed

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications.

  9. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

    PubMed Central

    Linnes, J. C.; Rodriguez, N. M.; Liu, L.

    2016-01-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  10. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification.

    PubMed

    Mauk, Michael G; Liu, Changchun; Song, Jinzhao; Bau, Haim H

    2015-10-20

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of "lab on a chip" NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase ("membrane") to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 10³ virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  11. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    PubMed Central

    Mauk, Michael G.; Liu, Changchun; Song, Jinzhao; Bau, Haim H.

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction)-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1) nucleic acids (NAs) are extracted from relatively large (~mL) volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane”) to capture sample NAs in a flow-through, filtration mode; (2) NAs captured on the membrane are isothermally (~65 °C) amplified; (3) amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4) paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD) better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed. PMID:27600235

  12. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  13. Evaluating Sound Field Amplification Technology in New Brunswick Schools

    ERIC Educational Resources Information Center

    Rubin, Rhonda; Aquino-Russell, Catherine; Flagg-Williams, Joan

    2007-01-01

    (Purpose) The purpose of this study was to investigate the effects of classroom sound field amplification on communication in kindergarten through grade 3 classrooms. (Methodology) Sixty classrooms were involved in the study; half of the classrooms were provided with sound field amplification. The flow of communication was measured through…

  14. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.

    PubMed

    Hu, Juan; Zhang, Chun-yang

    2010-11-01

    Detection of specific DNA sequences is important to molecular biology research and clinical diagnostics. To improve the sensitivity of surface-enhanced Raman scattering spectroscopy (SERS), a variety of signal amplification methods has been developed, including Raman-active-dye, polymerase chain reaction (PCR) technology, molecular beacon, SERS-active substrates, and SERS-tag. However, the combination of rolling circle amplification (RCA) with SERS for nucleic acid detection has not been reported. Herein, we describe a new approach for nucleic acid detection by the combination of RCA reaction with SERS. Because of the binding of abundance repeated sequences of RCA products with gold nanoparticle (Au NP) and Rox-modified detection probes, SERS signal is significantly amplified and the detection limit of 10.0 pM might be achieved. The sensitivity of RCA-based SERS has increased by as much as 3 orders of magnitude as compared to PCR-based SERS and is also comparable with or even exceeds that of both RCA-based electrochemical and RCA-based fluorescent methods. This RCA-based SERS might discriminate perfect matched target DNA from 1-base mismatched DNA with high selectivity. The high sensitivity and selectivity of RCA-based SERS makes it a potential tool for early diagnosis of gene-related disease and also offers a great promise for multiplexed assays with DNA microarrays.

  15. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  16. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  17. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    PubMed

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-07

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity.

  18. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  19. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    PubMed

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs.

  20. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  1. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene.

  2. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices

    PubMed Central

    Selck, David A.

    2016-01-01

    Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental

  3. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.

    PubMed

    Selck, David A; Ismagilov, Rustem F

    2016-01-01

    Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental

  4. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for

  5. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification

    PubMed Central

    Shah, Kamal G.; Guelig, Dylan; Diesburg, Steven; Buser, Joshua; Burton, Robert; LaBarre, Paul; Richards-Kortum, Rebecca; Weigl, Bernhard

    2015-01-01

    Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters. PMID:26430883

  6. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    PubMed

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings.

  7. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  8. Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout.

    PubMed

    Kong, Janay E; Wei, Qingshan; Tseng, Derek; Zhang, Jingzi; Pan, Eric; Lewinski, Michael; Garner, Omai B; Ozcan, Aydogan; Di Carlo, Dino

    2017-03-02

    Key challenges with point-of-care (POC) nucleic acid tests include achieving a low-cost, portable form factor, and stable readout, while also retaining the same robust standards of benchtop lab-based tests. We addressed two crucial aspects of this problem, identifying a chemical additive, hydroxynaphthol blue, that both stabilizes and significantly enhances intercalator-based fluorescence readout of nucleic acid concentration, and developing a cost-effective fiber-optic bundle-based fluorescence microplate reader integrated onto a mobile phone. Using loop-mediated isothermal amplification on lambda DNA we achieve a 69-fold increase in signal above background, 20-fold higher than the gold standard, yielding an overall limit of detection of 25 copies/μL within an hour using our mobile-phone-based platform. Critical for a point-of-care system, we achieve a >60% increase in fluorescence stability as a function of temperature and time, obviating the need for manual baseline correction or secondary calibration dyes. This field-portable and cost-effective mobile-phone-based nucleic acid amplification and readout platform is broadly applicable to other real-time nucleic acid amplification tests by similarly modulating intercalating dye performance and is compatible with any fluorescence-based assay that can be run in a 96-well microplate format, making it especially valuable for POC and resource-limited settings.

  9. Diagnosis of mycobacterial infections by nucleic acid amplification: 18-month prospective study.

    PubMed Central

    Kirschner, P; Rosenau, J; Springer, B; Teschner, K; Feldmann, K; Böttger, E C

    1996-01-01

    We have investigated the use of DNA amplification by PCR for the detection of mycobacteria in clinical specimens, with the gene encoding the 16S rRNA as a target. Following generic amplification of mycobacterial nucleic acids, screening was done with genus-specific probe; this was followed by species differentiation by use of highly discriminating probes or nucleic acid sequencing. In a prospective 18-month evaluation, criteria to select specimens for PCR analysis were defined. Of a total of 8,272 specimens received, 729 samples satisfied the criteria and were subjected to DNA amplification. Clinical specimens included material from the respiratory tract (sputa and bronchial washings), aspirates, biopsies, and various body fluids (cerebrospinal, pleural, peritoneal, and gastric fluids). After resolution of discrepant results, the sensitivity of the PCR assay was 84.5%, the specificity was 99.5%, the positive predictive value was 97.6%, and the negative predictive value was 96.4%. The sensitivity and negative predictive value of culture (with a combination of broth and solid media) were 77.5 and 94.8%, respectively. In conclusion, this PCR assay provides an efficient strategy to detect and identify multiple mycobacterial species and performs well in comparison with culture. PMID:8789005

  10. Nuclemeter: A Reaction-Diffusion Based Method for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    PubMed Central

    Liu, Changchun; Sadik, Mohamed M.; Mauk, Michael G.; Edelstein, Paul H.; Bushman, Frederic D.; Gross, Robert; Bau, Haim H.

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  11. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS).

    PubMed

    Sharma, Nidhi; Hoshika, Shuichi; Hutter, Daniel; Bradley, Kevin M; Benner, Steven A

    2014-10-13

    Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists.

  12. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification.

    PubMed

    Smith, Matthew C; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P

    2007-08-29

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R2 = 0.948) to fluorescein gradients ranging from 0.5 to 10 microM was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction.

  13. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-10-01

    We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond™ Nucleic Acid Dye, GelGreen™, GelRed™, RedSafe™, SYBR(®) Green I, and EvaGreen™ were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR(®) Green I; 99.6% for RedSafe™; 99.4% for EvaGreen™; 52.7% for Diamond™ Dye; 50.6% for GelRed™, and; could not be determined for GelGreen™. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t-test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreen(TM) at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen™ (1X), although with reduced amplification products. RedSafe™ (1X), Diamond™ Dye (1X), and SYBR(®) Green I (1X) all exhibited varying degrees of locus drop-out with GelRed™ generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection.

  14. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    PubMed

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  15. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    PubMed

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  16. Genomic detection of human immunodeficiency virus (HIV) by nucleic acid amplification test in a frequent platelet donor during the pre-seroconversion period.

    PubMed

    Pondé, Robério Amorim de Almeida

    2011-11-01

    Since serological donor-screening tests for HIV were introduced in 1985, the safety of donated blood components has improved dramatically. However, these tests do not completely prevent the risk of transfusion-associated HIV infection related to the use of blood donated during the pre-seroconversion window period. Testing based on nucleic acid amplification is being implemented to screen for HIV-infected blood donated during this period, which has reduced the probability of transmitting HIV through transfusion by shortening the window period. This article describes a case of acute HIV-1 infection, detected using a nucleic acid amplification test (NAT) in a repeat blood donor who donated during the pre-seroconversion window period and whose antigen and anti-HIV antibody expression was observed after molecular marker detection. In addition, the possible route of infection is discussed based on the patient's history, and finally, the need for NAT technology for blood donor screening is emphasized.

  17. Systematic Evaluation of Different Nucleic Acid Amplification Assays for Cytomegalovirus Detection: Feasibility of Blood Donor Screening.

    PubMed

    Vollmer, T; Knabbe, C; Dreier, J

    2015-10-01

    Acute primary cytomegalovirus (CMV) infections, which commonly occur asymptomatically among blood donors, represent a significant risk for serious morbidity in immunocompromised patients (a major group of transfusion recipients). We implemented a routine CMV pool screening procedure for plasma for the identification of CMV DNA-positive donors, and we evaluated the sensitivities and performance of different CMV DNA amplification systems. Minipools (MPs) of samples from 18,405 individual donors (54,451 donations) were screened for CMV DNA using the RealStar CMV PCR assay (Altona Diagnostic Technologies), with a minimum detection limit of 11.14 IU/ml. DNA was extracted with a high-volume protocol (4.8 ml, Chemagic Viral 5K kit; PerkinElmer) for blood donor pool screening (MP-nucleic acid testing [NAT]) and with the Nuclisens easyMAG system (0.5 ml; bioMérieux) for individual donation (ID)-NAT. In total, six CMV DNA-positive donors (0.03%) were identified by routine CMV screening, with DNA concentrations ranging from 4.35 × 10(2) to 4.30 × 10(3) IU/ml. Five donors already showed seroconversion and detectable IgA, IgM, and/or IgG antibody titers (IgA(+)/IgM(+)/IgG(-) or IgA(+)/IgM(+)/IgG(+)), and one donor showed no CMV-specific antibodies. Comparison of three commercial assays, i.e., the RealStar CMV PCR kit, the Sentosa SA CMV quantitative PCR kit (Vela Diagnostics), and the CMV R-gene PCR kit (bioMérieux), for MP-NAT and ID-NAT showed comparably good analytical sensitivities, ranging from 10.23 to 11.14 IU/ml (MP-NAT) or from 37.66 to 57.94 IU/ml (ID-NAT). The clinical relevance of transfusion-associated CMV infections requires further investigation, and the evaluated methods present powerful basic tools providing sensitive possibilities for viral testing. The application of CMV MP-NAT facilitated the identification of one donor with a window-phase donation during acute primary CMV infection.

  18. Multiplex Nucleic Acid Amplification Test for Diagnosis of Dengue Fever, Malaria, and Leptospirosis

    PubMed Central

    Waggoner, Jesse J.; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K.; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz

    2014-01-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens. PMID:24671788

  19. Multiplex nucleic acid amplification test for diagnosis of dengue fever, malaria, and leptospirosis.

    PubMed

    Waggoner, Jesse J; Abeynayake, Janaki; Balassiano, Ilana; Lefterova, Martina; Sahoo, Malaya K; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Gresh, Lionel; Balmaseda, Angel; Harris, Eva; Banaei, Niaz; Pinsky, Benjamin A

    2014-06-01

    Dengue, leptospirosis, and malaria are among the most common etiologies of systemic undifferentiated febrile illness (UFI) among travelers to the developing world, and these pathogens all have the potential to cause life-threatening illness in returned travelers. The current study describes the development of an internally controlled multiplex nucleic acid amplification test for the detection of dengue virus (DENV) and Leptospira and Plasmodium species, with a specific callout for Plasmodium falciparum (referred to as the UFI assay). During analytical evaluation, the UFI assay displayed a wide dynamic range and a sensitive limit of detection for each target, including all four DENV serotypes. In a clinical evaluation including 210 previously tested samples, the sensitivities of the UFI assay were 98% for DENV (58/59 samples detected) and 100% for Leptospira and malaria (65/65 and 20/20 samples, respectively). Malaria samples included all five Plasmodium species known to cause human disease. The specificity of the UFI assay was 100% when evaluated with a panel of 66 negative clinical samples. Furthermore, no amplification was observed when extracted nucleic acids from related pathogens were tested. Compared with whole-blood samples, the UFI assay remained positive for Plasmodium in 11 plasma samples from patients with malaria (parasitemia levels of 0.0037 to 3.4%). The syndrome-based design of the UFI assay, combined with the sensitivities of the component tests, represents a significant improvement over the individual diagnostic tests available for these pathogens.

  20. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  1. Intraoperative diagnosis of sentinel lymph node metastases in breast cancer treatment with one-step nucleic acid amplification assay (OSNA)

    PubMed Central

    Szychta, Paweł; Westfal, Bogusław; Maciejczyk, Rafał; Smolarz, Beata; Romanowicz, Hanna; Krawczyk, Tomasz

    2016-01-01

    Introduction The aim of the study was to evaluate the clinical usefulness of a one-step nucleic acid amplification assay (OSNA) for intraoperative detection of metastases to sentinel lymph nodes (SLNs) in comparison to examination of frozen sections, and to summarize the results of previous studies. Material and methods We enrolled 98 patients aged 58.13 ±10.74 years treated surgically for breast cancer, and 99 biopsies of SLNs were followed by analysis of 105 SLNs. The central 1 mm slice of SLN was used for examination of frozen sections, whereas 2 outer slices of SLNs were analyzed intraoperatively with OSNA. Detection of isolated tumor cells (ITC), micrometastases or macrometastases with OSNA extended surgery to axillary lymph node dissection. Congruency of results was assessed between OSNA and examination of frozen sections. Results One-step nucleic acid amplification assay detected metastases in 29/105 SLNs in surgery of 27/99 breasts, including ITC in 3/29 SLNs, micrometastases in 12/29 and macrometastases in 14/29. One-step nucleic acid amplification assay detected significantly more metastases to SLNs than examination of frozen sections (p < 0.0001). All 8 inconsistent results were positive in OSNA and negative in examination of frozen sections; ITC were identified in 2/8 SLNs and micrometastases in 6/8 SLNs. Sensitivity for OSNA was calculated as 100%, specificity as 90.47%, and κ was 79.16%. Conclusions One-step nucleic acid amplification assay analysis allows rapid and quantitative detection of mRNA CK19 with high specificity and a low rate of false positives. One-step nucleic acid amplification assay is a reliable tool for intraoperative diagnosis of whole SLNs during surgery of breast cancer. One-step nucleic acid amplification assay minimizes the need for secondary surgery and avoids delays in the adjuvant treatment. PMID:27904514

  2. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    PubMed

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  3. Real-Time Nucleic Acid Sequence-Based Amplification Assay for Detection of Hepatitis A Virus

    PubMed Central

    Abd El Galil, Khaled H.; El Sokkary, M. A.; Kheira, S. M.; Salazar, Andre M.; Yates, Marylynn V.; Chen, Wilfred; Mulchandani, Ashok

    2005-01-01

    A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5′ noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water. PMID:16269748

  4. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.

    PubMed

    Ying, Na; Ju, Chuanjing; Li, Zhongyi; Liu, Wensen; Wan, Jiayu

    2017-03-01

    In this study, a new lateral flow nucleic acid biosensor (LFNAB) using hybridization chain reaction (HCR) for signal amplification was developed for visual detection of nucleic acids with high sensitivity and low cost. A "sandwich-type" detection strategy was employed in our design. The sandwich system of capture probe (CP)/target DNA/reporter probe (RP)-HCR complexes was fabricated as the sensing platform. As the initiator strand, reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin, and determined whether long nicked DNA polymers were formed. The biotin-labeled double-strand DNA polymers then introduced numerous Streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the lateral flow device. The CP/target DNA/RP-HCR complexes were captured on the test zone by the specific reaction between anti-Fam monoclonal antibody (anti-Fam mAb) on the test zone and Fam of the complexes. The accumulation of AuNPs on the test zone of the biosensor enabled the visual detection of specific sequences. The detection limit of specific DNA was as low as 1.76pM, which was about 2 orders lower than that of the LFNAB without HCR amplification. And the detection limit of Salmonella was 3×10(3)cfumL(-1). In conclusion, this visual detection system, HCR-LFNAB, is suitable for non-specialist personnel and point-of-care (POC) diagnosis in low-resource settings.

  5. One-step nucleic acid amplification (OSNA): where do we go with it?

    PubMed

    Tamaki, Yasuhiro

    2017-02-01

    The one-step nucleic acid amplification (OSNA) assay was initially developed for the intraoperative assessment of sentinel lymph node metastases in breast cancer. This assay measures cytokeratin 19 (CK19) mRNA copy number and is widely used in hospitals. The results of the IBCSG 23-01, ACOSOG Z0011, and AMAROS trials demonstrated that no further axillary dissection is required for patients with sentinel lymph nodes that tested positive for cancer, which has led to a decreasing trend in the need for intraoperative assessment of lymph nodes. Here, I review studies relevant to OSNA and discuss perspectives on future applications of OSNA in cancer surgery. The studies reviewed were identified by carrying out a search on PubMed for all articles pertaining to OSNA and published prior to the end of June 2016 using the keywords "OSNA" or "one-step nucleic acid amplification" in the title or abstract. Method comparison studies between OSNA and pathological assessment for the detection of lymph node metastasis in breast cancer revealed that in a pooled assessment OSNA had a high specificity (94.8 %), high concordant rate (93.8 %), and a negative predictive value (97.6 %). Similar results have been found for gastric, colorectal, and lung cancers in multicenter studies. These results demonstrate that OSNA can serve as an alternative method to pathological assessment for examining lymph node metastasis. Multicenter prospective studies with a large sample size are needed to definitively reveal the superiority of OSNA over pathological assessment to predict prognosis. Technical refinements to improve the assay are essential to its further development as a new standard for testing in place of pathological examination.

  6. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids.

    PubMed

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R; Malamud, Daniel; Corstjens, Paul L A M; Bau, Haim H

    2010-08-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids.

  7. Clinical impact of switching conventional enzyme immunoassay with nucleic acid amplification test for suspected Clostridium difficile-associated diarrhea.

    PubMed

    Johnson, Steven W; Kanatani, Meganne; Humphries, Romney M; Uslan, Daniel Z

    2013-04-01

    The impact of a new Clostridium difficile nucleic acid amplification test (NAAT) on antibiotic utilization in patients with suspected C difficile infection was assessed. This single-center, cross-sectional study of 270 patients demonstrated that the use of NAAT decreased antibiotic expenditure by reducing prolonged empiric days of therapy in these patients.

  8. [Progress of improving blood donor screening by nucleic acid technology].

    PubMed

    Cai, Li-Na; Chen, Bao-An

    2014-08-01

    With increasing application of blood transfusion, the research of side-effects such as transfusion-transmitted infections (TTIs) became more and more important. Up to the 90's of the 20th century, the first blood donor screening for pathogens transfected from blood transfusion entirely depended on serological test. At this time, the detection of virus were performed mainly by using method of detecting antibody, except hepatitis B virus (HBV) can be detected by hepatitis B surface antigen (HBsAg). Now, the molecular technologies, such as the polymerase chain reaction (PCR), have been used in clinic. These technologic methods can provide capability of detection for blood donor screening and reduced possibility of infection from blood transfusion. This review summarises the development of nucleic acid amplification technology and describes its current state.

  9. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip.

    PubMed

    Shen, Feng; Davydova, Elena K; Du, Wenbin; Kreutz, Jason E; Piepenburg, Olaf; Ismagilov, Rustem F

    2011-05-01

    In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader

  10. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  11. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM)

    PubMed Central

    Harshman, Dustin K.; Reyes, Roberto; Park, Tu San; You, David J.; Song, Jae-Young; Yoon, Jeong-Yeol

    2013-01-01

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 sec/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/µL or 105 genomes/µL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity. PMID:24140832

  12. Enhanced nucleic acid amplification with blood in situ by wire-guided droplet manipulation (WDM).

    PubMed

    Harshman, Dustin K; Reyes, Roberto; Park, Tu San; You, David J; Song, Jae-Young; Yoon, Jeong-Yeol

    2014-03-15

    There are many challenges facing the use of molecular biology to provide pertinent information in a timely, cost effective manner. Wire-guided droplet manipulation (WDM) is an emerging format for conducting molecular biology with unique characteristics to address these challenges. To demonstrate the use of WDM, an apparatus was designed and assembled to automate polymerase chain reaction (PCR) on a reprogrammable platform. WDM minimizes thermal resistance by convective heat transfer to a constantly moving droplet in direct contact with heated silicone oil. PCR amplification of the GAPDH gene was demonstrated at a speed of 8.67 s/cycle. Conventional PCR was shown to be inhibited by the presence of blood. WDM PCR utilizes molecular partitioning of nucleic acids and other PCR reagents from blood components, within the water-in-oil droplet, to increase PCR reaction efficiency with blood in situ. The ability to amplify nucleic acids in the presence of blood simplifies pre-treatment protocols towards true point-of-care diagnostic use. The 16s rRNA hypervariable regions V3 and V6 were amplified from Klebsiella pneumoniae genomic DNA with blood in situ. The detection limit of WDM PCR was 1 ng/μL or 10(5)genomes/μL with blood in situ. The application of WDM for rapid, automated detection of bacterial DNA from whole blood may have an enormous impact on the clinical diagnosis of infections in bloodstream or chronic wound/ulcer, and patient safety and morbidity.

  13. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology.

    PubMed

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10(-3) for bcr1 and bcr3 and 10(-)2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL.

  14. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology

    PubMed Central

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10−3 for bcr1 and bcr3 and 10−2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  15. A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.

    PubMed

    Li, Dandan; Cheng, Wei; Yan, Yurong; Zhang, Ye; Yin, Yibing; Ju, Huangxian; Ding, Shijia

    2016-01-01

    A functional nucleic acid-based amplification machine was designed for simple and label-free ultrasensitive colorimetric biosensing of microRNA (miRNA). The amplification machine was composed of a complex of trigger template and C-rich DNA modified molecular beacon (MB) and G-rich DNA (GDNA) as the probe, polymerase and nicking enzyme, and a dumbbell-shaped amplification template. The presence of target miRNA triggered MB mediated strand displacement to cyclically release nicking triggers, which led to a toehold initiated rolling circle amplification to produce large amounts of GDNAs. The formed GDNAs could stack with hemin to form G-quadruplex/hemin DNAzyme, a well-known horseradish peroxidase (HRP) mimic, for catalyzing a colorimetric reaction. The modified MB improved the stringent target recognition and reduced background signal. The proposed sensing strategy showed very high sensitivity and selectivity with a wide dynamic range from 10 aM to 1.0 nM, and enabled successful visual analysis of trace amount of miRNA in real sample by the naked eye. This rapid and highly efficient signal amplification strategy provided a simple and sensitive platform for miRNA detection. It would be a versatile and powerful tool for clinical molecular diagnostics.

  16. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  17. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  18. Multiplex-microsphere-quantitative polymerase chain reaction: nucleic acid amplification and detection on microspheres.

    PubMed

    Liang, Fang; Lai, Richard; Arora, Neetika; Zhang, Kang Liang; Yeh, Che-Cheng; Barnett, Graeme R; Voigt, Paul; Corrie, Simon R; Barnard, Ross T

    2013-01-01

    We report the development of a new system to monitor the amplification of nucleic acids on microspheres. This was realized by the design of (i) a "universal" oligonucleotide "tagged" polymerase chain reaction (PCR) forward primer, (ii) a sensor sequence complementary to the universal sequence on the forward PCR primer modified with a fluorescent dye, and (iii) a universal oligonucleotide coupled to Luminex microspheres. The PCR takes place with the microspheres present in the reaction tube. With the consumption of the universal oligonucleotide tagged forward primer, the fluorescently labeled sequences can bind to the universal oligonucleotide on the microspheres. We tested the microsphere quantitative PCR system with up to three different target genes (Neisseria meningitides porA and ctrA and influenza A M gene segment) as templates in a single PCR tube. The analytical sensitivity of this quantitative PCR system was tested and compared with the TaqMan system. The multiplex-microsphere-quantitative PCR system does not require design of unique internal probes for each target and has potential for a high degree of multiplexing, greater than the limited multiplexing achievable with current real-time protocols.

  19. Use of Nucleic Acid Amplification Tests in Tuberculosis Patients in California, 2010–2013

    PubMed Central

    Peralta, Gianna; Barry, Pennan

    2016-01-01

    Background. Nucleic acid amplification tests (NAATs) have been used as a diagnostic tool for tuberculosis (TB) in the United States for many years. We sought to assess NAAT use in TB patients in California during a period of time when NAAT availability increased throughout the world. Methods. We conducted a retrospective review of surveillance data from 6051 patients with culture-confirmed pulmonary TB who were reported to the California TB registry during 2010–2013. Results. Only 2336 of 6051 (39%) TB patients had a NAAT for diagnosis before culture results. Although 90% (N = 2101) with NAAT had positive test results, 9% (N = 217) had falsely negative NAAT results, and 0.8% (N = 18) had indeterminate NAAT results. The median time from specimen collection to TB treatment initiation was shorter when NAAT was used (3 vs 14 days, P < .0001), and patients with a positive NAAT result initiated treatment earlier than patients with a falsely negative result (1 vs 11 days from NAAT report, P < .0001). We confirmed the increased sensitivity of NAAT compared with acid-fast bacilli (AFB) smear microscopy in our study population; 92 of 145 AFB smear-negative patients had positive NAATs. Median time from specimen collection to NAAT result report differed by health jurisdiction, from 1 to 11 working days. Conclusions. Increased use of NAATs in diagnosis of pulmonary TB could decrease the time-to-treatment initiation and consequently decrease transmission. However, differential use and access to NAAT may prevent full realization of NAAT benefits in California. PMID:27957506

  20. Loop-Mediated Isothermal Amplification (LAMP): Emergence As an Alternative Technology for Herbal Medicine Identification

    PubMed Central

    Li, Jing-jian; Xiong, Chao; Liu, Yue; Liang, Jun-song; Zhou, Xing-wen

    2016-01-01

    Correct identification of medicinal plant ingredients is essential for their safe use and for the regulation of herbal drug supply chain. Loop-mediated isothermal amplification (LAMP) is a recently developed approach to identify herbal medicine species. This novel molecular biology technique enables timely and accurate testing, especially in settings where infrastructures to support polymerase chain reaction facilities are lacking. Studies that used this method have altered our view on the extent and complexity of herbal medicine identification. In this review, we give an introduction into LAMP analysis, covers the basic principles and important aspects in the development of LAMP analysis method. Then we presented a critical review of the application of LAMP-based methods in detecting and identifying raw medicinal plant materials and their processed products. We also provide a practical standard operating procedure (SOP) for the utilization of the LAMP protocol in herbal authentication, and consider the prospects of LAMP technology in the future developments of herbal medicine identification and the challenges associated with its application. PMID:28082999

  1. Loop-Mediated Isothermal Amplification (LAMP): Emergence As an Alternative Technology for Herbal Medicine Identification.

    PubMed

    Li, Jing-Jian; Xiong, Chao; Liu, Yue; Liang, Jun-Song; Zhou, Xing-Wen

    2016-01-01

    Correct identification of medicinal plant ingredients is essential for their safe use and for the regulation of herbal drug supply chain. Loop-mediated isothermal amplification (LAMP) is a recently developed approach to identify herbal medicine species. This novel molecular biology technique enables timely and accurate testing, especially in settings where infrastructures to support polymerase chain reaction facilities are lacking. Studies that used this method have altered our view on the extent and complexity of herbal medicine identification. In this review, we give an introduction into LAMP analysis, covers the basic principles and important aspects in the development of LAMP analysis method. Then we presented a critical review of the application of LAMP-based methods in detecting and identifying raw medicinal plant materials and their processed products. We also provide a practical standard operating procedure (SOP) for the utilization of the LAMP protocol in herbal authentication, and consider the prospects of LAMP technology in the future developments of herbal medicine identification and the challenges associated with its application.

  2. Lyophilized Visually Readable Loop-Mediated Isothermal Reverse Transcriptase Nucleic Acid Amplification Test for Detection Ebola Zaire RNA.

    PubMed

    Carter, Christoph; Akrami, Kevan; Hall, Drew; Smith, Davey; Aronoff-Spencer, Eliah

    2017-02-24

    Recent viral outbreaks highlight the need for reliable, yet broadly deployable diagnostics for detection of epidemic and emerging pathogens. In this study we designed and optimized methods to visually detect viral nucleic acid by isothermal amplification and SYBR dye intercalation. We designed and tested loop-mediated isothermal amplification (LAMP) primers and lyophilized reactions to optimize the detection of Zaire Ebola Virus (ZEBOV) and further evolved the LAMP platform to allow room-temperature storage for deployment in resource limited settings. Our results demonstrated excellent sensitivity and specificity for viral nucleic acid sequences with lower limits of detection of less than 100 copies. Moreover, lyophilized reaction mixtures retained activity for prolonged periods under dry conditions at room temperature. This approach offers a way for detection of emerging viruses in resource limited settings.

  3. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP)

    PubMed Central

    Poole, Catherine B.; Li, Zhiru; Alhassan, Andy; Guelig, Dylan; Diesburg, Steven; Tanner, Nathan A.; Zhang, Yinhua; Evans, Thomas C.; LaBarre, Paul; Wanji, Samuel; Burton, Robert A.; Carlow, Clotilde K. S.

    2017-01-01

    Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs. PMID:28199317

  4. A sensitive SERS assay for detecting proteins and nucleic acids using a triple-helix molecular switch for cascade signal amplification.

    PubMed

    Ye, Sujuan; Wu, Yanying; Zhang, Wen; Li, Na; Tang, Bo

    2014-08-25

    A novel surface-enhanced Raman scattering (SERS) detection system is developed for proteins and nucleic acids based on a triple-helix molecular switch for multiple cycle signal amplification, achieving high sensitivity, universality, rapid analysis, and high selectivity.

  5. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis.

    PubMed

    Toley, Bhushan J; Covelli, Isabela; Belousov, Yevgeniy; Ramachandran, Sujatha; Kline, Enos; Scarr, Noah; Vermeulen, Nic; Mahoney, Walt; Lutz, Barry R; Yager, Paul

    2015-11-21

    We present a method of rapid isothermal amplification of DNA without initial heat denaturation of the template, and methods and probes for (a) real-time fluorescence detection and (b) lateral flow detection of amplicons. Isothermal strand displacement amplification (iSDA) can achieve >10(9)-fold amplification of the target sequence in <20 minutes at 49 °C, which makes it one of the fastest existing isothermal DNA amplification methods. iSDA initiates at sites where DNA base pairs spontaneously open or transiently convert into Hoogsteen pairs, i.e. "breathe", and proceeds to exponential amplification by repeated nicking, extension, and displacement of single strands. We demonstrate successful iSDA amplification and lateral flow detection of 10 copies of a Staphylococcus aureus gene, NO.-inducible l-lactate dehydrogenase (ldh1) (Richardson, Libby, and Fang, Science, 2008, 319, 1672-1676), in a clean sample and 50 copies in the presence of high concentrations of genomic DNA and mucins in <30 minutes. We also present a simple kinetic model of iSDA that incorporates competition between target and primer-dimer amplification. This is the first model that quantitates the effects of primer-dimer products in isothermal amplification reactions. Finally, we demonstrate the multiplexing capability of iSDA by the simultaneous amplification of the target gene and an engineered internal control sequence. The speed, sensitivity, and specificity of iSDA make it a powerful method for point-of-care molecular diagnosis.

  6. A Fully Integrated Paperfluidic Molecular Diagnostic Chip for the Extraction, Amplification, and Detection of Nucleic Acids from Clinical Samples

    PubMed Central

    Rodriguez, Natalia M.; Wong, Winnie S.; Liu, Lena; Dewar, Rajan; Klapperich, Catherine M.

    2016-01-01

    Paper diagnostics have successfully been employed to detect the presence of antigens or small molecules in clinical samples through immunoassays; however, the detection of many disease targets relies on the much higher sensitivity and specificity achieved via nucleic acid amplification tests (NAAT). The steps involved in NAAT have recently begun to be explored in paper matrices, and our group, among others, has reported on paper-based extraction, amplification, and detection of DNA and RNA targets. Here, we integrate these paper-based NAAT steps onto a single paperfluidic chip in a modular, foldable system that allows for fully integrated fluidic handling from sample to result. We showcase the functionality of the chip by combining nucleic acid isolation, isothermal amplification, and lateral flow detection of human papillomavirus (HPV) 16 DNA directly from crude cervical specimens in under 1 hour for rapid, early detection of cervical cancer. The chip is made entirely of paper and adhesive sheets, making it low-cost, portable, and disposable, and offering the potential for a point-of-care molecular diagnostic platform even in remote and resource-limited settings. PMID:26785636

  7. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  8. An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods.

    PubMed

    Chen, Nan; Wang, Wei-Min; Wang, Huan-Ling

    2016-01-13

    A novel strategy for amplification full-length cDNA and promoter sequences has been developed using bioinformatics technology and multiplexed PCR methods in this study. The amplification of 3' ends of cDNA is performed according to the modified classic 3' RACE techniques, therein the more efficient and effective oligo(dT)-anchor primer with hairpin structure is specially designed. For the amplification of 5' ends of cDNA, two or three-round TAIL-PCR or touch-down PCR using arbitrary degenerate (AD) and sequence-specific reverse (SPR) primers is performed until the 5' sequence of multi-assembled fragment reaches the exon1 region identified by aligning this fragment to reference genome database. Then another TAIL-PCR or touch-down PCR using genomic DNA as template is conducted to obtain the remaining 5' and promoter sequences. The 5' end sites of cDNA are predicted by aligning finally assembled fragment to homologous reference genes of other species, and screening the relative locations of common characteristic cis-elements in silico on promoter. The putative 5' ends are further validated by primers corresponding to these predicted sites in cDNAs. This method is suitable for researchers to isolate limited full-length cDNA sequences due to its operability, inexpensiveness, efficiency and speediness.

  9. An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods

    PubMed Central

    Chen, Nan; Wang, Wei-Min; Wang, Huan-Ling

    2016-01-01

    A novel strategy for amplification full-length cDNA and promoter sequences has been developed using bioinformatics technology and multiplexed PCR methods in this study. The amplification of 3′ ends of cDNA is performed according to the modified classic 3′ RACE techniques, therein the more efficient and effective oligo(dT)-anchor primer with hairpin structure is specially designed. For the amplification of 5′ ends of cDNA, two or three-round TAIL-PCR or touch-down PCR using arbitrary degenerate (AD) and sequence-specific reverse (SPR) primers is performed until the 5′ sequence of multi-assembled fragment reaches the exon1 region identified by aligning this fragment to reference genome database. Then another TAIL-PCR or touch-down PCR using genomic DNA as template is conducted to obtain the remaining 5′ and promoter sequences. The 5′ end sites of cDNA are predicted by aligning finally assembled fragment to homologous reference genes of other species, and screening the relative locations of common characteristic cis-elements in silico on promoter. The putative 5′ ends are further validated by primers corresponding to these predicted sites in cDNAs. This method is suitable for researchers to isolate limited full-length cDNA sequences due to its operability, inexpensiveness, efficiency and speediness. PMID:26758040

  10. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  11. Technological options for acid rain control

    SciTech Connect

    Princiotta, F.T.; Sedman, C.B.

    1993-01-01

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. One key consideration is the effect of fuel switching or control technology upon the existing dust collector, with additional air toxics legislation looming ahead. A number of likely SO2 and NOx retrofit technologies and estimated costs are presented, along with results of retrofit case studies. New hybrid particulate controls are also being developed to meet future requirements.

  12. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOEpatents

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  13. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    The paper discusses technological options for acid rain control. Compliance with Title IV of the Clean Air Act Amendments of 1990 will require careful scrutiny of a number of issues before selecting control options to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions...

  14. Validation of Internal Controls for Extraction and Amplification of Nucleic Acids from Enteric Viruses in Water Samples ▿ †

    PubMed Central

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-01-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls. PMID:21602369

  15. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  16. Detection of human enteric viruses in oysters by in vivo and in vitro amplification of nucleic acids.

