Science.gov

Sample records for acid anhydride copolymer

  1. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  2. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  3. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  4. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  5. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sieve No. 20. 2. Styrene-maleic anhydride copolymer modified with butadiene, (CAS Reg. No. 27288-99-9... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Styrene-maleic anhydride copolymers. 177.1820... Use Food Contact Surfaces § 177.1820 Styrene-maleic anhydride copolymers. Styrene-maleic...

  6. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... units by weight and not more than 20 percent styrene-butadiene and/or butadiene rubber units by weight... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Styrene-maleic anhydride copolymers. 177.1820... copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  7. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... units by weight and not more than 20 percent styrene-butadiene and/or butadiene rubber units by weight... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Styrene-maleic anhydride copolymers. 177.1820... copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  8. Biodegradable polymers derived from renewable resources: Highly branched copolymers of itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Wallach, Joshua Andrew

    In an effort to design cyclic anhydride containing polymers that are derived from renewable resources and have biodegradable characteristics, three copolymer systems using itaconic anhydride have been studied. Two of the systems were copolymers with stearate based monomers; vinyl stearate and stearyl methacrylate, while the third was a copolymer with a methacrylate terminated poly (lactic acid) (PLA) macromonomer. For the stearate systems, stearyl methacrylate showed good copolymerization with equal conversions for both monomers. On the other hand vinyl stearate did not show as good results due to its decreased reactivity, which resulted in a copolymer highly enriched in itaconic anhydride with significant amounts of unreacted vinyl stearate under all copolymer compositions. These differing results were confirmed through analysis of reactivity ratios showing a results that are more favorable for copolymerization for the methacrylate system. Copolymers from both systems showed single melting transitions in a precarious range of 45--50°C arising from the stearyl side groups, though after quenching from the melt this shifted to below room temperature. Anhydride retention was confirmed through structural analysis. Similar to the stearyl methacrylate system, methacrylate terminated PLA macromonomers were copolymerized with itaconic anhydride. PLA's acceptance as a biodegradable material derived from renewable resources, make it a viable choice, with which to design anhydride containing copolymers. Good copolymerization was shown for all compositions studied with retention of the anhydride, though at high itaconic anhydride concentrations conversions were reduced significantly. Copolymers showed glass transition temperatures ranging from 32°C for 85 mole % PLA macromonomer to 73°C for 85 mole % itaconic anhydride. An effort to produce PLA macromonomers through a process of chemical recycling commercial PLA was also undertaken. Promising results were obtained showing

  9. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated...

  10. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... distilled water at specified temperatures, times, and particle size Maximum extractable fraction in n-heptane at specified temperatures, times, and particle size 1. Styrene-maleic anhydride copolymers... weight percent 0.006 weight percent at reflux temperature for 1 hr utilizing particles of a size...

  11. Cycloolefin-maleic anhydride copolymers for 193-nm resist compositions

    NASA Astrophysics Data System (ADS)

    Rahman, M. D.; Bae, Jun-Bom; Cook, Michelle M.; Durham, Dana L.; Kudo, Takanori; Kim, Woo-Kyu; Padmanaban, Munirathna; Dammel, Ralph R.

    2000-06-01

    Cycloolefin/maleic anhydride systems are a favorable approach to dry etch resistant resists for 193 nm lithography. This paper reports on poly(BNC/HNC/NC/MA) tetrapolymers, from t- butylnorbornene carboxylate (BNC), hydroxyethyl-norbornene carboxylate (HNC), norbornene carboxylic acid (NC) and maleic anhydride (MA). It was found that moisture has to be excluded in the synthesis of these systems if reproducible results are to be obtained. Lithographic evaluation of an optimized, modified polymer has shown linear isolated line resolution down to 100 nm using conventional 193 nm illumination. Possible reactions of the alcohol and anhydride moieties are discussed, and the effect of the anhydride unit on polymer absorbance is discussed using succinnic anhydride as a model compound.

  12. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  13. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  14. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  15. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  16. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  17. Bioengineering Functional Copolymers. IX. Poly[(maleic anhydride-co-hexene-1)-g-poly(ethylene oxide)].

    PubMed

    Mazi, Hidayet; Kibarer, Günay; Emregül, Emel; Rzaev, Zakir M O

    2006-04-12

    Amphiphilic bioengineering copolymers having a combination of hydrophilic/hydrophobic linkages and polyelectrolyte behavior, along with an ability to interact with biomacromolecules, in particular with the invertase enzyme, have been synthesized by (a) complex-radical copolymerization of maleic anhydride (MA, the acceptor) and hexene-1 (H-1, the donor) monomers with benzoyl peroxide as the initiator in 1,4-dioxane at 65 degrees C under high-conversion conditions and (b) subsequent grafting (polyesterification) of synthesized poly(MA-alt-H-1) with alpha-methoxy-omega-hydroxy-poly(ethylene oxide) (PEO). Copolymerizations were also carried out in the steady state, in order to essentially reduce the effect of copolymer composition drift. The values of the monomer reactivity ratios (r(1) and r(2)) determined by using the known terminal models of Fineman-Ross (FR) and Kelen-Tüdös (KT), as well as by nonlinear regression (NLR) analysis, are: r(1) = 0.16 and r(2) = 0.30 (FR), r(1) = 0.14 and r(2) = 0.27 (KT), and r(1) = 0.15 and r(2) = 0.29 (NLR), respectively. All the copolymers and graft copolymers were characterized by FTIR spectroscopy, (1)H{(13)C} NMR spectroscopy, viscometric measurements, and chemical (acid number), thermal (DSC and TGA), and X-ray diffraction analyses. Unlike poly(MA-alt-H-1)s, PEO macrobranched graft copolymers exhibit expressed polyelectrolyte and swelling behavior in diluted and concentrated dioxane solutions, respectively. The copolymer and its PEO hyperbranched derivatives can be used as carriers for enzyme immobilization. PMID:16572476

  18. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  19. Immobilization of saccharides and peptides on 96-well microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer.

    PubMed

    Satoh, A; Kojima, K; Koyama, T; Ogawa, H; Matsumoto, I

    1998-06-15

    We have previously reported a method to immobilize protein ligands on microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer (MMAC) [Isosaki, K., et al. (1992) J. Chromatogr. 597, 123-128]. In this study, we improved the MMAC method to efficiently immobilize not only small ligands such as peptides and oligosaccharides, which could not be efficiently immobilized previously, but also heparin via its reducing end. Amino and hydrazino groups were introduced to MMAC-coated microtiter plate wells by coupling to acid anhydride groups of MMAC with 1,6-hexamethylenediamine and adipic acid dihydrazide, respectively. The amino groups introduced were allowed to react with peptides by use of divalent cross-linkers. Hydrazino groups were allowed to react with formyl groups of saccharides by reductive amination. Peptides and oligosaccharides were immobilized in a dose-dependent manner by these methods. In the case of the angiotensin peptide thus immobilized, the detection limit by monoclonal antibodies was as low as 0.1-1 fmol peptide per well. Application of 20-200 nmol oligosaccharides to the well was sufficient to immobilize and subsequently detect lectins. Furthermore, heparin immobilized on the hydrazinocoated wells was successfully used for the binding assay of annexin IV. PMID:9648659

  20. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations.

    PubMed

    Richard, Robert; Schwarz, Marlene; Chan, Ken; Teigen, Nikolai; Boden, Mark

    2009-08-01

    The controlled release of paclitaxel (PTx) from stent coatings comprising an elastomeric polymer blended with a styrene maleic anhydride (SMA) copolymer is described. The coated stents were characterized for morphology by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and for drug release using high-performance liquid chromatography (HPLC). Differential scanning calorimetry (DSC) was used to measure the extent of interaction between the PTx and polymers in the formulation. Coronary stents were coated with blends of poly(b-styrene-b-isobutylene-b-styrene) (SIBS) and SMA containing 7% or 14% maleic anhydride (MA) by weight. SEM examination of the stents showed that the coating did not crack or delaminate either before or after stent expansion. Examination of the coating surface via AFM after elution of the drug indicated that PTx resides primarily in the SMA phase and provided information about the mechanism of PTx release. The addition of SMA altered the release profile of PTx from the base elastomer coatings. In addition, the presence of the SMA enabled tunable release of PTx from the elastomeric stent coatings, while preserving mechanical properties. Thermal analysis reveled no shift in the glass transition temperatures for any of the polymers at all drug loadings studied, indicating that the PTx is not miscible with any component of the polymer blend. An in vivo evaluation indicated that biocompatibility and vascular response results for SMA/SIBS-coated stents (without PTx) are similar to results for SIBS-only-coated and bare stainless steel control stents when implanted in the non-injured coronary arteries of common swine for 30 and 90 days. PMID:18563805

  1. Comparison of acid anhydrides with carboxylic acids in enantioselective enzymatic esterification of racemic menthol.

    PubMed

    Xu, J; Zhu, J; Kawamoto, T; Atsuo, T; Hu, Y

    1997-01-01

    Optical resolution of racemic menthol has been efficiently achieved by lipase-catalyzed enantioselective esterification in an organic solvent. The performance of the reaction using an acid anhydride as an acyl donor was compared with that using its corresponding free acid. The reactivities of acid anhydrides were found to be higher than their corresponding free acids, but acid anhydrides were also found to be easily hydrolyzed into free acids under the catalysis of the same enzyme. The existence of a too-high concentration of an acid anhydride in a micro-aqueous reaction system will cause dehydration and thus deactivation of the enzyme, and will enhance non-selective esterification of a chiral alcohol, which will reduce the optical purity of the product. All these drawbacks, however, could be effectively overcome in a semi-batch reaction system into which propionic anhydride was continuously fed. This system showed some advantages over a batch reaction system using free propionic acid: the reaction time of dl-menthol was shortened by half, the stability of the enzyme was much enhanced, and the optical purity of the product (l-menthyl ester) was kept at a similarly high level (> 98% ee). PMID:9631262

  2. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  3. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    NASA Astrophysics Data System (ADS)

    Klinpituksa, P.; Kongkalai, P.; Kaesaman, A.

    2014-08-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin.

  4. Synthesis and swelling peculiarities of new hydrogels based on the macromolecular reaction of anhydride copolymers with γ-aminopropyltriethoxysilane.

    PubMed

    Timur, Mahir; Can, Hatice Kaplan

    2016-05-01

    This work describes the synthesis and macromolecular reactions of maleic anhydride (MA)-acrylamide (AAm) binary and MA-vinyl acetate (VA)- AAm ternary reactive copolymers with γ-aminopropyltriethoxysilane (APTS) as a polyfunctional crosslinker. Swelling parameters such as the start-time of the hydrogel-formation, initial rate of swelling, swelling rate constant, equilibrium swelling, and equilibrium water content (EWC) are determined for polymers/APTS/water systems with certain copolymer/crosslinker ratios (1.4/1 and 9/1). The formation of a hyperbranched network structure by the fragmentation of the side-chain reactive groups in the systems studied has also been confirmed by the Fourier Transform Infrared (FTIR) method. PMID:25761627

  5. Novel 4-Arm Poly(Ethylene Glycol)-Block-Poly(Anhydride-Esters) Amphiphilic Copolymer Micelles Loading Curcumin: Preparation, Characterization, and In Vitro Evaluation

    PubMed Central

    Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α-, ω-acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by 1H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells. PMID:23936812

  6. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  7. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  8. Alternating Poly(ester-anhydride) by Insertion Polycondensation.

    PubMed

    Haim-Zada, Moran; Basu, Arijit; Hagigit, Tal; Schlinger, Ron; Grishko, Michael; Kraminsky, Alexander; Hanuka, Ezra; Domb, Abraham J

    2016-06-13

    We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature. PMID:27198864

  9. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  10. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  11. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  12. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  13. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  14. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  16. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  17. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  18. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  19. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and... with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4) (PMN P-96-1520; CAS No....

  20. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and... with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4) (PMN P-96-1520; CAS No....

  1. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and... with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4) (PMN P-96-1520; CAS No....

  2. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and... with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4) (PMN P-96-1520; CAS No....

  3. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and... with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4) (PMN P-96-1520; CAS No....

  4. Studies of miscibility and specific interactions of antitumor-active anhydride copolymer and poly(ethylene glycol) blends.

    PubMed

    Can, Hatice Kaplan; Parvizikhosroshahi, Shahed; Uluışık, Erdem C

    2016-01-01

    The blending of polymers is of great interest, since the modification gives rise to diverse physical properties with the functionality of a polymer, without synthesis. Water-soluble antitumor-active poly(maleic anhydride-alt-acrylic acid) poly(MA-alt-AA) and poly(ethylene glycol) (PEG) blends were prepared by casting, and compatible properties were investigated by dilute solution viscometry. Viscosity measurements were made on ternary systems of polymer (1)/polymer (2)/solvent (H2O) and p-dioxane, at different concentrations of PEG and poly(MA-alt-AA). The interaction parameters Δβ, μ, Δk, Δb, β and α, which have been proposed, have been obtained using the viscosity data, to probe the miscibility of the polymer blends. The solid blends prepared were characterized with ATR-FTIR, (1)H-NMR, DTA and TGA. PMID:25406735

  5. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method: Optimization of the grafting reaction using experimental design

    NASA Astrophysics Data System (ADS)

    Bigan, Muriel; Bigot, Julien; Mutel, Brigitte; Coqueret, Xavier

    2008-02-01

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 μm thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  6. Mechanism of Pd-Catalyzed Decarbonylation of Biomass-Derived Hydrocinnamic Acid to Styrene following Activation as an Anhydride.

    PubMed

    Ortuño, Manuel A; Dereli, Büşra; Cramer, Christopher J

    2016-05-01

    All elementary steps in the mechanism of Pd-catalyzed decarbonylation of hydrocinnamic acid through formation of a mixed anhydride species have been characterized through electronic structure calculations. Oxidative addition of the mixed anhydride to a singly or doubly ligated Pd is followed by decarbonylation, alkene formation, and catalyst regeneration. Metal-assisted deprotonation of the alkyl-Pd species by a coordinated carboxylate is predicted to be the rate-determining step; theory suggests that bulkier phosphine ligands (e.g., P(o-Tol)3) reduce the free energy of activation substantially, while variation of the auxiliary anhydride has little influence on efficiency. PMID:27077600

  7. Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P; Mititelu-Tartau, Liliana; Stoleru, Elena; Doroftei, Florica; Diaconu, Alina

    2015-09-30

    Owing to the special characteristics and abilities polymeric networks have received special interest for a range of biomedical applications especially for drug delivery systems. This study was devoted to preparation of new polymeric compounds based on maleic anhydride and 3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane copolymer (poly maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) (PMAU) patterned as a network for bioconjugation and tested as drug carrier systems. The PMAU copolymer was improved in its functionality by opening the maleic anhydride ring with different amounts of erythritol, which is free of side effects in regular use and a multifunctional compound, and also confers antioxidant character for the new compounds. The new polymeric matrices were loaded with acetaminophen, codeine and their fixed dose combinations. The investigation demonstrated the capability of the new structures to be used as polymer networks for linking bioactive compounds and to perform controlled delivery. The physico-chemical investigations--Fourier transform infrared spectroscopy (FTIR) spectra, contact angle, zeta potential (ZP - z, PMAU and its derivatives samples loaded with medicines present decreased values of zeta potential attesting the bioconjugate formation and as well their stability), and hydrodynamic radius, near infrared chemical imaging evaluation (new specific bands being registered for bio-conjugate with acetaminophen around of 1150-1200 nm and 1700 nm, and also between 1150 and 1200 nm in case of the codeine bio-conjugate), scanning electron microscopy (SEM) studies, X-ray diffraction analysis--evidenced the formation of the bioconjugates in relation to the chemical composition of the polymer matrices, while in vitro release study and in vivo tests confirm the capacity for drug delivery of the prepared bioactive systems. PMID:26220652

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  9. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  10. Perfluoroalkylation of Unactivated Alkenes with Acid Anhydrides as the Perfluoroalkyl Source.

    PubMed

    Kawamura, Shintaro; Sodeoka, Mikiko

    2016-07-18

    An efficient perfluoroalkylation of unactivated alkenes with perfluoro acid anhydrides was developed. Copper salts play a crucial role as a catalyst to achieve allylic perfluoroalkylation with the in situ generated bis(perfluoroacyl) peroxides. Furthermore, carboperfluoroalkylation of alkene bearing an aromatic ring at an appropriate position on the carbon side chain was found to proceed under metal-free conditions to afford carbocycles or heterocycles bearing a perfluoroalkyl group. This method, which makes use of readily available perfluoroalkyl sources, offers a convenient and powerful tool for introducing a perfluoroalkyl group onto an sp(3) carbon to construct synthetically useful skeletons. PMID:27254318

  11. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  12. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  13. Amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} graft copolymer nanoparticles as carriers for transdermal drug delivery

    PubMed Central

    Xing, Jinfeng; Deng, Liandong; Li, Jun; Dong, Anjie

    2009-01-01

    In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP)-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} (PEGECA) graft copolymer nanoparticles (PEGECAT NPs) were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. PMID:19918369

  14. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  15. Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase.

    PubMed

    Ayyadurai, Subasri M; Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2010-07-15

    Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a

  16. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    SciTech Connect

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatase using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.

  17. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  18. High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of Fatty acids.

    PubMed

    Pan, Xiao; Sengupta, Partha; Webster, Dean C

    2011-06-13

    Novel highly functional biobased epoxy compounds, epoxidized sucrose esters of fatty acids (ESEFAs), were cross-linked with a liquid cycloaliphatic anhydride to prepare polyester thermosets. The degree of cure or conversion was studied using differential scanning calorimetry (DSC), and the sol content of the thermosets was determined using solvent extraction. The mechanical properties were studied using tensile testing to determine Young's modulus, tensile stress, and elongation at break. Dynamic mechanical analysis (DMA) was used to determine glass-transition temperature, storage modulus, and cross-link density. The nanomechanical properties of the surfaces were studied using nanoindentation to determine reduced modulus and indentation hardness. The properties of coatings on steel substrates were studied to determine coating hardness, adhesion, solvent resistance, and mechanical durability. Compared with the control, epoxidized soybean oil, the anhydride-cured ESEFAs have high modulus and are hard and ductile, high-performance thermoset materials while maintaining a high biobased content (71-77% in theory). The exceptional performance of the ESEFAs is attributed to the unique structure of these macromolecules: well-defined compact structures with high epoxide functionality. These biobased thermosets have potential uses in applications such as composites, adhesives, and coatings. PMID:21561167

  19. One-pot odourless synthesis of thioesters via in situ generation of thiobenzoic acids using benzoic anhydrides and thiourea.

    PubMed

    Abbasi, Mohammad; Khalifeh, Reza

    2015-01-01

    An efficient and odourless procedure for a one-pot synthesis of thioesters by the reaction of benzoic anhydrides, thiourea and various organic halides (primary, allylic, and benzylic) or structurally diverse, electron-deficient alkenes (ketones, esters, and nitriles) in the presence of Et3N has been developed. In this method, thiobenzoic acids were in situ generated from the reaction of thiourea with benzoic anhydrides, which were subjected to conjugate addition with electron-deficient alkenes or a nucleophilic displacement reaction with alkyl halides. PMID:26425185

  20. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  1. Polyol-acid anhydride-n-alkyl-alkylene diamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.; Jenkins, R.H. Jr.

    1987-02-17

    A fuel composition for an internal combustion engine comprising: (a) a major portion of a liquid hydrocarbon fuel and (b) a minor amount, as a deposit inhibitor additive, of a reaction product of a process comprising: (i) reacting a dibasic acid anhydride with a polyol, thereby forming an ester of maleic acid; (ii) reacting the ester of maleic acid with an N-alkyl-alkylene diamine, thereby forming the reaction product; and (iii) recovering the reaction product.

  2. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  3. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  4. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  5. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  6. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  7. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  8. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  9. Phenylethynyl Phthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Controlled molecular weight PhenylEthynyl Terminated Imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with PhenylEthynyl Phthalic Anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2pyrrolidinone or N N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  10. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775 Section 172.775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD...

  11. Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery

    PubMed Central

    Shi, Julie; Johnson, Russell N.; Schellinger, Joan G.; Carlson, Peter M.

