Science.gov

Sample records for acid anhydride copolymer

  1. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  2. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  3. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  4. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  5. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  6. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  7. Biodegradable polymers derived from renewable resources: Highly branched copolymers of itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Wallach, Joshua Andrew

    In an effort to design cyclic anhydride containing polymers that are derived from renewable resources and have biodegradable characteristics, three copolymer systems using itaconic anhydride have been studied. Two of the systems were copolymers with stearate based monomers; vinyl stearate and stearyl methacrylate, while the third was a copolymer with a methacrylate terminated poly (lactic acid) (PLA) macromonomer. For the stearate systems, stearyl methacrylate showed good copolymerization with equal conversions for both monomers. On the other hand vinyl stearate did not show as good results due to its decreased reactivity, which resulted in a copolymer highly enriched in itaconic anhydride with significant amounts of unreacted vinyl stearate under all copolymer compositions. These differing results were confirmed through analysis of reactivity ratios showing a results that are more favorable for copolymerization for the methacrylate system. Copolymers from both systems showed single melting transitions in a precarious range of 45--50°C arising from the stearyl side groups, though after quenching from the melt this shifted to below room temperature. Anhydride retention was confirmed through structural analysis. Similar to the stearyl methacrylate system, methacrylate terminated PLA macromonomers were copolymerized with itaconic anhydride. PLA's acceptance as a biodegradable material derived from renewable resources, make it a viable choice, with which to design anhydride containing copolymers. Good copolymerization was shown for all compositions studied with retention of the anhydride, though at high itaconic anhydride concentrations conversions were reduced significantly. Copolymers showed glass transition temperatures ranging from 32°C for 85 mole % PLA macromonomer to 73°C for 85 mole % itaconic anhydride. An effort to produce PLA macromonomers through a process of chemical recycling commercial PLA was also undertaken. Promising results were obtained showing

  8. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... articles that contact food of Types I, II, III, IV-A, IV-B, V, VI-B (except carbonated beverages), VII-A... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  9. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated...

  10. The application of Fourier transform Raman spectroscopy to the analysis of poly(anhydride) homo- and co-polymers

    NASA Astrophysics Data System (ADS)

    Tudor, A. M.; Melia, C. D.; Davies, M. C.; Hendra, P. J.; Church, S.; Domb, A. J.; Langer, R.

    Fourier transform Raman spectroscopy was used to characterise a homologous series of aliphatic poly(anhydrides), poly[ bis( p-carboxyphenoxy) alkane anhydrides] and a selection of co-polymers of sebacic/ [bis( p-carboxyphenoxy) propane anhydride] P(SA-CPP). The techniqe is compared to conventional infrared for characterisation work, highlighting the advantage of small sample requirement and minimal sample preparation necessary for acquisition of spectral information. It is possible to differentiate between aromatic and aliphatic anhydride bonding, and in conjunction with other diagnostic bands to monitor the change in individual monomer composition within a co-polymer mixture.

  11. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  12. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides

    SciTech Connect

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.

    1996-07-12

    Scandium triflate catalyzes the acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The catalytic activity of the scandium triflates is found to be quite high allowing the acylation of secondary and tertiary alcohols.

  13. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  14. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  15. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  16. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers.

  17. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  18. Preparation and in vitro evaluation of novel poly(anhydride-ester)-based amphiphilic copolymer curcumin-loaded micelles.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Min; Guo, Shengrong; Huang, Shengtang

    2014-02-01

    Novel poly(anhydride-ester)-b-poly(ethylene glycol) copolymers (PAE-b-PEGs) were synthesized by esterization of methyl poly(ethylene glycol) and poly(anhydride-ester), which were obtained by the melt polycondensation of alpha,omega-acetic anhydride-terminated poly(L-lactic acid), and characterized by 1H-NMR and gel permeation chromatography. The two poly(anhydride-ester)-b-poly(ethylene glycols) (denoted as PAE-b-PEG2k and PAE-b-PEG5k) thus obtained can self-assemble in water to form micelles with hydrodynamic diameters of 92.5 and 97.5 nm above their critical micelle concentrations of 3.78 and 2.36 microg/mL, respectively. The curcumin-loaded PAE-b-PEG2k and PAE-b-PEG5k micelles were prepared by the solid dispersion method, and they could encapsulate approximately 7% (w/w) curcumin. The diameters of the micelles were stable for 5 days. Curcumin is released faster from the micelles at pH 5.0 than at pH 7.4. Curcumin is released from the micelles at a fast rate during the initial 12 h, followed by a zero-order release during the subsequent 200 h, both at pH 5.0 and 7.4. The IC50 values of the curcumin-loaded PAE-b-PEG2k and PAE-b-PEG5k micelles against HeLa cells are 12.41 and 15.31 microg/mL, respectively, which is lower than that of free curcumin (25.90 microg/mL). The PAE-b-PEG2k micelles are taken up faster than the PAE-b-PEG5k micelles by HeLa cells. Curcumin-loaded micelles can induce G2/M phase cell cycle arrest and apoptosis of HeLa cells.

  19. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  20. Functionalization of poly(dimethylsiloxane) surfaces with maleic anhydride copolymer films.

    PubMed

    Cordeiro, Ana L; Zschoche, Stefan; Janke, Andreas; Nitschke, Mirko; Werner, Carsten

    2009-02-01

    Combining advantageous bulk properties of polymeric materials with surface-selective chemical conversions is required in numerous advanced technologies. For that aim, we investigate strategies to graft maleic anhydride (MA) copolymer films onto poly(dimethylsiloxane) (PDMS) precoatings. Amino groups allowing the covalent attachment of the MA copolymer films to the PDMS (Sylgard 184) surface were introduced either by low-pressure ammonia plasma treatment, or by attachment of 3-aminopropyltriethoxysilane (APTES) onto air plasma-treated PDMS. The resultant coatings were extensively characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurements, and atomic force microscopy (AFM). The results show that the impact of the plasma treatment on the physical properties on the topmost surface of the PDMS is critically important for the characteristics of the layered coatings.

  1. Immobilization of saccharides and peptides on 96-well microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer.

    PubMed

    Satoh, A; Kojima, K; Koyama, T; Ogawa, H; Matsumoto, I

    1998-06-15

    We have previously reported a method to immobilize protein ligands on microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer (MMAC) [Isosaki, K., et al. (1992) J. Chromatogr. 597, 123-128]. In this study, we improved the MMAC method to efficiently immobilize not only small ligands such as peptides and oligosaccharides, which could not be efficiently immobilized previously, but also heparin via its reducing end. Amino and hydrazino groups were introduced to MMAC-coated microtiter plate wells by coupling to acid anhydride groups of MMAC with 1,6-hexamethylenediamine and adipic acid dihydrazide, respectively. The amino groups introduced were allowed to react with peptides by use of divalent cross-linkers. Hydrazino groups were allowed to react with formyl groups of saccharides by reductive amination. Peptides and oligosaccharides were immobilized in a dose-dependent manner by these methods. In the case of the angiotensin peptide thus immobilized, the detection limit by monoclonal antibodies was as low as 0.1-1 fmol peptide per well. Application of 20-200 nmol oligosaccharides to the well was sufficient to immobilize and subsequently detect lectins. Furthermore, heparin immobilized on the hydrazinocoated wells was successfully used for the binding assay of annexin IV. PMID:9648659

  2. Comparison of acid anhydrides with carboxylic acids in enantioselective enzymatic esterification of racemic menthol.

    PubMed

    Xu, J; Zhu, J; Kawamoto, T; Atsuo, T; Hu, Y

    1997-01-01

    Optical resolution of racemic menthol has been efficiently achieved by lipase-catalyzed enantioselective esterification in an organic solvent. The performance of the reaction using an acid anhydride as an acyl donor was compared with that using its corresponding free acid. The reactivities of acid anhydrides were found to be higher than their corresponding free acids, but acid anhydrides were also found to be easily hydrolyzed into free acids under the catalysis of the same enzyme. The existence of a too-high concentration of an acid anhydride in a micro-aqueous reaction system will cause dehydration and thus deactivation of the enzyme, and will enhance non-selective esterification of a chiral alcohol, which will reduce the optical purity of the product. All these drawbacks, however, could be effectively overcome in a semi-batch reaction system into which propionic anhydride was continuously fed. This system showed some advantages over a batch reaction system using free propionic acid: the reaction time of dl-menthol was shortened by half, the stability of the enzyme was much enhanced, and the optical purity of the product (l-menthyl ester) was kept at a similarly high level (> 98% ee). PMID:9631262

  3. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  4. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    NASA Astrophysics Data System (ADS)

    Klinpituksa, P.; Kongkalai, P.; Kaesaman, A.

    2014-08-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin.

  5. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  6. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by (1)H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  7. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  8. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  9. Alternating Poly(ester-anhydride) by Insertion Polycondensation.

    PubMed

    Haim-Zada, Moran; Basu, Arijit; Hagigit, Tal; Schlinger, Ron; Grishko, Michael; Kraminsky, Alexander; Hanuka, Ezra; Domb, Abraham J

    2016-06-13

    We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature. PMID:27198864

  10. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  11. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  12. Olefin-maleic-anhydride copolymer based additives: a novel approach for compatibilizing blends of waste polyethylene and crumb rubber.

    PubMed

    Tóth, Balázs; Varga, Csilla; Bartha, László

    2015-04-01

    In our work processing conditions and mechanical properties of waste polyethylene (PE)/crumb rubber (CR) blends have been improved by new types of compatibilizing additives synthesized from experimental olefin-maleic-anhydride copolymers at our laboratory. Compatibilizing additives have been introduced into the PE/CR blends in 0.2 wt% while CR concentration has been varied between 10 and 50 wt%. For comparison of the effects commercially available MA-g-PO type compatibilizing additives have also been applied. Tensile and Charpy impact tests of the compression moulded samples have been carried out. Several experimental additives have enhanced properties of the PE/CR blends either from the point of view of tensile or Charpy impact strength while commercial additives have had improving effects only on one of the abovementioned mechanical properties but not for both of them simultaneously. Since good mechanical properties could be achieved by our experimental compatibilizers good adhesion in the waste PE/CR samples have been considered and was proven by SEM graphs either.

  13. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  14. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  15. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  16. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  17. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  18. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  19. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  20. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  1. Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide.

    PubMed

    Leman, Luke J; Orgel, Leslie E; Ghadiri, M Reza

    2006-01-11

    Carbonyl sulfide (COS), a component of volcanic gas emissions and interstellar gas clouds, is shown to be an efficient condensing agent in the context of phosphate chemistry in aqueous solutions. We report that high-energy aminoacyl-phosphate anhydrides and aminoacyl adenylates are generated in solutions containing amino acids, COS, and the corresponding phosphate molecule. We further show that the mixed anhydrides of amino acids and inorganic phosphate are phosphorylating agents, producing pyrophosphate in better than 30% yield in the presence of Ca2+ precipitates. The amino acid dependent activations of phosphate reported here, which occur in parallel with the production of peptides, suggest that these two reactions may have shared a common intermediate on the prebiotic Earth.

  2. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...): Do not release into the environment in quantities that allow surface water concentrations to exceed 6...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  4. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  5. Physical insights into salicylic acid release from poly(anhydrides).

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2016-01-21

    Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.

  6. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  7. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  8. Perfluoroalkylation of Unactivated Alkenes with Acid Anhydrides as the Perfluoroalkyl Source.

    PubMed

    Kawamura, Shintaro; Sodeoka, Mikiko

    2016-07-18

    An efficient perfluoroalkylation of unactivated alkenes with perfluoro acid anhydrides was developed. Copper salts play a crucial role as a catalyst to achieve allylic perfluoroalkylation with the in situ generated bis(perfluoroacyl) peroxides. Furthermore, carboperfluoroalkylation of alkene bearing an aromatic ring at an appropriate position on the carbon side chain was found to proceed under metal-free conditions to afford carbocycles or heterocycles bearing a perfluoroalkyl group. This method, which makes use of readily available perfluoroalkyl sources, offers a convenient and powerful tool for introducing a perfluoroalkyl group onto an sp(3) carbon to construct synthetically useful skeletons. PMID:27254318

  9. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    SciTech Connect

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatase using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.

  10. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  11. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies.

  12. Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase.

    PubMed

    Ayyadurai, Subasri M; Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2010-07-15

    Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a

  13. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  14. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  15. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    PubMed

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  16. One-pot odourless synthesis of thioesters via in situ generation of thiobenzoic acids using benzoic anhydrides and thiourea

    PubMed Central

    Khalifeh, Reza

    2015-01-01

    Summary An efficient and odourless procedure for a one-pot synthesis of thioesters by the reaction of benzoic anhydrides, thiourea and various organic halides (primary, allylic, and benzylic) or structurally diverse, electron-deficient alkenes (ketones, esters, and nitriles) in the presence of Et3N has been developed. In this method, thiobenzoic acids were in situ generated from the reaction of thiourea with benzoic anhydrides, which were subjected to conjugate addition with electron-deficient alkenes or a nucleophilic displacement reaction with alkyl halides. PMID:26425185

  17. Acidizing using N-vinyl lactum/unsaturated amide copolymers

    SciTech Connect

    Burns, L.D.; Stahl, G.A.

    1987-09-01

    A process is described for acidizing a subterranean formation penetrated by at least one well comprising injecting into the formation, without a crosslinking agent, a water soluble thickened acid composition comprising: (1) water; (2) acid; and (3) a linear copolymer prepared from the monomers consisting of a N-vinyl lactam monomer and an alpha, beta-unsaturated amide monomer.

  18. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  19. Polyol-acid anhydride-n-alkyl-alkylene diamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.; Jenkins, R.H. Jr.

    1987-02-17

    A fuel composition for an internal combustion engine comprising: (a) a major portion of a liquid hydrocarbon fuel and (b) a minor amount, as a deposit inhibitor additive, of a reaction product of a process comprising: (i) reacting a dibasic acid anhydride with a polyol, thereby forming an ester of maleic acid; (ii) reacting the ester of maleic acid with an N-alkyl-alkylene diamine, thereby forming the reaction product; and (iii) recovering the reaction product.

  20. Kinetic resolution of racemic α-hydroxyphosphonates by asymmetric esterification using achiral carboxylic acids with pivalic anhydride and a chiral acyl-transfer catalyst.

    PubMed

    Shiina, Isamu; Ono, Keisuke; Nakahara, Takayoshi

    2013-11-25

    A practical protocol is developed to directly provide chiral α-acyloxyphosphonates and α-hydroxyphosphonates from (±)-α-hydroxyphosphonates utilizing the transacylation process to generate the mixed anhydrides from acid components and pivalic anhydride in the presence of organocatalysts (s-value = 33-518).

  1. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, ester with 1,2..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as octadecanoic acid,...

  2. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  3. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  4. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  5. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    PubMed

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  6. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters).

    PubMed

    Johnson, Michelle L; Uhrich, Kathryn E

    2009-12-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (T(g)) and the antimicrobials' melting points (T(m)) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease.

  7. Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration.

    PubMed

    Wada, Keisuke; Yu, Weiling; Elazizi, Mohamad; Barakat, Sandrine; Ouimet, Michelle A; Rosario-Meléndez, Roselin; Fiorellini, Joseph P; Graves, Dana T; Uhrich, Kathryn E

    2013-10-10

    Diabetes mellitus (DM) involves metabolic changes that can impair bone repair, including a prolonged inflammatory response. A salicylic acid-based poly(anhydride-ester) (SA-PAE) provides controlled and sustained release of salicylic acid (SA) that locally resolves inflammation. This study investigates the effect of polymer-controlled SA release on bone regeneration in diabetic rats where enhanced inflammation is expected. Fifty-six Sprague-Dawley rats were randomly assigned to two groups: diabetic group induced by streptozotocin (STZ) injection or normoglycemic controls injected with citrate buffer alone. Three weeks after hyperglycemia development or vehicle injection, 5mm critical sized defects were created at the rat mandibular angle and treated with SA-PAE/bone graft mixture or bone graft alone. Rats were euthanized 4 and 12weeks after surgery, then bone fill percentage in the defect region was assessed by micro-computed tomography (CT) and histomorphometry. It was observed that bone fill increased significantly at 4 and 12weeks in SA-PAE/bone graft-treated diabetic rats compared to diabetic rats receiving bone graft alone. Accelerated bone formation in normoglycemic rats caused by SA-PAE/bone graft treatment was observed at 4weeks but not at 12weeks. This study shows that treatment with SA-PAE enhances bone regeneration in diabetic rats and accelerates bone regeneration in normoglycemic animals.

  8. Pd(II)-catalyzed regio-, enantio-, and diastereoselective 1,4-addition of azlactones formed in situ from racemic unprotected amino acids and acetic anhydride.

    PubMed

    Weber, Manuel; Peters, René

    2012-12-01

    A multicomponent reaction is reported generating highly enantioenriched and diastereomerically pure quaternary amino acid derivatives via 1,4-addition of azlactones to enones. The azlactone intermediates are generated in situ from unprotected α-amino acids and acetic anhydride. Previous attempts using bis-palladacycle catalysts required the use of a large excess of benzoic anhydride (which is very difficult to remove from the products), since acetic anhydride provided regioisomeric product mixtures. Key for the high regioselectivity is a pentaphenylferrocene monopalladacycle catalyst. PMID:23193999

  9. Phenylethynyl Phthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Controlled molecular weight PhenylEthynyl Terminated Imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with PhenylEthynyl Phthalic Anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2pyrrolidinone or N N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  10. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775 Section 172.775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD...

  11. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus.

    PubMed

    Zhang, Dong; Pan, Xiaolei; Wang, Shang; Zhai, Yinglei; Guan, Jibin; Fu, Qiang; Hao, Xiaoli; Qi, Wanpeng; Wang, Yingli; Lian, He; Liu, Xiaohong; Wang, Yongjun; Sun, Yinghua; He, Zhonggui; Sun, Jin

    2015-07-01

    In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability. PMID:26024817

  12. Allergic contact dermatitis to copolymers in cosmetics--case report and review of the literature.

    PubMed

    Quartier, Sarah; Garmyn, Marjan; Becart, Sophie; Goossens, An

    2006-11-01

    Copolymers or heteropolymers are large molecules with high molecular weights (>1000 D). They have been underestimated for a long time as to their sensitizing capacities. Allergic contact dermatitis to 6 copolymers in cosmetics and 1 in a medical dressing has been described; however, the nature of the hapten is still unknown. We report a case of allergic contact dermatitis to polyvinylpyrrolidone (PVP)/hexadecene copolymer in a purple-colored lipstick and review the literature on allergic contact dermatitis to 7 copolymers: PVP/hexadecene, PVP/eicosene, PVP/1-triacontene, methoxy polyethyleneglycol (PEG)-22/dodecyl glycols, methoxy PEG-17/dodecyl glycols, phthalic anhydride/trimellitic anhydride/glycols, and polyvinyl methyl/maleic acid anhydride. PMID:17026690

  13. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  14. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  15. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  16. Role of Acid Functionality and Placement on Morphological Evolution and Strengthening of Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Schwartz, Eric; Winey, Karen

    Functional polymers with specific interactions produce hierarchical morphologies that directly impact mechanical properties. We recently reported that the formation of acid-rich layered morphologies in precise poly(ethylene-co-acrylic acid) copolymers improves tensile strength. We now explore the generality of this phenomenon through variations in pendant acid chemistries, acid content and precision in placement of acid groups in polyethylene-based copolymers. In situ X-ray scattering measurements during tensile deformation reveal that the precision in acid group placement is critical to forming well-defined layered morphologies. This phenomenon was observed in both semi-crystalline and amorphous precise acid copolymers with varied acid chemistries (acrylic, geminal acrylic and phosphonic acids). Compositionally identical polymers but with pseudo random acid placement do not form layered morphologies. Acid chemistry and acid content influence morphological evolution predominately though modification of the copolymer Tg and crystallinity. Our results indicate that hierarchical layered structures, commensurate with improved mechanical properties, form in the presence of uniformity in chemical structure and sufficient chain mobility to strongly align during deformation.

  17. Maleic anhydride

    Integrated Risk Information System (IRIS)

    Maleic anhydride ; CASRN 108 - 31 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Phthalic anhydride

    Integrated Risk Information System (IRIS)

    Phthalic anhydride ; CASRN 85 - 44 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  19. Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery

    PubMed Central

    Rosario-Meléndez, Roselin; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2013-01-01

    The formulation of salicylate-based poly(anhydride-ester) (PAE) microspheres was optimized by altering polymer concentration and homogenization speed to improve the overall morphology. The microspheres were prepared using three salicylate-based PAEs with different chemical compositions comprised of either a heteroatomic, linear aliphatic, or branched aliphatic moiety. These PAEs broadened the range of complete salicylic acid release to now include days, weeks and months. The molecular weight (Mw), polydispersity index (PDI) and glass transition temperature (Tg) of the formulated polymers were compared to the unformulated polymers. In general, the Mw and PDI exhibited decreased and increased values, respectively, after formulation, whereas the Tg changes did not follow a specific trend. Microsphere size and morphology were determined using scanning electron microscopy. These microspheres exhibited smooth surfaces, no aggregation, and size distributions ranging from 2-34 m in diameter. In vitro release studies of the chemically incorporated salicylic acid displayed widely tunable release profiles. PMID:23420391

  20. Tensile Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Szewczyk, Steve; Schwartz, Eric; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide tunable mechanical properties. We report tensile testing and in situ x-ray scattering measurements of a homologous series of precise poly(ethylene-co-acrylic acid) copolymers (pxAA). Upon variation of the number of backbone carbons (x = 9, 15, 21) between pendant acrylic acid groups along the linear polyethylene chain, these materials exhibit pronounced changes in both their tensile properties as well as their morphological evolution during deformation. The hierarchical layered acid aggregate structure coincides with the onset of a strain hardening mechanism and was observed in both a semi-crystalline sample (p21AA) as well as an amorphous sample (p15AA). The polymer with the shortest spacing between acid groups (p9AA) maintains a liquid-like distribution of acid aggregates during deformation, exhibiting low tensile strength which we attribute to facile acid exchange between acid aggregates during deformation. Our results indicate that the formation of the hierarchical layered structure, which coincides with polymer strain-hardening regime, originates from the associating acid groups cooperatively preventing disentanglement. NSF-DMR-1103858.

  1. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  2. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  3. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  4. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  5. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  6. Efficacy of measures of hygiene in workers sensitised to acid anhydrides and the influence of selection bias on the results

    PubMed Central

    Drexler, H.; Schaller, K. H.; Nielsen, J.; Weber, A.; Weihrauch, M.; Welinder, H.; Skerfving, S.

    1999-01-01

    OBJECTIVES: Organic acid anhydrides are potential sensitisers and cause occupational airway diseases. In an intervention study the efficacy of measures of hygiene at the workplace and possible selection bias were investigated. METHODS: A first investigation with 110 workers exposed to hexahydrophthalic acid anhydride (HHPA) and methyltetrahydrophthalic acid anhydride (MTHPA) was carried out in July 1991. The results (skin prick test, specific serum IgE) showed that 20 people were sensitised, and in a challenge test the clinical relevance of the sensitisation was confirmed in six subjects. In December 1991, the hygiene conditions at the plant were improved. In November 1995 a second investigation of 84 people was performed (anamnesis, skin prick test, specific IgE, spirometry, and ambient and biological monitoring). The 27 people who had left the plant in the meantime were asked their reasons for leaving. RESULTS: The relative risk of people sensitised in 1991 of leaving the plant between 1991 and 1995 was 2.6 (95% confidence interval (95% CI) 1.4 to 4.9) compared with people without any sign of sensitisation. The percentage of people identified as sensitised in 1991, who were still working at the plant and came to the second investigation, was higher than for people without evidence of sensitisation (10/10 v 47/73; p < 0.05). In all the 10 sensitised people in 1991 the findings of the first investigation were confirmed in 1995. The rate of sensitisation in 1995 was 21%. None of the six people employed after 1991 showed evidence of sensitisation. Of the six people with clinically relevant sensitisation confirmed by a challenge test in 1991, five were still at their workplace. From 1991 they were only exposed to MTHPA at a reduced concentration (< 0.5-36 micrograms/m3 in 1995). All of them reported fewer symptoms than in 1991. No signs of bronchial obstruction were detected by spirometry at the workplace. CONCLUSIONS: In cross sectional studies there is a selection

  7. Isomeric oxydiphthalic anhydride polyimides

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.

    1988-01-01

    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.

  8. Highly water-soluble monoboronic acid probes that show optical sensitivity to glucose based on 4-sulfo-1,8-naphthalic anhydride.

    PubMed

    Cao, Zhi; Nandhikonda, Premchendar; Heagy, Michael D

    2009-05-01

    Two highly water-soluble monoboronic acid probes that display the more desirable off-on fluorescence response were synthesized based on 4-sulfo-1,8-naphthalic anhydride and a remarkable sensitivity for glucose rather than fructose and galactose was also observed.

  9. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  10. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W.; Rowley, John M.

    2013-07-09

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  11. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W; Rowley, John M

    2014-12-30

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  12. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  13. Spectral filters based on ethylene/acrylic acid copolymer ionomers

    SciTech Connect

    Riley, M.O.; Walkup, C.M.; Hagen, W.F.; Jessop, E.S.

    1988-09-01

    We are investigating the possibility of utilizing ionomers as inexpensive, easily replaced optical filters for applications in large fusion lasers as well as high average power solid state lasers. To this end we have synthesized a number of other derivatives of the ethylene/acrylic acid (EAA) copolymer system. Specifically, we prepared several ionomers at nominal 3 wt. % metal ion concentration, including Fe(III), Co(II), Ni(II), Cu(II), and Ce(III), by reacting aqueous solutions of metal acetates or nitrates with aqueous ammonia dispersions (1) of EAA as described previously. The products were compression molded into thin optically clear films under the above-described conditions. A gel was formed in a similar reaction with samarium (III) nitrate. Accordingly, the samarium ionomer was synthesized by a melt phase reaction between the EAA resin and the metal nitrate. 6 refs., 2 figs., 2 tabs.

  14. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  15. In Vivo Evaluation of Nerve Guidance Conduits Comprised of a Salicylic Acid-based Poly(anhydride-ester) Blend

    NASA Astrophysics Data System (ADS)

    Lee, Yong Soo

    Unlike the central nervous system, peripheral nervous system can regenerate from injury. However, without surgical intervention, the results are often poor. Autologous nerve grafting is the golden standard for repairing peripheral nerve injury; but limited donor availability and donor site morbidity led researchers to seek alternative methods. Among the many alternative treatment options, synthetic nerve guidance conduits (NGCs) have been most actively developed. The goal of NGCs is to serve as a physical scaffold that aids the axonal regeneration process while preventing scar tissue formation that interferes with regeneration. Biocompatible and biodegradable NGCs would provide additional benefits: minimize foreign body reaction and avoid secondary surgeries to remove NGCs. We developed a unique NGC that incorporated the characteristics described above and can release an anti-inflammatory drug, salicylic acid. In this work, in vivo assays were performed to evaluate NGCs fabricated from a poly(anhydride-ester) blend. To further assist in the regeneration process, bovine native collagen type I hydrogel were inserted into the NGCs lumen which was then implanted in femoral nerve of mice for up to 16 weeks. These studies demonstrated in vivo biodegradability, biocompatibility, and axonal regeneration following an injury to the peripheral nerve. These studies provide greater insights into the importance of designing NGCs and how they aid in regeneration and functional recovery of subjects.

  16. Maleic anhydride from normal butane

    SciTech Connect

    Cooley, S.D.; Doshi, B.

    1987-01-01

    Worldwide about one billion pounds of maleic anhydride is used annually in the manufacture of a number of commercially valuable products, including unsaturated polyester resins, agricultural chemicals, and lubricating oil additives. Maleic anhydride is not found in nature. It was first prepared in 1834 by heating malic acid (hydroxy-succinic acid, a compound found in apples and many other fruits). Maleic anhydride was not available commercially until ca. 1930 when the catalytic air oxidation of benzene was begun by National Aniline and Chemical on an industrial scale. The estimated worldwide production in 1985 was 1023 million pounds coming from more than 35 plants varying in capacity from 6 million pounds to 170 million pounds annually.

  17. Pharmacokinetics of copolymers of N-vinylpyrrolidone with acrylic acid. Article 1

    SciTech Connect

    Rafikov, R.Z.; Sakhibov, A.D.; Akhmedzhanov, R.I.; Aliev, K.U.

    1987-01-01

    The authors studied the pharmacokinetics of the copolymers of n-vinyl-pyrrolidone (I) with acrylic acid (II) (copolymer III) using the radioactive isotope /sup 125/I. In experiments on mice, they studied the distribution of a copolymer of I with II (/sup 125/I-III) in the organism of the animals. The content of /sup 125/I-III and its possible radioactive metabolites in the blood and organs of mice after a single intravenous administration of the given preparation is shown. The radioactivity of organs after butanol extraction is presented.

  18. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  19. A model for hot tack behavior in ethylene acid copolymer films

    SciTech Connect

    Shekhar, A. )

    1994-01-01

    A model has been developed for hot tack behavior in ethylene methacrylic acid and ethylene acrylic acid copolymers based on statistical regression of data. This model shows trends and provides insights on the factors that influence hot tack strength. A correlation of eight independent variables with hot tack strength showed that the two factors with the greatest impact on hot tack strength are seal temperature and acid content of the film. The melt indices, melt point temperatures, and synthesis temperatures of the film resin had insignificant correlations with hot tack. No significant difference in hot tack strength was found between acrylic and methacrylic acid copolymers. This model provides a better understanding of an important phenomenon in packaging applications, and it can be used to approximate hot tack behavior in acid copolymers when certain variables are specified.

  20. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation.

    PubMed

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M; Zhou, Yu; Choi, Chung Hang J; Xing, Hang; Mirkin, Chad A

    2015-10-28

    By grafting multiple DNA strands onto one terminus of a polyester chain, a DNA-brush block copolymer that can assemble into micelle structure is constructed. These micelle spherical nucleic acids have a density of nucleic acids that is substantively higher than linear DNA block copolymer structures, which makes them effective cellular transfection and intracellular gene regulation agents.