    PubMed Central

    Chung, H; Jaykus, L A; Sobsey, M D

    1996-01-01

    This study describes the detection of enteroviruses and hepatitis A virus in 31 naturally contaminated oyster specimens by nucleic acid amplification and oligonucleotide probing. Viruses were extracted by adsorption-elution-precipitation from 50-g oyster samples harvested from an area receiving sewage effluent discharge. Ninety percent of each extract was inoculated into primate kidney cell cultures for virus isolation and infectivity assay. Viruses in the remaining 10% of oyster extract that was not inoculated into cell cultures were further purified and concentrated by a procedure involving Freon extraction, polyethylene glycol precipitation, and Pro-Cipitate precipitation. After 3 to 4 weeks of incubation, RNA was extracted from inoculated cultures that were negative for cytopathic effects (CPE). These RNA extracts and the RNA from virions purified and concentrated directly from oyster extracts were subjected to reverse transcriptase PCR (RT-PCR) with primer pairs for human enteroviruses and hepatitis A virus. The resulting amplicons were confirmed by internal oligonucleotide probe hybridization. For the portions of oyster sample extracts inoculated into cell cultures, 12 (39%) were positive for human enteroviruses by CPE and 6 (19%) were positive by RT-PCR and oligoprobing of RNA extracts from CPE-negative cell cultures. For the remaining sample portions tested by direct RT-PCR and oligoprobing after further concentration, five (about 16%) were confirmed to be positive for human enteroviruses. Hepatitis A virus was also detected in RNA extracts of two CPE-positive samples by RT-PCR and oligoprobing. Combining the data from all three methods, enteric viruses were detected in 18 of 31 (58%) samples. Detection by nucleic acid methods increased the number of positive samples by 50% over detection by CPE in cell culture. Hence, nucleic acid amplification methods increase the detection of noncytopathic human enteric viruses in oysters. PMID:8837433

  17. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes.

    PubMed

    Roy, Sharmili; Wei, Sim Xiao; Ying, Jean Liew Zhi; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2016-12-15

    Electrochemiluminescence (ECL) has been widely rendered for nucleic acid testing. Here, we integrate loop-mediated isothermal amplification (LAMP) with ECL technique for DNA detection and quantification. The target LAMP DNA bound electrostatically with [Ru(bpy)3](+2) on the carbon electrode surface, and an ECL reaction was triggered by tripropylamine (TPrA) to yield luminescence. We illustrated this method as a new and highly sensitive strategy for the detection of sequence-specific DNA from different meat species at picogram levels. The proposed strategy renders the signal amplification capacities of TPrA and combines LAMP with inherently high sensitivity of the ECL technique, to facilitate the detection of low quantities of DNA. By leveraging this technique, target DNA of Sus scrofa (pork) meat was detected as low as 1pg/µL (3.43×10(-1)copies/µL). In addition, the proposed technique was applied for detection of Bacillus subtilis DNA samples and detection limit of 10pg/µL (2.2×10(3)copies/µL) was achieved. The advantages of being isothermal, sensitive and robust with ability for multiplex detection of bio-analytes makes this method a facile and appealing sensing modality in hand-held devices to be used at the point-of-care (POC).

  18. Relative Accuracy of Nucleic Acid Amplification Tests and Culture in Detecting Chlamydia in Asymptomatic Men

    PubMed Central

    Cheng, Hong; Macaluso, Maurizio; Vermund, Sten H.; Hook, Edward W.

    2001-01-01

    Published estimates of the sensitivity and specificity of PCR and ligase chain reaction (LCR) for detecting Chlamydia trachomatis are potentially biased because of study design limitations (confirmation of test results was limited to subjects who were PCR or LCR positive but culture negative). Relative measures of test accuracy are less prone to bias in incomplete study designs. We estimated the relative sensitivity (RSN) and relative false-positive rate (RFP) for PCR and LCR versus cell culture among 1,138 asymptomatic men and evaluated the potential bias of RSN and RFP estimates. PCR and LCR testing in urine were compared to culture of urethral specimens. Discordant results (PCR or LCR positive, but culture negative) were confirmed by using a sequence including the other DNA amplification test, direct fluorescent antibody testing, and a DNA amplification test to detect chlamydial major outer membrane protein. The RSN estimates for PCR and LCR were 1.45 (95% confidence interval [CI] = 1.3 to 1.7) and 1.49 (95% CI = 1.3 to 1.7), respectively, indicating that both methods are more sensitive than culture. Very few false-positive results were found, indicating that the specificity levels of PCR, LCR, and culture are high. The potential bias in RSN and RFP estimates were <5 and <20%, respectively. The estimation of bias is based on the most likely and probably conservative parameter settings. If the sensitivity of culture is between 60 and 65%, then the true sensitivity of PCR and LCR is between 90 and 97%. Our findings indicate that PCR and LCR are significantly more sensitive than culture, while the three tests have similar specificities. PMID:11682509

  19. Microsatellite loci in the tiger shark and cross-species amplification using pyrosequencing technology

    PubMed Central

    Mendes, Natália J.; Cruz, Vanessa P.; Ashikaga, Fernando Y.; Camargo, Sâmia M.; Oliveira, Claudio; Piercy, Andrew N.; Burgess, George H.; Coelho, Rui; Santos, Miguel N.; Foresti, Fausto

    2016-01-01

    The tiger shark (Galeocerdo cuvier) has a global distribution in tropical and warm temperate seas, and it is caught in numerous fisheries worldwide, mainly as bycatch. It is currently assessed as near threatened by the International Union for Conservation of Nature (IUCN) Red List. In this study, we identified nine microsatellite loci through next generation sequencing (454 pyrosequencing) using 29 samples from the western Atlantic. The genetic diversity of these loci were assessed and revealed a total of 48 alleles ranging from 3 to 7 alleles per locus (average of 5.3 alleles). Cross-species amplification was successful at most loci for other species such as Carcharhinus longimanus, C. acronotus and Alopias superciliosus. Given the potential applicability of genetic markers for biological conservation, these data may contribute to the population assessment of this and other species of sharks worldwide. PMID:27635306

  20. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis - Lost in the Jungle of Methods, Targets, and Assays?

    PubMed

    Nolte, Oliver

    2012-01-01

    Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of 'pitfalls' is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and

  1. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis – Lost in the Jungle of Methods, Targets, and Assays?

    PubMed Central

    Nolte, Oliver

    2012-01-01

    Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of ‘pitfalls’ is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and

  2. Analytical Performance and Clinical Utility of a Nucleic Acid Sequence-Based Amplification Assay for Detection of Cytomegalovirus Infection

    PubMed Central

    Witt, Donald J.; Kemper, M.; Stead, Andrew; Sillekens, P.; Ginocchio, Christine C.; Espy, Mark J.; Paya, Carlos V.; Smith, Thomas F.; Roeles, Frits; Caliendo, Angela M.

    2000-01-01

    A nucleic acid sequence-based amplification (NASBA) assay for qualitative detection of human cytomegalovirus (CMV) pp67 mRNA was evaluated in a multicenter study. Negative results were obtained for all specimens from 50 CMV-seronegative and 50 CMV-seropositive low-risk whole-blood donors. No interference with CMV mRNA amplification was observed in the testing of 288 specimens containing various potential interfering substances, nonspecifically reacting substances (including mRNA from other herpesviruses), and three anticoagulants. A total of 95% (50 of 51) of CMV-positive (cell culture- and antigenemia immunofluorescence [AG-IFA]-positive) clinical specimens were positive by the NASBA assay. Results from different operators over multiple testing days were consistent for each of four panel members containing different concentrations of CMV mRNA, indicating the reproducibility of the assay. The estimated 95% reliable upper detection limit of the assay was 600 mRNA copies; the lower limit of detection was less than 25 mRNA copies. The clinical utility of the assay was evaluated with longitudinally collected specimens from solid-organ transplant patients (n = 21). A total of 98% (81 of 83) of the specimens from CMV-negative patients were negative by the NASBA assay, while 90% (10 of 11) of patient specimens that were positive by cell culture or AG-IFA were positive by the NASBA assay. Positive NASBA assay results were obtained earlier than AG-IFA or cell culture results for 55% of the patients and at the same time for the remainder of the patients (45%). The overall agreement between the NASBA assay and current reference tests was 86% when active CMV infection was present. These studies indicate that the CMV pp67 mRNA NASBA assay has reproducible and sensitive performance characteristics that should enable more rapid diagnosis of CMV infection. PMID:11060058

  3. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  4. Sugar-assisted kinetic resolution of amino acids and amplification of enantiomeric excess of organic molecules.

    PubMed

    Córdova, Armando; Sundén, Henrik; Xu, Yongmei; Ibrahem, Ismail; Zou, Weibiao; Engqvist, Magnus

    2006-07-17

    The origins of biological homochirality have intrigued researchers since Pasteur's discovery of the optical activity of biomolecules. Herein, we propose and demonstrate a novel alternative for the evolution of homochirality that is not based on autocatalysis and forges a direct relationship between the chirality of sugars and amino acids. This process provides a mechanism in which a racemic mixture of an amino acid can catalyze the formation of an optically active organic molecule in the presence of a sugar product of low enantiomeric excess.

  5. Effect of metallic cations on the efficiency of DNA amplification. Implications for nucleic acid replication during early stages of life

    NASA Astrophysics Data System (ADS)

    Arribas, María; de Vicente, Aránzazu; Arias, Armando; Lázaro, Ester

    2005-04-01

    The process of catalysis of biochemical reactions has been essential since the first organic molecules appeared on Earth. As the complexity of the ensemble of primitive biomolecules was very low, primitive catalysts had necessarily to be very simple molecules or ions. The evolution of catalysts had to be in parallel with the evolution of the molecular species reacting. An example of this parallel evolution is nucleic acid polymerization. Synthesis of primitive short oligonucleotides could have been catalysed by metal ions either in solution or on the surface of minerals such as montmorillonite clays. Some oligonucleotides could start to function as templates for the synthesis of complementary copies and there is experimental evidence supporting the role also played by metal ions in this process. In later stages of evolution, a group of enzymatic proteins, nucleic acid polymerases, has been selected to catalyse nucleic acid replication. The presence of Mg2+ in the active centre of these enzymes suggests that evolution has preserved some of the primitive catalysts, including them as cofactors of more complex molecules. However, the reasons why Mg2+ was selected among other ions that possibly were present in primitive environments are unknown. In this paper we try to approach this question by analysing the amplification efficiency of the polymerase chain reaction of a DNA fragment in the presence of different metal ions. In some cases the conditions of the reaction have been displaced from optimum (by the presence of nucleotide imbalances and a suboptimal Mg2+concentration). The results obtained permit one to draw interesting conclusions about how some metallic cations can help replication to proceed in conditions of limited substrate availability, a circumstance that could have been frequent at prebiotic stages, when nucleic acid synthesis was dependent on the physico-chemical conditions of the environment.

  6. fM to aM nucleic acid amplification for molecular diagnostics in a non-stick-coated metal microfluidic bioreactor

    PubMed Central

    Huang, Guoliang; Huang, Qin; Ma, Li; Luo, Xianbo; Pang, Biao; Zhang, Zhixin; Wang, Ruliang; Zhang, Junqi; Li, Qi; Fu, Rongxin; Ye, Jiancheng

    2014-01-01

    A sensitive DNA isothermal amplification method for the detection of DNA at fM to aM concentrations for pathogen identification was developed using a non-stick-coated metal microfluidic bioreactor. A portable confocal optical detector was utilized to monitor the DNA amplification in micro- to nanoliter reaction assays in real-time, with fluorescence collection near the optical diffraction limit. The non-stick-coated metal microfluidic bioreactor, with a surface contact angle of 103°, was largely inert to bio-molecules, and DNA amplification could be performed in a minimum reaction volume of 40 nL. The isothermal nucleic acid amplification for Mycoplasma pneumoniae identification in the non-stick-coated microfluidic bioreactor could be performed at a minimum DNA template concentration of 1.3 aM, and a detection limit of three copies of genomic DNA was obtained. This microfluidic bioreactor offers a promising clinically relevant pathogen molecular diagnostic method via the amplification of targets from only a few copies of genomic DNA from a single bacterium. PMID:25475544

  7. Gonorrhoea Diagnostic and Treatment Uncertainties: Risk Factors for Culture Negative Confirmation after Positive Nucleic Acid Amplification Tests.

    PubMed

    Vyth, Rebecka; Leval, Amy; Eriksson, Björn; Ericson, Eva-Lena; Marions, Lena; Hergens, Maria-Pia

    2016-01-01

    Gonorrhoea incidence has increased substantially in Stockholm during the past years. These increases have coincided with changes in testing practice from solely culture-based to nucleic acid amplification tests (NAAT). Gonorrhoea NAAT is integrated with Chlamydia trachomatis testing and due to opportunistic screening for chlamydia, testing prevalence for gonorrhoea has increased substantially in the Stockholm population. The aim of this study was to examine epidemiological risk-factors for discordant case which are NAAT positive but culture negative. These discordant cases are especially problematic as they give rise to diagnostic and treatment uncertainties with risk for subsequent sequelae. All gonorrhoea cases from Stockholm county during 2011-2012 with at least one positive N. gonorrhoea NAAT test and follow-up cultures were included (N = 874). Data were analysed using multivariate and stratified logistic regression models. Results showed that women were 4-times more likely (OR 4.9; 95% CI 2.4-6.7) than men to have discordant cultures. Individuals tested for gonorrhoea without symptoms were 2.3 times more likely (95% CI 1.5-3.5) than those with symptoms to be discordant. NAAT method and having one week or more between NAAT and culture testing were also indicative of an increased likelihood for discordance. Using NAAT should be based on proper clinical or epidemiological indications and, when positive, followed-up with a culture-based test within one week if possible. Routine gonorrhoea testing is not recommended in low prevalence populations.

  8. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  9. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).

    PubMed

    Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix

    2010-04-07

    For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems.

  10. Clinical implications of nucleic acid amplification methods for the diagnosis of viral infections of the nervous system.

    PubMed

    Weber, T; Frye, S; Bodemer, M; Otto, M; Lüke, W

    1996-06-01

    Amplification of viral nucleic acids from the cerebrospinal fluid (CSF) has considerably improved the diagnosis of several acute, subacute and chronic viral infections of the nervous system. In herpes simplex virus (HSV) encephalitis (HSE) the polymerase chain reaction (PCR) has become the method of choice for the rapid, non invasive diagnosis. Other herpes virus associated diseases which can now be reliably diagnosed are encephalitis, ventriculoencephalitis, polymyeloradiculitis, myelitis and an inflammatory polyradiculoneuropathy caused by cytomegalovirus (CMV), HSV, varicella-zoster virus (VZV) or Epstein-Barr virus (EBV), EBV associated primary B-cell-lymphoma of the brain, acute aseptic meningitis in young adults allied with VZV, and meningoencephalitis with recurrent seizures due to human herpes virus type 6 (HHV-6). In AIDS patients, PCR has helped to differentiate lesions either due to the human immunodeficiency virus (HIV) itself or to opportunistic infections such as progressive multifocal leukoencephalopathy (PML) caused by JC virus (JCV) or CMV related complications. HIV can be detected early in the course of infection in the CSF and the amount of proviral DNA in CSF cells seems to be correlated with the severity and/or progression of neurological signs and symptoms. Acute epidemic aseptic meningitis caused by enterovirus infections can now be reliably diagnosed and typed by reverse transcriptase PCR (RT-PCR). Meningitis cases caused by vaccination with the Jeryl Lynn and Urabe vaccine strain of mumps virus have been identified using RT-PCR and sequencing of the amplified products (amplicon).

  11. Quantitative nucleic acid amplification methods and their implications in clinical virology

    PubMed Central

    Singh, Mini P; Galhotra, Shipra; Saigal, Karnika; Kumar, Archit; Ratho, Radha Kanta

    2017-01-01

    Recently, a number of techniques have been approved for quantification of viral nucleic acids in clinical samples. Viral load (VL) tests have considerable importance in the management of patients and are widely used in routine diagnosis. In clinical virology, VL testing are important to monitor the antiviral treatment, to initiate preemptive therapy, to understand pathogenesis, and to evaluate the infectivity. These tests have now become a part of many diagnostic and treatment guidelines. Considering the various challenges for in-house viral testing related to the standardization, validation, and precision; they are gradually being replaced by the United States Food and Drug Administration (US FDA) cleared tests. This review summarizes the various viral quantification methods and also discusses the clinical applicability of these in human immunodeficiency virus, Hepatitis B virus, Hepatitis C virus, Cytomegalovirus, and Epstein Barr virus infected patients. Further the challenges and future perspectives of VL testing have also been discussed. PMID:28251100

  12. Quantitative nucleic acid amplification methods and their implications in clinical virology.

    PubMed

    Singh, Mini P; Galhotra, Shipra; Saigal, Karnika; Kumar, Archit; Ratho, Radha Kanta

    2017-01-01

    Recently, a number of techniques have been approved for quantification of viral nucleic acids in clinical samples. Viral load (VL) tests have considerable importance in the management of patients and are widely used in routine diagnosis. In clinical virology, VL testing are important to monitor the antiviral treatment, to initiate preemptive therapy, to understand pathogenesis, and to evaluate the infectivity. These tests have now become a part of many diagnostic and treatment guidelines. Considering the various challenges for in-house viral testing related to the standardization, validation, and precision; they are gradually being replaced by the United States Food and Drug Administration (US FDA) cleared tests. This review summarizes the various viral quantification methods and also discusses the clinical applicability of these in human immunodeficiency virus, Hepatitis B virus, Hepatitis C virus, Cytomegalovirus, and Epstein Barr virus infected patients. Further the challenges and future perspectives of VL testing have also been discussed.

  13. Application of loop-mediated isothermal amplification (LAMP)-based technology for authentication of Catharanthus roseus (L.) G. Don.

    PubMed

    Chaudhary, Anis Ahmad; Hemant; Mohsin, Mohd; Ahmad, Altaf

    2012-04-01

    In this study, loop-mediated isothermal amplification (LAMP)-based molecular marker was developed for authentication of Catharanthus roseus, a medicinal plant. Samples of this plant were collected from different geographical locations in India. Random amplified polymorphic deoxyribonucleic acid (DNA) analysis of collected samples was carried out with 25 random primers. A 610-bp DNA fragment, common to all accessions, was eluted, cloned, and sequenced. Four LAMP primers were designed on the basis of sequence of 610 bp DNA fragment. LAMP reaction, containing 10× Bst DNA polymerase reaction buffer, Bst DNA polymerase, four in-house designed primers, dNTPs, MgSO(4), and betaine, was incubated at 65°C for 1 h. The resulting amplicon was visualized by adding SYBR Green I to the reaction tube. The data showed confirmatory results. Since the assay method is simple, sensitive, and cost-effective, it is a feasible method for identifying and authentication of C. roseus.

  14. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV.

    PubMed

    Nguyen Van, J C; Caméléna, F; Dahoun, M; Pilmis, B; Mizrahi, A; Lourtet, J; Behillil, S; Enouf, V; Le Monnier, A

    2016-05-01

    The rapid and accurate detection of influenza virus in respiratory specimens is required for optimal management of patients with acute respiratory infections. Because of the variability of the symptoms and the numerous other causes of influenza-like illness, the diagnosis of influenza cannot be made on the basis of clinical criteria alone. Thus, rapid influenza diagnostic tests have been developed such as the Alere i Influenza A&B isothermal nucleic acid assay. We prospectively evaluated the performance of the Alere i Influenza A&B assay in comparison with our routine Xpert Flu/RSV assay. Positive samples were subtyped according to the protocol from the National Influenza Center (Paris, France). A total of 96 respiratory nasal swab samples were analyzed: with both methods, 38 were positive and 56 were negative. Samples were prospectively collected from January 20 to April 8, 2015, from patient (86 adult and 10 pediatric patients) presenting with an influenza-like illness through the French influenza season. In comparison with the Xpert Flu/RSV assay, the overall sensitivity and specificity of the Alere i Influenza A&B assay were 95% and 100%, respectively. Our results indicate that the Alere i Influenza A&B assay has a good overall analytical performance and a high degree of concordance with the PCR-based Xpert Flu/RSV assay. The Alere i Influenza A&B isothermal nucleic acid amplification test is a powerful tool for influenza detection due to its high sensitivity and specificity as well as its ability to generate results within 15min.

  15. Nucleic acid-amplification testing for hepatitis B in cornea donors.

    PubMed

    Fornés, Maria Gema; Jiménez, Maria Angustias; Eisman, Marcela; Gómez Villagrán, Jose Luis; Villalba, Rafael

    2016-06-01

    Careful donor selection and implementation of tests of appropriate sensitivity and specificity are of paramount importance for minimizing the risk of transmitting infectious diseases from donors to corneal allograft recipients. Reported cases of viral transmission with corneal grafts are very unusual. Nevertheless potential virus transmission through the engraftment cannot be ruled out. According to European Guideline 2006/17/EC, screening for antibodies for Hepatitis B core antigen (anti HBc) is mandatory, and when this test is positive, some criteria must be established before using corneas. Despite the continuous progress in screening tests, donors carrying an occult hepatitis B infection (OBI) can cause transplant-transmitted hepatitis B. To date, Nucleic Acid Testing (NAT) is not an obligatory assay in corneal tissue setting neither in our country nor in the rest of European countries. Herein, we report three cornea donors that were rejected with the diagnosis of OBI through the testing of sensitive NAT and the serological profile of Hepatitis B virus. The aim of this report is to emphasize the need to include NAT in new reviews of EU Tissues and Cells Directives in order to increase level of security in tissue donation as well as not to reject a high number of donors with isolated profile of anti HBc in geographical areas with high prevalence of Hepatitis B, that could be rejected without a true criterion of Hepatitis B infection.

  16. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain.

  17. Evaluation of Six Commercial Nucleic Acid Amplification Tests for Detection of Neisseria gonorrhoeae and Other Neisseria Species▿

    PubMed Central

    Tabrizi, Sepehr N.; Unemo, Magnus; Limnios, Athena E.; Hogan, Tiffany R.; Hjelmevoll, Stig-Ove; Garland, Susanne M.; Tapsall, John

    2011-01-01

    Molecular detection of Neisseria gonorrhoeae in extragenital samples may result in false-positive results due to cross-reaction with commensal Neisseria species or Neisseria meningitidis. This study examined 450 characterized clinical culture isolates, comprising 216 N. gonorrhoeae isolates and 234 isolates of nongonococcal Neisseria species (n = 218) and 16 isolates of other closely related bacteria, with six commercial nucleic acid amplification tests (NAATs). The six NAATs tested were Gen-Probe APTIMA COMBO 2 and APTIMA GC, Roche COBAS Amplicor CT/NG and COBAS 4800 CT/NG tests, BD ProbeTec GC Qx amplified DNA assay, and Abbott RealTime CT/NG test. All assays except COBAS Amplicor CT/NG test where four (1.9%) isolates were not detected showed a positive result with all N. gonorrhoeae isolates (n = 216). Among the 234 nongonococcal isolates examined, initial results from all assays displayed some false-positive results due to cross-reactions. Specifically, the COBAS Amplicor and ProbeTec tests showed the highest number of false-positive results, detecting 33 (14.1%) and 26 (11%) nongonococcal Neisseria isolates, respectively. On the first testing, APTIMA COMBO 2, APTIMA GC, Abbott RealTime, and Roche COBAS 4800 showed lower level of cross-reactions with five (2.1%), four (1.7%), two (1%), and two (1%) of the isolates showing low-level positivity, respectively. Upon retesting of these nine nongonococcal isolates using freshly cultured colonies, none were positive by the APTIMA COMBO 2, Abbott RealTime, or COBAS 4800 test. In conclusion, the COBAS Amplicor and ProbeTec tests displayed high number of false-positive results, while the remaining NAATs showed only sporadic low-level false-positive results. Supplementary testing for confirmation of N. gonorrhoeae NAATs remains recommended with all samples tested, in particular those from extragenital sites. PMID:21813721

  18. Nucleic Acid Amplification Testing and Sequencing Combined with Acid-Fast Staining in Needle Biopsy Lung Tissues for the Diagnosis of Smear-Negative Pulmonary Tuberculosis

    PubMed Central

    Tian, Panwen; Chen, Xuerong; Liang, Zongan

    2016-01-01

    Background Smear-negative pulmonary tuberculosis (PTB) is common and difficult to diagnose. In this study, we investigated the diagnostic value of nucleic acid amplification testing and sequencing combined with acid-fast bacteria (AFB) staining of needle biopsy lung tissues for patients with suspected smear-negative PTB. Methods Patients with suspected smear-negative PTB who underwent percutaneous transthoracic needle biopsy between May 1, 2012, and June 30, 2015, were enrolled in this retrospective study. Patients with AFB in sputum smears were excluded. All lung biopsy specimens were fixed in formalin, embedded in paraffin, and subjected to acid-fast staining and tuberculous polymerase chain reaction (TB-PCR). For patients with positive AFB and negative TB-PCR results in lung tissues, probe assays and 16S rRNA sequencing were used for identification of nontuberculous mycobacteria (NTM). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of PCR and AFB staining were calculated separately and in combination. Results Among the 220 eligible patients, 133 were diagnosed with TB (men/women: 76/57; age range: 17–80 years, confirmed TB: 9, probable TB: 124). Forty-eight patients who were diagnosed with other specific diseases were assigned as negative controls, and 39 patients with indeterminate final diagnosis were excluded from statistical analysis. The sensitivity, specificity, PPV, NPV, and accuracy of histological AFB (HAFB) for the diagnosis of smear-negative were 61.7% (82/133), 100% (48/48), 100% (82/82), 48.5% (48/181), and 71.8% (130/181), respectively. The sensitivity, specificity, PPV, and NPV of histological PCR were 89.5% (119/133), 95.8% (46/48), 98.3% (119/121), and 76.7% (46/60), respectively, demonstrating that histological PCR had significantly higher accuracy (91.2% [165/181]) than histological acid-fast staining (71.8% [130/181]), P < 0.001. Parallel testing of histological AFB

  19. Integration of isothermal amplification methods in microfluidic devices: Recent advances.

    PubMed

    Giuffrida, Maria Chiara; Spoto, Giuseppe

    2017-04-15

    The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed.

  20. Early amplification options.

    PubMed

    Gabbard, Sandra Abbott; Schryer, Jennifer

    2003-01-01

    Children with permanent hearing loss have been remediated with hearing amplification devices for decades. The influx of young infants identified with hearing loss through successful newborn hearing screening programs has established a need for amplification resources for infants within the first six months of life. For the approximately two of every 1000 infants born who are identified with bilateral hearing loss [Mehl and Thomson, 1998, Pediatrics 101, p. e4], the use of amplification is commonly the first step in treating the sequella of their loss. The use of hearing aids, combined with early intervention, has been shown to significantly improve the speech and language skills of young children with hearing loss [Yoshinaga-Itano, 2000, Seminars in Hearing 21, p. 309]. Speech and language delays have contributed to compromised academic performance of school aged children with hearing loss [Johnson et al., 1997, Educational Audiology Handbook, Singular Publishing, San Diego]. Most hard-of-hearing and deaf children use hearing aids and other assistive listening devices every day throughout their lifetime and the life expectancy of a hearing aid is only five to eight years. The current challenge for pediatric audiologists is selecting and evaluating the available amplification to provide the best options for children and their families. Amplification technology has seen an explosion in growth the past few years and the options continue to expand rapidly. This article examines currently available amplification technology and reviews the selection criteria that may be used for infants and young children. Issues such as style, type, amplification features, signal processing strategies, and verification and validation tools are also discussed.

  1. Sulfuric Acid Regeneration Waste Disposal Technology.

    DTIC Science & Technology

    1986-11-01

    46 2 4 H2 3 4 4 2 Phosphate Sulfuric Water Phosphoric Hydro- Phosphogypsum Rock Acid Acid fluoric Acid For our purposes the process could be viewed as...one where sulfuric acid is neutralized using phosphate rock rather than lime. Although the resulting calcium sulfate (referred to as phosphogypsum ...spearhead research in this country on uses for waste gypsum or phosphogypsum . They have published a recent review of historic and current work on

  2. Evaluation of cellular-phone technology with digital hearing-aid features: Effects of encoding and individualized amplification

    PubMed Central

    Mackersie, Carol L.; Qi, Yingyong; Boothroyd, Arthur; Conrad, Nicole

    2009-01-01

    Multi-channel amplification was implemented within a cellular phone system and compared to a standard cellular-phone response. Three cellular phone speech-encoding strategies were evaluated: a narrow-band (3.5 kHz upper cut-off) enhanced variable-rate coder (EVRC), a narrow-band selectable-mode vocoder (SMV), and a wide-band SMV (7.5 kHz cut-off). Because the SMV encoding strategies are not yet available on phones, the processing was simulated using a computer. Individualized-amplification settings were created for 14 participants with hearing loss using NAL-NL1 targets. Overall gain was set at preferred listening levels for both the individualized-amplification setting and the standard cellular phone setting for each of the three encoders. Phoneme-recognition scores and subjective ratings (listening effort, overall quality) were obtained in quiet and in noise. Stimuli were played from loudspeakers in one room, picked up by a microphone connected to a (transmitting) computer, and sent over the internet to a receiving computer in an adjacent room, where the signal was amplified and delivered monaurally. Phoneme scores and subjective ratings were significantly higher for the individualized-amplification setting than for the standard setting in both quiet and noise. There were no significant differences among the cellular-phone encoding strategies for any measure. PMID:19927674

  3. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  4. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.

    PubMed

    Wang, Wen-Jing; Li, Jing-Jing; Rui, Kai; Gai, Pan-Pan; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-03-03

    We report an electrochemical sensor for telomerase activity detection based on spherical nucleic acids gold nanoparticles (SNAs AuNPs) triggered mimic-hybridization chain reaction (mimic-HCR) enzyme-free dual signal amplification. In the detection strategy, SNAs AuNPs and two hairpin probes were employed. SNAs AuNPs as the primary amplification element, not only hybridized with the telomeric repeats on the electrode to amplify signal but also initiated the subsequent secondary amplification, mimic-hybridization chain reaction of two hairpin probes. If the cells' extracts were positive for telomerase activity, SNAs AuNPs could be captured on the electrode. The carried initiators could trigger an alternative hybridization reaction of two hairpin probes that yielded nicked double helices. The signal was further amplified enzyme-free by numerous hexaammineruthenium(III) chloride ([Ru(NH3)6](3+), RuHex) inserting into double-helix DNA long chain by electrostatic interaction, each of which could generate an electrochemical signal at appropriate potential. With this method, a detection limit of down to 2 HeLa cells and a dynamic range of 10-10,000 cells were achieved. Telomerase activities of different cell lines were also successfully evaluated.

  5. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons.

    PubMed

    Churruca, E; Girbau, C; Martínez, I; Mateo, E; Alonso, R; Fernández-Astorga, A

    2007-06-10

    A nucleic acid sequence-based amplification (NASBA) assay based on molecular beacons was used for real-time detection of Campylobacter jejuni and Campylobacter coli in samples of chicken meat. A set of specific primers and beacon probe were designed to target the 16S rRNA of both species. The real-time NASBA protocol including the RNA isolation was valid for both of the cell suspensions in buffered saline and the artificially contaminated chicken meat samples. The presence of rRNA could be correlated with cellular viability, following inactivation of the bacteria by heating, in inoculated chicken meat samples but not in RNase-free cell suspensions.

  6. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate.

  7. Simplified diagnosis of malaria infection: GFM/PCR/ELISA a simplified nucleic acid amplification technique by PCR/ELISA.

    PubMed

    Machado, R L; Garret, D O; Adagu, I S; Warhurst, D C; Póvoa, M M

    1998-01-01

    We report an adaptation of a technique for the blood sample collection (GFM) as well as for the extraction and amplification of Plasmodium DNA for the diagnosis of malaria infection by the PCR/ELISA. The method of blood sample collection requires less expertise and saves both time and money, thus reducing the cost by more than half. The material is also suitable for genetic analysis in either fresh or stored specimens prepared by this method.

  8. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  9. A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

    PubMed Central

    LaBarre, Paul; Hawkins, Kenneth R.; Gerlach, Jay; Wilmoth, Jared; Beddoe, Andrew; Singleton, Jered; Boyle, David; Weigl, Bernhard

    2011-01-01

    Background Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation). Methodology/Principal Findings In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. Conclusions/Significance We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes. PMID:21573065

  10. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I.

    PubMed

    Zheng, Aihua; Luo, Ming; Xiang, Dongshan; Xiang, Xia; Ji, Xinghu; He, Zhike

    2013-09-30

    We have developed a new fluorescence method for specific single-stranded DNA sequences with exonuclease III (Exo III) and nucleic acid dye SYBR Green I. It is demonstrated by a reverse transcription oligonucleotide sequence (target DNA, 27 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of the target DNA, the hairpin-probe is in the stem-closed structure, the fluorescence of SYBR Green I is very strong. In the presence of the target DNA, the hairpin-probe hybridizes with the target DNA to form double-stranded structure with a blunt 3'-terminus. Thus, in the presence of Exo III, only the 3'-terminus of probe is subjected to digestion. Exo III catalyzes the stepwise removal of mononucleotides from this terminus, releasing the target DNA. The released target DNA then hybridizes with another probe, whence the cycle starts anew. The signal of SYBR Green I decreases greatly. This system provides a detection limit of 160 pM, which is comparable to the existing signal amplification methods that utilized Exo III as a signal amplification nuclease. Due to the unique property of Exo III, this method shows excellent detection selectivity for single-base discrimination. More importantly, superiors to other methods based on Exo III, these probes have the advantages of easier to design, synthesize, purify and thus are much cheaper and more applicable. This new approach could be widely applied to sensitive and selective nucleic acids detection.

  11. [Recombinase Polymerase Amplification and its Applications in Parasite Detection].

    PubMed

    ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui

    2015-10-01

    Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection.

  12. Biomaterials in light amplification

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  13. Enzymatic amplification-free nucleic acid hybridisation sensing on nanostructured thick-film electrodes by using covalently attached methylene blue.

    PubMed

    García-González, Raquel; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2015-09-01

    Amplification-free (referring to enzymatic amplification step) detection methodologies are increasing in biosensor development due to the need of faster and simpler protocols. However, for maintaining sensitivity without this step, highly detectable molecules or very sensitive detection techniques are required. The nanostructuration of transducer surfaces with carbon nanotubes (CNTs), gold nanoparticles (AuNPs) or both in nanohybrid configurations has been employed in this work for DNA hybridisation sensing purposes. Methylene blue (MB), covalently attached to single stranded DNA, (ssDNA) was incubated with a complementary sequence immobilized on nanostructured screen-printed electrodes (AuSPEs). Although CNTs can increase notoriously the signal of the marker, adsorptive properties should also be considered when bioassays are performed because non-specific adsorption (NSA) phenomena are magnified. In this work, strategies for decreasing NSA were thoroughly evaluated for the detection of Mycoplasma pneumoniae (MP) on CNTs-nanostructured screen-printed electrodes. Among them, the employ of UV-radiation or long incubation times (72h) allowed obtaining higher signals for the complementary strand with respect to the non-complementary one. The use of CNTs/AuNPs nanohybrids, together with the use of streptavidin-biotin (ST-B) interaction allows the higher differentiation (with a 3.5 ratio) in the genosensing of M. pneumoniae.

  14. Detection of Vibrio cholerae by isothermal cross-priming amplification combined with nucleic acid detection strip analysis.

    PubMed

    Zhang, Xia; Du, Xin-Jun; Guan, Chun; Li, Ping; Zheng, Wen-Jie; Wang, Shuo

    2015-08-01

    Vibrio cholerae is a water- and food-borne human pathogen, and V. cholerae serotypes O1 and O139 have attracted attention because of their severe pathogenesis. However, non-O1, non-O139 cholera vibrios (NCVs) were also recently recognized as having virulence properties. In this study, we developed a cross-priming amplification (CPA) method for the detection of all serotypes of V. cholerae. The specificity of the CPA method was tested using a panel of 60 different bacterial strains. All of the V. cholerae strains showed positive results, and 41 other types of bacteria gave negative results. The limit of detection of the CPA method was 79.28 fg of genomic DNA, 4.2 × 10(2) CFU/ml for bacteria in pure culture, and 5.6 CFU per 25 g of sample with pre-enrichment. This method showed a higher sensitivity than the loop-mediated isothermal amplification (LAMP) method did and was more convenient to perform. These results indicate that the CPA method can be used for the rapid preliminary screening of V. cholerae.