    2011-01-01

    Biodegradability can be incorporated into cationic polymers via use of disulfide linkages that are degraded in the reducing environment of the cell cytosol. In this work, N-(2-hydroxypropyl)methacrylamide (HPMA) and methacrylamido-functionalized oligo-L-lysine peptide monomers with either a non-reducible 6-aminohexanoic acid (AHX) linker or a reducible 3-[(2-aminoethyl)dithiol]propionic acid (AEDP) linker were copolymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Both of the copolymers and a 1:1 (w/w) mixture of copolymers with reducible and non-reducible peptides were complexed with DNA to form polyplexes. The polyplexes were tested for salt stability, transfection efficiency, and cytotoxicity. The HPMA-oligolysine copolymer containing the reducible AEDP linkers was less efficient at transfection than the non-reducible polymer and was prone to flocculation in saline and serum-containing conditions, but was also not cytotoxic at charge ratios tested. Optimal transfection efficiency and toxicity was attained with mixed formulation of copolymers. Flow cytometry uptake studies indicated that blocking extracellular thiols did not restore transfection efficiency and that the decreased transfection of the reducible polyplex is therefore not primarily caused by extracellular polymer reduction by free thiols. The decrease in transfection efficiency of the reducible polymers could be partially mitigated by the addition of low concentrations of EDTA to prevent metal-catalyzed oxidation of reduced polymers. PMID:21893178

  12. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus.

    PubMed

    Zhang, Dong; Pan, Xiaolei; Wang, Shang; Zhai, Yinglei; Guan, Jibin; Fu, Qiang; Hao, Xiaoli; Qi, Wanpeng; Wang, Yingli; Lian, He; Liu, Xiaohong; Wang, Yongjun; Sun, Yinghua; He, Zhonggui; Sun, Jin

    2015-07-01

    In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability. PMID:26024817

  13. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...'s mouth to improve denture retention and comfort. (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be... carboxymethylcellulose sodium (NACMC) denture adhesive shall have an approved PMA or a declared completed PDP in...

  14. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...'s mouth to improve denture retention and comfort. (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be... carboxymethylcellulose sodium (NACMC) denture adhesive shall have an approved PMA or a declared completed PDP in...

  15. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  16. Role of Acid Functionality and Placement on Morphological Evolution and Strengthening of Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Schwartz, Eric; Winey, Karen

    Functional polymers with specific interactions produce hierarchical morphologies that directly impact mechanical properties. We recently reported that the formation of acid-rich layered morphologies in precise poly(ethylene-co-acrylic acid) copolymers improves tensile strength. We now explore the generality of this phenomenon through variations in pendant acid chemistries, acid content and precision in placement of acid groups in polyethylene-based copolymers. In situ X-ray scattering measurements during tensile deformation reveal that the precision in acid group placement is critical to forming well-defined layered morphologies. This phenomenon was observed in both semi-crystalline and amorphous precise acid copolymers with varied acid chemistries (acrylic, geminal acrylic and phosphonic acids). Compositionally identical polymers but with pseudo random acid placement do not form layered morphologies. Acid chemistry and acid content influence morphological evolution predominately though modification of the copolymer Tg and crystallinity. Our results indicate that hierarchical layered structures, commensurate with improved mechanical properties, form in the presence of uniformity in chemical structure and sufficient chain mobility to strongly align during deformation.

  17. Maleic anhydride

    Integrated Risk Information System (IRIS)

    Maleic anhydride ; CASRN 108 - 31 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Phthalic anhydride

    Integrated Risk Information System (IRIS)

    Phthalic anhydride ; CASRN 85 - 44 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  19. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a coating... of vinyl acetate and crotonic acid used as a coating or as a component of a coating conforming...

  20. Isomeric oxydiphthalic anhydride polyimides

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.

    1988-01-01

    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.

  1. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  2. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  3. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  4. Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1993-01-01

    A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.

  5. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W.; Rowley, John M.

    2013-07-09

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  6. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W; Rowley, John M

    2014-12-30

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  7. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  8. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  9. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  10. Brønsted acid-catalyzed regioselective reactions of 2-indolylmethanols with cyclic enaminone and anhydride leading to C3-functionalized indole derivatives.

    PubMed

    Li, Can; Zhang, Hong-Hao; Fan, Tao; Shen, Yang; Wu, Qiong; Shi, Feng

    2016-08-01

    An abnormal regioselective substitution of 2-indolylmethanols with nucleophiles such as cyclic enaminone and cyclic anhydride has been established in the presence of Brønsted acid, which efficiently afforded C3-functionalized indole derivatives with structural diversity in high yield and regiospecificity (40 examples, up to 99% yield). Using this approach, the reactivity of the C3-position of the indole was switched from nucleophilic to electrophilic, which could serve as an "umpolung" strategy in organic synthesis. PMID:27341692

  11. In Vivo Evaluation of Nerve Guidance Conduits Comprised of a Salicylic Acid-based Poly(anhydride-ester) Blend

    NASA Astrophysics Data System (ADS)

    Lee, Yong Soo

    Unlike the central nervous system, peripheral nervous system can regenerate from injury. However, without surgical intervention, the results are often poor. Autologous nerve grafting is the golden standard for repairing peripheral nerve injury; but limited donor availability and donor site morbidity led researchers to seek alternative methods. Among the many alternative treatment options, synthetic nerve guidance conduits (NGCs) have been most actively developed. The goal of NGCs is to serve as a physical scaffold that aids the axonal regeneration process while preventing scar tissue formation that interferes with regeneration. Biocompatible and biodegradable NGCs would provide additional benefits: minimize foreign body reaction and avoid secondary surgeries to remove NGCs. We developed a unique NGC that incorporated the characteristics described above and can release an anti-inflammatory drug, salicylic acid. In this work, in vivo assays were performed to evaluate NGCs fabricated from a poly(anhydride-ester) blend. To further assist in the regeneration process, bovine native collagen type I hydrogel were inserted into the NGCs lumen which was then implanted in femoral nerve of mice for up to 16 weeks. These studies demonstrated in vivo biodegradability, biocompatibility, and axonal regeneration following an injury to the peripheral nerve. These studies provide greater insights into the importance of designing NGCs and how they aid in regeneration and functional recovery of subjects.

  12. Radiation-induced graft polymerization of maleic acid and maleic anhydride onto ultra-fine powdered styrene butadiene rubber (UFSBR)

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Xia, Haibing; Zhai, Maolin; Li, Jiuqiang; Qiao, Jinliang; Wei, Genshuan

    2007-11-01

    The functionalization of ultra-fine powdered styrene-butadiene rubber (UFSBR) was carried out using gamma radiation-induced graft polymerization of maleic acid (MA) and maleic anhydride (MAH), respectively. It was found that the graft yield of MA onto UFSBR increased rapidly up to the peak and then decreased with increasing MA content. Moreover, the peak shifted to the direction of lower MA content with increasing absorbed dose. Similarly, there was the peak of graft yield with increasing MAH content for grafting of MAH onto UFSBR, whereas the peak of graft yield was achieved at 10 wt% MAH content at different absorbed doses. On the other hand, increasing absorbed dose and decreasing monomer contents are useful to improve the graft efficiency of MA and MAH. At high dose and low monomer content, the graft yield of MAH onto UFSBR is higher than that of MA. FTIR spectra confirmed that both MA and MAH can be grafted successfully onto the UFSBR under gamma irradiation, respectively. Comparing with maleation of rubber by melt grafting, the graft yield of MAH on UFSBR is higher, which can be attributed to the network structure and nanometer size of UFSBR as well as high energy provided by radiation.

  13. Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid.

    PubMed

    Johnson, J H; Belt, J A; Dubinsky, W P; Zimniak, A; Racker, E

    1980-08-01

    The synthesis and some of the physical and biological characteristics of a new inhibitor of lactate transport are described. The inhibitor is isobutylcarbonyl lactayl anhydride (iBCLA). It is formed by the condensation of lactic acid and isobutylchloroformate. It inhibits lactate transport 50% at 0.5 microgram/mg of protein in both Ehrlich ascites tumor cells and human erythrocytes. In contrast, 15 microgram of iBCLA/mg of protein is required for 50% inhibition of phosphate transport in erythrocytes, and phosphate transport in Ehrlich ascites tumor cells is unaffected at levels as high as 50 microgram of iBCLA/mg of protein. A time-dependent and concentration-dependent reversal of lactate transport inhibition took place on exposure of iBCLA-treated Ehrlich ascites cells to hydroxylamine or dithiothreitol. These data, along with the observed sensitivity of the lactate transporter to sulfhydryl reagents [Spencer, T. L., & Lehninger, A. L. (1976) Biochem. J. 154, 405-414], suggest that iBCLA acylates an essential sulfhydryl group on the transporter. When glycolyzing Ehrlich ascites tumor cells were treated with concentrations of iBCLA sufficient for complete inhibition of lactate transport, intracellular lactate levels increased, intracellular pH and extra-cellular lactate levels decreased, and overall lactate production was inhibited. PMID:7407072

  14. Maleic anhydride from normal butane

    SciTech Connect

    Cooley, S.D.; Doshi, B.

    1987-01-01

    Worldwide about one billion pounds of maleic anhydride is used annually in the manufacture of a number of commercially valuable products, including unsaturated polyester resins, agricultural chemicals, and lubricating oil additives. Maleic anhydride is not found in nature. It was first prepared in 1834 by heating malic acid (hydroxy-succinic acid, a compound found in apples and many other fruits). Maleic anhydride was not available commercially until ca. 1930 when the catalytic air oxidation of benzene was begun by National Aniline and Chemical on an industrial scale. The estimated worldwide production in 1985 was 1023 million pounds coming from more than 35 plants varying in capacity from 6 million pounds to 170 million pounds annually.

  15. Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates.

    PubMed

    Kong, Dehui; Yeung, Wayland; Hili, Ryan

    2016-07-11

    Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function. PMID:27275512

  16. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  17. Pharmacokinetics of copolymers of N-vinylpyrrolidone with acrylic acid. Article 1

    SciTech Connect

    Rafikov, R.Z.; Sakhibov, A.D.; Akhmedzhanov, R.I.; Aliev, K.U.

    1987-01-01

    The authors studied the pharmacokinetics of the copolymers of n-vinyl-pyrrolidone (I) with acrylic acid (II) (copolymer III) using the radioactive isotope /sup 125/I. In experiments on mice, they studied the distribution of a copolymer of I with II (/sup 125/I-III) in the organism of the animals. The content of /sup 125/I-III and its possible radioactive metabolites in the blood and organs of mice after a single intravenous administration of the given preparation is shown. The radioactivity of organs after butanol extraction is presented.

  18. Kinetics of the reactions of the acid anhydrides with aromatic amines in aprotic solvents. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Sugg, E.; Mason, J. G.

    1983-01-01

    Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.

  19. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution. PMID:25723887

  20. Influence of maleic acid copolymers on calcium orthophosphates crystallization at low temperature

    NASA Astrophysics Data System (ADS)

    Pelin, Irina M.; Popescu, Irina; Suflet, Dana M.; Aflori, Magdalena; Bulacovschi, Victor

    2013-08-01

    The goal of this study was to investigate the maleic acid copolymers role on calcium orthophosphates crystallization at low temperature. In this respect, two maleic acid copolymers with different structures [poly(sodium maleate-co-vinyl acetate) and poly(sodium maleate-co-methyl methacrylate)] were used. The syntheses of the calcium orthophosphates in the absence and in the presence of the copolymers were performed through the wet chemical method using calcium nitrate, ammonium dihydrogen phosphate and ammonium hydroxide as reactants. The syntheses were monitored in situ by potentiometric and conductometric measurements. To ensure the transformation of less thermodynamically stable calcium orthophosphates into more stable forms, the samples were aged 30 days in mother solutions, at room temperature. The presence of the copolymers in the final products was evidenced by FTIR spectroscopy and thermogravimetric analysis. Scanning and transmission electron microscopy and laser light scattering measurements gave information about the composites morphology and the size of the formed structures. X-ray diffraction evidenced that, as a function of comonomer structure and of copolymer concentration, the products could contain hydroxyapatite with low crystallinity, calcium-deficient or carbonated hydroxyapatite. At high concentration of poly(sodium maleate-co-methyl methacrylate) the transformation of brushite into apatitic structures was inhibited.

  1. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  2. Syntheses and luminescent properties of a copolymer of terbium-p-aminobenzoic acid-methacrylic acid and styrene.

    PubMed

    Zhang, A Q; Yang, Y M; Li, L P; Zhai, G M; Jia, H S; Liu, X G; Xu, B S

    2015-11-01

    A reactive Tb(III) complex with p-aminobenzoic acid (p-ABA) and methacrylic acid (MAA) as ligands was synthesized. A novel copolymer was synthesized by free radical copolymerization of styrene and the reactive Tb(III) complex in dimethyl sulfoxide (DMSO) with 2,2'-azobis(2-methylpropionitrile) (AIBN) as the initiator. IR and UV/Vis spectra indicate that the copolymer exhibited absorption from polystyrene and the complex. Thermogravimetric analysis indicates that the copolymer remained stable up to 357°C and the thermal stability was significantly improved in comparison with polymer matrix and the Tb(III) complex. The luminescent intensity of the synthetic terbium macromolecular complexes increased with increasing complex monomer content. Moreover, concentration quenching was not observed. PMID:25712787

  3. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  4. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...

  5. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...

  6. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    PubMed

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." PMID:27000789

  7. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  8. Epoxies from maleic anhydride

    SciTech Connect

    Ahmad, I.; Tumi, S.O.; Bashish, M.; El-Abib, A.R.

    1989-02-01

    The epoxidation of maleic anhydride by hydrogen peroxide in the presence of sodium molybdate catalyst is first order with respect to both maleic anhydride and sodium molybdate concentration. The reaction is zero order with respect to hydrogen peroxide concentration. The calculated rates are reported and a reaction mechanism is proposed.

  9. Ferromagnetic resonance spectroscopy of carboxylated cobalt-containing nanocomposite ethyl methacrylate/acrylic acid copolymers

    NASA Astrophysics Data System (ADS)

    Voytsihovskaya, S. A.; Sokolov, M. E.; Panyushkin, V. T.; Gromov, P. Yu.; Shcherbina, A. A.; Matveev, V. V.

    2013-01-01

    We have used ferromagnetic resonance spectroscopy to study the effect of the concentration of cobalt nanoparticles (5-9 nm) incorporated into ethyl methacrylate/acrylic acid copolymers (monomer ratios 100:1 and 10:1) on the magnitude of the resonant field in ferromagnetic resonance and on the effective magnetization of thin-film samples of these nanocomposite polymer materials. The cobalt nanoparticles were obtained by thermolysis of Co2(CO)8 in 5% solutions of the indicated copolymers in toluene. From the solutions obtained, we prepared films of thickness 1 μm on aluminum substrates.

  10. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    PubMed

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles. PMID:26791328

  11. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  12. Adsorption dynamics of L-glutamic acid copolymers at a heptane/water interface.

    PubMed

    Beverung, C J; Radke, C J; Blanch, H W

    1998-02-16

    Random copolymers of glutamic acid (glu-ala, glu-leu, glu-phe, glu-tyr) were employed to investigate the relationship between side chain structure and peptide charge on adsorption behavior at an oil/water boundary. Adsorption of a series of glutamate copolymers at a heptane/water interface was examined by the dynamic pendant-drop method to determine interfacial tension. Incorporation of leucine or phenylalanine into a glutamate copolymer results in greater tension reduction than incorporation of alanine or tyrosine. These effects are amplified at pH values near the isoelectric point of glutamate, where macroscopic adsorbed films of glu-leu and glu-phe exhibit gel-like properties in response to interfacial area compression. Differences in interfacial tension behavior of glu-tyr and glu-phe indicate the importance of the tyrosine p-hydroxyl group on adsorption and aggregation at the oil/water interface. PMID:9540205

  13. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  14. Radiochemical synthesis of copolymers of N-vinylpyrrolidone with undecylenic and oleic acids

    SciTech Connect

    Ushakova, V.N.; Panarin, E.F.; Denisov, V.M.; Kol'tsov, A.I.; Persinen, A.A.

    1988-11-01

    Radiation copolymerization of N-vinylpyrrolidone with undecylenic and oleic acids was studied. It was shown that the yield of polymer and the rate of copolymerization are essentially a function of the composition of the starting mixture. The maximum molar concentration of carbonyl units in the copolymer is 30%. A random copolymer in which there is nothing next to the standing carboxylic acid units is formed. The relative reactivity of the acids is equal to zero; the reactivities of N-vinylpyrrolidone - 0.61 < r < 0.94 for undecylenic and 0.90 < r < 1.31 for oleic acids - were calculated in consideration of the effect of the next-to-last unit.

  15. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  16. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  17. Alignment of Fatty Acid-Derived Triblock Copolymers under Large Amplitude Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Ding, Wenyue; Wang, Shu; Kesava, Sameer; Gomez, Enrique; Robertson, Megan

    Linear ABA triblock copolymers find widespread utilization as thermoplastic elastomers (TPEs): materials which exhibit elastomeric behavior at room temperature and can be readily processed at elevated temperatures. Traditional TPEs are derived from fossil fuels; however, the finite availability of petroleum and the environmental impact of petroleum processing has led to an increased interest in developing alternative sources for polymers. Vegetable oils and their fatty acids are promising replacements for petroleum sources due to their abundance, low cost, lack of toxicity, biodegradability and ease of functionalization that provides convenient routes to polymerization. In this study, triblock copolymer TPEs were synthesized containing lauryl and stearyl acrylate, derived from fatty acids found in vegetable oils. Small-angle X-ray scattering experiments revealed highly aligned triblock copolymer morphologies after the application of large amplitude oscillatory shear. The temperature and frequency dependence of the degree of alignment was investigated. In contrast to prior studies on shear-aligned morphologies in bulk and thin film block copolymers, hexagonal close packed and face centered cubic spherical structures were observed.

  18. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.

    PubMed

    Athanasiou, K A; Niederauer, G G; Agrawal, C M

    1996-01-01

    This is a review of salient studies of sterilization, toxicity, biocompatibility, clinical applications and current work in the field of orthopaedics, using implants made of polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers. The intrinsic nature of these biomaterials renders them suitable for applications where temporally slow releases of bioactive agents in situ may be required. They are also desirable as fixation devices of bone, because they can virtually eliminate osteopenia associated with stress shielding or additional surgery. The majority of currently available sterilization techniques are not suitable for these thermoplastic materials and it may be desirable to develop new sterilization standards, which can account for the special character of PLA-PGA materials. Biocompatibility and toxicity studies suggest that, overall, PLA-PGA biomaterials may be suitable for orthopaedic applications, although certain problems, especially pertaining to reduction in cell proliferation, have been reported. Clinical applications are also promising, albeit not without problems usually associated with transient tissue inflammation. The future of these materials appears bright, especially in soft tissues. They may be used to address the exceedingly complex problem of osteochondral repair, but also as a means to enhance fixation and repair processes in tendons and ligaments. PMID:8624401

  19. Block and random copolymers bearing cholic acid and oligo(ethylene glycol) pendant groups: aggregation, thermosensitivity, and drug loading.

    PubMed

    Shao, Yu; Jia, Yong-Guang; Shi, Changying; Luo, Juntao; Zhu, X X

    2014-05-12

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  20. Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loading

    PubMed Central

    2015-01-01

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  1. Hydrolytic degradation study of biodegradable polyesteramide copolymers based on epsilon-caprolactone and 11-aminoundecanoic acid.