  1. Kinetic resolution of racemic 2-hydroxy-γ-butyrolactones by asymmetric esterification using diphenylacetic acid with pivalic anhydride and a chiral acyl-transfer catalyst.

    PubMed

    Nakata, Kenya; Gotoh, Kouya; Ono, Keisuke; Futami, Kengo; Shiina, Isamu

    2013-03-15

    Various optically active 2-hydroxy-γ-butyrolactone derivatives are produced via the kinetic resolution of racemic 2-hydroxy-γ-butyrolactones with diphenylacetic acid using pivalic anhydride and (R)-benzotetramisole ((R)-BTM), a chiral acyl-transfer catalyst. Importantly, the substrate scope of this novel protocol is fairly broad (12 examples, s-value; up to over 1000). In addition, we succeeded in disclosing the reaction mechanism to afford high enantioselectivity using theoretical calculations and expounded on the substituent effects at the C-3 positions in 2-hydroxylactones.

  2. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation.

    PubMed

    Ouimet, Michelle A; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Catalani, Luiz H; Pochan, Darrin J; Uhrich, Kathryn E

    2015-03-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects. PMID:25333420

  3. Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins.

    PubMed

    Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo

    2014-10-13

    A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions. PMID:25220634

  4. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.

  5. Kinetics of the reactions of the acid anhydrides with aromatic amines in aprotic solvents. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Sugg, E.; Mason, J. G.

    1983-01-01

    Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.

  6. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids. PMID:25543987

  7. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids.

  8. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  9. Syntheses and luminescent properties of a copolymer of terbium-p-aminobenzoic acid-methacrylic acid and styrene.

    PubMed

    Zhang, A Q; Yang, Y M; Li, L P; Zhai, G M; Jia, H S; Liu, X G; Xu, B S

    2015-11-01

    A reactive Tb(III) complex with p-aminobenzoic acid (p-ABA) and methacrylic acid (MAA) as ligands was synthesized. A novel copolymer was synthesized by free radical copolymerization of styrene and the reactive Tb(III) complex in dimethyl sulfoxide (DMSO) with 2,2'-azobis(2-methylpropionitrile) (AIBN) as the initiator. IR and UV/Vis spectra indicate that the copolymer exhibited absorption from polystyrene and the complex. Thermogravimetric analysis indicates that the copolymer remained stable up to 357°C and the thermal stability was significantly improved in comparison with polymer matrix and the Tb(III) complex. The luminescent intensity of the synthetic terbium macromolecular complexes increased with increasing complex monomer content. Moreover, concentration quenching was not observed.

  10. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    PubMed

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.

  11. Adsorption dynamics of L-glutamic acid copolymers at a heptane/water interface.

    PubMed

    Beverung, C J; Radke, C J; Blanch, H W

    1998-02-16

    Random copolymers of glutamic acid (glu-ala, glu-leu, glu-phe, glu-tyr) were employed to investigate the relationship between side chain structure and peptide charge on adsorption behavior at an oil/water boundary. Adsorption of a series of glutamate copolymers at a heptane/water interface was examined by the dynamic pendant-drop method to determine interfacial tension. Incorporation of leucine or phenylalanine into a glutamate copolymer results in greater tension reduction than incorporation of alanine or tyrosine. These effects are amplified at pH values near the isoelectric point of glutamate, where macroscopic adsorbed films of glu-leu and glu-phe exhibit gel-like properties in response to interfacial area compression. Differences in interfacial tension behavior of glu-tyr and glu-phe indicate the importance of the tyrosine p-hydroxyl group on adsorption and aggregation at the oil/water interface. PMID:9540205

  12. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  13. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer.

  14. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  15. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  16. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. PMID:22840022

  17. Epoxies from maleic anhydride

    SciTech Connect

    Ahmad, I.; Tumi, S.O.; Bashish, M.; El-Abib, A.R.

    1989-02-01

    The epoxidation of maleic anhydride by hydrogen peroxide in the presence of sodium molybdate catalyst is first order with respect to both maleic anhydride and sodium molybdate concentration. The reaction is zero order with respect to hydrogen peroxide concentration. The calculated rates are reported and a reaction mechanism is proposed.

  18. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  19. Alignment of Fatty Acid-Derived Triblock Copolymers under Large Amplitude Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Ding, Wenyue; Wang, Shu; Kesava, Sameer; Gomez, Enrique; Robertson, Megan

    Linear ABA triblock copolymers find widespread utilization as thermoplastic elastomers (TPEs): materials which exhibit elastomeric behavior at room temperature and can be readily processed at elevated temperatures. Traditional TPEs are derived from fossil fuels; however, the finite availability of petroleum and the environmental impact of petroleum processing has led to an increased interest in developing alternative sources for polymers. Vegetable oils and their fatty acids are promising replacements for petroleum sources due to their abundance, low cost, lack of toxicity, biodegradability and ease of functionalization that provides convenient routes to polymerization. In this study, triblock copolymer TPEs were synthesized containing lauryl and stearyl acrylate, derived from fatty acids found in vegetable oils. Small-angle X-ray scattering experiments revealed highly aligned triblock copolymer morphologies after the application of large amplitude oscillatory shear. The temperature and frequency dependence of the degree of alignment was investigated. In contrast to prior studies on shear-aligned morphologies in bulk and thin film block copolymers, hexagonal close packed and face centered cubic spherical structures were observed.

  20. Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loading

    PubMed Central

    2015-01-01

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  1. Block and random copolymers bearing cholic acid and oligo(ethylene glycol) pendant groups: aggregation, thermosensitivity, and drug loading.

    PubMed

    Shao, Yu; Jia, Yong-Guang; Shi, Changying; Luo, Juntao; Zhu, X X

    2014-05-12

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  2. Poly(anhydride-ester) and Poly(N-vinyl-2-pyrrolidone) Blends: Salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation

    PubMed Central

    Ouimet, Michelle A.; Fogaça, Renata; Snyder, Sabrina S.; Sathaye, Sameer; Catalani, Luiz H.; Pochan, Darrin J.

    2015-01-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, the release of physically admixed therapeutics from hydrogels has been evaluated, but with limited control over drug release profiles. To overcome these limitations, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3–4 days in contrast to 3 hours, as observed with diffusion-controlled hydrogels. Generally, blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly reduce the inflammatory cytokine, TNF-α, in vitro without cytotoxic or anti-proliferative effects, further demonstrating their potential as a wound dressing with enhanced healing and decreased scar tissue formation. PMID:25333420

  3. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.

    PubMed

    Athanasiou, K A; Niederauer, G G; Agrawal, C M

    1996-01-01

    This is a review of salient studies of sterilization, toxicity, biocompatibility, clinical applications and current work in the field of orthopaedics, using implants made of polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers. The intrinsic nature of these biomaterials renders them suitable for applications where temporally slow releases of bioactive agents in situ may be required. They are also desirable as fixation devices of bone, because they can virtually eliminate osteopenia associated with stress shielding or additional surgery. The majority of currently available sterilization techniques are not suitable for these thermoplastic materials and it may be desirable to develop new sterilization standards, which can account for the special character of PLA-PGA materials. Biocompatibility and toxicity studies suggest that, overall, PLA-PGA biomaterials may be suitable for orthopaedic applications, although certain problems, especially pertaining to reduction in cell proliferation, have been reported. Clinical applications are also promising, albeit not without problems usually associated with transient tissue inflammation. The future of these materials appears bright, especially in soft tissues. They may be used to address the exceedingly complex problem of osteochondral repair, but also as a means to enhance fixation and repair processes in tendons and ligaments. PMID:8624401

  4. Acoustic and ultrasonic characterization constraints of self-healing (ethylene-co-methacrylic acid) copolymers

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth, II; Buckley, Jonathan; Kalista, Stephen; Bowers, Nicholas

    Recent experiments indicate that small sample poly (ethylene-co-methacrylic acid) copolymers (EMAA copolymers) exhibit time dependent variation in their acoustic and ultrasonic resonant spectra after exposure to a damage event. However, due to the relatively soft nature of these thermoplastic materials, several experimental constraints affect efficacy of resonant spectral analysis. In this work we will the address the effect of several characterization constraints on a self-healing EMAA ionomer (commercially known as Dupont Surlyn 8920) including the effects of transducer loading, continuous rapid resonant excitation and temporally separated long-term resonant excitation. In some circumstances, these experimental constraints can influence the time dependence of sample resonant frequency evolution, quality factor, and variation in spectral waveform. By quantifying these effects, robust characterization of post-damage self-healing EMAA samples is possible and will be presented.

  5. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  6. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages.

    PubMed

    Chamberlain, Michael Dean; Wells, Laura A; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V

    2015-08-25

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell-material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  7. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  8. Tailor-Made Stereoblock Copolymers of Poly(lactic acid) by a Truly Living Polymerization Catalyst.

    PubMed

    Rosen, Tomer; Goldberg, Israel; Venditto, Vincenzo; Kol, Moshe

    2016-09-21

    Poly(lactic acid) (PLA) is a biodegradable polymer prepared by the catalyzed ring opening polymerization of lactide. An ideal catalyst should enable a sequential polymerization of the lactide enantiomers to afford stereoblock copolymers with predetermined number and lengths of blocks. We describe a magnesium based catalyst that combines very high activity with a true-living nature, which gives access to PLA materials of unprecedented microstructures. Full consumption of thousands of equivalents of L-LA within minutes gave PLLA of expected molecular weights and narrow molecular weight distributions. Precise PLLA-b-PDLA diblock copolymers having block lengths of up to 500 repeat units were readily prepared within 30 min, and their thermal characterization revealed a stereocomplex phase only with very high melting transitions and melting enthalpies. The one pot sequential polymerization was extended up to precise hexablocks having "dialed-in" block lengths. PMID:27602949

  9. Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity.

    PubMed

    Li, Jinjun; Hu, Qin; Tian, Hua; Ma, Chunyan; Li, Landong; Cheng, Jie; Hao, Zhengping; Qiao, Shizhang

    2009-11-01

    With initial aging at low temperature for enough time, silicas with large mesoporosity were synthesized using triblock copolymer as template agent under weak acidities. SBA-15 with periodic mesostructure and short mesochannels could be synthesized at pH 2.5-3.0 within weak acidity range, and the surface areas, pore diameters and pore volumes reached up to ca. 1000m(2)/g, 8.8nm and 2.0cm(3)/g, respectively, which were significantly higher than those of the conventional SBA-15 synthesized under strong acidities. Mesoporous silica with wormhole structure and abundant textural porosity was formed at pH approximately 3.5. The increased hydrophobic volume of the copolymer micelles at elevated pH values was responsible for the enlargement of mesoporosity in the products. The materials synthesized under weak acidities showed lower hexagonal ordering in comparison to the general SBA-15 synthesized under strong acidities because the decreased hydronium ion concentration induced relatively weaker assembly forces during the synthesis. Nonetheless, the short mesochannels and large pore diameter in the products might be beneficial to some applications in which fast diffusion of molecules is required.

  10. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  11. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.

    PubMed

    Teomim, D; Mäder, K; Bentolila, A; Magora, A; Domb, A J

    2001-01-01

    The effect of terminal sterilization by gamma-irradiation on several ricinoleic acid based polyanhydrides was investigated. The following polymers were used: poly(ricinoleic acid maleate) [P(RAM)], poly(ricinoleic acid succinate) [P(RAS)], poly(hydroxy stearic acid succinate) [P(HSAS)], poly(hydroxy stearic acid maleate) [P(HSAM)], and their copolymers with sebacic acid. The polymers were irradiated with an absorbed dose of 2.5 or 10 Mrad by means of a 60Co source under dry ice or at room temperature. No differences were found between samples irradiated under dry ice and at room temperature. Polymers prepared from monomers containing maleate residues, which contain double bonds adjusted to the anhydride linkage along the polymer chain, decreased in molecular weight, became insoluble, and showed fast hydrolytic degradation. For example, p(RAM), p(HSAM), and their copolymers with sebacic acid decreased in Mw from about 10,000 to about 2000, and from about 30,000 to about 5000, respectively, while polymers based on RAS and HSAS remained stable. This phenomenon was explained by an anhydride interchange-self-depolymerization process of the unsaturated anhydride bonds induced by gamma-irradiation. This explanation was supported by the depolymerization of another class of polymers having an anhydride bond between two double bonds, fumaric acid anhydride polymers. The anhydride bond that lies between two double bonds was found to be more sensitive to gamma-irradiation. This anhydride bond may be cleaved to form two radicals that further react with aliphatic anhydride bonds along the polymer chain to form inter- and/or intracyclization products. PMID:11710004

  12. Acid- and base-functionalized core-confined bottlebrush copolymer catalysts for one-pot cascade reactions.

    PubMed

    Xiong, Linfeng; Zhang, Hui; Zhong, Aiqing; He, Zidong; Huang, Kun

    2014-12-01

    We demonstrate a novel method that enables the formation of core-confined bottlebrush copolymers (CCBCs) as catalyst supports. Significantly, owing to the site-isolated effect, these CCBC catalysts with the incompatible acidic para-toluenesulfonic acid (PTSA) and basic 4-(dimethylamino)pyridine (DMAP) groups can conduct a simple two-step sequential reaction in one vessel.

  13. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    SciTech Connect

    Asahi, Tsuyoshi; Mataga, Noboru )

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths of the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.

  14. Preparation and characterization of mucoadhesive nanoparticles of poly (methyl vinyl ether-co-maleic anhydride) containing glycyrrhizic acid intended for vaginal administration.

    PubMed

    Aguilar-Rosas, Irene; Alcalá-Alcalá, Sergio; Llera-Rojas, Viridiana; Ganem-Rondero, Adriana

    2015-01-01

    Traditional vaginal preparations reside in the vaginal cavity for relatively a short period of time, requiring multiple doses in order to attain the desired therapeutic effect. Therefore, mucoadhesive systems appear to be appropriate to prolong the residence time in the vaginal cavity. In the current study, mucoadhesive nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) intended for vaginal delivery of glycyrrhizic acid (GA) (a drug with well-known antiviral properties) were prepared and characterized. Nanoparticles were generated by a solvent displacement method. Incorporation of GA was performed during nanoprecipitation, followed by adsorption of drug once nanoparticles were formed. The prepared nanoparticles were characterized in terms of size, Z-potential, morphology, drug loading, interaction of GA with PVM/MA (by differential scanning calorimetry) and the in vitro interaction of nanoparticles with pig mucin (at two pH values, 3.6 and 5; with and without GA adsorbed). The preparation method led to nanoparticles of a mean diameter of 198.5 ± 24.3 nm, zeta potential of -44.8 ± 2.8 mV and drug loading of 15.07 ± 0.86 µg/mg polymer. The highest mucin interaction resulted at pH 3.6 for nanoparticles without GA adsorbed. The data obtained suggest the promise of using mucoadhesive nanoparticles of PVM/MA for intravaginal delivery of GA.

  15. Ethylene copolymer viscosity index improver dispersant additive useful in oil compositions

    SciTech Connect

    Chung, D.Y.

    1989-02-07

    A composition useful as an oil additive is described comprising reaction product of: (i) reaction product of (a) oil soluble ethylene copolymer comprising from about 15 to 90 wt. % ethylene and about 10 to 85 wt. % of at least one C/sub 3/ to C/sub 28/ alpha-olefin, the copolymer having a number average molecular weight within a range of about 10,000 to 500,000, grafted with ethylenically unsaturated carboxylic acid material having 1 to 2 carboxylic acid groups or anhydride group, (b) at least one polyamine selected from the group consisting of poly(alkylene amines) and poly(oxyalkylene amines) having at least two primary amine groups, and (c) at least one carboxylic acid material selected from long chain hydrocarbyl substituted succinic anhydride or acid having about 50 to 400 carbons in the hydrocarbyl; and (ii) a viscosity stabilizing effective amount of at least one C/sub 12/ to about C/sub 16/ aliphatic hydrocarbyl substituted succinic anhydride.

  16. Poly(ortho ester amides): Acid-labile Temperature-responsive Copolymers for Potential Biomedical Applications

    PubMed Central

    Tang, Rupei; Palumbo, R. Noelle; Ji, Weihang; Wang, Chun

    2009-01-01

    A new, convenient pathway is developed to synthesize highly hydrolytically labile poly(ortho ester amide) (POEA) copolymers that overcomes some of the major weaknesses of the traditional methods of synthesizing poly(ortho esters) and their derivatives. A diamine monomer containing a built-in, stabilized ortho ester group was synthesized and was used for polycondensation with diacid esters, giving rise to a series of POEA copolymers with unique stimuli-responsive properties. The POEA undergoes temperature-responsive, reversible sol-gel phase transition in water. Phase diagrams of the POEA/H2O mixture reveal the concentration-dependent existence of different phases, including hydrogel and opaque or clear solution. Such behavior may be attributed to the temperature-dependent hydrogen-bonding involving the amide groups in the POEA backbone and hydrophobic interactions between POEA chains, and it is tunable by selecting diacid monomers with different chemical structures. The kinetics of POEA mass loss in physiological aqueous buffers and release of a model macromolecular drug, fluorescently labeled dextran, are nearly zero-order, suggesting predominantly surface-restricted polymer erosion. The rates of polymer erosion and drug release are much faster at pH 5.0 than pH 7.4. No cytotoxicity was found for the polymer extracts and the polymer degradation products at concentrations as high as 1 mg/ml. The normal morphology of fibroblasts cultured directly in contact with POEA films was not altered. These novel acid-labile temperature-responsive POEA copolymers may be potentially useful for a wide range of biomedical applications such as minimal invasive delivery of controlled-release drug formulations that respond to biological temperature and acidic-pH environments in cells and tissues. PMID:19281150

  17. Metal chelate affinity precipitation: purification of BSA using poly(N-vinylcaprolactam-co-methacrylic acid) copolymers.

    PubMed

    Ling, Yuan-Qing; Nie, Hua-Li; Brandford-White, Christopher; Williams, Gareth R; Zhu, Li-Min

    2012-06-01

    This investigation involves the metal chelate affinity precipitation of bovine serum albumin (BSA) using a copper ion loaded thermo-sensitive copolymer. The copolymer of N-vinylcaprolactam with methacrylic acid PNVCL-co-MAA was synthesized by free radical polymerization in aqueous solution, and Cu(II) ions were attached to provide affinity properties for BSA. A maximum loading of 48.1mg Cu(2+) per gram of polymer was attained. The influence of pH, temperature, BSA and NaCl concentrations on BSA precipitation and of pH, ethylenediaminetetraacetic acid (EDTA) and NaCl concentrations on elution were systematically probed. The optimum conditions for BSA precipitation occurred when pH, temperature and BSA concentration were 6.0, 10°C and 1.0 mg/ml, respectively and the most favorable elution conditions were at pH 4.0, with 0.2M NaCl and 0.06 M EDTA. The maximum amounts of BSA precipitation and elution were 37.5 and 33.7 mg BSA/g polymer, respectively. It proved possible to perform multiple precipitation/elution cycles with a minimal loss of polymer efficacy. The results show that PNVCL-co-MAA is a suitable matrix for the purification of target proteins from unfractionated materials.

  18. bFGF interaction and in vivo angiogenesis inhibition by self-assembling sulfonic acid-based copolymers.

    PubMed

    García-Fernández, L; Aguilar, M R; Ochoa-Callejero, L; Abradelo, C; Martínez, A; San Román, J

    2012-01-01

    The antiangiogenic activity of different families of biocompatible and non-toxic polymer drugs based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or polymethacrylic derivatives of 5-aminonaphthalen sulfonic acid (MANSA) is analyzed using directed in vivo angiogenesis assay and correlated with in vitro results. These active compounds were copolymerized with butylacrylate (BA) and N-vinylpyrrolidone in order to obtain two families of copolymers with different properties in aqueous media. The most hydrophobic copolymers poly(BA-co-MANSA) and poly(BA-co-AMPS) formed amphiphilic copolymers and presented micellar morphology in aqueous media. This supramolecular organization of the copolymers had a clear effect on bioactivity. Poly(BA-co-MANSA) copolymers showed the best antiangiogenic activity and very low toxicity at relatively low dose, with the possibility to be injected directly in the solid tumors alone or in combination with other therapeutic agents such as anti-VEGF drugs. The obtained results demonstrate that not only the chemical structure but also the supramolecular organization of the macromolecules plays a key role in the anti-angiogenic activity of these active polymers.

  19. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-07-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  20. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  1. Simultaneous efficient adsorption of Pb2+ and MnO4- ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    NASA Astrophysics Data System (ADS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-12-01

    A novel adsorbent NH2/MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption-desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH2/MCM-41/NTAA were used to adsorb Pb2+ and MnO4- in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH2/MCM-41/NTAA exhibit preferable removal of Pb2+ through electrostatic interactions and chelation, whereas it captures MnO4- by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb2+ and of 156 mg/g for MnO4-. The adsorption rates of both Pb2+ and MnO4- are found to follow the pseudo-second order kinetics. Furthermore, the NH2/MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH2/MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  2. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric Acid.

    PubMed

    Khalil, Ashraf A; Deraz, Sahar F; Elrahman, Somia Abd; El-Fawal, Gomaa

    2015-08-18

    Zein constitutes about half of the endosperm proteins in corn. Recently, attempts have been made to utilize zein for food coatings and biodegradable materials, which require better physical properties, using chemical modification of zein. In this study, zein proteins were modified using citric acid, succinic anhydride, and eugenol as natural cross-linking agents in the wet state. The cross-linkers were added either separately or combined in increment concentrations (0.1, 0.2, 0.3, and 0.4%). The effects of those agents on the mechanical properties, microstructure, optical properties, infrared (IR) spectroscopy, and antibacterial activities of zein were investigated. The addition of cross-linking agents promoted changes in the arrangement of groups in zein film-forming particles. Regarding the film properties, incorporation of cross-linking agents into zein films prepared in ethanol resulted in two- to three-fold increases in tensile strength (TS) values. According to the Fourier-transform infrared (FTIR) spectra and Hunter parameters there were no remarkable changes in the structure and color of zein films. Transparency of zein films was decreased differentially according to the type and cross-linker concentration. The mechanical and optical properties of zein films were closely related to their microstructure. All cross-linked films showed remarkable antibacterial activities against Bacillus cereus ATCC 49064 and Salmonella enterica ATCC 25566. Food spoilage and pathogenic bacteria were affected in a film-dependent manner. Our experimental results show that even with partial cross-linking the mechanical properties and antipathogen activities of zein films were significantly improved, which would be useful for various industrial applications.

  3. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  4. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  5. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities.

    PubMed

    Wang, Mingzhi; Zhou, Chuncai; Chen, Jing; Xiao, Yufen; Du, Jianzhong

    2015-04-15

    Cancer patients after chemotherapy may also suffer bacterial attack due to badly decreased immunity. Although with high bacterial efficacy, conventional antibiotics are prone to inducement of drug resistance and may be not suitable for some cancer patients. In contrast, antibacterial peptides are highly effective in inhibiting bacteria without inducing resistance in pathogens. Presented in this article is a novel kind of highly effective antibacterial peptide-based biocompatible and biodegradable block copolymer vesicle. The copolymer is poly(ε-caprolactone)-block-poly[phenylalanine-stat-lysine-stat-(lysine-folic acid)] [PCL19-b-poly[Phe12-stat-Lys9-stat-(Lys-FA)6

  6. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent.

  7. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer.

    PubMed

    Abney, C W; Das, S; Mayes, R T; Kuo, L-J; Wood, J; Gill, G; Piechowicz, M; Lin, Z; Lin, W; Dai, S

    2016-09-14

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ(2)-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials. PMID:27507226

  8. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGES

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  9. Surface functionalization of styrenic block copolymer elastomeric biomaterials with hyaluronic acid via a "grafting to" strategy.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Yuan, Shuaishuai; Song, Lingjie; Zhao, Jie; Ma, Jiao; Shi, Hengchong; Yang, Huawei; Jin, Jing; Yin, Jinghua

    2013-12-01

    As a biostable elastomer, the hydrophobicity of styrenic block copolymer (SBC) intensely limits its biomedical applications. In order to overcome such shortcoming, the SBC films were grafted with hyaluronic acid (HA) using a coupling agent. The surface chemistry of the modified films was examined by ATR-FTIR and XPS techniques, and the surface morphology was visually described by AFM. The biological performances of the HA-modified films were evaluated by a series of experiments, such as protein adsorption, platelet adhesion, and in vitro cytocompatibility. It was found that the HA-modified samples showed a low adhesiveness to fibroblast at the initial stage; however, it stimulated the growth of fibroblast. The L929 fibroblast growth presented a strong dependence on the molecular weight (MW) of HA. The samples modified with 17kDa HA exhibited the worst wettability and platelet adhesion, while providing the best results of supporting fibroblast proliferation. PMID:23974002

  10. The styrene-maleic acid copolymer: a versatile tool in membrane research.

    PubMed

    Dörr, Jonas M; Scheidelaar, Stefan; Koorengevel, Martijn C; Dominguez, Juan J; Schäfer, Marre; van Walree, Cornelis A; Killian, J Antoinette

    2016-01-01

    A new and promising tool in membrane research is the detergent-free solubilization of membrane proteins by styrene-maleic acid copolymers (SMAs). These amphipathic molecules are able to solubilize lipid bilayers in the form of nanodiscs that are bounded by the polymer. Thus, membrane proteins can be directly extracted from cells in a water-soluble form while conserving a patch of native membrane around them. In this review article, we briefly discuss current methods of membrane protein solubilization and stabilization. We then zoom in on SMAs, describe their physico-chemical properties, and discuss their membrane-solubilizing effect. This is followed by an overview of studies in which SMA has been used to isolate and investigate membrane proteins. Finally, potential future applications of the methodology are discussed for structural and functional studies on membrane proteins in a near-native environment and for characterizing protein-lipid and protein-protein interactions. PMID:26639665

  11. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  12. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  13. Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers.

    PubMed

    Cuevas Arenas, Rodrigo; Klingler, Johannes; Vargas, Carolyn; Keller, Sandro

    2016-08-11

    Copolymers of styrene and maleic acid (SMA) have gained great attention as alternatives to conventional detergents, as they offer decisive advantages for studying membrane proteins and lipids in vitro. These polymers self-insert into artificial and biological membranes and, at sufficiently high concentrations, solubilise them into disc-shaped nanostructures containing a lipid bilayer core surrounded by a polymer belt. We have used (31)P nuclear magnetic resonance spectroscopy and dynamic light scattering to systematically study the solubilisation of vesicles composed of saturated or unsaturated phospholipids by an SMA copolymer with a 3 : 1 styrene/maleic acid molar ratio at different temperatures. Solubilisation was thermodynamically rationalised in terms of a three-stage model that treats various lipid/polymer aggregates as pseudophases. The solubilising capacity of SMA(3 : 1) towards a saturated lipid is higher in the gel than in the liquid-crystalline state of the membrane even though solubilisation is slower. Although the solubilisation of mixed fluid membranes is non-selective, the presence of a non-bilayer phospholipid lowers the threshold at which the membrane becomes saturated with SMA(3 : 1) but raises the polymer concentration required for complete solubilisation. Both of these trends can be explained by considering the vesicle-to-nanodisc transfer free energies of the lipid and the polymer. On the basis of the phase diagrams thus obtained, re-association of polymer-solubilised lipids with vesicles is possible under mild conditions, which has implications for the reconstitution of proteins and lipids from nanodiscs into vesicular membranes. Finally, the phase diagrams provide evidence for the absence of free SMA(3 : 1) in vesicular lipid suspensions. PMID:27471007

  14. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  15. Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1998-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  16. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  17. Vapor-liquid equilibria and excess enthalpies for octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic acid anhydride at 125 C

    SciTech Connect

    Haan, A.B. de; Heine, A.; Fischer, K.; Gmehling, J.

    1995-11-01

    Isothermal P-x data and excess enthalpies have been measured at approximately 125 C for the binary mixtures of octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic anhydride. For each binary system linear temperature dependent interaction parameters were fitted to experimental data using the NRTL model. Activity coefficients at infinite dilution were derived from the P-x data at low concentrations using a flexible Legendre polynomial.

  18. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems.

    PubMed

    Lin, Song; Du, Fusheng; Wang, Yang; Ji, Shouping; Liang, Dehai; Yu, Lei; Li, Zichen

    2008-01-01

    Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.

  19. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  20. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties.

    PubMed

    Xu, Jingyuan; Krietemeyer, Elizabeth F; Finkenstadt, Victoria L; Solaiman, Daniel; Ashby, Richard D; Garcia, Rafael A

    2016-04-20

    Graft copolymers of waxy maize starch and poly-γ-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180°C and pH7.0 were the best reaction conditions resulting in a PGA graft of 0.45% based on nitrogen analysis. The average graft content and graft efficiency for the starch-PGA graft copolymer prepared at 180°C and pH7.0 were 4.20% and 2.73%, respectively. The starch-PGA graft copolymer produced at 180°C and pH7.0 could absorb more than 20 times its own weight amount of water and form a gel. The preliminary rheology study revealed that the starch-PGA graft copolymer gel exhibited viscoelastic solid behavior while the control sample of waxy starch showed viscoelastic liquid behavior. PMID:26876849

  1. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.