  15. Molecular diagnostics in a teacup: Non-Instrumented Nucleic Acid Amplification (NINA) for rapid, low cost detection of Salmonella enterica.

    PubMed

    Kubota, Ryo; Labarre, Paul; Weigl, Bernhard H; Li, Yong; Haydock, Paul; Jenkins, Daniel M

    2013-04-01

    We report on the use of a novel non-instrumented platform to enable a Loop Mediated isothermal Amplification (LAMP) based assay for Salmonella enterica. Heat energy is provided by addition of a small amount (<150 g) of boiling water, and the reaction temperature is regulated by storing latent energy at the melting temperature of a lipid-based engineered phase change material. Endpoint classification of the reaction is achieved without opening the reaction tube by observing the fluorescence of sequence-specific FRET-based assimilating probes with a simple handheld fluorometer. At or above 22°C ambient temperature the non-instrumented devices could maintain reactions above a threshold temperature of 61°C for over 90 min-significantly longer than the 60 min reaction time. Using the simple format, detection limits were less than 20 genome copies for reactions run at ambient temperatures ranging from 8 to 36°C. When used with a pre-enrichment step and non-instrumented DNA extraction device, trace contaminations of Salmonella in milk close to 1 CFU/mL could be reliably detected. These findings illustrate that the non- instrumented amplification approach is a simple, viable, low-cost alternative for field-based food and agricultural diagnostics or clinical applications in developing countries.

  16. A microfluidic platform for transcription- and amplification-free detection of zepto-mole amounts of nucleic acid molecules.

    PubMed

    Mayr, Reinhard; Haider, Michaela; Thünauer, Roland; Haselgrübler, Thomas; Schütz, Gerhard J; Sonnleitner, Alois; Hesse, Jan

    2016-04-15

    Here we report the development of a device for the transcription- and amplification-free detection of DNA and RNA molecules down to the zepto-mole range. A microfluidic chip with a built-in microarray was used for manipulation of nano-liter sample volumes. Specific staining and immobilization of the target molecules was achieved via a double hybridization approach thereby avoiding bias due to enzymatic processes like reverse transcription and PCR amplification. Therefore, target molecules were indirectly labeled by pre-hybridization to complementary Cy5-labeled probes. The remaining single-stranded portion of each target molecule could subsequently hybridize to complementary capture probes of a microarray. Thus a target-mediated immobilization of labeled DNA took place. By means of an ultra-sensitive fluorescence readout, all molecules hybridized to the microarray could be detected. The combination of minimized sample volume and single molecule detection yielded a detection limit of 39 fM (831 molecules in 35.4 nl assay volume) for target DNA and 16 fM (338 molecules) for target RNA after 1h on-chip hybridization.

  17. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  18. Detection of trace amounts of target DNA from massive background of nucleic acids by using LM-PCR-based pre-amplification method.

    PubMed

    Pan, Xiaoming; Wang, Jing; Zhang, Yanfang; Dong, Ping; Li, Chunchuan; Liang, Xingguo

    2016-11-08

    The sensitivity and specificity of DNA detection may decrease when the target DNA is in very low abundance. To effectively detect trace amounts of target DNA from massive background of nucleic acids, we have developed a powerful multiplex pre-amplification method based on ligation-mediated PCR (LM-PCR) that can greatly enrich multiple target DNAs from massive backgrounds. By employing type IIS restriction endonuclease (REase) and specifically designed oligonucleotide adapters, target DNA can be pre-amplified with high efficiency and sensitivity. Combining with normal PCR, ten copies of target DNA was effectively detected from over 10(8) times more excessive backgrounds with high specificity and ten times more effectively than conventional PCR. In particular, the usage of universal primer in the pre-amplification PCR (pre-amp PCR) ensured that multiple targets could be equivalently amplified, which was confirmed by quantitative PCR (qPCR), indicating it could meet the demands of high-throughput detection. The flexibility and applicability of pre-amp PCR was validated by using different microorganisms DNA as targets and employing two different type IIS REases. The results suggest that the pre-amp PCR method has broad application prospects in various gene detection fields. This article is protected by copyright. All rights reserved.

  19. Visual detection and differentiation of Classic Swine Fever Virus strains using nucleic acid sequence-based amplification (NASBA) and G-quadruplex DNAzyme assay

    PubMed Central

    Lu, Xiaolu; Shi, Xueyao; Wu, Gege; Wu, Tiantian; Qin, Rui; Wang, Yi

    2017-01-01

    The split G-quadruplex DNAzyme has emerged as a valuable tool for visual DNA detection. Here, we successfully integrated colorimetric split G-quadruplex DNAzyme assay with nucleic acid sequence-based amplification to generate a novel detection approach, allowing visual and rapid detection for the RNA of Shimen and HCLV strains of Classic Swine Fever Virus (CSFV). CSFV is a RNA virus that causes a highly contagious disease in domestic pigs and wild boar. With this method, we were able to detect as little as 10 copies/ml of CSF viral RNA within 3 h in serum samples taken from the field. No interference was encountered in the amplification and detection of Classic Swine Fever Virus in the presence of non-target RNA or DNA. Moreover, Shimen and HCLV strains of Classic Swine Fever Virus could be easily differentiated using the NASBA-DNAzyme system. These findings indicate the NASBA-DNAzyme system is a rapid and practical technique for detecting and discriminating CSFV strains and may be applied to the detection of other RNA viruses. PMID:28287135

  20. Successful isolation and PCR amplification of DNA from National Institute of Standards and Technology herbal dietary supplement standard reference material powders and extracts.

    PubMed

    Cimino, Matthew T

    2010-03-01

    Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements.

  1. Nucleic acid amplification tests (polymerase chain reaction, ligase chain reaction) for the diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in pediatric emergency medicine.

    PubMed

    Corneli, Howard M

    2005-04-01

    Nucleic acid amplification tests, such as ligase chain reaction and polymerase chain reaction, offer potential advantages of speed, simplicity, and accuracy in the detection of genitourinary tract infection with Neisseria gonorrhoeae and Chlamydia trachomatis. Their appropriate use in pediatric emergency medicine depends on an understanding of their strengths and weaknesses. Problems arise in defining the sensitivity and, especially, specificity of these tests. The clinical scenario, the site of infection, the age and sex of the patient, and especially the presence or absence of medicolegal concerns strongly affect the applicability of these tests. The risk of false positives may be significant even when legal concerns do not arise and even if a highly specific test is used. This article reviews the uses and limitations of such tests in pediatric emergency medicine. Discussion is directed to both technical and practical considerations.

  2. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    PubMed

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.

  3. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds.

    PubMed Central

    Pérez-Llarena, F J; Liras, P; Rodríguez-García, A; Martín, J F

    1997-01-01

    A regulatory gene (ccaR), located within the cephamycin gene cluster of Streptomyces clavuligerus, is linked to a gene (blp) encoding a protein similar to a beta-lactamase-inhibitory protein. Expression of ccaR is required for cephamycin and clavulanic acid biosynthesis in S. clavuligerus. The ccaR-encoded protein resembles the ActII-ORF4, RedD, AfsR, and DnrI regulatory proteins of other Streptomyces species, all of which share several motifs. Disruption of ccaR by targeted double recombination resulted in the loss of the ability to synthesize cephamycin and clavulanic acid. Complementation of the disrupted mutant with ccaR restored production of both secondary metabolites. ccaR was expressed as a monocistronic transcript at 24 and 48 h in S. clavuligerus cultures (preceding the phase of antibiotic accumulation), but no transcript hybridization signals were observed at 72 or 96 h. This expression pattern is consistent with those of regulatory proteins required for antibiotic biosynthesis. Amplification of ccaR in S. clavuligerus resulted in a two- to threefold increase in the production of cephamycin and clavulanic acid. PMID:9068654

  4. Advanced Technologies in Sialic Acid and Sialoglycoconjugate Analysis.

    PubMed

    Kitajima, Ken; Varki, Nissi; Sato, Chihiro

    2015-01-01

    Although the structural diversity of sialic acid (Sia) is rapidly expanding, understanding of its biological significance has lagged behind. Advanced technologies to detect and probe diverse structures of Sia are absolutely necessary not only to understand further biological significance but also to pursue medicinal and industrial applications. Here we describe analytical methods for detection of Sia that have recently been developed or improved, with a special focus on 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac), N-glycolylneuraminic acid (Neu5Gc), deaminoneuraminic acid (Kdn), O-sulfated Sia (SiaS), and di-, oligo-, and polysialic acid (diSia/oligoSia/polySia) in glycoproteins and glycolipids. Much more attention has been paid to these Sia and sialoglycoconjugates during the last decade, in terms of regulation of the immune system, neural development and function, tumorigenesis, and aging.

  5. [Principle of LAMP method--a simple and rapid gene amplification method].

    PubMed

    Ushikubo, Hiroshi

    2004-06-01

    So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.

  6. Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology

    PubMed Central

    Peng, Huan; Long, Haibo; Huang, Wenkun; Liu, Jing; Cui, Jiangkuan; Kong, Lingan; Hu, Xianqi; Gu, Jianfeng; Peng, Deliang

    2017-01-01

    The northern root-knot nematode (Meloidogyne hapla) is a damaging nematode that has caused serious economic losses worldwide. In the present study, a sensitive, simple and rapid method was developed for detection of M. hapla in infested plant roots by combining a Flinders Technology Associates (FTA) card with loop-mediated isothermal amplification (LAMP). The specific primers of LAMP were designed based on the distinction of internal transcribed spacer (ITS) sequences between M. hapla and other Meloidogyne spp. The LAMP assay can detect nematode genomic DNA at concentrations low to 1/200 000, which is 100 times more sensitive than conventional PCR. The LAMP was able to highly specifically distinguish M. hapla from other closely related nematode species. Furthermore, the advantages of the FTA-LAMP assay to detect M. hapla were demonstrated by assaying infected root galls that were artificially inoculated. In addition, M. hapla was successfully detected from six of forty-two field samples using FTA-LAMP technology. This study was the first to provide a simple diagnostic assay for M. hapla using the LAMP assay combined with FTA technology. In conclusion, the new FTA-LAMP assay has the potential for diagnosing infestation in the field and managing the pathogen M. hapla. PMID:28368036

  7. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  8. A Rapid and Simple Integrated Extraction Amplification and Detection Device for Y. pestis

    DTIC Science & Technology

    2000-10-01

    strumented technologies of DNA microarrays and related - microfluidics . 3- 5 By contrast, our company is focusing on the development of relatively simple... radioactive labels into the Ed.. Cold Spring Harbor Laboratory. Cold Spring Harbor. amplification reactions for the detection of nucleic acids is N.Y

  9. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  10. Monte Carlo Modeling-Based Digital Loop-Mediated Isothermal Amplification on a Spiral Chip for Absolute Quantification of Nucleic Acids.

    PubMed

    Xia, Yun; Yan, Shuangqian; Zhang, Xian; Ma, Peng; Du, Wei; Feng, Xiaojun; Liu, Bi-Feng

    2017-03-21

    Digital loop-mediated isothermal amplification (dLAMP) is an attractive approach for absolute quantification of nucleic acids with high sensitivity and selectivity. Theoretical and numerical analysis of dLAMP provides necessary guidance for the design and analysis of dLAMP devices. In this work, a mathematical model was proposed on the basis of the Monte Carlo method and the theories of Poisson statistics and chemometrics. To examine the established model, we fabricated a spiral chip with 1200 uniform and discrete reaction chambers (9.6 nL) for absolute quantification of pathogenic DNA samples by dLAMP. Under the optimized conditions, dLAMP analysis on the spiral chip realized quantification of nucleic acids spanning over 4 orders of magnitude in concentration with sensitivity as low as 8.7 × 10(-2) copies/μL in 40 min. The experimental results were consistent with the proposed mathematical model, which could provide useful guideline for future development of dLAMP devices.

  11. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet.

    PubMed

    Liu, Meiling; Chen, Qiong; Lai, Cailang; Zhang, Youyu; Deng, Jianhui; Li, Haitao; Yao, Shouzhuo

    2013-10-15

    A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe₃O₄@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe₃O₄@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe₃O₄@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 μM, 0.5-50 μM, 1-300 μM and 0.3-250 μM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 μM with the detection limits of 1, 0.1, 0.2 and 0.05 μM (S/N=3), respectively.

  12. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  13. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    SciTech Connect

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  14. Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    PubMed Central

    Gulliksen, Anja; Keegan, Helen; Martin, Cara; O'Leary, John; Solli, Lars A.; Falang, Inger Marie; Grønn, Petter; Karlgård, Aina; Mielnik, Michal M.; Johansen, Ib-Rune; Tofteberg, Terje R.; Baier, Tobias; Gransee, Rainer; Drese, Klaus; Hansen-Hagge, Thomas; Riegger, Lutz; Koltay, Peter; Zengerle, Roland; Karlsen, Frank; Ausen, Dag; Furuberg, Liv

    2012-01-01

    The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection. PMID:22235204

  15. Acid fuel cell technologies for vehicular power plants

    SciTech Connect

    Huff, J.R.; Srinivasan, S.

    1982-08-01

    Fuel cells offer a number of significant advantages as vehicular power sources. These include high efficiency, virtually no pollution, and the ability to use nonpetroleum fuel. To date, most fuel cell systems have been designed for either utility or space applications, which have substantially different requirements than vehicular applications. Several fuel cell technologies were assessed specifically for vehicular applications. The results of these assessments were used to calculate the performance and fuel consumption of a fuel cell powered GM X car. Results indicate that the phosphoric acid technology, which has the most development experience, can power a vehicle with reasonable performance, with a range of over 350 miles on 20 gallons of methanol and with high energy efficiency. Solid polymer electrolyte technology, which is second in development experience, can provide performance approaching that of an ICE vehicle and an energy efficiency 149% higher than the ICE-powered version.

  16. [Viral safety of biologicals: evaluation of hepatitis C virus (HCV) nucleic acid amplification test (NAT) assay and development of concentration method of HCV for sensitive detection by NAT].

    PubMed

    Uchida, Eriko; Yamaguchi, Teruhide

    2010-02-01

    The most important issue for the safety of biological products and blood products derived from human sources is how to prevent transmission of infectious agents. The hepatitis C virus (HCV) is a major public health problem due to its high prevalence. HCV is mainly transmitted by exposure to blood and highly infectious during the early window period with extremely low viral loads. Therefore it is important to develop more sensitive detection methods for HCV. In the case of blood products, both serological test and nucleic acid amplification test (NAT) are required to detect HCV. Since NAT is highly sensitive, establishment of a new standard is required for validation of NAT assay. NAT guideline and establishment of the standard for HCV RNA and HCV genotype panel is introduced in this review. On the other hand, to enhance the sensitivity of virus detection by NAT, a novel viral concentration method using polyethyleneimine (PEI)-conjugated magnetic beads (PEI beads) was developed. PEI beads concentration method is applicable to a wide range of viruses including HCV. Studies using the national standard for HCV RNA, HCV genotype panel and seroconversion panel, suggest that virus concentration method using PEI-beads is useful for improvement of the sensitivity of HCV detection by NAT and applicable to donor screening for HCV.

  17. Screening of organ and tissue donors for West Nile virus by nucleic acid amplification--a three year experience in Alberta.

    PubMed

    Tilley, Peter A G; Fox, Julie D; Lee, Bonita; Chui, Linda; Preiksaitis, Jutta

    2008-10-01

    West Nile Virus (WNV)-specific nucleic acid amplification testing (NAAT) of organ and tissue donors remains controversial. We report three years of WNV donor screening in Alberta Canada using NAAT. Between 2003 and 2005, 1549 initial specimens were received. A valid negative result was issued within the specified turnaround time on 1531 (98.8%). The initial NAAT was successful for 1393 samples (90%), while repeat testing using an alternate NAAT resolved a further 126 samples. For 12 of 14 donors, a second specimen provided a valid negative result. Failure to generate a valid negative result in time resulted in rescheduling of one living related organ transplant, and surgery proceeded in the absence of a final result in one multi-organ donation after risk assessment. For 11 tissue donors, tissues were discarded due to lack of a WNV result. Invalid results usually occurred on postmortem haemolyzed tissue donor samples due to inhibitory reactions. There were no confirmed positive donors, no false-positive results and no solid organs lost due to WNV testing. We conclude that WNV NAAT of organ and tissue donors can be implemented without compromising availability of donors but requires committed laboratory support.

  18. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  19. Point-Counterpoint: A Nucleic Acid Amplification Test for Streptococcus pyogenes Should Replace Antigen Detection and Culture for Detection of Bacterial Pharyngitis.

    PubMed

    Pritt, Bobbi S; Patel, Robin; Kirn, Thomas J; Thomson, Richard B

    2016-10-01

    Nucleic acid amplification tests (NAATs) have frequently been the standard diagnostic approach when specific infectious agents are sought in a clinic specimen. They can be applied for specific agents such as S. pyogenes, or commercial multiplex NAATs for detection of a variety of pathogens in gastrointestinal, bloodstream, and respiratory infections may be used. NAATs are both rapid and sensitive. For many years, S. pyogenes testing algorithms used a rapid and specific group A streptococcal antigen test to screen throat specimens, followed, in some clinical settings, by a throat culture for S. pyogenes to increase the sensitivity of its detection. Now S. pyogenes NAATs are being used with increasing frequency. Given their accuracy, rapidity, and ease of use, should they replace antigen detection and culture for the detection of bacterial pharyngitis? Bobbi Pritt and Robin Patel of the Mayo Clinic, where S. pyogenes NAATs have been used for well over a decade with great success, will explain the advantages of this approach, while Richard (Tom) Thomson and Tom Kirn of the NorthShore University HealthSystem will discuss their concerns about this approach to diagnosing bacterial pharyngitis.

  20. Comparative detection of rotavirus RNA by conventional RT-PCR, TaqMan RT-PCR and real-time nucleic acid sequence-based amplification.

    PubMed

    Mo, Qiu-Hua; Wang, Hai-Bo; Tan, Hua; Wu, Bi-Mei; Feng, Zi-Li; Wang, Qi; Lin, Ji-Can; Yang, Ze

    2015-03-01

    Rotavirus is one of the major viral pathogens leading to diarrhea. Diagnosis has been conducted by either traditional cultural, serological methods or molecular biology techniques, which include RT-PCR and nucleic acid sequence-based amplification (NASBA). However, their differences regarding accuracy and sensitivity remain unknown. In this study, an in-house conventional RT-PCR assay and more importantly, an in-house real-time NASBA (RT-NASBA) were established, and compared with a commercial TaqMan RT-PCR assay. The results showed that all of these methods were able to detect and distinguish rotavirus from other diarrhea viruses with a 100% concordance rate during the course of an evaluation on 20 clinical stool samples. However, RT-NASBA was much quicker than the other two methods. More importantly, the limit of detection of RT-NASBA could reach seven copies per reaction and was one to two logs lower than that of conventional RT-PCR and TaqMan RT-PCR. These results indicate that this in-house assay was more sensitive, and thus could be used as an efficient diagnosis tool for rotavirus. To the best of our knowledge, this is the first direct comparison among three different assays for the detection of rotavirus. These findings would provide implication for the rational selection of diagnosis tool for rotavirus.

  1. Detecting asymptomatic Trichomonas vaginalis in females using the BD ProbeTec™ Trichomonas vaginalis Q(x) nucleic acid amplification test.

    PubMed

    Lord, Emily; Newnham, Tana; Dorrell, Lucy; Jesuthasan, Gerald; Clarke, Lorraine; Jeffery, Katie; Sherrard, Jackie

    2017-03-01

    Trichomonas vaginalis (TV) rates in women are increasing and many are asymptomatic. Nucleic acid amplification tests (NAATs) are becoming the 'gold standard' for diagnosis. We aimed to establish our asymptomatic TV rates by testing all women attending Oxfordshire's Sexual Health service, regardless of symptoms, using the BD ProbeTec™ TV Q(x) NAATs (BDQ(x)). During BDQ(x)'s verification process, the sensitivity and specificity were calculated using results of 220 endocervical samples from symptomatic women, compared with culture. BDQ(x) was subsequently implemented and prospectively evaluated over 6 months in female attendees. Wet mount microscopy was also performed in symptomatics. Demographic and clinical characteristics of those diagnosed were analysed. From 220 samples tested by BDQ(x) and culture: 5 were positive on both and one solely using BDQ(x), giving a sensitivity and specificity of 100% and 99.53%, respectively. In the prospective cohort, of 5775 BDQ(x) tests, 33 (0.57%) were positive. 11/33 (33%) patients were asymptomatic. All patients diagnosed had risk factors: age >25 years (85%), residence in a deprived area (79%) and black ethnicity (21%). Despite BDQ(x) being highly sensitive and specific, with our low TV prevalence universal screening may not be justified. Targeted screening using local demographic data merits further investigation.

  2. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae.

    PubMed

    Templeton, Kate E; Scheltinga, Sitha A; Graffelman, A Willy; Van Schie, Jolanda M; Crielaard, Jantine W; Sillekens, Peter; Van Den Broek, Peterhans J; Goossens, Herman; Beersma, Matthias F C; Claas, Eric C J

    2003-09-01

    Mycoplasma pneumoniae is a common cause of community-acquired pneumonia and lower-respiratory-tract infections. Diagnosis has traditionally been obtained by serological diagnosis, but increasingly, molecular techniques have been applied. However, the number of studies actually comparing these assays is limited. The development of a novel duplex real-time PCR assay for detection of M. pneumoniae in the presence of an internal control real-time PCR is described. In addition, real-time nucleic acid sequence-based amplification (NASBA) on an iCycler apparatus is evaluated. These assays were compared to serology and a conventional PCR assay for 106 clinical samples from patients with lower-respiratory-tract infection. Of the 106 samples, 12 (11.3%) were positive by all the molecular methods whereas serology with acute sample and convalescent samples detected 6 (5.6%) and 9 (8.5%), respectively. Clinical symptoms of the patients with Mycoplasma-positive results were compared to those of the other patients with lower-respiratory-tract infections, and it was found that the results for mean lower age numbers as well as the presence of chills, increased erythrocyte sedimentation rate, and raised C-reactive protein levels showed significant differences. Molecular methods are superior for diagnosis of M. pneumoniae, providing more timely diagnosis. In addition, using real-time methods involves less hands-on time and affords the ability to monitor the reaction in the same tube.

  3. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens.

    PubMed

    Loens, K; Beck, T; Ursi, D; Overdijk, M; Sillekens, P; Goossens, H; Ieven, M

    2008-01-01

    Real-time multiplex isothermal nucleic acid sequence-based amplification (NASBA) was developed to detect Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens using the NucliSens Basic Kit (bioMérieux, Boxtel, The Netherlands). Oligonucleotide primers were derived from the M. pneumoniae, C. pneumoniae, and Legionella pneumophila 16S rRNA. For real-time detection, molecular beacons were used. Specificity was established on a panel of bacterial strains. The analytical sensitivity of the assay was determined by testing dilutions of wild-type in vitro-generated RNA in water and dilutions of reference strains in lysis buffer or added to pools of respiratory specimens. Subsequently, a limited number of M. pneumoniae-, C. pneumoniae-, and L. pneumophila-positive and -negative clinical specimens were analyzed. Specific detection of the 16S rRNA of the three organisms was achieved. The analytical sensitivity of the multiplex NASBA on spiked respiratory specimens was slightly diminished compared to the results obtained with the single-target (mono) real-time assays. We conclude that the proposed real-time multiplex NASBA assay, although less sensitive than the real-time mono NASBA assay, is a promising tool for the detection of M. pneumoniae, C. pneumoniae, and Legionella spp. in respiratory specimens, regarding handling, speed, and number of samples that can be analyzed in a single run.

  4. Development of Reverse Transcription Loop-Mediated Isothermal Amplification for Simple and Rapid Detection of Promyelocytic Leukemia–Retinoic Acid Receptor α mRNA

    PubMed Central

    Hashimoto, Yuki; Hatayama, Yuki; Kojima, Nao; Morishita, Shota; Matsumoto, Satoko; Hosoda, Yuzuru; Hara, Ayako; Motokura, Toru

    2016-01-01

    Background Acute promyelocytic leukemia (APL) is a disease characterized by expression of Promyelocytic Leukemia–Retinoic Acid Receptor α (PML-RARα) chimeric mRNA. Although APL is curable, early death due to hemorrhage is a major problem. Here, we report the development of a simple and rapid diagnostic method for APL based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). Methods An RT-LAMP primer set was designed to detect three types of PML-RARα mRNA in a single reaction. Serial dilutions of plasmid DNA containing bcr1, bcr2, or bcr3 PML-RARα sequences and RNA extracted from bone marrow aspirates of 6 patients with APL were used to compare the results of RT-LAMP and nested PCR assays. Results Plasmid DNA was amplified by RT-LAMP, for which the reaction time was > 4 h shorter and the lower detection limit was higher than for nested RT-PCR. Six of 7 samples tested positive by both methods. Conclusion We developed an RT-LAMP assay for simple and rapid PML-RARα mRNA detection that may be clinically useful for point-of-care testing and APL diagnosis. PMID:28070163

  5. Detection of novel swine origin influenza A virus (H1N1) by real-time nucleic acid sequence-based amplification.

    PubMed

    Ge, Yiyue; Cui, Lunbiao; Qi, Xian; Shan, Jun; Shan, Yunfeng; Qi, Yuhua; Wu, Bing; Wang, Hua; Shi, Zhiyang

    2010-02-01

    Rapid detection of novel swine origin influenza A virus (S-OIV) (H1N1) is crucial for timely implementation of infection control measures. In this study, a haemagglutinin (HA) gene-based real-time nucleic acid sequence-based amplification (NASBA) assay was developed for the specific detection of S-OIV (H1N1). The assay was evaluated and validated by comparing it with existing detection methods for S-OIV (H1N1). Results obtained in a 10-fold dilution series assay demonstrated the analytic sensitivity of the present assay was comparable to that of a commercial S-OIV (H1N1) real-time RT-PCR kit and higher than that of the Centers for Disease Control and Prevention (CDC) TaqMan assay. The actual detection limit of the real-time NASBA assay was approximately 50 copies per reaction. Compared with reference methods (viral culture, conventional RT-PCR, and real-time RT-PCR), the sensitivity, specificity, positive predictive value, and negative predictive value of the present assay were all 100%. Overall, the results showed that the real-time NASBA assay could be used for sensitive and specific detection of S-OIV (H1N1).

  6. Selective adsorption and chiral amplification of amino acids in vermiculite clay-implications for the origin of biochirality.

    PubMed

    Fraser, Donald G; Fitz, Daniel; Jakschitz, T; Rode, Bernd M

    2011-01-21

    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH(3)Cl ions forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. n-Propyl NH(3)Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligomerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.

  7. Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens.

    PubMed

    van Doornum, G J J; Schutten, M; Voermans, J; Guldemeester, G J J; Niesters, H G M

    2007-12-01

    Several real-time PCR and nucleic acid sequence-based amplification (NASBA) primer pairs and a modified real-time PCR primer pair for the detection of enteroviruses were compared. The modified real-time PCR primer pair was evaluated on clinical samples in comparison with cell culture using the MagnaPure LC Isolation instrument for nucleic acid extraction. Six hundred forty samples could be examined both by cell culture and real-time PCR. Faecal specimens (n = 285), cerebrospinal fluid (n = 210), throat swabs (n = 113), biopsies (n = 1--, vesicular fluid (n = 11), and pleural fluid specimens (n = 9) were included. By culture, 26/640 (4%) samples were positive for enterovirus. By real-time PCR, the number of positive specimens was 50 (7.8%). Of the 210 cerebrospinal fluid samples, three were positive by culture and nine by real-time PCR. Seventeen and 33 of a total of 285 faecal specimens were positive by culture and real-time PCR, respectively. In case of discrepant results, the clinical symptoms were in accordance with an infection due to enteroviruses. Genotyping using the VP1 gene correlated with serotyping by neutralization. In contrast, six of the 19 specimens that could be typed both by neutralization and by sequencing using the VP4 domain yielded a different genotype, yet within the same species. Real-time PCR turned out to be suitable for the detection of enteroviruses in the daily routine setting. In comparison to rapid culture, it offers a rapid, more sensitive, and reliable assay; especially in cerebrospinal fluid, the yield of enteroviruses is much higher.

  8. Amplification of electrolyte uptake in the absorptive glass mat (AGM) separator for valve regulated lead acid (VRLA) batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Kameswara Rao, P. V.; Rawal, Amit

    2017-02-01

    Absorptive glass mat (AGM) separators are widely used for valve regulated lead acid (VRLA) batteries due to their remarkable fiber and structural characteristics. Discharge performance and recharge effectiveness of VRLA batteries essentially rely on the distribution and saturation levels of the electrolyte within the AGM separator. Herein, we report an analytical model for predicting the wicking characteristics of AGM battery separators under unconfined and confined states. The model of wicking behavior of AGM is based upon Fries and Dreyer's approach that included the effect of gravity component which was neglected in classic Lucas-Washburn's model. In addition, the predictive model of wicking accounted for realistic structural characteristics of AGM via orientation averaging approach. For wicking under confined state, the structural parameters have been updated under defined level of compressive stresses based upon the constitutive equation derived for a planar network of fibers in AGM under transverse loading conditions. A comparison has been made between the theoretical models and experimental results of wicking behavior under unconfined and confined states. Most importantly, the presented work has highlighted the questionable validity of classic Lucas-Washburn model for predicting the wicking characteristics of AGM separator over longer time duration.

  9. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  10. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  11. Can mailed swab samples be dry-shipped for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by nucleic acid amplification tests?

    PubMed

    Gaydos, Charlotte A; Farshy, Carol; Barnes, Mathilda; Quinn, Nicole; Agreda, Patricia; Rivers, Charles A; Schwebke, Jane; Papp, John

    2012-05-01

    Dry-shipped and mailed vaginal swabs collected at home have been used in research studies for the detection of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (GC), and Trichomonas vaginalis (TV) by nucleic acid amplification tests (NAATs) in screening programs. A verification study was performed to compare the limit of detection of CT, GC, and TV on swabs that were dry-shipped to paired swabs that were wet-shipped in transport media through the US mail. The Centers for Disease Control and Prevention prepared inocula in sterile water to mock simulated urogenital swabs with high to low concentrations of CT and GC. Replicate swabs were inoculated with 100 μL of dilutions and were dry transported or placed into commercial transport media ("wet") for mailing for NAAT testing. The University of Alabama prepared replicate concentrations of TV, which were similarly shipped and tested by NAAT. All paired dry and wet swabs were detectable for CT. For GC, all paired dry and wet swabs were detectable for GC at concentrations ≥ 10(3). At 10(2) and 10 CFU/mL, the 10 replicate GC results were variably positive. For TV, wet and dry shipped concentrations >10(2) TV/mL tested positive, while results at 10 TV/mL were negative for dry swabs. Holding replicate dry swabs at 55 (○)C 5 days before testing did not affect results. NAATs were able to detect CT, GC, and TV on dry transported swabs. Using NAATs for testing home-collected, urogenital swabs mailed in a dry state to a laboratory may be useful for outreach screening programs.

  12. Concordance study between one-step nucleic acid amplification and morphologic techniques to detect lymph node metastasis in papillary carcinoma of the thyroid.

    PubMed

    del Carmen, Sofía; Gatius, Sonia; Franch-Arcas, Guzmán; Baena, José Antonio; Gonzalez, Oscar; Zafon, Carlos; Cuevas, Dolors; Valls, Joan; Pérez, Angustias; Martinez, Mercedes; Ros, Susana; Macías, Carmen García; Iglesias, Carmela; Matías-Guiu, Xavier; de Álava, Enrique

    2016-02-01

    Tumor resection in papillary thyroid carcinoma (PTC) is often accompanied by lymph node (LN) removal of the central and lateral cervical compartments. One-step nucleic acid amplification (OSNA) is a polymerase chain reaction-based technique that quantifies cytokeratin 19 (CK19) messenger RNA copies. Our aim is to assess the value of OSNA in detection of LN metastases in PTC, in comparison with imprints and microscopic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue. A total of 387 LNs from 37 patients were studied. From each half LN, 2 imprints were taken and analyzed with hematoxylin and eosin (H&E) and CK19 immunostaining. One half of the LN was submitted to OSNA and one half to FFPE processing and H&E and CK19 staining. For concordance analysis, every single LN was considered as a case. A group of 11 cases with discordant results between OSNA and H&E/CK19 FFPE sections were subjected to additional FFPE serial sectioning and H&E and CK19 staining. We found a high degree of concordance between the assays used, with sensitivities ranging from 0.81 to 0.95, and specificities ranging from 0.87 and 0.98. OSNA allowed upstaging of patients from pN0 to pN1, in comparison with standard pathologic analysis. Identification of a metastatic LN with more than 15000 CK19 messenger RNA copies predicted the presence of a second LN with macrometastasis (<5000 copies). In summary, the study shows that OSNA application in sentinel or suspicious LN may be helpful in assessing nodal status in PTC patients.

  13. Comparison of the Luminex xTAG respiratory viral panel with in-house nucleic acid amplification tests for diagnosis of respiratory virus infections.

    PubMed

    Pabbaraju, Kanti; Tokaryk, Kara L; Wong, Sallene; Fox, Julie D

    2008-09-01

    Detection of respiratory viruses using sensitive real-time nucleic acid amplification tests (NATs) is invaluable for patient and outbreak management. However, the wide range of potential respiratory virus pathogens makes testing using individual real-time NATs expensive and laborious. The objective of this study was to compare the detection of respiratory virus targets using the Luminex xTAG respiratory viral panel (RVP) assay with individual real-time NATs used at the Provincial Laboratory of Public Health, Calgary, Alberta, Canada. The study included 1,530 specimens submitted for diagnosis of respiratory infections from December 2006 to May 2007. Direct-fluorescent-antigen-positive nasopharyngeal samples were excluded from this study. A total of 690 and 643 positives were detected by RVP and in-house NATs, respectively. Kappa correlation between in-house NATs and RVP for all targets ranged from 0.721 to 1.000. The majority of specimens missed by in-house NATs (96.7%) were positive for picornaviruses. Samples missed by RVP were mainly positive for adenovirus (51.7%) or respiratory syncytial virus (27.5%) by in-house NATs and in general had low viral loads. RVP allows for multiplex detection of 20 (and differentiation between 19) respiratory virus targets with considerable time and cost savings compared with alternative NATs. Although this first version of the RVP assay has lower sensitivity than in-house NATs for detection of adenovirus, it has good sensitivity for other targets. The identification of picornaviruses and coronaviruses and concurrent typing of influenza A virus by RVP, which are not currently included in our diagnostic testing algorithm, will improve our diagnosis of respiratory tract infections.

  14. Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays

    PubMed Central

    Padley, David J; Heath, Alan B; Sutherland, Colin; Chiodini, Peter L; Baylis, Sally A

    2008-01-01

    Background In order to harmonize results for the detection and quantification of Plasmodium falciparum DNA by nucleic acid amplification technique (NAT)-based assays, a World Health Organization (WHO) collaborative study was performed, evaluating a series of candidate standard preparations. Methods Fourteen laboratories from 10 different countries participated in the collaborative study. Four candidate preparations based upon blood samples parasitaemic for P. falciparum were evaluated in the study. Sample AA was lyophilized, whilst samples BB, CC and DD were liquid/frozen preparations. The candidate standards were tested by each laboratory at a range of dilutions in four independent assays, using both qualitative and quantitative NAT-based assays. The results were collated and analysed statistically. Results Twenty sets of data were returned from the participating laboratories and used to determine the mean P. falciparum DNA content for each sample. The mean log10 "equivalents"/ml were 8.51 for sample AA, 8.45 for sample BB, 8.35 for sample CC, and 5.51 for sample DD. The freeze-dried preparation AA, was examined by accelerated thermal degradation studies and found to be highly stable. Conclusion On the basis of the collaborative study, the freeze-dried material, AA (NIBSC code No. 04/176) was established as the 1st WHO International Standard for P. falciparum DNA NAT-based assays and has been assigned a potency of 109 International Units (IU) per ml. Each vial contains 5 × 108 IU, equivalent to 0.5 ml of material after reconstitution. PMID:18652656

  15. Can mailed swab samples be dry-shipped for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by nucleic acid amplification tests?