    PubMed

    Qian, Zhiyong; Li, Sai; He, Yi; Zhang, Hailian; Liu, Xiaobo

    2004-05-01

    In this paper, a new kind of aliphatic biodegradable polyesteramide copolymers P(CL/AU)x/y based on epsilon-caprolactone and 11-aminoundecanoic acid were synthesized by the melt polycondensation method. Hydrolytic degradation behavior of P(CL/AU) copolymers were studied by using FTIR, 1H-NMR and DSC. Chemical compositions, macromolecular weight, thickness of the test sample, and pH of the degradation medium have great effect on degradation rate. The degradation rate decreased with increase in aminoundecanoic acid content, macromolecular weight, and thickness of the test samples, but increased with incubation temperature and pH of the degradation medium. The degradation mechanism was studied according to the mathematical model developed by professor Göpferich. PMID:14741611

  2. DFT Study of Solvent Effects in Acid-Catalyzed Diels-Alder Cycloadditions of 2,5-Dimethylfuran and Maleic Anhydride.

    PubMed

    Salavati-fard, Taha; Caratzoulas, Stavros; Doren, Douglas J

    2015-09-24

    Density functional theory electronic structure calculations were used to explore the mechanism for the Diels-Alder reaction between 2,5-dimethylfuran and maleic anhydride (MA). Reaction paths are reported for uncatalyzed and Lewis and Brønsted acid-catalyzed reactions in vacuum and in a broad range of solvents. The calculations show that, while the uncatalyzed Diels-Alder reaction is thermally feasible in vacuum, a Lewis acid (modeled as Na(+)) lowers the activation barrier by interacting with the dienophile (MA) and decreasing the HOMO-LUMO gap of the reactants. A Brønsted acid (modeled as a proton) can bind to a carbonyl oxygen in MA, changing the reaction mechanism from concerted to stepwise and eliminating the activation barrier. Solvation effects were studied with the SMD model. Electrostatic effects play the largest role in determining the solvation energy of the transition state, which tracks the net dipole moment at the transition state. For the uncatalyzed reaction, the dipole moment is largely determined by charge transfer between the reactants, but in the reactions with ionic catalysts, there is no simple relationship between solvation of the transition state and charge transfer between the reactants. Nonelectrostatic contributions to solvation of the reactants and transition state also make significant contributions to the activation energy. PMID:26331220

  3. Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers

    PubMed Central

    Scheidelaar, Stefan; Koorengevel, Martijn C.; Pardo, Juan Dominguez; Meeldijk, Johannes D.; Breukink, Eefjan; Killian, J. Antoinette

    2015-01-01

    A recent discovery in membrane research is the ability of styrene-maleic acid (SMA) copolymers to solubilize membranes in the form of nanodisks allowing extraction and purification of membrane proteins from their native environment in a single detergent-free step. This has important implications for membrane research because it allows isolation as well as characterization of proteins and lipids in a near-native environment. Here, we aimed to unravel the molecular mode of action of SMA copolymers by performing systematic studies using model membranes of varying compositions and employing complementary biophysical approaches. We found that the SMA copolymer is a highly efficient membrane-solubilizing agent and that lipid bilayer properties such as fluidity, thickness, lateral pressure profile, and charge density all play distinct roles in the kinetics of solubilization. More specifically, relatively thin membranes, decreased lateral chain pressure, low charge density at the membrane surface, and increased salt concentration promote the speed and yield of vesicle solubilization. Experiments using a native membrane lipid extract showed that the SMA copolymer does not discriminate between different lipids and thus retains the native lipid composition in the solubilized particles. A model is proposed for the mode of action of SMA copolymers in which membrane solubilization is mainly driven by the hydrophobic effect and is further favored by physical properties of the polymer such as its relatively small cross-sectional area and rigid pendant groups. These results may be helpful for development of novel applications for this new type of solubilizing agent, and for optimization of the SMA technology for solubilization of the wide variety of cell membranes found in nature. PMID:25606677

  4. Microwave synthesis and thermal properties of polyacrylate derivatives containing itaconic anhydride moieties

    PubMed Central

    2012-01-01

    Background Microwave irradiation as an alternative heat source is now a well-known method in synthetic chemistry. Microwave heating has emerged as a powerful technique to promote a variety of chemical reactions, offering reduced pollution, low cost and offer high yields together with simplicity in processing and handling. On the other hand, copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. Various copolymer compositions can produce a very large number of different arrangements, producing materials of varying chemical and physical properties. Thus, the hydrophilicity of copolymers can be modified by changing the amount of incorporated itaconic anhydride. Results A series of methyl methacrylate (MMA) and acrylamide (AA) copolymers containing itaconic anhydride (ITA) were synthesized by microwave irradiation employing a multimode reactor (Synthos 3000 Aton Paar, GmbH, 1400 W maximum magnetron) as well as conventional method. The thermal properties of the copolymers were evaluated by different techniques. Structure-thermal property correlation based on changing the itaconic anhydride ratio was demonstrated. Results revealed that the incorporation of itaconic anhydride into the polymeric backbone of all series affect the thermal stability of copolymers. In addition, the use of the microwave method offers high molecular weight copolymers which lead eventually to an increase in thermal stability. Conclusions Microwave irradiation method showed advantages for the produced copolymers compared to that prepared by conventional method, where it can offer a copolymer in short time, high yield, more pure compounds and more thermally stable copolymers, rather than conventional method. Also, microwave irradiation method gives higher molecular weight due to prevention of the chain transfer. Moreover, as the itaconic anhydride content increases the thermal stability and Tg increase

  5. Morphological Determinants of Yield Stress for Semicrystalline Ethylene / Methacrylic Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Scogna, Robert; Register, Richard

    2008-03-01

    Reducing the crystal thickness of ethylene/α-olefin copolymers typically results in a decrease in the measured yield stress. However, statistical incorporation of methacrylic acid, also a noncrystallizable comonomer, actually increases the yield stress at room temperature. The yield stress for ethylene/methacrylic acid (E/MAA) copolymers as a function of temperature and test rate is described using a model which accounts for polyethylene crystal plasticity through thermal nucleation of screw dislocations in addition to the effects of incomplete relaxation of the amorphous fraction at the strain rate employed. This is possible using a small number of physically reasonable best-fit parameters. Yield stress master curves can be constructed for any material that obeys the model; such curves have been constructed for a low-density polyethylene and five copolymers of varying MAA content from data taken at various strain rates and temperatures. The master curves clearly show that this unusual behavior of the yield stress is caused by the increase in β relaxation temperature with increasing MAA content, as seen via dynamic mechanical testing.

  6. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  7. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages.

    PubMed

    Chamberlain, Michael Dean; Wells, Laura A; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V

    2015-08-25

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell-material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  8. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  9. Acoustic and ultrasonic characterization constraints of self-healing (ethylene-co-methacrylic acid) copolymers

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth, II; Buckley, Jonathan; Kalista, Stephen; Bowers, Nicholas

    Recent experiments indicate that small sample poly (ethylene-co-methacrylic acid) copolymers (EMAA copolymers) exhibit time dependent variation in their acoustic and ultrasonic resonant spectra after exposure to a damage event. However, due to the relatively soft nature of these thermoplastic materials, several experimental constraints affect efficacy of resonant spectral analysis. In this work we will the address the effect of several characterization constraints on a self-healing EMAA ionomer (commercially known as Dupont Surlyn 8920) including the effects of transducer loading, continuous rapid resonant excitation and temporally separated long-term resonant excitation. In some circumstances, these experimental constraints can influence the time dependence of sample resonant frequency evolution, quality factor, and variation in spectral waveform. By quantifying these effects, robust characterization of post-damage self-healing EMAA samples is possible and will be presented.

  10. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    PubMed Central

    De Giglio, E.; Bonifacio, M.A.; Cometa, S.; Vona, D.; Mattioli-Belmonte, M.; Dicarlo, M.; Ceci, E.; Fino, V.; Cicco, S.R.; Farinola, G.M.

    2016-01-01

    This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015) 600–611) [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT). Herein, an investigation about the PGT-ciprofloxacin (CIP) interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR) acquired in Attenuated Total Reflectance (ATR) mode and Differential Scanning Calorimetry (DSC) was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC) at different pH values. PMID:27158646

  11. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages

    PubMed Central

    Chamberlain, Michael Dean; Wells, Laura A.; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V.

    2015-01-01

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell–material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  12. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications.

    PubMed

    De Giglio, E; Bonifacio, M A; Cometa, S; Vona, D; Mattioli-Belmonte, M; Dicarlo, M; Ceci, E; Fino, V; Cicco, S R; Farinola, G M

    2016-06-01

    This data article is related to our recently published research paper "Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015) 600-611) [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT). Herein, an investigation about the PGT-ciprofloxacin (CIP) interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR) acquired in Attenuated Total Reflectance (ATR) mode and Differential Scanning Calorimetry (DSC) was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC) at different pH values. PMID:27158646

  13. Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity.

    PubMed

    Li, Jinjun; Hu, Qin; Tian, Hua; Ma, Chunyan; Li, Landong; Cheng, Jie; Hao, Zhengping; Qiao, Shizhang

    2009-11-01

    With initial aging at low temperature for enough time, silicas with large mesoporosity were synthesized using triblock copolymer as template agent under weak acidities. SBA-15 with periodic mesostructure and short mesochannels could be synthesized at pH 2.5-3.0 within weak acidity range, and the surface areas, pore diameters and pore volumes reached up to ca. 1000m(2)/g, 8.8nm and 2.0cm(3)/g, respectively, which were significantly higher than those of the conventional SBA-15 synthesized under strong acidities. Mesoporous silica with wormhole structure and abundant textural porosity was formed at pH approximately 3.5. The increased hydrophobic volume of the copolymer micelles at elevated pH values was responsible for the enlargement of mesoporosity in the products. The materials synthesized under weak acidities showed lower hexagonal ordering in comparison to the general SBA-15 synthesized under strong acidities because the decreased hydronium ion concentration induced relatively weaker assembly forces during the synthesis. Nonetheless, the short mesochannels and large pore diameter in the products might be beneficial to some applications in which fast diffusion of molecules is required. PMID:19683247

  14. Tartaric Acid-Assisted Self-Assembly of Hybrid Block Copolymer Composites

    NASA Astrophysics Data System (ADS)

    Yao, Li; Lin, Ying; Watkins, James

    2014-03-01

    Enantiopure tartaric acid was used as an additive to increase the segregation strength of poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers through strong, selective interactions with one of the polymer chain segments. Addition of tartaric acid to PEO-b-PtBA exhibiting cylindrical morphologies resulted in the formation of helical superstructures as observed by transmission electron microscopy. It was also found that this small acid additive can also enable phase-selective ultra-high loading of nanoparticles (NPs) into target domains of the block copolymer composites. The loading of tartaric acid can increase enthalpically favorable interactions between the nanoparticle ligands and the host domain and mitigate entropic penalties associated with NP incorporation into the target domain. A metal content of over 40 weight percent by mass of the resulting well ordered composites was achieved as measured by thermal gravimetric analysis in PEO-b-PtBA/tartaric acid/4-hydroxythiophenol functionalized Au NP hybrid system. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst.

  15. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    SciTech Connect

    Asahi, Tsuyoshi; Mataga, Noboru )

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths of the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.

  16. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  17. Ethylene copolymer viscosity index improver dispersant additive useful in oil compositions

    SciTech Connect

    Chung, D.Y.

    1989-02-07

    A composition useful as an oil additive is described comprising reaction product of: (i) reaction product of (a) oil soluble ethylene copolymer comprising from about 15 to 90 wt. % ethylene and about 10 to 85 wt. % of at least one C/sub 3/ to C/sub 28/ alpha-olefin, the copolymer having a number average molecular weight within a range of about 10,000 to 500,000, grafted with ethylenically unsaturated carboxylic acid material having 1 to 2 carboxylic acid groups or anhydride group, (b) at least one polyamine selected from the group consisting of poly(alkylene amines) and poly(oxyalkylene amines) having at least two primary amine groups, and (c) at least one carboxylic acid material selected from long chain hydrocarbyl substituted succinic anhydride or acid having about 50 to 400 carbons in the hydrocarbyl; and (ii) a viscosity stabilizing effective amount of at least one C/sub 12/ to about C/sub 16/ aliphatic hydrocarbyl substituted succinic anhydride.

  18. Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles.

    PubMed

    Torrisi, V; Graillot, A; Vitorazi, L; Crouzet, Q; Marletta, G; Loubat, C; Berret, J-F

    2014-08-11

    When dispersed in biological fluids, engineered nanoparticles are selectively coated with proteins, resulting in the formation of a protein corona. It is suggested that the protein corona is critical in regulating the conditions of entry into the cytoplasm of living cells. Recent reports describe this phenomenon as ubiquitous and independent of the nature of the particle. For nanomedicine applications, however, there is a need to design advanced and cost-effective coatings that are resistant to protein adsorption and that increase the biodistribution in vivo. In this study, phosphonic acid poly(ethylene glycol) copolymers were synthesized and used to coat iron oxide particles. The copolymer composition was optimized to provide simple and scalable protocols as well as long-term stability in culture media. It is shown that polymers with multiple phosphonic acid functionalities and PEG chains outperform other types of coating, including ligands, polyelectrolytes, and carboxylic acid functionalized PEG. PEGylated particles exhibit moreover exceptional low cellular uptake, of the order of 100 femtograms of iron per cell. The present approach demonstrates that the surface chemistry of engineered particles is a key parameter in the interactions with cells. It also opens up new avenues for the efficient functionalization of inorganic surfaces. PMID:25046557

  19. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric Acid.

    PubMed

    Khalil, Ashraf A; Deraz, Sahar F; Elrahman, Somia Abd; El-Fawal, Gomaa

    2015-08-18

    Zein constitutes about half of the endosperm proteins in corn. Recently, attempts have been made to utilize zein for food coatings and biodegradable materials, which require better physical properties, using chemical modification of zein. In this study, zein proteins were modified using citric acid, succinic anhydride, and eugenol as natural cross-linking agents in the wet state. The cross-linkers were added either separately or combined in increment concentrations (0.1, 0.2, 0.3, and 0.4%). The effects of those agents on the mechanical properties, microstructure, optical properties, infrared (IR) spectroscopy, and antibacterial activities of zein were investigated. The addition of cross-linking agents promoted changes in the arrangement of groups in zein film-forming particles. Regarding the film properties, incorporation of cross-linking agents into zein films prepared in ethanol resulted in two- to three-fold increases in tensile strength (TS) values. According to the Fourier-transform infrared (FTIR) spectra and Hunter parameters there were no remarkable changes in the structure and color of zein films. Transparency of zein films was decreased differentially according to the type and cross-linker concentration. The mechanical and optical properties of zein films were closely related to their microstructure. All cross-linked films showed remarkable antibacterial activities against Bacillus cereus ATCC 49064 and Salmonella enterica ATCC 25566. Food spoilage and pathogenic bacteria were affected in a film-dependent manner. Our experimental results show that even with partial cross-linking the mechanical properties and antipathogen activities of zein films were significantly improved, which would be useful for various industrial applications. PMID:25036665

  20. Simultaneous efficient adsorption of Pb2+ and MnO4- ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    NASA Astrophysics Data System (ADS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-12-01

    A novel adsorbent NH2/MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption-desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH2/MCM-41/NTAA were used to adsorb Pb2+ and MnO4- in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH2/MCM-41/NTAA exhibit preferable removal of Pb2+ through electrostatic interactions and chelation, whereas it captures MnO4- by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb2+ and of 156 mg/g for MnO4-. The adsorption rates of both Pb2+ and MnO4- are found to follow the pseudo-second order kinetics. Furthermore, the NH2/MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH2/MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  1. Brain delivery of proteins via their fatty acid and block copolymer modifications

    PubMed Central

    Yi, Xiang; Kabanov, Alexander V.

    2014-01-01

    It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain. PMID:24160902

  2. Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system

    PubMed Central

    Griffin, Jeremy; Delgado-Rivera, Roberto; Meiners, Sally; Uhrich, Kathryn E.

    2011-01-01

    Continuous biomaterial advances and the regenerating potential of the adult human peripheral nervous system offer great promise for restoring full function to innervated tissue following traumatic injury via synthetic nerve guidance conduits. To most effectively facilitate nerve regeneration, a tissue engineering scaffold within a conduit must be similar to the linear microenvironment of the healthy nerve. To mimic the native nerve structure, aligned poly(lactic-co-glycolic acid)/bioactive polyanhydride fibrous substrates were fabricated through optimized electrospinning parameters with diameters of 600 ± 200 nm. Scanning electron microscopy images show fibers with a high degree of alignment. Schwann cells and dissociated rat dorsal root ganglia demonstrated elongated and healthy proliferation in a direction parallel to orientated electrospun fibers with significantly longer Schwann cell process length and neurite outgrowth when compared to randomly orientated fibers. Results suggest that an aligned polyanhydride fiber mat holds tremendous promise as a supplement scaffold for the interior of a degradable polymer nerve guidance conduit. Bioactive salicylic acid based polyanhydride fibers are not limited to nerve regeneration and offer exciting promise for a wide variety of biomedical applications. PMID:21442724

  3. Semiconductor nanoparticles in poly((2-dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers

    NASA Astrophysics Data System (ADS)

    Trandafilović, L. V.; Bibić, N.; Georges, M. K.; Blanuša, J.; Radhakrishnan, T.; Djoković, V.

    2013-11-01

    Nanostructured cadmium selenide (CdSe) and lead sulfide (PbS) semiconductors were prepared in a poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) matrix. The obtained nanoparticles were characterized by using optical and structural methods. Co-polymers were synthesized in two different molar ratios of pDMAEMA:acrylic acid monomer units (1:2, 1:1). Transmission electron microscopy analysis confirmed the presence of nano-sized CdSe and PbS particles. In the case of CdSe, a shift of the onset of the optical absorption toward lower wavelengths was observed. X-ray diffraction analysis revealed that both CdSe and PbS nanoparticles have cubic crystal structure.

  4. Anelastic and thermal properties of ethylene/acrylic acid copolymers partially ionized with transition metals

    SciTech Connect

    Hoffman, D.M.; Matthews, F.M.; Riley, M.O.; Walkup, C.M.

    1988-01-01

    Ionomers of five 3d series transition metals (Mn, Fe, Co, Ni, and Cu), two Lanthanide series transition metals (Ce, Sm) and the IV and V series metals (Pb, Bi) were prepared by reaction with 25% solids dispersion of poly (ethylene-co-acrylic acid), EAA, in aqueous ammonia. The unreacted copolymer showed two mechanical relaxations, the glass transition at about 5C and a low temperature secondary relaxation at about -140C with 230 +- 10 kJ/mol and 50+-8 kJ/mol apparent activation energies, respectively. Typically three weight percent of the metal nitrate or acetate was reacted with the copolymer dispersion. After precipitation, drying and molding, the ionomers showed three mechanical relaxations. The low temperature ..gamma..-relaxation was quite strong and shifted about 5C higher compared to the EAA copolymer. The ..beta..-relaxation was extremely weak occurring at -62+-5C in the loss tangent at 1.0 Hz. The ..cap alpha..-relaxation or glass transition for 3% transition metal ionomers occurred at about 26+-3C for +3 oxidation states and Cu/sup +2/, but significantly higher for other +2 oxidation states (48 +- 2C for Co, Ni and 35C for Mn) based on G'' maxima at 1.0 Hz and the apparent activation energy was 220+-30kJ/mol. The two group IV and V metal ionomers were much higher loadings and had a much broader and stronger (..beta..') relaxation occurring at -6 +- 4C with 130+-10 kJ/mol activation energies. The lead ionomers were clear but the bismuth ionomer showed macroscopic phase separation. The 3d transition metal ionomers were clear and nicely colored characteristic of their ionization state except for iron which was somewhat cloudy. The Lanthanide ionomers were clear (Ce) or pale yellow (Sm) and also reasonably transparent. (16 refs., 12 figs., 5 tabs.)

  5. Salicylic acid-based poly(anhydride-ester) nerve guidance conduits: Impact of localized drug release on nerve regeneration.

    PubMed

    Lee, Yong S; Griffin, Jeremy; Masand, Shirley N; Shreiber, David I; Uhrich, Kathryn E

    2016-04-01

    Nerve guidance conduits (NGCs) can serve as physical scaffolds aligning and supporting regenerating cells while preventing scar tissue formation that often interferes with the regeneration process. Numerous studies have focused on functionalizing NGCs with neurotrophic factors, for example, to support nerve regeneration over longer gaps, but few directly incorporate therapeutic agents. Herein, we fabricated NGCs from a polyanhydride comprised of salicylic acid (SA), a nonsteroidal anti-inflammatory drug, then performed in vitro and in vivo assays. In vitro studies included cytotoxicity, anti-inflammatory response, and NGC porosity measurements. To prepare for implantation, type I collagen hydrogels were used as NGC luminal fillers to further enhance the axonal regeneration process. For the in vivo studies, SA-NGCs were implanted in femoral nerves of mice for 16 weeks and evaluated for functional recovery. The SA-based NGCs functioned as both a drug delivery vehicle capable of reducing inflammation and scar tissue formation because of SA release as well as a tissue scaffold that promotes peripheral nerve regeneration and functional recovery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 975-982, 2016. PMID:26691691

  6. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-06-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  7. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  8. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-07-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  9. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  10. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  11. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence.