    PubMed

    Hamai, Ryo; Shirosaki, Yuki; Miyazaki, Toshiki

    2016-10-01

    Phosphate groups on materials surfaces are known to contribute to apatite formation upon exposure of the materials in simulated body fluid and improved affinity of the materials for osteoblast-like cells. Typically, polymers containing phosphate groups are organic matrices consisting of apatite-polymer composites prepared by biomimetic process using simulated body fluid. Ca(2+) incorporation into the polymer accelerates apatite formation in simulated body fluid owing because of increase in the supersaturation degree, with respect to apatite in simulated body fluid, owing to Ca(2+) release from the polymer. However, the effects of phosphate content on the Ca(2+) release and apatite-forming abilities of copolymers in simulated body fluid are rather elusive. In this study, a phosphate-containing copolymer prepared from vinylphosphonic acid, 2-hydroxyethyl methacrylate, and triethylene glycol dimethacrylate was examined. The release of Ca(2+) in Tris-NaCl buffer and simulated body fluid increased as the additive amount of vinylphosphonic acid increased. However, apatite formation was suppressed as the phosphate groups content increased despite the enhanced release of Ca(2+) from the polymer. This phenomenon was reflected by changes in the surface zeta potential. Thus, it was concluded that the apatite-forming ability of vinylphosphonic acid-2-hydroxyethyl methacrylate-triethylene glycol dimethacrylate copolymer treated with CaCl2 solution was governed by surface state rather than Ca(2+) release in simulated body fluid. PMID:27585911

  2. Use of copolymer polylactic and polyglycolic acid resorbable plates in repair of orbital floor fractures.

    PubMed

    Lin, Jonathan; German, Michael; Wong, Brian

    2014-10-01

    The fractures of the orbital floor are common after craniofacial trauma. Repair with resorbable plates is a viable reconstructive option; however, there are few reports in the literature. This study describes our experience using copolymer polylactic and polyglycolic acid (PLLA/PGA) orbital reconstruction plates (LactoSorb, Lorenz Surgical, Jacksonville, FL) in 29 cases of the orbital floor fracture repair. We conducted a retrospective review of 29 orbital floor fractures at a single institution repaired through transconjunctival, preseptal dissection using PLLA/PGA plates fashioned to repair the orbital floor defect. Associated fractures included zygomaticomaxillary, LeFort, and nasoethmoid fractures. There were six patients with complications. Four patients had transient diplopia with complete resolution of symptoms within 1 year. One patient had diplopia postoperatively, but was later lost to follow-up. Two patients have had persistent enophthalmos since 1 year. In each of these cases, the floor fracture was coincident with significant panfacial or neurotrauma. We did not encounter any adverse inflammatory reactions to the implant material itself. The study concluded that orbital floor fracture repair with resorbable plates is safe, relatively easy to perform, and in the majority of cases was effective without complications. In the presence of severe orbital trauma, more rigid implant materials may be appropriate.

  3. Folic Acid Linked Chondroitin Sulfate-Polyethyleneimine Copolymer Based Gene Delivery System.

    PubMed

    Lo, Yu-Lun; Lo, Pei-Chi; Chiu, Chien-Chih; Wang, Li-Fang

    2015-08-01

    In our previous study, chondroitin sulfate-polyethylenimine copolymers (CP) have been synthesized and confirmed as potential gene delivery vectors. Efficient gene transfection is realized by chondroitin sulfate (ChS) that promotes CD44- mediated endocytosis and enhances the cellular uptake of CP/pDNA polyplexes besides clathrin-mediated endocytosis. In this study, the CP was functionalized with a folic acid (FA) molecule. This ancillary ligand allows polyplexes to bind with folate receptors (FR) in addition to the CD44 receptor. We conjugated FA-linked polyethylene glycol (FA-PEG) onto CP (FPCP) for tumor targeting and also synthesized mPEG-CP (MPCP) for comparison. The in vitro cell tests of polymer/pDNA polyplexes were done in FR-expressed U87 and FR-deficient A549 cells. The polymers exhibited less cytotoxicity than PEI-10K as well as PEI-25K against U87 and A549 cells. The transfection efficiency of FPCP/pDNA was higher than those of MPCP/pDNA and CP/pDNA. The cellular uptake pathways of FPCP/pDNA were tested in the cells in the presence of different endocytic chemical inhibitors. The CD44-, folate-, and caveolae-mediated pathways are involved in internalization of FPCP/pDNA. Recognition of FPCP to those receptors on the tumor surface is beneficial for enhanced cellular uptake of FPCP/pDNA, resulting in higher transgene expression than CP/pDNA and MPCP/pDNA.

  4. The outcomes of two different bulking agents (dextranomer hyaluronic acid copolymer and polyacrylate-polyalcohol copolymer) in the treatment of primary vesico-ureteral reflux

    PubMed Central

    Taşkinlar, Hakan; Avlan, Dincer; Bahadir, Gokhan Berktug; Delibaş, Ali; Nayci, Ali

    2016-01-01

    ABSTRACT Purpose Subureteral injection of bulking agents in the endoscopic treatment of vesicoureteral reflux is widely accepted therapy with high success rates. Although the grade of vesicoureteric reflux and experience of surgeon is the mainstay of this success, the characteristics of augmenting substances may have an effect particularly in the long term. In this retrospective study, we aimed to evaluate the clinical outcomes of the endoscopic treatment of vesicoureteric reflux (VUR) with two different bulking agents: Dextranomer/hyaluronic acid copolymer (Dx/HA) and Polyacrylate polyalcohol copolymer (PPC). Materials and Methods A total 80 patients (49 girls and 31 boys) aged 1-12 years (mean age 5.3 years) underwent endoscopic subureteral injection for correction of VUR last six years. The patients were assigned to two groups: subureteral injections of Dx/HA (45 patients and 57 ureters) and PPC (35 patients and 45 ureters). VUR was grade II in 27 ureters, grade III in 35, grade IV in 22 and grade V in 18 ureters. Results VUR was resolved in 38 (66.6%) of 57 ureters and this equates to VUR correction in 33 (73.3%) of the 45 patients in Dx/HA group. In PPC group, overall success rate was 88.8% (of 40 in 45 ureters). Thus, Thus, this equates to VUR correction in 31 (88.5%) of the 35 patients. Conclusions Our short term data show that two different bulking agent injections provide a high level of reflux resolution and this study revealed that success rate of PPC was significantly higher than Dx/HA with less material. PMID:27286115

  5. Inhibition of lactoperoxidase-catalyzed 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and tyrosine oxidation by tyrosine-containing random amino acid copolymers.

    PubMed

    Clausen, Morten R; Skibsted, Leif H; Stagsted, Jan

    2008-09-24

    Oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) by lactoperoxidase was found to be inhibited by tyrosine-containing random amino acid copolymers but not by tyrosine. Both electrostatic effects and polymer size were found to be important by comparison of negatively and positively charged copolymers of varying lengths, with poly(Glu, Tyr)4:1 ([E 4Y 1] approximately 40) as the strongest competitive inhibitor (EC 50 approximately 20 nM). This polymer did not form dityrosine in the presence of lactoperoxidase (LPO) and peroxide. Furthermore, incubation with tert-butyl hydroperoxide, as opposed to hydrogen peroxide, resulted in a peculiar long lag phase of the reaction between the redox intermediate compound II and [E 4Y 1] approximately 40, indicating a very tight association between enzyme and inhibitor. We propose that interactions between multiple positively charged areas on the surface of LPO and the polymer are required for optimal inhibition.

  6. Self-assembled micelles composed of doxorubicin conjugated Y-shaped PEG-poly(glutamic acid)2 copolymers via hydrazone linkers.

    PubMed

    Sui, Bowen; Xu, Hui; Jin, Jian; Gou, Jingxin; Liu, Jingshuo; Tang, Xing; Zhang, Yu; Xu, Jinghua; Zhang, Hongfeng; Jin, Xiangqun

    2014-01-01

    In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose- and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide)2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems.

  7. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  8. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  9. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  10. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    PubMed

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-01

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  11. IDENTIFYING AIRWAY SENSITIZERS: MRNA CYTOKINE PROFILES INDUCED BY VARIOUS ANHYDRIDES

    EPA Science Inventory

    Abstract:
    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hyp...

  12. New Insights into Poly(Lactic-co-glycolic acid) Microstructure: Using Repeating Sequence Copolymers to Decipher Complex NMR and Thermal Behavior

    PubMed Central

    Stayshich, Ryan M.; Meyer, Tara Y.

    2012-01-01

    Sequence, which Nature uses to spectacular advantage, has not been fully exploited in synthetic copolymers. To investigate the effect of sequence and stereosequence on the physical properties of copolymers a family of complex isotactic, syndiotactic and atactic repeating sequence poly(lactic-co-glycolic acid) copolymers (RSC PLGAs) were prepared and their NMR and thermal behavior was studied. The unique suitability of polymers prepared from the bioassimilable lactic and glycolic acid monomers for biomedical applications makes them ideal candidates for this type of sequence engineering. Polymers with repeating units of LG, GLG and LLG (L = lactic, G = glycolic) with controlled and varied tacticities were synthesized by assembly of sequence specific, stereopure dimeric, trimeric and hexameric segmer units. Specifically labeled deuterated lactic and glycolic acid segmers were likewise prepared and polymerized. Molecular weights for the copolymers ranged from Mn = 12-40 kDa by size exclusion chromatography in THF. Although the effects of sequence-influenced solution conformation were visible in all resonances of the 1H and 13C NMR spectra, the diastereotopic methylene resonances in the 1H NMR (CDCl3) for the glycolic units of the copolymers proved most sensitive. An octad level of resolution, which corresponds to an astounding 31-atom distance between the most separated stereocenters, was observed in some mixed sequence polymers. Importantly, the level of sensitivity of a particular NMR resonance to small differences in sequence was found to depend on the sequence itself. Thermal properties were also correlated with sequence. PMID:20681726

  13. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment.

    PubMed

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-01-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  14. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    PubMed Central

    2013-01-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment. PMID:24134303

  15. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin

    PubMed Central

    Alibolandi, Mona; Sadeghi, Fatemeh; Sazmand, Seyed Hossein; Shahrokhi, Seyed Mohammad; Seifi, Mahmoud; Hadizadeh, Farzin

    2015-01-01

    Introduction: The copolymer of polyethylene glycol (PEG) and polyesters has many interesting properties, such as amphiphilicity, biocompatibility, biodegradability, and self-assembly in an aqueous environment. Diblock copolymers of PEG-polyester can form different structures such as micelles, polymersome, capsules or micro-container in an aqueous environment according to the length of their blocks. Materials and Methods: Herein, a series of poly (lactic acid) (PLA) and PEG diblock copolymers were synthesized through the ring-opening polymerization. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The corresponding copolymers were implemented for the formation of polymersome structures using film rehydration method. Impact of methoxy PEG chain length and hydrophobic weight fraction on particle size of polymersomes were studied, and the proper ones were selected for loading of doxorubicin (DOX) via pH gradient method. Results and Discussion: Results obtained from 1HNMR and GPC revealed that microwave irradiation is a simple and reliable method for the synthesis of PEG-PLA copolymers. Further analysis indicated the copolymer with relative molecular weight of PLA to PEG ratios of 3 or fEo ~ 25% produced the smallest size polymersomes. Polymersomes prepared from PEG5000 to PLA15000 were more capable in loading and sustained release of DOX than those prepared from PEG2000 to PLA6000. Conclusion: In conclusion copolymers of PEG/PLA with fOE ~25% and relatively higher molecular weight are more suitable for encapsulation and providing sustained release of DOX. PMID:26258054

  16. Ab Initio Calculations of Possible γ-Gauche Effects in the 13C-NMR for Methine and Carbonyl Carbons in Precise Polyethylene Acrylic Acid Copolymers

    SciTech Connect

    Alam, Todd

    2013-07-29

    The impacts of local polymer chain conformations on the methine and carbonyl 13C-NMR chemical shifts for polyethylene acrylic acid p(E-AA) copolymers were predicted using ab initio methods. Using small molecular cluster models, the magnitude and sign of the γ-gauche torsional angle effect, along with the impact of local tetrahedral structure distortions near the carbonyl group, on the 13C-NMR chemical shifts were determined. These 13C-NMR chemical shift variations were compared to the experimental trends observed for precise p(E-AA) copolymers as a function acid group spacing and degree of zinc-neutralization in the corresponding p(E-AA) ionomers. These ab initio calculations address the future ability of 13C-NMR chemical shift variations to provide information about the local chain conformations in p(E-AA) copolymer materials.

  17. Indirect enantioresolution of (R,S)-mexiletine by reversed-phase high-performance liquid chromatography via diastereomerization with [(S,S)-O,O'-di-p-toluoyl tartaric acid anhydride], (S)-naproxen and nine chiral reagents synthesized as variants of Marfey's reagent.

    PubMed

    Bhushan, R; Tanwar, Shivani; Dixit, Shuchi

    2011-03-01

    Eleven chiral derivatizing reagents (CDRs) were used for preparation of diastereomers of (R,S)-mexiletine containing a primary amino group in close proximity to the stereogenic center. One anhydride, namely [(S,S)-O,O'-di-p-toluoyl tartaric acid anhydride] was synthesized and (S)-naproxen was used as such as the chiral derivatizing reagent. The other nine CDRs were synthesized by substituting one of the fluorine atoms in 1,5-difluoro-2,4-dinitrobenzene with six amino acid amides and three amino acids. The diastereomers were separated by reversed-phase high-performance liquid chromatography. The method was validated for linearity, accuracy, limit of detection and limit of quantification. The limit of detection was found in the range of 10-30  pmol. PMID:20586109

  18. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers.

    PubMed

    Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei

    2016-09-20

    Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions. PMID:27496056

  19. Development of poly(3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Karthikeyan, P.; Kavitha, L.; Surendiran, M.

    2015-12-01

    The present study deals with the successful development of poly(3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel (LN SS) by electropolymerization. The structural and morphological evaluation of the co-polymer coatings were performed using various analytical techniques. Also, the effect of monomer feed ratio on the morphological behaviour of the co-polymer coatings was studied towards the protection efficiency of LN SS in 0.5 M H2SO4. The results demonstrated that the co-polymer coating on passivated LN SS improved the corrosion protection efficiency at the feed ratio 50:50 and hence the as-coated LN SS can serve as a prospective material for industrial applications.

  20. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  1. The phase diagram of 4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid and their copolymers from x-ray diffraction and thermal analysis

    SciTech Connect

    Habenschuss, Anton {Tony}; Varma-Nair, Manika; Kwon, Yong Ku; Ma, Jisheng; Wunderlich, Bernhard {nmn}

    2006-01-01

    Homopolymers and copolymers of 4-hydroxybenzoic acid (HBA) and 2,6-hydroxynaphthoic acid (HNA) have been studied with differential scanning calorimetry and temperature-resolved wide angle X-ray diffraction. All polymers have more than one disordering transition between the glass transition (between 400 and 430 K) and decomposition (between 710 and 750 K). The first transition in PHBA at 616-633 K is from orthorhombic rigid crystals to a conformationally disordered pseudo-hexagonal phase (condis phase). The two higher transitions are first, a further disordering process to a hexagonal condis crystal, and then a change to an anisotropic melt (liquid crystal) at about 800 K, with increasing decomposition above 750 K. In PHNA, orthorhombic crystals change above 600 K to an orthorhombic condis crystal structure, which go to an anisotropic melt at 750 K, and subsequent decomposition. In addition, using empirical entropy rules that account for the changes during the transitions from the crystal to the disordered mobile phases, an effort is made to understand the disorder and mobility, and to arrive at a non-equilibrium phase diagram of the copolymer system. The existence of a single, but up to 200 K wide, glass transition and remaining high crystallinity of the copolyesters, indicate partial solubility of the repeating units in all phases. The new data are compared to and brought into agreement with the large number of prior measurements and often unclear interpretations.

  2. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery.

    PubMed

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery.

  3. Effects of molecular architecture on crystallization behavior of poly(lactic acid) and random ethylene-vinyl acetate copolymers

    NASA Astrophysics Data System (ADS)

    Kalish, Jeffrey P.

    2011-07-01

    The relationship between polymer chain architecture, crystallization behavior, and morphology formation was investigated. The structures formed are highly dependent on chain configuration and crystallization kinetics. Poly(lactic acid) (PLA) and Poly(ethylene-co-vinyl acetate) (EVA) random copolymers were studied. Sample characterization was performed using a variety of techniques, including spectroscopy, scattering, and calorimetry. In PLA, structural differences between alpha' and alpha crystalline phases were analyzed using cryogenic infrared and Raman spectroscopy. Compared to the alpha crystal, the alpha' crystal has slightly looser packing and weaker intermolecular interactions involving carbonyl and methyl functional groups. Simulations in conjunction with Raman scattering analyzed the conformational distortion of the alpha' phase. The conformation of an alpha' chain was determined to have tg't-10/3 conformation with tg't-3/1 units randomly distributed along the chain. Departure of the O-C(alpha); dihedral angle was also confirmed. The structural disorder leads to different thermal properties for alpha' and alpha crystalline forms, which was quantified by measuring the enthalpic change at melting for both crystals (delta H (alpha') = 57 +/- 3 J/g and delta H (alpha) = 96 +/- 3 J/g). The transformation from alpha' to alpha and the mechanism of order formation in PLA were also elucidated. The relationship between chain configuration of EVA random copolymers and crystallization behavior was established. For three different EVA samples, the distribution of methylene sequences was calculated and compared to a distribution of crystallite sizes formed. This comparison revealed that only a small fraction of the total methylene segments present actually crystallized. Cocrystallization with highly mobile oligomers was explored to enhance the crystallization of EVA copolymers. When blended, EVA28 (28 weight percentage) cocrystallizes with C36H74 n-alkane resulting in

  4. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers.

    PubMed

    Agatemor, Christian; Shaver, Michael P

    2013-03-11

    Poly(lactic acid)-block-poly(ethylene glycol) copolymers (PLA-b-PEG) featuring varying tacticities (atactic, heterotactic, isotactic) in the PLA block were synthesized and investigated for their micellar stability, degradation, and thermal properties. Utilizing tin(II) bis(2-ethylhexanoate), aluminum salan, and aluminum salen catalysts, the copolymers were synthesized through the ring-opening polymerization of d-, l-, rac-, or a blend of l- and rac-lactide using monomethoxy-poly(ethylene glycol) as a macroinitiator. The critical micelle concentration, which reflects the micellar stability, was probed using a fluorescence spectroscopic method with pyrene as the probe. The copolymers were degraded in a methanolic solution of 1,5,7-triaza-bicyclo[4.4.0]dec-5-ene and the degradation was measured by (1)H NMR spectroscopic and gel permeation chromatographic analyses. Differential scanning calorimetry and thermogravimetric analysis provided information on the thermal properties of the copolymers. Atactic and heterotactic microstructures in the PLA block resulted in lower micellar stability, as well as faster degradation and shorter erosion time compared to polymers with high isotactic enchainment (Pm). By modification of the Pm, micellar stability, degradation, and erosion rates of the copolymers can be tuned to specific biomedical applications. Interestingly, while tin(II) bis(2-ethylhexanoate) and aluminum salan-catalyzed PLA-b-PEG copolymers exhibited similar micellization behavior, the aluminum salen-catalyzed PLA-b-PEG exhibited unique behavior at high micelle concentration in the presence of the pyrene probe. This unique behavior can be attributed to the disintegration of the micelles through the interactions of long isotactic stereoblock segments. PMID:23402292

  5. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-01

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers. PMID:26974858

  6. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-01

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers.

  7. Process for the production of phthalic anhydride

    SciTech Connect

    Miserlis, C. D.

    1984-03-06

    A system for producing phthalic anhydride by the catalytic oxidation of nathphalene, wherein without creating a significant pressure drop in the system substantially aff of the catalyst particles are removed from the product stream before the product stream is sent to a battery of switch condensers for recovery of the phthalic anhydride.

  8. Disproportionation of bromous acid HOBrO by direct O-transfer and via anhydrides O(BrO)2 and BrO-BrO2. An ab initio study of the mechanism of a key step of the Belousov-Zhabotinsky oscillating reaction.

    PubMed

    Glaser, Rainer; Jost, Mary

    2012-08-16

    The results are reported of an ab initio study of the thermochemistry and of the kinetics of the HOBrO disproportionation reaction 2HOBrO (2) ⇄ HOBr (1) + HBrO(3) (3), reaction ( R4' ), in gas phase (MP2(full)/6-311G*) and aqueous solution (SMD(MP2(full)/6-311G*)). The reaction energy of bromous acid disproportionation is discussed in the context of the coupled reaction system R2-R4 of the FKN mechanism of the Belousov-Zhabotinsky reaction and considering the acidities of HBr and HOBrO(2). The structures were determined of ten dimeric aggregates 4 of bromous acid, (HOBrO)(2), of eight mixed aggregates 5 formed between the products of disproportionation, (HOBr)(HOBrO(2)), and of four transition states structures 6 for disproportionation by direct O-transfer. It was found that the condensation of two HOBrO molecules provides facile access to bromous acid anhydride 7, O(BrO)(2). A discussion of the potential energy surface of Br(2)O(3) shows that O(BrO)(2) is prone to isomerization to the mixed anhydride 8, BrO-BrO(2), and to dissociation to 9, BrO, and 10, BrO(2), and their radical pair 11. Hence, three possible paths from O(BrO)(2) to the products of disproportionation, HOBr and HOBrO(2), are discussed: (1) hydrolysis of O(BrO)(2) along a path that differs from its formation, (2) isomerization of O(BrO)(2) to BrO-BrO(2) followed by hydrolysis, and (3) O(BrO)(2) dissociation to BrO and BrO(2) and their reactions with water. The results of the potential energy surface analysis show that the rate-limiting step in the disproportionation of HOBrO consists of the formation of the hydrate 12a of bromous acid anhydride 7 via transition state structure 14a. The computed activation free enthalpy ΔG(act)(SMD) = 13.6 kcal/mol for the process 2·2a → [14a](‡) → 12a corresponds to the reaction rate constant k(4) = 667.5 M(-1) s(-1) and is in very good agreement with experimental measurements. The potential energy surface analysis further shows that anhydride 7 is

  9. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer.

    PubMed

    Hajeeth, T; Vijayalakshmi, K; Gomathi, T; Sudha, P N

    2013-11-01

    The extraction of cellulose from sisal fiber was done initially using the steam explosion method. The batch adsorption studies were conducted using the cellulose extracted from the sisal fiber and cellulose-g-acrylic acid as an adsorbent for the removal of Cu(II) and Ni(II) metal ions from aqueous solution. The effect of sorbent amount, agitation period and pH of solution that influence sorption capacity were investigated. From the observed results, it was evident that the adsorption of metal ions increases with the increase in contact time and adsorbent dosage. The optimum pH was found to be 5.0 for the removal of copper(II) and nickel(II) for both the extracted cellulose and cellulose-g-acrylic acid copolymer. The adsorption data were modeled using Langmuir and Freundlich isotherms. The experimental results of the Langmuir, Freundlich isotherms revealed that the adsorption of Cu(II) and nickel(II) ion onto cellulose extracted from the sisal fiber and cellulose-g-acrylic acid copolymer was found to fit well with Freundlich isotherm. The kinetics studies show that the adsorption follows the pseudo-second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylic acid copolymer was found to be an efficient adsorbent. PMID:23994787

  10. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer.

    PubMed

    Zeng, Xiaowei; Tao, Wei; Mei, Lin; Huang, Laiqiang; Tan, Chunyan; Feng, Si-Shen

    2013-08-01

    We developed a system of nanoparticles (NPs) of cholic acid functionalized, star-shaped block copolymer consisting of PLGA and vitamin E TPGS for sustained and controlled delivery of docetaxel for treatment of cervical cancer, which demonstrated superior in vitro and in vivo performance in comparison with the drug-loaded PLGA NPs and the linear PLGA-b-TPGS copolymer NPs. The star-shaped block copolymer CA-PLGA-b-TPGS of three branch arms was synthesized through the core-first approach and characterized by (1)H NMR, GPC and TGA. The drug- or coumarin 6-loaded NPs were prepared by a modified nanoprecipitation technique and then characterized in terms of size and size distribution, surface morphology and surface charge, drug encapsulation efficiency, in vitro release profile and physical state of the encapsulated drug. The CA-PLGA-b-TPGS NPs were found to have the highest cellular uptake efficiency, the highest antitumor efficacy compared with PLGA-b-TPGS NPs and PLGA NPs. The results suggest that such a star-shaped copolymer CA-PLGA-b-TPGS could be used as a new molecular biomaterial for drug delivery of high efficiency.

  11. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  12. Copolymer of methacrylic acid with its diethylammonium salt: Effective waterproofing agent for oil wells

    SciTech Connect

    Kuznetsova, O.N.; Avvakumova, N.I.

    1992-08-10

    In the development of technology for the copolymerization of methacrylic acid with its diethylammonium salt (MAA-MAA{center_dot}DEA), the polymer-like reaction of polymethacrylic acid (PMAA) with diethylamine (DEA) and the polymerization of MAA in the presence of DEA have been studied. 13 refs., 3 figs., 4 tabs.

  13. pH-Responsive Polymer Conjugate of Pirarubicin With Styrene Maleic Acid Copolymer as a Potential Therapeutic for Ovarian Cancer.

    PubMed

    Liu, Lifeng; Sun, Jinghua; Yin, Hongzhuan; Fang, Jun; Jin, Xianyu

    2016-05-01

    Previous studies indicated the potential of styrene maleic acid copolymer (SMA)-conjugated pirarubicin (4'-O-tetrahydropyranyldoxorubicin [THP]) for targeted anticancer therapy based on the enhanced permeability and retention effect. In this study, to achieve further improved therapeutic efficacy, a pH-responsive SMA-conjugated THP-containing hydrazone bond (SMA-hyd-THP) was synthesized and evaluated in vitro and ex vivo using human ovarian cancer cells and tissues. SMA-hyd-THP showed good water solubility, forming micelles with a mean particle size of 48.0 nm, which is applicable for enhanced permeability and retention-based tumor accumulation. The THP loading in this preparation was 15% (wt/wt), and release rate of free THP from SMA-hyd-THP at physiological pH (7.4) was approximately 10% in 72 h. However, it increased rapidly at pH 6.5 (42%) and 5.5 (83%), which indicates that tumor environment of weak acidic condition (pH 6.5-6.9) is favorable for release of THP. This notion was partly proved by incubating SMA-hyd-THP with tumor tissues from ovarian cancer patients. In addition, release of THP was not affected by serum, suggesting that SMA-hyd-THP is relatively stable in circulation. Finally, SMA-hyd-THP showed much increased cytotoxicity against various ovarian cancer cells at acidic tumor pH (6.5). These findings may provide an option for targeted therapy against ovarian cancer. PMID:27020984

  14. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water. PMID:19269267

  15. Interpolymer complex between hydroxypropyl cellulose and maleic acid-styrene copolymer: phase behavior of semi-dilute solutions.

    PubMed

    Bumbu, Gina-Gabriela; Eckelt, John; Wolf, Bernhard A; Vasile, Cornelia

    2005-10-20

    The phase behavior of a water/hydroxypropyl cellulose/maleic acid-styrene copolymer (H2O/HPC/MAc-S) system was investigated in the semi-dilute range by turbidimetry, rheology, and optical microscopy. The two polymers under investigation form interpolymer complexes via hydrogen bonding. In the case of a total polymer concentration of cpol = 5 mg . mL(-1) a second phase segregates upon heating the homogeneous ternary system. By applying a constant shear rate (gamma = 50 s(-1)) the phase separation temperature of the system is 10-15 degrees C lower than for an unsheared one. For cpol = 10 mg . mL(-1) phase separation has already occurred at room temperature when the two binary polymer solutions are mixed. The distribution of the partners among the coexisting phases was examined by FT-IR spectroscopy. The stoichiometry of the interpolymeric complex (IPC) was estimated to be HPC/MAc-S = 40:60 (w/w) independent of cpol.

  16. Biosynthesis of Poly(3-Hydroxyalkanoic Acid) Copolymer from CO(inf2) in Pseudomonas acidophila through Introduction of the DNA Fragment Responsible for Chemolithoautotrophic Growth of Alcaligenes hydrogenophilus

    PubMed Central

    Yagi, K.; Miyawaki, I.; Kayashita, A.; Kondo, M.; Kitano, Y.; Murakami, Y.; Maeda, I.; Umeda, F.; Miura, Y.; Kawase, M.; Mizoguchi, T.

    1996-01-01

    Pseudomonas acidophila is a bacterial strain producing a poly(3-hydroxyalkanoic acid) (PHA) copolymer from low-molecular-weight organic compounds such as formate and acetate. The genes responsible for PHA production were cloned in cosmid pIK7 containing a 14.8-kb HindIII fragment of P. acidophila DNA. With the aim of developing a means of producing a PHA copolymer from CO(inf2), cosmid pIK7 was introduced into a polymer-negative mutant of the chemolithoautotrophic bacterium Alcaligenes eutrophus PHB(sup-)4. However, the recombinant strain produced a homopolymer of 3-hydroxybutyric acid (polyhydroxybutyric acid) from CO(inf2). Since it was thought that the composition of the accumulated polymer might depend not on the PHA biosynthetic genes but on the metabolism of the host strain, a recombinant plasmid, pFUS, containing the genes for chemolithoautotrophic growth of the hydrogen-oxidizing bacterium A. hydrogenophilus was introduced into P. acidophila by conjugation. The recombinant plasmid pFUS was stably maintained in P. acidophila in the absence of chemolithoautotrophic or antibiotic selection. This pFUS-harboring strain possessed the ability to grow under a gas mixture of H(inf2), O(inf2), and CO(inf2) in a mineral salts medium, and PHA copolymer accumulation was confirmed by nuclear magnetic resonance spectral analysis. A gas chromatogram obtained by gas chromatography-mass spectrometry showed the composition of the polymer to be 52.8% 3-hydroxybutyrate, 41.1% 3-hydroxyoctanoate, and 6.1% 3-hydroxydecanoate. This is the first report of the production of a PHA copolymer from CO(inf2) as sole carbon source. PMID:16535252

  17. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    NASA Astrophysics Data System (ADS)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  18. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica. PMID:26353492

  19. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.