    PubMed Central

    Gaydos, Charlotte A.; Farshy, Carol; Barnes, Mathilda; Quinn, Nicole; Agreda, Patricia; Rivers, Charles A.; Schwebke, Jane; Papp, John

    2012-01-01

    Background Dry-shipped and mailed vaginal swabs collected at home have been used in research studies for the detection of C. trachomatis (CT), N. gonorrhoeae (GC), and Trichomonas vaginalis (TV) by nucleic acid amplification tests (NAATs) in screening programs. A verification study was performed to compare the limit of detection of CT, GC, and TV on swabs that were dry-shipped to paired swabs that were wet-shipped in transport media through the U.S. mail. Methods The Centers for Disease Control and Prevention prepared inocula in sterile water to mock simulated urogenital swabs with high to low concentrations of CT and GC. Replicate swabs were inoculated with 100µl of dilutions, were dry transported or placed into commercial transport media (“wet”) for mailing for NAAT testing. The University of Alabama prepared replicate concentrations of TV, which were similarly shipped and tested by NAAT. Results All paired dry and wet swabs were detectable for CT. For GC, all paired dry and wet swabs were detectable for GC at concentrations ≥103. At 102 and 10 CFU/ml, the 10 replicate GC results were variably positive. For TV, wet and dry shipped concentrations > 102 TV/ml tested positive, while results at 10 TV/ml were negative for dry swabs. Holding replicate dry swabs at 55°C 5 days before testing did not affect results. Conclusion NAATs were able to detect CT, GC, and TV on dry transported swabs. Using NAATs for testing home-collected, urogenital swabs mailed in a dry state to a laboratory may be useful for outreach screening programs. PMID:22578934

  16. Evaluation of a viral microarray based on simultaneous extraction and amplification of viral nucleotide acid for detecting human herpesviruses and enteroviruses.

    PubMed

    Liu, Yi; Duan, Chunhong; Zhang, Chunxiu; Yang, Xiaomeng; Zhao, Yan; Dong, Rui; Zhou, Jiajing; Gai, Zhongtao

    2015-01-01

    In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5'-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses' detection.

  17. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.

    PubMed

    Hønsvall, Birgitte K; Robertson, Lucy J

    2017-01-01

    Both Cryptosporidium parvum and Cryptosporidium hominis are often associated with cryptosporidiosis in humans, but whereas humans are the main host for C. hominis, C. parvum is zoonotic and able to infect a variety of species. The oocyst transmission stages of both species of parasites are morphologically identical and molecular techniques, usually polymerase chain reaction (PCR), are required to distinguish between oocysts detected by standard methods in environmental samples, such as water. In this study, we developed two primer sets for real-time nucleic acid sequence-based amplification (NASBA), targeting the MIC1 transcript in C. parvum (CpMIC1) and C. hominis (ChMIC1). Using these primer sets, we were not only able to detect low numbers of C. parvum and C. hominis oocysts (down to 5 oocysts in 10 μl, and down to 1 oocyst using diluted RNA samples), but also distinguish between them. One of the primer sets targeted an exon only occurring in CpMIC1, thereby providing a tool for distinguishing C. parvum from other Cryptosporidium species. Although mRNA has been suggested as a tool for assessing viability of Cryptosporidium oocysts, as it is short-lived and may have high transcription, this NASBA assay detected MIC1 mRNA in inactivated oocysts. RNA within the oocysts seems to be protected from degradation, even when the oocysts have been killed by heating or freeze-thawing. Thus, our approach detects both viable and non-viable oocysts, and RNA does not seem to be a suitable marker for assessing oocyst viability.

  18. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    PubMed

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  19. Role of deoxyribonucleic acid technology in forensic dentistry.

    PubMed

    Datta, Pankaj; Datta, Sonia Sood

    2012-01-01

    In the last few years, Deoxyribonucleic Acid (DNA) analysis methods have been applied to forensic cases. Forensic dental record comparison has been used for human identification in cases where destruction of bodily tissues or prolonged exposure to the environment has made other means of identification impractical, that is, after fire exposure or mass disaster. Teeth play an important role in identification and criminology, due to their unique characteristics and relatively high degree of physical and chemical resistance. The use of a DNA profile test in forensic dentistry offers a new perspective in human identification. The DNA is responsible for storing all the genetic material and is unique to each individual. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article gives an overview of the evolution of DNA technology in the last few years, highlighting its importance in cases of forensic investigation.

  20. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  1. Reliability of nucleic acid amplification methods for detection of Chlamydia trachomatis in urine: results of the first international collaborative quality control study among 96 laboratories.

    PubMed

    Verkooyen, Roel P; Noordhoek, Gerda T; Klapper, Paul E; Reid, Jim; Schirm, Jurjen; Cleator, Graham M; Ieven, Margareta; Hoddevik, Gunnar

    2003-07-01

    The first European Quality Control Concerted Action study was organized to assess the ability of laboratories to detect Chlamydia trachomatis in a panel of urine samples by nucleic acid amplification tests (NATs). The panel consisted of lyophilized urine samples, including three negative, two strongly positive, and five weakly positive samples. Ninety-six laboratories in 22 countries participated with a total of 102 data sets. Of 204 strongly positive samples 199 (97.5%) were correctly reported, and of 506 weakly positive samples 466 (92.1%) were correctly reported. In 74 (72.5%) data sets correct results were reported on all samples, and 17 data sets (16.7%) showed either one false-negative or one false-positive result. In another 11 data sets, two or more incorrect results were reported, and two data sets reported a false-positive result on one negative sample. The Roche COBAS Amplicor test was performed in 44 (43%) data sets, the Abbott LCx assay was performed in 31 (30%) data sets, the Roche Amplicor manual assay was performed in 9 (9%) data sets, an in-house PCR was performed in 9 (9%) data sets, the Becton Dickinson ProbeTec ET assay was performed in 5 (4.9%) data sets, and the GenProbe TMA assay was performed in 4 (3.9%) data sets. The results of the Roche Amplicor manual (95.6% correct), COBAS Amplicor (97.0%), and Abbott LCx (94.8%) tests were comparable (P = 0.48). The results with the in-house PCR, BD ProbeTec ET, and GenProbe TMA tests were reported correctly in 88.6, 98, and 92.5% of the tests, respectively. Freeze-drying of clinical urine specimens proved to be a successful method for generating standardized, stable, and easy-to-transport samples for the detection of C. trachomatis by using NATs. Although the results, especially the specificity, for this proficiency panel were better than most quality control studies, sensitivity problems occurred frequently, underlining the need for good laboratory practice and reference reagents to monitor the

  2. Clinical significance of expression of human cytomegalovirus pp67 late transcript in heart, lung, and bone marrow transplant recipients as determined by nucleic acid sequence-based amplification.

    PubMed

    Gerna, G; Baldanti, F; Middeldorp, J M; Furione, M; Zavattoni, M; Lilleri, D; Revello, M G

    1999-04-01

    Human cytomegalovirus (HCMV) infection was monitored retrospectively by qualitative determination of pp67 mRNA (a late viral transcript) by nucleic acid sequence-based amplification (NASBA) in a series of 50 transplant recipients, including 26 solid-organ (11 heart and 15 lung) transplant recipients (SOTRs) and 24 bone marrow transplant recipients (BMTRs). NASBA results were compared with those obtained by prospective quantitation of HCMV viremia and antigenemia and retrospective quantitation of DNA in leukocytes (leukoDNAemia). On the whole, 29 patients were NASBA positive, whereas 10 were NASBA negative, and the blood of 11 patients remained HCMV negative. NASBA detected HCMV infection before quantitation of viremia did but after quantitation of leukoDNAemia and antigenemia did. In NASBA-positive blood samples, median levels of viremia, antigenemia, and leukoDNAemia were significantly higher than the relevant levels detected in NASBA-negative HCMV-positive blood samples. By using the quantitation of leukoDNAemia as the "gold standard," the analytical sensitivity (47.3%), as well as the negative predictive value (68. 3%), of NASBA for the diagnosis of HCMV infection intermediate between that of antigenemia quantitation (analytical sensitivity, 72. 3%) and that of viremia quantitation (analytical sensitivity, 28.7%), while the specificity and the positive predictive value were high (90 to 100%). However, with respect to the clinically relevant antigenemia cutoff of >/=100 used in this study for the initiation of preemptive therapy in SOTRs with reactivated HCMV infection, the clinical sensitivity of NASBA reached 100%, with a specificity of 68. 9%. Upon the initiation of antigenemia quantitation-guided treatment, the actual median antigenemia level was 158 (range, 124 to 580) in SOTRs who had reactivated infection and who presented with NASBA positivity 3.5 +/- 2.6 days in advance and 13.5 (range, 1 to 270) in the group that included BMTRs and SOTRs who had primary

  3. Human Cytomegalovirus Immediate-Early mRNA Detection by Nucleic Acid Sequence-Based Amplification as a New Parameter for Preemptive Therapy in Bone Marrow Transplant Recipients

    PubMed Central

    Gerna, Giuseppe; Baldanti, Fausto; Lilleri, Daniele; Parea, Maurizio; Alessandrino, Emilio; Pagani, Ambrogio; Locatelli, Franco; Middeldorp, Jaap; Revello, M. Grazia

    2000-01-01

    Human cytomegalovirus (HCMV) infection was monitored retrospectively by qualitative determination of immediate-early (IE) mRNA by nucleic acid sequence-based amplification (NASBA) in a series of 51 bone marrow transplant (BMT) recipients. The qualitative results for IE mRNA obtained by NASBA were compared with those obtained by prospective quantitation of HCMV viremia and antigenemia and retrospective quantitation of DNA in blood (DNAemia) by PCR as well as by qualitative determination of late pp67 mRNA by NASBA. On the whole, of the 39 HCMV-positive patients (all asymptomatic), HCMV was detected in 14 (35.9%) by quantitation of viremia, 15 (38.5%) by detection of pp67 mRNA by NASBA, 32 (82.1%) by quantitation of DNAemia, and 33 (84.6%) by quantitation of antigenemia, while HCMV was detected in 38 (97.4%) patients by detection of IE mRNA by NASBA. In the immunocompetent host, IE mRNA was not detected by NASBA in 100 blood donors or during reactivated infections in 30 breast-feeding mothers. Likewise, NASBA did not detect IE mRNA in 56 solid-organ transplant recipients in the first 21 days after transplantation. By using NASBA for detection of IE mRNA as the reference standard for detection of HCMV infection in blood samples, the diagnostic sensitivities were 67.7% for quantitation of DNAemia, 59.0% for quantitation of antigenemia, 18.3% for detection of pp67 mRNA by NASBA, and 16.0% for quantitation of viremia. Specificities and negative and positive predictive values were >90.0, >70.0, and >80.0%, respectively, for all four assays. The mean times to first HCMV detection after bone marrow transplantation were 37.7 ± 15.4 days for detection of IE mRNA by NASBA, 39.6 ± 15.6 days for quantitation of antigenemia, 40.9 ± 15.2 days for quantitation of DNAemia, and 43.7 ± 16.3 or 43.7 ± 17.5 days for quantitation of viremia and detection of pp67 mRNA by NASBA, respectively. On the whole, 31 BMT recipients received preemptive therapy by using confirmed antigenemia

  4. A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon.

    PubMed

    Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng

    2017-03-08

    K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS(2-) by H2O2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases.

  5. Post-Fragmentation Whole Genome Amplification-Based Method

    NASA Technical Reports Server (NTRS)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have

  6. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons

    PubMed Central

    Weusten, Jos J. A. M.; Carpay, Wim M.; Oosterlaken, Tom A. M.; van Zuijlen, Martien C. A.; van de Wiel, Paul A.

    2002-01-01

    For quantitative NASBA-based viral load assays using homogeneous detection with molecular beacons, such as the NucliSens EasyQ HIV-1 assay, a quantitation algorithm is required. During the amplification process there is a constant growth in the concentration of amplicons to which the beacon can bind while generating a fluorescence signal. The overall fluorescence curve contains kinetic information on both amplicon formation and beacon binding, but only the former is relevant for quantitation. In the current paper, mathematical modeling of the relevant processes is used to develop an equation describing the fluorescence curve as a function of the amplification time and the relevant kinetic parameters. This equation allows reconstruction of RNA formation, which is characterized by an exponential increase in concentrations as long as the primer concentrations are not rate limiting and by linear growth over time after the primer pool is depleted. During the linear growth phase, the actual quantitation is based on assessing the amplicon formation rate from the viral RNA relative to that from a fixed amount of calibrator RNA. The quantitation procedure has been successfully applied in the NucliSens EasyQ HIV-1 assay. PMID:11884645

  7. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.

    PubMed

    Mohsen, Michael G; Kool, Eric T

    2016-11-15

    Nucleic acid amplification is a hugely important technology for biology and medicine. While the polymerase chain reaction (PCR) has been highly useful and effective, its reliance on heating and cooling cycles places some constraints on its utility. For example, the heating step of PCR can destroy biological molecules under investigation and heat/cool cycles are not applicable in living systems. Thus, isothermal approaches to DNA and RNA amplification are under widespread study. Perhaps the simplest of these are the rolling circle approaches, including rolling circle amplification (RCA) and rolling circle transcription (RCT). In this strategy, a very small circular oligonucleotide (e.g., 25-100 nucleotides in length) acts as a template for a DNA or an RNA polymerase, producing long repeating product strands that serve as amplified copies of the circle sequence. Here we describe the early developments and studies involving circular oligonucleotides that ultimately led to the burgeoning rolling circle technologies currently under development. This Account starts with our studies on the design of circular oligonucleotides as novel DNA- and RNA-binding motifs. We describe how we developed chemical and biochemical strategies for synthesis of well-defined circular oligonucleotides having defined sequence and open (unpaired) structure, and we outline the unusual ways in which circular DNAs can interact with other nucleic acids. We proceed next to the discovery of DNA and RNA polymerase activity on these very small cyclic DNAs. DNA polymerase "rolling circle" activities were discovered concurrently in our laboratory and that of Andrew Fire. We describe the surprising efficiency of this process even on shockingly small circular DNAs, producing repeating DNAs thousands of nucleotides in length. RNA polymerase activity on circular oligonucleotides was first documented in our group in 1995; especially surprising in this case was the finding that the process occurs efficiently

  8. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  9. Nondeterministic Noiseless Linear Amplification of Quantum Systems

    NASA Astrophysics Data System (ADS)

    Ralph, T. C.; Lund, A. P.

    2009-04-01

    We introduce the concept of non-deterministic noiseless linear amplification. We propose a linear optical realization of this transformation that could be built with current technology. We discuss the application of the device to distillation of continuous variable entanglement. We demonstrate that highly pure entanglement can be distilled from transmission over a lossy channel.

  10. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  11. Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1

    PubMed Central

    Singleton, Jered; Osborn, Jennifer L.; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens. PMID:25426953

  12. Electricity-free amplification and detection for molecular point-of-care diagnosis of HIV-1.

    PubMed

    Singleton, Jered; Osborn, Jennifer L; Lillis, Lorraine; Hawkins, Kenneth; Guelig, Dylan; Price, Will; Johns, Rachel; Ebels, Kelly; Boyle, David; Weigl, Bernhard; LaBarre, Paul

    2014-01-01

    In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US$.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens.

  13. Capture and Amplification by Tailing and Switching (CATS)

    PubMed Central

    Turchinovich, Andrey; Surowy, Harald; Serva, Andrius; Zapatka, Marc; Lichter, Peter; Burwinkel, Barbara

    2014-01-01

    Massive parallel sequencing (MPS) technologies have paved the way into new areas of research including individualized medicine. However, sequencing of trace amounts of DNA or RNA still remains a major challenge, especially for degraded nucleic acids like circulating DNA. This together with high cost and time requirements impedes many important applications of MPS in medicine and fundamental science. We have established a fast, cheap and highly efficient protocol called ‘Capture and Amplification by Tailing and Switching’ (CATS) to directly generate ready-to-sequence libraries for MPS from nanogram and picogram quantities of both DNA and RNA. Furthermore, those DNA libraries are strand-specific, can be prepared within 2–3 h and do not require preliminary sample amplification steps. To exemplify the capacity of the technique, we have generated and sequenced DNA libraries from hundred-picogram amounts of circulating nucleic acids isolated from human blood plasma, one nanogram of mRNA-enriched total RNA from cultured cells and few nanograms of bisulfite-converted DNA. The approach for DNA library preparation from minimal and fragmented input described here will find broad application in diverse research areas such as translational medicine including therapy monitoring, prediction, prognosis and early detection of various human disorders and will permit high-throughput DNA sequencing from previously inaccessible material such as minute forensic and archeological samples. PMID:24922482

  14. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.

    PubMed

    Lamas-Maceiras, Mónica; Vaca, Inmaculada; Rodríguez, Esther; Casqueiro, Javier; Martín, Juan F

    2006-04-01

    A gene, phl, encoding a phenylacetyl-CoA ligase was cloned from a phage library of Penicillium chrysogenum AS-P-78. The presence of five introns in the phl gene was confirmed by reverse transcriptase-PCR. The phl gene encoded an aryl-CoA ligase closely related to Arabidopsis thaliana 4-coumaroyl-CoA ligase. The Phl protein contained most of the amino acids defining the aryl-CoA (4-coumaroyl-CoA) ligase substrate-specificity code and differed from acetyl-CoA ligase and other acyl-CoA ligases. The phl gene was not linked to the penicillin gene cluster. Amplification of phl in an autonomous replicating plasmid led to an 8-fold increase in phenylacetyl-CoA ligase activity and a 35% increase in penicillin production. Transformants containing the amplified phl gene were resistant to high concentrations of phenylacetic acid (more than 2.5 g/l). Disruption of the phl gene resulted in a 40% decrease in penicillin production and a similar reduction of phenylacetyl-CoA ligase activity. The disrupted mutants were highly susceptible to phenylacetic acid. Complementation of the disrupted mutants with the phl gene restored normal levels of penicillin production and resistance to phenylacetic acid. The phenylacetyl-CoA ligase encoded by the phl gene is therefore involved in penicillin production, although a second aryl-CoA ligase appears to contribute partially to phenylacetic acid activation. The Phl protein lacks a peptide-carrier-protein domain and behaves as an aryl-capping enzyme that activates phenylacetic acid and transfers it to the isopenicillin N acyltransferase. The Phl protein contains the peroxisome-targeting sequence that is also present in the isopenicillin N acyltransferase. The peroxisomal co-localization of these two proteins indicates that the last two enzymes of the penicillin pathway form a peroxisomal functional complex.

  15. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  16. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    PubMed

    Boyle, David S; McNerney, Ruth; Teng Low, Hwee; Leader, Brandon Troy; Pérez-Osorio, Ailyn C; Meyer, Jessica C; O'Sullivan, Denise M; Brooks, David G; Piepenburg, Olaf; Forrest, Matthew S

    2014-01-01

    Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays

  17. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  18. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  19. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  20. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  1. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  2. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  3. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    PubMed

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation.

  4. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  5. Novel technology for sewage sludge utilization: preparation of amino acids chelated trace elements (AACTE) fertilizer.

    PubMed

    Liu, Yangsheng; Kong, Sifang; Li, Yaqiong; Zeng, Hui

    2009-11-15

    This study developed a novel technology for sewage sludge utilization. The bacteria proteins in the sewage sludge were extracted to produce the amino acid chelated trace elements (AACTE) fertilizer by virtue of several chemical processes. Firstly, the sewage sludge was hydrolyzed under hot hydrochloric acid solution to obtain protein solution. The effects of hydrolysis temperature, reaction time and pH on the extraction ratio of protein from the sewage sludge were investigated. Secondly, the protein solution was further hydrolyzed into amino acids under hot acid condition. The effects of the HCl dosage, hydrolysis temperature and reaction time on the yields of amino acids were investigated in detail. Thirdly, the raw amino acids solution was purified by activated carbon decolorization and glacial acetic acid dissolution. Finally, the purified amino acids were used to produce the AACTE fertilizer by chelating with trace elements. Results showed that, under optimum hydrolysis conditions, 78.5% of protein was extracted from the sewage sludge and the amino acids yield was 10-13 g per 100g of dry sludge. The AACTE fertilizer produced was in accordance with China Standard for Amino Acids Foliar Fertilizer. This novel technology is more environmentally friendly compared with the conventional sludge treatments.

  6. Energy technology and emissions control for acid rain abatement in Asia

    SciTech Connect

    Streets, D.G.

    1990-01-01

    After more than ten years of research, acid rain is a sufficiently serious problem in North America to warrant control action. The acid rain problem has become a threat to the Asian continent as well. Emissions of sulfur dioxide and nitrogen oxides are already high and announces plans for increases in coal use by countries in the region imply a major increase in emissions in the future. This will inevitably lead to greater incidence of acid rain and probably significant environmental damage in some locations. The purpose of this paper is to examine some of the issues relating to acid-rain-control technology in Asia and to suggest ways to include technology options in integrated simulation models of acid rain in Asia. 14 refs., 9 figs., 6 tabs. (FL)

  7. Qualitative detection of avian influenza A (H5N1) viruses: a comparative evaluation of four real-time nucleic acid amplification methods.

    PubMed

    Chantratita, Wasun; Sukasem, Chonlaphat; Kaewpongsri, Supaporn; Srichunrusami, Chutatip; Pairoj, Wantanit; Thitithanyanont, Arunee; Chaichoune, Kridsada; Ratanakron, Parntep; Songserm, Thaweesak; Damrongwatanapokin, Sudarat; Landt, Olfert

    2008-01-01

    The aim of this study was to determine the performance of real-time amplification based methods - NASBA, TaqMan, RT-FRET, and RT-PCR LUXtrade mark formats - for the detection of influenza A (H5N1) virus RNA. In an analysis of 54 samples obtained from a range of animal species in Thailand during the period 2003-2006, results showed that the NASBA (H5=98.2%, N1=96.3%), TaqMan (H5=98.2%, N1=96.3%) and FRET (H5=98.2%, N1=96.3%) had significantly higher rates of positive detection than LUX (H5=94.4%, N1=50.0%; P<0.001) for influenza A, H5 and N1 isolates. There were no false-positive results from any methods used in the negative-control group of samples. The limits of analytical detection were at least 10copies/reaction in real-time NASBA and LUX assays, while FRET and TaqMan assay appeared to be less sensitive at > or =100copies/reaction. The assays were relatively specific without cross-reactivity to a number of other influenza strains or viral pathogens. In conclusion, our study demonstrated that real-time NASBA, TaqMan and FRET assays can be used to detect influenza A (H5N1) from a wide range of hosts, and be specific for H5N1 samples obtained during different outbreaks (2003-2006). All assays provided the benefit of rapid influenza H5N1 identification for early diagnosis, in the range of hours, and they are well suited to high throughput analyses.

  8. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant–Associated Fungi

    PubMed Central

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-01-01

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant–associated fungi due to the similar homologies of sequences in primer–annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3′ end of the primer–binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant–associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant–associated fungi. PMID:27600711

  9. Head-to-head comparison of second-generation nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae on urine samples from female subjects and self-collected vaginal swabs.

    PubMed

    Chernesky, Max; Jang, Dan; Gilchrist, Jodi; Hatchette, Todd; Poirier, André; Flandin, Jean-Frederic; Smieja, Marek; Ratnam, Sam

    2014-07-01

    In a comparison of 4 second-generation nucleic acid amplification tests performed with self-collected vaginal swab (SCVS) and first-void urine (FVU) specimens from 575 women, SCVS specimens indicated more infections than did FVU specimens in all assays. The prevalence rates were 9% (53/575 patients) for Chlamydia trachomatis and 2% (11/575 patients) for Neisseria gonorrhoeae. The clinical sensitivities for testing SCVS specimens for C. trachomatis were 98.1% on a Tigris system and 96.2% on a Panther system for the Aptima Combo 2 assay (Hologic Gen-Probe), 98.0% for the RealTime CT/NG assay on an m2000 instrument (Abbott), 90.6% for the ProbeTec CT/GC Q(x) assay on the Viper system (Becton Dickinson), and 84.6% for the cobas CT/NG assay on the cobas 4800 platform (Roche). Clinical sensitivities for C. trachomatis in FVU specimens were 88.7% (Tigris) and 88.0% (Panther) for the Aptima Combo 2 assay, 76.9% for the RealTime CT/NG assay, 75.5% for the ProbeTec CT/GC Q(x) assay, and 81.1% for the cobas CT/NG assay. Clinical sensitivities of the assays for N. gonorrhoeae, with limited positive results, ranged from 63.6% to 100%. Specificities for both infections ranged from 98.4 to 100%. Differences in analytical sensitivities and levels of molecular targets in clinical samples but not inhibitors of amplification may explain the differences in clinical sensitivities.

  10. Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant-Associated Fungi.

    PubMed

    Ikenaga, Makoto; Tabuchi, Masakazu; Kawauchi, Tomohiro; Sakai, Masao

    2016-09-29

    The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant-associated fungi due to the similar homologies of sequences in primer-annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3' end of the primer-binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant-associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant-associated fungi.

  11. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    PubMed

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. FigureThe combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

  12. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  13. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  14. Gravitomagnetic amplification in cosmology

    SciTech Connect

    Tsagas, Christos G.

    2010-02-15

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.

  15. Isothermal Multiple Displacement Amplification

    PubMed Central

    Luthra, Rajyalakshmi; Medeiros, L. Jeffrey

    2004-01-01

    Isothermal multiple strand displacement amplification (IMDA) of the whole human genome is a promising method for procuring abundant DNA from valuable and often limited clinical specimens. However, whether DNA generated by this method is of high quality and a faithful replication of the DNA in the original specimen, allowing for subsequent molecular diagnostic testing, requires verification. In this study, we evaluated the suitability of IMDA-generated DNA (IMDA-DNA) for detecting antigen receptor gene rearrangements, chromosomal translocations, and gene mutations using Southern blot analysis, polymerase chain reaction (PCR) methods, or sequencing methods in 28 lymphoma and leukemia clinical specimens. Molecular testing before and after whole genome amplification of these specimens using the IMDA technique showed concordance in 27 of 28 (96%) specimens. Analysis of IMDA-DNA by Southern blot analysis detected restriction fragments >12 kilobases long. No amplification bias was observed at all loci tested demonstrating that this method can be useful in generating large amounts of unbiased, high molecular weight DNA from limited clinical specimens. PMID:15269301

  16. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  17. Membrane technology applied to acid mine drainage from copper mining.

    PubMed

    Ambiado, K; Bustos, C; Schwarz, A; Bórquez, R

    2017-02-01

    The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes - NF99 and RO98pHt, both from Alfa Laval - were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.

  18. Technological approaches to minimize industrial trans fatty acids in foods.

    PubMed

    Menaa, Farid; Menaa, Abder; Tréton, Jacques; Menaa, Bouzid

    2013-03-01

    Trans fatty acids (TFAs) mainly arise from 2 major sources: natural ruminal hydrogenation and industrial partial catalytic hydrogenation. Increasing evidence suggests that most TFAs and their isomers cause harmful health effects (that is, increased risk of cardiovascular diseases). Nevertheless, in spite of the existence of an international policy consensus regarding the need for public health action, several countries (for example, France) do not adopt sufficient voluntary approaches (for example, governmental regulations and systematic consumer rejections) nor sufficient industrial strategies (for example, development of healthier manufacturing practices and innovative processes such as fat interesterifications) to eliminate deleterious TFAs from processed foods while ensuring the overall quality of the final product (for example, nutritional value and stability). In this manuscript, we first review the physical-chemical properties of TFAs, their occurrence in processed foods, their main effects on health, and the routine analytical methods to characterize TFAs, before emphasizing on the major industrial methods (that is, fat food reformulation, fat interesterification, genetically modified FAs composition) that can be used worldwide to reduce TFAs in foods.

  19. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  20. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  1. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    PubMed Central

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-01-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  2. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid.

    PubMed

    Yang, Jing; Xu, Xinxin; Liu, Gang

    2012-11-20

    Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosynthetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein of penT belongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenum doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane.

  3. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy.

    PubMed

    Liu, Minbo; Zhang, Lijuan; Xu, Yawei; Yang, Pengyuan; Lu, Haojie

    2013-07-25

    We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.

  4. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    PubMed

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests.

  5. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones

    PubMed Central

    2016-01-01

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  6. Comparison of Levels of Human Immunodeficiency Virus Type 1 RNA in Plasma as Measured by the NucliSens Nucleic Acid Sequence-Based Amplification and Quantiplex Branched-DNA Assays

    PubMed Central

    Ginocchio, C. C.; Tetali, S.; Washburn, D.; Zhang, F.; Kaplan, M. H.

    1999-01-01

    This study compared levels of human immunodeficiency virus type 1 RNA in plasma as measured by the Quantiplex branched-DNA and NucliSens nucleic acid sequence-based amplification assays. RNA was detectable in 118 of 184 samples (64.13%) by the Quantiplex assay and in 171 of 184 samples (92.94%) by the NucliSens assay. Regression analysis indicated that a linear relationship existed between the two sets of values (P < 0.0001), although the Quantiplex and NucliSens values were significantly different (P < 0.001), with the NucliSens values being approximately 0.323 log higher. Spearman correlation analysis indicated that the overall changes in patient viral load patterns were highly correlative between the two assays: r = 0.912, P < 0.0001. The lower limits of sensitivity were determined to be approximately 100 copies/ml and 1,200 to 1,400 copies/ml for the NucliSens and Quantiplex assays, respectively. PMID:10074556

  7. Comparison of levels of human immunodeficiency virus type 1 RNA in plasma as measured by the NucliSens nucleic acid sequence-based amplification and Quantiplex branched-DNA assays.

    PubMed

    Ginocchio, C C; Tetali, S; Washburn, D; Zhang, F; Kaplan, M H

    1999-04-01

    This study compared levels of human immunodeficiency virus type 1 RNA in plasma as measured by the Quantiplex branched-DNA and NucliSens nucleic acid sequence-based amplification assays. RNA was detectable in 118 of 184 samples (64.13%) by the Quantiplex assay and in 171 of 184 samples (92.94%) by the NucliSens assay. Regression analysis indicated that a linear relationship existed between the two sets of values (P < 0.0001), although the Quantiplex and NucliSens values were significantly different (P < 0.001), with the NucliSens values being approximately 0.323 log higher. Spearman correlation analysis indicated that the overall changes in patient viral load patterns were highly correlative between the two assays: r = 0.912, P < 0.0001. The lower limits of sensitivity were determined to be approximately 100 copies/ml and 1,200 to 1,400 copies/ml for the NucliSens and Quantiplex assays, respectively.

  8. Performance of self-collected penile-meatal swabs compared to clinician-collected urethral swabs for the detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Mycoplasma genitalium by nucleic acid amplification assays.

    PubMed

    Dize, Laura; Barnes, Perry; Barnes, Mathilda; Hsieh, Yu-Hsiang; Marsiglia, Vincent; Duncan, Della; Hardick, Justin; Gaydos, Charlotte A

    2016-10-01

    Men were enrolled in a study to assess the performance and acceptability of self-collected penile meatal swabs as compared to clinician-collected urethral swabs for sexually transmitted infections (STIs). We expected penile-meatal swabs to perform favorably to urethral swabs for Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Trichomonas vaginalis (TV), and Mycoplasma genitalium (MG) detection by nucleic acid amplification assays (NAATs). Of 203 swab pairs tested; for CT, penile-meatal swab sensitivity was 96.8% and specificity was 98.8%. NG sensitivity and specificity were 100% and 98.9%, respectively. For TV, sensitivity was 85.0% and specificity was 96.7%. For MG sensitivity and specificity were 79.3% and 99.4%, respectively. No significant statistical differences between sample type accuracy (CT: P=0.625; NG: P=0.248; TV: P=0.344; and MG: P=0.070) existed. Most men, 90.1%, reported self-collection of penile-meatal swabs as "Very Easy" or "Easy". Self-collected penile-meatal swabs appeared acceptable for NAAT STI detection and an acceptable collection method by men.

  9. NRMRL EVALUATES ACTIVE AND SEMI-PASSIVE TECHNOLOGIES FOR TREATING ACID MINE DRAINAGE

    EPA Science Inventory

    Two-page article describing three SITE demonstration projects underway on the Leviathan mine site in California. BiPhasic lime treatment, lime treatment lagoons and compost free BioReactors are being evaluated as innovative technologies for treating acid mine drainage.

  10. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  11. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  12. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  13. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  14. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation.

  15. Thin-film technology for direct visual detection of nucleic acid sequences: applications in clinical research.

    PubMed

    Jenison, Robert D; Bucala, Richard; Maul, Diana; Ward, David C

    2006-01-01

    Certain optical conditions permit the unaided eye to detect thickness changes on surfaces on the order of 20 A, which are of similar dimensions to monomolecular interactions between proteins or hybridization of complementary nucleic acid sequences. Such detection exploits specific interference of reflected white light, wherein thickness changes are perceived as surface color changes. This technology, termed thin-film detection, allows for the visualization of subattomole amounts of nucleic acid targets, even in complex clinical samples. Thin-film technology has been applied to a broad range of clinically relevant indications, including the detection of pathogenic bacterial and viral nucleic acid sequences and the discrimination of sequence variations in human genes causally related to susceptibility or severity of disease.

  16. Preferential Amplification of Pathogenic Sequences.

    PubMed

    Ge, Fang; Parker, Jayme; Chul Choi, Sang; Layer, Mark; Ross, Katherine; Jilly, Bernard; Chen, Jack

    2015-06-11

    The application of next generation sequencing (NGS) technology in the diagnosis of human pathogens is hindered by the fact that pathogenic sequences, especially viral, are often scarce in human clinical specimens. This known disproportion leads to the requirement of subsequent deep sequencing and extensive bioinformatics analysis. Here we report a method we called "Preferential Amplification of Pathogenic Sequences (PATHseq)" that can be used to greatly enrich pathogenic sequences. Using a computer program, we developed 8-, 9-, and 10-mer oligonucleotides called "non-human primers" that do not match the most abundant human transcripts, but instead selectively match transcripts of human pathogens. Instead of using random primers in the construction of cDNA libraries, the PATHseq method recruits these short non-human primers, which in turn, preferentially amplifies non-human, presumably pathogenic sequences. Using this method, we were able to enrich pathogenic sequences up to 200-fold in the final sequencing library. This method does not require prior knowledge of the pathogen or assumption of the infection; therefore, it provides a fast and sequence-independent approach for detection and identification of human viruses and other pathogens. The PATHseq method, coupled with NGS technology, can be broadly used in identification of known human pathogens and discovery of new pathogens.

  17. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  18. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.

    PubMed

    Khalaf, Samer; Al-Rimawi, Fuad; Khamis, Mustafa; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Mecca, Gennaro; Karaman, Rafik

    2013-01-01

    The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of a widely used non-steroid anti-inflammatory drug (NSAID) mefenamic acid was investigated. The sequential system included activated sludge, ultrafiltration by hollow fibre membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff, activated carbon and a reverse osmosis (RO) unit. The performance of the integrated plant showed complete removal of mefenamic acid from spiked wastewater samples. The activated carbon column was the most effective component in removing mefenamic acid with a removal efficiency of 97.2%. Stability study of mefenamic acid in pure water and Al-Quds activated sludge revealed that the anti-inflammatory drug was resistant to degradation in both environments. Batch adsorption of mefenamic acid by activated charcoal and a composite micelle (otadecyltrimethylammonium (ODTMA)-clay (montmorillonite) was determined at 25.0°C. Langmuir isotherm was found to fit the data with Qmax of 90.9 mg g(-1) and 100.0 mg g(-1) for activated carbon and micelle-clay complex, respectively. Filtration experiment by micelle-clay columns mixed with sand in the mg L(-1) range revealed complete removal of the drug with much larger capacity than activated carbon column. The combined results demonstrated that an integration of a micelle-clay column in the plant system has a good potential to improve the removal efficiency of the plant towards NSAID drugs such as mefenamic acid.