    PubMed

    Mao, Hailiang; Shan, Guorong; Bao, Yongzhong; Wu, Zi Liang; Pan, Pengju

    2016-05-18

    CBABC-type poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) pentablock copolymers composed of a central PEG block (A) and enantiomeric poly(l-lactic acid) (PLLA, B), poly(d-lactic acid) (PDLA, C) blocks were synthesized. Such pentablock copolymers form physical hydrogels at high concentrations in an aqueous solution, which stem from the aggregation and physical bridging of copolymer micelles. These gels are thermoresponsive and turn into sols upon heating. Physical gelation, gel-to-sol transition, crystalline state, microstructure, rheological behavior, biodegradation, and drug release behavior of PLA/PEG pentablock copolymers and their gels were investigated; they were also compared with PLA-PEG-PLA triblock copolymers containing the isotactic PLLA or atactic poly(d,l-lactide) (PDLLA) endblocks and PLLA-PEG-PLLA/PDLA-PEG-PDLA enantiomeric mixtures. PLA hydrophobic domains in pentablock copolymer gels changed from a homocrystalline to stereocomplexed structure as the PLLA/PDLA block length ratio approached 1/1. The gel of symmetric pentablock copolymer exhibited a wider gelation region, higher gel-to-sol transition temperature, higher hydrophobic domain crystallinity, larger intermicellar distance, higher storage modulus, and slower degradation and drug release rate compared to those of the asymmetric PLA/PEG pentablock copolymers or triblock copolymers. SAXS results indicated that the PLLA/PDLA blocks stereocomplexation in pentablock copolymers facilitated the intermicellar aggregation and bridging. Cylindrical ordered structures were observed in all the gels formed from the PLA/PEG pentablock and triblock copolymers. The stereocomplexation degree and intermicellar distance of the pentablock copolymer gels increased with heating. PMID:27121732

  12. Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1998-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  13. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  14. Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring

    PubMed Central

    Li, Siqi; Davis, Erin N; Anderson, Jordan; Lin, Qiao; Wang, Qian

    2009-01-01

    We have previously presented a MEMS viscometric sensor for continuous glucose monitoring using protein Concanavalin A (Con A). To address its drawbacks including immunotoxicity and instability issues, we have synthesized stable, biocompatible copolymers poly(acrylamide-ran-3- acrylamidophenylboronic acid) (PAA-ran-PAAPBA) for viscosity based glucose sensing. We found that PAA-ran-PAAPBA showed very high binding specificity to glucose. Several key factors such as polymer compositions, polymer molecular weights and polymer concentrations have been investigated to optimize viscometric responses. This polymer is able to detect glucose under physiological conditions in a reversible manner. Therefore, it has the potential to enable the highly reliable, continuous monitoring of glucose in subcutaneous tissue using the MEMS device. PMID:19067585

  15. Surface functionalization of styrenic block copolymer elastomeric biomaterials with hyaluronic acid via a "grafting to" strategy.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Yuan, Shuaishuai; Song, Lingjie; Zhao, Jie; Ma, Jiao; Shi, Hengchong; Yang, Huawei; Jin, Jing; Yin, Jinghua

    2013-12-01

    As a biostable elastomer, the hydrophobicity of styrenic block copolymer (SBC) intensely limits its biomedical applications. In order to overcome such shortcoming, the SBC films were grafted with hyaluronic acid (HA) using a coupling agent. The surface chemistry of the modified films was examined by ATR-FTIR and XPS techniques, and the surface morphology was visually described by AFM. The biological performances of the HA-modified films were evaluated by a series of experiments, such as protein adsorption, platelet adhesion, and in vitro cytocompatibility. It was found that the HA-modified samples showed a low adhesiveness to fibroblast at the initial stage; however, it stimulated the growth of fibroblast. The L929 fibroblast growth presented a strong dependence on the molecular weight (MW) of HA. The samples modified with 17kDa HA exhibited the worst wettability and platelet adhesion, while providing the best results of supporting fibroblast proliferation. PMID:23974002

  16. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer.

    PubMed

    Abney, C W; Das, S; Mayes, R T; Kuo, L-J; Wood, J; Gill, G; Piechowicz, M; Lin, Z; Lin, W; Dai, S

    2016-09-14

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ(2)-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials. PMID:27507226

  17. The styrene-maleic acid copolymer: a versatile tool in membrane research.

    PubMed

    Dörr, Jonas M; Scheidelaar, Stefan; Koorengevel, Martijn C; Dominguez, Juan J; Schäfer, Marre; van Walree, Cornelis A; Killian, J Antoinette

    2016-01-01

    A new and promising tool in membrane research is the detergent-free solubilization of membrane proteins by styrene-maleic acid copolymers (SMAs). These amphipathic molecules are able to solubilize lipid bilayers in the form of nanodiscs that are bounded by the polymer. Thus, membrane proteins can be directly extracted from cells in a water-soluble form while conserving a patch of native membrane around them. In this review article, we briefly discuss current methods of membrane protein solubilization and stabilization. We then zoom in on SMAs, describe their physico-chemical properties, and discuss their membrane-solubilizing effect. This is followed by an overview of studies in which SMA has been used to isolate and investigate membrane proteins. Finally, potential future applications of the methodology are discussed for structural and functional studies on membrane proteins in a near-native environment and for characterizing protein-lipid and protein-protein interactions. PMID:26639665

  18. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGESBeta

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  19. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  20. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - the Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA concentrations resulted in stronger viscoelastic p...

  1. Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers.

    PubMed

    Cuevas Arenas, Rodrigo; Klingler, Johannes; Vargas, Carolyn; Keller, Sandro

    2016-08-11

    Copolymers of styrene and maleic acid (SMA) have gained great attention as alternatives to conventional detergents, as they offer decisive advantages for studying membrane proteins and lipids in vitro. These polymers self-insert into artificial and biological membranes and, at sufficiently high concentrations, solubilise them into disc-shaped nanostructures containing a lipid bilayer core surrounded by a polymer belt. We have used (31)P nuclear magnetic resonance spectroscopy and dynamic light scattering to systematically study the solubilisation of vesicles composed of saturated or unsaturated phospholipids by an SMA copolymer with a 3 : 1 styrene/maleic acid molar ratio at different temperatures. Solubilisation was thermodynamically rationalised in terms of a three-stage model that treats various lipid/polymer aggregates as pseudophases. The solubilising capacity of SMA(3 : 1) towards a saturated lipid is higher in the gel than in the liquid-crystalline state of the membrane even though solubilisation is slower. Although the solubilisation of mixed fluid membranes is non-selective, the presence of a non-bilayer phospholipid lowers the threshold at which the membrane becomes saturated with SMA(3 : 1) but raises the polymer concentration required for complete solubilisation. Both of these trends can be explained by considering the vesicle-to-nanodisc transfer free energies of the lipid and the polymer. On the basis of the phase diagrams thus obtained, re-association of polymer-solubilised lipids with vesicles is possible under mild conditions, which has implications for the reconstitution of proteins and lipids from nanodiscs into vesicular membranes. Finally, the phase diagrams provide evidence for the absence of free SMA(3 : 1) in vesicular lipid suspensions. PMID:27471007

  2. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  3. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles.

    PubMed

    Agüeros, Maite; Areses, Paloma; Campanero, Miguel Angel; Salman, Hesham; Quincoces, Gemma; Peñuelas, Ivan; Irache, Juan Manuel

    2009-06-28

    This work describes the preparation, characterization and evaluation of the nanoparticles formed by the copolymer of methyl vinyl ether and maleic anhydride (Gantrez) AN) and cyclodextrins, including beta-cyclodextrin (CD) hydroxypropyl-beta-cyclodextrin (HPCD) and 6-monodeoxy-6-monoamino-beta-cyclodextrin (NHCD). The cyclodextrin-poly(anhydride) nanoparticles were prepared by a solvent displacement method and characterized by measuring the size, zeta potential, morphology and composition. For bioadhesion studies, nanoparticles were fluorescently labelled with rhodamine B isothiocianate (RBITC). For in vivo imaging biodistribution studies, (99m)Tc-labelled nanoparticles were used. Nanoparticles displayed a size of about 150nm and a cyclodextrin content which was found optimal under the following experimental conditions: cyclodextrin/poly(anhydride) ratio of 0.25 by weight, 30min of incubation time between the cyclodextrin and the polymer. Moreover, the oligosaccharide content was higher with CD than with NHCD and HPCD. Overall, cyclodextrin-poly(anhydride) nanoparticles displayed homogeneous bioadhesive interactions within the gut. The intensity of these interactions was higher than for control nanoparticles. The high bioadhesive capacity was observed for HPCD-NP and NHCD-NP which can be related with their rough morphology and, thus, a higher specific surface than for smooth nanoparticles (CD-NP). Finally, from in vivo studies, no evidence of translocation of distribution to other organs was observed when these nanoparticles were orally administered. PMID:19491010

  4. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  5. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties.

    PubMed

    Xu, Jingyuan; Krietemeyer, Elizabeth F; Finkenstadt, Victoria L; Solaiman, Daniel; Ashby, Richard D; Garcia, Rafael A

    2016-04-20

    Graft copolymers of waxy maize starch and poly-γ-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180°C and pH7.0 were the best reaction conditions resulting in a PGA graft of 0.45% based on nitrogen analysis. The average graft content and graft efficiency for the starch-PGA graft copolymer prepared at 180°C and pH7.0 were 4.20% and 2.73%, respectively. The starch-PGA graft copolymer produced at 180°C and pH7.0 could absorb more than 20 times its own weight amount of water and form a gel. The preliminary rheology study revealed that the starch-PGA graft copolymer gel exhibited viscoelastic solid behavior while the control sample of waxy starch showed viscoelastic liquid behavior. PMID:26876849

  6. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.

    PubMed

    Hamai, Ryo; Shirosaki, Yuki; Miyazaki, Toshiki

    2016-10-01

    Phosphate groups on materials surfaces are known to contribute to apatite formation upon exposure of the materials in simulated body fluid and improved affinity of the materials for osteoblast-like cells. Typically, polymers containing phosphate groups are organic matrices consisting of apatite-polymer composites prepared by biomimetic process using simulated body fluid. Ca(2+) incorporation into the polymer accelerates apatite formation in simulated body fluid owing because of increase in the supersaturation degree, with respect to apatite in simulated body fluid, owing to Ca(2+) release from the polymer. However, the effects of phosphate content on the Ca(2+) release and apatite-forming abilities of copolymers in simulated body fluid are rather elusive. In this study, a phosphate-containing copolymer prepared from vinylphosphonic acid, 2-hydroxyethyl methacrylate, and triethylene glycol dimethacrylate was examined. The release of Ca(2+) in Tris-NaCl buffer and simulated body fluid increased as the additive amount of vinylphosphonic acid increased. However, apatite formation was suppressed as the phosphate groups content increased despite the enhanced release of Ca(2+) from the polymer. This phenomenon was reflected by changes in the surface zeta potential. Thus, it was concluded that the apatite-forming ability of vinylphosphonic acid-2-hydroxyethyl methacrylate-triethylene glycol dimethacrylate copolymer treated with CaCl2 solution was governed by surface state rather than Ca(2+) release in simulated body fluid. PMID:27585911

  7. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  8. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications. PMID:26222398

  9. Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi0.5Mn1.5O4 cathode material

    NASA Astrophysics Data System (ADS)

    Yan, Guochun; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xiong, Xunhui

    2014-10-01

    Self-discharge and transition metal dissolution weaknesses bother the application of LiNi0.5Mn1.5O4 cathode material due to the severe oxidation of electrolyte at the high voltage state. A novel additive, 1-propylphosphonic acid cyclic anhydride (PACA), is desirable to prevent this oxidation. CV and charge-discharge results reveal that adding 0.5% PACA can relieve the oxidation of electrolyte. Consequently, the self-discharge and transition metal dissolution are both suppressed effectively, which is validated by self-discharge tests, XPS, and EDX analyses. Moreover, using PACA as an additive enhances the capacity retention capability of LiNi0.5Mn1.5O4 at elevated temperatures significantly.

  10. Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Walker, Charles W.

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion ® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion ® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm -1, which increased to 0.06 S cm -1 at 80 °C.

  11. Synthesis and therapeutic effect of styrene–maleic acid copolymer-conjugated pirarubicin

    PubMed Central

    Tsukigawa, Kenji; Liao, Long; Nakamura, Hideaki; Fang, Jun; Greish, Khaled; Otagiri, Masaki; Maeda, Hiroshi

    2015-01-01

    Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene–maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer–drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo. PMID:25529761

  12. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  13. Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery.

    PubMed

    Cavallaro, G; Licciardi, M; Amato, G; Sardo, C; Giammona, G; Farra, R; Dapas, B; Grassi, M; Grassi, G

    2014-05-15

    Nucleic acid molecules such as small interfering RNAs (siRNAs) and plasmidic DNAs (pDNAs) have been shown to have the potential to be of therapeutic value in different human diseases. Their practical use is however compromised by the lack of appropriate release systems. Delivered as naked molecules, siRNAs/pDNAs are rapidly degraded by extracellular nucleases thus considerably reducing the amount of molecule which can reach the target cells. Additionally, the anionic charge of the phosphate groups present on the siRNAs/pDNAs backbone, disfavors the interaction with the negatively charged surface of the cell membrane. In this paper we describe the generation of a novel polymer able to deliver both siRNAs and pDNAs. The combined release of these molecules is used in many different experimental settings such as the evaluation of the silencing efficiency of a given siRNA targeted against a given RNA, encoded by the pDNA. The possibility to use the same delivery system is very convenient from the technical point of view and it allows minimizing possible artifacts introduced by the use of different delivery agents for siRNAs and pDNA. The copolymer described here is based on α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) bearing positively chargeable side oligochains, with diethylamino ethyl methacrylate (DEAEMA) as monomer. Monomer polymerization has been obtained by atom transfer radical polymerization (ATRP), a technique which allows the precise polymerization of the monomer. In addition to the chemical-physical characterization of the polymer, we provide evidences of the polymer ability to delivery both siRNAs and pDNA to cultured cells. Whereas additional investigations are necessary to study the delivery mechanisms of this polyplex, the polymer generated represents a novel and convenient device for the delivery of both siRNAs and pDNA. PMID:24631053

  14. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel.

    PubMed

    Dong, Yixiao; Hassan, Waqar; Zheng, Yu; Saeed, Aram Omer; Cao, Hongliang; Tai, Hongyun; Pandit, Abhay; Wang, Wenxin

    2012-01-01

    Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an 'one pot and one step' in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, M(n) = 258 g mol(-1)), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n )= 475 g mol(-1)) and (2-methoxyethoxy) ethyl methacrylate (MEO(2)MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models. PMID:22143908

  15. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  16. IDENTIFYING AIRWAY SENSITIZERS: MRNA CYTOKINE PROFILES INDUCED BY VARIOUS ANHYDRIDES

    EPA Science Inventory

    Abstract:
    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hyp...

  17. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  18. pH-Sensitive Micelles Based on Double-Hydrophilic Poly(methylacrylic acid)-Poly(ethylene glycol)-Poly(methylacrylic acid) Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Tao, Youhua; Liu, Ren; Liu, Xiaoya; Chen, Mingqing; Yang, Cheng; Ni, Zhongbin

    2009-04-01

    pH-sensitive micelles with hydrophilic core and hydrophilic corona were fabricated by self-assembling of triblock copolymer of poly(methylacrylic acid)-poly(ethylene glycol)-poly(methylacrylic acid) at lower solution pH. Transmission electron microscopy and laser light scattering studies showed micelles were in nano-scale with narrow size distribution. Solution pH value and the micelles concentration strongly influenced the hydrodynamic radius of the spherical micelles (48-310 nm). A possible mechanism for the formation of micelles was proposed. The obtained polymeric micelle should be useful for biomedical materials such as carrier of hydrophilic drug.

  19. Folic acid conjugated δ-valerolactone-poly(ethylene glycol) based triblock copolymer as a promising carrier for targeted doxorubicin delivery.

    PubMed

    Nair K, Lekha; Jagadeeshan, Sankar; Nair S, Asha; Kumar, G S Vinod

    2013-01-01

    The aim of this study is to test the hypothesis that the newly synthesized poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) copolymer grafted with folic acid would impart targetability and further enhance the anti-tumor efficacy of doxorubicin (DOX). Here, folic acid conjugated VEV (VEV-FOL) was synthesized by a modified esterification method and characterized using IR and NMR. DOX loaded VEV-FOL micelles were synthesized using a novel solvent evaporation method and were obtained with a mean diameter of 97 nm with high encapsulation efficiency and sustained in vitro release profile. Comparative studies of polymer micelles with and without folate for cellular uptake and cytotoxicity were done on folate receptor-positive breast cancer cell line, MDAMB231. The intracellular uptake tests showed significant increase in folate micellar uptake when compared to non-folate-mediated micelles. MTT assay followed by apoptosis assays clearly indicated that folate decorated micelles showed significantly better cytotoxicity (IC50 = 0.014 µM) and efficiency to induce apoptosis than other treated groups. Moreover, a significant G2/M arrest was induced by DOX loaded VEV-FOL micelles at a concentration where free drug failed to show any activity. Thus, our results show that the folic acid-labeled VEV copolymer is a promising biomaterial with controlled and sustainable tumor targeting ability for anticancer drugs which can open new frontiers in the area of targeted chemotherapy. PMID:23990912

  20. Folic Acid Conjugated δ-Valerolactone-Poly(ethylene glycol) Based Triblock Copolymer as a Promising Carrier for Targeted Doxorubicin Delivery

    PubMed Central

    Nair K, Lekha; Jagadeeshan, Sankar; Nair S, Asha; Kumar, G. S. Vinod

    2013-01-01

    The aim of this study is to test the hypothesis that the newly synthesized poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) copolymer grafted with folic acid would impart targetability and further enhance the anti-tumor efficacy of doxorubicin (DOX). Here, folic acid conjugated VEV (VEV-FOL) was synthesized by a modified esterification method and characterized using IR and NMR. DOX loaded VEV-FOL micelles were synthesized using a novel solvent evaporation method and were obtained with a mean diameter of 97 nm with high encapsulation efficiency and sustained in vitro release profile. Comparative studies of polymer micelles with and without folate for cellular uptake and cytotoxicity were done on folate receptor-positive breast cancer cell line, MDAMB231. The intracellular uptake tests showed significant increase in folate micellar uptake when compared to non-folate-mediated micelles. MTT assay followed by apoptosis assays clearly indicated that folate decorated micelles showed significantly better cytotoxicity (IC50 = 0.014 µM) and efficiency to induce apoptosis than other treated groups. Moreover, a significant G2/M arrest was induced by DOX loaded VEV-FOL micelles at a concentration where free drug failed to show any activity. Thus, our results show that the folic acid-labeled VEV copolymer is a promising biomaterial with controlled and sustainable tumor targeting ability for anticancer drugs which can open new frontiers in the area of targeted chemotherapy. PMID:23990912

  1. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of "clickable" gold nanoparticles.

    PubMed

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja; Hvilsted, Søren

    2013-05-25

    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride - a monomer derived from renewable resources - is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized via Cu(I)-mediated "click" reaction. PMID:23588100

  2. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  3. Plasma copolymer surfaces of acrylic acid/1,7 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells.