  20. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  1. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research. PMID:26599076

  2. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) Triblock Copolymer and Oppositely Charged Surfactant

    NASA Astrophysics Data System (ADS)

    Peng, Zhiping; Sun, Yuelong; Liu, Xinxing; Tong, Zhen

    2010-01-01

    The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) (PAA- b-PEO- b-PAA) triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB) were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN) by turbidimetry, dynamic light scattering (DSL), ζ-potential measurement, and atomic force microscope (AFM). The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core-shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA- b-PEO- b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  3. Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer

    PubMed Central

    Shtykova, Eleonora V.; Huang, Xinlei; Gao, Xinfeng; Dyke, Jason C.; Schmucker, Abrin L.; Dragnea, Bogdan; Remmes, Nicholas; Baxter, David V.; Stein, Barry; Konarev, Peter V.; Svergun, Dmitri I.; Bronstein, Lyudmila M.

    2009-01-01

    Iron oxide nanoparticles (NPs) with diameters of 16.1, 20.5, and 20.8 nm prepared from iron oleate precursors were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD). The coating procedure exploited hydrophobic interactions of octadecene and oleic acid tails while hydrolysis of maleic anhydride moieties allowed the NP hydrophilicity. The PMAcOD nanostructure in water and the PMAcOD-coated NPs were studied using transmission electron microscopy, ζ-potential measurements, small-angle X-ray scattering, and fluorescence measurements. The combination of several techniques suggests that independently of the iron oxide core and oleic acid shell structures, PMAcOD encapsulates NPs, forming stable hydrophilic shells which withstand absorption of hydrophobic molecules, such as pyrene, without shell disintegration. Moreover, the PMAcOD molecules are predominantly attached to a single NP instead of self-assembling into the PMAcOD disklike nanostructures or attachment to several NPs. This leads to highly monodisperse aqueous samples with only a small fraction of NPs forming large aggregates due to cross-linking by the copolymer macromolecules. PMID:19194520

  4. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    DOE PAGES

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the

  5. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    SciTech Connect

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average

  6. Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a beta-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline.

    PubMed

    Wu, Shouguo; Wang, Taoling; Gao, Zongyong; Xu, Haihong; Zhou, Baineng; Wang, Chuanqin

    2008-07-15

    A beta-cyclodextrin (CD) modified copolymer membrane of sulfanilic acid (p-ASA) and N-acetylaniline (SPNAANI) on glassy carbon electrode (GCE) was prepared and used to determine uric acid (UA) in the presence of a large excess of ascorbic acid (AA) by differential pulse voltammetry (DPV). The properties of the copolymer were characterized by X-ray photoelectron spectra (XPS) and Raman spectroscopy. The oxidation peaks of AA and UA were well separated at the composite membrane modified electrode in phosphate buffer solution (PBS, pH 7.4). A linear relationship between the peak current and the concentration of UA was obtained in the range from 1.0 x 10(-5) to 3.5 x 10(-4)mol L(-1), and the detection limit was 2.7 x 10(-6)mol L(-1) at a signal-to-noise ratio of 3. Two hundred and fifty-fold excess of AA did not interfere with the determination of UA. The application of the prepared electrode was demonstrated by measuring UA in human serum samples without any pretreatment, and the results were comparatively in agreement with the spectrometric clinical assay method.

  7. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  8. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  9. Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers.

    PubMed

    Ostolska, Iwona; Wiśniewska, Małgorzata

    2015-06-15

    Disposal of the environmentally dangerous metal oxide suspensions from the waste water is an essential problem. The polymers adsorption can be one of the most effective and suitable methods. In the presented paper the ionic diblock copolymers impact on the Cr2O3 suspensions was investigated. The copolymer adsorption layers structure was determined on the basis of the adsorption and electrokinetic (surface charge density and zeta potential) tests. The polymers adsorption amount was measured using the static method from aqueous solutions. Additionally, the application of the turbidimetric method enabled determination of the interactions between the system constituents. Analysis of this data allows the estimation of the most probable stabilization (or destabilization) mechanism of the Cr2O3 suspensions in the presence of the studied macromolecular compounds. Hence, the Cr2O3 suspensions are unstable in the presence of the anionic copolymer at pH 3 and the cationic one in the alkaline medium. PMID:25746566

  10. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  11. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  12. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  13. Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Gogan, Oana Marilena

    2016-05-01

    This paper describes the use of artificial intelligence method in copolymer networks design. In the present study, we pursue a hybrid algorithm composed from two research themes in the genetic design framework: a Kohonen neural network (KNN), path (forward problem) combined with a genetic algorithm path (backward problem). The Tabu Search Method is used to improve the performance of the genetic algorithm path.

  14. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  15. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents. PMID:17613025

  16. 13-cis-retinoic acid in silicone-fluorosilicone copolymer oil in a rabbit model of proliferative vitreoretinopathy.

    PubMed

    Veloso, A A; Kadrmas, E F; Larrosa, J M; Sandberg, M A; Tolentino, F I; Refojo, M F

    1997-09-01

    The purpose of this study was to evaluate the effect of 13-cis-Retinoic Acid (RA) in Silicone-Fluorosilicone Copolymer Oil (SiFO) in a rabbit model of proliferative vitreoretinopathy (PVR). Rabbits underwent gas-compression vitrectomy. During gas-SiFO exchange, group 1 was injected with 1 ml (10 microg ml-1) 13-cis-RA in SiFO, group 2 with 1.5 ml (9 microg 1.5 ml-1) all-trans-RA in SiFO, group 3 with 1 ml SiFO alone, and group 4 with balanced salt solution (BSS). Groups 1-4 were also injected with 0.1 ml suspension of fibroblasts (75,000 0.1 ml-1) and 0.05 ml platelet rich plasma (70,000 0.1 ml-1), and were observed for 4 weeks. Group 5 was injected with SiFO alone, group 6 with 1 ml (10 microg ml-1) 13-cis-RA in SiFO, group 7 with 1.5 ml (9 microg 1.5 ml-1) all-trans-RA in SiFO, and group 8 with BSS. After 4 weeks, groups 5-7 underwent SiFO-BSS exchange. ERG and histopathology were performed to test for retinal toxicity in groups 5-8. The incidence of traction retinal detachment at 4 weeks was: group 1, 42.9%; group 2, 36.4%; group 3, 87.5%; and group 4, 88.9%. A significant difference in the incidence of PVR was noted between treated eyes (groups 1 and 2) and control eyes (groups 3 and 4) at 2, 3, and 4 weeks (P<0.05). No significant difference in the incidence of PVR was found between groups 1 and 2 during the same observation periods. ERG and histopathological studies showed no differences between the treated and the control fellow eyes (group 5-7) after 4 weeks. 13-cis-RA in SiFO (10 microg ml-1) is as effective as all-trans-RA in SiFO (9 microg 1.5 ml-1) in controlling the incidence of PVR when used for short term retinal tamponade and does not appear to be associated with retinal toxicity.

  17. 13-cis-retinoic acid in silicone-fluorosilicone copolymer oil in a rabbit model of proliferative vitreoretinopathy.

    PubMed

    Veloso, A A; Kadrmas, E F; Larrosa, J M; Sandberg, M A; Tolentino, F I; Refojo, M F

    1997-09-01

    The purpose of this study was to evaluate the effect of 13-cis-Retinoic Acid (RA) in Silicone-Fluorosilicone Copolymer Oil (SiFO) in a rabbit model of proliferative vitreoretinopathy (PVR). Rabbits underwent gas-compression vitrectomy. During gas-SiFO exchange, group 1 was injected with 1 ml (10 microg ml-1) 13-cis-RA in SiFO, group 2 with 1.5 ml (9 microg 1.5 ml-1) all-trans-RA in SiFO, group 3 with 1 ml SiFO alone, and group 4 with balanced salt solution (BSS). Groups 1-4 were also injected with 0.1 ml suspension of fibroblasts (75,000 0.1 ml-1) and 0.05 ml platelet rich plasma (70,000 0.1 ml-1), and were observed for 4 weeks. Group 5 was injected with SiFO alone, group 6 with 1 ml (10 microg ml-1) 13-cis-RA in SiFO, group 7 with 1.5 ml (9 microg 1.5 ml-1) all-trans-RA in SiFO, and group 8 with BSS. After 4 weeks, groups 5-7 underwent SiFO-BSS exchange. ERG and histopathology were performed to test for retinal toxicity in groups 5-8. The incidence of traction retinal detachment at 4 weeks was: group 1, 42.9%; group 2, 36.4%; group 3, 87.5%; and group 4, 88.9%. A significant difference in the incidence of PVR was noted between treated eyes (groups 1 and 2) and control eyes (groups 3 and 4) at 2, 3, and 4 weeks (P<0.05). No significant difference in the incidence of PVR was found between groups 1 and 2 during the same observation periods. ERG and histopathological studies showed no differences between the treated and the control fellow eyes (group 5-7) after 4 weeks. 13-cis-RA in SiFO (10 microg ml-1) is as effective as all-trans-RA in SiFO (9 microg 1.5 ml-1) in controlling the incidence of PVR when used for short term retinal tamponade and does not appear to be associated with retinal toxicity. PMID:9299179

  18. A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P).

    PubMed

    Kato, Dai-ichiro; Shirakawa, Daiki; Polz, Robin; Maenaka, Mika; Takeo, Masahiro; Negoro, Seiji; Niwa, Kazuki

    2014-12-01

    A simple reaction procedure for chemiluminescence of firefly luciferin (D-luc) using n-propylphosphonic anhydride (T3P) is reported. A luminescent photon is produced as a result of one-pot reaction, only requiring mixing with the substrate carboxylic acid and T3P in the presence of a mild organic base. PMID:25350893

  19. A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P).

    PubMed

    Kato, Dai-ichiro; Shirakawa, Daiki; Polz, Robin; Maenaka, Mika; Takeo, Masahiro; Negoro, Seiji; Niwa, Kazuki

    2014-12-01

    A simple reaction procedure for chemiluminescence of firefly luciferin (D-luc) using n-propylphosphonic anhydride (T3P) is reported. A luminescent photon is produced as a result of one-pot reaction, only requiring mixing with the substrate carboxylic acid and T3P in the presence of a mild organic base.

  20. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  1. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  2. Improved zein articles using polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing corn protein (zein) articles with improved physical properties and solvent resistance will have a beneficial impact on companies that use corn. The effect of using the crosslinking reagent polyethylenemaleic anhydride (PEMA) on the properties and solubility of zein articles were studied. ...

  3. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  4. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    PubMed

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product. PMID:26639519

  5. Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution.

    PubMed

    Wang, Hongfang; Wu, Cong; Xia, Guangmei; Ma, Zhi; Mo, Guang; Song, Rui

    2015-03-01

    In this paper, we have systematically investigated the aggregation behavior, confined crystallization and controlled growth of a novel polyolefin analogue-containing block copolymers (BCPs), i.e., polymethylene-b-poly(acrylic acid) diblock copolymers (PM-b-PAA). On cooling from a homogenous DMF solution at 80 °C, PM-b-PAA was found to crystallize and aggregate with well-defined disk-like micelles. The aggregate behavior and in-plane morphology of PM-b-PAA could be easily controlled by modifying the block ratio, solution pH and solvent composition (DMF-water), by manipulating the crystallization of PM block and the stretching degree of solvated PAA corona. Further investigation of the crystalline feature of PM-b-PAA indicated that the crystallization of PM was retarded by tethered amorphous PAA segments. The crystalline micelle could construct a nano-confined environment with PM folding as the core into a thickness of the mono-layered polyethylene. Finally, when cultured in dilute DMF solution at 50 °C, the initial crystalline micelles, being as self-seeds, could follow a living growth mechanism and develop into single crystals, with well-defined lozenge-shaped morphology.

  6. Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution.

    PubMed

    Wang, Hongfang; Wu, Cong; Xia, Guangmei; Ma, Zhi; Mo, Guang; Song, Rui

    2015-03-01

    In this paper, we have systematically investigated the aggregation behavior, confined crystallization and controlled growth of a novel polyolefin analogue-containing block copolymers (BCPs), i.e., polymethylene-b-poly(acrylic acid) diblock copolymers (PM-b-PAA). On cooling from a homogenous DMF solution at 80 °C, PM-b-PAA was found to crystallize and aggregate with well-defined disk-like micelles. The aggregate behavior and in-plane morphology of PM-b-PAA could be easily controlled by modifying the block ratio, solution pH and solvent composition (DMF-water), by manipulating the crystallization of PM block and the stretching degree of solvated PAA corona. Further investigation of the crystalline feature of PM-b-PAA indicated that the crystallization of PM was retarded by tethered amorphous PAA segments. The crystalline micelle could construct a nano-confined environment with PM folding as the core into a thickness of the mono-layered polyethylene. Finally, when cultured in dilute DMF solution at 50 °C, the initial crystalline micelles, being as self-seeds, could follow a living growth mechanism and develop into single crystals, with well-defined lozenge-shaped morphology. PMID:25608942

  7. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  8. Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly.

    PubMed

    Chen, Nusheng; Tong, Zhaohui; Yang, Weihua; Brennan, Anthony B

    2015-09-01

    Biocomposites with tunable properties were successfully prepared through ionic assembly between anionic carboxymethyl cellulose (CMC) and cationic copolymers (quaternized poly(l-lactide)-block-poly N,N-dimethylamino-2-ethyl methacrylate) (PLA-b-PDMAEMA). The quaternized PDMAEMA segment not only works as a compatibilizer between hydrophilic CMC and hydrophobic PLA, but also acts as a lubricant between these two rigid biopolymers. The (1)H NMR (nuclear magnetic resonance) spectra demonstrated successful synthesis of PLA-b-PDMAEMA with controlled molecular weight of PDMAEMA segment. The results from scanning electronic microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) verified the interaction between quaternized copolymer micelles and anionic CMC networks. The resultant biocomposite could form a transparent and uniform film after casting. Both storage moduli and maximum degradation temperature of PLA/CMC composites were increased with the reduction of molecular weight of PDMAEMA segments. It suggests that the properties of biocomposite materials can be tailored by adjusting the chain length of inclusive PDMAEMA segment. PMID:26005147

  9. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors

    PubMed Central

    Garbern, Jessica C.; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new sharply pH- and temperature-responsive hydrogel system was designed for delivering drugs to regions of local acidosis, as found in wound healing, tumor sites, or sites of ischemia. The reversible addition fragmentation chain transfer (RAFT) polymerization technique was used to synthesize copolymers of N-isopropylacrylamide (NIPAAM) and propylacrylic acid (PAA) with feed ratios of PAA between 0 and 20 mol %. The pH-responsive viscoelastic properties of these materials as a function of pH and temperature were quantified by rheometry. At physiologic pH (7.4) and 5 wt %, the polymer did not form gels, but rather remained soluble at temperatures as high as 50 °C. At lower pH values (pH ca. 5.5 and below) the polymer was liquid at 20 °C but exhibited a sol-gel phase transformation with increasing temperature and existed as a physical gel at 37 °C. Incorporation of the hydrophobic monomer, butyl acrylate, into the random copolymer raised the pH of gel formation to greater than 6.0 at 37 °C. Drug loading studies demonstrated that p(NIPAAm-co-PAA) hydrogels are able to maintain the bioactivity of basic fibroblast growth factor following storage in hydrogel for 40 h and can provide sustained pH-dependent release of vascular endothelial growth factor over a period of at least three weeks. This hydrogel system will thus gel at controllable acidic pH values upon injection, and is designed to undergo gradual dissolution as it performs its drug delivery function and the ischemic site returns to physiological pH. PMID:20509687

  10. Chemicals from coal - The Eastman experience. [Anhydride

    SciTech Connect

    Larkins, T.H.

    1986-03-01

    Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngas is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.

  11. Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within Intermixed Poly(4-hydroxystyrene)-block-poly(ethylene oxide) Block Copolymer.

    PubMed

    Matuszewska, Alicja; Uchman, Mariusz; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Pispas, Stergios; Kováčik, Lubomír; Štěpánek, Miroslav

    2015-12-14

    Coassembly behavior of the double hydrophilic block copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) with three amphiphilic phenylboronic acids (PBA) differing in hydrophobicity, 4-dodecyloxyphenylboronic acid (C12), 4-octyloxyphenylboronic acid (C8), and 4-isobutoxyphenylboronic acid (i-Bu) was studied in alkaline aqueous solutions and in mixtures of NaOHaq/THF by spin-echo (1)H NMR spectroscopy, dynamic and electrophoretic light scattering, and SAXS. The study reveals that only the coassembly of C12 with PHOS-PEO provides spherical nanoparticles with intermixed PHOS and PEO blocks, containing densely packed C12 micelles. NMR measurements have shown that spatial proximity of PHOS-PEO and C12 leads to the formation of ester bonds between -OH of PHOS block and hydroxyl groups of -B(OH)2. Due to the presence of PBA moieties, the release of compounds with 1,2- or 1,3-dihydroxy groups loaded in the coassembled PHOS-PEO/PBA nanoparticles by covalent binding to PBA can be triggered by addition of a surplus of glucose that bind to PBA competitively. The latter feature has been confirmed by fluorescence measurements using Alizarin Red as a model compound. Nanoparticles were proved to exhibit swelling in response to glucose as detected by light scattering.

  12. Responsive copolymers for enhanced petroleum recovery. Second annual report

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  13. Photocrosslinked poly(ester anhydride)s for peptide delivery: Effect of oligomer hydrophobicity on PYY3-36 delivery.

    PubMed

    Mönkäre, Juha; Hakala, Risto A; Kovalainen, Miia; Korhonen, Harri; Herzig, Karl-Heinz; Seppälä, Jukka V; Järvinen, Kristiina

    2012-01-01

    The treatment for many diseases can be improved by developing more efficient peptide delivery technologies, for example, biodegradable polymers. In this work, photocrosslinked poly(ester anhydride)s based on functionalized poly(ε-caprolactone) oligomers were investigated for their abilities to achieve controlled peptide delivery. The effect of oligomer hydrophobicity on erosion and peptide release from poly(ester anhydride)s was evaluated by developing a sustained subcutaneous delivery system for an antiobesity drug candidate, peptide YY3-36 (PYY3-36). Oligomer hydrophobicity was modified with alkenylsuccinic anhydrides containing a 12-carbon alkenyl chain. PYY3-36 was mixed as a solid powder with methacrylated poly(ester anhydride) precursors, and this mixture was photocrosslinked at room temperature to form an implant for subcutaneous administration in rats. The oligomer hydrophobicity controlled the polymer erosion and PYY3-36 release as the increased hydrophobicity via the alkenyl chain prolonged polymer erosion in vitro and sustained in vivo release of PYY3-36. In addition, photocrosslinked poly(ester anhydride)s increased the bioavailability of PYY3-36 by up to 20-fold in comparison with subcutaneous administration of solution, evidence of remarkably improved delivery. In conclusion, this work demonstrates the suitability of photocrosslinked poly(ester anhydride)s for use in peptide delivery.

  14. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.

    PubMed

    Seppälä, Jukka; Korhonen, Harri; Hakala, Risto; Malin, Minna

    2011-12-01

    Crosslinking is a feasible way to prepare biodegradable polymers with potential in biomedical applications such as controlled release of active agents and tissue engineering. A synthesis route in which functional telechelic aliphatic polyester oligomers are used as precursors for the preparation of crosslinked polyesters and poly(ester anhydride)s is described. Mechanical properties, degradation characteristics and rate, and bioactivity can be modified widely by controlling the chemical composition and architecture of the crosslinkable oligomers. In tissue engineering, photocrosslinking allows to use crosslinkable oligomers in advanced manufacturing techniques like micromolding in capillaries, stereolithography and two-photon polymerization. PMID:22052651

  15. Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides.

    PubMed

    Huerta-Angeles, Gloria; Bobek, Martin; Příkopová, Eva; Šmejkalová, Daniela; Velebný, Vladimír

    2014-10-13

    The present work describes a novel and efficient method of synthesis of amphiphilic hyaluronan (HA) by esterification with alkyl fatty acids. These derivatives were synthesized under mild aqueous and well controlled conditions using mixed aliphatic aromatic anhydrides. These anhydrides characterized by the general formula RCOOCOC6H2Cl3 can be easily prepared by the reaction of the corresponding fatty acid (R) with 2,4,6-trichlorobenzoyl chloride (TCBC) in the presence of triethylamine. The aliphatic aromatic anhydrides RCOOCOC6H2Cl3 then react with the polysaccharide and enable the synthesis of aliphatic acid esters of HA in good yields. No hydrolytic degradation of hyaluronic acid could be observed. Parameters controlling the degree of esterification were systematically studied. Fatty acids with different chain lengths can be introduced applying this methodology. The degree of substitution was decreasing with increasing length of hydrophobic chain. The reaction products were fully characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), SEC-MALLS and chromatographic analyses. Although the esterified HA products exhibited aggregation in solution as demonstrated by NMR, microscopy and rheology, they were still water-soluble.

  16. Thermoreversible copolymer gels for extracellular matrix.

    PubMed

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  17. Oil additive and telomer applications of 4-esters of trimellitic anhydride

    SciTech Connect

    Puskas, I.; Fields, E.K.; Piasek, E.J.

    1981-08-01

    Three methods for the selective 4-esterification of trimellitic anhydride (TMA) briefly reviewed are: (1) reaction of the acid chloride derivative of TMA with alcohols or phenols in the presence of stoichiometric quantities of a tertiary nitrogen base, (2) reaction between the carboxyl group of TMA and an ester of a low-boiling organic acid via a trans-acidolysis mechanism, and (3) thermal reaction of TMA with alcohols. A large number of esters prepared by these methods were evaluated as potential rust inhibitors in lubricating oils, and some differences in rust prevention were noted for esters resulting from the different modes of preparation. However, the data were in agreement that rust-preventing properties increase with increasing chain length in the ester moiety, and esters with more than 20 carbons in the chain performed excellently. The synthesis and applications of 4-tert-butyl pertrimellitate anhydride are described. The structure of the compound was also documented. (BLM)

  18. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  19. Construction of nanoparticles based on amphiphilic copolymers of poly(γ-glutamic acid co-L-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as a potential drug delivery carrier.

    PubMed

    Liu, Xiaoguang; Su, Shishuai; Wei, Fengxiang; Rong, Xianghui; Yang, Zhiwei; Liu, Junxing; Li, Mingjun; Wu, Yan

    2014-01-01

    A novel amphiphilic copolymer (γ-PGA-co-PLA-DPPE) containing poly(γ-glutamic acid) (γ-PGA), polylactide (PLA), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were characterized by Fourier-transform infrared spectroscopy (FT-IR), NMR ((1)H NMR, (13)C NMR, (31)P NMR), and thermogravimetric analysis (TGA). In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug, doxorubicin hydrochloride salt (DOX) was encapsulated into the copolymers nanoparticles (NPs) by double emulsion and nanoprecipitation methods. The influence of processing factors on encapsulation efficiency and particle size using double emulsion and nanoprecipitation technique were studied. In addition, the DOX-loaded NPs exhibited pH-dependent drug release profiles in vitro. The cumulative release of DOX-loaded NPs was much faster at pH 5.0 than that at pH 7.4. In vitro cytotoxicity test of DOX-loaded NPs against Hela and C666-1 cells demonstrated that DOX-loaded NPs exhibited effectively time-delayed cytotoxicity. Confocal laser scanning microscopy (CLSM) showed that DOX-loaded NPs accumulated mostly in lysosomes instead of cell nucleus, in contrast to free DOX. Therefore, the copolymer nanoparticles were proved to be an available carrier for anti-tumor drug delivery. PMID:24183430

  20. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  1. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  2. Vanadium-phosphorus-oxygen industrial catalysts for C/sub 4/ hydrocarbon selective oxidation to maleic anhydride

    SciTech Connect

    Wenig, R.W.

    1987-06-01

    The selective oxidation of n-butane to maleic anhydride by vanadium-phosphorus-oxygen (V-P-O) industrial catalysts varying in P-to-V ratio has been studied in a fixed bed integral reactor system. Catalyst characterization studies including x-ray diffraction, laser Raman spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, x-ray energy dispersive spectroscopy, and BET surface area measurements were used. A strong effect of P-to-V synthesis ratio on catalyst structure, catalyst morphology, vanadium oxidation state, and reactivity in n-butane selective oxidation was observed. A slight ''excess'' of catalyst phosphorus (P/V = 1.1 catalyst) was found to stabilize an active and selective (VO)/sub 2/P/sub 2/O/sub 7/ phase. The mechanism of n-butane selective oxidation to maleic anhydride was studied by in situ infrared spectroscopy using n-butane, 1-butene, 1,3-butadiene, crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride feeds. During paraffin selective oxidation, highly reactive olefin species and maleic acid were observed on the surfaces of V-P-O catalysts. Further evidence in support of conjugated or possibly strained olefin and maleic acid reaction intermediates in n-butane and 1-butene partial oxidation to maleic anhydride was gathered.

  3. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  4. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having...

  6. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  7. Histometric analysis of bone repair in bone-implant interface using a polylactic/polyglycolic acid copolymer associated with implants in rabbit tibia.

    PubMed

    Freire, Alexandre Rodrigues; Rossi, Ana Cláudia; Queiroz, Thallita Pereira; Gulinelli, Jéssica Lemos; Souza, Francisley Ávila; Margonar, Rogério; Garcia-Júnior, Idelmo Rangel; Hochuli-Vieira, Eduardo; Okamoto, Roberta

    2012-09-01

    The purpose of this study was to evaluate the association of the combination of polylactic/polyglycolic acid around implants installed with and without primary stability through the histometric analysis of bone-implant interface. We used male rabbits, each of which received 2 titanium implants in each tibial metaphysis. The animals were divided into 4 groups: control with primary stability (CPS), control without primary stability (C), polymer with primary stability (PPS), and polymer without primary stability (P). Euthanasia was performed at postoperative days 40 and 90. The pieces were embedded in resin, sectioned, scraped, and stained with alizarin red and Stevenel blue. Histometric analysis evaluated the linear extension of contact between the bone and implant surface on the implant collar (CIC) and contact between the bone and implant surface on the first thread (CFT). Also evaluated was the area of newly formed bone (ANB) in the first thread. The results showed that there was new bone formation in all groups and during all periods. At 40 days, the ANB was higher in the PPS group than in the P group (P < .001); the CFT was statistically higher in the CPS group than the PPS group (P < .001) and was higher in the CPS group than the C group (P < .001). At 40 and 90 days, the CIC was higher in the P group than in the C group (P < .001). In conclusion, the copolymer had biocompatibility, enhanced bone healing, and presented osteoconductive properties, thus raising the contact between bone and implant, even without primary stability.

  8. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface.

  9. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments.

  10. Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Ching; Tseng, Chien-Kai; Leu, Ing-Yih; Wu, Wen-Jong; Shih-Yuan Lee, Adam; Lee, Chih-Kung

    2010-05-01

    Recent uses of flexible electret loudspeakers in futuristic applications have garnered much interest for these novel loudspeakers. In this paper, a novel thin film processing method was developed to improve the performance of an electret diaphragm. This paper discusses the relationship between the charge storage and the additive concentration. A cyclic olefin copolymer (COC) thin film containing an additive such as 2-(6-mercaptohexyl) malonic acid was prepared using a spin-coating process. Furthermore, attention was directed towards the processing conditions which were found to have an important role and are related to the self-assembly and micelle formation behavior of the additives in the COC. In the present study, thin films of 13 µm thickness were charged by a corona method. Compared with a reference thin film of pure COC, results indicated that when a 3497 mg kg - 1 additive was added to the COC matrix, the obtained surface potential was 71% higher. Thus, the results show that a COC + additive thin film leads to a much improved charge storage. It appears to be an inexpensive and relatively easy way to form a thin structure for developing novel flexible electret loudspeakers.

  11. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. PMID:26686158

  12. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    The RNA world hypothesis seems to be inconsistent with the hydrothermal origin of life. RNA molecules become unstable and could not show biological functions preserving genetic information and enzymatic abilities at high temperatures. According to our studies, it was deduced that the main reason of the low efficiency of the prebiotic oligonucleotide formation at high temperatures is due to the weak association between an elongating oligonucleotide with an activated nucleotide monomer. This suggests that the emergence of the RNA world composed from entirely RNA molecules is difficult at over 100 °C. Thus, it is important to evaluate the contribution of additional molecules, such as protein-like molecules, metal ions, and minerals to the construction of an RNA world. We have studied the cooperative chemical evolution of RNA with thermal copolymers of amino acids (TCAA) and the catalytic and inhibitory activities were examined for the prebiotic degradation and formation of RNA. TCAA involving Gly, Ala, Glu, Asp showed (1) enhancement of the formation of pyrophospho-linked oligoguanylate, (2) weak catalysis for the hydrolysis of phosphodiester bond, (3) protection from the catalytic cleavage of RNA by Ce(III), Eu(III), Fe(III) ions, and (4) acceleration of the degradation of the activated nucleotide monomer with TCAA involving His.

  13. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  14. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  15. Process for the production of maleic anhydride

    SciTech Connect

    Click, G.T.; Barone, B.J.

    1986-06-24

    A process is described for the vapor phase oxidation of hydrocarbons having 4 carbon atoms to produce maleic anhydride comprising contacting the hydrocarbons with a fixed bed vanadium-phosphorus-oxygen catalyst, containing P:V in an atomic ration of 1/2 to 3:1 whereby the catalyst gradually decreases in selectivity, wherein the improvement comprises contacting the catalyst with phosphorus compound of phosphorus halide, phosphorus oxyhalide, organic phospines, organic phosphites, organic phosphates or mixtures thereof at a temperature in the range of about 0/sup 0/ to 600/sup 0/C and thereafter contacting the catalyst with a flow of stream at a temperature in the range of 300/sup 0/ to 600/sup 0/C in an amount and for a sufficient duration whereby the catalyst is regenerated.

  16. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA–MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA–MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA–DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  17. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  18. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy.