  19. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework.

  20. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  1. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  2. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  3. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  4. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  5. Peracetic acid as an alternative disinfection technology for wet weather flows.

    PubMed

    Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M

    2014-08-01

    Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.

  6. Backward Raman amplification of broad-band pulses

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Dodin, I. Y.; Fraiman, G. M.; Fisch, N. J.

    2016-08-01

    A reduced fluid model of Raman backscattering is proposed that describes backward Raman amplification (BRA) of pulses with duration τ0 comparable to or even smaller than the plasma period 2 π/ωp . At such a small τ0, a seed pulse can be amplified even if it has the same frequency as the pump (which is technologically advantageous), as opposed to that satisfying the Raman resonance condition. Using our theoretical model, we numerically calculate the BRA efficiency for such pulses as a function of τ0 and show that it remains reasonably high up to τ0≈2 π/ωp . We also show that using short seed pulses in BRA makes the amplification less sensitive to quasistatic inhomogeneities of the plasma density. Amplification can persist even when the density perturbations are large enough to violate the commonly known condition of resonant amplification.

  7. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin).

  8. Ultrasensitive DNA detection by cycle isothermal amplification based on nicking endonuclease and its application to logic gates.

    PubMed

    Li, Xuemei; Ding, Tianrong; Sun, Li; Mao, Changming

    2011-12-15

    In recent years, an intense interest has grown in the DNA logic gates having high potential for computation at literally the "nano-size" level. A limitation of traditional DNA logic gates is that each target strand hybridizes with only a single copy of the probe. This 1:1 hybridization radio limits the gain of the approach and thus its sensitivity. The exponential amplification of nucleic acids has become a core technology in medical diagnostics and has been widely used for the construction of DNA sensor, DNA nanomachine and DNA sequencing. It would be of great interest to develop DNA-based logic systems with exponential amplification for the output signal. In the present study, a series of three-input DNA logic gates with the cycle isothermal amplification based on nicking endonuclease (NEase) are designed. Very low concentrations of the analytes were sufficient to initiate an autocatalytic cascade, achieving a significant improvement of the detection limit, 100-fold improvement compared to the non-autocatalytic system. This was achieved by engineering a simple and flexible biological circuit designed to initiate a cascade of events to detect and amplify a specific DNA sequence. This procedure has the potential to greatly simplify the logic operation because amplification can be performed in "one-pot".

  9. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  10. Comparison between NuGEN's WT-Ovation Pico and one-direct amplification systems.

    PubMed

    Morse, Alison M; Carballo, Valentina; Baldwin, Donald A; Taylor, Christopher G; McIntyre, Lauren M

    2010-09-01

    Differential gene expression between groups of homogenous cell types is a biological question whose time has come. RNA can be extracted from small numbers of cells, such as those isolated by laser-capture microdissection, but the small amounts obtained often require amplification to enable whole genome transcriptome profiling by technologies such as microarray analysis and RNA-seq. Recently, advances in amplification procedures make amplification directly from whole cell lysates possible. The aim of this study was to compare two amplification systems for variations in observed RNA abundance attributable to the amplification procedure for use with small quantities of cells isolated by laser-capture microdissection. Arabidopsis root cells undergoing giant cell formation as a result of nematode infestation and uninfested control root cells were laser-captured and used to evaluate two amplification systems. One, NuGEN's WT-Ovation Pico (Pico) amplification system, uses total RNA as starting material, and the other, NuGEN's WT-One-Direct (One-Direct) amplification system, uses lysate containing the captured cells. The reproducibility of whole genome transcript profiling and correlations of both systems were investigated after microarray analysis. The One-Direct system was less reproducible and more variable than the Pico system. The Pico amplification kit resulted in the detection of thousands of differentially expressed genes between giant cells and control cells. This is in marked contrast to the relatively few genes detected after amplification with the One-Direct amplification kit.

  11. Comparison between NuGEN's WT-Ovation Pico and One-Direct Amplification Systems

    PubMed Central

    Morse, Alison M.; Carballo, Valentina; Baldwin, Donald A.; Taylor, Christopher G.; McIntyre, Lauren M.

    2010-01-01

    Differential gene expression between groups of homogenous cell types is a biological question whose time has come. RNA can be extracted from small numbers of cells, such as those isolated by laser-capture microdissection, but the small amounts obtained often require amplification to enable whole genome transcriptome profiling by technologies such as microarray analysis and RNA-seq. Recently, advances in amplification procedures make amplification directly from whole cell lysates possible. The aim of this study was to compare two amplification systems for variations in observed RNA abundance attributable to the amplification procedure for use with small quantities of cells isolated by laser-capture microdissection. Arabidopsis root cells undergoing giant cell formation as a result of nematode infestation and uninfested control root cells were laser-captured and used to evaluate two amplification systems. One, NuGEN's WT-Ovation Pico (Pico) amplification system, uses total RNA as starting material, and the other, NuGEN's WT-One-Direct (One-Direct) amplification system, uses lysate containing the captured cells. The reproducibility of whole genome transcript profiling and correlations of both systems were investigated after microarray analysis. The One-Direct system was less reproducible and more variable than the Pico system. The Pico amplification kit resulted in the detection of thousands of differentially expressed genes between giant cells and control cells. This is in marked contrast to the relatively few genes detected after amplification with the One-Direct amplification kit. PMID:20808643

  12. A general solution for opening double-stranded DNA for isothermal amplification

    PubMed Central

    Chen, Gangyi; Dong, Juan; Yuan, Yi; Li, Na; Huang, Xin; Cui, Xin; Tang, Zhuo

    2016-01-01

    Nucleic acid amplification is the core technology of molecular biology and genetic engineering. Various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). However, most of these methods can only detect single stranded nucleic acid. Herein, we put forward a simple solution for opening double-stranded DNA for isothermal detection methods. The strategy employs recombination protein from E. coli (RecA) to form nucleoprotein complex with single-stranded DNA, which could scan double-stranded template for homologous sites. Then, the nucleoprotein can invade the double-stranded template to form heteroduplex in the presence of ATP, resulting in the strand exchange. The ATP regeneration system could be eliminated by using high concentration of ATP, and the 3′-OH terminal of the invasion strand can be recognized by other DNA modifying enzymes such as DNA polymerase or DNA ligase. Moreover, dATP was found to be a better cofactor for RecA, which make the system more compatible to DNA polymerase. The method described here is a general solution to open dsDNA, serving as a platform to develop more isothermal nucleic acids detection methods for real DNA samples based on it. PMID:27687498

  13. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    PubMed

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  14. Bacterial production of conjugated linoleic and linolenic Acid in foods: a technological challenge.

    PubMed

    Gorissen, Lara; Leroy, Frédéric; De Vuyst, Luc; De Smet, Stefaan; Raes, Katleen

    2015-01-01

    Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers are present in foods derived from ruminants as a result of the respective linoleic acid (LA) and α-linolenic acid (LNA) metabolism by ruminal microorganisms and in animals' tissues. CLA and CLNA have isomer-specific, health-promoting properties, including anticarcinogenic, antiatherogenic, anti-inflammatory, and antidiabetic activity, as well as the ability to reduce body fat. Besides ruminal microorganisms, such as Butyrivibrio fibrisolvens, many food-grade bacteria, such as bifidobacteria, lactic acid bacteria (LAB), and propionibacteria, are able to convert LA and LNA to CLA and CLNA, respectively. Linoleate isomerase activity, responsible for this conversion, is strain-dependent and probably related to the ability of the producer strain to tolerate the toxic effects of LA and LNA. Since natural concentrations of CLA and CLNA in ruminal food products are relatively low to exert their health benefits, food-grade bacteria with linoleate isomerase activity could be used as starter or adjunct cultures to develop functional fermented dairy and meat products with increased levels of CLA and CLNA or included in fermented products as probiotic cultures. However, results obtained so far are below expectations due to technological bottlenecks. More research is needed to assess if bacterial production kinetics can be increased and can match food processing requirements.

  15. Atmospheric leaching of nickel and cobalt from nickel saprolite ores using the Starved Acid Leaching Technology

    NASA Astrophysics Data System (ADS)

    Dreisinger, David

    2017-01-01

    There is great potential to recover nickel from below cut-off grade nickel saprolite ores using the Starved Acid Leach Technology (SALT). Nickel saprolite ores are normally mined as feed to Fe-Ni smelters or Ni matte smelting operations. The smelting processes typically require high Ni cut-off grades of 1.5 to 2.2% Ni, depending on the operation. These very high cutoff grades result in a significant portion of the saprolite profile being regarded as "waste" and hence having little to no value. The below cut-off grade (waste) material can be processed by atmospheric acid leaching with "starvation" levels of acid addition. The leached nickel and cobalt may be recovered as a mixed hydroxide (or alternate product). The mixed hydroxide may be added to the saprolite smelting operation feed system to increase the nickel production of the smelter or may be refined separately. The technical development of the SALT process will be described along with an economic summary. The SALT process has great potential to treat many Indonesian Nickel ores that are too low a grade for current technology.

  16. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, Igor

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  17. [Optimization of extraction technology for salidroside, tyrosol, crenulatin and gallic acid in Rhodiolae Crenulatae Radix et Rhizoma with orthogonal test].

    PubMed

    Luo, Xin; Wang, Xue-jing; Zhao, Yi-wu; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei

    2015-09-01

    The extracting technology of salidroside, tyrosol, crenulatin and gallic acid from Rhodiolae Crenulatae Radix et Rhizoma was optimized. With extraction rate of salidroside, tyrosol, crenulatin and gallic acid as indexes, orthogonal test was used to evaluate effect of 4 factors on extracting technology, including concentration of solvent, the dosage of solvent, duration of extraction, and frequency of extraction. The results showed that, the best extracting technology was to extract in 70% alcohol with 8 times the weight of herbal medicine for 2 times, with 3 hours once. High extraction rate of salidroside, tyrosol, crenulatin and gallic acid were obtained with the present technology. The extracting technology was stable and feasible with high extraction rate of four compounds from Rhodiolae Crenulatae Radix et Rhizoma, it was suitable for industrial production.

  18. Rapid detection of IHNV by molecular padlock recognition and surface-associated isothermal amplification

    NASA Astrophysics Data System (ADS)

    McCarthy, Erik L.; Egeler, Teressa J.; Bickerstaff, Lee E.; Pereira da Cunha, Mauricio; Millard, Paul J.

    2005-11-01

    RNA sequences derived from infectious hematopoeitic necrosis virus (IHNV) could be detected using a combination of surface-associated molecular padlock DNA probes (MPP) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV were recognized by MPP. Circularized MPP were then captured on the inner surface of glass microcapillary tubes by immobilized DNA oligonucleotide primers. Extension of the immobilized primers by isothermal RCA gave rise to DNA concatamers, which were in turn bound by the fluorescent reporter SYBR Green II nucleic acid stain, and measured by microfluorimetry. Surface-associated molecular padlock technology, combined with isothermal RCA, exhibited high selectivity and sensitivity without thermal cycling. This technology is applicable to direct RNA and DNA detection, permitting detection of a variety of viral or bacterial pathogens.

  19. Effect of dietary conjugated linoleic acid supplementation on the technological quality of backfat of pigs.

    PubMed

    Bothma, C; Hugo, A; Osthoff, G; Joubert, C C; Swarts, J C; de Kock, H L

    2014-06-01

    Pigs were fed diets containing 0, 0.25, 0.5 and 1% conjugated linoleic acid (CLA). Compared to controls, backfat from CLA fed pigs was firmer and extracted lipid contained increasing amounts of CLA, but a ±11% overall decrease in unsaturated fatty acids and a ±5% overall increase in each of C16:0 and C18:0 saturated fatty acids were noted. This resulted in a change in the melting properties of fat. The onset setting temperature increased from ±14°C to ±18°C for lipid of backfat of pigs from the 0.25 and 0.5% CLA supplementation groups, and to ±26°C for lipid from the 1% CLA supplementation group. The final melting temperatures increased from ±37°C to ±43°C and ±45°C, respectively. The presence of β'-crystals of C18:0-C16:0-C18:1c9 triacylglycerides in fat from CLA fed pigs and β-crystals in fat from 1% CLA fed pigs was observed. Fatty acid and melting point results explained the improvement in the technological quality of backfat as a result of dietary CLA supplementation.

  20. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    SciTech Connect

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  1. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese.

    PubMed

    Domingos-Lopes, M F P; Stanton, C; Ross, P R; Dapkevicius, M L E; Silva, C C G

    2017-05-01

    A total of 114 lactic acid bacteria were isolated at one and 21 days of ripening from a traditional raw cow's milk cheese without the addition of starter culture, produced by three artisanal cheese-makers in Azores Island (Pico, Portugal). Identification to species and strain level was accomplished by16S rRNA gene and PFGE analysis. Carbohydrate utilization profiles were obtained with the relevant API kits. Isolates were evaluated according to safety and technological criteria. The most frequently observed genus identified by 16S rRNA sequencing analysis was Enterococcus, whereas API system mostly identified Lactobacillus. The highest percentages of antibiotic resistance were to nalidixic acid (95%), and aminoglycosides (64-87%). All isolates were sensitive to several beta-lactam antibiotics and negative for histamine and DNase production. Gelatinase activity was detected in 49.1% of isolates, 43% were able to degrade casein and 93% were α-hemolytic. Most enterococci presented virulence genes, such as gelE, asaI, ace. Diacetyl production was found to be species dependent and one strain (Leu. citreum) produced exopolysaccharides. Selected strains were further studied for technological application and were found to be slow acid producers in milk and experimental cheeses, a desirable trait for adjunct cultures. Two strains were selected on the basis of technological and safety application as adjunct cultures in cheese production and presented the best cheese aroma and flavor in consumer preference tests. This is the first effort to characterize Pico cheese LAB isolates for potential application as adjunct cultures; the results suggest the potential of two strains to improve the quality of this traditional raw milk product.

  2. Self-primed isothermal amplification for genomic DNA detection of human papillomavirus.

    PubMed

    Lu, Wei; Yuan, Qingpan; Yang, Zhiliu; Yao, Bo

    2017-04-15

    Rolling circle amplification (RCA) is an isothermal amplification technique with high efficiency and perfect accuracy for nucleic acids detection. However, RCA technique suffers the limitation to detect short DNA or RNA molecules. For long nucleic acid molecules, enzymatic restriction as well as heat denaturation process is usually required, which makes the amplification not effective and strictly isothermal. In this article, a simple and efficient one-pot self-primed isothermal amplification (SIA) was developed for detection of genomic DNA directly based on the combination of nicking endonuclease assisted strand displacement amplification (SDA) and exponential RCA. In virtue of numerous nicking sites on the genome, a pre-amplification of the whole genome was performed through SDA with the specific cleaving of nicking endonuclease. Meanwhile, the single strand DNA with HPV target sequence generated from SDA could hybrid with the circle probe as a primer and trigger the exponential RCA as a result of the existence of nicking endonuclease. As the reaction temperature and enzyme were the same, the amplification could be operated in one pot. The reaction solution after amplification was added on the electrode for hybridization with the sulfydryl probe to achieve the electrochemical signal. Based on the isothermal amplification, genotyping of HPV 11, 16, 18 and the detection of HPV 18 in Hela cell line were attempted with satisfied results. This approach should be a promising tool for pathogene detection in clinical diagnostics and research.

  3. ABRF-MARG RESEARCH STUDY: EVALUATION OF SMALL SAMPLE NUCLEIC ACID AMPLIFICATION TECHNOLOGIES FOR GENE EXPRESSION PROFILING

    EPA Science Inventory

    Microarrays have had a significant impact on many areas of biology. However, there are still many fertile research areas that would benefit from microarray analysis but are limited by the amount of biological material that can be obtained (e.g. samples obtained by small biopsy, f...

  4. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  5. Experiments on the abiotic amplification of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Blair, N. E.; Dirbas, F. M.

    1981-01-01

    Experiments concerning the physical mechanisms for the abiotic generation and chemical mechanisms for the amplification of optical activity in biological compounds are reviewed. Attention is given to experiments involving the determination of the differential adsorption of racemic amino acids on d- and l-quartz, the asymmetric photolysis of racemic amino acids by circularly polarized light, and the asymmetric radiolysis of solid amino acids by longitudinally polarized electrons, and the enantiomeric enrichments thus obtained are noted. Further experiments on the amplification of the chirality in the polymerization of D, L-amino acid mixtures and the hydrolysis of D-, L-, and D, L-polypeptides are discussed. It is suggested that a repetitive cycle of partial polymerization-hydrolyses may account for the abiotic genesis of optically enriched polypeptides on the primitive earth.

  6. Heralded amplification for precision measurements with spin ensembles

    SciTech Connect

    Brunner, Nicolas; Polzik, Eugene S.; Simon, Christoph

    2011-10-15

    We propose a simple heralded amplification scheme for small rotations of the collective spin of an ensemble of particles. Our protocol makes use of two basic primitives for quantum memories, namely, partial mapping of light onto an ensemble, and conversion of a collective spin excitation into light. The proposed scheme should be realizable with current technology, with potential applications to atomic clocks and magnetometry.

  7. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  8. Chromosomal destabilization during gene amplification.

    PubMed Central

    Ruiz, J C; Wahl, G M

    1990-01-01

    Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability. Images PMID:2188107

  9. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented.

  10. [Nondestructive test on predicting sugar content and valid acidity of mango by spectroscopy technology].

    PubMed

    Yu, Jia-jia; He, Yong; Bao, Yi-dan

    2008-12-01

    prediction (SEP)0.864676/0.60934. Thus, it is obvious that this model is reliable and practicable. And the PLS-GA-BP model based on the spectroscopy technology is a better pattern to predict sugar content and valid acidity of mango, giving a new method for detecting fruit's sugar content and valid acidity.

  11. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Kattnig, Daniel R.; Evans, Emrys W.; Déjean, Victoire; Dodson, Charlotte A.; Wallace, Mark I.; MacKenzie, Stuart R.; Timmel, Christiane R.; Hore, P. J.

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.

  12. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  13. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  14. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Bill W [San Ramon, CA; Elkin, Christopher J [San Ramon, CA

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  15. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  16. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2017-02-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  17. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.

    PubMed

    Xue, Qingwang; Lv, Yanqin; Cui, Hui; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2015-01-26

    An autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a "caged" inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.

  18. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  19. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  20. Sequence dependence of isothermal DNA amplification via EXPAR

    PubMed Central

    Qian, Jifeng; Ferguson, Tanya M.; Shinde, Deepali N.; Ramírez-Borrero, Alissa J.; Hintze, Arend; Adami, Christoph; Niemz, Angelika

    2012-01-01

    Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naïve Bayes classification. The methods identified well and poorly performing EXPAR templates with 67–70% sensitivity and 77–80% specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. PMID:22416064

  1. Diversity and technological potential of lactic acid bacteria of wheat flours.

    PubMed

    Alfonzo, Antonio; Ventimiglia, Giusi; Corona, Onofrio; Di Gerlando, Rosalia; Gaglio, Raimondo; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2013-12-01

    Lactic acid bacteria (LAB) were analysed from wheat flours used in traditional bread making throughout Sicily (southern Italy). Plate counts, carried out in three different media commonly used to detect food and sourdough LAB, revealed a maximal LAB concentration of approximately 4.75 Log CFU g(-1). Colonies representing various morphological appearances were isolated and differentiated based on phenotypic characteristics and genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR. Fifty unique strains were identified. Analysis by 16S rRNA gene sequencing grouped the strains into 11 LAB species, which belonged to six genera: Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella. Weissella cibaria, Lactobacillus plantarum, Leuconostoc pseudomesenteroides and Leuconostoc citreum were the most prevalent species. The strains were not geographically related. Denaturing gradient gel electrophoresis (DGGE) analysis of total DNA of flour was used to provide a more complete understanding of the LAB population; it confirmed the presence of species identified with the culture-dependent approach, but did not reveal the presence of any additional LAB species. Finally, the technological characteristics (acidifying capacity, antimicrobial production, proteolytic activity, organic acid, and volatile organic compound generation) of the 50 LAB strains were investigated. Eleven strains were selected for future in situ applications.

  2. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria.

    PubMed

    Patra, F; Tomar, S K; Arora, S

    2009-01-01

    Lactic acid bacteria (LAB) have been extensively used for centuries as starter cultures to carry out food fermentations and are looked upon as burgeoning "cell factories" for production of host of functional biomolecules and food ingredients. Low-calorie sugars have been a recent addition and have attracted a great deal of interest of researchers, manufacturers, and consumers for varied reasons. These sweeteners also getting popularized as low-carb sugars have been granted generally recommended as safe (GRAS) status by the U.S. Federal Drug Administration (USFDA) and include both sugars and sugar alcohols (polyols) which in addition to their technological attributes (sugar replacer, bulking agent, texturiser, humectant, cryoprotectant) have been observed to exert a number of health benefits (low calories, low glycemic index, anticariogenic, osmotic diuretics, obesity control, prebiotic). Some of these sweeteners successfully produced by lactic acid bacteria include mannitol, sorbitol, tagatose, and trehalose and there is a potential to further enhance their production with the help of metabolic engineering. These safe sweeteners can be exploited as vital food ingredients for development of low-calorie foods with added functional values especially for children, diabetic patients, and weight watchers.

  3. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  4. Classroom Amplification To Enhance Student Performance.

    ERIC Educational Resources Information Center

    DiSarno, Neil J.; Schowalter, Melissa; Grassa, Patricia

    2002-01-01

    Discussion of classroom amplification systems to improve the performance of students with hearing loss or learning disabilities addresses the auditory challenges of inclusive classrooms, changing the classroom environment to reduce noise, types of amplification systems, and what teachers observe about amplification. (Contains references.) (DB)

  5. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  6. Hybrid chirped pulse amplification system

    SciTech Connect

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  7. Genotyping of the CCR5 chemokine receptor by isothermal NASBA amplification and differential probe hybridization.

    PubMed

    Romano, J W; Tetali, S; Lee, E M; Shurtliff, R N; Wang, X P; Pahwa, S; Kaplan, M H; Ginocchio, C C

    1999-11-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectability of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems.

  8. Genotyping of the CCR5 Chemokine Receptor by Isothermal NASBA Amplification and Differential Probe Hybridization

    PubMed Central

    Romano, Joseph W.; Tetali, Surya; Lee, Eun Mi; Shurtliff, Roxanne N.; Wang, Xue Ping; Pahwa, Savita; Kaplan, Mark H.; Ginocchio, Christine C.

    1999-01-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectibility of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems. PMID:10548593

  9. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    SciTech Connect

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial `cold` simulated waste results and confirmed the selective removal provided by ligand-particle web technology.

  10. Deterministic noiseless amplification of coherent states

    NASA Astrophysics Data System (ADS)

    Hu, Meng-Jun; Zhang, Yong-Sheng

    2015-08-01

    A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification as quantum state transformation, we show that deterministic noiseless amplification of coherent states chosen from a proper set is attainable. The relation between input coherent states and gain of amplification for deterministic noiseless amplification is thus derived. Furthermore, we extend our result to more general situation and show that deterministic noiseless amplification of Gaussian states is also possible. As an example of application, we find that our amplification model can obtain better performance in homodyne detection to measure the phase of state selected from a certain set. Besides, other possible applications are also discussed.

  11. Rolling circle amplification detection of RNA and DNA

    DOEpatents

    Christian, Allen T.; Pattee, Melissa S.; Attix, Cristina M.; Tucker, James D.

    2004-08-31

    Rolling circle amplification (RCA) has been useful for detecting point mutations in isolated nucleic acids, but its application in cytological preparations has been problematic. By pretreating cells with a combination of restriction enzymes and exonucleases, we demonstrate RCA in solution and in situ to detect gene copy number and single base mutations. It can also detect and quantify transcribed RNA in individual cells, making it a versatile tool for cell-based assays.

  12. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  13. Capture and Direct Amplification of DNA on Chitosan Microparticles in a Single PCR-Optimal Solution.

    PubMed

    Pandit, Kunal R; Nanayakkara, Imaly A; Cao, Weidong; Raghavan, Srinivasa R; White, Ian M

    2015-11-03

    While nucleic acid amplification tests have great potential as tools for rapid diagnostics, complicated sample preparation requirements inhibit their use in near-patient diagnostics and low-resource-setting applications. Recent advancements in nucleic acid purification have leveraged pH-modulated charge switching polymers to reduce the number of steps required for sample preparation. The polycation chitosan (pKa 6.4) has been used to efficiently purify DNA by binding nucleic acids in acidic buffers and then eluting them at a pH higher than 8.0. Though it is an improvement over conventional methods, this multistep procedure has not transformed the application of nucleic acid amplification assays. Here we describe a simpler approach using magnetic chitosan microparticles that interact with DNA in a manner that has not been reported before. The microparticles capture DNA at a pH optimal for PCR (8.5) just as efficiently as at low pH. Importantly, the captured DNA is still accessible by polymerase, enabling direct amplification from the microparticles. We demonstrate quantitative PCR from DNA captured on the microparticles, thus eliminating nearly all of the sample preparation steps. We anticipate that this new streamlined method for preparing DNA for amplification will greatly expand the diagnostic applications of nucleic acid amplification tests.

  14. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-03-02

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10(-15) M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  15. Next generation sequencing (NGS)technologies and applications

    SciTech Connect

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  16. Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge

    SciTech Connect

    Fitzpatrick, Stephen W.

    2002-04-23

    This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

  17. Signal Amplification of Bioassay Using Zinc Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  18. Optimized T7 amplification system for microarray analysis.

    PubMed

    Pabón, C; Modrusan, Z; Ruvolo, M V; Coleman, I M; Daniel, S; Yue, H; Arnold, L J

    2001-10-01

    Glass cDNA microarray technologies offer a highly parallel approach for profiling expressed gene sequences in disease-relevant tissues. However, standard hybridization and detection protocols are insufficient for milligram quantities of tissue, such as those derived from needle biopsies. Amplification systems utilizing T7 RNA polymerase can provide multiple cRNA copies from mRNA transcripts, permitting microarray studies with reduced sample inputs. Here, we describe an optimized T7-based amplification system for microarray analysis that yields between 200- and 700-fold amplification. This system was evaluated with both mRNA and total RNA samples and provided microarray sensitivity and precision that are comparable to our standard production process without amplification. The size distributions of amplified cRNA ranged from 200 bp to 4 kb and were similar to original mRNA profiles. These amplified cRNA samples were fluorescently labeled by reverse transcription and hybridized to microarrays comprising approximately 10,000 cDNA targets using a dual-channel format. Replicate hybridization experiments were conducted with the same and different tissues in each channel to assess the sensitivity and precision of differential expression ratios. Statistical analysis of differential expression ratios showed the lower limit of detection to be about 2-fold within and between amplified data sets, and about 3-fold when comparing amplified data to unamplified data (99.5% confidence).

  19. Chemical Amplification with Encapsulated Reagents

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Koemer, Steffi; Craig, Stephen; Lin, Shirley; Rudkevich, Dmitry M.; Rebek, Julius, Jr.

    2002-01-01

    Autocatalysis and chemical amplification are characteristic properties of living systems, and they give rise to behaviors such as increased sensitivity, responsiveness, and self-replication. Here we report a synthetic system in which a unique form of compartmentalization leads to nonlinear, autocatalytic behavior. The compartment is a reversibly formed capsule in which a reagent is sequestered. Reaction products displace the reagent from the capsule into solution and the reaction rate is accelerated. The resulting self-regulation is sensitive to the highly selective molecular recognition properties of the capsule.

  20. Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing

    NASA Astrophysics Data System (ADS)

    Huang, Guoliang; Ma, Li; Yang, Xiaoyong; Yang, Xu

    2011-01-01

    In this paper, we developed a metal micro-fluidic chip with advanced surface processing for ultra-small volume molecular isothermal amplification. This method takes advantages of the nucleic acid amplification with good stability and consistency, high sensitivity about 31 genomic DNA copies and bacteria specific gene identification. Based on the advanced surface processing, the bioreaction assays of nucleic acid amplification was dropped about 392nl in volume. A high numerical aperture confocal optical detection system was advanced to sensitively monitor the DNA amplification with low noise and high power collecting fluorescence near to the optical diffraction limit. A speedy nucleic acid isothermal amplification was performed in the ultra-small volume microfluidic chip, where the time at the inflexions of second derivative to DNA exponential amplified curves was brought forward and the sensitivity was improved about 65 folds to that of in current 25μl Ep-tube amplified reaction, which indicates a promising clinic molecular diagnostics in the droplet amplification.

  1. Cyclic Amplification of Prion Protein Misfolding

    PubMed Central

    Barria, Marcelo A; Gonzalez-Romero, Dennisse; Soto, Claudio

    2014-01-01

    Protein Misfolfing Cyclic amplification (PMCA) is a technique that take advantage of the nucleation-dependent prion replication process to accelerate the conversion of PrPC into PrPSc in the test tube. PMCA uses ultrasound waves to fragment the PrPSc polymers, increasing the amount of seeds present in the infected sample without affecting their ability to act as conversion nucleus. Over the past 5 years PMCA has became an invaluable technique to study diverse aspects of prions. The PMCA technology has been used by several groups to understand the molecular mechanism of prion replication, the cellular factors involved in prion propagation, the intriguing phenomena of prion strains and species barriers, to detect PrPSc in tissues and biological fluids and to screen for inhibitors against prion replication. In this article we describe a detailed protocol of the PMCA technique, highlighting some of the important technical aspects to obtain a successful and reproducible application of the technology. PMID:22528092

  2. Trophic amplification of climate warming.

    PubMed

    Kirby, Richard R; Beaugrand, Gregory

    2009-12-07

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.

  3. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  4. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  5. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  6. Chirality Amplification in Tactoids of Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Lavrentovich, Oleg

    2014-03-01

    We demonstrate an effective chirality amplification based on the long-range forces, extending over the scales of tens of micrometers, much larger than the single molecule (nanometer) scale. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) that represent water solutions of achiral disc-like molecules. Minute quantities of chiral molecules such as amino acid L-alanine and limonene added to the droplets of LCLC lead to chiral amplification characterized by an increase of optical activity by a factor of 103 - 104. This effect allows one to discriminate and detect the absolute configuration of chiral molecules in an aqueous system, thus opening new possibilities in biosensing and other biological applications.

  7. LAMP (Loop-mediated isothermal amplification of DNA) - A technique for biotype discrimination in Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loop-mediated isothermal amplification of DNA (LAMP) can amplify a target DNA sequence at a constant temperature in about 1 hour. LAMP technology has great potential for agricultural applications because of the need for rapid and inexpensive diagnoses. Assays based on LAMP technology are well suited...

  8. Role of modifier in microwave assisted extraction of oleanolic acid from Gymnema sylvestre: application of green extraction technology for botanicals.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-08-01

    This work highlights the development of a green extraction technology for botanicals with the use of microwave energy. Taking into consideration the extensive time involved in conventional extraction methods, coupled with usage of large volumes of organic solvent and energy resources, an ecofriendly green method that can overcome the above problems has been developed. The work compares the effect of sample pretreatment with untreated sample for improved yield of oleanolic acid from Gymnema sylvestre leaves. The pretreated sample with water produced 0.71% w/w oleanolic acid in one extraction cycle with 500 W microwave power, 25 mL methanol and only an 8 min extraction time. On the other hand, a conventional heat reflux extraction for 6 hours could produce only 0.62% w/w oleanolic acid. The detailed mechanism of extraction has been studied through scanning electron micrographs. The environmental impact of the proposed green method has also been evaluated.

  9. Weak value amplification via second-order correlated technique

    NASA Astrophysics Data System (ADS)

    Ting, Cui; Jing-Zheng, Huang; Xiang, Liu; Gui-Hua, Zeng

    2016-02-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05), the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).

  10. Orthogonal amplification of nanoparticles for improved diagnostic sensing.

    PubMed

    Peterson, Vanessa M; Castro, Cesar M; Lee, Hakho; Weissleder, Ralph

    2012-04-24

    There remains an ongoing need for fast, highly sensitive, and quantitative technologies that can detect and profile rare cells in freshly harvested samples. Recent developments in nanomaterial-based detection platforms provide advantages over traditional approaches in terms of signal sensitivity, stability, and the possibility for performing multiplexed measurements. Here, we describe a bioorthogonal, nanoparticle amplification technique capable of rapid augmentation of detection sensitivities by up to 1-2 orders of magnitude over current methods. This improvement in sensitivity was achieved by (i) significantly reducing background noise arising from nonspecific nanoparticle binding, (ii) increasing nanomaterial binding through orthogonal rounds of amplification, and (iii) implementing a cleavage step to improve assay robustness. The developed method allowed sensitive detection and molecular profiling of scant tumor cells directly in unpurified human clinical samples such as ascites. With its high sensitivity and simplified assay steps, this technique will likely have broad utility in nanomaterial-based diagnostics.

  11. Multiscale image contrast amplification (MUSICA)

    NASA Astrophysics Data System (ADS)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  12. Third Sound Amplification and Detailed Balance

    SciTech Connect

    Eddinger, J. D.; Ellis, F. M.

    2006-09-07

    Condensation of atoms from the vapor into a third sound resonance is expected to be capable of acoustic amplification. This results from normal to superfluid conversion that coherently accommodates atoms into the third sound velocity field. Consideration of third sound in light of the equilibrium detailed balance between vapor particles and the superfluid film provides further evidence that acoustic amplification is attainable.

  13. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  14. Technology

    ERIC Educational Resources Information Center

    Isman, Aytekin

    2003-01-01

    This article begins by drawing on literature to examine the various definitions of "technology" and "technique." Following a discussion of the origin of technology in education, the remaining sections of the article focus on the relationships and interaction between: (1) machines and technique; (2) science and technique; (3)…

  15. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  16. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  17. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  18. Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe

    2016-09-01

    Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection.

  19. Toughness amplification in natural composites

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois; Rabiei, Reza

    2011-04-01

    Natural structural materials such as bone and seashells are made of relatively weak building blocks, yet they exhibit remarkable combinations of stiffness, strength and toughness. This performance can be largely explained by their "staggered microstructure": stiff inclusions of high aspect ratio are laid parallel to each other with some overlap, and bonded by a softer matrix. While stiffness and strength are now well understood for staggered composites, the mechanisms involved in fracture are still largely unknown. This is a significant lack since the amplification of toughness with respect to their components is by far the most impressive feature in natural staggered composites such as nacre or bone. Here a model capturing the salient mechanisms involved in the cracking of a staggered structure is presented. We show that the pullout of inclusions and large process zones lead to tremendous toughness by far exceeding that of individual components. The model also suggests that a material like nacre cannot reach steady state cracking, with the implication that the toughness increases indefinitely with crack advance. These findings agree well with existing fracture data, and for the first time relate microstructural parameters with overall toughness. These insights will prove useful in the design of biomimetic materials, and provide clues on how bone fractures at the nano and microscales.

  20. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use

    PubMed Central

    2012-01-01

    Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must

  1. The Spatial Pattern of Cochlear Amplification

    PubMed Central

    Fisher, Jonathan A.N.; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C.; Hudspeth, A.J.

    2012-01-01

    SUMMARY Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces. PMID:23217746

  2. Earthquake ground motion amplification for surface waves

    NASA Astrophysics Data System (ADS)

    Bowden, Daniel C.; Tsai, Victor C.

    2017-01-01

    Surface waves from earthquakes are known to cause strong damage, especially for larger structures such as skyscrapers and bridges. However, common practice in characterizing seismic hazard at a specific site considers the effect of near-surface geology on only vertically propagating body waves. Here we show that surface waves have a unique and different frequency-dependent response to known geologic structure and that this amplification can be analytically calculated in a manner similar to current hazard practices. Applying this framework to amplification in the Los Angeles Basin, we find that peak ground accelerations for certain large regional earthquakes are underpredicted if surface waves are not properly accounted for and that the frequency of strongest ground motion amplification can be significantly different. Including surface-wave amplification in hazards calculations is therefore essential for accurate predictions of strong ground motion for future San Andreas Fault ruptures.