    PubMed

    Daw, R; Candan, S; Beck, A J; Devlin, A J; Brook, I M; MacNeil, S; Dawson, R A; Short, R D

    1998-10-01

    The purpose of this study was: (a) to examine the effect of plasma-gas composition on plasma polymer oxygen/carbon (O/C) ratio, functional group composition and stability in water, and then (b) to examine cell attachment to surfaces containing different concentrations of O/C and functional groups. Oxygen-functionalised surfaces were deposited by means of the plasma copolymerisation of acrylic acid/1,7-octadiene. The use of a diluent hydrocarbon allowed the deposition of surfaces with a range of O/C concentrations. Plasma copolymer surfaces were characterised by X-ray photoelectron spectroscopy (XPS). Changes in functional group composition with % acrylic acid monomer and the non-dispersive and dispersive parts of the surface energy of these plasma copolymers were measured. The solubility of the plasma copolymers was assessed by means of XPS. The degree of attachment of ROS 17/2.8 osteoblast-like cells to plasma copolymer surfaces deemed to be 'stable' in aqueous medium was measured. Tissue culture polystyrene (TCPS) was included as a control. Attachment was found to be greatest to the plasma copolymer surface with an O/C of 0.11. This surface had a carboxylic acid concentration of ca. 3%. Attachment did not correlate with increased surface wettability (i.e. the non-dispersive component of the surface energy). PMID:9856582

  4. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    NASA Astrophysics Data System (ADS)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  5. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  6. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin

    PubMed Central

    Alibolandi, Mona; Sadeghi, Fatemeh; Sazmand, Seyed Hossein; Shahrokhi, Seyed Mohammad; Seifi, Mahmoud; Hadizadeh, Farzin

    2015-01-01

    Introduction: The copolymer of polyethylene glycol (PEG) and polyesters has many interesting properties, such as amphiphilicity, biocompatibility, biodegradability, and self-assembly in an aqueous environment. Diblock copolymers of PEG-polyester can form different structures such as micelles, polymersome, capsules or micro-container in an aqueous environment according to the length of their blocks. Materials and Methods: Herein, a series of poly (lactic acid) (PLA) and PEG diblock copolymers were synthesized through the ring-opening polymerization. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The corresponding copolymers were implemented for the formation of polymersome structures using film rehydration method. Impact of methoxy PEG chain length and hydrophobic weight fraction on particle size of polymersomes were studied, and the proper ones were selected for loading of doxorubicin (DOX) via pH gradient method. Results and Discussion: Results obtained from 1HNMR and GPC revealed that microwave irradiation is a simple and reliable method for the synthesis of PEG-PLA copolymers. Further analysis indicated the copolymer with relative molecular weight of PLA to PEG ratios of 3 or fEo ~ 25% produced the smallest size polymersomes. Polymersomes prepared from PEG5000 to PLA15000 were more capable in loading and sustained release of DOX than those prepared from PEG2000 to PLA6000. Conclusion: In conclusion copolymers of PEG/PLA with fOE ~25% and relatively higher molecular weight are more suitable for encapsulation and providing sustained release of DOX. PMID:26258054

  7. Side-chain amino-acid-based pH-responsive self-assembled block copolymers for drug delivery and gene transfer.

    PubMed

    Kumar, Sonu; Acharya, Rituparna; Chatterji, Urmi; De, Priyadarsi

    2013-12-10

    Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications. PMID:24274731

  8. Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery.

    PubMed

    Mebarek, Naila; Aubert-Pouëssel, Anne; Gérardin, Corine; Vicente, Rita; Devoisselle, Jean-Marie; Bégu, Sylvie

    2013-10-01

    Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. PMID:23792466

  9. Effects of difructose anhydride III (DFA III) administration on bile acids and growth of DFA III-assimilating bacterium Ruminococcus productus on rat intestine.

    PubMed

    Minamida, Kimiko; Kaneko, Maki; Ohashi, Midori; Sujaya, I Nengah; Sone, Teruo; Wada, Masaru; Yokota, Atsushi; Hara, Hiroshi; Asano, Kozo; Tomita, Fusao

    2005-06-01

    The growth of DFA III-assimilating bacteria in the intestines of rats fed 3% DFA III for 2 weeks was examined. Sixty-four percent of the DFA III intake had been assimilated on day 3 of ingestion, and almost all of the DFA III was assimilated at the end of the experiment. The DFA III-assimilating bacterium, Ruminococcus productus, in DFA III-fed rats was in the stationary state of 10(8)-10(9) cells/g dry feces within a week from 10(6) cells/g dry feces on day 1 of DFA III ingestion. The number of R. productus cells was associated with the amount of DFA III excreted in the feces. The acetic acid produced from DFA III by R. productus lowered the cecal pH to 5.8. In control-fed rats and DFA III-fed rats, 94% of secondary bile acids and 94% of primary bile acids, respectively, were accounted for in the total bile acids analyzed. DFA III ingestion increased the ratio of primary bile acids and changed the composition of fecal bile acids. In conclusion, R. productus assimilated DFA III, produced short chain fatty acids, and the cecal pH was lowered. The acidification of rat intestine perhaps inhibited secondary bile acid formation and decreased the ratio of secondary bile acids. Therefore, it is expected that DFA III may prevent colorectal cancer and be a new prebiotic candidate. PMID:16233830

  10. A new class of polyelectrolytes, poly(phenylene sulfonic acids) and its copolymers as proton exchange membranes for PEMFC's

    NASA Astrophysics Data System (ADS)

    Granados-Focil, Sergio

    A novel rigid rod liquid crystalline poly(biphenylene disulfonic acid), PBPDSA, was synthesized for the first time using the Ullman coupling reaction. The resulting water soluble, polymer showed a complex aggregation behavior in solution, which complicated the estimation of its molecular weight. The proton conductivity of PBPDSA was higher than that of Nafion over the whole tested range of relative humidities and temperatures. The unparalleled properties of this material were attributed to its liquid crystalline lamellar solid state structure. In order to obtain water insoluble membranes, PBPDSA was modified by grafting bulky or crosslinkable hydrophobic groups. The resulting grafted copolymers showed a solid state structure similar to that of PBPDSA, as well as an analogous anisotropy in some of its properties. The in plane proton conductivity of these materials, measured as a function of relative humidity and temperature, was higher or comparable to that of Nafion. The membranes performance at low relative humidities and high temperatures is remarkable, showing conductivity values up to 2 orders of magnitude larger than those found for Nafion. TGA and FTIR studies indicate that the polymers are stable up to 175°C. The most important discovery was that this class of materials forms almost perfect MeOH vapor barriers. A 20mu film was more than 1000 times less permeable than Nafion 117. The effect of the bulky and crosslinkable groups on the conductivity, mechanical properties and dimensional stability of the copolymer membranes was evaluated. However, an unequivocal correlation between polymer structure and its properties was complicated by the presence of structural defects generated during the grafting process. Experimental conditions allowing the control but not the elimination of such defects were found and used to prepare grafted copolymers in a controlled and reproducible manner. The initial results of an effort to produce random copolymers using new

  11. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.

    PubMed

    Haas, Simon; Hain, Nicole; Raoufi, Mohammad; Handschuh-Wang, Stephan; Wang, Tao; Jiang, Xin; Schönherr, Holger

    2015-03-01

    We introduce a new hyaluronidase-responsive amphiphilic block copolymer system, based on hyaluronic acid (HYA) and polycaprolactone (PCL), that can be assembled into polymersomes by an inversed solvent shift method. By exploiting the triggered release of encapsulated dye molecules, these HYA-block-PCL polymersomes lend themselves as an autonomous sensing system for the detection of the presence of hyaluronidase, which is produced among others by the pathogenic bacterium Staphylococcus aureus. The synthesis of the enzyme-responsive HYA-block-PCL block copolymers was carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition of ω-azide-terminated PCL and ω-alkyne-functionalized HYA. The structure of the HYA-block-PCL assemblies and their enzyme-triggered degradation and concomitant cargo release were investigated by dynamic light scattering, fluorescence spectroscopy, confocal laser-scanning microscopy, scanning and transmission electron, and atomic force microscopy. As shown, a wide range of reporter dye molecules as well as antimicrobials can be encapsulated into the vesicles during formation and are released upon the addition of hyaluronidase. PMID:25654495

  12. Development of poly(3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Karthikeyan, P.; Kavitha, L.; Surendiran, M.

    2015-12-01

    The present study deals with the successful development of poly(3,4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel (LN SS) by electropolymerization. The structural and morphological evaluation of the co-polymer coatings were performed using various analytical techniques. Also, the effect of monomer feed ratio on the morphological behaviour of the co-polymer coatings was studied towards the protection efficiency of LN SS in 0.5 M H2SO4. The results demonstrated that the co-polymer coating on passivated LN SS improved the corrosion protection efficiency at the feed ratio 50:50 and hence the as-coated LN SS can serve as a prospective material for industrial applications.

  13. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  14. Effect of Hyaluronic Acid on the Self Assembling Behaviour of PEO-PPO Copolymers in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Mayol, L.; Borzacchiello, A.; Quaglia, F.; La Rotonda, M. I.; Ambrosio, L.

    2008-07-01

    The influence of hyaluronic acid (HA) on the self assembling properties of pluronic (PEO-PPO-PEO block copolymers) blends has been studied with the aim of engineering thermosensitive and mucoadhesive polymeric platforms for drug delivery. The gelation temperature (Tgel), viscoelastic properties and mucoadhesive force of the systems were investigated and optimised by means of rheological analyses. Pluronic micellar radius was evaluated by Photon Correlation Spectroscopy (PCS). The addition of Low Molecular Weight HA did not hamper the self assembling process of pluronics just delaying the gelation temperature of few Celsius degrees. Furthermore, HA presence led to a strong increase of the pluronics gel rheological properties. PCS results show, in formulations containing HA, aggregates with hydrodynamic diameters values much higher than those of pluronic micelles. Mucoadhesive experiments indicate the possibility of interactions between the pluronic/HA gel and mucus glycoproteins.

  15. pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition**

    PubMed Central

    Lovett, Joseph R; Warren, Nicholas J; Ratcliffe, Liam P D; Kocik, Marzena K; Armes, Steven P

    2015-01-01

    A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition. PMID:25418214

  16. pH-responsive non-ionic diblock copolymers: ionization of carboxylic acid end-groups induces an order-order morphological transition.

    PubMed

    Lovett, Joseph R; Warren, Nicholas J; Ratcliffe, Liam P D; Kocik, Marzena K; Armes, Steven P

    2015-01-19

    A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelation. This morphological transition is fully reversible as determined by TEM and rheology studies and occurs because of a subtle change in the packing parameter for the copolymer chains. A control experiment where the methyl ester derivative of the RAFT agent is used to prepare the same diblock copolymer confirms that no pH-responsive behavior occurs in this case. This end-group ionization approach is important for the design of new pH-responsive copolymer nano-objects as, unlike polyacids or polybases, only a minimal amount of added base (or acid) is required to drive the morphological transition. PMID:25418214

  17. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  18. A Mechanistic Study of a-Amino Acid-N-Carboxy Anhydride Polymerization: Comparing Initiation and Termination Events in High Vacuum and Traditional Polymerization Techniques

    SciTech Connect

    Pickel, Deanna L; Politakos, Nikolaos; Avgeropoulos, Apostolos; Messman, Jamie M

    2009-01-01

    High-vacuum polymerization of -amino acid-N-carboxyanhydride (NCAs) affords polymers with controlled molecular weights and narrow polydispersities, however a comprehensive study of the end-group composition of the resulting poly(amino acid)s has not yet been performed. This reveals crucial information, as the end-groups are indicative of both the polymerization mechanism (i.e., initiation event) as well as the termination pathways. To this end, poly(O-benzyl-L-tyrosine) initiated by 1,6-diaminohexane was synthesized and subsequently characterized by MALDI-TOF MS, NALDI -TOF MS and 13C NMR spectroscopy to ascertain the end-group structure. Polymers were prepared by both high vacuum and glove box techniques in DMF/THF. Preparation of poly(O-benzyl-L-tyrosine) by high vacuum techniques yielded a polymer initiated exclusively by the normal amine mechanism, and termination by reaction with DMF was observed. In contrast, polymers prepared in the glove box were initiated by the normal amine and activated monomer mechanisms, and several termination products are evident. To our knowledge, this is the first rigorous and comparative analysis of the end-group structure, and it demonstrates the advantage of high vacuum techniques for polymerization of NCAs for the preparation of well-defined poly(amino acid)s with end-group fidelity.

  19. Polypeptide Point Modifications with Fatty Acid and Amphiphilic Block Copolymers for Enhanced Brain Delivery

    PubMed Central

    Batrakova, Elena V.; Vinogradov, Serguei V.; Robinson, Sandra M.; Niehoff, Michael L.; Banks, William A.; Kabanov, Alexander V.

    2009-01-01

    There is a tremendous need to enhance delivery of therapeutic polypeptides to the brain to treat disorders of the central nervous system (CNS). The brain delivery of many polypeptides is severely restricted by the blood—brain barrier (BBB). The present study demonstrates that point modifications of a BBB-impermeable polypeptide, horseradish peroxidase (HRP), with lipophilic (stearoyl) or amphiphilic (Pluronic block copolymer) moieties considerably enhance the transport of this polypeptide across the BBB and accumulation of the polypeptide in the brain in vitro and in vivo. The enzymatic activity of the HRP was preserved after the transport. The modifications of the HRP with amphiphilic block copolymer moieties through degradable disulfide links resulted in the most effective transport of the HRP across in vitro brain microvessel endothelial cell monolayers and efficient delivery of HRP to the brain. Stearoyl modification of HRP improved its penetration by about 60% but also increased the clearance from blood. Pluronic modification using increased penetration of the BBB and had no significant effect on clearance so that uptake by brain was almost doubled. These results show that point modification can improve delivery of even highly impermeable polypeptides to the brain. PMID:16029020

  20. Effects of molecular architecture on crystallization behavior of poly(lactic acid) and random ethylene-vinyl acetate copolymers

    NASA Astrophysics Data System (ADS)

    Kalish, Jeffrey P.

    2011-07-01

    The relationship between polymer chain architecture, crystallization behavior, and morphology formation was investigated. The structures formed are highly dependent on chain configuration and crystallization kinetics. Poly(lactic acid) (PLA) and Poly(ethylene-co-vinyl acetate) (EVA) random copolymers were studied. Sample characterization was performed using a variety of techniques, including spectroscopy, scattering, and calorimetry. In PLA, structural differences between alpha' and alpha crystalline phases were analyzed using cryogenic infrared and Raman spectroscopy. Compared to the alpha crystal, the alpha' crystal has slightly looser packing and weaker intermolecular interactions involving carbonyl and methyl functional groups. Simulations in conjunction with Raman scattering analyzed the conformational distortion of the alpha' phase. The conformation of an alpha' chain was determined to have tg't-10/3 conformation with tg't-3/1 units randomly distributed along the chain. Departure of the O-C(alpha); dihedral angle was also confirmed. The structural disorder leads to different thermal properties for alpha' and alpha crystalline forms, which was quantified by measuring the enthalpic change at melting for both crystals (delta H (alpha') = 57 +/- 3 J/g and delta H (alpha) = 96 +/- 3 J/g). The transformation from alpha' to alpha and the mechanism of order formation in PLA were also elucidated. The relationship between chain configuration of EVA random copolymers and crystallization behavior was established. For three different EVA samples, the distribution of methylene sequences was calculated and compared to a distribution of crystallite sizes formed. This comparison revealed that only a small fraction of the total methylene segments present actually crystallized. Cocrystallization with highly mobile oligomers was explored to enhance the crystallization of EVA copolymers. When blended, EVA28 (28 weight percentage) cocrystallizes with C36H74 n-alkane resulting in

  1. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-01

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers. PMID:26974858

  2. Synthesis of quinaldinic acid amide derivative of styrene-divinylbenzene copolymer and its application in preconcentration of mercury(II)

    SciTech Connect

    Das, J.; Das, N.

    1988-09-01

    A new chelating resin has been synthesized by introducing a quinaldinic acid amide group into styrene-divinyl benzene (8%) copolymer beads. The resin is stable in fairly strong acids or alkali and has been characterized by elemental analysis for nitrogen and from i.r. spectra. The water regain value is 0.37g/g. The sorption patterns of Na(I), K(I), Ca(II), Mg(II), Pb(II), Cu(II), Ni(II), Zn(II), Cd(II), Hg(II) and Fe(III) on the chelating resin have been studied as a function of pH. The resin selectively sorbs Hg(II) over a wide pH-range of 2.5 - 7.6 with high efficiency. The maximum exchange capacity for Hg(II) is 1.98 mmols g/sup -1/ at pH 5.5. Over 99% of Hg(II) sorbed has been recovered by using 10% thiourea in 1M HClO/sub 4/ both by batch and column operations. The method has been utilized in the preconcentration and recovery of Hg(II) from industrial and laboratory waste water.

  3. Inhibitory activity of thermal copolymers of amino acids for the metal-catalyzed hydrolysis of an RNA dinucleotide

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Nagahama, Minoru; Yao, Toshio

    2006-01-01

    It is well known that the hydrolysis of RNA is substantially catalyzed by several metal ions. Although this fact poses a problem for the RNA world hypothesis, there may have been unknown pathways for the protection of RNA molecules against the hydrolytic degradation under the primitive earth conditions. Thus, we have investigated whether or not thermal copolymers of amino acids (TCAA) inhibit the catalytic activity of metal ions for the RNA hydrolyses; TCAA is a suitable model material for prebiotic protein-like molecules since TCAA involving peptide bonding is readily prepared by heating amino acid mixtures under prebiotic conditions. The activities of metal ions that Fe(III) and Co(II) enhance somewhat the 3',5'-cytidylylguanosine (CpG) hydrolysis and Ce(III) and Eu(III) accelerate greatly the CpG hydrolysis were notably reduced by TCAA. This fact indicates that protein-like molecules would have played important roles for the accumulation of RNA under the primitive earth conditions.

  4. Preparation and optical properties of CdS nanoparticles dispersed in poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers

    NASA Astrophysics Data System (ADS)

    Trandafilović, L. V.; Djoković, V.; Bibić, N.; Georges, M. K.; Radhakrishnan, T.

    2008-03-01

    CdS/poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) nanocomposites were prepared and characterized using structural, optical and thermal methods. Co-polymers used as the matrices were synthesized by radical polymerization of the co-monomers in different mol ratios (1:1, 2:1 and 1:2, DMAEMA:acrylic acid). The presence of the nanostructured CdS was confirmed by TEM analysis as well as by the shift of the onset of the optical absorption towards lower wavelengths. XRD spectra showed the cubic crystal phase of the obtained CdS nanoparticles. TGA measurements revealed improved thermal stability of the nanocomposite with respect to pure co-polymer matrix.

  5. Organic additive, 5-methylsalicylic acid induces spontaneous structural transformation of aqueous pluronic triblock copolymer solution: a spectroscopic investigation of interaction of curcumin with pluronic micellar and vesicular aggregates.

    PubMed

    Ghosh, Surajit; Kuchlyan, Jagannath; Banik, Debasis; Kundu, Niloy; Roy, Arpita; Banerjee, Chiranjib; Sarkar, Nilmoni

    2014-10-01

    This article presents the interaction of curcumin in the microenvironments provided by aggregation of pluronic triblock copolymer P123 into micellar and vesicular assemblies. The formation of vesicles using triblock copolymer P123 and 5-methylsalicylic acid (5 mS) has been successfully characterized by optical spectroscopy, light scattering measurement, and eventually microscopic techniques. Besides, to make a comparative study between the polymeric micelles, we have also investigated the photophysical changes of curcumin in F127 triblock copolymer micelles having variation in poly(ethylene oxide) (PPO) and poly(propylene oxide) (PEO) unit of polymer chain to that of P123. Time-dependent UV-vis measurement suggests that these polymer micelles are able to stabilize poorly water-soluble curcumin by suppressing the degradation rate in micellar nanocavity. However, experimental observations suggest that P123 micelles are more efficient than F127 to perturb excited state intramolecular proton transfer (ESIPT)-related nonradiative decay of curcumin. We also observed that rigid and confined microenvironment of P123/5 mS vesicles enhances emission intensity and lifetime of curcumin more compared to P123 micelles. All the observations suggest that modulation of photophysics of curcumin is responsible due to its interaction with poly(ethylene oxide) or poly(propylene oxide) unit of triblock copolymer. PMID:25192258

  6. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  7. Arylenesiloxane copolymers

    NASA Technical Reports Server (NTRS)

    Breed, L. W.; Elliott, R. L.

    1967-01-01

    Arylenesiloxane copolymers with regularly ordered structures were discovered during efforts to develop organosilicon polymers. Arylenesilane and siloxane monomers were both synthesized in these experiments.

  8. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials.

    PubMed

    Lucke, A; Tessmar, J; Schnell, E; Schmeer, G; Göpferich, A

    2000-12-01

    To obtain biodegradable polymers with variable surface properties for tissue culture applications, poly(ethylene glycol) blocks were attached to poly(lactic acid) blocks in a variety of combinations. The resulting poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether (Me.PEG-PLA) diblock copolymers were subject to comprehensive investigations concerning their bulk microstructure and surface properties to evaluate their suitability for drug delivery applications as well as for the manufacture of scaffolds in tissue engineering. Results obtained from 1H-NMR, gel permeation chromatography, wide angle X-ray diffraction and modulated differential scanning calorimetry revealed that the polymer bulk microstructure contains poly(ethylene glycol)-monomethyl ether (Me.PEG) domains segregated from poly(D,L-lactic acid) (PLA) domains varying with the composition of the diblock copolymers. Analysis of the surface of polymer films with atomic force microscopy and X-ray photoelectron spectroscopy indicated that there is a variable amount of Me.PEG chains present on the polymer surface, depending on the polymer composition. It could be shown that the presence of Me.PEG chains in the polymer surface had a suppressive effect on the adsorption of two model peptides (salmon calcitonin and human atrial natriuretic peptide). The possibility to modify polymer bulk microstructure as well as surface properties by variation of the copolymer composition is a prerequisite for their efficient use in the fields of drug delivery and tissue engineering. PMID:11055283

  9. pH-Responsive Polymer Conjugate of Pirarubicin With Styrene Maleic Acid Copolymer as a Potential Therapeutic for Ovarian Cancer.