    PubMed

    Yan, Tingsheng; Li, Dalong; Li, Jiwei; Cheng, Feng; Cheng, Jinju; Huang, Yudong; He, Jinmei

    2016-09-01

    A glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer (PCL-SS-CTS-GA) micelle was developed for the co-delivery of doxorubicin (DOX) and curcumin (CCM) to hepatoma cells. Glycyrrhetinic acid (GA) was used as a targeting unit to ensure specific delivery. Co-encapsulation of DOX and CCM was facilitated by the incorporation of poly(ε-caprolactone) (PCL) groups. The highest drug loading content was 19.8% and 8.9% (w/w) for DOX and CCM, respectively. The PCL-SS-CTS-GA micelle presented a spherical or ellipsoidal geometry with a mean diameter of approximately 110nm. The surface charge of the micelle changed from negative to positive, when the pH value of the solution decreased from 7.4 to 6.8. Meanwhile, it also exhibited a character of redox-responsive drug release and GA/pH-mediated endocytosis in vitro. In simulated body fluid with 10mM glutathione, the release rate in 12h was 80.6% and 67.2% for DOX and CCM, respectively. The cell uptake of micelles was significantly higher at pH 6.8 than pH 7.4. The combined administration of DOX and CCM was facilitated by PCL-SS-CTS-GA micelle. Results showed that there was strong synergic effect between the two drugs. The PCL-SS-CTS-GA micelle might turn into a promising and effective carrier for improved combination chemotherapy. PMID:27281238

  19. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride.

    PubMed

    Vitturi, Dario A; Minarrieta, Lucia; Salvatore, Sonia R; Postlethwait, Edward M; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R; Freeman, Bruce A; Schopfer, Francisco J

    2015-07-01

    The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2(-)) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2(-) and LC-MS/MS analysis of products reveals that NO2(-) also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide ((•)NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of (•)NO and NO2(-) shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2(-) propagation of (•)NO signaling and the regulation of both biomolecule function and signaling network activity via NO2(-)-dependent nitrosation and nitration reactions.

  20. Process for the continuous separation of maleic anhydride from process gases

    SciTech Connect

    Ceisel, S.C.; Conrad, J.F.; Lestan, E.M.; Nelson, A.P.

    1990-07-17

    This patent describes a process for recovery of maleic anhydride from a gaseous mixture of a reactor effluent gas stream containing maleic anhydride. It comprises: contacting the mixture with maleic anhydride in a gas phase wherein the maleic anhydride is injected into a gas stream effluent from an oxidation reactor. The gas stream effluent is at a temperature of from about 200{degrees}F. to about 350{degrees}F., and maleic anhydride is recovered in a condenser.

  1. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  2. Health and Environmental Effects Profile for maleic anhydride

    SciTech Connect

    Not Available

    1986-07-01

    The Health and Environmental Effects Profile for maleic anhydride was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human-health, aquatic-life, and environmental effects of hazardous-waste constituents. Maleic anhydride has been determined to be a systemic toxicant. An Acceptable Daily Intake (ADI), for maleic anhydride is 0.10 mg/kg/day for oral exposure. The Reportable Quantity (RQ) value for maleic anhydride is 100.

  3. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  4. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  5. Fluorescence quenching and electron transfer in water-soluble copolymers of methacrylic acid and vinylperylene or N-(10-(4-aminonaphthalimide))-2-methylacrylamide

    SciTech Connect

    Stramel, R.D.; Webber, S.E.; Rodgers, M.A.J. )

    1988-11-17

    Copolymers of methacrylic acid and vinylperylene or N-(10-(4-aminonaphthalimide))-2-methacrylamide (ANI) have been prepared, and the fluorescence spectroscopy of the polymers has been studied in aqueous solution. Methylviologen (MV{sup 2+}) and sulfonated propylviologen (SPV) quench the fluorescence of the chromophores, resulting in charge-separated products at low pH. Yields of the reduced viologens sensitized by perylene are 0.41 and 0.36 for SPV and MV{sup 2+}, respectively. For ANI these values are 0.18 and 0.07. Recombination of the charge-separated ions occurs via a second-order process: k{sub MV{center dot}{sup +}}/PER{center dot}{sup +} = (2.1 {plus minus} 0.5) {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}; k{sub SPV{center dot}{sup {minus}}}/PER{center dot}{sup +} = (8.0 {plus minus} 3) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}; k{sub MV{center dot}{sup +}}/ANI{center dot}{sup +} = (9.0 {plus minus} 0.5) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}; k{sub SPV{center dot}{sup {minus}}}/ANI{center dot}{sup +} = (1.1 {plus minus} 0.1) {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1} (all in oxygen-free solution).

  6. Effects of mechanical loading on the degradability and mechanical properties of the nanocalcium-deficient hydroxyapatite–multi(amino acid) copolymer composite membrane tube for guided bone regeneration

    PubMed Central

    Duan, Hong; Yang, Hongsheng; Xiong, Yan; Zhang, Bin; Ren, Cheng; Min, Li; Zhang, Wenli; Yan, Yonggang; Li, Hong; Pei, Fuxing; Tu, Chongqi

    2013-01-01

    Background and methods Guided bone regeneration (GBR) is a new treatment for bone defects, and the property of membrane is critical to the success of GBR. This study focuses on a novel membrane tube for GBR, which was prepared by a nanocalcium-deficient hydroxyapatite–multi(amino acid) copolymer (n-CDHA-MAC) composite. The biomechanical strength and degradability of this membrane tube under mechanical loading after immersion in phosphate-buffered solution were investigated to evaluate the effects of mechanical loading on the membrane tube. The membrane-tube group with no mechanical loading and femora bone were used as controls. Results The compressive strength and bending strength of n-CDHA-MAC membrane tubes were 66.4 ± 10.2 MPa and 840.7 ± 12.1 MPa, which were lower than those of the goats’ femoral bones (69.0 ± 5.5 MPa and 900.2 ± 17.3 MPa), but there were no significant (P > 0.05) differences. In the in vitro degradability experiment, all membrane tubes were degradable and showed a surface-erosion degradation model. The PH of solution fluctuated from 7.2 to 7.5. The weight and mechanical strength of loaded tubes decreased more quickly than nonloaded ones, with significant differences (P < 0.05). However, the strength of the loaded group after degradation achieved 20.4 ± 1.2 MPa, which was greater than the maximum mechanical strength of 4.338 MPa based on goat femoral middle stationary state by three-dimensional finite-element analysis. Conclusions n-CDHA-MAC membrane tubes have good biomechanical strength during degradation under mechanical loading. Therefore, this membrane tube is an ideal GBR membrane for critical size defects of long bones in goats for animal experiments. PMID:23946651

  7. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent.

    PubMed

    Prashant, Chandrasekharan; Dipak, Maity; Yang, Chang-Tong; Chuang, Kai-Hsiang; Jun, Ding; Feng, Si-Shen

    2010-07-01

    We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized. The transmission electron microscopy (TEM) showed direct visual evidence for the well dispersed distribution of the IOs within the NPs. We further investigated the biocompatibility and cellular uptake of the IOs-PNPs in vitro with MCF-7 breast cancer cells and NIH-3T3 mouse fibroblast in close comparison with the commercial IOs imaging agent Resovist. MRI imaging was further carried out to investigate the biodistribution of the IOs formulated in the IOs-PNPs, especially in the liver to understand the liver clearance process, which was also made in close comparison with Resovist. We found that the PLA-TPGS NPs formulation at the clinically approved dose of 0.8 mg Fe/kg could be cleared within 24 h in comparison with several weeks for Resovist. Xenograft tumor model MRI confirmed the advantages of the IOs-PNPs formulation versus Resovist through the enhanced permeation and retention (EPR) effect of the tumor vasculature. PMID:20434210

  8. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  9. Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): a bioactive copolymer for specific targeting to folate receptor-positive cancer cells.

    PubMed

    Chen, Yin; Cao, Wenbin; Zhou, Junli; Pidhatika, Bidhari; Xiong, Bin; Huang, Lu; Tian, Qian; Shu, Yiwei; Wen, Weijia; Hsing, I-Ming; Wu, Hongkai

    2015-02-01

    In this study, we present the preparation, characterization and application of a novel bioactive copolymer poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA), which has a specific interaction with folate receptor (FR)-positive cancer cells. Glass surface immobilized with PLL-g-PMOXA-c-FA was demonstrated to be adhesive to FR-positive cancer cells (HeLa, JEG-3) while nonadhesive to FR-negative ones (MCF-7, HepG2) in 3 h. The specific interaction between conjugated FA on the substrate and FRs on the cells could hardly be inhibited unless a high concentration (5 mM) of free FA was used due to the multivalent nature of it. The FA functionality ratio of the copolymer on the substrate had a significant influence on the adhesion of HeLa cells, and our experiments revealed that the affinity of the substrate to the cells declined dramatically with the decrease of functionality ratio. This was believed to be caused by the polydispersity of PMOXA tethers, as supported by GPC and ToF-SIMS data. As a proof of concept in the application of our material, we demonstrated successful recovery of HeLa cells from mixture with MCF-7 (1:100) on the copolymer-coated glass, and our results showed that both high sensitivity (95.6 ± 13.3%) and specificity (24.3 ± 8.6%) were achieved.

  10. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  11. Ex vivo bioadhesion and in vivo testosterone bioavailability study of different bioadhesive formulations based on starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures.

    PubMed

    Ameye, D; Voorspoels, J; Foreman, P; Tsai, J; Richardson, P; Geresh, S; Remon, J P

    2002-02-19

    Starch-g-poly(acrylic acid) copolymers or grafted starches synthesized by 60Co irradiation or chemical modification and co-freeze-dried starch/poly(acrylic acid) mixtures were evaluated on their ex vivo bioadhesion capacity. The buccal absorption of testosterone from a bioadhesive tablet formulated with the grafted starches or starch/poly(acrylic acid) mixtures was investigated. The results were compared to a reference formulation (physical mixture of 5% Carbopol 974P and 95% Drum Dried Waxy Maize). Rice starch-based irradiated grafted starches showed the best bioadhesion results. Partial neutralization of the acrylic acid with Ca(2+) ions resulted in significantly higher bioadhesion values compared to the reference. Ca(2+) and Mg(2+) partially neutralized maltodextrin-based irradiated grafted starches showed significantly higher bioadhesion values compared to the reference formulation. The chemically modified grafted starches showed significantly higher adhesion force values than for the reference tablet. None of the co-freeze-dried starch/poly(acrylic acid) mixtures showed significantly higher bioadhesion results than the reference (Bonferroni test, P<0.05). A chemically modified grafted starch could sustain the 3 ng/ml plasma testosterone target concentration during +/- 8 h (T(>3 ng/ml)). By lyophilization of a partially neutralized irradiated grafted starch, the in vivo adhesion time (22.0 +/- 7.2 h) and the T(>3 ng/ml) (13.5 +/- 1.3 h) could be increased. The absolute bioavailability of the lyophilized formulation approached the reference formulation. Some of the grafted starches showed to be promising buccal bioadhesive drug carriers for systemic delivery. PMID:11853929

  12. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  13. Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    PubMed Central

    Koch, Liat; Lodin, Anat; Herold, Inbal; Ilan, Micha; Carmeli, Shmuel; Yarden, Oded

    2014-01-01

    The fungus Aspergillus tubingensis (strain OY907) was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1) as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively) and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function. PMID:25257783

  14. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  15. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes.

  16. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  17. Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties.

    PubMed

    Gamazo, C; Bussmann, H; Giemsa, S; Camacho, A I; Unsihuay, Daisy; Martín-Arbella, N; Irache, J M

    2015-12-30

    Understanding how nanoparticles are formed and how those processes ultimately determine the nanoparticles' properties and their impact on their capture by immune cells is key in vaccination studies. Accordingly, we wanted to evaluate how the previously described poly (anhydride)-based nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (NP) interact with macrophages, and how this process depends on the physicochemical properties derived from the method of preparation. First, we studied the influence of the desolvation and drying processes used to obtain the nanoparticles. NP prepared by the desolvation of the polymers in acetone with a mixture of ethanol and water yielded higher mean diameters than those obtained in the presence of water (250nm vs. 180nm). In addition, nanoparticles dried by lyophilization presented higher negative zeta potentials than those dried by spray-drying (-47mV vs. -35mV). Second, the influence of the NP formulation on the phagocytosis by J774 murine macrophage-like cell line was investigated. The data indicated that NPs prepared in the presence of water were at least three-times more efficiently internalized by cells than NPs prepared with the mixture of ethanol and water. Besides, lyophilized nanoparticles appeared to be more efficiently taken up by J744 cells than those dried by spray-drying. To further understand the specific mechanisms involved in the cellular internalization of NPs, different pharmacological inhibitors were used to interfere with specific uptake pathways. Results suggest that the NP formulations, particularly, nanoparticles prepared by the addition of ethanol:water, are internalized by the clathrin-mediated endocytosis, rather than caveolae-mediated mechanisms, supporting their previously described vaccine adjuvant properties.

  18. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    solvent removal of homopolymer PEO or PMMA. Second, we have incorporated a center block that is photodegradable by ultra violet radiation into PS- b-PMMA-b-PEO copolymers. Third, a tritylether junction was placed between the two blocks, which is cleavable by exposure to trifluoroacetic acid vapor. Though the use of solvents in block copolymer thin films, were are able to markedly enhance the long range lateral ordering block copolymer films. Also, routes to sectorize surfaces to confine and direct the copolymer microdomains are shown. Also, three methods to generate nanoporous films from PS-b-PEO based copolymers are demonstrated. All of these results are important in the realization of addressable media from block copolymer nanolithography.

  19. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-01

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride.

  20. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-01

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride. PMID:26073302

  1. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  2. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  3. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    PubMed

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  4. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight.

  5. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. PMID:25563938

  6. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  7. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  8. Thermochemistry of diphenic anhydride. A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Agostinha, M.; Matos, R.; Miranda, Margarida S.; Pinto, Natália A. B.; Morais, Victor M. F.; Dhananjaya, N.; Liebman, Joel F.

    The standard (p° = 0.1 MPa) molar enthalpy of formation for solid and gaseous diphenic anhydride (2,2'-biphenyldicarboxylic anhydride, dibenz[c,e]oxepin-5,7-dione) was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry, and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry: -(258.4 ± 4.9) kJ mol-1. In addition, ab initio and density functional theory calculations have been performed at a variety of levels. The degree of aromaticity of diphenic anhydride is discussed in the context of other oxygen-containing (ring and keto) heterocycles and related carbocycles: this species is surprisingly destabilized.

  9. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  10. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  11. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  12. Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides

    PubMed Central

    Liu, Ziwei; Rigger, Lukas; Rossi, Jean-Christophe; Sutherland, John D.; Pascal, Robert

    2016-01-01

    5(4H)-Oxazolones can be formed through the activation of acylated α-amino acids or of peptide C termini. They constitute potentially activated intermediates in the abiotic chemistry of peptides that preceded the origin of life or early stages of biology and are capable of yielding mixed carboxylic-phosphoric anhydrides upon reaction with phosphate esters and nucleotides. Here, we present the results of a study aimed at investigating the chemistry that can be built through this interaction. As a matter of fact, the formation of mixed anhydrides with mononucleotides and nucleic acid models is shown to take place at positions involving a mono-substituted phosphate group at the 3’- or 5’-terminus but not at the internal phosphodiester linkages. In addition to the formation of mixed anhydrides, the subsequent intramolecular acyl or phosphoryl transfers taking place at the 3’-terminus are considered to be particularly relevant to the common prebiotic chemistry of α-amino acids and nucleotides. PMID:27534830

  13. Shape Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/Hydroxyapatite Composites

    PubMed Central

    Kutikov, Artem B.; Reyer, Kevin A.

    2015-01-01

    Biodegradable polymer/hydroxyapatite (HA) composites are desired for skeletal tissue engineering. When engineered with thermal-responsive shape memory properties, they may be delivered in a minimally invasive temporary shape and subsequently triggered to conform to a tissue defect. Here we report the shape memory properties of thermoplastic amphiphilic poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA, 120 kDa) and HA-PELA composites. These materials can be cold-deformed and stably fixed into temporary shapes at room temperature and undergo rapid shape recovery (< 3 s) at 50 °C. Stable fixation (>99% fixing ratio) of large deformations is achieved at −20 °C. While the shape recovery from tensile deformations slows with higher HA contents, all composites (up to 20 wt% HA) achieve high shape recovery (>90%) upon 10-min equilibration at 50 °C. The permanent shapes of HA-PELA can be reprogramed at 50 °C, and macroporous shape memory scaffolds can be fabricated by rapid prototyping. PMID:26457046

  14. Optoelectronics using block copolymers.

    SciTech Connect

    Botiz, I.; Darling, S. B.; Center for Nanoscale Materials

    2010-05-01

    Block copolymers, either as semiconductors themselves or as structure directors, are emerging as a promising class of materials for understanding and controlling processes associated with both photovoltaic energy conversion and light emitting devices.

  15. Biodegradable tri-block copolymer poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a non-viral vector to enhance gene transfection.

    PubMed

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-02-23

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.

  16. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  17. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  18. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  19. Preparation, characterization and antibacterial activity of octenyl succinic anhydride modified inulin.

    PubMed

    Zhang, Xiaoyun; Zhang, Ye-Wang; Zhang, Hongyin; Yang, Qiya; Wang, Haiying; Zhang, Guochao

    2015-01-01

    Octenyl succinic anhydride modified inulin (In-OSA) was synthesized via chemical modification of inulin with octenyl succinic anhydride (OSA). The esterification of inulin with OSA was confirmed by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and degree of substitution (DS) calculation. Antibacterial activity of In-OSA against Staphylococcus aureus and Escherichia coli was investigated by minimum inhibitory concentration (MIC) and inhibition rate determination. The results showed that inhibition rates against both E.coli and S. aureus increased with the increase of the In-OSA concentration. And the MICs against E. coli and S. aureus were 1% and 0.5% (w/v), respectively. The antibacterial mechanism was analyzed with the results of the proteins and nucleic acids leakage, SEM and negative staining transmission electron microscopy (TEM). Both the leakages of proteins and nucleic acids increased with the increase of the In-OSA concentration. The leakage occurred mainly in the early stage which indicated that cell membrane and wall were destroyed by In-OSA quickly. The images of SEM and negative staining TEM suggested that the cell membranes and cell walls of S. aureus were damaged more severely and even destroyed completely; but only pores appeared on the surface of E. coli.

  20. Conjugation of succinic acid to non-ionogenic amphiphilic polymers modulates their interaction with cell plasma membrane and reduces cytotoxic activity.

    PubMed

    Bondar, O V; Sagitova, A V; Badeev, Y V; Shtyrlin, Y G; Abdullin, T I

    2013-09-01

    Pluronic block copolymers L61 and L121 were reacted with succinic anhydride to produce, respectively, their mono- and bisderivatives with succinic acid. The critical micelle concentration of Pluronics decreased after modification. The modification of Pluronic L61 promoted its association with the plasma membrane of human cells and increased membrane damage, while the membranotropic activity of modified Pluronic L121 reduced compared to the initial copolymer. Modified Pluronics interfered with the viability, apoptosis induction and metabolism of A549 cells and skin fibroblasts to a much lesser extent presumably due to the introduction of succinic acid residue inhibited intracellular penetration of copolymers. Modified Pluronic L121 promoted the cellular uptake of doxorubicin and rhodamine 123 in A549 cells attributed to the inhibition of membrane P-glycoprotein. Our study provides an approach to assessing the mechanism of interaction of amphiphilic polymers with living cells and demonstrates that Pluronic-succinic acid conjugates can be used as safe and efficient modulators of intracellular drug delivery.

  1. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend

    NASA Astrophysics Data System (ADS)

    Tan, Xiumin

    2014-05-01

    A novel method to prepare maleic anhydride grafting onto poly (propylene) (PP-g-MAH) was described. It was performed by γ-irradiation in solid state via ultrafine blend in the absence of any initiator and the grafting mechanism was proposed based on the experimental results. First, ultrafine blend of MAH and PP was prepared through ultrasonic initiation in melt state and then cooled rapidly. Second, the blend was radiated by γ-irradiation in the circumstance of atmosphere. Effects of irradiation dose and MAH concentration on the amount of grafted MAH were investigated. Compared with the conventional solid-state radiation grafting method, PP-g-MAH obtained via this method shows a higher graft rate of MAH. This novel method also has the advantages of solventless, energy efficient, low cost and simple operation. Furthermore, it is very easy to get purified products. The molecular structures of grafted copolymer were characterized by Fourier-transform infrared spectroscopy. Differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscope were used to determine the degree of crystallinity and crystalline structure.

  2. Novel fluoro copolymers for 157-nm photoresists: a progress report

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Hien, Stefan; Eschbaumer, Christian; Rottstegge, Joerg; Sebald, Michael

    2002-07-01

    Several fluoro-substituted polymers consisting of acid cleavable methacryoic or cinnamic acid tert.-butyl ester compounds copolymerized with maleic acid anhydride derivatives were synthesized by radical copolymerization. Vacuum ultraviolet transmission measurements of the samples reveal absorbances down to 5micrometers -1 despite of the strongly absorbing anhydride moiety which serves as silylation anchor for the application of the Chemical Amplification of Resist Lines (CARL) process, one of the promising approaches for sub-90nm pattern fabrication. Some of the samples exhibit resolutions down to 110nm dense at 157nm exposure using an alternating phase shift mask. The feasibility of the CARL principle including the silylation reaction after development has been demonstrated with selected fluorinated polymer samples.

  3. Rheological studies on the reaction of zein with polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There continues to be interest in developing solvent-resistant articles from biobased renewable materials to successfully complete with petro-chemical products. It was previously shown that reaction of zein with polyethylenemaleic anhydride (PEMA) provides articles that are solvent-resistant. The ge...

  4. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  5. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-07-08

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation.

  6. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  7. In situ FTIR study of n-butane selective oxidation to maleic anhydride on V-P-O catalysts

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1986-11-20

    The selective oxidation of n-butane to maleic anhydride on vanadium-phosphorus-oxygen (V-P-O) catalysts having P to V ratios of 0.9, 1.0, and 1.1 was studied by transmission infrared spectroscopy. Catalysts were exposed to mixtures of 1.5% n-butane in air at temperatures from 100 to 500/sup 0/C. Adsorbed n-butane, maleic anhydride, and carbon oxide species were observed on the catalyst surfaces. In addition, adsorbed maleic acid and highly reactive olefinic species could be detected. The nature of the adsorbed species present on the catalyst surface was dependent on the catalyst phosphorus loading, the reaction temperature, and the time of exposure under reaction conditions.

  8. DIMETHYLTHIOARSINIC ANHYDRIDE: A STANDARD FOR ARSENIC SPECIATION

    EPA Science Inventory

    Dimethylthioarsinic acid (DMTAV) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because ...

  9. Polysaccharide based Copolymers as Supramolecular Systems in Biomedical Applications.

    PubMed

    Célia Monteiro de Paula, Regina; Andrade Feitosa, Judith Pessoa; Beserra Paula, Haroldo César

    2015-01-01

    Polysaccharides are natural polymers, obtained from a large variety of sources ranging from fungi to more complex organisms such as birds and whales. Their use for pharmaceutical and biomedical applications has been the subject of numerous researches by the world´s academia. Polysaccharide chemical/physical modifications leading to graft copolymers are discussed in this review, focusing on those nanosystems that are potential candidates for drug delivery applications. Therefore, this review focuses on the biomedical application of polysaccharide based copolymers, particularly as nanocarriers. Copolymer of polysaccharides such as alginate, cellulose, chitosan, dextran, guar, hyaluronic acid, pullulan and starch as drug delivery nanocarriers will be discussed. PMID:26424388

  10. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.

    PubMed

    Bronstein, Lyudmila M; Shtykova, Eleonora V; Malyutin, Andrey; Dyke, Jason C; Gunn, Emily; Gao, Xinfeng; Stein, Barry; Konarev, Peter V; Dragnea, Bogdan; Svergun, Dmitri I

    2010-12-23

    Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the -MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all -MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation.

  11. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate.

  12. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  13. Lysine adducts between methyltetrahydrophthalic anhydride and collagen in guinea pig lung.

    PubMed

    Jönsson, B A; Wishnok, J S; Skipper, P L; Stillwell, W G; Tannenbaum, S R

    1995-11-01

    The formation of adducts between methyltetrahydrophthalic anhydride (MTHPA), an important industrial chemical and potent allergen, and collagen from guinea pig lung tissue was investigated. Collagen peptides were obtained from the lung tissue by homogenization, defatting, washing, and digestion with collagenase. In experiments in vitro, lung tissue was exposed to 8.4 mumol (50 microCi) of 14C MTHPA. The amount of adducts was 97 nmol MTHPA/g of wet tissue as determined from the bound radioactivity. In a study in vivo, four guinea pigs were injected intratracheally with 8.4 mumol of 14C MTHPA each. The amount of adducts was 0-1.2 nmol MTHPA/g of wet tissue (determined by bound radioactivity). N epsilon-methyltetrahydrophthaloyl-L-lysine (MTHPL) was synthesized and characterized by NMR, UV, and mass spectrometry (MS). A method to analyze MTHPL, after derivatization with methanol and pentafluorobenzoyl chloride, using gas chromatography-MS was developed. Analysis of Pronase-digested MTHPA-exposed lung tissue showed a concentration of 19 nmol MTHPL/g wet lung in vitro and between 0 and 0.15 nmol MTHPL/g wet lung in vivo. Thus, 20% in vitro and 12-15% in vivo of the bound radioactivity was found as adducts with lysine. These results are a first step toward studies of allergenic epitopes in proteins and methods for biological monitoring of exposure to acid anhydrides.

  14. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  15. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    SciTech Connect

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-06-30

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  16. Maleic anhydride catalysts and process for their manufacture

    SciTech Connect

    Haddad, M.S.; Meyers, B.L.; Eryman, W.S.

    1990-06-12

    This patent describes a catalyst for the production of maleic anhydride by the oxidation of a member of the group consisting of benzene, butane, butene and butadiene. It comprises a phosphorus-vanadium-mixed oxide and exists in the form of geometric shapes, the shapes having been heated in an inert atmosphere at a temperature of about 650{degrees} to about 1300{degrees} F. prior to being exposed to an oxygen-containing gas at an elevated temperature.

  17. Use fluid bed reactor for maleic anhydride from butane

    SciTech Connect

    Arnold, S.C.; Neri, A.; Suciu, G.D.; Verde, L.

    1985-09-01

    A new process is described that incorporates three major improvements over the conventional air oxidation of benzene in a fixed-bed reactor system. The new ALMA Process was developed jointly by Alusuisse Italia and Lummus Crest. It includes the following process improvements: n-Butane feedstock, fluidized-bed reactor system, and a continuous maleic anhydride recovery system using an organic solvent. A summary of the process is given, as well as the steps in its development and its economic advantages.

  18. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  19. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  20. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  1. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  2. Biodegradable Tri-Block Copolymer Poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a Non-Viral Vector to Enhance Gene Transfection

    PubMed Central

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-01-01

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo. PMID:21541064

  3. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  4. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  5. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    SciTech Connect

    Qin, C.; Ding, Y.P.

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  6. Oligoaniline-containing supramolecular block copolymer nanodielectric materials.

    PubMed

    Hardy, Christopher G; Islam, Md Sayful; Gonzalez-Delozier, Dioni; Ploehn, Harry J; Tang, Chuanbing

    2012-05-14

    We report a new generation of nanodielectric energy storage materials based on supramolecular block copolymers. In our approach, highly polarizable, conducting nanodomains are embedded within an insulating matrix through block copolymer microphase separation. An applied electric field leads to electronic polarization of the conducting domains. The high interfacial area of microphase-separated domains amplifies the polarization, leading to high dielectric permittivity. Specifically, reversible addition fragmentation transfer (RAFT) polymerization was used to prepare block copolymers with poly(methyl acrylate) (PMA) as the insulating segment and a strongly acidic dopant moiety, poly-(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), as the basis for the conducting segment. The PAMPSA block was complexed with an oligoaniline trimer to form a dopant-conjugated moiety complex that is electronically conductive after oxidation. For the undoped neat block copolymers, the increase of the PMA block length leads to a transition in dielectric properties from ionic conductor to dielectric capacitor with polarization resulting from migration of protons within the isolated PAMPSA domains. The oligoaniline-doped copolymers show remarkably different dielectric properties. At frequencies above 200 kHz, they exhibit characteristics of dielectric capacitors with much higher permittivity and lower dielectric loss than the corresponding undoped copolymers. PMID:22331602

  7. Nanopatterning of Viruses and Proteins Using Microphase Separated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur; Lewandowski, Angela; Bentley, William; Kofinas, Peter

    2006-03-01

    Diblock copolymers containing nickel ions have been prepared that are capable of selectively adsorbing histidine-tagged green fluorescent protein (hisGFP), and also binding tobacco mosaic virus (TMV). A block copolymer of norbornene and norbornene dicarboxylic acid was synthesized using ring-opening metathesis polymerization. A 400/50 block ratio achieved a spherical microphase-separated morphology with roughly 20 nm diameter dicarboxylic acid spheres. The spherical phase was exposed to nickel ions in solution, templating the formation of nickel nanoparticles. This process gave a nickel-loaded diblock copolymer film whose surface was used to chelate hisGFP. Fluorescence spectroscopy and TEM confirmed the presence of the protein on the polymer surface. A sulfonated triblock copolymer was loaded with nickel ions using a similar solution-doping procedure. The morphology of this copolymer was lamellar, and its sulfonated block was loaded with nickel ions. TEM studies revealed the presence of the virus on the surface of the copolymer and showed that the bond between the TMV and the polymer surface can withstand severe detergent washes.

  8. Oligoaniline-containing supramolecular block copolymer nanodielectric materials.

    PubMed

    Hardy, Christopher G; Islam, Md Sayful; Gonzalez-Delozier, Dioni; Ploehn, Harry J; Tang, Chuanbing

    2012-05-14

    We report a new generation of nanodielectric energy storage materials based on supramolecular block copolymers. In our approach, highly polarizable, conducting nanodomains are embedded within an insulating matrix through block copolymer microphase separation. An applied electric field leads to electronic polarization of the conducting domains. The high interfacial area of microphase-separated domains amplifies the polarization, leading to high dielectric permittivity. Specifically, reversible addition fragmentation transfer (RAFT) polymerization was used to prepare block copolymers with poly(methyl acrylate) (PMA) as the insulating segment and a strongly acidic dopant moiety, poly-(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), as the basis for the conducting segment. The PAMPSA block was complexed with an oligoaniline trimer to form a dopant-conjugated moiety complex that is electronically conductive after oxidation. For the undoped neat block copolymers, the increase of the PMA block length leads to a transition in dielectric properties from ionic conductor to dielectric capacitor with polarization resulting from migration of protons within the isolated PAMPSA domains. The oligoaniline-doped copolymers show remarkably different dielectric properties. At frequencies above 200 kHz, they exhibit characteristics of dielectric capacitors with much higher permittivity and lower dielectric loss than the corresponding undoped copolymers.