  3. A Simple Structure for Signal Amplification

    NASA Astrophysics Data System (ADS)

    Ding, Wan-Xiang; Gu, Chang-Gui; Liang, Xiao-Ming

    2016-02-01

    It has been found that a triple-node feed-forward motif has a function of signal amplification, where two input nodes receive the external weak signal and jointly modulate the response of the third output node [Liang et al., Phys. Rev. E 88 (2013) 012910]. We here show that the signal amplification can be further enhanced by adding a link between the two input nodes in the feed-forward motif. We further reveal that the coupling strength of the link regulates the enhancement of signal amplification in the modified feed-forward motif. We finally analyze the mechanism of signal amplification of such simple structure. Supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning under Grant No. QD2015016, the National Natural Science Foundation of China under Grant Nos. 11505114 and 11305078

  4. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES - Book Chapter

    EPA Science Inventory

    This book chapter contains the following headings and subheadings: Introduction; Experimental Approach - Precautions, Template, Primers, Reaction Conditions, Enhancers, Post Amplification; Procedures - Template DNA, Basic PCR, Thermal Cycle Parameters, Enzyme Addition, Agarose Ge...

  5. Coupled isothermal polynucleotide amplification and translation system

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1998-01-01

    A cell-free system for polynucleotide amplification and translation is disclosed. Also disclosed are methods for using the system and a composition which allows the various components of the system to function under a common set of reaction conditions.

  6. The spatial pattern of cochlear amplification.

    PubMed

    Fisher, Jonathan A N; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C; Hudspeth, A J

    2012-12-06

    Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces.

  7. The predictive power of synthetic nucleic acid technologies in RNA biology.

    PubMed

    Chakraborty, Saikat; Mehtab, Shabana; Krishnan, Yamuna

    2014-06-17

    CONSPECTUS: The impact of nucleic acid nanotechnology in terms of transforming motifs from biology in synthetic and translational ways is widely appreciated. But it is also emerging that the thinking and vision behind nucleic acids as construction material has broader implications, not just in nanotechnology or even synthetic biology, but can feed back into our understanding of biology itself. Physicists have treated nucleic acids as polymers and connected physical principles to biology by abstracting out the molecular interactions. In contrast, biologists delineate molecular players and pathways related to nucleic acids and how they may be networked. But in vitro nucleic acid nanotechnology has provided a valuable framework for nucleic acids by connecting its biomolecular interactions with its materials properties and thereby superarchitecture ultramanipulation that on multiple occasions has pre-empted the elucidation of how living cells themselves are exploiting these same structural concepts. This Account seeks to showcase the larger implications of certain architectural principles that have arisen from the field of structural DNA/RNA nanotechnology in biology. Here we draw connections between these principles and particular molecular phenomena within living systems that have fed in to our understanding of how the cell uses nucleic acids as construction material to achieve different functions. We illustrate this by considering a few exciting and emerging examples in biology in the context of both switchable systems and scaffolding type systems. Due to the scope of this Account, we will focus our discussion on examples of the RNA scaffold as summarized. In the context of switchable RNA architectures, the synthetic demonstration of small molecules blocking RNA translation preceded the discovery of riboswitches. In another example, it was after the description of aptazymes that the first allosteric ribozyme, glmS, was discovered. In the context of RNA architectures

  8. Rolling circle amplification of metazoan mitochondrialgenomes

    SciTech Connect

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  9. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  10. Amplification uncertainty relation for probabilistic amplifiers

    NASA Astrophysics Data System (ADS)

    Namiki, Ryo

    2015-09-01

    Traditionally, quantum amplification limit refers to the property of inevitable noise addition on canonical variables when the field amplitude of an unknown state is linearly transformed through a quantum channel. Recent theoretical studies have determined amplification limits for cases of probabilistic quantum channels or general quantum operations by specifying a set of input states or a state ensemble. However, it remains open how much excess noise on canonical variables is unavoidable and whether there exists a fundamental trade-off relation between the canonical pair in a general amplification process. In this paper we present an uncertainty-product form of amplification limits for general quantum operations by assuming an input ensemble of Gaussian-distributed coherent states. It can be derived as a straightforward consequence of canonical uncertainty relations and retrieves basic properties of the traditional amplification limit. In addition, our amplification limit turns out to give a physical limitation on probabilistic reduction of an Einstein-Podolsky-Rosen uncertainty. In this regard, we find a condition that probabilistic amplifiers can be regarded as local filtering operations to distill entanglement. This condition establishes a clear benchmark to verify an advantage of non-Gaussian operations beyond Gaussian operations with a feasible input set of coherent states and standard homodyne measurements.

  11. Onshore seismic amplifications due to bathymetric features

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.

    2016-08-01

    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  12. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  13. LIME TREATMENT LAGOONS TECHNOLOGY FOR TREATING ACID MINE DRAINAGE FROM TWO MINING SITES

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are someof the most environmentally damaging land uses i the US. Acid Mine drainage (AMD) from mining sites across the country requires treatment because of high metal concentrations that exceed regulatory standards for safe disc...

  14. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  15. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    SciTech Connect

    McDermott, K.A. ); South, D.W. )

    1991-01-01

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  16. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    SciTech Connect

    McDermott, K.A.; South, D.W.

    1991-12-31

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  17. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  18. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  19. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  20. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.

    PubMed

    Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H

    2008-02-01

    Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.

  1. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    PubMed

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages.

  2. Sulfuric-acid-regeneration waste-disposal technology. Final report, June 1985-November 1986

    SciTech Connect

    Balasco, A.A.; Johnson, D.E.; Stahr, J.J.; Stevens, J.I.; Fields, M.A.

    1986-11-01

    All U.S. Army Ammunition Plants (AAPs) having sulfuric acid regeneration (SAR) facilities use lime precipitation as the principal means of acid-wastewater neutralization. This is as an advanced system as is used in industrial practice. However, lime precipitation could not meet zero discharge of pollutants should these be promulgated for the sulfuric-acid industry. In fact it discharges a water high in soluble sulfates. Further, based on the only current experience at Radford AAP, this process is plagued with: excessive scaling, poor pH and turbididty control, and excessive maintenance and downtime. One probable cause of these difficulties is excessive water loads from the SAR plants resulting in inadequate residence time for crystal formation and settling, coupled with the inherent slowness of this chemical reaction. However, it should be pointed out there is an almost total lack of operating data on the adequacy or inadequacy of these lime-precipitation systems to meet even today's standards. Presumably because of concern at one time for soluble sulfate, two AAPs have secondary treatment: 1) ion exchange to remove the soluble calcium (Ca) and sulfate (SO/sub 4/) ions (Volunteer AAP); and 2) barium (Ba) precipitation to remove the soluble SO/sub 4/, followed by ion exchange (Joliet AAP). Secondary treatment would permit total recycle of the process water, thus achieving zero discharge; however, we question the utility of both of these systems in achieving any improvement in the total environment of the watersheds of the plants in question.

  3. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  4. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  5. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA.

    PubMed

    Lillis, Lorraine; Lehman, Dara; Singhal, Mitra C; Cantera, Jason; Singleton, Jered; Labarre, Paul; Toyama, Anthony; Piepenburg, Olaf; Parker, Mathew; Wood, Robert; Overbaugh, Julie; Boyle, David S

    2014-01-01

    Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in

  6. Advanced unrepeatered systems using novel Raman amplification schemes

    NASA Astrophysics Data System (ADS)

    Chang, Do-il; Pelouch, Wayne; Burtsev, Sergey; Perrier, Philippe; Fevrier, Herve

    2015-01-01

    Unrepeatered transmission systems provide a cost-effective solution to transmit high capacity channels in submarine networks to communicate between coastal population centers or in terrestrial networks to connect remote areas where service access is difficult. The main goal of unrepeatered systems has traditionally been to achieve the longest reach, however, increasing traffic demands now require unrepeatered systems to support both longer reach and higher transport capacity. As a result, transmission rate of unrepeatered systems has quickly moved from 10 Gb/s to 40 Gb/s or 100 Gb/s. This paper reviews the key basic technologies, with a specific focus on Raman amplification, required for long-reach, high-capacity unrepeatered optical transmission systems. We will discuss novel Raman amplification schemes, enhanced remote optically pumped amplifiers (ROPA), ultra-low loss / large effective area fibers, and coherent transmission with advanced modulation format and high FEC coding gain. We will also report recent experimental demonstrations that show how these technologies have been combined to achieve industry's leading capacity and reach transmission.

  7. Bioplex technology: novel synthetic gene delivery pharmaceutical based on peptides anchored to nucleic acids.

    PubMed

    Simonson, Oscar E; Svahn, Mathias G; Törnquist, Elisabeth; Lundin, Karin E; Smith, C I E

    2005-01-01

    Non-viral gene delivery is an important approach in order to establish safe in vivo gene therapy in the clinic. Although viral vectors currently exhibit superior gene transfer efficacy, the safety aspect of viral gene delivery is a concern. In order to improve non-viral in vivo gene delivery we have designed a pharmaceutical platform called Bioplex (biological complex). The concept of Bioplex is to link functional entities via hybridising anchors, such as Peptide Nucleic Acids (PNA), directly to naked DNA. In order to promote delivery functional entities consisting of biologically active peptides or carbohydrates, are linked to the PNA anchor. The PNA acts as genetic glue and hybridises with DNA in a sequence specific manner. By using functional entities, which elicit receptor-mediated endocytosis, improved endosomal escape and enhance nuclear entry we wish to improve the transfer of genetic material into the cell. An important aspect is that the functional entities should also have tissue-targeting properties in vivo. Examples of functional entities investigated to date are the Simian virus 40 nuclear localisation signal to improve nuclear uptake and different carbohydrate ligands in order to achieve receptor specific uptake. The delivery system is also endowed with regulatory capability, since the release of functional entities can be controlled. The aim is to create a safe, pharmaceutically defined and stable delivery system for nucleic acids with enhanced transfection properties that can be used in the clinic.

  8. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-07-31

    County-average hydrogen values are calculated for the part 2, 1999 Information Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection Agency. These data are used together with estimated, county-average moisture values to calculate average net heating values for coal produced in U.S. counties. Finally, 10 draft maps of the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing emission control technologies, are presented and discussed.

  9. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    PubMed

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  10. A protocol analysis of the influence of technology on students' actions, verbal commentary, and thought processes during the performance of acid-base titrations

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated students' initial and final understanding of acid-base concepts and their concurrent thought processes and actions during the process of acid-base titrations. Here we report students' actions and thought processes while titrating. Different levels of information were presented by three technologies: chemical indicators, pH meters, and microcomputer-based laboratories. We speculated that the level of information would influence students' actions and thought processes, as expressed in verbal commentary. Data were collected from 14 secondary chemistry students. Each student used one technology to titrate a strong acid, a weak acid, and a polyprotic acid with a strong base. They verbalized their thoughts while titrating. Students then graphed pH versus volume of base and discussed the titration with the investigator. Verbal commentaries were coded and analyzed for patterns in actions and for frequency of statement categories. Drawings were analyzed for shape, scale, and direction; discussions were analyzed for understanding of acid-base neutralization. We found that the technology's level of information affected the focus of students' observations. The microcomputer group focused primarily on the graph; other groups exhibited multiple foci. We speculate the screen display functions as an auxiliary short-term memory. The discussion data also reveal that students held three main ideas about how acids and bases behave when mixed. Implications for instruction are discussed.

  11. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection

    PubMed Central

    2016-01-01

    We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer. PMID:27713932

  12. Signal amplification in biological and electrical engineering systems: universal role of cascades.

    PubMed

    Grubelnik, Vladimir; Dugonik, Bogdan; Osebik, Davorin; Marhl, Marko

    2009-08-01

    In this paper we compare the cascade mechanisms of signal amplification in biological and electrical engineering systems, and show that they share the capacity to considerably amplify signals, and respond to signal changes both quickly and completely, which effectively preserves the form of the input signal. For biological systems, these characteristics are crucial for efficient and reliable cellular signaling. We show that this highly-efficient biological mechanism of signal amplification that has naturally evolved is mathematically fully equivalent with some man-developed amplifiers, which indicates parallels between biological evolution and successful technology development.

  13. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq.

    PubMed

    Shankaranarayanan, Pattabhiraman; Mendoza-Parra, Marco-Antonio; Walia, Mannu; Wang, Li; Li, Ning; Trindade, Luisa M; Gronemeyer, Hinrich

    2011-06-05

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts obtained from a few thousand cells. This amplification technology will facilitate global analyses of transcription-factor binding and chromatin with very small cell populations, such as stem or cancer-initiating cells.

  14. Time varying arctic climate change amplification

    SciTech Connect

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  15. Amplification, Redundancy, and Quantum Chernoff Information

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-04-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  16. Amplification, redundancy, and quantum Chernoff information.

    PubMed

    Zwolak, Michael; Riedel, C Jess; Zurek, Wojciech H

    2014-04-11

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  17. Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production

    PubMed Central

    Oosterhuis, Nico; Giuseppin, Marco; Toonen, Marcel; Franssen, Henk; Scott, Elinor; Sanders, Johan; Steinbüchel, Alexander

    2007-01-01

    Major transitions can be expected within the next few decades aiming at the reduction of pollution and global warming and at energy saving measures. For these purposes, new sustainable biorefinery concepts will be needed that will replace the traditional mineral oil-based synthesis of specialty and bulk chemicals. An important group of these chemicals are those that comprise N-functionalities. Many plant components contained in biomass rest or waste stream fractions contain these N-functionalities in proteins and free amino acids that can be used as starting materials for the synthesis of biopolymers and chemicals. This paper describes the economic and technological feasibility for cyanophycin production by fermentation of the potato waste stream Protamylasse™ or directly in plants and its subsequent conversion to a number of N-containing bulk chemicals. PMID:17876577

  18. Integrated Microchemical Analysis System Using DS2 Penetrator Technology for the Enantiomeric Detection of Amino Acids

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard; Hutt, Lester; Grunthaner, Paula; Grannan, Sabrina; Lin, Gisela; Blaney, Diana L.; McDonald, Gene; Becker, Luann

    1996-01-01

    Any strategy for investigating whether abiotic and/or biotic organic molecules are present on Mars and the search for biosignatures should focus on compounds which are readily synthesized under plausible prebiotic conditions, play an essential role in biochemistry as we know it and have properties such as chirality (handedness) which can be used to distinguish between abiotic vs. biotic origins (1). Amino acids are one of the few compound classes that fulfill all these requirements. They are synthesized in high yields in prebiotic simulation experiments, are one of the more abundant types of organic compounds present in carbonaceous meteorites and only the L-enantiomers are used in the proteins and enzymes in life on Earth.

  19. Review and assessment of technologies for the separation of strontium from alkaline and acidic media

    SciTech Connect

    Orth, R.J.; Kurath, D.E.

    1994-01-01

    A literature survey has been conducted to identify and evaluate methods for the separation of strontium from acidic and alkaline media as applied to Hanford tank waste. The most promising methods of solvent extraction, precipitation, and ion exchange are described. The following criteria were used for evaluating the separation methods: Appreciable strontium removal must be demonstrated; Strontium selectivity over bulk components must be demonstrated; The method must show promise for evolving into a practical and fairly simple process; The process should be safe to operate; The method must be robust (i.e., capable of separating strontium from various waste types); Secondary waste generation must be minimized; and The method must show resistance to radiation damage. The methods discussed did not necessarily satisfy all of the above criteria; thus, key areas requiring further development are also given for each method. Less promising solvent extraction, precipitation, and ion exchange methods were also identified; areas for potential development are included in this report.

  20. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  1. Direct loop mediated isothermal amplification on filters for quantification of Dehalobacter in groundwater.

    PubMed

    Stedtfeld, Robert D; Stedtfeld, Tiffany M; Samhan, Farag; Kanitkar, Yogendra H; Hatzinger, Paul B; Cupples, Alison M; Hashsham, Syed A

    2016-12-01

    Nucleic acid amplification of biomarkers is increasingly used to monitor microbial activity and assess remedial performance in contaminated aquifers. Previous studies described the use of filtration, elution, and direct isothermal amplification (i.e. no DNA extraction and purification) as a field-able means to quantify Dehalococcoides spp. in groundwater. This study expands previous work with direct loop mediated isothermal amplification (LAMP) for the detection and quantification of Dehalobacter spp. in groundwater. Experiments tested amplification of DNA with and without crude lysis and varying concentrations of humic acid. Three separate field-able methods of biomass concentration with eight aquifer samples were also tested, comparing direct LAMP with traditional DNA extraction and quantitative PCR (qPCR). A new technique was developed where filters were amplified directly within disposable Gene-Z chips. The direct filter amplification (DFA) method eliminated an elution step and provided a detection limit of 10(2)Dehalobacter cells per 100mL. LAMP with crudely lysed Dehalobacter had a negligible effect on threshold time and sensitivity compared to lysed samples. The LAMP assay was more resilient than traditional qPCR to humic acid in sample, amplifying with up to 100mg per L of humic acid per reaction compared to 1mg per L for qPCR. Of the tested field-able concentrations methods, DFA had the lowest coefficient of variation among Dehalobacter spiked groundwater samples and lowest threshold time indicating high capture efficiency and low inhibition. While demonstrated with Dehalobacter, the DFA method can potentially be used for a number of applications requiring field-able, rapid (<60min) and highly sensitive quantification of microorganisms in environmental water samples.

  2. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    PubMed

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  3. Modifying the fatty acid profile of dairy products through feedlot technology lowers plasma cholesterol of humans consuming the products.

    PubMed

    Noakes, M; Nestel, P J; Clifton, P M

    1996-01-01

    Intake of milk and butter has been clearly associated with higher coronary heart disease rates in different countries and this is likely to be mediated by the hypercholesterolemic effect of dairy fat. Fat-modified dairy products are an innovation involving a technology in which protected unsaturated lipids are fed to ruminants resulting in milk and tissue lipids with reduced saturated fatty acids. We examined the impact of these novel dairy fats on plasma lipids in a human dietary trial. Thirty-three men and women participated in an 8-wk randomized crossover trial comparing fat-modified with conventional dairy products. The trial consisted of a 2-wk low-fat baseline period followed by two 3-wk intervention phases. During the test periods, the fat-modified products resulted in a significant 0.28-mmol/L (4.3%) lowering of total cholesterol (P < 0.001). Most of this decrease was in LDL cholesterol, which decreased by 0.24 mmol/L (P < 0.001) whereas HDL cholesterol and triacylglycerols remained essentially unchanged. This alteration in the fatty acid profile of dairy products, if applied to populations typical of developed Western countries, represents a potential strategy to lower the risk of coronary heart disease without any appreciable change in customary eating patterns.

  4. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology.

    PubMed

    Derkx, Patrick M F; Janzen, Thomas; Sørensen, Kim I; Christensen, Jeffrey E; Stuer-Lauridsen, Birgitte; Johansen, Eric

    2014-08-29

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.

  5. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology

    PubMed Central

    2014-01-01

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  6. In situ amplification signaling-based autonomous aptameric machine for the sensitive fluorescence detection of cocaine.

    PubMed

    Xie, Su-Jin; Zhou, Hui; Liu, Dengyou; Shen, Guo-Li; Yu, Ruqin; Wu, Zai-Sheng

    2013-06-15

    The development of autonomous DNA machines and their use for specific sensing purpose have recently attracted considerable research attention. In existing autonomous machines, the target recognition process and signal transduction are separated from each other. This results in misunderstanding of the operation behavior, and the assay capability is compromised when serving as a sensing tool. In this communication, the integrated signal transduction-based autonomous aptameric machine, in which the recognition element and signal reporters are integrated into a DNA strand, is developed. This new machine can execute the in situ amplification of target binding-induced signal. The authentic operation behavior of autonomous DNA machine is discovered: the machine's products directly hybridize to the "track" rather than to the signaling probes. Along this line, the machine is employed to detect the cocaine in a more straightforward fashion, and improved assay characteristics (for example, the dynamic response range is widened by more than 500-fold) are achieved. Our efforts not only clarify the concept described in traditional autonomous DNA machines but also have made technological advancements that are expected to be especially valuable in designing nucleic acid-based machines employed in basic research and medical diagnosis.

  7. Thioaromatic DNA monolayers for target-amplification-free electrochemical sensing of environmental pathogenic bacteria.

    PubMed

    Miranda-Castro, Rebeca; Sánchez-Salcedo, Raquel; Suárez-Álvarez, Beatriz; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Jesús Lobo-Castañón, María

    2017-06-15

    Genosensing technology has mostly based on mixed self-assembled monolayers (SAMs) of thiol-modified oligonucleotides and alkanethiols on gold surfaces. However, the typical backfilling approach, which incorporates the alkanethiol in a second step, gives rise to a heterogeneous distribution of oligonucleotide probes on the surface, negatively affecting to both hybridization efficiency and surface stability. Despite aromatic thiols present a remarkably different behavior from alkanethiols, with higher rigidity and stronger intermolecular interactions, they have been scarcely explored for the fabrication of DNA sensing platforms. We have investigated different approaches involving SAMs of aromatic thiols, namely p-mercaptobenzoic acid (p-MBA) and p-aminothiophenol (p-ATP), to yield DNA sensing layers for sequence-specific detection of target oligonucleotides. The studied monolayers were evaluated by DNA surface coverage and further information was obtained by determining their functionality in a sandwich hybridization assay with enzymatic amplification of the electrochemical read-out. The insertion of thiol-oligonucleotides into p-ATP monolayers previously oxidized, and the covalent binding of amino-oligonucleotides to pure p-MBA monolayers give rise to increased storage stability and better analytical performance. The quantification of RNA from Legionella pneumophila cellular lysates was successfully performed, illustrating the usefulness of these sensing architectures for detecting pathogenic bacteria.

  8. Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction

    PubMed Central

    Mok, Ellie; Wee, Eugene; Wang, Yuling; Trau, Matt

    2016-01-01

    The exponential amplification reaction (EXPAR) is an emerging isothermal nucleic acid amplification method with high potential for molecular diagnostics due to its isothermal nature and high amplification efficiency. However, the use of EXPAR is limited by the high levels of non-specific amplification. Hence, methods that can improve the specificity of EXPAR are desired to facilitate its widespread adoption in practice. Herein, we proposed a strategy to improve EXPAR performance by using molecular enhancers. Eight small molecules were investigated, including ethylene glycol, propylene glycol, betaine, dimethyl sulfoxide (DMSO), trehalose, tetramethylammonium chloride (TMAC), bovine serum albumin (BSA) and single-stranded binding (SSB) proteins. A combination of kinetic and end-point analysis was adopted to investigate how these molecules affected EXPAR performance. Trehalose, TMAC, BSA and SSB proteins were found to have positive effects on EXPAR with trehalose being able to increase the efficiency of EXPAR. In contrast, TMAC, BSA and SSB proteins were shown to increase the specificity of EXPAR. We applied our findings to demonstrate the combination of trehalose and TMAC could simultaneously improve both the efficiency and specificity of an EXPAR-based miRNA detection method. The information provided in this study may serve as a reference to benefit the wider isothermal amplification community. PMID:27910874

  9. Expression of biologically recombinant human acidic fibroblast growth factor in Arabidopsis thaliana seeds via oleosin fusion technology.

    PubMed

    Yang, Jing; Guan, Lili; Guo, Yongxin; Du, Linna; Wang, Fawei; Wang, Yanfang; Zhen, Lu; Wang, Qingman; Zou, Deyi; Chen, Wei; Yu, Lei; Li, Haiyan; Li, Xiaokun

    2015-07-15

    The potential of oleosins to act as carriers for recombinant foreign proteins in plant cells has been established. Using the oleosin fusion technology, the protein can be targeted to oil bodies in oilseeds by fusing it to the N- or C-terminus of oleosin. In this study, aFGF was expressed in Arabidopsis thaliana seeds via oleosin fusion technology. A plant-preferred aFGF gene was synthesized by optimizing codon usage and was fused to the C-terminus of the A. thaliana 18.5kDa oleosin gene. The fusion gene was driven by the phaseolin promoter to confer seed-specific expression of the human acidic fibroblast growth factor in A. thaliana. The T-DNA region of the recombinant plasmid pKO-aFGF was introduced into the genome of Arabidopsis thaliana by the floral dip method. The aFGF protein expression was confirmed by SDS-PAGE and western blotting. The biological activity showed that oil bodies fused to aFGF stimulated NIH/3T3 cell proliferation activity.

  10. DEVELOPMENT OF FORMULATION AND TECHNOLOGY FOR THE POLY[3-(3,4-DIHYDROXYPHENYL)GLYCERIC ACID] GEL.

    PubMed

    Gokadze, S; Barbakadze, V; Mulkijanyan, K; Bakuridze, L; Bakuridze, A

    2017-01-01

    One of the most actual problems of pharmacy is the development of medication forms for external application with complex effects on (gel, emplastro, aerosol, etc.) skin wounds, burns and inflammatory factors. The centuries-old practice of using phyto-preparations (herbal remedies) proved that they have fewer side effects in comparison with synthetic drugs. Despite the wide application of herbal preparations, in the literature there is a little information about their application in development of wound and burn healing modern dosage forms. Among the medicinal plants with the mentioned pharmacological actions, comfrey (Symphytum L.) should be distinguished. Phenolic polymer poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene], amounting approximately 25% of polysaccharides and 1.5-2.5% of dry plant material, were isolated from the roots and stems of Caucasian comfrey species (S. asperum, S. caucasicum). Contrary to polysaccharides this phenolic polymer of Comfrey appeared to have a high immunomodulatory (anticomplement), antioxidative, antilipoperoxidantive, anti-inflammatory and wound-healing efficacy/activities. The aim of the study was development of the composition and technology of PDGA-containing gel. According to the results of complex biopharmaceutical studies PDGA gel optimal composition has been proved. The technological scheme for preparation of PDGA gel has been developed. PDGA gel stability under normal conditions of storage at +40С was studied. The gel has a shelf life (determined expiration date) of 2 year.

  11. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  12. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  13. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein

    SciTech Connect

    Kreader, C.A.

    1996-03-01

    The benefits of adding bovine serum albumin (BSA) or T4 gene 32 proteins (gp32) to PCR were evaluated with reaction mixtures containing substances that inhibit amplification. Whereas 10- to 1,000-fold more FeCl{sub 3}, hemin, fulvic acids, humic acids, tannic acids, or extracts from feces, freshwater, or marine water were accommodated in PCR when either 400 ng of BSA per {mu}l was included in the reactions, neither BSA nor gp32 relieved interference significantly when minimum inhibitory levels of bile salts, bilirubin, EDTA, NaCl, sodium dodecyl sulfate, or Triton X-100 were present. Use of BSA and gp32 together offered no more relief of inhibition than either alone at its optimal level, and neither protein had any noticeable effect on amplification in the absence of inhibitors. 21 refs., 3 figs.

  14. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOEpatents

    Levitsky, Igor A.; Krivoshlykov, Sergei G.

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  15. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    PubMed Central

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  16. Using electromagnetic induction technology to predict volatile fatty acid, source area differences.

    PubMed

    Woodbury, Bryan L; Eigenberg, Roger A; Varel, Vince; Lesch, Scott; Spiehs, Mindy J

    2011-01-01

    Subsurface measures have been adapted to identify manure accumulation on feedlot surfaces. Understanding where manure accumulates can be useful to develop management practices that mitigate air emissions from manure, such as odor or greenhouse gases. Objectives were to determine if electromagnetic induction could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced in vitro from feedlot surface material following a simulated rain event. Twenty soil samples per pen were collected from eight pens with cattle fed two different diets using a predictive sampling approach. These samples were incubated at room temperature for 3 d to determine fermentation products formed. Fermentation products were categorized into acetate, straight-, branched-chained, and total VFAs. These data were used to develop calibration prediction models on the basis of properties measured by electromagnetic induction (EMI). Diet had no significant effect on mean volatile solids (VS) concentration of accumulated manure. However, manure from cattle fed a corn (Zea mays L.)-based diet had significantly ( P ≤ 0.1) greater mean straight-chained and total VFA generation than pens where wet distillers grain with solubles (WDGS) were fed. Alternately, pens with cattle fed a WDGS-based diet had significantly (P ≤ 0.05) greater branched-chained VFAs than pens with cattle fed a corn-based diet. Many branched-chain VFAs have a lower odor threshold than straight-chained VFAs; therefore, emissions from WDGS-based diet manure would probably have a lower odor threshold. We concluded that diets can affect the types and quantities of VFAs produced following a rain event. Understanding odorant accumulation patterns and the ability to predict generation can be used to develop precision management practices to mitigate odor emissions.

  17. New monolith technology for automated anion-exchange purification of nucleic acids.

    PubMed

    Thayer, J R; Flook, K J; Woodruff, A; Rao, S; Pohl, C A

    2010-04-15

    Synthetic nucleic acid analysis often employs pellicular anion-exchange (AE) chromatography because it supports very high efficiency separations while offering means to control secondary structure, retention and resolution by readily modifiable chromatographic conditions. However, these pellicular anion-exchange (pAE) phases do not offer capacity sufficient for lab-scale oligonucleotide (ON) purification. In contrast, monolithic phases produce fast separations at capacities exceeding their pellicular counterparts, but do not exhibit capacities typical of fully porous, bead-based, anion-exchangers. In order to further increase monolith capacity and obtain the selectivity and mass transfer characteristics of pellicular phases, a surface-functionalized monolith was coated with pAE nanobeads (latexes) usually employed on the pellicular DNAPac phase. The nanobead-coated monolith exhibited chromatographic behaviors typical of polymer AE phases. Based on this observation the monolithic substrate surface porosity and latex diameters were co-optimized to produce a hybrid monolith harboring capacity similar to that of fully porous bead-based phases and peak shape approaching that of the pAE phases. We tested the hybrid monolith on a variety of previously developed pAE capabilities including control of ON selectivity, resolution of derivatized ONs, the ability to resolve RNA ONs harboring aberrant linkages at different positions in a single sequence and separation of phosphorothioate diastereoisomers. We compared the yield and purity of an 8 mg ON sample purified on both the new hybrid monolith and a benchmark AE column based on fully porous monodisperse beads. This comparison included an assessment of the relative selectivities of both columns. Finally, we demonstrated the ability to couple AE ON separations with ESI-MS using an automated desalting protocol. This protocol is also useful for preparing ONs for other assays, such as enzyme treatments, that may be sensitive to

  18. Novel DNA Polymer for Amplification Pretargeting

    PubMed Central

    2015-01-01

    In this Letter, different from conventional pretargeting, an additional novel DNA polymer with multiple copies of a target was first designed to be administrated between the antitumor antibody, and the labeled effector served as an amplification pretargeting strategy. Two phosphorothioate DNA strands, a bridging and a target strand, were hybridized to form a polymer. Polymer size, as a function of molar ratios, was then monitored by size exclusion HPLC and electrophoretic mobility shift assay. Moreover, binding efficiency of polymers with the radiolabeled effector and polymer size after hybridization were measured by HPLC as well. As the polymer was expected to produce more binding sites that would be targeted by effectors, amplification pretargeting can greatly improve accumulation of effectors in tumor. This novel proof-of-concept was then well demonstrated by the in vitro test of signal amplification in antibody-binding protein L coated plate and LS174T cells. Compared to conventional pretargeting, significantly increasing radioactive signal was observed in this designed amplification pretargeting, which would serve as a useful paradigm of the potential of oligomer polymers to improve pretargeting and other related approaches. PMID:26396682

  19. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  20. Detection of cochlear amplification and its activation.

    PubMed

    Dong, Wei; Olson, Elizabeth S

    2013-08-20

    The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source.

  1. Topographic amplification across a taiwanese ridge

    NASA Astrophysics Data System (ADS)

    Rault, Claire; Meunier, Patrick; Burtin, Arnaud; Marc, Odin; Weian Chao, Vvn; Wu, Yih-Min; Hovius, Niels

    2016-04-01

    A line of 6 broadband seismometers have been deployed across a ridge in the Hualien County (Eastern Taiwan) in order to study topographic amplification. Since March 2015, the network has been continuously recording waves incoming from the Taiwanese regional seismicity. The hill is well approximated by a triangular topography of 3600m in length by 900m in height. We present a preliminary analysis performed over a dozen of earthquakes selected from the Seismic Taiwanese catalog (CWBSN). We show that most of the Uphill records exhibit a systematic amplification of seismic waves (peak to peak of particle velocity) in the relevant frequency band [0.5-2Hz]. By contrast, energy within the larger frequency band [6-20Hz] reflects local site effects induced by the soil layer. We report amplification ratios ranging from ranging from 1.2 to 3 and from 1.8 to 4 for P and S waves respectively. We show that amplification processes at the top strongly depend on the parameter α defined as the angle between the azimuth of incoming wave and the azimuth of the ridge divide.

  2. Desert Amplification in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Zhou, Liming

    2016-08-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  3. Detection of Cochlear Amplification and Its Activation

    PubMed Central

    Dong, Wei; Olson, Elizabeth S.

    2013-01-01

    The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source. PMID:23972858

  4. Desert Amplification in a Warming Climate.

    PubMed

    Zhou, Liming

    2016-08-19

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  5. Site amplifications for generic rock sites

    USGS Publications Warehouse

    Boore, D.M.; Joyner, W.B.

    1997-01-01

    Seismic shear-wave velocity as a function of depth for generic rock sites has been estimated from borehole data and studies of crustal velocities, and these velocities have been used to compute frequency-dependent amplifications for zero attenuation for use in simulations of strong ground motion. We define a generic rock site as one whose velocity at shallow depths equals the average of those from the rock sites sampled by the borehole data. Most of the boreholes are in populated areas; for that reason, the rock sites sampled are of particular engineering significance. We consider two generic rock sites: rock, corresponding to the bulk of the borehole data, and very hard rock, such as is found in glaciated regions in large areas of eastern North America or in portions of western North America. The amplifications on rock sites can be in excess of 3.5 at high frequencies, in contrast to the amplifications of less than 1.2 on very hard rock sites. The consideration of unattenuated amplification alone is computationally convenient, but what matters for ground-motion estimation is the combined effect of amplification and attenuation. For reasonable values of the attenuation parameter K0, the combined effect of attenuation and amplification for rock sites peaks between about 2 and 5 Hz with a maximum level of less than 1.8. The combined effect is about a factor of 1.5 at 1 Hz and is less than unity for frequencies in the range of 10 to 20 Hz (depending on K0). Using these amplifications, we find provisional values of about ???? = 70 bars and K0 = 0.035 sec for rock sites in western North America by fitting our empirically determined response spectra for an M 6.5 event to simulated values. The borehole data yield shear velocities (V??30) of 618 and 306 m/sec for "rock" and "soil" sites, respectively, when averaged over the upper 30 m. From this, we recommend that V??30 equals 620 and 310 m/sec for applications requiring the average velocity for rock and soil sites in

  6. Effects of polymer end groups on chemical amplification

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; England, William P.; Lundmark, Stephen B.

    1992-06-01

    Polymer end groups could affect the sensitivity of chemical amplification resist systems based on acid catalysis in a fashion completely different from the conventional resist systems. Their acidolysis susceptibility could depend on the initiator employed in polymerization, which is illustrated by two examples in this paper. When (alpha) ,(alpha) -azobis(isobutyronitrile) is used as the radical polymerization initiator, PBOCST with a lower molecular weight provides a less sensitive tBOC resist than a higher molecular weight polymer, which is due to the poisoning effect of the CN group attached to the polymer end. Low molecular weight PBOCST's were prepared also with benzoyl peroxide and via living anionic polymerization to confirm the end group effect on the tBOC acidolysis. In contrast, there are cases where certain end groups could provide reaction sites to photochemically generated acids. One such example is poly(hydroxy-(alpha) -methylstyrene) (PHOMS). The (rho) -PHOMS prepared by heating the tBOC-protected polymer (made by cationic polymerization) undergoes extremely efficient acid-catalyzed depolymerization. In contrast, the (rho) -PHOMS made by desilylation of anionically obtained silyl-protected polymer is very inert to such acidolysis. The high sensitivity of the cationic (rho) -PHOMS is due to the presence of end groups that are introduced during accidental and/or intentional termination and that are very reactive toward acids.