    PubMed

    Liu, Lifeng; Sun, Jinghua; Yin, Hongzhuan; Fang, Jun; Jin, Xianyu

    2016-05-01

    Previous studies indicated the potential of styrene maleic acid copolymer (SMA)-conjugated pirarubicin (4'-O-tetrahydropyranyldoxorubicin [THP]) for targeted anticancer therapy based on the enhanced permeability and retention effect. In this study, to achieve further improved therapeutic efficacy, a pH-responsive SMA-conjugated THP-containing hydrazone bond (SMA-hyd-THP) was synthesized and evaluated in vitro and ex vivo using human ovarian cancer cells and tissues. SMA-hyd-THP showed good water solubility, forming micelles with a mean particle size of 48.0 nm, which is applicable for enhanced permeability and retention-based tumor accumulation. The THP loading in this preparation was 15% (wt/wt), and release rate of free THP from SMA-hyd-THP at physiological pH (7.4) was approximately 10% in 72 h. However, it increased rapidly at pH 6.5 (42%) and 5.5 (83%), which indicates that tumor environment of weak acidic condition (pH 6.5-6.9) is favorable for release of THP. This notion was partly proved by incubating SMA-hyd-THP with tumor tissues from ovarian cancer patients. In addition, release of THP was not affected by serum, suggesting that SMA-hyd-THP is relatively stable in circulation. Finally, SMA-hyd-THP showed much increased cytotoxicity against various ovarian cancer cells at acidic tumor pH (6.5). These findings may provide an option for targeted therapy against ovarian cancer. PMID:27020984

  10. Kinetic behaviour of acid phosphatase-albumin co-polymers in homogeneous phase and under gel-immobilized conditions.

    PubMed Central

    Cantarella, M; Remy, M H; Scardi, V; Alfani, F; Iorio, G; Greco, G

    1979-01-01

    1. An analysis of the kinetic behaviour of immobilized acid phosphatase (EC 3.1.3.2) layers, gelled on the active surface of an ultrafiltration membrane, was carried out. 2. Two possible forms of such immobilized-enzyme systems were dealt with, namely enzyme-polyalbumin co-gelation through an ultrafiltration process, and enzyme co-polymerization to the same albumin polymers and subsequent gelation. 3. A preliminary analysis was also performed on both the corresponding homogeneous-phase (soluble systems to provide reference kinetics. 4. The main conclusions drawn are: (i) the enzyme-albumin co-polymers show a decrease in specific activity compared with the corresponding free enzyme in both soluble and immobilized forms; (ii) in the homogeneous phase a slight increase in the apparent Michaelis constant was measured for the co-polymerized enzyme compared with the free one, which suggests a decrease in affinity towards substrate; (iii) the activation energy in the immobilized phase is halved, compared with that in the homogeneous phase, which indicates that the combined mass-transfer/reaction step is rate-controlling. PMID:475752

  11. Preparation of chitin butyrate by using phosphoryl mixed anhydride system.

    PubMed

    Bhatt, Lok Ranjan; Kim, Bo Mi; Hyun, Kim; Kang, Kyung Hee; Lu, Chichong; Chai, Kyu Yun

    2011-04-01

    Acylation of chitin with butyric acid was performed in the presence of trifluoroacetic anhydride/phosphoric acid mediated system. The products were characterized by (1)H NMR and FT-IR spectroscopy and their solubility was tested in different organic solvents. Inclusion of butyric acid moieties into the parent molecule was confirmed from the (1)H NMR and FT-IR spectra. FT-IR analysis revealed that the degree of acid substitution (DS) of the products was in a range of 1.9-2.38, which increased with increasing the amounts of butyric acid added to the reaction system. Degree of N-deacetylation (DD) of the products, as determined by (1)H NMR was between 54.2% and 65.6%. The products with DS >2.0 were soluble in dimethyl sulfoxide, N,N-dimethylformamide, tetrahydrofuran, methanol, acetone, chloroform, and acetic acid. PMID:21353204

  12. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    NASA Astrophysics Data System (ADS)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  13. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  14. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research. PMID:26599076

  15. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Cui, Zhiming; Zhao, Chengji; Shao, Ke; Li, Hongtao; Fu, Tiezhu; Na, Hui; Xing, Wei

    A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5‧-carbonyl-bis(2-fluorobenzenesulfonate), 4,4‧-difluorobenzophenone and 4,4‧-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and 1H NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonatation degree (DS > 0.6) was higher than 0.03 S cm -1 and increased with increasing temperature. At 80 °C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm -1, respectively, which were higher than that of Nafion 117 (0.10 S cm -1). Moreover, their methanol permeability was much lower than that of Nafion 117. These results showed that the synthesized materials might have potential applications as the proton exchange membranes for DMFCs.

  16. Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer

    PubMed Central

    Shtykova, Eleonora V.; Huang, Xinlei; Gao, Xinfeng; Dyke, Jason C.; Schmucker, Abrin L.; Dragnea, Bogdan; Remmes, Nicholas; Baxter, David V.; Stein, Barry; Konarev, Peter V.; Svergun, Dmitri I.; Bronstein, Lyudmila M.

    2009-01-01

    Iron oxide nanoparticles (NPs) with diameters of 16.1, 20.5, and 20.8 nm prepared from iron oleate precursors were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD). The coating procedure exploited hydrophobic interactions of octadecene and oleic acid tails while hydrolysis of maleic anhydride moieties allowed the NP hydrophilicity. The PMAcOD nanostructure in water and the PMAcOD-coated NPs were studied using transmission electron microscopy, ζ-potential measurements, small-angle X-ray scattering, and fluorescence measurements. The combination of several techniques suggests that independently of the iron oxide core and oleic acid shell structures, PMAcOD encapsulates NPs, forming stable hydrophilic shells which withstand absorption of hydrophobic molecules, such as pyrene, without shell disintegration. Moreover, the PMAcOD molecules are predominantly attached to a single NP instead of self-assembling into the PMAcOD disklike nanostructures or attachment to several NPs. This leads to highly monodisperse aqueous samples with only a small fraction of NPs forming large aggregates due to cross-linking by the copolymer macromolecules. PMID:19194520

  17. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    SciTech Connect

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average

  18. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    DOE PAGESBeta

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the

  19. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  20. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  1. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer

    NASA Astrophysics Data System (ADS)

    Morales, M. A.; Jain, Tapan Kumar; Labhasetwar, V.; Leslie-Pelecky, D. L.

    2005-05-01

    We have prepared and studied iron-oxide nanoparticles coated with oleic acid (OA) and Pluronic® polymer. The mean diameter of the iron-oxide nanoparticles was 9.3(±)0.8nm. Saturation magnetization values measured at 10K varied from 66.1(±0.7)emu/gto98.7(±0.5)emu/g. At 300K the loops showed negligible coercive field. The peaks in zero-field-cooled susceptibility decreased from 280to168K with increasing OA concentration up to 10.6wt%, and remained nearly constant for higher concentrations. This suggests that incomplete coverage of the OA allows small, interacting agglomerates to form.

  2. Study on the enzymatic degradation of PBS and its alcohol acid modified copolymer.

    PubMed

    Ding, Mingliang; Zhang, Min; Yang, Jinming; Qiu, Jian-hui

    2012-02-01

    Enzymatic hydrolytic degradation of polybutylene succinate (PBS), poly(polybutylenesuccinate-co-1,4-cyclohexane dimethanol) (PBS/CHDM) and poly(polybutylene succinate-co-diglycolic acid) (PBS/DGA) in mixed solvent of tetrahydrofuran (THF) and toluene was examined. Lipase was used as catalyst to degrade polymers with molecular weight of more than 100,000, and the molecular weight of products ranged from hundreds to thousands. Thermal decomposition temperatures of all products were below 250°C. The degradation products of both PBS/CHDM and PBS/DGA showed two melting points at about 85 and 99°C. Mass spectrometry (MS) was employed to obtain the molecular weight of oligomers extracted from the products, which proved to be low-polyesters with the molecular weight of less 1,000. The butanediol (BDO) monomer was found in PBS/CHDM degradation product for the first time. PMID:21732135

  3. Needlelike and spherical polyelectrolyte complex nanoparticles of poly(l-lysine) and copolymers of maleic acid.

    PubMed

    Müller, M; Reihs, T; Ouyang, W

    2005-01-01

    We report on the bulk and surface properties of dispersions consisting of nonstoichiometric polyelectrolyte complex (PEC) nanoparticles. PEC nanoparticles were prepared by mixing poly(l-lysine) (PLL) or poly(diallyldimethylammonium chloride) (PDADMAC) with poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) or poly(maleic acid-co-propylene) (PMA-P). The monomolar mixing ratio was n-/n+ = 0.6, and the concentration ranged from 1 to 6 mmol/L. Subsequent centrifugation enabled the separation of the excess polycation, resulting in a stable coacervate phase further used in the experiments. The bulk phase parameters turbidity and hydrodynamic radius (R(h)) of the PEC nanoparticles showed a linear dependence on the total polymer content independently of the mixed polyelectrolytes. This can be interpreted by the increased collision probability of the polyelectrolyte chains when the overlap concentration is approached or exceeded. Different morphologies of the cationic PEC nanoparticles, which were solution-cast onto Si supports, were obtained by atomic force microscopy (AFM). The combinations of PLL/PMA-MS and PDADMAC/PMA-MS revealed more or less hemispherical particle shapes, whereas that of PLL/PMA-P revealed an elongated needlelike particle shape. Circular dichroism and attenuated total reflection Fourier transform infrared (ATR-FTIR) measurements proved the alpha-helical conformation for the PEC PLL/PMA-P and the random coil conformation for the PEC PLL/PMA-MS. We conclude that stiff alpha-helical PLL induces anisotropic elongated PEC nanoparticles, whereas randomly coiled PLL forms isotropic spherical PEC nanoparticles. PMID:15620340

  4. Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers.

    PubMed

    Ostolska, Iwona; Wiśniewska, Małgorzata

    2015-06-15

    Disposal of the environmentally dangerous metal oxide suspensions from the waste water is an essential problem. The polymers adsorption can be one of the most effective and suitable methods. In the presented paper the ionic diblock copolymers impact on the Cr2O3 suspensions was investigated. The copolymer adsorption layers structure was determined on the basis of the adsorption and electrokinetic (surface charge density and zeta potential) tests. The polymers adsorption amount was measured using the static method from aqueous solutions. Additionally, the application of the turbidimetric method enabled determination of the interactions between the system constituents. Analysis of this data allows the estimation of the most probable stabilization (or destabilization) mechanism of the Cr2O3 suspensions in the presence of the studied macromolecular compounds. Hence, the Cr2O3 suspensions are unstable in the presence of the anionic copolymer at pH 3 and the cationic one in the alkaline medium. PMID:25746566

  5. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods. PMID:25577894

  6. A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P).

    PubMed

    Kato, Dai-ichiro; Shirakawa, Daiki; Polz, Robin; Maenaka, Mika; Takeo, Masahiro; Negoro, Seiji; Niwa, Kazuki

    2014-12-01

    A simple reaction procedure for chemiluminescence of firefly luciferin (D-luc) using n-propylphosphonic anhydride (T3P) is reported. A luminescent photon is produced as a result of one-pot reaction, only requiring mixing with the substrate carboxylic acid and T3P in the presence of a mild organic base. PMID:25350893

  7. Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...

  8. Lithographic Evaluation Of Copolymers With Enhanced Dry Etch Resistance

    NASA Astrophysics Data System (ADS)

    Namaste, Y. M.; Obendorf, S. K.; Rosenblum, J. M.; Gifford, G. G.; Dems, B. C.; Rodriguez, F.

    1987-08-01

    Alternating copolymers of alphamethylstyrene (AMS) with maleic anhydride (MA) and methyl maleate (MeM) are evaluated as positive electron resists. The chain scission efficiency (Gs) of P(AMS-MA), determined by exposure to 50 keV electrons, is 0.90 scissions/100 eV. When the maleic anhydride in the copolymer is reacted with sodium methoxide to form its methyl ester, P(AMS-MeM), the Gs increases to 2.9 for electrons and to 3.5 for gamma radiation. Based on these G-scission values, this copolymer is expected to exhibit enhanced sensitivity, while having good dry etch resistance due to the aromatic nature of alphamethylstyrene. Lithographically, P(AMS-MeM) is more sensitive than P(AMS-MA), as expected from G-scission data. Film properties such as adhesion are also superior for P(AMS-MeM). Using a one hour prebake at 140°C, 10% thinning of unexposed P(AMS-MeM) occurs upon development of pads exposed to an incident electron dose of 8 jC/cm2 (accelerating voltage = 20 kV). The contrast (1) is 2.0 for development of 12 iiC/cm exposur2es. In comparison, P(AMS-MA) exhibited 10% thinning for an incident dose of 40 pC/cm, which is similar to observations with PMMA. The copolymers are developed with mixtures of ethyl 3-ethoxypropionate and 1-methoxy-2-propanol acetate. The dry etch rate of P(AMS-MA) in CFI.' plasma with 8% 02 varies from 45 to 53% of the etch rate of a PMMA standard. The etch rate of P(AMS-MeM) after a 140°C prebake is about 65% that of PMMA. Thus, much of the etch resistance of alphamethylstyrene is maintained in copolymers with maleic anhydride or methyl maleate, while the copolymer with methyl maleate also exhibits significantly enhanced sensitivity.

  9. Derivatisation of 4-nonylphenol and bisphenol A with halogenated anhydrides.

    PubMed

    Stehmann, A; Schröder, H Fr

    2004-01-01

    The aim of this work is to synthesize and characterise the halogenated derivatives of the endocrine disrupting compounds (EDCs) 4-nonylphenol (4-NP) and bisphenol A (BPA). Characterisation was performed after gas chromatographic (GC) separation on-line coupled to mass spectrometric (MS) detector and a Fourier Transform Infrared (FTIR) spectroscopic detector. Further structure elucidation was done applying Nuclear Magnetic Resonance spectroscopy (NMR). Two different approaches for the preparation of derivatives were evaluated. At first trifluoroacetyl derivatives were synthesized by the reaction of trifluoroacetic acid (TFA) anhydride and the EDCs in acetonitrile at a temperature of 50 degrees C for 30 minutes. In a second step the 4-NP was derivatised using trichloroacetic acid anhydride and triethylamine in diethyl ether at 20 degrees C for 30 minutes. After synthesis the halogenated NP and BPA derivatives were characterised applying GC/MS, GC/FTIR and NMR. Three indices for a successful derivatisation were observed: El-GC/MS proved a complete derivatisation presenting a characteristic fragmentation pattern for each derivative. The IR spectra obtained by GC/FTIR after derivatisation and separation confirmed the loss of the phenolic O-H stretching vibration at 3,600 cm(-1) while typical absorptions for halogenated compounds now were observed. The NMR-spectra contained the predicted resonance signals. PMID:15497837

  10. Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Gogan, Oana Marilena

    2016-05-01

    This paper describes the use of artificial intelligence method in copolymer networks design. In the present study, we pursue a hybrid algorithm composed from two research themes in the genetic design framework: a Kohonen neural network (KNN), path (forward problem) combined with a genetic algorithm path (backward problem). The Tabu Search Method is used to improve the performance of the genetic algorithm path.

  11. Block Copolymer Micelles with Acid-labile Ortho Ester Side-chains: Synthesis, Characterization, and Enhanced Drug Delivery to Human Glioma Cells

    PubMed Central

    Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R. Noelle; Wang, Chun

    2011-01-01

    A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC50 values of the Dox-loaded micelles were approximately ten-times (by 24 hours) and three-times (by 48 hours) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These

  12. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment. PMID:26497115

  13. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents. PMID:17613025

  14. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  15. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  16. Improved zein articles using polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing corn protein (zein) articles with improved physical properties and solvent resistance will have a beneficial impact on companies that use corn. The effect of using the crosslinking reagent polyethylenemaleic anhydride (PEMA) on the properties and solubility of zein articles were studied. ...

  17. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    PubMed

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. PMID:25706199

  18. Protein-Semisynthese mit Hilfe gemischter Anhydride und Enzyme

    NASA Astrophysics Data System (ADS)

    Zahn, H.; Naithani, V. K.; Gattner, H.-G.; Büllesbach, E. E.; Thamm, P. M.

    1981-02-01

    Proteins play a prominent role in nature and their biosynthesis occurs via stepwise combination of amino acids. One can imitate this method in laboratory or synthesize the polypeptide chain by combining smaller preformed fragments (fragment condensation). Reversible protection of reactive groups and solubility problems arising are the most important features in this regard. Semisynthesis, i.e., coupling of amino acids or peptides to natural material may help to overcome these difficulties. The preparation of hybrid preproinsulin by mixed anhydride synthesis and the conversion of pork insulin to human insulin by enzyme-catalyzed peptide synthesis are two examples of the semisynthesis of proteins. In both cases optimal reaction conditions are essential for maximal yield of the product desired. In spite of the rapid improvement of gene technology, chemical peptide synthesis will retain its value for the preparation of biologically and pharmacologically interesting substances.

  19. Interplay of carbonyl-carbonyl, Csbnd H⋯O and Csbnd H⋯π interactions in hierarchical supramolecular assembly of tartaric anhydrides - Tartaric acid and its O-acyl derivatives: Part 11

    NASA Astrophysics Data System (ADS)

    Madura, Izabela D.; Zachara, Janusz; Hajmowicz, Halina; Synoradzki, Ludwik

    2012-06-01

    The detailed analysis of molecular and crystal structure of the O-acyltartaric anhydrides is presented. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed finger print plots was used to find out the types of weak but directional carbonyl-carbonyl, Csbnd H⋯O and Csbnd H⋯π interactions. The major interactions at the subsequent levels of the crystal architecture were identified. The interplay between carbonyl-carbonyl interactions and Csbnd H⋯O hydrogen bonds both at the molecular level as well as in basic supramolecular motives was analyzed. In all cases the primary supramolecular motif was found to be the ribbon showing the p21 rod group symmetry. The key role of the ribbon motif is reflected in the hexagonal packing of rods.

  20. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  1. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  2. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent. PMID:12830882

  3. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    PubMed

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product. PMID:26639519

  4. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  5. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  6. A novel copolymer poly(lactide-co-beta-malic acid) with extended carboxyl arms offering better cell affinity and hemacompatibility for blood vessel engineering.

    PubMed

    Wang, Wei; Liu, Yuan; Wang, Jun; Jia, Xiaohua; Wang, Liang; Yuan, Zhi; Tang, Shiming; Liu, Min; Tang, Hua; Yu, Yaoting

    2009-01-01

    Despite their increasing uses for cardiovascular and cerebrovascular tissue engineering, synthetic polymeric conduits still have their limitations in clinical applications, particularly in small vessels, mainly due to the thrombus formation. Seeding the synthetic scaffolds with endothelial cells (ECs) will potentially solve this problem, but this endothelialization approach demands synthetic materials with better hemacompatibility and cell affinity. To improve the currently used materials and screen for better surface properties, we synthesized copolymer of poly(lactide-co-beta-malic acid) (PLMA), and its derivatives with pendant hydroxyl arms (PLMAHE) or extended carboxyl arms (PLMA-ECA). We analyzed their physical and chemical properties, their hydrophilicity, and their degradation in physiological conditions. More importantly, their blood compatibility was investigated by the measurements of prothrombin time, activated partial thromboplastin time, and interaction with platelets; their cell affinity and cell growth potentials were observed using the human umbilical vein EC cultures. Results from these experiments showed that the copolymer with the carboxyl arms attracted little platelets, and exhibited better cell affinity and supported the cell proliferation, thus demonstrating the potential usefulness of PLMA-ECA for tissue engineering. We speculate that this novel material will offer new opportunities for the design of better vascular-engineered scaffolds owing to its improved biological and chemical properties. PMID:18636942

  7. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis.