  9. Diamino Telechelic Polybutadienes for Solventless Styrene-butadiene-styrene (SBS) Triblock Copolymer Formation

    PubMed Central

    Ji, Shengxiang; Hoye, Thomas R.; Macosko, Christopher W.

    2008-01-01

    High molecular weight, high functionality diamino telechelic polybutadienes (TPBs) were synthesized by ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene (COD) in the presence of a chain transfer agent, 1,8-dicyano-4-octene, followed by lithium aluminum hydride reduction. Melt coupling of diamino TPB with anhydride-terminated polystyrene (PS-anh) resulted in the formation of styrene-butadiene-styrene (SBS) triblock copolymers; ca. 80% maximum conversion of PS-anh was achieved within 30 seconds. The results from SAXS, TEM, and rheological measurements of the coupling products confirmed the formation of SBS triblock copolymers having lamellar morphology. A fluororesent-labeled PS-anh was used to study the coupling kinetics by diluting the reactants by the addition of non-functional PS. PMID:19907636

  10. Poly(anhydride-esters) Comprised Exclusively of Naturally Occurring Antimicrobials and EDTA: Antioxidant and Antibacterial Activities

    PubMed Central

    2015-01-01

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  11. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  12. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  13. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  14. Biosynthetic Study on Antihypercholesterolemic Agent Phomoidride: General Biogenesis of Fungal Dimeric Anhydrides.

    PubMed

    Fujii, Ryuya; Matsu, Yusuke; Minami, Atsushi; Nagamine, Shota; Takeuchi, Ichiro; Gomi, Katsuya; Oikawa, Hideaki

    2015-11-20

    To elucidate the general biosynthetic pathway of fungal dimeric anhydrides, a gene cluster for the biosynthesis of the antihy-percholesterolemic agent phomoidride was identified by heterologous expression of candidate genes encoding the highly reducing polyketide synthase, alkylcitrate synthase (ACS), and alkylcitrate dehydratase (ACDH). An in vitro analysis of ACS and ACDH revealed that they give rise to anhydride monomers. Based on the established monomer biosynthesis, we propose a general biogenesis of dimeric anhydrides involving a single donor unit and four acceptor units.

  15. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  16. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  17. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    NASA Astrophysics Data System (ADS)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  18. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  19. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  20. Interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-04-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the effective interaction strength between chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for interactions between unlike segments. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the effective interaction for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  1. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to {gamma}-butyrolactone

    SciTech Connect

    Messori, M.; Vaccari, A.

    1994-11-01

    The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by the similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6 tabs.

  2. Theory for the aggregation of proteins and copolymers

    SciTech Connect

    Fields, G.B.; Alonso, D.O.V.; Stigter, D.; Dill, K.A.

    1992-05-14

    We develop mean-field lattice statistical mechanics theory for the equilibrium between denatured and aggregated states of proteins and other random copolymers of hydrophobic and polar monomers in aqueous solution. We suppose that the aggregated state is a mixture of amorphous polymer plus solvent and that the driving forces are the hydrophobic interaction, which favors aggregation, and conformational and translational entropies, which favor disaggregation. The theory predicts that the phase diagram for thermal aggregation is an asymmetric closed loop, and for denaturants (guanidinium hydrochloride of urea) it is asymmetric with an upper consolute point. The theory predicts that a copolymer in a poor solvent will expand with increasing polymer concentration because of {open_quotes}screening{close_quotes} of the solvent interactions by the other chains; the chain ultimately reaches a theta-like state in the absence of solvent. The screening concentration depends strongly on the copolymer composition. We find two striking features of these copolymer phase diagrams. First, they are extraordinarily sensitive to the copolymer composition; a change of one amino acid can substantially change the aggregation behavior. Second, relative to homopolymers, copolymers should be stable against aggregation at concentrations that are higher by many orders of magnitude. 43 refs., 13 figs.

  3. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  4. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  5. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... alkyl amines, sodium salts, compds. with ethanolamine. (a) Chemical substance and significant new uses... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  6. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  7. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  8. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  9. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  10. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  11. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  12. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  13. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  14. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  15. Immunogenicity of peanut proteins containing poly(anhydride) nanoparticles.

    PubMed

    De S Rebouças, Juliana; Irache, Juan M; Camacho, Ana I; Gastaminza, Gabriel; Sanz, María L; Ferrer, Marta; Gamazo, Carlos

    2014-08-01

    In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced T(H)1 and T(H)2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic T(H)2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both T(H)1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-T(H)1 immune response.

  16. Immunogenicity of Peanut Proteins Containing Poly(Anhydride) Nanoparticles

    PubMed Central

    De S. Rebouças, Juliana; Irache, Juan M.; Camacho, Ana I.; Gastaminza, Gabriel; Sanz, María L.

    2014-01-01

    In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced TH1 and TH2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic TH2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both TH1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-TH1 immune response. PMID:24899075

  17. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  18. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    PubMed

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  19. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  20. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  1. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials. PMID:25208609

  2. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  3. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  4. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  5. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  6. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... conditions: (a) The coating is applied as a continuous film over one or both sides of a base film produced... acrylate, and acrylic acid. The finished copolymers contain at least 50 weight-percent of polymer...

  7. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain...

  8. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain...

  9. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or both sides of a base film produced from polycarbonate resins complying with § 177.1580 of this... vinylidene chloride with acrylonitrile, methyl acrylate, and acrylic acid. The finished copolymers contain...

  10. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.

    PubMed

    Saisyo, Atsuyuki; Nakamura, Hideaki; Fang, Jun; Tsukigawa, Kenji; Greish, Khaled; Furukawa, Hiroyuki; Maeda, Hiroshi

    2016-02-01

    Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP. PMID:26674841

  11. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  12. Low Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2008-01-01

    A series of low-melt viscosity imide resins were prepared from asymmetric oxydiphthalic dianhydride (a-ODPA) and 4-phenylethynylphthalic anhydride as the endcap, along with 3,4' - oxydianiline (3,4' -ODA), 3,4' -methylenedianiline (3,4' -MDA), 3,3' -methylenedianiline (3,3' - MDA) and 3,3'-diaminobenzophenone (3,3'-DABP), using a solvent-free melt process. These imide oligomers displays low-melt viscosities (2-15 poise) at 260-280 C, which made them amenable to low-cost resin transfer molding (RTM) process. The a-ODPA based RTM resins exhibits glass transition temperatures (Tg's) in the range of 265-330 C after postcure at 343 C. The mechanical properties of these polyimide/carbon fiber composites fabricated by RTM will be discussed.

  13. Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings

    NASA Astrophysics Data System (ADS)

    Baldoví, Herme G.; Herance, José Raul; Manuel Víctor, Víctor; Alvaro, Mercedes; Garcia, Hermenegildo

    2015-07-01

    Thermal annealing at 400 °C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with λem from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into Hep3B human hepatoma cells as determined by confocal fluorescence microscopy and are remarkably biocompatible affecting slightly cell viability according to the MTT test.

  14. Development of ALMA process: Advances maleic anhydride production technology

    SciTech Connect

    Arnoia, S.C.; Komeya, M.; Pedretti, D.; Stanecki, J.W.

    1987-01-01

    Shin-Daikyowa Petrochemical Co. (SDPC) has initiated a project to build a 15,000 MTA maleic anhydride plant at Yokkaichi, Japan. For technology, SDPC evaluated many alternatives and elected to utilize the ALMA Process in what will be the first full-scale plant for this new process. Startup is scheduled for late 1988. This paper describes the economic advantages of the ALMA Process and their technical bases which have led to its selection by SDPC. The advantages are in variable costs (primarily feed and energy) for any size plant, and in initial capital as well for plants larger than 10,000 MTA. They are derived from the use of n-butane feed, a fluidized-bed reactor system, and a non-aqueous recovery system.

  15. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  16. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging.

    PubMed

    Rodriguez, Victoria B; Henry, Scott M; Hoffman, Allan S; Stayton, Patrick S; Li, Xingde; Pun, Suzie H

    2008-01-01

    Indocyanine green (ICG) is a Federal Drug Administration-approved near-infrared imaging agent susceptible to chemical degradation, nonspecific binding to blood proteins, and rapid clearance from the body. In this study, we describe the encapsulation of ICG within polymeric micelles formed from poly(styrene-alt-maleic anhydride)-block-poly(styrene) (PSMA-b-PSTY) diblock copolymers to stabilize ICG for applications in near-infrared diagnostic imaging. In aqueous solution, the diblock copolymers self-assemble to form highly stable micelles approximately 55 nm in diameter with a critical micelle concentration (CMC) of approximately 1 mg/L. Hydrophobic ICG salts readily partition into the PSTY core of these micelles with high efficiency, and produce no change in micelle morphology or CMC. Once loaded in the micelle core, ICG is protected from aqueous and thermal degradation, with no significant decrease in fluorescence emission over 14 days at room temperature and retaining 63% of its original emission at 37 degrees C. Free ICG does not release rapidly from the micelle core, with only 11% release over 24 h. The ICG-loaded micelles do not exhibit significant cell toxicity. This system has the potential to greatly improve near-infrared imaging in breast cancer detection by increasing the stability of ICG for formulation/administration, and by providing a means to target ICG to tumor tissue.

  17. Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Yermukhambetova, B. B.; Koblanov, S. M.; Arkhipova, I. A.

    2003-08-01

    Novel hydrogels of cationic nature were synthesized by gamma-radiation copolymerization of vinyl ethers of monoethanolamine and ethyleneglycol in the presence of cross-linking agent. The effect of absorbed dose on the gel fraction and equilibrium swelling degree of hydrogels in water is shown. It was demonstrated that the hydrogels are able to bind poly(acrylic acid) to form polyelectrolyte complexes with swelling properties typical for polyampholytes.

  18. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  19. Self-doped anthranilic acid-pyrrole copolymer/gold electrodes for selective preconcentration and determination of Cu(I) by differential pulse anodic stripping voltammetry.

    PubMed

    Nateghi, M R; Fallahian, M H

    2007-05-01

    Electropolymerization of anthranilic acid/pyrrole (AA/PY) at solid substrate electrodes (platinum, gold, and glassy carbon) gave stable and water-insoluble films under a wide range of pH. Combining high conductivity of the polypyrrole (PPY) and pH independence of the electrochemical activity of the self-doped carboxylic acid-substituted polyaniline allows us to prepare an improved functionalized PPY-modified electrode to collect and measure Cu(I) species. The differential pulse stripping analysis of the copper ions using a polyanthranilic acid-co-polypyrrole (PAA/PPY)-modified electrode consisted of three steps: accumulation, electrochemical reduction to the elemental copper and stripping step. Factors affecting these steps, including electropolymerization conditions, accumulation and stripping medium, reduction potential, reduction time and accumulation time, were systematically investigated. A detection limit of 5.3 x 10(-9) M Cu(I) was achieved for a 7.0 min accumulation. For 12 determinations of Cu(I) at concentrations of 1.0 x 10(-8) M, an RSD of 3.5% was obtained. The log I(p) was found to vary linearly with log[Cu(I)] in the concentration range from 7.0 x 10(-9) to 1.0 x 10(-5) M.

  20. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    NASA Astrophysics Data System (ADS)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  1. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  2. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  3. Optical and X-ray scattering studies on a semicrystalline triblock copolymer

    NASA Astrophysics Data System (ADS)

    Shin, Dongseok; Shin, Kyusoon; Aamer, Khaled; Tew, Gregory N.; Russell, Thomas P.

    2004-03-01

    A triblock copolymer composed of semicrystalline blocks, poly(L-lactic acid-b-ethylene oxide-b-L-lactic acid), was synthesized, and its optical properties together with crystalline structures were studied. Above the melting point of poly(L-lactic acid) (PLLA), the triblock copolymer was in disordered state within the studied composition and molecular weight range, and it formed banded spherulites when crystallized. Its optical properties were measured with compensators in polarized optical microscope. The birefringence of the triblock copolymer spherulite resulted from the constructive addition of those of component blocks. The crystalline structure of the triblock copolymer, especially the lamellar orientation of each block was investigated with X-ray scattering. Samples for SAXS and WAXD were prepared via subsequent crystallization of poly(ethylene oxide) (PEO) after aligning PLLA lamella by applying shear above melting point of PEO. Detailed information about lamellar orientation depending on shear and crystallization condition will be discussed.

  4. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells. PMID:22074249

  5. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer.

    PubMed

    Kopansky, Eva; Shamay, Yosi; David, Ayelet

    2011-12-01

    Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.

  6. Atmospheric chemistry of toxic contaminants. 3. Unsaturated aliphatics: Acrolein, acrylonitrile, maleic anhydride

    SciTech Connect

    Grosjean, D. )

    1990-12-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the unsaturated aliphatic contaminants acrolein, acrylonitrile, and maleic anhydride. In-situ formation of small amounts of acrolein and maleic anhydride may involve the reaction of OH (and O{sub 3}) with 1,3-dienes and the reaction of OH with aromatic hydrocarbons, respectively. There is no known pathway for in-situ formation of acrylonitrile. Rapid removal of acrolein (half-life = less than one day) and of maleic anhydride (half-life = several hours) is expected from their rapid reactions with OH (major), O{sub 3}, and NO{sub 3}. These reactions lead to formaldehyde and glyoxal from acrolein and to dicarbonyls from maleic anhydride. Acrylonitrile is removed at a slower rate (half-life = 2-7 days) by reaction with OH, leading to formaldehyde and formyl cyanide.

  7. Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2015-12-10

    As a kind of biomass nanofiller for polymers, cellulose nanocrystal (CNC) has good mechanical properties and reinforcing capability. To improve the compatibility of poly(butylene succinate-co-butylene adipate) (PBSA)/CNC composites, phthalic anhydride was used as a compatilizer during melt mixing, leading to the significant improvement of the mechanical properties and thermal stability of the composites, which is related to the better dispersion of CNC in the composites. The addition of phthalic anhydride could accelerate the crystallization of PBSA component as evidenced by the curves of isothermal crystallization of the composites, but had little effect on the crystalline polymorphs of PBSA component. The addition of phthalic anhydride could strongly improve the hydrophobicity of the composites. The good mechanical properties, fast crystallization and improved hydrophobicity of PBSA/CNC composites with phthalic anhydride are favor to their practical commercial utilization.

  8. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation. PMID:19433871

  9. Differential labeling of the subunits of respiratory complex III with (3H)succinic anhydride, (14C)succinic anhydride, and p-diazobenzene-(35S)sulfonate

    SciTech Connect

    Ho, S.H.; Rieske, J.S.

    1985-12-01

    Exposure of antimycin-treated Complex III (ubiquinol-cytochrome c reductase) purified from bovine heart mitochondria to (3H)succinic anhydride plus (35S)p-diazobenzenesulfonate (DABS) resulted in somewhat uniform relative labeling of the eight measured subunits of the complex by (3H)succinic anhydride. In contrast, relative labeling by (35S)DABS was similar to (3H)succinic anhydride for the subunits of high molecular mass, i.e., core proteins, cytochromes, and the iron-sulfur protein, but greatly reduced for the polypeptides of molecular mass below 15 kDa. With Complex II depleted in the iron-sulfur protein the relative labeling of core protein I by exposure of the complex to (3H)succinic anhydride was significantly enhanced, whereas labeling of the polypeptides represented by SDS-PAGE bands 7 and 8 was significantly inhibited. Dual labeling of the subunits of Complex III by 14C- and 3H-labeled succinic anhydride before and after dissociation of the complex by sodium dodecyl sulfate, respectively, was measured with the complex in its oxidized, reduced, and antimycin-inhibited states. Subunits observed to be most accessible or reactive to succinic anhydride were core protein II, the iron-sulfur protein, and polypeptides of SDS-PAGE bands 7,8, and 9. Two additional polypeptides of molecular masses 23 and 12kDa, not normally resolved by gel-electrophoresis, were detected. Reduction of the complex resulted in a significant change of 14C/3H labeling ratio of core protein only, whereas treatment of the complex with antimycin resulted in decreases in 14C/3H labeling ratios of core proteins I and II, cytochrome c1, and a polypeptide of molecular mass 13kDa identified as an antimycin-binding protein.

  10. Determination of the Preferred Structure, Dynamics, and Planarity of Substituted Anhydrides by Cp-Ftmw

    NASA Astrophysics Data System (ADS)

    McMahon, Timothy J.; Bailey, Josiah R.; Bird, Ryan G.; Pratt, David

    2016-06-01

    The planarity of five-membered rings is derived from a competition between ring-angle strain and stability of the torsional angles. The planar form maximizes the already stressed, smaller-than-normal, C-C bond angles, while puckering reduces the unfavorable eclipsed interactions. The structure, dynamics, and planarity of three anhydrides, succinic, methylsuccinic, and methylene (itaconic) anhydride, were studied and compared using chirped-pulse Fourier transform microwave spectroscopy.

  11. Room temperature (nπ∗) phosphorescence of indanetrione (anhydrous ninhydrine) in phthalic anhydride matrix

    NASA Astrophysics Data System (ADS)

    Roy, J.; Bhattacharya, S.; Mondal, S.; Ghosh, Sanjib

    1997-02-01

    Indanetrione, a cis vicinal cyclic triketone, is found to exhibit room temperature (nπ∗) phosphorescence (RTP) in a phthalic anhydride matrix in addition to (nπ∗) fluorescence. The compound does not show RTP in benzophenone mixed crystals or in any other solvent studied. A rigid binding of the cyclic triketone in the phthalic anhydride matrix, lowering the T 1 → S 0 nonradiative rate, has been proposed as the explanation for RTP.

  12. Organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols combined with simultaneous desymmetrization of prochiral cyclic anhydrides.

    PubMed

    Roy, Suparna; Chen, Kan-Fu; Gurubrahamam, Ramani; Chen, Kwunmin

    2014-10-01

    This study describes an organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols (2) combined with simultaneous desymmetrization of prochiral cyclic anhydrides (1). The experimental results revealed that enantioselective alcoholysis of 3-substituted glutaric anhydrides afforded hemiesters (3) with high levels of enantioselectivities (up to 99% ee) in the presence of cinchonidine-derived thiourea catalyst (IV). The highly optical enrichment (up to 95% ee) of (S)-nitroallylic alcohols (2) was recovered.

  13. [Investigation of the intramolecular cyclization of the thiophene substituted cyclohexane skeleton gamma-oxocarboxylic acid and synthesis of some N-heteroaryl isoindole derivatives].

    PubMed

    Csende, Ferenc

    2011-01-01

    From thiophene and cis-hexahydrophthalic anhydride the corresponding gamma-oxocarboxylic acid was obtained by the Friedel-Crafts reaction, which resulted in new heterocycles with acetic anhydride, Lawesson reagent or urea by intramolecular cyclization. Saturated N-heteroaryl isoindoles were prepared directly by the fusion reaction of heteroaromatic amines with the oxocarboxylic acid. PMID:21800711

  14. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  15. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  16. Novel Crosslinked Graft Copolymer of Methacrylic Acid and Collagen as a Protein-Based Superabsorbent Hydrogel with Salt and Ph-Responsiveness Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad; Hamzeh, Alireza

    2008-08-01

    In this paper, a novel protein-based superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto collagen, using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The hydrogel structure was confirmed using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under the optimized conditions concluded, maximum capacity of swelling in distilled water was found to be 415 g/g. The swelling kinetics of the synthesized hydrogels with various particle sizes was preliminarily investigated. Absorbency in aqueous chloride salt solutions indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. The swelling of superabsorbing hydrogels was also measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pHs 2 and 7. This behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

  17. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    NASA Astrophysics Data System (ADS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  18. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%.

  19. Structural Characterization of Layered Morphologies in Precise Copolymers

    NASA Astrophysics Data System (ADS)

    Trigg, Edward; Gaines, Taylor; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Layered morphologies have been observed in precise polyethylene-based copolymers that contain acid, charged, or polar functional groups precisely spaced along a linear alkane chain. Sufficiently long alkane segments form structures resembling orthorhombic polyethylene crystals, while the functional groups form 2-D layers that disrupt the alkane crystal structure to varying degrees. Here, layered morphologies in precise copolymers containing acrylic acid, phosphonic acid, imidazolium bromide, and sulfone groups are studied via X-ray scattering. Specifically, the composition profiles of the layered structures are obtained by Fourier synthesis, and the coherence length is investigated using peak width analysis. This analysis indicates that the layers of functional groups are frequently bordered by two crystallites, which suggests different dynamics relative to layers bordered by one crystalline and one amorphous microdomain. Detailed understanding of the structure of the layered morphologies will allow for a systematic investigation of proton and ion conductivity mechanisms, which are expected to occur through the high-dielectric layers.

  20. The use of maleic anhydride for the reversible blocking of amino groups on polypeptide chains

    PubMed Central

    Butler, P. J. G.; Harris, J. I.; Hartley, B. S.; Leberman, R.

    1969-01-01

    1. Maleic anhydride was shown to react rapidly and specifically with amino groups of proteins and peptides. Complete substitution of chymotrypsinogen was achieved under mild conditions and the extent of reaction could be readily determined from the spectrum of the maleyl-protein. 2. Maleyl-proteins are generally soluble and disaggregated at neutral pH. Trypsin splits the blocked proteins only at arginine residues and there is frequently selectivity in this cleavage, e.g. in yeast alcohol dehydrogenase and pig glyceraldehyde 3-phosphate dehydrogenase. 3. The group is removed by intramolecular catalysis at acid pH. The half-time was 11–12hr. at 37° at pH3·5 in ∈-maleyl-lysine or in maleyl-chymotrypsinogen. 4. The unblocking reaction can be used as the basis for a `diagonal'-electrophoretic separation of lysine peptides and N-terminal peptides, as shown by studies with β-melanocyte-stimulating hormone. PMID:5821728

  1. Reactive blending of thermoplastic starch and polyethylene-graft-maleic anhydride with chitosan as compatibilizer.

    PubMed

    Jantanasakulwong, Kittisak; Leksawasdi, Noppol; Seesuriyachan, Phisit; Wongsuriyasak, Somchai; Techapun, Charin; Ougizawa, Toshiaki

    2016-11-20

    Cassava starch was melt-blended with glycerol (70/30wt%/wt%) at 140°C to prepare thermoplastic starch (TPS). Chitosan (CTS) was premixed with starch and glycerol, in acidified water (lactic acid 2wt%), at 1, 5 and 10wt%/wt%. TPS/CTS was then melt-blended (160°C) with polyethylene-graft-maleic anhydride (PE-MAH). Phase determination and scanning electron microscopy indicated TPS/PE-MAH/CTS had a co-continuous morphology and CTS-induced phase inversion to give dispersed PE-MAH particles in a TPS matrix. Tensile strength at break and elongation, melt viscosity, fracture toughness and water contact angle of TPS/PE-MAH were improved by CTS incorporation. TPS/PE-MAH/CTS blends decreased the melting temperature of TPS and PE-MAH compared to the neat polymers. FTIR confirmed a reaction had occurred between amino groups (NH2) of CTS and the MAH groups of PE-MAH. This reaction and the enhanced miscibility between TPS and CTS improved the mechanical properties of the TPS/PE-MAH/CTS blend, particularly at 5wt%/wt% CTS. PMID:27561475

  2. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  3. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch.

    PubMed

    Cheuk, Sherwin Y; Shih, Frederick F; Champagne, Elaine T; Daigle, Kim W; Patindol, James A; Mattison, Christopher P; Boue, Stephen M

    2015-05-01

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil and incorporated into an aqueous OSA-ST solution. High pressure homogenisation of the mixture was conducted at 170 MPa for 56 cycles. The resulting emulsion had a particle size range of 200-300 nm and the absolute zeta potential varied between 8.4 and 10.6 mV. CoQ10 retention of the emulsion and freeze dried products, determined by a hexane rinse, was 98.2%. Reconstitution of the freeze dried product in Mcllvaine citrate-phosphate buffers with pH values of 3-5 and temperatures at 4 and 25 °C had very little effect on the range and distribution of the nanoparticles' size. The inflection point of the zeta potential and pH plot occurred at the first pKa of succinic acid (pH 4.2), indicating succinate as the main influence over zeta potential.

  4. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... copolymerization of ethylene and vinyl acetate, followed by reaction with maleic anhydride. Such polymers shall... prior to reaction with maleic anhydride, and not more than 2 percent of grafted maleic anhydride by... ASTM method D 1238-82, “Standard Test Method for Flow Rates of Thermoplastics by Extrusion...

  5. Copolymer Crystallization: Approaching Equilibrium

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Finerman, Terry

    2002-03-01

    Random ethylene-butene copolymers of uniform chemical composition and degree of polymerization are crystallized by evaporation of thin films (1 μ m - 5 μ m) from solution. Macroscopic films ( 100 μm) formed by sequential layer deposition are characterized by density, calorimetry and X-ray techniques. Most notable is the density, which in some cases implies a crystalline fraction nearly 90% of the equilibrium value calculated from Flory theory. Melting temperature of these solution deposited layers is increased by as much as 8 ^oC over Tm for the same polymer crystallized from the melt. Small-angle X-ray scattering indicates that the amorphous layer thickness is strongly reduced by this layered crystallization process. X-ray diffraction shows a pronounced orientation of chain axes and lamellar normals parallel to the normal of the macroscopic film. It is clear that solvent enhances chain mobility, permitting proper sequences to aggregate and crystallize in a manner that is never achieved in the melt.

  6. Nanostructured morphology of a random P(DLLA-co-CL) copolymer

    PubMed Central

    2012-01-01

    The random architecture of a commercial copolymer of poly(DL-lactic acid) and poly(ε-caprolactone), poly(DL-lactide-co-caprolactone), has been characterized by chemical structure analysis from hydrogen-1 nuclear magnetic resonance results. Moreover, spherical nanodomains have been detected in the thin films of this copolymer obtained after solvent evaporation. These nanodomains studied by atomic force microscopy and transmission elecron microscopy grow progressively under annealing until they collapse and form a homogenous disordered structure. This is the first time that the nanostructure of random poly(DL-lactic acid)/poly-(ε-caprolactone) copolymers is revealed, representing one of few experimental evidences on the possible nanostructuration of random copolymers. PMID:22304962

  7. Comparative anticalculus effect of dentifrices containing 1.30% soluble pyrophosphate with and without a copolymer.

    PubMed

    Schiff, T G; Volpe, A R; Gaffar, A; Afflito, J; Mitchell, R L

    1990-01-01

    A six-month, double blind, clinical study was conducted to determine the effect on supragingival calculus formation of a dentifrice containing 1.30% soluble pyrophosphate (from 2.0% tetrasodium pyrophosphate) and 1.50% of a copolymer of methoxyethylene and maleic acid, as compared to a dentifrice containing the same amount of soluble pyrophosphate but without the copolymer. This pyrophosphate/copolymer dentifrice contained the optimal ratio of pyrophosphate anion to copolymer required for obtaining a comparable anticalculus effect to a clinically proven anticalculus dentifrice containing 3.3% soluble pyrophosphate and 1.0% of a copolymer. The optimal pyrophosphate/copolymer ratio was determined by a series of in vitro laboratory and in vivo animal studies. Male and female adult subjects were stratified into three balanced groups according to baseline calculus scores. They received an oral prophylaxis and were assigned to the use of either the dentifrice containing soluble pyrophosphate and the copolymer, or to the dentifrice containing soluble pyrophosphate but without the copolymer, or to a placebo dentifrice that did not contain an anticalculus ingredient. The results of the three-month calculus examination indicated that the dentifrice containing soluble pyrophosphate and the copolymer provided a 33.66% reduction in supragingival calculus formation after an oral prophylaxis as compared to the placebo dentifrice. This reduction was statistically significant at the 99 percent level of confidence. The results of the six-month calculus examination indicated that the dentifrice containing the soluble pyrophosphate and the copolymer provided a 36.10% reduction in supragingival calculus formation after an oral prophylaxis, as compared to the placebo dentifrice. This reduction was also statistically significant at the 99% level of confidence.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  9. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid

    PubMed Central

    2013-01-01

    Introduction Cell therapy using adipose-derived stem cells has been reported to improve chronic wounds via differentiation and paracrine effects. One such strategy is to deliver stem cells in hydrogels, which are studied increasingly as cell delivery vehicles for therapeutic healing and inducing tissue regeneration. This study aimed to determine the behaviour of encapsulated adipose-derived stem cells and identify the secretion profile of suitable growth factors for wound healing in a newly developed thermoresponsive PEG–hyaluronic acid (HA) hybrid hydrogel to provide a novel living dressing system. Methods In this study, human adipose-derived stem cells (hADSCs) were encapsulated in situ in a water-soluble, thermoresponsive hyperbranched PEG-based copolymer (PEGMEMA–MEO2MA–PEGDA) with multiple acrylate functional groups in combination with thiolated HA, which was developed via deactivated enhanced atom transfer radical polymerisation of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and poly(ethylene glycol) diacrylate PEGDA (Mn = 258). hADSCs embedded in the PEGMEMA–MEO2MA–PEGDA and HA hybrid hydrogel system (P-SH-HA) were monitored and analysed for their cell viability, cell proliferation and secretion of growth factors (vascular endothelial growth factor, transforming growth factor beta and placental-derived growth factor) and cytokines (IFNγ, IL-2 and IL-10) under three-dimensional culture conditions via the ATP activity assay, alamarBlue® assay, LIVE/DEAD® assay and multiplex ELISA, respectively. Results hADSCs were successfully encapsulated in situ with high cell viability for up to 7 days in hydrogels. Although cellular proliferation was inhibited, cellular secretion of growth factors such as vascular endothelial growth factor and placental-derived growth factor production increased over 7 days, whereas IL-2 and IFNγ release were unaffected. Conclusion This study indicates

  10. Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease.