  7. Application of FRET Technology to the In Vivo Evaluation of Therapeutic Nucleic Acids (ANTs)

    NASA Astrophysics Data System (ADS)

    Benítez-Hess, María Luisa; Alvarez-Salas, Luis Marat

    2007-02-01

    Developing applications for therapeutic nucleic acids (TNAs) (i.e. ribozymes, antisense oligodeoxynucleotides (AS-ODNs), siRNA and aptamers) requires a reporter system designed to rapidly evaluate their in vivo effect. To this end we designed a reporter system based on the fluorescence resonance energy transfer (FRET) engineered to release the FRET effect produced by two green fluorescent protein (GFP) variants linked by a TNA target site. Because the FRET effect occurs instantaneously when two fluorophores are very close to each other (>100nm) stimulating emission of the acceptor fluorophore by the excitation of the donor fluorophore it has been widely use to reveal interactions between molecules. The present system (FRET2) correlates the FRET effect with the in vivo activity of distinct types of TNAs based on a model consisting of RNA from human papillomavirus type 16 (HPV-16) previously shown accessible to TNAs. HPV-16 is the most common papillomavirus associated with cervical cancer, the leading cause of death by cancer in México. The FRET2 system was first tested in vitro and then used in bacteria in which transcription is linked to translation allowing controlled expression and rapid evaluation of the FRET2 protein. To assure accessibility of the target mRNA to TNAs, the FRET2 mRNA was probed by RNaseH assays prior FRET testing. The fluorescence features of the FRET2 system was tested with different FRET-producing GFP donor-acceptor pairs leading to selection of green (donor) and yellow (acceptor) variants of GFP as the most efficient. Modifications in aminoacid composition and linker length of the target sequence did not affect FRET efficiency. In vivo AS-ODN-mediated destruction of the chimerical FRET2 reporter mRNA resulted in the recovery of GFP fluorescent spectrum in a concentration and time dependent manner. Reported anti-HPV ribozymes were also tested with similar results. Therefore, we conclude that the FRET effect can be a useful tool in the

  8. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  9. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  10. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  11. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection

    PubMed Central

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-01-01

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics. PMID:26556354

  12. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Patel, Kamlesh D [Ken; SNL,

    2016-07-12

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  13. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  14. Blending problem-based learning with Web technology positively impacts student learning outcomes in acid-base physiology.

    PubMed

    Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa

    2005-03-01

    World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.

  15. Evaluation of bias associated with high-multiplex, target-specific pre-amplification

    PubMed Central

    Okino, Steven T.; Kong, Michelle; Sarras, Haya; Wang, Yan

    2015-01-01

    We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step). Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments. PMID:27077043

  16. New Developments in Quantitative Real-time Polymerase Chain Reaction Technology.

    PubMed

    Gadkar, Vija yJ; Filion, Martin

    2014-01-01

    Real time-quantitative PCR (RT-qPCR) technology has revolutionized the detection landscape in every area of molecular biology. The fundamental basis of this technology has remained unchanged since its inception, however various modifications have enhanced the overall performance of this highly versatile technology. These improvements have ranged from changes in the individual components of the enzymatic reaction cocktail (polymerizing enzymes, reaction buffers, probes, etc.) to the detection system itself (instrumentation, software, etc.). The RT-qPCR technology currently available to researchers is more sensitive, faster and affordable than when this technology was first introduced. In this article, we summarize the developments of the last few years in RT-qPCR technology and nucleic acid amplification.

  17. Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of Caciocavallo Palermitano cheese.

    PubMed

    Bonanno, A; Tornambè, G; Bellina, V; De Pasquale, C; Mazza, F; Maniaci, G; Di Grigoli, A

    2013-01-01

    Caciocavallo Palermitano is a typical stretched-curd cheese that has been produced over the centuries in Sicily according to traditional cheesemaking technology and using raw milk from autochthonous cow breeds reared at pasture. The objective of this experiment was to evaluate the effects of the farming system and processing technology on the characteristics of Caciocavallo Palermitano cheese, with particular regard to the fatty acid profile. The farming system was either extensive, using autochthonous cows fed a pasture-based diet, or intensive, with specialized dairy cow breeds fed mainly hay and concentrate. The cheese-processing technology was either artisanal, using traditional wooden tools and endemic lactic bacteria, or advanced, using modern steel equipment and selected lactic bacteria. Twelve Caciocavallo Palermitano cheeses, 3 from each of the 4 experimental theses (2 farming systems × 2 cheesemaking technologies), were obtained and aged for 1, 30, 60, and 120 d. Milk of origin and cheeses were analyzed for the main chemical and rheological parameters. Fatty acids were methylated in lyophilized cheese and analyzed by gas chromatography. Sensory analysis was carried out by trained panelists. The PROC GLM of SAS 9.1.2 (SAS Institute Inc., Cary, NY) was used for the statistical analysis. The physical, chemical, and sensory characteristics of Caciocavallo Palermitano cheese were influenced more by the farming system than by the cheesemaking technology. Compared with cheese produced through intensive farming, cheese from extensive farming was richer in polyunsaturated, n-3, and odd- and branched-chain fatty acids, as well as in conjugated linoleic acid (cis-9,trans-11 C18:2), with accompanying improved human health benefits. The cheesemaking technology produced variation in the evolution of proteolysis during aging, due presumably to the different active microflora, which influenced the sensory profile of the resulting cheese. Indeed, cheese produced by

  18. Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology

    PubMed Central

    Alshehri, Sultan M.; Park, Jun-Bom; Alsulays, Bader B.; Tiwari, Roshan V.; Almutairy, Bjad; Alshetaili, Abdullah S.; Morott, Joseph; Shah, Sejal; Kulkarni, Vijay; Majumdar, Soumyajit; Martin, Scott T.; Mishra, Sanjay; Wang, Lijia; Repka, Michael A.

    2015-01-01

    The objective of this study was to enhance the solubility as well as to mask the intensely bitter taste of the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility of the drug was improved by using Eudragit® E PO in different ratios via hot melt extrusion (HME), solid dispersion technology. Differential scanning calorimetry (DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. Powder X-ray diffraction analysis indicated that MA was converted to its amorphous phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time in addition to having the desired taste-masking effect. All of the extruded formulations and the ODTs were found to be physically and chemically stable over a period of 6 months at 40°C/75% RH and 12 months at 25°C/60% RH, respectively. PMID:25914727

  19. Some Technological Properties of Lactic Acid Bacteria Isolated from Dahi and Datshi, Naturally Fermented Milk Products of Bhutan

    PubMed Central

    Shangpliang, H. N. J.; Sharma, Sharmila; Rai, Ranjita; Tamang, Jyoti P.

    2017-01-01

    Dahi and datshi are common naturally fermented milk (NFM) products of Bhutan. Population of lactic acid bacteria (LAB) in dahi (pH 3.7) and datshi (pH 5.2) was 1.4 × 107 and 3.9 × 108 cfu/ml, respectively. Based on 16S rRNA gene sequencing isolates of LAB from dahi and datshi were identified as Enterococcus faecalis, E. faecium, Lactococcus lactis subsp. lactis. LAB strains were tested for some technological properties. All LAB strains except E. faecalis CH2:17 caused coagulation of milk at both 30°C for 48 h. Only E. faecium DH4:05 strain was resistant to pH 3. No significant difference (P > 0.05) of viable counts was observed in MRS broth with and without lysozyme. All LAB strains grew well in 0.3% bile showing their ability to tolerate bile salt. None of the LAB strains showed >70% hydrophobicity. This study, being the first of its microbiological analysis of the NFM of Bhutan, has opened up to an extent of research work that gives a new insight to the products. PMID:28203227

  20. Amplification of postwildfire peak flow by debris

    USGS Publications Warehouse

    Kean, Jason W.; Mcguire, Luke; Rengers, Francis; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  1. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  2. Tyramide Signal Amplification for Immunofluorescent Enhancement.

    PubMed

    Faget, Lauren; Hnasko, Thomas S

    2015-01-01

    Enzyme-linked signal amplification is a key technique used to enhance the immunohistochemical detection of protein, mRNA, and other molecular species. Tyramide signal amplification (TSA) is based on a catalytic reporter deposit in close vicinity to the epitope of interest. The advantages of this technique are its simplicity, enhanced sensitivity, high specificity, and compatibility with modern multi-label fluorescent microscopy. Here, we describe the use of a TSA kit to increase the signal of enhanced green fluorescent protein (eGFP) expressed under the control of Slc17a6 regulatory elements in the brain of a transgenic mouse. The labeling procedure consists of 6 basic steps: (1) tissue preparation, (2) blocking of nonspecific epitopes, (3) binding with primary antibody, (4) binding with horseradish peroxidase-conjugated secondary antibody, (5) reacting with fluorescent tyramide substrate, and (6) imaging of the signal. The procedures described herein detail these steps and provide additional guidance and background to assist novice users.

  3. Weak-value amplification: state of play

    NASA Astrophysics Data System (ADS)

    Knee, George C.; Combes, Joshua; Ferrie, Christopher; Gauger, Erik M.

    2016-01-01

    Weak values arise in quantum theory when the result of a weak measurement is conditioned on a subsequent strong measurement. The majority of the trials are discarded, leaving only very few successful events. Intriguingly those can display a substantial signal amplification. This raises the question of whether weak values carry potential to improve the performance of quantum sensors, and indeed a number of impressive experimental results suggested this may be the case. By contrast, recent theoretical studies have found the opposite: using weak-values to obtain an amplification generally worsens metrological performance. This survey summarises the implications of those studies, which call for a reappraisal of weak values' utility and for further work to reconcile theory and experiment.

  4. Rapid and Sensitive Detection of sFAT-1 Transgenic Pigs by Visual Loop-Mediated Isothermal Amplification.

    PubMed

    Tao, Chenyu; Yang, Yalan; Li, Xunbi; Zheng, Xinmin; Ren, Hongyan; Li, Kui; Zhou, Rong

    2016-07-01

    Genetically modified (GM) livestock have the potential to contribute to improving the environment and human health, with consumption of fewer resources and reduced waste production. However, the transgene process also poses risks. The safety assessment and control of transgenic animal products have drawn wide attention, and the relevant regulations and technology are being developed. Quick testing technology plays a significant role in on-site and customs sampling. Nowadays, loop-mediated isothermal amplification (LAMP) was widely applied in nucleic acid analysis because of its simplicity, rapidity, high efficiency and specificity. In this study, a specific, sensitive detection system for detecting sFAT-1 transgenic pigs was designed. A set of six primers including two loop primers was designed for the target sequence. The DNA samples were amplified in less than 1 h at the optimized temperature and detecting by both Nephelometer LA-320c and unaided eyes directly adding calcein. The detection limit of sFAT-1 LAMP was as low as 1.26 ng/μL. Furthermore, blind tests of transgenic and non-transgenic DNA samples were all correctly detected. Hence, the results in this study demonstrated that LAMP is a very useful tool for transgenic detection.

  5. Quantum amplification effect in a horizon fluctuation

    SciTech Connect

    Ansari, Mohammad H.

    2010-05-15

    The appearance of a few unevenly spaced bright flashes of light on top of Hawking radiation is the sign of the amplification effect in black hole horizon fluctuations. Previous studies on this problem suffer from the lack of considering all emitted photons in the theoretical spectroscopy of these fluctuations. In this paper, we include all of the physical transition weights and present a consistent intensity formula. This modifies a black hole radiation pattern.

  6. Hormonal Involvement in Breast Cancer Gene Amplification

    DTIC Science & Technology

    2008-10-01

    re-replication creates extra copies of the gene. This in turn will also increase production of the protein encoded by the amplified gene. Hormonal... increases in MCM proteins and Cdt1 have been shown to induce DNA amplification in yeast (Gopalakrishnan et al., 2001; Nguyen et al., 2001; Green et al...2006) and increased Cdt1 results in re-replication in human cells (Dorn et al., 2008). The N- terminus of Cdt1 is important for re-replication

  7. Multiplex Reverse-Transcription Loop-Mediated Isothermal Amplification Coupled with Cascade Invasive Reaction and Nanoparticle Hybridization for Subtyping of Influenza A Virus

    PubMed Central

    Chi, Ying; Ge, Yiyue; Zhao, Kangchen; Zou, Bingjie; Liu, Bin; Qi, Xian; Bian, Qian; Shi, Zhiyang; Zhu, Fengcai; Zhou, Minghao; Cui, Lunbiao; Su, Chuan

    2017-01-01

    Considering the fatal human victims and economic loss caused by influenza virus infection every year, methodologies for rapid and on-site detection of influenza viruses are urgently needed. LAMP is the most commonly used nucleic acid isothermal amplification technology suitable for on-site use. However, for multiplex LAMP, differentiation of the amplicons derived from multiple targets is still challengeable currently. Here we developed a multiplex RT-LAMP assay for simultaneous amplification of three prominent subtypes of influenza viruses (A/H5, A/H7 and 2009A/H1). The amplicons were further identified by cascade invasive reaction and nanoparticle hybridization in separate target-specific detection tubes (referred to as mRT-LAMP-IRNH). The analytic sensitivities of the assay are 10 copies of RNA for all the three HA subtypes, and the specificity reached 100%. Clinical specimen analysis showed this assay had a combined sensitivity and specificity of 98.1% and 100%, respectively. Overall, the mRT-LAMP-IRNH assay can be used as a cost-saving method that utilizes a simple instrument to detect A/H5, A/H7, and 2009A/H1 influenza viruses, especially in resource-limited settings. PMID:28322309

  8. Sample pretreatment and nucleic acid-based detection for fast diagnosis utilizing microfluidic systems.

    PubMed

    Wang, Jung-Hao; Wang, Chih-Hung; Lee, Gwo-Bin

    2012-06-01

    Recently, micro-electro-mechanical-systems (MEMS) technology and micromachining techniques have enabled miniaturization of biomedical devices and systems. Not only do these techniques facilitate the development of miniaturized instrumentation for biomedical analysis, but they also open a new era for integration of microdevices for performing accurate and sensitive diagnostic assays. A so-called "micro-total-analysis-system", which integrates sample pretreatment, transport, reaction, and detection on a small chip in an automatic format, can be realized by combining functional microfluidic components manufactured by specific MEMS technologies. Among the promising applications using microfluidic technologies, nucleic acid-based detection has shown considerable potential recently. For instance, micro-polymerase chain reaction chips for rapid DNA amplification have attracted considerable interest. In addition, microfluidic devices for rapid sample pretreatment prior to nucleic acid-based detection have also achieved significant progress in the recent years. In this review paper, microfluidic systems for sample preparation, nucleic acid amplification and detection for fast diagnosis will be reviewed. These microfluidic devices and systems have several advantages over their large-scale counterparts, including lower sample/reagent consumption, lower power consumption, compact size, faster analysis, and lower per unit cost. The development of these microfluidic devices and systems may provide a revolutionary platform technology for fast sample pretreatment and accurate, sensitive diagnosis.

  9. IN VITRO SELECTION AND CHARACTERIZATION OF CELLULOSE-BINDING RNA APTAMERS USING ISOTHERMAL AMPLIFICATION

    PubMed Central

    Boese, B. J.; Corbino, K.; Breaker, R. R.

    2017-01-01

    We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust affinity for cellulose in both the powdered and paper form, but did not show any significant affinity for closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using the glucosamine 6-phosphate to activate glmS ribozyme function. PMID:18696364

  10. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification.

    PubMed

    Crannell, Zachary Austin; Rohrman, Brittany; Richards-Kortum, Rebecca

    2014-06-17

    Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.

  11. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  12. Thermoelectric amplification of phonons in graphene

    NASA Astrophysics Data System (ADS)

    Dompreh, K. A.; Mensah, N. G.; Mensah, S. Y.; Fosuhene, S. K.

    2016-06-01

    Amplification of acoustic in-plane phonons due to an external temperature gradient (∇T) in single-layer graphene (SLG) was studied theoretically. The threshold temperature gradient (∇ T ) 0 g and the threshold voltage (V T ) 0 g in SLG were evaluated. For T = 77 K , the calculated value for (∇ T ) 0 g = 746.8 K / cm and (V T ) 0 g = 6.6 mV . The calculation was done in the hypersound regime. Further, the dependence of the normalized amplification ( Γ / Γ 0 ) on the frequency ω q and ∇ T / T were evaluated numerically and presented graphically. The calculated threshold temperature gradient (V T ) 0 g for SLG was higher than that obtained for homogeneous semiconductors (n-InSb) (∇ T ) 0 hom ≈ 10 3 K / cm , superlattices (∇ T ) 0 S L ≈ 384 K / cm , and cylindrical quantum wire (∇ T ) 0 c q w ≈ 10 2 K / cm . This makes SLG a much better material for thermoelectric phonon amplification.

  13. Estimating site amplification factors from ambient noise

    NASA Astrophysics Data System (ADS)

    Taylor, Steven R.; Gerstoft, Peter; Fehler, Michael C.

    2009-05-01

    We present a methodology to obtain frequency-dependent relative site amplification factors using ambient seismic noise. We treat a seismic network or array as a forced damped harmonic oscillator system where each station responds to a forcing function obtained from frequency-wavenumber beams of the ambient noise field. A network or array beam is necessary to estimate the forcing function. Taken over long time periods, each station responds to the forcing function showing a frequency-dependent resonance peak whose amplitude and spectral width depends upon the elastic and anelastic properties of the underlying medium. Our results are encouraging in that hard rock sites show little variability and have narrower resonance peaks with reduced amplitudes relative to soft rock sites in sedimentary basins. There is much more variability observed at soft rock sites and a tendency for spectral peaks to shift to higher frequencies and become broader as the site amplification increases. This could be due to due to lower densities and/or small-strain nonlinearity at stations having high site amplification.

  14. Optimized thermal amplification in a radiative transistor

    NASA Astrophysics Data System (ADS)

    Prod'homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younes; Drevillon, Jeremie; Joulain, Karl

    2016-05-01

    The thermal performance of a far-field radiative transistor made up of a VO2 base in between a blackbody collector and a blackbody emitter is theoretically studied and optimized. This is done by using the grey approximation on the emissivity of VO2 and deriving analytical expressions for the involved heat fluxes and transistor amplification factor. It is shown that this amplification factor can be maximized by tuning the base temperature close to its critical one, which is determined by the temperature derivative of the VO2 emissivity and the equilibrium temperatures of the collector and emitter. This maximization is the result of the presence of two bi-stable temperatures appearing during the heating and cooling processes of the VO2 base and enables a thermal switching (temperature jump) characterized by a sizeable variation of the collector-to-base and base-to-emitter heat fluxes associated with a slight change of the applied power to the base. This switching effect leads to the optimization of the amplification factor and therefore it could be used for thermal modulation purposes.

  15. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs.

  16. Study Unveils New Method for Universal Extraction and PCR Amplification of Fungal DNA

    DTIC Science & Technology

    2014-06-12

    rare or hard to identify fungal infections. The new extraction and amplification method can be universally applied to fungi , according to the...best treatments. In addition, rare fungi , or species with phenotypic doppelgangers, can stump medical mycologists, so molecular methods are critical...However, isolating DNA from fungi can be problematic, and an inexpensive method to isolate and amplify nucleic acids from all types of pathogenic fungi

  17. Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis.

    PubMed

    Findlay, I; Ray, P; Quirke, P; Rutherford, A; Lilford, R

    1995-06-01

    Previously the diagnosis of sex and cystic fibrosis status has been studied on single cells using the polymerase chain reaction (PCR). It has been suggested that allelic drop-out (PCR failure of one allele) and/or preferential amplification (hypo-amplification of one allele) may contribute to poor reliability and misdiagnosis, although this remains controversial as some reports suggest that allelic drop-out does not occur. We investigated an improved method of diagnosing sex and cystic fibrosis in single cells using a new technology (fluorescent PCR) to determine the base level of PCR artefacts (allelic drop-out and preferential amplification) which, in combination with improved sensitivity, should improve PCR reliability and accuracy. Fluorescent PCR gives high reliability (approximately 97%) and accuracy rates (approximately 97%) in somatic cells for both sex and cystic fibrosis diagnosis and its lower detection threshold allows allelic drop-out and preferential amplification to be easily distinguished. We also achieved high reliability and accuracy in diagnosing cystic fibrosis in human blastomeres. This study confirms earlier reports of both allelic drop-out and preferential amplification in single cell analysis. We demonstrate that both allelic drop-out and preferential amplification occur in somatic cells and suggest these are separate phenomena. Preferential amplification appeared common in single cell PCR while allelic drop-out apparently occurred at random in each allele. Preferential amplification was mainly amplification of the larger allele. We suggest that some inaccuracy/misdiagnosis may be due to both preferential amplification as well as allelic drop-out. Other findings were variability in drop-out between PCR and that amplification of signals from human blastomeres may be linked to embryo quality. We suggest that allelic drop-out is dependent on the number of cells within the sample.

  18. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications.

  19. Spellbinding and crooning: sound amplification, radio, and political rhetoric in international comparative perspective, 1900-1945.

    PubMed

    Wijfjes, Huub

    2014-01-01

    This article researches in an interdisciplinary way the relationship of sound technology and political culture at the beginning of the twentieth century. It sketches the different strategies that politicians--Franklin D. Roosevelt, Adolf Hitler, Winston Churchill, and Dutch prime minister Hendrikus Colijn--found for the challenges that sound amplification and radio created for their rhetoric and presentation. Taking their different political styles into account, the article demonstrates that the interconnected technologies of sound amplification and radio forced a transition from a spellbinding style based on atmosphere and pathos in a virtual environment to "political crooning" that created artificial intimacy in despatialized simultaneity. Roosevelt and Colijn created the best examples of this political crooning, while Churchill and Hitler encountered problems in this respect. Churchill's radio successes profited from the special circumstances during the first period of World War II. Hitler's speeches were integrated into a radio regime trying to shape, with dictatorial powers, a national socialistic community of listeners.

  20. Improvement of Fatty Acid Profile and Studio of Rheological and Technological Characteristics in Breads Supplemented with Flaxseed, Soybean, and Wheat Bran Flours

    PubMed Central

    Osuna, Mariana B.; Judis, María A.; Romero, Ana M.; Avallone, Carmen M.; Bertola, Nora C.

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg−1 of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg−1 SF, the better acceptance, baking features, and enhanced fatty acid profile. PMID:25478592

  1. Improvement of fatty acid profile and studio of rheological and technological characteristics in breads supplemented with flaxseed, soybean, and wheat bran flours.

    PubMed

    Osuna, Mariana B; Judis, María A; Romero, Ana M; Avallone, Carmen M; Bertola, Nora C

    2014-01-01

    Functional breads constitute an interesting alternative as vehicle of new essential fatty acids sources. The aim of this study was to improve the fatty acids (FA) profile of bakery products, producing breads with low saturated fatty acid (SFA) content and with high polyunsaturated fatty acid (PUFA) content, through partial substitution of wheat flour by other ingredients (soy flour, flax flour, and wheat bran) and to analyze the effect of this change on the technological, rheological, and sensorial characteristics of breads. Flaxseed flour (FF), soybeans flour (SF), or wheat bran (WB) was used to replace 50, 100, and 150 g kg(-1) of wheat flour (WF) in breads. FF or SF produced a decrease in monounsaturated and SFA and an increase of PUFA in these breads. Furthermore, breads replaced with FF presented considerable increase in the content of n3 FA, while, SF or WB contributed to rise of linoleic and oleic FA, respectively. The substitution percentage increase of FF, SF, or WB to formulation produced changes in the colour, rheological, textural, and technological characteristics of breads. This replacement resulted in improved lipid profile, being breads with 50 g kg(-1) SF, the better acceptance, baking features, and enhanced fatty acid profile.

  2. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    PubMed Central

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-01-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20–100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device. PMID:26050646

  3. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    NASA Astrophysics Data System (ADS)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  4. Enantioenrichment in sublimed amino acid mixtures.

    PubMed

    Viedma, Cristóbal; Ortiz, José E; de Torres, Trinidad; Cintas, Pedro

    2012-04-14

    A real amplification of an initial enantiomeric excess can be detected when two amino acids are sublimed at high temperature, even if one of the components is a racemic compound that does not convert into a conglomerate by sublimation.

  5. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jin, Mingliang; Liu, Xia; van den Berg, Albert; Zhou, Guofu; Shui, Lingling

    2016-08-01

    Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10-18 mol l-1 for t-DNA has been achieved.

  6. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification.

    PubMed

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-01-01

    In the mammalian auditory system, the three rows of outer hair cells (OHCs) located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM) due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  7. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform

    PubMed Central

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  8. On the role of temperature feedbacks for Arctic amplification

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Mauritsen, Thorsten

    2013-04-01

    The amplification of global climate changes at the poles is a well-known feature of the climate system mentioned already by Arrhenius (1896). It has been linked to the surface-albedo feedback, changes in atmospheric and oceanic heat convergence, water vapour and cloud feedbacks and the albedo effect of black carbon on snow (Serreze and Barry, 2011). We here focus on the role of temperature feedbacks, which have received rather little attention in recent debates. The basic temperature feedback is the Planck feedback or the increase in the Earth's blackbody radiation due to a uniform temperature increase. Since the blackbody radiation scales with the fourth power of temperature, stronger warming is necessary in cold regions to balance a globally uniform radiative forcing. The second temperature feedback is caused by changes in the vertical atmospheric temperature structure: In the Tropics, deep convection leads to warming aloft being larger than at the surface, which causes a greater increase in outgoing longwave radiation compared a vertically uniform forcing and thus constitutes a negative feedback mechanism. In the Arctic, where warming is amplified at the surface, the lapse-rate feedback is positive (Wetherald and Manabe, 1975). We use CMIP5 model output and radiative Kernels to investigate the zonal distribution of temperature feedbacks. Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground Philos. Mag. J. Sci., 5, pp. 237-276 Serreze, M.C. and Barry, R.G. (2011) . Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77(1-2), pp. 85-96 Wetherald, R. and Manabe, S. (1975). The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 23 pp 2044-2059

  9. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  10. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    PubMed

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields.

  11. DNA amplification in the field: move over PCR, here comes LAMP.

    PubMed

    Lee, Patricia L M

    2017-03-01

    It would not be an exaggeration to say that among molecular technologies, it is PCR (polymerase chain reaction) that underpins the discipline of molecular ecology as we know it today. With PCR, it has been possible to target the amplification of particular fragments of DNA, which can then be analysed in a multitude of ways. The capability of PCR to amplify DNA from a mere handful of copies further means that conservationists and ecologists are able to sample DNA unobtrusively and with minimal disturbance to the environment and the organisms of interest. However, a key disadvantage of PCR-based methods has been the necessity for a generally non-portable, laboratory setting to undertake the time-consuming thermocycling protocols. LAMP (loop-mediated isothermal amplification) offers a logistically simpler protocol: a relatively rapid DNA amplification reaction occurs at one temperature, and the products are visualized with a colour change within the reaction tubes. In the first field application of LAMP for an ecological study, Centeno-Cuadros et al. () demonstrates how LAMP can be used to determine the sex of three raptor species. By enabling DNA amplification in situ and in 'real-time', LAMP promises to revolutionize how molecular ecology is practised in the field.

  12. Photoacoustic imaging using lock-in amplification and pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Hajireza, Parsin; Zemp, Roger

    2016-03-01

    Photoacoustic (PA) imaging is a non-invasive, non-ionizing imaging technology with high optical contrast between blood and tissue, and with high sensitivity of hemoglobin concentration and oxygen saturation due to different optical absorption spectra resulting from different oxygenation of hemoglobin. Most PA imaging systems implement a nanosecond pulsed laser source as excitation source to induce PA signal, and rely on broadband amplifiers to record time-domain PA signals [1-6]. Some groups, however, have reported using modulated continuous-wave lasers as an excitation source for frequency-domain imaging [7-9]. Frequency-domain imaging offers the potential of lock-in amplification which has sensitivities as low as nV even in noise orders of magnitude higher than the signal. However, although modulated CW sources works for low cost and compact PA imaging, it does not satisfy thermal and stress confinement conditions required for optimal PA signal strength. Here, we investigate a PA methodology using pulsed fiber lasers as excitation laser source combined with lock-in amplification technology. For comparison, we also studied time-domain PA methodology. Phantom studies show that signal-to-noise ratio (SNR) obtained with frequency domain PA imaging is significantly more sensitive than that obtained using time-domain PA imaging when the laser pulse repetition rate (PRR) matches the bandwidth of ultrasound transducer. Therefore, high sensitive PA imaging technology using pulsed fiber laser sources with lock-in amplification may potentially greatly extend the depth of PA imaging.

  13. Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid

    SciTech Connect

    none,

    2007-12-01

    This report evaluates alternative technologies for chemicals manufacturing which may present energy efficiency improvements compared to existing technologies. It is an extension of the Chemical Bandwidth Study, which evaluates energy and exergy losses in the U.S. chemicals industry.

  14. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  15. Amplification of signaling events in bacteria.

    PubMed

    Dahlquist, Frederick W

    2002-05-14

    Bacteria respond to extremely shallow chemical gradients by modifying their motility in a process called chemotaxis. This chemotactic response is characterized by high sensitivity to small concentration differences, which extends over a large range of concentrations. This combination of high signal gain and large dynamic range results from both a memory of past events and the ability to amplify small differences in signal between the memory and the current environment. Dahlquist describes the signaling mechanism used by bacteria to regulate the flagellar motor and the places in this pathway where signal amplification may occur.

  16. SITE AMPLIFICATION OF EARTHQUAKE GROUND MOTION.

    USGS Publications Warehouse

    Hays, Walter W.

    1986-01-01

    When analyzing the patterns of damage in an earthquake, physical parameters of the total earthquake-site-structure system are correlated with the damage. Soil-structure interaction, the cause of damage in many earthquakes, involves the frequency-dependent response of both the soil-rock column and the structure. The response of the soil-rock column (called site amplification) is controversial because soil has strain-dependent properties that affect the way the soil column filters the input body and surface seismic waves, modifying the amplitude and phase spectra and the duration of the surface ground motion.

  17. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  18. Raman Amplification in Plasma: Thermal Effects

    SciTech Connect

    Farmer, John; Ersfeld, Bernhard; Jaroszynski, Dino

    2009-01-22

    The impact of thermal effects on Raman amplification in plasma is investigated theoretically. It is shown that damping and the shift in plasma resonance at finite temperature can alter the evolution of the amplified pulse and lead to pulse compression which is not predicted by the cold plasma model. Although thermal effects can lead to a reduction in the efficiency of the interaction, this can be ameliorated by using a chirped pump. In this case thermal effects can be beneficial and suppress the development of the train of pulses that develops behind the amplified pulse, as observed in the cold plasma model.

  19. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  20. Modeling Site Amplification in Eastern North America

    NASA Astrophysics Data System (ADS)

    Braganza, S.; Atkinson, G. M.; Ghofrani, H.; Hassani, B.

    2015-12-01

    A critical component in the understanding and interpretation of earthquake ground motions is the role that site effects play. In many parts of eastern North America, the soil layers which overlie glaciated bedrock produce strong and highly variable site responses. We use horizontal-to-vertical (H/V) response spectral ratios as the indicator variable by which to characterize the salient characteristics of site response in eastern Canada. We show that site response can be modeled using two descriptive variables that are readily obtainable: (i) peak resonant frequency (fpeak), as determined from H/V or depth-to-bedrock; and (ii) overall soil type (or stiffness). We use these variables to create a model of site amplification that can be used in the development of ground-motion prediction equations (GMPEs) and in real-time interactive ground-motion (IGM) map applications. The key to the site characterization is the relationship between fpeak and drift thickness (depth-to-bedrock), which we derive using H/V data from earthquakes in the region, combined with a detailed digital drift thickness map available online from the Ontario Geological Survey (OGS). The OGS map also provides information on soil type, which is correlated with peak amplitudes (Apeak) of response. We extend the study area to the city of Montreal using similar information from Chouinard and Rosset (2012). H/V spectral shapes may be associated with four main soil categories, which in decreasing order of stiffness are: bedrock, till, sand/clay, and organic soil/fill. The value of Apeak increases as stiffness decreases. We model site response by defining a generic site amplification curve, which is dependent only on fpeak and soil type. The generic curve enables an estimate of site amplification to be made over the entire frequency band of 0.1 to 50 Hz, knowing just the soil thickness and type. These site amplification curves can be applied in the development of regional GMPEs, and in the construction of

  1. Internal entanglement amplification by external interactions

    SciTech Connect

    Peskin, Uri; Huang Zhen; Kais, Sabre

    2007-07-15

    We propose a scheme to control the level of entanglement between two fixed spin-1/2 systems by interaction with a third particle. For specific designs, entanglement is shown to be 'pumped' into the system from the surroundings even when the spin-spin interaction within the system is small or nonexistent. The effect of the external particle on the system is introduced by including a dynamic spinor in the Hamiltonian. Controlled amplification of the internal entanglement to its maximum value is demonstrated. The possibility of entangling noninteracting spins in a stationary state is also demonstrated by coupling each one of them to a flying qubit in a quantum wire.

  2. Amplification and characterization of eukaryotic structural genes.

    PubMed

    Maniatis, T; Efstratiadis, A; Sim, G K; Kafatos, F

    1978-05-01

    An approach to the study of eukaryotic structural genes which are differentially expressed during development is described. This approach involves the isolation and amplification of mRNA sequences by in vitro conversion of mRNA to double-stranded cDNA followed by molecular cloning in bacterial plasmids. This procedure provides highly specific hybridization probes that can be used to identify genes and their contiguous DNA sequences in genomic DNA, and to detect specific RNA transcripts during development. The nature of the method allows the isolation of individual mRNA sequences from a complex population of molecules at different stages of development.

  3. Bilateral amplification and sound localization: then and now.

    PubMed

    Simon, Helen J

    2005-01-01

    This article is concerned with the evolution and pros and cons of bilateral amplification. Determining whether a bilateral hearing aid fitting is superior to that of a monaural hearing aid is a long-standing question; for this reason, the trend toward bilateral amplification has been slow. However, it is now assumed that bilateral amplification has significant advantages over monaural amplification in most cases, a view that is supported by our localization results. In this article, we will address the advantages of bilateral hearing aids and reveal some new localization data that show that most listeners with bilateral amplification, when tested unaided, as well as normal-hearing listeners manifested very high degrees of symmetry in their judgments of perceived angle while listeners who routinely use monaural amplification and those with asymmetric hearing loss had relatively large asymmetries. These data show that asymmetry in localization judgments is a much more sensitive indicator of abnormal localization ability than the magnitude of localization errors.

  4. Specific replication origins promote DNA amplification in fission yeast.

    PubMed

    Kiang, Lee; Heichinger, Christian; Watt, Stephen; Bähler, Jürg; Nurse, Paul

    2010-09-15

    To ensure equal replication of the genome in every eukaryotic cell cycle, replication origins fire only once each S phase and do not fire after passive replication. Failure in these controls can lead to local amplification, contributing to genome instability and the development of cancer. To identify features of replication origins important for such amplification, we have investigated origin firing and local genome amplification in the presence of excess helicase loaders Cdc18 and Cdt1 in fission yeast. We find that S phase controls are attenuated and coordination of origin firing is lost, resulting in local amplification. Specific origins are necessary for amplification but act only within a permissive chromosomal context. Origins associated with amplification are highly AT-rich, fire efficiently and early during mitotic S phase, and are located in large intergenic regions. We propose that these features predispose replication origins to re-fire within a single S phase, or to remain active after passive replication.

  5. In vitro amplification of H-type atypical bovine spongiform encephalopathy by protein misfolding cyclic amplification

    PubMed Central

    O‘Connor, Matthew J.; Bishop, Keith; Workman, Robert G.; Maddison, Ben C.