    PubMed

    Gamage, Pubudu; Basel, Matthew T; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael; Bossmann, Stefan H

    2009-09-17

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8+/-4.4 nm for P[(NIPAM)(95.5)-co-(AA)(4.5)] (PDI (polydispersity index)=1.55) and 21.8+/-4.2 nm for P[(NIPAM)(95.3)-co-(AA)(4.7)] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)(95)-co-(AA)(2.8)-AAC(8)F(17 2.2)] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8+/-7.1 nm, with a depth of only 2 nm. PMID:20161351

  8. Doped copolymer of polyanthranilic acid and o-aminophenol (AA-co-OAP): Synthesis, spectral characterization and the use of the doped copolymer as precursor of α-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Nowesser, Nourhan; Al-Hussaini, A. S.; Zoromba, Mohamed Shafick

    2016-02-01

    The copolymer of anthranilic acid and o-aminophenol (AA-co-OAP) was synthesized and characterized by IR, UV-Vis. and thermal analyses (TGA). Linear chain mode was suggested for the pure (AA-co-OAP). The effect of inclusion of MnCl2, CoCl2, NiCl2, CuCl2 and FeCl3 on the spectral, thermal and optical properties of AA-co-OAP has been studied. Octahedral stereochemistry was suggested for Fe, Mn and Ni doped AA-co-OAP, while tetrahedral and square-planar geometries were suggested for Co and Cu doped AA-co-OAP, respectively. Fe doped AA-co-OAP has been used as a precursor for α-Fe2O3 nanoparticles by thermal decomposition route at 800 °C. The obtained hematite has been characterized by XRD and TEM. The average size of the prepared nanoparticles was estimated as 34 nm. The optical band gap of the synthesized hematite nanoparticles was measured and compared with the bulk.

  9. Chemicals from coal - The Eastman experience. [Anhydride

    SciTech Connect

    Larkins, T.H.

    1986-03-01

    Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngas is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.

  10. Model study by FT-IR of the interaction of select cholate dissolution inhibitors with poly(norbornene-alt-maleic anhydride) and its derivatives

    NASA Astrophysics Data System (ADS)

    Dabbagh, Gary; Houlihan, Francis M.; Rushkin, Ilya; Hutton, Richard S.; Nalamasu, Omkaram; Reichmanis, Elsa; Gabor, Allen H.; Medina, Arturo N.

    1999-06-01

    The fundamental nature of the interaction between the polymer matrix and the cholate based dissolution inhibitors are being studied by Fourier Transform-IR (FTIR) spectroscopy. It was found that the simple cholate derivatives undergo, in a blend with poly(norbornene-alt- maleic anhydride) and in a blend with the terpolymers poly(norbornene-alt-maleic anhydride-co-t-butylacrylate) and poly(norbornene-alt-maleic anhydride-co-acrylic acid), stronger interaction as seen by shifts in the OH region of the spectra than do blends with dimeric or oligomeric cholates.

  11. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  12. Mass spectrometric characterization of human hemoglobin adducts formed in vitro by hexahydrophthalic anhydride.

    PubMed

    Kristiansson, Monica H; Jönsson, Bo A G; Lindh, Christian H

    2002-04-01

    Primary structural information of anhydride binding to endogenous proteins is of interest in order to determine the mechanism causing the type-I allergy seen in many anhydride-exposed workers. In addition, studies on specific protein adducts may generate new methods for biological monitoring. In this study, the binding of hexahydrophthalic anhydride (HHPA) to human hemoglobin (Hb) in vitro was investigated. The in vitro synthesized conjugates were analyzed using a hybrid quadrupole-time-of-flight mass spectrometer (Q-TOF) with electrospray ionization (ESI) to determine the number of HHPA adducts per Hb molecule. Structural information on the locations of the adducts was obtained through nanospray Q-TOF, liquid chromatography-ESI mass spectrometric analysis, and gas chromatography/mass spectrometric analysis of Pronase E and tryptic digests. Up to six adducts were found on the alpha-chain and five on the beta-chain. The HHPA-adducts were localized to the N-terminal valine of the alpha- and beta-chains of Hb and to lysine residues at positions 7, 11, 16, and 40 of the alpha-chain and 8, 17, 59, 66, and 144 of the beta-chain. These results will constitute a basis for studies on structure-activity relationships as well as for development of methods for biological monitoring of acid anhydrides. PMID:11952343

  13. Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly.

    PubMed

    Chen, Nusheng; Tong, Zhaohui; Yang, Weihua; Brennan, Anthony B

    2015-09-01

    Biocomposites with tunable properties were successfully prepared through ionic assembly between anionic carboxymethyl cellulose (CMC) and cationic copolymers (quaternized poly(l-lactide)-block-poly N,N-dimethylamino-2-ethyl methacrylate) (PLA-b-PDMAEMA). The quaternized PDMAEMA segment not only works as a compatibilizer between hydrophilic CMC and hydrophobic PLA, but also acts as a lubricant between these two rigid biopolymers. The (1)H NMR (nuclear magnetic resonance) spectra demonstrated successful synthesis of PLA-b-PDMAEMA with controlled molecular weight of PDMAEMA segment. The results from scanning electronic microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) verified the interaction between quaternized copolymer micelles and anionic CMC networks. The resultant biocomposite could form a transparent and uniform film after casting. Both storage moduli and maximum degradation temperature of PLA/CMC composites were increased with the reduction of molecular weight of PDMAEMA segments. It suggests that the properties of biocomposite materials can be tailored by adjusting the chain length of inclusive PDMAEMA segment. PMID:26005147

  14. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... Glyceryl monostearate Methyl cellulose Mineral oil Paraffin wax Potassium hydroxide Potassium...

  15. Responsive copolymers for enhanced petroleum recovery. Second annual report

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  16. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B

    PubMed Central

    Zhou, Wenjun; Wang, Yuanyuan; Jian, Jiuying; Song, Shengfang

    2013-01-01

    Background The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid)-grafted-chitosan (PLA-g-CS) copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS) were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal activity similar to that of free amphotericin B against Candida albicans. The in vivo ocular pharmacokinetic study suggested that the PLA-g-CS nanoparticles have the advantage of prolonging residence time at the ocular surface. The corneal penetration study showed that the PLA-g-CS nanoparticles

  17. Reductively degradable α-amino acid-based poly(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery.

    PubMed

    Lv, Jiaolong; Sun, Huanli; Zou, Yan; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-07-01

    Novel reductively degradable α-amino acid-based poly(ester amide)-graft-galactose (SSPEA-Gal) copolymers were designed and developed to form smart nano-vehicles for active hepatoma-targeting doxorubicin (DOX) delivery. SSPEA-Gal copolymers were readily synthesized via solution polycondensation reaction of di-p-toluenesulfonic acid salts of bis-l-phenylalanine 2,2-thiodiethanol diester and bis-vinyl sulfone functionalized cysteine hexanediol diester with dinitrophenyl ester of adipic acid, followed by conjugating with thiol-functionalized galactose (Gal-SH) via the Michael addition reaction. SSPEA-Gal formed unimodal nanoparticles (PDI = 0.10 - 0.12) in water, in which average particle sizes decreased from 138 to 91 nm with increasing Gal contents from 31.6 wt% to 42.5 wt%. Notably, in vitro drug release studies showed that over 80% DOX was released from SSPEA-Gal nanoparticles within 12 h under an intracellular mimicking reductive conditions, while low DOX release (<20%) was observed for reduction-insensitive PEA-Gal nanoparticles under otherwise the same conditions and SSPEA-Gal nanoparticles under non-reductive conditions. Notably, SSPEA-Gal nanoparticles exhibited high specificity to asialoglycoprotein receptor (ASGP-R)-overexpressing HepG2 cells. MTT assays using HepG2 cells showed that DOX-loaded SSPEA-Gal had a low half maximal inhibitory concentration (IC50) of 1.37 μg mL(-1), approaching that of free DOX. Flow cytometry and confocal laser scanning microscopy studies confirmed the efficient uptake of DOX-loaded SSPEA-Gal nanoparticles by HepG2 cells as well as fast intracellular DOX release. Importantly, SSPEA-Gal and PEA-Gal nanoparticles were non-cytotoxic to HepG2 and MCF-7 cells up to a tested concentration of 1.0 mg mL(-1). These tumor-targeting and reduction-responsive degradable nanoparticles have appeared as an interesting multi-functional platform for advanced drug delivery. PMID:26221946

  18. Vanadium-phosphorus-oxygen industrial catalysts for C/sub 4/ hydrocarbon selective oxidation to maleic anhydride

    SciTech Connect

    Wenig, R.W.

    1987-06-01

    The selective oxidation of n-butane to maleic anhydride by vanadium-phosphorus-oxygen (V-P-O) industrial catalysts varying in P-to-V ratio has been studied in a fixed bed integral reactor system. Catalyst characterization studies including x-ray diffraction, laser Raman spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, x-ray energy dispersive spectroscopy, and BET surface area measurements were used. A strong effect of P-to-V synthesis ratio on catalyst structure, catalyst morphology, vanadium oxidation state, and reactivity in n-butane selective oxidation was observed. A slight ''excess'' of catalyst phosphorus (P/V = 1.1 catalyst) was found to stabilize an active and selective (VO)/sub 2/P/sub 2/O/sub 7/ phase. The mechanism of n-butane selective oxidation to maleic anhydride was studied by in situ infrared spectroscopy using n-butane, 1-butene, 1,3-butadiene, crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride feeds. During paraffin selective oxidation, highly reactive olefin species and maleic acid were observed on the surfaces of V-P-O catalysts. Further evidence in support of conjugated or possibly strained olefin and maleic acid reaction intermediates in n-butane and 1-butene partial oxidation to maleic anhydride was gathered.

  19. Self-assembled polymeric micelles based on hyaluronic acid-g-poly(D,L-lactide-co-glycolide) copolymer for tumor targeting.

    PubMed

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-Il

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(D,L-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50-200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  20. A novel pulsatile drug delivery system based on the physiochemical reaction between acrylic copolymer and organic acid: in vitro and in vivo evaluation.

    PubMed

    Zhang, Ziwei; Qi, Xiaole; Li, Xiangbo; Xing, Jiayu; Zhu, Xuehua; Wu, Zhenghong

    2014-02-28

    Multilayer-coating technology is the traditional method to achieve pulsatile drug release with the drawbacks of time consuming, more materials demanding and lack of efficiency. The purpose of this study was to design a novel pulsatile drug delivery system based on the physiochemical interaction between acrylic copolymer and organic acid with relatively simpler formulation and manufacturing process. The Enalapril Maleate (EM) pulsatile release pellets were prepared using extruding granulation, spheronization and fluid-bed coating technology. The ion-exchange experiment, hydration study and determination of glass transition temperature were conducted to explore the related drug release mechanism. Bioavailability experiment was carried out by administering the pulsatile release pellets to rats compared with marketed rapid release tablets Yisu. An obvious 4h lag time period and rapid drug release was observed from in vitro dissolution profiles. The release mechanism was a combination of both disassociated and undisassociated forms of succinic acid physiochemically interacting with Eudragit RS. The AUC0-τ of the EM pulsatile pellets and the market tablets was 702.384 ± 96.89 1 hn g/mL and 810.817 ± 67.712 h ng/mL, while the relative bioavailability was 86.62%. These studies demonstrate this novel pulsatile release concept may be a promising strategy for oral pulsatile delivery system. PMID:24368107

  1. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Astrophysics Data System (ADS)

    Lacey, James C.; Hall, Leo M.; Mullins, Dail W.; Watkins, Charles L.

    1985-06-01

    All earthly creatures use only L-amino acids in template directed protein synthesis. The reason for this exclusive use of the L-isomer is not yet apparent, although recent experiments by Usher and his colleagues have shown some stereoselctivity in the aminoacylation of di- and polynucleotides [1 3]. We have separately reported on intramolecular interactions between hydrophobic amino acid side chains and the adenine ring in aminoacyl adenylates [4]. There was a preferential association of Phe > Leu = Ile > Val with the adenine in these studies, but we made no attempts to address the question of D, L selectivity. Recently, in1H NMR studies of N-acetylphenylalanyl adenylate anhydride, we noticed evidence that both D- and L-isomers of the amino acid were present and, furthermore, that one isomer seemed to be associating with the adenine ring more strongly than the other. Using HPLC, we have separated the two diastereoisomers and have enzymatically determined that the isomer which associates more strongly is the biologically important one, the L-isomer. We present those studies here and discuss the evolutionary significance of this finding.

  2. Fundamental studies of dissolution inhibition in poly(norbornene-alt-maleic anhydride) based resins

    NASA Astrophysics Data System (ADS)

    Houlihan, F. M.; Dabbagh, G.; Rushkin, I.; Hutton, R.; Bolan, K.; Reichmanis, E.; Nalamasu, O.; Yan, Z.; Reiser, A.

    2001-07-01

    The dissolution inhibition mechanism for tert-butylcarboxylate (e.g. tert-butyl cholate) dissolution inhibitors and onium salt photoacid generators (PAG's) were examined in terpolymers of poly(norbornene-maleic anhydride-acrylic acid) (P(NB/MA/AA)). For tert-butyl carboxylates, increasing hydrophobicity increased the dissolution inhibition ability. Dissolution promotion tracked with the number of carboxylic acid moieties and the hydrophobicity of carboxylic acids moieties released upon acidolytic cleavage of the tert-butyl carboxylate. For onium salt PAG's, increasing the hydrophobicity and size of fluorinated anions decreased dissolution inhibition.

  3. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  4. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer

    PubMed Central

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-01-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  5. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects. PMID:26633595

  6. Block copolymer nanolithography for the fabrication of patterned media.

    SciTech Connect

    Warke, Vishal V; Bakker, Martin G; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Li, Xuefa; Wang, Jin

    2008-01-01

    Abstract Bit patterned perpendicular media has the potential to increase the density of magnetic recording beyond what can be achieved by granular media. Self assembling diblock copolymers are of interest as templates for patterned media, as they potentially provide a low cost fabrication route. A method to fabricate the desired pattern using cylinder forming diblock copolymers of (PS-b-PMMA) as template is reported. Upon phase separation hexagonally packed cylinders of the minority phase (PMMA) surrounded by the continuous majority phase (PS) are obtained. The processing sequence began with spin coating the block copolymer on a suitable substrate, followed by annealing the block copolymer thin film in vacuum to orient it perpendicular to the substrate. Block copolymer templates were obtained by glacial acetic acid treatment which opened the pores in the block copolymer thin film. Ni was electrodeposited in the block copolymer templates and this pattern was then transferred onto the underlying substrate by ion milling

  7. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  8. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 °C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 °C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G 5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions.

  9. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. Adsorption of maleic anhydride on Pt(111)

    NASA Astrophysics Data System (ADS)

    Sinha, Godhuli; Heikkinen, Olli; Vestberg, Matias; Mether, Lotta; Nordlund, Kai; Lahtinen, Jouko

    2014-02-01

    The surface chemistry of maleic anhydride (MA) has been studied on Pt(111) with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Adsorption of MA takes place at 170 K forming multilayers. We have studied the behavior of distinct carbon and oxygen species of MA depending on the surface temperature. MA-TPD indicates three main desorption temperatures; at 240 K, approximately 60% of total MA on the surface shows molecular desorption. At high temperatures (360 and 550 K) MA shows dissociative decomposition with production of C2H2, CO and CO2 fragments. A plausible decomposition pathway of MA on the Pt(111) surface is discussed. DFT calculations provide details of the adsorption geometry.

  11. Process for the production of maleic anhydride

    SciTech Connect

    Click, G.T.; Barone, B.J.

    1986-06-24

    A process is described for the vapor phase oxidation of hydrocarbons having 4 carbon atoms to produce maleic anhydride comprising contacting the hydrocarbons with a fixed bed vanadium-phosphorus-oxygen catalyst, containing P:V in an atomic ration of 1/2 to 3:1 whereby the catalyst gradually decreases in selectivity, wherein the improvement comprises contacting the catalyst with phosphorus compound of phosphorus halide, phosphorus oxyhalide, organic phospines, organic phosphites, organic phosphates or mixtures thereof at a temperature in the range of about 0/sup 0/ to 600/sup 0/C and thereafter contacting the catalyst with a flow of stream at a temperature in the range of 300/sup 0/ to 600/sup 0/C in an amount and for a sufficient duration whereby the catalyst is regenerated.

  12. Convergence of Biological Nitration and Nitrosation via Symmetrical Nitrous Anhydride

    PubMed Central

    Vitturi, Dario A.; Minarrieta, Lucia; Salvatore, Sonia R.; Postlethwait, Edward M.; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Current perspective holds that the generation of secondary signaling mediators from nitrite (NO2−) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2− and LC-MS/MS analysis of products revealed that NO2− also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by nitric oxide (•NO) autoxidation via symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3) formation. While theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in viv, with the concerted reactions of •NO and NO2− shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2− propagation of •NO signaling and the regulation of both biomolecule function and signaling network activity via NO2−-dependent nitrosation and nitration reactions. PMID:26006011

  13. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride.

    PubMed

    Vitturi, Dario A; Minarrieta, Lucia; Salvatore, Sonia R; Postlethwait, Edward M; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R; Freeman, Bruce A; Schopfer, Francisco J

    2015-07-01

    The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2(-)) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2(-) and LC-MS/MS analysis of products reveals that NO2(-) also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide ((•)NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of (•)NO and NO2(-) shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2(-) propagation of (•)NO signaling and the regulation of both biomolecule function and signaling network activity via NO2(-)-dependent nitrosation and nitration reactions. PMID:26006011

  14. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA–MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA–MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA–DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  15. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions.

    PubMed

    Zhang, Qilu; Hou, Zhanyao; Louage, Benoit; Zhou, Dingying; Vanparijs, Nane; De Geest, Bruno G; Hoogenboom, Richard

    2015-09-01

    Biodegradable polymeric materials are intensively used in biomedical applications. Of particular interest for drug-delivery applications are polymers that are stable at pH 7.4, that is, in the blood stream, but rapidly hydrolyze under acidic conditions, such as those encountered in the endo/lysosome or the tumor microenvironment. However, an increase in the acidic-degradation rate of acid-labile groups goes hand in hand with higher instability of the polymer at pH 7.4 or during storage, thus posing an intrinsic limitation on fast degradation under acidic conditions. Herein, we report that a combination of acid-labile dimethyldioxolane side chains and hydroxyethyl side chains leads to acid-degradable thermoresponsive polymers that are quickly hydrolyzed under slightly acidic conditions but stable at pH 7.4 or during storage. We ascribe these properties to high hydration of the hydroxy-containing collapsed polymer globules in conjunction with autocatalytic acceleration of the hydrolysis reactions by the hydroxy groups. PMID:26212481

  16. Biased versus unbiased randomness in homo-polymers and copolymers of amino acids in the prebiotic world.

    PubMed

    Mosqueira, Fernando G; Negron, Alicia; Ramos, Sergio; Polanco, Carlos

    2012-01-01

    The polymerization of amino acids under anhydrous prebiotic conditions was first studied several decades ago. Here we use a stochastic model stressing the relevant role of the polarity of amino acids in the formation of oligopeptides in a prebiotic milieu. Our goal is to outline the predominance of co-polypeptides over homo-polypeptides, resulting not only from the randomness, but also from polarity properties of amino acids. Our results conclude that there was a higher probability of the formation of co-polypeptides than of homo-polymers. Besides, we may hypothesize that the former would have a more ample spectrum of possible chemical functions than homo-polypeptides. PMID:23128064

  17. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations.