    PubMed

    Yin, Hongzhuan; Fang, Jun; Liao, Long; Nakamura, Hideaki; Maeda, Hiroshi

    2014-08-10

    Carbon monoxide (CO), the physiological product of heme oxygenase during catabolic breakdown of heme, has versatile functions and fulfills major anti-oxidative and anti-apoptotic roles in cell systems. Administration of CO is thus thought to be a reasonable therapeutic approach in diseases-such as inflammatory bowel disease-that are induced by reactive oxygen species (ROS). Tricarbonyldichlororuthenium(II) dimer (CORM2) is a commonly used CO donor, but it has poor aqueous solubility and a very short CO-releasing half-life (t1/2). In the present study, we prepared micelles consisting of water-soluble styrene-maleic acid copolymer (SMA) encapsulating CORM2 (SMA/CORM2) that had a hydrodynamic size of 165.3nm. Compared with free CORM2, SMA/CORM2 demonstrated better water solubility (>50mg/ml in a physiological water solution). Moreover, because of micelle formation in an aqueous environment, the CO release rate was slow and sustained. These properties resulted in much longer in vivo bioactivity of SMA/CORM2 compared with that of free CORM2, i.e. the t1/2 in blood of SMA/CORM2 in mice after intravenous (i.v.) injection was about 35 times longer than that of free CORM2. We then evaluated the therapeutic potential of SMA/CORM2 in a murine model of inflammatory colitis induced by dextran sulfate sodium (DSS). Administration (either i.v. or oral) of SMA/CORM2 once at the beginning of colitis, 3days after DSS treatment, significantly improved colitis symptoms-loss of body weight, diarrhea, and hematochezia-as well as histopathological colonic changes-shortening of the colon and necrosis or ulcers in the colonic mucosa. Up-regulation of inflammatory cytokines including monocyte chemotactic protein-1, tumor necrosis factor-α, and interleukin-6 in this DSS-induced colitis was significantly suppressed in SMA/CORM2-treated mice. SMA/CORM2 may thus be a superior CO donor and may be a candidate drug, which involves cytokine suppression, for ROS-related diseases including

  11. Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease.

    PubMed

    Yin, Hongzhuan; Fang, Jun; Liao, Long; Nakamura, Hideaki; Maeda, Hiroshi

    2014-08-10

    Carbon monoxide (CO), the physiological product of heme oxygenase during catabolic breakdown of heme, has versatile functions and fulfills major anti-oxidative and anti-apoptotic roles in cell systems. Administration of CO is thus thought to be a reasonable therapeutic approach in diseases-such as inflammatory bowel disease-that are induced by reactive oxygen species (ROS). Tricarbonyldichlororuthenium(II) dimer (CORM2) is a commonly used CO donor, but it has poor aqueous solubility and a very short CO-releasing half-life (t1/2). In the present study, we prepared micelles consisting of water-soluble styrene-maleic acid copolymer (SMA) encapsulating CORM2 (SMA/CORM2) that had a hydrodynamic size of 165.3nm. Compared with free CORM2, SMA/CORM2 demonstrated better water solubility (>50mg/ml in a physiological water solution). Moreover, because of micelle formation in an aqueous environment, the CO release rate was slow and sustained. These properties resulted in much longer in vivo bioactivity of SMA/CORM2 compared with that of free CORM2, i.e. the t1/2 in blood of SMA/CORM2 in mice after intravenous (i.v.) injection was about 35 times longer than that of free CORM2. We then evaluated the therapeutic potential of SMA/CORM2 in a murine model of inflammatory colitis induced by dextran sulfate sodium (DSS). Administration (either i.v. or oral) of SMA/CORM2 once at the beginning of colitis, 3days after DSS treatment, significantly improved colitis symptoms-loss of body weight, diarrhea, and hematochezia-as well as histopathological colonic changes-shortening of the colon and necrosis or ulcers in the colonic mucosa. Up-regulation of inflammatory cytokines including monocyte chemotactic protein-1, tumor necrosis factor-α, and interleukin-6 in this DSS-induced colitis was significantly suppressed in SMA/CORM2-treated mice. SMA/CORM2 may thus be a superior CO donor and may be a candidate drug, which involves cytokine suppression, for ROS-related diseases including

  12. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  13. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  14. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  15. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  16. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  17. Chiroptical spectroscopy of natural products: avoiding the aggregation effects of chiral carboxylic acids.

    PubMed

    Polavarapu, Prasad L; Donahue, Emily A; Hammer, Karissa C; Raghavan, Vijay; Shanmugam, Ganesh; Ibnusaud, Ibrahim; Nair, Divya S; Gopinath, Chithra; Habel, Deenamma

    2012-08-24

    Determination of the absolute configurations and predominant conformations of chiral natural products, occurring as carboxylic acids, using chiroptical spectroscopic methods becomes challenging due to the formation of solute aggregates (in the form of dimers, etc.) and/or solute-solvent complexes resulting from intermolecular hydrogen bonding with solvent. A hypothesis that such aggregation effects can be avoided by using corresponding sodium salts or acid anhydrides for chiroptical spectroscopic measurements has been tested. For this purpose, vibrational circular dichroism, electronic circular dichroism, and optical rotatory dispersion spectra for disodium salts of two natural products, hibiscus acid and garcinia acid, and the anhydride of acetylated garcinia acid have been measured. These experimental spectra are analyzed in combination with quantum chemical calculations of corresponding spectra. The spectral analysis for sodium salts and anhydride turned out to be simpler, suggesting that the conversion of carboxylic acids to corresponding salts or anhydride can be advantageous for the application of chiroptical spectroscopy. PMID:22877358

  18. Effect of Copolymer Chain Architecture on Active Layer Morphology and Device Performance

    NASA Astrophysics Data System (ADS)

    Amonoo, Jojo; Li, Anton; Sykes, Matthew; Huang, Bingyuan; Palermo, Edmund; McNeil, Anne; Shtein, Max; Green, Peter

    2014-03-01

    The optimum morphological structure that determines the device performance of bulk heterojunction thin film polymer solar cells is greatly influenced by the extent of phase separation between the polymer and fullerene components, which ultimately defines the length scales and purity of the donor- and acceptor-rich phases. Block copolymer thin films have been widely studied for their ability to microphase separate into well-defined nanostructures. Nickel-catalyzed chain-growth copolymerizations of thiophene and selenophene derivatives afforded well-defined π-conjugated copolymers of poly(3-hexylthiophene) (P3HT) and poly(3-hexylselenophene) (P3HS) to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence and nanoscale morphology of P3HT-P3HS copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) on device performance. With the use of energy-filtered transmission electron microscopy and conductive and photoconductive atomic force microscopy we found that copolymer sequence strongly influences the phase separation capabilities of the copolymer-fullerene blend in bulk heterojunction organic photovoltaic devices.

  19. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  20. Allergy to methyltetrahydrophthalic anhydride in epoxy resin workers.

    PubMed

    Nielsen, J; Welinder, H; Horstmann, V; Skerfving, S

    1992-11-01

    One hundred and forty four current and 26 former workers in a plant producing barrels for rocket guns from an epoxy resin containing methyltetrahydrophthalic anhydride (MTHPA; time weighted average air concentration up to 150 micrograms/m3) were studied. They showed higher frequencies of work related symptoms from the eyes (31 v 0%; p < 0.001), nose (53 v 9%; p < 0.001), pharynx (26 v 6%; p < 0.01), and asthma (11 v 0%; p < 0.05) than 33 controls. Also they had higher rates of positive skin prick test to a conjugate of MTHPA and human serum albumin (16 v 0%; p < 0.01), and more had specific IgE and IgG serum antibodies (18 v 0%; p < 0.01 and 12 v 0%; p < 0.05 respectively). There were statistically significant exposure-response relations between exposure and symptoms from eyes and upper airways, dry cough, positive skin prick test, and specific IgE and IgG antibodies. There was a non-significant difference in reaction to metacholine between exposed workers and non-smoking controls. In workers with and without specific IgE antibodies, differences existed in frequency of nasal secretion (54 v 23%; p < 0.05) and dry cough (38 v 12%; p < 0.05). Workers with specific IgG had more dry cough (38 v 12%; p < 0.05), but less symptoms of non-specific bronchial hyperreactivity (0 v 26%; p < 0.05). Atopic workers sneezed more than non-atopic workers (65 v 30%; p < 0.01). In a prospective study five sensitised workers who left the factory became less reactive to metacholine, and became symptom free. In 41 workers who stayed, there was no improvement, despite a 10-fold reduction in exposure. The results show the extreme sensitising properties of MTHPA.

  1. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.

    PubMed

    Younes, H; Nataf, P R; Cohn, D; Appelbaum, Y J; Pizov, G; Uretzky, G

    1988-01-01

    Degradation of, and tissue reaction elicited by a series of polyethylene oxide (PEO)/polylactic acid (PLA) PELA block copolymers were studied in vitro and in vivo. In particular, the effect of pH, temperature and enzymatic activity was addressed. The mass loss was faster, the more basic the media, while, expectedly, PELA copolymers degraded faster with the higher temperature. The addition of an enzyme (carboxylic ester hydrolase) had no effect. The degradation process strongly affected the mechanical properties of the materials under investigation, the elongation at break dropping drastically after two days of degradation. After seven days, only gross observation of the extensively degraded samples was possible. The in vivo studies compared the tissue reaction elicited by various PELA copolymers to that evoked by PLA. Evaluation of tissue reaction observed with a PELA sample after sterilization with gamma radiation showed acute inflammation with considerable dispersion of the material, 12 days after implantation. The granulomatous reaction observed with PELA copolymers after ethylene oxide sterilization was identical to the reaction observed with PLA. PMID:3064826

  2. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers.

    PubMed

    Zhang, Ganwei; Lin, Shudong; Wyman, Ian; Zou, Hailiang; Hu, Jiwen; Liu, Guojun; Wang, Jiandong; Li, Fei; Liu, Feng; Hu, Meilong

    2013-12-26

    Reported herein is the growth of bifunctional random copolymer chains from silica particles through a "grafting from" approach and the use of these copolymer-bearing particles to fabricate superamphiphobic coatings. The silica particles had a diameter of 90 ± 7 nm and were prepared through a modified Stöber process before atom transfer radical polymerization (ATRP) initiators were introduced onto their surfaces. Bifunctional copolymer chains bearing low-surface-free-energy fluorinated units and sol-gel-forming units were then grafted from these silica particles by surface-initiated ATRP. Perfluorooctyl ethyl acrylate (FOEA) and 3-(triisopropyloxy)silylpropyl methacrylate (IPSMA) were respectively used as fluorinated and sol-gel-forming monomers in this reaction. Hydrolyzing the IPSMA units in the presence of an acid catalyst yielded silica particles that were adorned with silanol-bearing copolymer chains. Coatings were prepared by spraying these hydrolyzed silica particles onto glass and cotton substrates. A series of four different copolymer-functionalized silica particles samples bearing copolymers with similar FOEA molar fractions (fF) of ~80% but with different copolymer grafting mass ratios (gm) that ranged between 12.3 wt% and 58.8 wt%, relative to silica, were prepared by varying the polymerization protocols. These copolymer-bearing silica particles with a gm exceeding 34.1 wt% were used to coat glass and cotton substrates, yielding superamphiphobic surfaces. More importantly, these particulate-based coatings were robust and resistant to solvent extraction and NaOH etching thanks to the self-cross-linking of the copolymer chains and their covalent attachment to the substrates.

  3. Synthesis and characterization of a new type of levan-graft-polystyrene copolymer.

    PubMed

    Kekez, Branka; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Pavlović, Vladimir; Beškoski, Vladimir; Popović, Aleksandar; Vrvić, Miroslav M; Nikolić, Vladimir

    2016-12-10

    Novel macromolecular graft copolymers were synthesized by reaction of the hydroxyl groups of the microbial polysaccharide levan, produced using Bacillus licheniformis, with polystyrene (Lev-g-PS). Synthesis was performed by the free radical reaction using potassium persulfate (PPS) as initiator. The prepared copolymer was characterized by FTIR, SEM, TG/DTA, XRD and (13)C NMR. The influence of the different conditions (reaction temperature, air or nitrogen atmosphere, reaction time, type of amines and ascorbic acid (AA) concentration) on the grafting reaction was investigated. Results showed that maximum percentage of grafting (58.1%) was achieved at a reaction temperature 70°C, in a nitrogen atmosphere and using dimethylethanolamine (DMEA) as the amine activator. On the basis of the obtained results, the likely reaction mechanism was proposed. Synthesized copolymers have better thermal stability in comparison with their initial components. Copolymers such as Lev-g-PS could potentially have many applications, such as compatibilizers and material for membranes. PMID:27577892

  4. Synthesis and characterization of a new type of levan-graft-polystyrene copolymer.

    PubMed

    Kekez, Branka; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Pavlović, Vladimir; Beškoski, Vladimir; Popović, Aleksandar; Vrvić, Miroslav M; Nikolić, Vladimir

    2016-12-10

    Novel macromolecular graft copolymers were synthesized by reaction of the hydroxyl groups of the microbial polysaccharide levan, produced using Bacillus licheniformis, with polystyrene (Lev-g-PS). Synthesis was performed by the free radical reaction using potassium persulfate (PPS) as initiator. The prepared copolymer was characterized by FTIR, SEM, TG/DTA, XRD and (13)C NMR. The influence of the different conditions (reaction temperature, air or nitrogen atmosphere, reaction time, type of amines and ascorbic acid (AA) concentration) on the grafting reaction was investigated. Results showed that maximum percentage of grafting (58.1%) was achieved at a reaction temperature 70°C, in a nitrogen atmosphere and using dimethylethanolamine (DMEA) as the amine activator. On the basis of the obtained results, the likely reaction mechanism was proposed. Synthesized copolymers have better thermal stability in comparison with their initial components. Copolymers such as Lev-g-PS could potentially have many applications, such as compatibilizers and material for membranes.

  5. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    PubMed

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. PMID:27071713

  6. Collagen functionalized with unsaturated cyclic anhydrides-interactions in solution and solid state.

    PubMed

    Potorac, S; Popa, M; Picton, L; Dulong, V; Verestiuc, L; Le Cerf, D

    2014-03-01

    Maleic anhydride (CMA) and itaconic anhydride modified collagen (CITA) were prepared as precursors for production of interpenetrated polymer networks (IPN). Calculated values for Huggins coefficient in aqueous diluted and semi-diluted solutions of modified collagen indicated a slightly tendency of aggregation for itaconic anhydride-modified collagen. In semi-diluted solution collagen (Coll) and CMA present slightly differences in the thixotropic behavior, while CITA has a pronounced thixotropic behavior. Flow and oscillatory measurements revealed an elastic behavior of the collagen solutions, pure and modified with MA or ITA, as the storage modulus (G') has always a superior value compared with the loss modulus (G″). The denaturation temperature (Td) of unmodified collagen increased from 34°C to 40°C for CMA and to 39°C for CITA respectively, by formation of covalent bonds that stabilize the triple helix. PMID:23784667

  7. Synthesis and testing of catalysts for the production of maleic anhydride from a fermentation feedstock

    SciTech Connect

    Yedur, S.K.; Berglund, K.A.; Dulebohn, J.; Werpy, T.

    1996-03-01

    It is necessary to develop alternate pathways for the production of chemicals that are traditionally produced from fossil fuels to reduce dependency on nonrenewable energy sources. In this paper, an alternate technology is presented for producing maleic anhydride from a fermentation feedstock. The process involves the catalytic oxydehydrogenation of fermentation-derived succinic anhydride to produce maleic anhydride. Various catalysts have been synthesized and tested for the oxydehydrogenation reaction. Iron phosphate based catalysts are found to be the best on the basis of high conversions and selectivities obtained. The effects of temperature, oxygen concentration, contact time, and the total time on stream on the performance of the catalyst are investigated, and an optimum set of conditions for the operation of the bench-scale reactor is presented. The bulk and surface compositions, the surface areas, and the bulk crystallographic structure of the catalysts are also reported.

  8. UNIFAC parameters for maleic anhydride and 2-methyl furan in p-dioxane system

    SciTech Connect

    Daumn, K.J.

    1983-01-01

    The purpose of this work was to develop a method for calculating equilibrium concentrations for reversible liquid phase reactions from a minimum of experimental data. The example reaction studied was the Diels Alder reaction between 2-methyl furan and maleic anhydride. Specifically, interaction parameters of the UNIFAC model for groups in the compounds 2-methyl furan, maleic anhydride and the solvent, p-dioxane, were determined. The activity coefficient of each substance was then predicted by the UNIFAC method. Equilibrium constants at 45/sup 0/C for the Diels Alder reaction between 2-methyl furan and maleic anhydride were then calculated from these activity coefficients and two previously determined sets of equilibrium concentrations at 45/sup 0/C. These two equilibrium constants were within 12% of each other, which demonstrated the validity of the method.

  9. Protein-Reactive, Thermoresponsive Copolymers with High Flexibility and Biodegradability

    PubMed Central

    Guan, Jianjun; Hong, Yi; Ma, Zuwei; Wagner, William R.

    2010-01-01

    A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide–hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 °C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited lower critical solution temperatures (LCSTs) from 18 to 26 °C. After complete hydrolysis, hydrogels were soluble in phosphate buffered saline at 37 °C with LCSTs above 40.8 °C. Incorporation of type I collagen at varying mass fractions by covalent reaction with the copolymer backbone slightly increased LCSTs. Water content was 32–80% without collagen and increased to 230% with collagen at 37 °C. Hydrogels were highly flexible and relatively strong at 37 °C, with tensile strengths from 0.3 to 1.1 MPa and elongations at break from 344 to 1841% depending on NIPAAm/HEMAPLA ratio, AAc content, and polylactide length. Increasing the collagen content decreased both elongation at break and tensile strength. Hydrogel weight loss at 37 °C was 85–96% over 21 days and varied with polylactide content. Hydrogel weight loss at 37 °C was 85–96% over 21 days and varied with polylactide content. Degradation products were shown to be noncytotoxic. Cell adhesion on the hydrogels was 30% of that for tissue culture polystyrene but increased to statistically approximate this control surface after collagen incorporation. These newly described thermoresponsive copolymers demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:18324775

  10. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  11. Functionalized block copolymers as adhesion promoters

    SciTech Connect

    Kent, M.S.; Saunders, R.

    1995-03-01

    The goal of this work is to develop novel functionalized block copolymers to promote adhesion at inorganic substrate/polymer interfaces. We envision several potential advantages of functionalized block copolymers over small molecule coupling agents. Greater control over the structure of the interphase region should result through careful design of the backbone of the copolymer. The number of chains per area, the degree of entanglement between the copolymer and the polymer matrix, the number of sites per chain able to attach to the substrate, and the hydrophobicity of the interphase region can all be strongly affected by the choice of block lengths and the monomer sequence. In addition, entanglement between the copolymer and the polymer matrix, if achieved, should contribute significantly to adhesive strength. Our program involves four key elements: the synthesis of suitable functionalized block copolymers, characterization of the conformation of the copolymers at the interface by neutron reflectivity and atomic force microscopy, characterization of the degree of bonding by spectroscopy, and measurement of the mechanical properties of the interface. In this paper we discuss block copolymers designed as adhesion promoters for the copper/epoxy interface. We have synthesized a diblock with one block containing imidazole groups to bond to copper and a second block containing secondary amines to react with the epoxy matrix. We have also prepared a triblock copolymer containing a hydrophobic middle block. Below we describe the synthesis of the block copolymers by living, ring-opening metathesis polymerization (ROMP) and the first characterization data obtained by neutron reflectivity.

  12. Synthesis and morphology characterization of polydimethylsiloxane-containing block copolymers

    NASA Astrophysics Data System (ADS)

    Wadley, Maurice

    The thin film morphology characteristics of polydimethylsiloxane-containing block copolymers have been investigated. For this investigation, a commercially available hydroxyl terminated PDMS was purchased from Gelest and attached to a carboxylic acid functional reversible addition-fragmentation chain transfer (RAFT) agent by Steglich esterification. This produced macro-RAFT agents to which styrene monomer was polymerized. By using this approach the generation of low polydispersity polystyrene-block-polydimethylsiloxane (PS-block-PDMS) copolymers of various molecular weights spanning a wide volume fraction range in which the PDMS block remained the same in each polymerization. Synthesized block copolymers were characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Bulk and thin film characterization of PS-block-PDMS copolymers was done by small-angle x-ray scattering (SAXS), transmission electron microscopy (TEM), contact angle measurements, scanning force microscopy (SFM), and grazing incidence small-angle X-ray scattering (GISAXS). The following observations have been made. For PS-rich PS-block -PDMS copolymer thin films the low surface tension of PDMS caused it to migrate to the film surface regardless of solvent choice. The surface morphology was found to depend strongly on the solubility parameter of the solvent and exhibited SFM images consistent with parallel cylinder, perforated lamellar, and lamellar surface layers with increasing solvent solubility parameter. This behavior was due to the selective swelling of the individual blocks under slightly selective, good solvent conditions. A custom solvent annealing apparatus provided similar results in which order-order transitions in the thin films were observed with increasing solvent solubility parameter. Additionally improvements in the long-range order were observed after 1 h of solvent annealing. PS-rich PS-block-PDMS copolymer thin films also displayed PDMS

  13. Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.

    PubMed

    Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L

    2014-12-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion.

  14. Synthesis of Carboxylic Block Copolymers via Reversible Addition Fragmentation Transfer Polymerization for Tooth Erosion Prevention

    PubMed Central

    Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L.

    2014-01-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet–visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  15. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated...

  16. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

    PubMed Central

    Jeon, Jong Yeob; Eo, Seong Chan; Varghese, Jobi Kodiyan

    2014-01-01

    Summary The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05–1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C). PMID:25161738

  17. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  18. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer - 90Y conjugates in treatment of prostate tumors

    PubMed Central

    Buckway, Brandon; Frazier, Nick; Gormley, Adam J.; Ray, Abhijit; Ghandehari, Hamidreza

    2014-01-01

    Introduction The treatment of prostate cancer using a radiotherapeutic 90Y labeled N-(2-hydroxypropyl)methacrylamide (HPMA)copolymer can be enhanced with localized tumor hyperthermia. An 111In labeled HPMA copolymer system for single photon emission computerized tomography (SPECT) was developed to observe the biodistribution changes associated with hyperthermia. Efficacy studies were conducted in prostate tumor bearing mice using the 90Y HPMA copolymer with hyperthermia. Methods HPMA copolymers containing 1, 4, 7, 10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were synthesized by reversible addition-fragmentation transfer (RAFT) copolymerization and subsequently labeled with either 111In for imaging or 90Y for efficacy studies. Radiolabel stability was characterized in vitro with mouse serum. Imaging and efficacy studies were conducted in DU145 prostate tumor bearing mice. Imaging was performed using single photon emission computerized tomography (SPECT). Localized mild tumor hyperthermia was achieved by plasmonic photothermal therapy using gold nanorods. Results HPMA copolymer-DOTA conjugates demonstrated efficient labeling and stability for both radionuclides. Imaging analysis showed a marked increase of radiolabeled copolymer within the hyperthermia treated prostate tumors, with no significant accumulation in non-targeted tissues. The greatest reduction in tumor growth was observed in the hyperthermia treated tumors with 90Y HPMA copolymer conjugates. Histological analysis confirmed treatment efficacy and safety. Conclusion HPMA copolymer-DOTA conjugates radiolabeled with both the imaging and treatment radioisotopes, when combined with hyperthermia can serve as an image guided approach for efficacious treatment of prostate tumors. PMID:24461626

  19. Controlling Phase Separation of Interpenetrating Polymer Networks by Addition of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    2015-03-01

    Interpenetrating polymer networks (IPNs) offer a unique way to produce mechanically superior thermoset blends relative to the neat components. In this study, IPNs were prepared consisting of polydicyclopentadiene (polyDCPD), contributing high fracture toughness, and an epoxy resin (the diglycidyl ether of bisphenol A cured with nadic methyl anhydride), contributing high tensile strength and modulus. In the absence of compatibilization, the simultaneous curing of the networks leads to a macroscopically phase separated blend that exhibits poor mechanical behavior. To control phase separation and drive the system towards more mechanically robust nanostructured IPNs, block copolymers were designed to compatibilize this system, where one block possesses affinity to polyDCPD (polynorbornene in this study) and the other block possesses affinity to DGEBA (poly(ɛ-caprolactone) in this study). The influence of the block copolymer composition on the degree of phase separation and interfacial adhesion in the IPN was studied using a combination of small-angle scattering and imaging techniques. The resultant mechanical properties were explored and structure-property relationships were developed in this blend system.

  20. Controlling Phase Separation of Tough Interpenetrating Polymer Networks via Addition of Amphiphilic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    Interpenetrating polymer networks (IPNs) offer a unique way to combine the mechanical properties of two thermoset systems. Often used to create a material that possesses both high toughness and tensile properties, here we use polydicyclopentadiene, cured via ring opening metathesis polymerization, to contribute high toughness and diglycidyl ether of bisphenol A cured via anhydride chemistry to contribute high tensile strength and modulus. As the uncompatibilized system reacts in the presence of one another, mesoscopic phase separation occurs and dictates the overall efficacy of combining mechanical properties. To control phase separation and drive the system towards more mechanically robust nanostructed IPNs, amphiphilic block copolymers of polybutadiene- b-polyethylene oxide, where one block possesses strong affinity to polyDCPD and the other the DGEBA, were added to the system. Here we present a systematic study of the influence of block copolymer composition in the overall blend on degree of phase separation and morphology using a combination of small-angle x-ray scattering (SAXS) and scanning electron microscopy (SEM) techniques. The resultant mechanical properties are then explored in an effort to link mechanical properties to blend morphology.

  1. Discovering Complex Ordered Phases of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Shi, An-Chang

    2012-02-01

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. Understanding the structures and phase transitions in block copolymers has been one of the most active research areas in polymer science in the past two decades. One of the achievements is the self-consistent field theory (SCFT), which provides a powerful framework for the study of ordered phase of block copolymers. I will present a generic strategy to discover complex ordered phases of block copolymers within the SCFT framework. Specifically, a combination of real-space and reciprocal-space techniques is used to explore possible ordered phases in multiblock copolymer melts. These candidate phases can then be used to construct phase diagrams. Application of this strategy to linear and star ABC triblock copolymers has led to the discovery of a rich array of ordered phases.

  2. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  3. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  4. A new approach to quantification of DTPA incorporation into monoclonal antibodies (MoAbs) labeled by the cyclic anhydride DTPA method

    SciTech Connect

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Alsedairy, S.; Alderson, P.O.

    1985-05-01

    A method for determining the ratio of DTPA molecules attached per molecule of Ab was developed and used to examine the immunoreactivity of different Abs as a function of the amount of incorporated DTPA. The bicyclic anhydride of DTPA(2-C-14)acetic acid (BADTPA-C-14) was synthesized by reacting DTPA(2-C-14)acetic acid (1mCi/mmo1) and acetic anhydride. BADTPA-C-14 then was reacted with a MoAb to a melanoma associated antigen (MA) and to a MoAb to human HLA class II antigen (HLA) at 2mg/m1 of MoAb concentration, at MoAb to BADTPA-C-14 ratios (mmo1/mmo1) of l:1, 1:10, 1:00, l:200. The conjugate was dialyzed exhaustively against HEPES at pH 7.0. The MoAb concentration was measured at 280mm of uv; the DTPA/MoAb ratio was calculated based on the specific activity of BADTPA-C-14, and the immunoreactivity was assessed by direct cell-binding to melanoma, the HLA antigen and control (lymphoma) cells. Percent binding to the lymphoid cell line was less than 3%. The authors' results demonstrated a method for directly determining the number of DTPA molecules attached to a MOAb, and demonstrated variations in immunoreactivity as the number of DTPA groups per MoAb is altered.

  5. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Checco, A.; Theodoly, O.; Muller, P.

    2010-05-20

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters. keywords - soft matter, liquids and polymers, biological physics, chemical physics and physical chemistry.

  6. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Theodoly, O.; Checco, A; Muller, P

    2010-01-01

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters.

  7. Shape memory rubber bands & supramolecular ionic copolymers

    NASA Astrophysics Data System (ADS)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional

  8. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  9. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  10. Mixed interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-03-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the mixed interaction strength (ɛ_12) between unlike chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for ɛ_12. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the mixed interaction ɛ_12 for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  11. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  12. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  13. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  14. Enhancement of deoxyribozyme activity by cationic copolymers.

    PubMed

    Gao, Jueyuan; Shimada, Naohiko; Maruyama, Atsushi

    2015-02-01

    Deoxyribozymes, or DNAzymes, are DNA molecules with enzymatic activity. DNAzymes with ribonuclease activity have various potential applications in biomedical and bioanalytical fields; however, most constructs have limited turnover despite optimization of reaction conditions and DNAzyme structures. A cationic comb-type copolymer accelerates DNA hybridization and strand exchange rates, and we hypothesized that the copolymer would enhance deoxyribozyme activity by promoting turnover. The copolymer did not change DNAzyme activity under single-turnover conditions, suggesting that the copolymer affects neither the folding structure of DNAzyme nor the association of a divalent cation, a catalytic cofactor, to DNAzyme. The copolymer enhanced activity of the evaluated DNAzyme over a wide temperature range under multiple-turnover conditions. The copolymer increased the DNAzyme kcat/KM by fifty-fold at 50 °C, the optimal temperature for the DNAzyme in the absence of the copolymer. The acceleration effect was most significant when the reaction temperature was slightly higher than the melting temperature of the enzyme/substrate complex; acceleration of two orders of magnitude was observed. We concluded that the copolymer accelerated the turnover step without influencing the chemical cleavage step. In contrast to the copolymer, a cationic surfactant, CTAB, strongly inhibited the DNAzyme activity under either single- or multiple-turnover conditions. PMID:26218121

  15. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...