    2017-01-01

    ABSTRACT The in vitro amplification of prions by serial protein misfolding cyclic amplification has been shown to detect PrPSc to levels at least as sensitive as rodent bioassay but in a fraction of the time. Bovine spongiform encephalopathy is a zoonotic prion disease in cattle and has been shown to occur in 3 distinct forms, classical BSE (C-BSE) and 2 atypical BSE forms (L-BSE and H-BSE). Atypical forms are usually detected in asymptomatic, older cattle and are suggested to be spontaneous forms of the disease. Here, we show the development of a serial protein misfolding cyclic amplification method for the detection of H-BSE. The assay could detect PrPSc from 3 distinct experimental isolates of H-BSE, could detect PrPSc in as little as 1×10−12 g of brain material and was highly specific. Additionally, the product of serial protein misfolding cyclic amplification at all dilutions of seed analyzed could be readily distinguished from L-BSE, which did not amplify, and C-BSE, which had PrPSc with distinct protease K-resistance and protease K-resistant PrPSc molecular weights. PMID:28281929

  6. Explanatory model for sound amplification in a stethoscope

    NASA Astrophysics Data System (ADS)

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with opportunities to not only better understand the amplification mechanism of a stethoscope, but also to strengthen their understanding of sound, pressure, waves, resonance modes, etc.

  7. Capture and Amplification by Tailing and Switching (CATS). An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA.

    PubMed

    Turchinovich, Andrey; Surowy, Harald; Serva, Andrius; Zapatka, Marc; Lichter, Peter; Burwinkel, Barbara

    2014-01-01

    Massive parallel sequencing (MPS) technologies have paved the way into new areas of research including individualized medicine. However, sequencing of trace amounts of DNA or RNA still remains a major challenge, especially for degraded nucleic acids like circulating DNA. This together with high cost and time requirements impedes many important applications of MPS in medicine and fundamental science. We have established a fast, cheap and highly efficient protocol called 'Capture and Amplification by Tailing and Switching' (CATS) to directly generate ready-to-sequence libraries for MPS from nanogram and picogram quantities of both DNA and RNA. Furthermore, those DNA libraries are strand-specific, can be prepared within 2-3 h and do not require preliminary sample amplification steps. To exemplify the capacity of the technique, we have generated and sequenced DNA libraries from hundred-picogram amounts of circulating nucleic acids isolated from human blood plasma, one nanogram of mRNA-enriched total RNA from cultured cells and few nanograms of bisulfite-converted DNA. The approach for DNA library preparation from minimal and fragmented input described here will find broad application in diverse research areas such as translational medicine including therapy monitoring, prediction, prognosis and early detection of various human disorders and will permit high-throughput DNA sequencing from previously inaccessible material such as minute forensic and archeological samples.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The structural analysis of protein sequences based on the quasi-amino acids code

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Tang, Xu-Qing; Xu, Zhen-Yuan

    2009-01-01

    Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Genome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (Σ, +, *) is introduced, where Σ is the set of 64 codons. According to the characteristics of (Σ, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, ⊕, otimes) is a field. Furthermore, the operational results display that the codon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysica Sinica 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).

  9. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  10. ras gene Amplification and malignant transformation.

    PubMed Central

    Pulciani, S; Santos, E; Long, L K; Sorrentino, V; Barbacid, M

    1985-01-01

    Morphologic transformation of NIH 3T3 mouse cells occurs upon transfection of these cells with large amounts (greater than or equal to 10 micrograms) of recombinant DNA molecules carrying the normal human H-ras-1 proto-oncogene. We provide experimental evidence indicating that transformation of these NIH 3T3 cells results from the combined effect of multiple copies of the H-ras-1 proto-oncogene rather than from spontaneous mutation of one of the transfected H-ras-1 clones (E. Santos, E.P. Reddy, S. Pulciani, R.J. Feldman, and M. Barbacid, Proc. Natl. Acad. Sci. USA 80:4679-4683, 1983). Levels of H-ras-1 RNA and p21 expression are highly elevated in the NIH 3T3 transformants, and in those cases examined, these levels correlate with the malignant properties of these cells. We have also investigated the presence of amplified ras genes in a variety of human carcinomas. In 75 tumor biopsies, we found amplification of the human K-ras-2 locus in one carcinoma of the lung. These results indicate that ras gene amplification is an alternative pathway by which ras genes may participate in the development of human neoplasia. Images PMID:3915535

  11. Induction of gene amplification in Plasmodium falciparum

    SciTech Connect

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  12. A PARAMETER STUDY FOR BAROCLINIC VORTEX AMPLIFICATION

    SciTech Connect

    Raettig, Natalie; Klahr, Hubert; Lyra, Wladimir E-mail: klahr@mpia.de

    2013-03-10

    Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation timescales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as {beta} = -dln s/dln r = 1/2. Values we expect in protoplanetary disks are between {beta} = 0.5-2.0 The amplification-rate of the perturbations, {Gamma}, appears to be proportional to {beta}{sup 2} and thus proportional to the square of the Brunt-Vaeisaelae frequency ({Gamma}{proportional_to}{beta}{sup 2}{proportional_to}N {sup 2}). The saturation level of Reynolds stresses, on the other hand, seems to be proportional to {beta}{sup 1/2}. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.

  13. Experimental noiseless linear amplification using weak measurements

    NASA Astrophysics Data System (ADS)

    Ho, Joseph; Boston, Allen; Palsson, Matthew; Pryde, Geoff

    2016-09-01

    The viability of quantum communication schemes rely on sending quantum states of light over long distances. However, transmission loss can degrade the signal strength, adding noise. Heralded noiseless amplification of a quantum signal can provide a solution by enabling longer direct transmission distances and by enabling entanglement distillation. The central idea of heralded noiseless amplification—a conditional modification of the probability distribution over photon number of an optical quantum state—is suggestive of a parallel with weak measurement: in a weak measurement, learning partial information about an observable leads to a conditional back-action of a commensurate size. Here we experimentally investigate the application of weak, or variable-strength, measurements to the task of heralded amplification, by using a quantum logic gate to weakly couple a small single-optical-mode quantum state (the signal) to an ancilla photon (the meter). The weak measurement is carried out by choosing the measurement basis of the meter photon and, by conditioning on the meter outcomes, the signal is amplified. We characterise the gain of the amplifier as a function of the measurement strength, and use interferometric methods to show that the operation preserves the coherence of the signal.

  14. Improved PCR Amplification of Broad Spectrum GC DNA Templates.

    PubMed

    Guido, Nicholas; Starostina, Elena; Leake, Devin; Saaem, Ishtiaq

    2016-01-01

    Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.

  15. Direct amplification of casework bloodstains using the Promega PowerPlex(®) 21 PCR amplification system.

    PubMed

    Gray, Kerryn; Crowle, Damian; Scott, Pam

    2014-09-01

    A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of

  16. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    PubMed

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min.

  17. Influence of primer & probe chemistry and amplification target on reverse transcription digital PCR quantification of viral RNA.

    PubMed

    Van Heuverswyn, Fran; Karczmarczyk, Maria; Schimmel, Heinz; Trapmann, Stefanie; Emons, Hendrik

    2016-09-01

    Compared to other PCR technologies, digital PCR is a potentially highly accurate approach for the quantification of nucleic acid fragments. This study describes the impact of four experimental factors, namely primer and probe chemistry, PCR amplification target, duplexing, and template type, on the measurement results obtained by reverse transcription digital PCR (RT-dPCR) of viral RNA using influenza A virus as a model. Along conventional dual labelled probes (DLP), alternative primer and probe chemistries, including Zip Nucleic Acids (ZNAs), Locked Nucleic Acids (LNAs), and Scorpions(®), were compared with two RNA template types: i) total genomic RNA extracted from cell cultured influenza A and ii) a synthetically prepared RNA transcript (In vitro transcribed RNA). While apparently duplexing or a different PCR target choice did not have a significant influence on the estimated RNA copy numbers, the impact of the choice of primer and probe chemistry and template type differed significantly for some methods. The combined standard uncertainty of the dPCR analysis results has been assessed, taking into account both the repeatability and the intermediate precision of the procedure. Our data highlight the importance of dPCR method optimisation and the advantage of using a more sophisticated primer and probe chemistry, which turned out to be dependent on the template type. Considerations are provided with respect to the molecular diagnostics of viral RNA pathogens, and more specifically, for precise quantification of RNA, which is of tremendous importance for the development of RNA calibration materials and the qualification of these calibrants as certified reference materials.

  18. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification.

    PubMed

    Zhang, Chunsun; Xing, Da

    2010-02-01

    This study develops a new microfluidic DNA amplification strategy for executing parallel DNA amplification in the microfluidic gradient polymerase chain reaction (MG-PCR) device. The developed temperature gradient microfluidic system is generated by using an innovative fin design. The device mainly consists of modular thermally conductive copper flake which is attached onto a finned aluminum heat sink with a small fan. In our microfluidic temperature gradient prototype, a non-linear temperature gradient is produced along the gradient direction. On the copper flake of length 45 mm, width 40 mm and thickness 4 mm, the temperature gradient easily spans the range from 97 to 52 degrees Celsius. By making full use of the hot (90-97 degrees Celsius) and cold (60-70 degrees Celsius) regions on the temperature gradient device, the parallel, two-temperature MG-PCR amplification is feasible. As a demonstration, the MG-PCR from three parallel reactions of 112-bp Escherichia coli DNA fragment is performed in a continuous-flow format, in which the flow of the PCR reagent in the closed loop is induced by the buoyancy-driven nature convection. Although the prototype is not optimized, the MG-PCR amplification can be completed in less than 45 min. However, the MG-PCR thermocycler presented herein can be further scaled-down, and thus the amplification times and reagent consumption can be further reduced. In addition, the currently developed temperature gradient technology can be applied onto other continuous-flow MG-PCR systems or used for other analytical purposes such as parallel and combination measurements, and fluorescent melting curve analysis.

  19. Exonuclease III-Assisted Target Recycling Amplification Coupled with Liposome-Assisted Amplification: One-Step and Dual-Amplification Strategy for Highly Sensitive Fluorescence Detection of DNA.

    PubMed

    Zhou, Fulin; Li, Baoxin

    2015-07-21

    Detection of ultralow concentration of specific DNA sequence is a central challenge in the early diagnosis of gene-related disease and biodefense application. Herein, we report a dual-amplification strategy for highly sensitive fluorescence detection of DNA. In this proposed strategy, a dumbbell-shaped DNA probe is designed to integrate target binding, magnetic separation, and signal response. In the presence of specific DNA target, the multifunctional dumbbell probe can initiate exonuclease III (Exo III)-aided target recycling amplification, and, in the meantime, generate a large number of fluorescein (FAM)-encapsulated liposomes. The developed method offers very high sensitivity due to primary amplification via numerous FAM from a liposome and secondary amplification via target recycling amplification. The detection limit of the proposed method can reach 4 aM, which is much lower than that of the Exo III-aided target recycling technique applied for DNA quantification without FAM-encapsulated liposomes amplification. Moreover, the dual-signal amplification process can be completed one-step in this system. Therefore, this method provides a simple, isothermal, and low-cost approach for sensitive detection of DNA and holds a great potential for early diagnosis in gene-related diseases.

  20. 1,3-Propanediol Made From Fermentation-Derived Malonic Acid: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    SciTech Connect

    Carde, T.

    2001-09-12

    1,3-Propanediol is one of two ingredients used in producing polytrimethylene terephthalate (PTT), a polymer which can be used in polyester and nylon applications. Researchers are developing a process to ferment biomass feedstock to malonic acid using filamentous fungi and then catalytically convert malonic acid to 1,3-propanediol.

  1. Microgel Tethering For Microarray-Based Nucleic Acid Diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoguang

    Molecular diagnostics (MDx) have radically changed the process of clinical microbial identification based on identifying genetic information, MDx approaches are both specific and fast. They can identify microbes to the species and strain level over a time scale that can be as short as one hour. With such information clinicians can administer the most effective and appropriate antimicrobial treatment at an early time point with substantial implications both for patient well-being and for easing the burden on the health-care system. Among the different MDx approaches, such as fluorescence in-situ hybridization, microarrays, next-generation sequencing, and mass spectrometry, point-of-care MDx platforms are drawing particular interest due to their low cost, robustness, and wide application. This dissertation develops a novel MDx technology platform capable of high target amplification and detection performance. For nucleic acid target detection, we fabricate an array of electron-beam-patterned microgels on a standard glass microscope slide. The microgels can be as small as a few hundred nanometers. The unique way of energy deposition during electron-beam lithography provides the microgels with a very diffuse water -gel interface that enables them to not only serve as substrates to immobilize DNA probes but do so while preserving them in a highly hydrated environment that optimizes their performance. Benefiting from the high spatial resolution provided by such techniques as position-sensitive microspotting and dip-pen nanolithography, multiple oligonucleotide probes known as molecular beacons (MBs) can be patterned on microgels. Furthermore, nucleic acid target amplification can be conducted in direct contact with the microgel-tethered detection array. Specifically, we use an isothermal RNA amplification reaction - nucleic acid sequence-based amplification (NASBA). ssRNA amplicons of from the NASBA reaction can directly hybridize with microgel-tethered MBs, and the

  2. Acid mine drainage prevention, control and treatment technology development for the Stockett/Sand Coulee area. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Brown, T.

    1996-12-31

    The project was initiated to assist the State of Montana to develop a methodology to ameliorate acid mine drainage problems associated with the abandoned mines located in the Stockett/Sand Coulee area near Great Falls, Montana. Extremely acidic water is continuously discharging from abandoned coal mines in the Stockett/Sand Coulee area at an estimated rate of greater than 600 acre-feet per year (about 350 to 400 gallons per minute). Due to its extreme acidity, the water is unusable and is contaminating other water supplies. Most of the local alluvial aquifers have been contaminated, and nearly 5% of the private wells that were tested in the area during the mid-1980`s showed some degree of contamination. Significant government money has been spent replacing water supplies due to the magnitude of this problem. In addition, millions of dollars have been spent trying to remediate acid mine drainage occurring in this coal field. To date, the techniques used have focused on the management and containment of mine waters, rather than designing technologies that would prevent the formation of acid mine drainage.

  3. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate.

    PubMed

    Song, Weiling; Zhang, Qiao; Xie, Xuxu; Zhang, Shusheng

    2014-11-15

    In this work, isothermal circular strand-displacement polymerization amplification assay is developed for highly specific and sensitive detection of adenosine triphosphate (ATP). The amplification process consists of circular common target molecule-displacement polymerization (CCDP) and circular nucleic acid strand-displacement polymerization (CNDP). In the presence of ATP, the complementary strand was released from the aptamer by the target recognition of ATP, and catalyzed the subsequent cycle reaction. With the polymerase and primer, the displaced target triggers the process of CCDP. With the involvement of nicking endonuclease, the released complementary strand triggers the CNDP. Combined CCDP with CNDP, the exponentially produced fluorescence probes are obtained, achieving a detection limit of ATP as low as 2.6 × 10(-10)M. Moreover, the proposed strategy exhibits an excellent specificity and is successfully applied in real sample assay which demonstrates potential application in practical samples.

  4. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    NASA Astrophysics Data System (ADS)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  5. Amplification of chirality through self-replication of micellar aggregates in water.

    PubMed

    Bukhryakov, Konstantin V; Almahdali, Sarah; Rodionov, Valentin O

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities.

  6. Coordinated movement of the three rows of outer hair cells is essential for cochlear amplification

    NASA Astrophysics Data System (ADS)

    Murakoshi, Michio; Suzuki, Sho; Wada, Hiroshi

    2015-12-01

    The process known as cochlear amplification is realized by coordinated movement of the outer hair cells (OHCs) in response to changes in their membrane potential. In this process, the displacement amplitude of the basilar membrane (BM) is thought to be increased, thereby leading to the high sensitivity, wide dynamic range and sharp frequency selectivity of our hearing. Unfortunately, however, OHCs are vulnerable to noise exposure, ototoxic acid, aging and so on. Previous studies have shown that exposure to intense noise causes functional loss of OHCs from the innermost row (i.e., close to the modiolus) to the outermost row (i.e., close to the cochlear wall). On the contrary, by other traumatic stimuli such as ototoxic acid, aging and ischemia, such loss of OHCs has been reported to occur from the outermost row toward the innermost row. However, how the cochlear amplification changes when coordinated movement of OHCs is impaired, that is when the OHCs in one, two or all three rows have become dysfunctional, remains unclear. In the present study, therefore, a finite element (FE) model of the gerbil cochlea, which takes the motility of OHCs into account, was developed based on our previous FE model. Using this model, changes in the displacement amplitude of the BM due to the functional loss of OHCs in one, two or all three rows were investigated and the effects of incoordination of the three rows of OHCs on cochlear amplification were estimated. Results showed that the displacement amplitude of the BM significantly decreased when either the innermost row or the outermost row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  7. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  8. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip.

    PubMed

    Sun, Yi; Kwok, Yien-Chian; Foo-Peng Lee, Peter; Nguyen, Nam-Trung

    2009-07-01

    The use of genetically modified organisms (GMOs) as food and in food products is becoming more and more widespread. Polymerase chain reaction (PCR) technology is extensively used for the detection of GMOs in food products in order to verify compliance with labeling requirements. In this paper, we present a novel close-loop ferrofluid-driven PCR microchip for rapid amplification of GMOs. The microchip was fabricated in polymethyl methacrylate by CO2 laser ablation and was integrated with three temperature zones. PCR solution was contained in a circular closed microchannel and was driven by magnetic force generated by an external magnet through a small oil-based ferrofluid plug. Successful amplification of genetically modified soya and maize were achieved in less than 13 min. This PCR microchip combines advantages of cycling flexibility and quick temperature transitions associated with two existing microchip PCR techniques, and it provides a cost saving and less time-consuming way to conduct preliminary screening of GMOs.

  9. Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses

    PubMed Central

    Yu, Young-Sang; Han, Dong-Soo; Yoo, Myoung-Woo; Lee, Ki-Suk; Choi, Youn-Seok; Jung, Hyunsung; Lee, Jehyun; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2013-01-01

    Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to ~ 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices. PMID:23416729

  10. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.

    PubMed

    Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie

    2013-10-03

    Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered.

  11. Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses.

    PubMed

    Yu, Young-Sang; Han, Dong-Soo; Yoo, Myoung-Woo; Lee, Ki-Suk; Choi, Youn-Seok; Jung, Hyunsung; Lee, Jehyun; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2013-01-01

    Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to ~ 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.

  12. Final Technical Report "Study of Efficiency of Raman Backscattering Amplification in Plasma"

    SciTech Connect

    Suckewer, Szymon

    2014-03-31

    General : Our major scientific achievements in Raman Backscattering (RBS) amplification and compression of short laser pulses in plasma. The laser system based on RBS steps in where the current technology of chirped pulse amplification (CPA) (extremely successful in developing ultra-short and ultra-intense laser pulses in last 2 decades) becomes difficult and very expensive to apply. Good base for such RBS laser was created by our recent experiments, which were supported by GPS grants. The main objective of the present grant was: improvement efficiency of energy transfer from pump to seed. The results surpassed our expectations; we improved the efficiency of energy transfer from pump to seed by a factor of 6 compared to the best of our previous results and amplified seed pulse compressed down to about 50 fsec.

  13. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels

    SciTech Connect

    Deutsch, D.; Ekert, A.; Jozsa, R.; Macchiavello, C.; Popescu, S.; Sanpera, A. ||

    1996-09-01

    Existing quantum cryptographic schemes are not, as they stand, operable in the presence of noise on the quantum communication channel. Although they become operable if they are supplemented by classical privacy-amplification techniques, the resulting schemes are difficult to analyze and have not been proved secure. We introduce the concept of quantum privacy amplification and a cryptographic scheme incorporating it which is provably secure over a noisy channel. The scheme uses an {open_quote}{open_quote}entanglement purification{close_quote}{close_quote} procedure which, because it requires only a few quantum controlled-not and single-qubit operations, could be implemented using technology that is currently being developed. {copyright} {ital 1996 The American Physical Society.}

  14. Parametric amplification of a superconducting plasma wave

    NASA Astrophysics Data System (ADS)

    Rajasekaran, S.; Casandruc, E.; Laplace, Y.; Nicoletti, D.; Gu, G. D.; Clark, S. R.; Jaksch, D.; Cavalleri, A.

    2016-11-01

    Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor-metal oscillations and soliton formation. Here, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.

  15. Control and amplification of cortical neurodynamics

    NASA Astrophysics Data System (ADS)

    Liljenstroem, Hans; Aronsson, P.

    1999-03-01

    We investigate different mechanisms for the control and amplification of cortical neurodynamics, using a neural network model of a three layered cortical structure. We show that different dynamical states can be obtained by changing a control parameter of the input-output relation, or by changing the noise level. Point attractor, limit cycle, and strange attractor dynamics occur at different values of the control parameter. For certain, optimal noise levels, system performance is maximized, analogous to stochastic resonance phenomena. Noise can also be used to induce different dynamical states. A few noisy network units distributed in a network layer can result in global synchronous oscillations, or waves of activity moving across the network. We further demonstrate that fast synchronization of network activity can be obtained by implementing electromagnetic interactions between network units.

  16. Parametric amplification of a superconducting plasma wave

    SciTech Connect

    Rajasekaran, S.; Casandruc, E.; Laplace, Y.; Nicoletti, D.; Gu, G. D.; Clark, S. R.; Jaksch, D.; Cavalleri, A.

    2016-07-11

    Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.

  17. Parametric amplification by coupled flux qubits

    SciTech Connect

    Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Meyer, H.-G.; Il'ichev, E.

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  18. Optimizing biased semiconductor superlattices for terahertz amplification

    SciTech Connect

    Lei, Xiaoli; Wang, Dawei; Wu, Zhaoxin; Dignam, M. M.

    2014-08-11

    Over the past 15 yr or more, researchers have been trying to achieve gain for electromagnetic fields in the terahertz frequency region using biased semiconductor superlattices, but with little success. In this work, we employ our model of the excitonic states in biased GaAs/Al{sub 0.3}Ga{sub 0.7}As semiconductor superlattices to find the optimal structures for amplification of terahertz radiation. In particular, we determine the optimum well width, barrier width, and bias field for terahertz fields with frequencies ranging from 1 to 4 terahertz. We find that gain coefficients on the order of 40 cm{sup −1} should be achievable over most of this frequency range.

  19. Amplification sans bruit d'images optiques

    NASA Astrophysics Data System (ADS)

    Gigan, S.; Delaubert, V.; Lopez, L.; Treps, N.; Maitre, A.; Fabre, C.

    2004-11-01

    Nous utilisons un Oscillateur Paramétrique Optique (OPO) pompé sous le seuil dans le but d'amplifier une image multimode transverse sans dégradation du rapport signal à bruit. Le dispositif expérimental met en œuvre un OPO de type II triplement résonant et semi-confocal pour le faisceau amplifié. L'existence d'effets quantiques lors de l'amplification multimode dans un tel dispositif a été montrée expérimentalement. Plus généralement, ceci nous a amené à étudier les propriétés quantiques transverses des faisceaux lumineux amplifiés. Une telle étude peut trouver des applications non seulement en imagerie, mais également dans le traitement quantique de l'information.

  20. Dispersion compensation in chirped pulse amplification systems

    DOEpatents

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  1. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  2. Mechanisms of Gene Duplication and Amplification

    PubMed Central

    Reams, Andrew B.; Roth, John R.

    2015-01-01

    Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number. PMID:25646380

  3. Parametric amplification of a superconducting plasma wave

    DOE PAGES

    Rajasekaran, S.; Casandruc, E.; Laplace, Y.; ...

    2016-07-11

    Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitivemore » to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.« less

  4. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders.

    PubMed

    Celia, Christian; Cilurzo, Felisa; Trapasso, Elena; Cosco, Donato; Fresta, Massimo; Paolino, Donatella

    2012-02-01

    Two vesicular colloidal carriers, ethosomes® and transfersomes® were proposed for the topical delivery of linoleic acid, an active compound used in the therapeutic treatment of hyperpigmentation disorders, i.e. melasma, which is characterized by an increase of the melanin production in the epidermis. Dynamic light scattering was used for the physicochemical characterization of vesicles and mean size, size distribution and zeta potential were evaluated. The stability of formulations was also evaluated using the Turbiscan Lab® Expert based on the analysis of sample transmittance and photon backscattering. Ethosomes® and transfersomes® were prepared using Phospholipon 100 G®, as the lecithin component, and ethanol and sodium cholate, as edge activator agents, respectively. Linoleic acid at 0.05% and 0.1% (w/v) was used as the active ingredient and entrapped in colloidal vesicles. Technological parameters, i.e. entrapment efficacy, drug release and permeation profiles, were also investigated. Experimental findings showed that physicochemical and technological features of ethosomes® and transfersomes® were influenced by the lipid composition of the carriers. The percutaneous permeation experiments of linoleic acid-loaded ethosomes® and transfersomes® through human stratum corneum-epidermidis membranes showed that both carriers are accumulated in the skin membrane model as a function of their lipid compositions. The findings reported in this investigation showed that both vesicular carriers could represent a potential system for the topical treatment of hyperpigmentation disorders.

  5. Amplification of seismic waves by the Seattle basin, Washington State

    USGS Publications Warehouse

    Pratt, T.L.; Brocher, T.M.; Weaver, C.S.; Creager, K.C.; Snelson, C.M.; Crosson, R.S.; Miller, K.C.; Trehu, A.M.

    2003-01-01

    Recordings of the 1999 Mw 7.6 Chi-Chi (Taiwan) earthquake, two local earthquakes, and five blasts show seismic-wave amplification over a large sedimentary basin in the U.S. Pacific Northwest. For weak ground motions from the Chi-Chi earthquake, the Seattle basin amplified 0.2- to 0.8-Hz waves by factors of 8 to 16 relative to bedrock sites west of the basin. The amplification and peak frequency change during the Chi-Chi coda: the initial S-wave arrivals (0-30 sec) had maximum amplifications of 12 at 0.5-0.8 Hz, whereas later arrivals (35-65 sec) reached amplifications of 16 at 0.3-0.5 Hz. Analysis of local events in the 1.0- to 10.0-Hz frequency range show fourfold amplifications for 1.0-Hz weak ground motion over the Seattle basin. Amplifications decrease as frequencies increase above 1.0 Hz, with frequencies above 7 Hz showing lower amplitudes over the basin than at bedrock sites. Modeling shows that resonance in low-impedance deposits forming the upper 550 m of the basin beneath our profile could cause most of the observed amplification, and the larger amplification at later arrival times suggests surface waves also play a substantial role. These results emphasize the importance of shallow deposits in determining ground motions over large basins.

  6. Unilateral versus bilateral amplification for adults with impaired hearing.

    PubMed

    Walden, Therese C; Walden, Brian E

    2005-09-01

    This study compared unilateral and bilateral aided speech recognition in background noise in 28 patients being fitted with amplification. Aided QuickSIN (Quick Speech-in-Noise test) scores were obtained for bilateral amplification and for unilateral amplification in each ear. In addition, right-ear directed and left-ear directed recall on the Dichotic Digits Test (DDT) was obtained from each participant. Results revealed that the vast majority of patients obtained better speech recognition in background noise on the QuickSIN from unilateral amplification than from bilateral amplification. There was a greater tendency for bilateral amplification to have a deleterious effect among older patients. Most frequently, better aided QuickSIN performance was obtained in the right ear of participants, despite similar hearing thresholds in both ears. Finally, patients tended to perform better on the DDT in the ear that provided less SNR loss on the QuickSIN. Results suggest that bilateral amplification may not always be beneficial in every daily listening environment when background noise is present, and it may be advisable for patients wearing bilateral amplification to remove one hearing aid when difficulty is encountered understanding speech in background noise.

  7. Explanatory Model for Sound Amplification in a Stethoscope

    ERIC Educational Resources Information Center

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  8. Emerging Technologies for the Clinical Microbiology Laboratory

    PubMed Central

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  9. Mutualism Breakdown by Amplification of Wolbachia Genes

    PubMed Central

    Chrostek, Ewa; Teixeira, Luis

    2015-01-01

    Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, Wolbachia wMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on

  10. Mutualism breakdown by amplification of Wolbachia genes.

    PubMed

    Chrostek, Ewa; Teixeira, Luis

    2015-02-01

    Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, Wolbachia wMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on

  11. Topographical and geological amplification: case studies and engineering implications

    USGS Publications Warehouse

    Celebi, M.

    1991-01-01

    Topographical and geological amplification that occurred during past earthquakes are quantified using spectral ratios of recorded motions. Several cases are presented from the 1985 Chilean and Mexican earthquakes as well as the 1983 Coalinga (California) and 1987 Supersition Hills (California) earthquake. The strong motions recorded in Mexico City during the 1985 Michoacan earthquake are supplemented by ambient motions recorded within Mexico City to quantify the now well known resonating frequencies of the Mexico City lakebed. Topographical amplification in Canal Beagle (Chile), Coalinga and Superstition Hills (California) are quantified using the ratios derived from the aftershocks following the earthquakes. A special dense array was deployed to record the aftershocks in each case. The implications of both geological and topographical amplification are discussed in light of current code provisions. The observed geological amplifications has already influenced the code provisions. Suggestions are made to the effect that the codes should include further provisions to take the amplification due to topography into account. ?? 1991.

  12. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis

    PubMed Central

    2014-01-01

    Background Nucleic acid amplification is the most sensitive and specific method to detect Plasmodium falciparum. However the polymerase chain reaction remains laboratory-based and has to be conducted by trained personnel. Furthermore, the power dependency for the thermocycling process and the costly equipment necessary for the read-out are difficult to cover in resource-limited settings. This study aims to develop and evaluate a combination of isothermal nucleic acid amplification and simple lateral flow dipstick detection of the malaria parasite for point-of-care testing. Methods A specific fragment of the 18S rRNA gene of P. falciparum was amplified in 10 min at a constant 38°C using the isothermal recombinase polymerase amplification (RPA) method. With a unique probe system added to the reaction solution, the amplification product can be visualized on a simple lateral flow strip without further labelling. The combination of these methods was tested for sensitivity and specificity with various Plasmodium and other protozoa/bacterial strains, as well as with human DNA. Additional investigations were conducted to analyse the temperature optimum, reaction speed and robustness of this assay. Results The lateral flow RPA (LF-RPA) assay exhibited a high sensitivity and specificity. Experiments confirmed a detection limit as low as 100 fg of genomic P. falciparum DNA, corresponding to a sensitivity of approximately four parasites per reaction. All investigated P. falciparum strains (n = 77) were positively tested while all of the total 11 non-Plasmodium samples, showed a negative test result. The enzymatic reaction can be conducted under a broad range of conditions from 30-45°C with high inhibitory concentration of known PCR inhibitors. A time to result of 15 min from start of the reaction to read-out was determined. Conclusions Combining the isothermal RPA and the lateral flow detection is an approach to improve molecular diagnostic for P. falciparum in

  13. Amplification and re-generation of LNA-modified libraries.

    PubMed

    Doessing, Holger; Hansen, Lykke H; Veedu, Rakesh N; Wengel, Jesper; Vester, Birte

    2012-11-05

    Locked nucleic acids (LNA) confer high thermal stability and nuclease resistance to oligonucleotides. The discovery of polymerases that accept LNA triphosphates has led us to propose a scheme for the amplification and re-generation of LNA-containing oligonucleotide libraries. Such libraries could be used for in vitro selection of e.g., native LNA aptamers. We maintained an oligonucleotide library encoding 40 randomized positions with LNA ATP, GTP, CTP, and TTP for 7 rounds of ‘mock’ in vitro selection in the absence of a target and analyzed the sequence composition after rounds 1, 4 and 7. We observed a decrease in LNA-A content from 20.5% in round 1 to 6.6% in round 7. This decrease was accompanied by a substantial bias against successive LNA-As (poly-LNA adenosine tracts) and a relative over-representation of single LNA-As. Maintaining a library with LNA TTP yielded similar results. Together, these results suggest that dispersed LNA monomers are tolerated in our in vitro selection protocol, and that LNA-modified libraries can be sustained for up to at least seven selection rounds, albeit at reduced levels. This enables the discovery of native LNA aptamers and similar oligonucleotide structures.

  14. Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR): a simple method for suppressing PCR amplification of specific DNA sequences using ORNs.

    PubMed

    Tanigawa, Naoki; Fujita, Toshitsugu; Fujii, Hodaka

    2014-01-01

    Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences without affecting amplification of control sequences lacking complementarity to the ORNs. ORNs were effective at very low concentrations, with IC50 values for ORN-mediated suppression on the order of 10 nM. DNA polymerases that retain 3'-5' exonuclease activity, such as KOD and Pfu polymerases, but not those that retain 5'-3' exonuclease activity, such as Taq polymerase, could be used for ORN-mediated suppression. ORN interference-PCR (ORNi-PCR) technology should be a useful tool for both molecular biology research and clinical diagnosis.

  15. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  16. Use of Peltier effect for small signal amplification and conversion

    NASA Astrophysics Data System (ADS)

    Ageyev, Y. I.; Akperov, M. M.; Kobakhidze, K. Z.; Nebuchinov, M. V.

    1984-04-01

    It is possible to use thermocouples operating as heat pumps with small temperature gradients to effect the control of elements whose properties are temperature dependent. This enables the construction of a number of electrical and optical signal transducers. The cooling or heating gain of a thermocouple used as a heat pump is proportional to the ratio of the cold or hot junction temperature to the temperature drop across the thermocouple. As this temperature gradient becomes quite small, the efficiency of such converters theoretically rises without limit. Under these conditions, the thermocouple can control any device whose properties change sharply in a narrow temperature range. Simple circuits for small signal amplification, frequency conversion, and detection were discussed. The gain of one such amplifier was plotted as a function of the input signal using various metal-semiconductor phase transition devices; the detection gain was plotted as a function of the input signal for a posistor and a metal-semiconductor phase transition device. Gains on the order of 100 and more were obtained with the latter. While such devices have the advantage of electrically isolating the input from the output, the speed is governed primarily by the rate of the thermal processes and is approximately inversely proportional to the square of thermocouple branch length. The speed is presently limited to tens of milliseconds, though with the transition to film technology, it may increase by a few orders of magnitude.

  17. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification.

    PubMed

    Thompson, Robyn E; Duncan, George; McCord, Bruce R

    2014-11-01

    A common problem in forensic DNA typing is PCR inhibition resulting in allele dropout and peak imbalance. In this paper, we have utilized the Plexor(®) real-time PCR quantification kit to evaluate PCR inhibition. This is performed by adding increasing concentrations of various inhibitors and evaluating changes in melt curves and PCR amplification efficiencies. Inhibitors examined included calcium, humic acid, collagen, phenol, tannic acid, hematin, melanin, urea, bile salts, EDTA, and guanidinium thiocyanate. Results were plotted and modeled using mathematical simulations. In general, we found that PCR inhibitors that bind DNA affect melt curves and CT takeoff points while those that affect the Taq polymerase tend to affect the slope of the amplification curve. Mixed mode effects were also visible. Quantitative PCR results were then compared with subsequent STR amplification using the PowerPlex(®) 16 HS System. The overall results demonstrate that real-time PCR can be an effective method to evaluate PCR inhibition and predict its effects on subsequent STR amplifications.

  18. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  19. Design of acid-lead battery stage-of-charge detection system based on refractive index detection technology

    NASA Astrophysics Data System (ADS)

    Chen, Junyao; Yang, Kecheng; Xia, Min; Li, Lei; Zeng, Xianjiang

    2015-10-01

    Based on optical total reflection critical Angle method, we have designed a refractive index measurement system. It adopted a divergent light source and a CCD camera as the occurrence and receiver of the signal. The divergent light source sent out a bunch of tapered beam, exposure to the interface of optical medium and sulfuric acid solution. Light intensity reflected from the interface could be detected by the CCD camera and then sent to the embedded system. In the DSP embedded system, we could obtain the critical edge position through the light intensity distribution curve and converted it to critical angle. Through experiment, we concluded the relation between liquid refractive index and the critical angle edge position. In this system, the detecting precision of the refractive index of sulfuric acid solution reached 10-4. Finally, through the conversion of the refractive index and density, we achieved high accuracy online measurement of electrolyte density in lead-acid battery.

  20. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enterovirus nucleic acid assay. 866.3225 Section... nucleic acid assay. (a) Identification. An enterovirus nucleic acid assay is a device that consists of... Special Controls Guidance Document: Nucleic Acid Amplification Assay for the Detection of Enterovirus...