  16. TRIMELLITIC ANHYDRIDE (TMA) HYPERSENSITIVITY IN MICE AFTER DERMAL AND INTRATRACHAEL (IT) EXPOSURES

    EPA Science Inventory

    ABSTRACT for 2001 DMS213

    TRIMELLITIC ANHYDRIDE (TMA) HYPERSENSITIVITY IN
    MICE AFTER DERMAL AND INTRATRACHEAL (IT) EXPOSURES. E Boykin, M Ward, MJ Selgrade, and D Sailstad. NHEERL, ORD, US EPA, RTP, NC, USA.
    TMA causes respiratory hypersensitivity (RH) responses. W...

  17. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...

  18. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  19. SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium

    Endalkachew Sahle-Demessie Unnikrishnan R Pillai
    U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
    Fax: 513-569-7677
    Abstract:
    Hydrogenat...

  20. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

  1. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives.

    PubMed

    Armesto, Nuria; Ferrero, Miguel; Fernández, Susana; Gotor, Vicente

    2003-07-11

    The first direct synthesis of 4-O-cinnamoyl derivatives of quinic and shikimic acids were accomplished by regioselective esterification with Candida antarctica lipase A. For hydrocinnamic esters, enzymatic transesterification with vinyl esters gave excellent yields. However, more reactive acylating agents such as anhydrides were used to synthesize cinnamic derivatives of both acids. An inhibitory effect was observed with this lipase for p-methoxy, p-hydroxy, and p-acetoxy vinyl ester and anhydride derivatives (coumarate and ferulate derivatives).

  2. Discovery and Characterization of Carotenoid-Oxygen Copolymers in Fruits and Vegetables with Potential Health Benefits.

    PubMed

    Burton, Graham W; Daroszewski, Janusz; Mogg, Trevor J; Nikiforov, Grigory B; Nickerson, James G

    2016-05-18

    We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds. Geronic acid, an indirect, low molecular weight marker of β-carotene oxidation at ∼2% of β-carotene copolymers, is found to occur in common fresh or dried foods, including carrots, tomatoes, sweet potatoes, paprika, rosehips, seaweeds, and alfalfa, at levels encompassing an approximately thousand-fold range, from low ng/g in fresh foods to μg/g in dried foods. Copolymers isolated from several dried foods reach mg/g levels: comparable to initial carotenoid levels. In vivo biological activity of supplemental β-carotene copolymers has been previously documented at μg/g levels, suggesting that some foods could have related activity. PMID:27111491

  3. Synthesis and characterization of electrically conducting copolymers of poly(aniline-co-o-iodoaniline)

    NASA Astrophysics Data System (ADS)

    Waware, Umesh S.; Rashid, Mohd

    2014-07-01

    Functionalized copolymers of poly(aniline-co-o-iodoaniline) have been synthesized by the chemical oxidative polymerization method by using o-iodoaniline (o-IA) and aniline (AN) as monomer units by changing their molar feed ratio in acid aqueous medium. The physical properties viz; solubility, electrical conductivity have been studied to characterize them. The copolymers possess better solubility than unsubstituted homopolymer in organic solvent such as N-methyl-2-pyrrodinone (NMP). The conductivity of the pressed pellets of as-synthesized copolymers depends upon the content of o-IA in the polyaniline (PANI). The structural confirmation of the copolymer has been explained by Fourier transform infrared spectroscopy study which suggest that AN and o-IA units are uniformly distributed along the polymer chain and thus, the physical properties of copolymers may possibly be tailored by varying the molar feed ratio in copolymerization reactions. The conductivity of the copolymer decreases upon increasing the o-IA content in molar feed, because the introduction of -I- as a functional group reduces the extent of conjugation of the polymer chain.

  4. Discovery and Characterization of Carotenoid-Oxygen Copolymers in Fruits and Vegetables with Potential Health Benefits.

    PubMed

    Burton, Graham W; Daroszewski, Janusz; Mogg, Trevor J; Nikiforov, Grigory B; Nickerson, James G

    2016-05-18

    We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds. Geronic acid, an indirect, low molecular weight marker of β-carotene oxidation at ∼2% of β-carotene copolymers, is found to occur in common fresh or dried foods, including carrots, tomatoes, sweet potatoes, paprika, rosehips, seaweeds, and alfalfa, at levels encompassing an approximately thousand-fold range, from low ng/g in fresh foods to μg/g in dried foods. Copolymers isolated from several dried foods reach mg/g levels: comparable to initial carotenoid levels. In vivo biological activity of supplemental β-carotene copolymers has been previously documented at μg/g levels, suggesting that some foods could have related activity.

  5. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.

    PubMed

    Grayson, Amy C R; Voskerician, Gabriela; Lynn, Aaron; Anderson, James M; Cima, Michael J; Langer, Robert

    2004-01-01

    The biocompatibility and biodegradation rate of component materials are critical when designing a drug-delivery device. The degradation products and rate of degradation may play important roles in determining the local cellular response to the implanted material. In this study, we investigated the biocompatibility and relative biodegradation rates of PLA, PGA and two poly(lactic-co-glycolic acid) (PLGA) polymers of 50:50 mol ratio, thin-film component materials of a drug-delivery microchip developed in our laboratory. The in vivo biocompatibility and both in vivo and in vitro degradation of these materials were characterized using several techniques. Total leukocyte concentration measurements showed normal acute and chronic inflammatory responses to the PGA and low-molecular-weight PLGA that resolved by 21 days, while the normal inflammatory responses to the PLA and high-molecular-weight PLGA were resolved but at slower rates up to 21 days. These results were paralleled by thickness measurements of fibrous capsules surrounding the implants, which showed greater maturation of the capsules for the more rapidly degrading materials after 21 days, but less mature capsules of sustained thicknesses for the PLA and high-molecular-weight PLGA up to 49 days. Gel-permeation chromatography of residual polymer samples confirmed classification of the materials as rapidly or slowly degrading. These materials showed thinner fibrous capsules than have been reported for other materials by our laboratory and have suitable biocompatibility and biodegradation rates for an implantable drug-delivery device.

  6. Adsorption and reaction of maleic anhydride on Mo(110), monolayer Pd(111)/Mo(110), and multilayer Pd(111)/Mo(110)

    SciTech Connect

    Xu, C.; Goodman, D.W.

    1996-04-03

    The adsorption and reaction of maleic anhydride and deuterated maleic anhydride on Mo(110), monolayer Pd/Mo(110), and multilayer Pd(111)/Mo(110) surfaces have been studied using temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Maleic anhydride adsorbs irreversibly on the Mo(110) surface at 100 K. Heating to 1200 K yields adsorbed carbon (C{sub ads}) and gas-phase CO and H{sub 2}. In contrast, the adsorption of maleic anhydride on monolayer Pd(111)/Mo(110) and multilayer Pd(111)/Mo(110) surfaces is largely reversible with the chemisorbed maleic anhydride desorbing at 365 and 375 K, respectively. Approximately 15% of the chemisorbed maleic anhydride decomposes upon heating to 400K, forming CO, CO{sub 2} and C{sub 2}H{sub 2}; C{sub 2}H{sub 2} further dehydrogenates upon heating to C{sub ads} and gas-phase H{sub 2}. The HREELS measurements indicate that maleic anhydride is bonded to multilayer Pd(111)/Mo(110) through the olefin bond in a di-{sigma} configuration, while on monolayer Pd(111)/Mo(110), the maleic anhydride is bonded to the surface through the olefin via a {pi}-bond. On the Mo(110) surface, maleic anhydride is bonded to the surface through the ring oxygen with the molecular plane perpendicular to the surface. As a result of this modified adsorption geometry, the carbonyl stretching mode is red-shifted nearly 150 cm{sup -1} on the monolayer Pd(111)/Mo(110) surface, unshifted on the multilayer Pd(111)/Mo(110) surface, and blue-shifted by nearly 100 cm{sup -1} on the Mo(110) surface. 31 refs., 14 figs., 3 tabs.

  7. New conductive copolymer membranes via track-etched PC templates for biological media ultra-filtration

    NASA Astrophysics Data System (ADS)

    Berthelot, T.; Baudin, C.; Balanzat, E.; Clochard, M.-C.

    2007-12-01

    New microstructurated copolymer membranes have been synthesized using a track-etched polycarbonate (PC) matrix. These membranes proved to be an important device in the field of ultra-filtration and synthetic membranes. These novel structures were obtained by irradiating at various angles (+30°, -30°). Such architecture is expected to improve not only the exchange properties but also, the behaviour under high flow pressure during their use as nanofiltration membranes. Membrane functionalization was performed with an amino acid as a simple biological model. Transmission and ATR-FTIR spectroscopies show that the doping state of copolymer dramatically influences the amino acid coupling rate. UV-vis spectroscopy indicates that the copolymer may be self-doped.

  8. Does bottle type and acid-washing influence trace element analyses by ICP-MS on water samples? A test covering 62 elements and four bottle types: high density polyethene (HDPE), polypropene (PP), fluorinated ethene propene copolymer (FEP) and perfluoroalkoxy polymer (PFA).

    PubMed

    Reimann, C; Siewers, U; Skarphagen, H; Banks, D

    1999-10-01

    Groundwater samples from 15 boreholes in crystalline bedrock aquifers in South Norway (Oslo area) have been collected in parallel in five different clear plastic bottle types (high density polyethene [HDPE], polypropene [PP, two manufacturers], fluorinated ethene propene copolymer [FEP] and perfluoroalkoxy polymer [PFA]. In the cases of polyethene and polypropene, parallel samples have been collected in factory-new (unwashed) bottles and acid-washed factory-new bottles. Samples have been analysed by ICP-MS techniques for a wide range of inorganic elements down to the ppt (ng/l) range. It was found that acid-washing of factory-new flasks had no clear systematic beneficial effect on analytical result. On the contrary, for the PP-bottles concentrations of Pb and Sn were clearly elevated in the acid-washed bottles. Likewise, for the vast majority of elements, bottle type was of no importance for analytical result. For six elements (Al, Cr, Hf, Hg, Pb and Sn) some systematic differences for one or more bottle types could be tentatively discerned, but in no case was the discrepancy of major cause for concern. The most pronounced effect was for Cr, with clearly elevated concentrations returned from the samples collected in HDPE bottles, regardless of acid-washing or not. For the above six elements, FEP or PFA bottles seemed to be marginally preferable to PP and HDPE. In general, cheap HDPE, factory new, unwashed flasks are suitable for sampling waters for ICP-MS ultra-trace analysis of the elements tested.

  9. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  10. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  11. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  12. Barite formation in the presence of a commercial copolymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Cristina; Putnis, Christine; Ruiz-Agudo, Encarnacion; Putnis, Andrew

    2015-04-01

    Fluid composition can significantly modify the mechanisms of mineral formation. Particularly, the presence of organic additives in the aqueous media has been shown to alter the precipitation of minerals substantially (e.g. calcium carbonate, barium carbonate and barium sulfate). Despite the numerous studies dealing with barite precipitation and the influence of organic additives (e.g. Benton et al. 1993, Qi et al., 2000, Wang and Cölfen, 2006, Mavredaki et al., 2011), the details of the mechanism of barite formation in the presence of organic additives, particularly at the early stages of this process, are yet to be fully resolved. Here, we present observations on the initial stages of barite formation from aqueous solutions, as well as the alterations induced by a commercial copolymer (maleic acid/allyl sulfonic acid copolymer with phosphonate groups), commonly used as a scale inhibitor in oil recovery. Most synthetic commercial additives contain the same functional groups (e.g. carboxylate, phosphonate and/or sulfonate groups). Thus our work may help to understand the mechanism by which copolymers modify crystallization processes and aid in the selection of the most appropriate inhibitors for hindering or controlling barite scale formation. Barite scaling is one of the main problems in many industrial processes (such as, paper-making, chemical manufacturing, cement operations, off-shore oil extraction, geothermal energy production). Using Atomic Force Microscopy (AFM), we show that barite growth is significantly influenced by the presence of the copolymer. In its absence, barium sulfate growth occurs by 2D island nucleation and spreading. The addition of small amounts (0.1 ppm and 0.5 ppm) of the copolymer enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor is enough to block barite nucleation and growth by adsorption of a copolymer layer onto the barite surface. Transmission electron microscopy (TEM) was also used to gain better insights into the

  13. Design of block copolymer templated solid state batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Steven Edward

    The advent of portable electronics has placed a great demand on the power requirements of battery systems. High power batteries for small devices, such as cell phones, laptop computers, and personal data assistants (PDA's) have focused primarily on lithium ion batteries. With the introduction of large flexible panel displays, the need for a flexible battery system is apparent. Ring Opening Metathesis Polymerization (ROMP) is a facile method for synthesizing block copolymers with polar functional groups. These functional groups allow the formation of metal oxide clusters via a template of the microphase separated block copolymer domains. In this thesis, the synthesis of a flexible polymer battery system is described. Diblock copolymers of an ionically conductive unsaturated polyethylene oxide block with a carboxylic acid functionalized block were synthesized and characterized with NMR, IR and Gel Permeation Chromatography (GPC). Characterization of polymer templated LiMn2O 4 clusters and nanocomposites synthesized for the study have a distributed cluster morphology within the polymer matrix. The nanocomposites were analyzed with transmission electron microscopy to determine the morphology of the nanocomposites. Battery performance was characterized with cyclic voltammetry and galvanostatic charge/discharge cycling for power capacity. The ionic conductivity was measured with impedance spectroscopy. The novel room temperature templating strategy used for the synthesis of these ionically conductive nanocomposites requires no thermal cycling steps. This makes it attractive for processing of sheet structures to power flexible displays.

  14. Formation and Characterization of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  15. Tailoring the LCST of PNIPAAM-b-PLA-b-PNIPAAM triblock copolymers via stereocomplexation.

    PubMed

    Zhang, Xing; Tan, Beng H; He, Chaobin

    2013-11-01

    Poly(N-isopropylacrylamide)-block-poly(l-lactic acid)-block-poly(N-isopropylacrylamide) (PNIPAAM-b-PLLA-b-PNIPAAM) and PNIPAAM-b-PDLA-b-PNIPAAM triblock copolymers with varying polylactic acid (PLA) lengths are synthesized using a combination of ring-opening polymerization and atom-transfer radical polymerization. Results of (1) H NMR and gel permeation chromatography analyses show that the copolymers have a well-defined triblock structure and the PLA segment lengths can be readily controlled with monomer feed ratio. Stereocomplexation between the enantiomeric PLA segments is confirmed with differential scanning calorimetry and wide-angle X-ray scattering. Dynamic light scattering experiments show that (1) the LCST of PNIPAAM in water could be tailored from 32 °C up to 38.5 °C by increasing the length of PLA segments and mixing copolymers of similar molecular weight with enantiomeric PLA segments to induce stereocomplexation, and (2) the LCST of each mixed copolymer system could be tailored within a 2-3 °C range of body temperature by manipulating the ratio of the enantiomeric copolymers in solution.

  16. Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification.

    PubMed

    Ji, Bolin; Tang, Peixin; Yan, Kelu; Sun, Gang

    2015-11-01

    1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times.

  17. Pattern transfer using block copolymers.

    PubMed

    Gu, Xiaodan; Gunkel, Ilja; Russell, Thomas P

    2013-10-13

    To meet the increasing demand for patterning smaller feature sizes, a lithography technique is required with the ability to pattern sub-20 nm features. While top-down photolithography is approaching its limit in the continued drive to meet Moore's law, the use of directed self-assembly (DSA) of block copolymers (BCPs) offers a promising route to meet this challenge in achieving nanometre feature sizes. Recent developments in BCP lithography and in the DSA of BCPs are reviewed. While tremendous advances have been made in this field, there are still hurdles that need to be overcome to realize the full potential of BCPs and their actual use.

  18. Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery.

    PubMed

    Fu, Liyi; Sun, Chunyang; Yan, Lifeng

    2015-01-28

    Theranostic polymeric nanomaterials are of special important in cancer treatment. Here, novel galactose targeted pH-responsive amphiphilic multiblock copolymer conjugated with both drug and near-infrared fluorescence (NIR) probe has been designed and prepared by a four-steps process: (1) ring-opening polymerization (ROP) of N-carboxy anhydride (NCA) monomers using propargylamine as initiator; (2) reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methacrylate (OEGMA) and gal monomer by an azido modified RAFT agent; (3) combing the obtained two polymeric segments by click reaction; (4) NIR copolymer prodrug was synthesized by chemical linkage of both cyanine dye and anticancer drug doxorubicin to the block copolymer via amide bond and hydrazone, respectively. The obtained NIRF copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and its was measured by means of micelles dynamic light scattering (DLS), field emission transmission electron microscopy (FETEM), and UV-vis and fluorescence spectrophotometry. The prodrug has strong fluorescence in the near-infrared region, and a pH sensitive drug release was confirmed at pH of 5.4 via an in vitro drug release experiment. Confocal laser scanning microscopy (CLSM) and flow cytometry experiments of the prodrug on both HepG2 and NIH3T3 cells reveal that the galactose targeted polymeric prodrug shows a fast and enhanced endocytosis due to the specific interaction for HepG2 cells, indicating the as-prepared polymer is a candidate for theranosis of liver cancer. PMID:25569169

  19. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  20. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  1. Regioselective Syntheses of [13C]4-Labelled Sodium 1-Carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and Sodium 2-Carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-Maleic Anhydride

    PubMed Central

    Barsamian, Adam L.; Perkins, Matt J.; Field, Jennifer A.; Blakemore, Paul R.

    2014-01-01

    The entitled monohydrolysis products, also known as α- and β-ethylhexyl sulfosuccinate ('EHSS'), of the surfactant diisooctyl sulfosuccinate ('DOSS') were synthesized in stable isotope labelled form from [13C]4-maleic anhydride. Sodium [13C]4-1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [13C]4-maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of 13C/13C (INADEQUATE) and 1H/13C (HMBC) NMR spectral correlation experiments. Sodium [13C]4-2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol (PMBOH) with [13C]4-maleic anhydride, regioselective sodium bisulfite addition, DCC mediated esterification with 2-ethylhexan-1-ol, and PMB ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of 1JCC scalar coupling constant analysis and 1H/13C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the LC-MS/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  2. Comparative kinetic study and microwaves non-thermal effects on the formation of poly(amic acid) 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction activated by microwave, ultrasound and conventional heating.

    PubMed

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system.

  3. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 21, 1994--March 22, 1995

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.

  4. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  5. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  6. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Sun, Run-Cang

    2010-12-13

    Generation of bioenergy, new functional polymers, or chemicals and biomaterials from hemicelluloses are important uses for biomass. In this paper, a novel functional biopolymer with carbon-carbon double bond and carboxyl groups was prepared by a homogeneous esterification of xylan-rich hemicelluloses (XH) with maleic anhydride in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid using LiOH as catalyst. The biopolymers with degrees of substitution (DS) between 0.095 and 0.75 were accessible in a completely homogeneous system by changing reaction temperature, reaction time, the dosage of catalyst, and the molar ratio of maleic anhydride to anhydroxylose unit in XH. Results obtained from FT-IR and (13)C NMR spectroscopies confirmed the structure of hemicellulosic derivatives with carbon-carbon double bond and carboxyl groups, implying an efficient method to prepare a novel and important functional biopolymer for biomaterials.

  7. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films.

    PubMed

    Lee, Jin Ho; Go, Ae Kyung; Oh, Se Heang; Lee, Ka Eul; Yuk, Soon Hong

    2005-02-01

    This study was designed to evaluate the effect of polyethylene glycol (PEG) and nonsteroidal anti-inflammatory drug (ibuprofen) on the prevention of postsurgical tissue adhesion. For this, poly(L-lactic acid) (PLLA)-PEG diblock copolymers were synthesized by ring opening polymerization of L-lactide and methoxy polyethylene glycol (Mw 5000) of different compositions. The synthesized copolymers were characterized by gel permeation chromatography and 1H-nuclear magnetic resonance spectroscopy. PLLA-PEG copolymer films were prepared by solvent casting. The prepared copolymer films were more flexible and hydrophilic than the control PLLA film, as investigated by the measurements of glass transition temperature, water absorption content, and water contact angle. The drug release behavior from the ibuprofen (10 wt%)-loaded copolymer films was examined by high performance liquid chromatography. It was observed that the drug was released gradually up to about 40% of total loading amount after 20 days, depending on PEG composition; more drug release from the films with higher PEG compositions. In vitro cell adhesions on the copolymer films with/without drug were compared by the culture of NIH/3T3 mouse embryo fibroblasts on the surfaces. For in vivo evaluation of tissue anti-adhesion potential, the copolymer films with/without drug were implanted between the cecum and peritoneal wall defects of rats and their tissue adhesion extents were compared. It was observed that the ibuprofen-containing PLLA-PEG films with high PEG composition (particularly PLLA113-PEG113 film with PEG composition, 50 mol%) were very effective in preventing cell or tissue adhesion on the film surfaces, probably owing to the synergistic effects of highly mobile, hydrophilic PEG and anti-inflammatory drug, ibuprofen.

  8. Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles

    PubMed Central

    Chen, Hongwei; Wu, Xinying; Duan, Hongwei; Wang, Y. Andrew; Wang, Liya; Zhang, Minming; Mao, Hui

    2009-01-01

    We report a biocompatible polysiloxane containing amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS), for coating and stabilizing nanoparticles for biomedical applications. Such amphiphilic diblock copolymer which comprises both a hydrophobic segment with “surface anchoring moiety” (silane group) and a hydrophilic segment with PEO (Mn=5000 g/mol) was obtained by the reversible addition fragmentation chain transfer (RAFT) polymerization using the PEO macromolecular chain transfer agent. When used for coating paramagnetic iron oxide nanoparticles (IONPs), copolymers were mixed with hydrophobic oleic acid coated core size uniformed IONPs (D=13 nm) in co-solvent tetrahydrofuran. After being aged over a period of time, resulting monodispersed IONPs can be transferred into aqueous medium. With proper PγMPS block length (Mn=10,000 g/mol), polysiloxane containing diblock copolymers formed a thin layer of coating (~3 nm) around monocrystalline nanoparticles as measured by transmission electron microscopy (TEM). Magnetic resonance imaging (MRI) experiments showed excellent T2 weighted contrast effect from coated IONPs with a transverse relaxivity r2=98.6 mM−1s−1 (at 1.5 Tesla). Such thin coating layer has little effect on the relaxivity when compared to that of IONPs coated with conventional amphiphilic copolymer. Polysiloxane containing diblock copolymer coated IONPs are stable without aggregation or binding to proteins in serum when incubated for 24 h in culture medium containing 10% serum. Furthermore, much lower level of intracellular uptake by macrophage cells was observed with polysiloxane containing diblock copolymers coated IONPs, suggesting the reduction of non-specific cell uptakes and antibiofouling effect. PMID:20161520

  9. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment.

    PubMed

    Aklog, Yihun Fantahun; Nagae, Tomone; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-11-20

    Esterification with maleic anhydride significantly improved the mechanical disintegration of chitin into uniform 10-nm nanofibers. Nanofibers with 0.25° of esterification were homogeneously dispersed in basic water due to the carboxylate salt on the surface. Esterification proceeded on the surface and did not affect the relative crystallinity. A cast film of the esterified chitin nanofibers was highly transparent, since the film was free from light scattering. PMID:27561471

  10. Synthesis and Characterization of Organic Impurities in Bortezomib Anhydride Produced by a Convergent Technology

    PubMed Central

    Ivanov, Andrey S.; Shishkov, Sergey V.; Zhalnina, Anna A.

    2012-01-01

    A profile of impurities in bortezomib anhydride, produced by a recently developed convergent technology, has been characterized. HPLC-MS analysis of the drug essence revealed three impurities: an epimer of bortezomib, resulting from partial racemization of l-phenylalanine’s stereogenic center during the chemical synthesis, and two epimeric products of oxidative degradation of bortezomib, in which boron is replaced by the OH group. The impurities were obtained by chemical synthesis and characterized by physical methods. PMID:22396904

  11. Covalent modification of graphite oxide with acetic anhydride to enhance dispersibility in organic solvents

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Yang, Anwei; Zhang, Chen; Zhang, Lei; Sun, Feifei; Ma, Ning

    2016-05-01

    Graphite oxide (GO) was modified by acetic anhydride via a catalyzed ring-opening reaction of the attached epoxy groups at very mild condition. The dispersion of the modified GO is thus largely imporved in many organic solvents and the highest GO concentration reaches 2.0mg/mL in alkyl(aryl) chlorides, ethers, alcohols and cyclohexane, which is amongst the highest value for GO in organics.

  12. Poly(butylene succinate) and its copolymers: research, development and industrialization.

    PubMed

    Xu, Jun; Guo, Bao-Hua

    2010-11-01

    Poly(butylene succinate) (PBS) and its copolymers are a family of biodegradable polymers with excellent biodegradability, thermoplastic processability and balanced mechanical properties. In this article, production of the monomers succinic acid and butanediol, synthesis, processing and properties of PBS and its copolymers are reviewed. The physical properties and biodegradation rate of PBS materials can be varied in a wide range through copolymerization with different types and various contents of monomers. PBS has a wide temperature window for thermoplastic processing, which makes the resin suitable for extrusion, injection molding, thermoforming and film blowing. Finally, we summarized industrialization and applications of PBS.

  13. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B

    PubMed Central

    2013-01-01

    Background The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). Results In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. Conclusions Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer. PMID:23692611

  14. Evaluation of an immunoaffinity extraction column for enrichment of adducts between human serum albumin and hexahydrophthalic anhydride in plasma.

    PubMed

    Johannesson, Gunvor A; Kristiansson, Monica H; Jönsson, Bo A G; Lindh, Christian H

    2008-03-01

    An immunoaffinity extraction (IAE) column was prepared for extraction of adducts between human serum albumin (HSA) and hexahydrophthalic anhydride (HHPA). HHPA is a strong sensitizer inducing immunoglobulin E antibodies in vivo. Polyclonal antibodies from a rabbit immunized with keyhole limpet hemocyananin-HHPA conjugate were purified using a Protein A Sepharose gel. To obtain antibodies with optimal affinity towards HHPA-protein adducts, HHPA-specific antibodies were selected using an N-hydroxysuccinimide-Sepharose column coupled with albumin-HHPA conjugate. Antibodies eluted from this column at pH 2.2 were selected to prepare the IAE column. The column was evaluated using 2 mL plasma spiked with HSA-HHPA conjugate. The column was eluted with glycine buffer at pH 2.0. The conjugates in the eluate were hydrolyzed to the corresponding HHP acid and quantified by mass spectrometry. The average recovery of HHPA adducts in 11 experiments was 68% with a coefficient of variation (CV) of 7%. The column's capacity to bind protein-HHPA adducts was found to be linear in the range of 0.15-1.2 nmol conjugate. The evaluation showed that the IAE column had adequate affinity towards the HHPA adducts and that the adducts could be extracted with good recovery and precision from a large volume of plasma.

  15. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.

    PubMed

    Dinarvand, Rassoul; Alimorad, Mohammed Massoud; Amanlou, Massoud; Akbari, Hamid

    2005-10-01

    Controlled drug-delivery technology is concerned with the systematic release of a pharmaceutical agent to maintain a therapeutic level of the drug in the body for modulated and/or prolonged periods of time. This may be achieved by incorporating the therapeutic agent into a degradable polymer vehicle, which releases the agent continuously as the matrix erodes. In this study, poly trimethylene carbonate (PTMC), an aliphatic polycarbonate, and poly adipic anhydride (PAA), an aliphatic polyanhydride, were synthesized via melt condensation and ring-opening polymerization of trimethylene carbonate and adipic acid, respectively. The release of clomipramine HCl and buprenorphine HCl from discs prepared with the use of PTMC-PAA blends in phosphate buffer (pH 7.4) are also described. Clomipramine HCl and buprenorphine HCl were both used as hydrophilic drug models. Theoretical treatment of the data with the Peppas model revealed that release of clomipramine HCl (5%) in devices containing 70% PTMC or more followed a Fickian diffusion model. However, the releases of buprenorphine HCl (5%) in the same devices were anomalous. For devices containing 50% and more PAA, surface erosion may play a significant role in the release of both molecules.

  16. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    PubMed

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. PMID:27240315

  17. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid.

    PubMed

    Shang, Wenting; Sheng, Zhanwu; Shen, Yixiao; Ai, Binling; Zheng, Lili; Yang, Jingsong; Xu, Zhimin

    2016-05-01

    Banana cellulose contained number of hydrophilic hydroxyl groups which were succinylated to be hydrophobic groups with high oil affinity. Succinic anhydride was used to modify banana cellulose in 1-allyl-3-methylimidazolium chloride ionic liquid in this study. The modified banana cellulose had a high oil absorption capacity. The effects of reaction time, temperature, and molar ratio of succinic anhydride to anhydroglucose on the degree of substitution of modified banana cellulose were evaluated. The optimal reaction condition was at a ratio of succinic anhydride and anhydroglucose 6:1 (m:m), reaction time 60min and temperature 90°C. The maximum degree of acylation reaction reached to 0.37. The characterization analysis of the modified banana cellulose was performed using X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and thermogravimetry. The oil absorption capacity and kinetics of the modified banana cellulose were evaluated at the modified cellulose dose (0.025-0.3g), initial oil amount (5-30g), and temperature (15-35°C) conditions. The maximum oil absorption capacity was 32.12g/g at the condition of the cellulose dose (0.05g), initial oil amount (25g) and temperature (15°C). The kinetics of oil absorption of the cellulose followed a pseudo-second-order model. The results of this study demonstrated that the modified banana cellulose could be used as an efficient bio-sorbent for oil adsorption. PMID:26877005

  18. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  19. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  20. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P F; Buchanan, III, A C; Eskay, T P; Mungall, W S

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 °C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non