    PubMed

    Wagler, Patrick; Minero, Gabriel Antonio S; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S

    2015-10-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self-assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid-DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence-dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information-processing systems. PMID:26095642

  18. Transferrin conjugated poly (γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery.

    PubMed

    Zhao, Caiyan; Liu, Xiaoguang; Liu, Junxing; Yang, Zhiwei; Rong, Xianghui; Li, Mingjun; Liang, Xingjie; Wu, Yan

    2014-11-01

    Targeted drug delivery strategies have shown great potential in solving some problems of chemotherapy, such as non-selectivity and severe side effects, thus enhancing the anti-tumor efficiency of chemotherapeutic agents. In this work, we have prepared a novel nanoparticle consisted of amphiphilic poly(γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine (γ-PGA-MAL-PLA-DPPE) copolymer decorated with transferrin (Tf), which can specifically deliver anti-cancer drug paclitaxel (PTX) to the tumor cells for targeting chemotherapy. These nanoparticles (NPs) have preferable particle size, high encapsulation efficiency and a pH-dependent release profile. As expected, The Tf modification mediate specific targeting to nasopharyngeal carcinoma (C666-1) cells and human cervical carcinoma (Hela) cells with the transferrin receptor (TfR) overexpressed and enhance cellular uptake of the NPs, as demonstrated by flow cytometry and confocal microscopy assays. In vitro cytotoxicity studies reveal that the NPs have excellent biocompatibility, and the presence of Tf enhance the activity of PTX to the targeted cells. All these results prove that Tf modified γ-PGA-MAL-PLA-DPPE NPs could facilitate the tumor-specific therapy. Therefore, such a targeting drug delivery system provides significant advances toward cancer therapy. PMID:25454663

  19. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments. PMID:26593985

  20. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. PMID:26686158

  1. Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Ching; Tseng, Chien-Kai; Leu, Ing-Yih; Wu, Wen-Jong; Shih-Yuan Lee, Adam; Lee, Chih-Kung

    2010-05-01

    Recent uses of flexible electret loudspeakers in futuristic applications have garnered much interest for these novel loudspeakers. In this paper, a novel thin film processing method was developed to improve the performance of an electret diaphragm. This paper discusses the relationship between the charge storage and the additive concentration. A cyclic olefin copolymer (COC) thin film containing an additive such as 2-(6-mercaptohexyl) malonic acid was prepared using a spin-coating process. Furthermore, attention was directed towards the processing conditions which were found to have an important role and are related to the self-assembly and micelle formation behavior of the additives in the COC. In the present study, thin films of 13 µm thickness were charged by a corona method. Compared with a reference thin film of pure COC, results indicated that when a 3497 mg kg - 1 additive was added to the COC matrix, the obtained surface potential was 71% higher. Thus, the results show that a COC + additive thin film leads to a much improved charge storage. It appears to be an inexpensive and relatively easy way to form a thin structure for developing novel flexible electret loudspeakers.

  2. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair

    PubMed Central

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  3. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies.

    PubMed

    Saien, J; Delavari, H; Solymani, A R

    2010-05-15

    The ultrasonic irradiation (28 kHz, 50 W) in pre-cavitations regime was employed to enhance the degradation rate of styrene-acrylic acid copolymer in aqueous media with nano titania photocatalyst particles. A stainless steel cylindrical sono-photo reactor with capacity of about 1.25 L, equipped with a UV lamp (250 W) was used. The influence of operational parameters, i.e. catalyst concentration, pH and temperature was studied and the role of active species was also distinguished. For an initial substrate concentration of 30 mg L(-1), under mild applied conditions of 30 mg L(-1) of photocatalyst, 25 degrees C and natural pH, a degradation and mineralization conversion of 96% and 91%, respectively, was achieved using sono-assisted photocatalysis process in about only 60 min. These efficiencies are much higher than those obtained with only photocatalysis process. Meanwhile, the threshold of cavitations was found corresponded to catalyst concentration of about 70 mg L(-1). Kinetic studies based on Langmuir-Hinshelwood and power law models in addition to the results from radical scavenger usage revealed that for sono-assisted process, the substrate undergoes degradation mainly via electron-hole redox on the surface of titania particles. It is while for the only photocatalysis process, the reaction proceeds via hydroxyl radicals in the solution bulk. PMID:20092940

  4. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair.

    PubMed

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  5. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy.

    PubMed

    Yan, Tingsheng; Li, Dalong; Li, Jiwei; Cheng, Feng; Cheng, Jinju; Huang, Yudong; He, Jinmei

    2016-09-01

    A glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer (PCL-SS-CTS-GA) micelle was developed for the co-delivery of doxorubicin (DOX) and curcumin (CCM) to hepatoma cells. Glycyrrhetinic acid (GA) was used as a targeting unit to ensure specific delivery. Co-encapsulation of DOX and CCM was facilitated by the incorporation of poly(ε-caprolactone) (PCL) groups. The highest drug loading content was 19.8% and 8.9% (w/w) for DOX and CCM, respectively. The PCL-SS-CTS-GA micelle presented a spherical or ellipsoidal geometry with a mean diameter of approximately 110nm. The surface charge of the micelle changed from negative to positive, when the pH value of the solution decreased from 7.4 to 6.8. Meanwhile, it also exhibited a character of redox-responsive drug release and GA/pH-mediated endocytosis in vitro. In simulated body fluid with 10mM glutathione, the release rate in 12h was 80.6% and 67.2% for DOX and CCM, respectively. The cell uptake of micelles was significantly higher at pH 6.8 than pH 7.4. The combined administration of DOX and CCM was facilitated by PCL-SS-CTS-GA micelle. Results showed that there was strong synergic effect between the two drugs. The PCL-SS-CTS-GA micelle might turn into a promising and effective carrier for improved combination chemotherapy. PMID:27281238

  6. Process for the continuous separation of maleic anhydride from process gases

    SciTech Connect

    Ceisel, S.C.; Conrad, J.F.; Lestan, E.M.; Nelson, A.P.

    1990-07-17

    This patent describes a process for recovery of maleic anhydride from a gaseous mixture of a reactor effluent gas stream containing maleic anhydride. It comprises: contacting the mixture with maleic anhydride in a gas phase wherein the maleic anhydride is injected into a gas stream effluent from an oxidation reactor. The gas stream effluent is at a temperature of from about 200{degrees}F. to about 350{degrees}F., and maleic anhydride is recovered in a condenser.

  7. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  8. Diglycerol-based polyesters: melt polymerization with hydrophobic anhydrides.

    PubMed

    Dakshinamoorthy, Deivasagayam; Weinstock, Allison K; Damodaran, Krishnan; Iwig, David F; Mathers, Robert T

    2014-10-01

    The melt polymerization of diglycerol with bicyclic anhydride monomers derived from a naturally occurring monoterpene provides an avenue for polyesters with a high degree of sustainability. The hydrophobic anhydrides are synthesized at ambient temperature via a solvent-free Diels-Alder reaction of α-phellandrene with maleic anhydride. Subsequent melt polymerizations with tetra-functional diglycerol are effective under a range of [diglycerol]/[anhydride] ratios. The hydrophobicity of α-phellandrene directly impacts the swelling behavior of the resulting polyesters. The low E factors (<2), large amount of bio-based content (>75%), ambient temperature monomer synthesis, and polymer degradability represent key factors in the design of these sustainable polyesters. PMID:25138308

  9. Health and Environmental Effects Profile for maleic anhydride

    SciTech Connect

    Not Available

    1986-07-01

    The Health and Environmental Effects Profile for maleic anhydride was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human-health, aquatic-life, and environmental effects of hazardous-waste constituents. Maleic anhydride has been determined to be a systemic toxicant. An Acceptable Daily Intake (ADI), for maleic anhydride is 0.10 mg/kg/day for oral exposure. The Reportable Quantity (RQ) value for maleic anhydride is 100.

  10. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  11. Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    PubMed Central

    Koch, Liat; Lodin, Anat; Herold, Inbal; Ilan, Micha; Carmeli, Shmuel; Yarden, Oded

    2014-01-01

    The fungus Aspergillus tubingensis (strain OY907) was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1) as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively) and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function. PMID:25257783

  12. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  13. Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Anis, Arfat; Banthia, A. K.; Bandyopadhyay, S.

    Polymer electrolyte membrane fuel cells (PEMFCs) are very promising as future energy source due to their high-energy conversion efficiency and will help to solve the environmental concerns of energy production. Polymer electrolyte membrane (PEM) is recognised as the key element for an efficient PEMFC. Chemically crosslinked composite membranes consisting of a poly(vinyl alcohol-co-vinyl acetate-co-itaconic acid) (PVACO) and phosphomolybdic acid (PMA) have been prepared by solution casting and evaluated as proton conducting polymer electrolytes. The proton conductivity of the membranes is investigated as a function of PMA composition, crosslinking density and temperature. The membranes have also been characterized by FTIR spectroscopy, TGA, AFM and TEM. The proton conductivity of the composite membranes is of the order of 10 -3 S cm -1 and shows better resistance to methanol permeability than Nafion 117 under similar measurement conditions.

  14. Ex vivo bioadhesion and in vivo testosterone bioavailability study of different bioadhesive formulations based on starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures.

    PubMed

    Ameye, D; Voorspoels, J; Foreman, P; Tsai, J; Richardson, P; Geresh, S; Remon, J P

    2002-02-19

    Starch-g-poly(acrylic acid) copolymers or grafted starches synthesized by 60Co irradiation or chemical modification and co-freeze-dried starch/poly(acrylic acid) mixtures were evaluated on their ex vivo bioadhesion capacity. The buccal absorption of testosterone from a bioadhesive tablet formulated with the grafted starches or starch/poly(acrylic acid) mixtures was investigated. The results were compared to a reference formulation (physical mixture of 5% Carbopol 974P and 95% Drum Dried Waxy Maize). Rice starch-based irradiated grafted starches showed the best bioadhesion results. Partial neutralization of the acrylic acid with Ca(2+) ions resulted in significantly higher bioadhesion values compared to the reference. Ca(2+) and Mg(2+) partially neutralized maltodextrin-based irradiated grafted starches showed significantly higher bioadhesion values compared to the reference formulation. The chemically modified grafted starches showed significantly higher adhesion force values than for the reference tablet. None of the co-freeze-dried starch/poly(acrylic acid) mixtures showed significantly higher bioadhesion results than the reference (Bonferroni test, P<0.05). A chemically modified grafted starch could sustain the 3 ng/ml plasma testosterone target concentration during +/- 8 h (T(>3 ng/ml)). By lyophilization of a partially neutralized irradiated grafted starch, the in vivo adhesion time (22.0 +/- 7.2 h) and the T(>3 ng/ml) (13.5 +/- 1.3 h) could be increased. The absolute bioavailability of the lyophilized formulation approached the reference formulation. Some of the grafted starches showed to be promising buccal bioadhesive drug carriers for systemic delivery. PMID:11853929

  15. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent.

    PubMed

    Prashant, Chandrasekharan; Dipak, Maity; Yang, Chang-Tong; Chuang, Kai-Hsiang; Jun, Ding; Feng, Si-Shen

    2010-07-01

    We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized. The transmission electron microscopy (TEM) showed direct visual evidence for the well dispersed distribution of the IOs within the NPs. We further investigated the biocompatibility and cellular uptake of the IOs-PNPs in vitro with MCF-7 breast cancer cells and NIH-3T3 mouse fibroblast in close comparison with the commercial IOs imaging agent Resovist. MRI imaging was further carried out to investigate the biodistribution of the IOs formulated in the IOs-PNPs, especially in the liver to understand the liver clearance process, which was also made in close comparison with Resovist. We found that the PLA-TPGS NPs formulation at the clinically approved dose of 0.8 mg Fe/kg could be cleared within 24 h in comparison with several weeks for Resovist. Xenograft tumor model MRI confirmed the advantages of the IOs-PNPs formulation versus Resovist through the enhanced permeation and retention (EPR) effect of the tumor vasculature. PMID:20434210

  16. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices. PMID:22453608

  17. Anhydride formation is not a valid mechanism for peptide cleavage by carboxypeptidase-A: a semiempirical reaction pathway study

    NASA Astrophysics Data System (ADS)

    Vardi-Kilshtain, Alexandra; Shoham, Gil; Goldblum, Amiram

    The mechanism of action of zinc metalloproteinases has been studied by following the direct nucleophilic pathway, which has been frequently suggested but not yet examined by computational methods, and comparing it to other pathways. We computed the reaction enthalpies for the direct nucleophilic attack by Glu270 in the active site model of carboxypeptidase-A on a model substrate's peptide carbonyl and followed this pathway through mixed anhydride formation and subsequent anhydride cleavage by water. The starting molecular coordinates originate in our own high-resolution crystal structure and the computations have been conducted with the minimal neglect of differential overlap (MNDO) Hamiltonian, modified to include the d-orbitals of zinc and the effects of multiple hydrogen bonding, thus labelled MNDO/d/H. Compared to our recent results for two other candidate pathways for this mechanism, both of the General-Acid-General-Base type, we conclude that the direct nucleophilic or 'anhydride' pathway has a much higher energy barrier at the rate determining step, which is a proton transfer, than previously calculated paths. We argue that the 'anhydride' pathway is thus not a valid one for the cleavage of peptides by carboxypeptidase-A.

  18. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups.

    PubMed

    Salem, A K; Cannizzaro, S M; Davies, M C; Tendler, S J; Roberts, C J; Williams, P M; Shakesheff, K M

    2001-01-01

    Poly(lactic acid)-poly(ethylene glycol)-biotin (PLA-PEG-biotin) is a degradable polymer with protein resistant properties that can undergo rapid surface engineering in aqueous media to create biomimetic surfaces. Surface engineering of this polymer is dependent on biomolecular interactions between the biotin end group and the protein avidin. Given the vigorous conditions of synthesis, it is essential that the manufacture of the polymer does not alter the biotin structure or its molecular recognition. Equally, it is important that the incorporation of biotin does not adversely affect the physicochemical properties of the polymer. (1)H NMR provides evidence of biotin attachment and structural integrity. (1)H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) analysis shows there is no significant effect on bulk properties induced by the biotin end group. Surface plasmon resonance (SPR) and fluorescent spectroscopy studies using the 2-(4'-hydroxyazobenzene) benzoic acid (HABA)/avidin complex show that the biotin moieties binding capabilities are not impaired by the synthesis. PMID:11749223

  19. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  20. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  1. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  2. Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties.

    PubMed

    Gamazo, C; Bussmann, H; Giemsa, S; Camacho, A I; Unsihuay, Daisy; Martín-Arbella, N; Irache, J M

    2015-12-30

    Understanding how nanoparticles are formed and how those processes ultimately determine the nanoparticles' properties and their impact on their capture by immune cells is key in vaccination studies. Accordingly, we wanted to evaluate how the previously described poly (anhydride)-based nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (NP) interact with macrophages, and how this process depends on the physicochemical properties derived from the method of preparation. First, we studied the influence of the desolvation and drying processes used to obtain the nanoparticles. NP prepared by the desolvation of the polymers in acetone with a mixture of ethanol and water yielded higher mean diameters than those obtained in the presence of water (250nm vs. 180nm). In addition, nanoparticles dried by lyophilization presented higher negative zeta potentials than those dried by spray-drying (-47mV vs. -35mV). Second, the influence of the NP formulation on the phagocytosis by J774 murine macrophage-like cell line was investigated. The data indicated that NPs prepared in the presence of water were at least three-times more efficiently internalized by cells than NPs prepared with the mixture of ethanol and water. Besides, lyophilized nanoparticles appeared to be more efficiently taken up by J744 cells than those dried by spray-drying. To further understand the specific mechanisms involved in the cellular internalization of NPs, different pharmacological inhibitors were used to interfere with specific uptake pathways. Results suggest that the NP formulations, particularly, nanoparticles prepared by the addition of ethanol:water, are internalized by the clathrin-mediated endocytosis, rather than caveolae-mediated mechanisms, supporting their previously described vaccine adjuvant properties. PMID:26468037

  3. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers.

    PubMed

    Díaz, A; Del Valle, L; Franco, L; Sarasua, J R; Estrany, F; Puiggalí, J

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N'-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. PMID:25063149

  4. SULFUR CHEMISTRY. Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride.

    PubMed

    Mackenzie, Rebecca B; Dewberry, Christopher T; Leopold, Kenneth R

    2015-07-01

    We report the observation of a covalently bound species, formic sulfuric anhydride (FSA), that is produced from formic acid and sulfur trioxide under supersonic jet conditions. FSA has been structurally characterized by means of microwave spectroscopy and further investigated by using density functional theory and ab initio calculations. Theory indicates that a π2 + π2 + σ2 cycloaddition reaction between SO3 and HCOOH is a plausible pathway to FSA formation and that such a mechanism would be effectively barrierless. We speculate on the possible role that FSA may play in the Earth's atmosphere. PMID:26138972

  5. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  6. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  7. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  8. Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery.

    PubMed

    Dragan, Ecaterina Stela; Cocarta, Ana Irina; Gierszewska, Magdalena

    2016-03-01

    Designing structure and morphology of macroporous hydrogels is crucial for their applications in controlled release systems of macromolecular drugs. Macroporous hydrogels, consisting of methacrylic acid (MAA) and either acryl amide (AAm) or 2-hydroxyethyl methacrylate (HEMA) (1st network), were prepared for this purpose by cryogelation (single network cryogels, SNCs). Macroporous interpenetrating polymer network (IPN) hydrogel composites were then prepared by a sequential strategy, the 2nd network consisting of chitosan (CS) cross-linked with poly(ethyleneglycol) diglycidyl ether (PEGDGE) being generated by the sorption of a CS and PEGDGE mixture in the 1st network followed by cross-linking. A strong difference in the behavior of SNCs and IPN hydrogel composites was found during the loading and release of lysozyme (LYS) used as macromolecular drug model. Thus, while the amount of LYS loaded on SNCs was higher than that loaded on the IPNs, the release of LYS from SNCs occurred at pH 2, when the ratio between MAA and AAm was 50:50, and only at pH 1 when the ratio between MAA and AAm was 70:30. The 2nd network led to the decrease of the pore size of the IPNs, mainly when the initial concentration of monomers was 10wt/v%, but the presence of CS facilitates the LYS release from IPNs, mainly at a concentration of monomer of 5wt/v%, and when HEMA was used as nonionic comonomer. PMID:26700231

  9. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. PMID:25563938

  10. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  11. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  12. Relationship of molecular weight to antiviral and antitumor activities and toxic effects of maleic anhydride-divinyl ether (MVE) polyanions.

    PubMed

    Morahan, P S; Barnes, D W; Munson, A E

    1978-11-01

    The molecular weight (MW) and dose dependency of several of the toxic effects and antitumor and antiviral activities of a new series of five maleic anhydride-divinyl ether copolymers (MVE) were established. Each polyanion preparation was relatively homogeneous and exhibited a narrow MW range, from 12,500 (MVE-1) to greater than 52,000 (MVE-5). All of the polyanions were effective as adjuvants to surgery against the metastatic Lewis lung carcinoma, and also exhibited marked antitumor activity against the P815 mastocytoma. MVE-1 retained antitumor activity while losing considerable antiviral activity. This polyanion also exhibited the least toxicity with regard to criteria such as sensitization to the lethal effects of endotoxin, inhibition of reticuloendothelial function, and depression of the microsomal mixed functional oxidase system. The MVE-4 (MW, 32,000) and MVE-5 (MW, 52,600) polyanions exhibited potent antitumor and antiviral activity, but also demonstrated dose-dependent toxic effects. PMID:103618

  13. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  14. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  15. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  16. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  17. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    solvent removal of homopolymer PEO or PMMA. Second, we have incorporated a center block that is photodegradable by ultra violet radiation into PS- b-PMMA-b-PEO copolymers. Third, a tritylether junction was placed between the two blocks, which is cleavable by exposure to trifluoroacetic acid vapor. Though the use of solvents in block copolymer thin films, were are able to markedly enhance the long range lateral ordering block copolymer films. Also, routes to sectorize surfaces to confine and direct the copolymer microdomains are shown. Also, three methods to generate nanoporous films from PS-b-PEO based copolymers are demonstrated. All of these results are important in the realization of addressable media from block copolymer nanolithography.

  18. Properties of modified anhydride hardener and its cured resin

    NASA Astrophysics Data System (ADS)

    Qiang, Chen; Bingjun, Gao; Jinglin, Chen; Tongzhao, Xu

    2000-01-01

    Methyl-nadic-tetrahydric-methylanhydride (MNA), nadic-tetrahydric-methylanhydride (NA), anhydride hardener was modified by solid diol molecule to improve the impregnation resin fracture toughness in cryogenic temperature. The lap-shear strength, transverse tension as well as the thermal shock test showed that the resin cured by the modified anhydride hardener had higher bond strength and more toughness at 77 K. After the experiment of vacuum pressure impregnation (VPI) processing, it was found that this resin had a longer usable life, better impregnating properties, but higher initial viscosity than the resin hybrid HY925 as hardener.

  19. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  20. Confinement of block copolymers

    SciTech Connect

    1995-12-31

    The following were studied: confinement of block copolymers, free surface confinement, effects of substrate interactions, random copolymers at homopolymer interfaces, phase separation in thin film polymer mixtures, buffing of polymer surfaces, and near edge x-ray absorption fine structure spectroscopy.

  1. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  2. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  3. Block copolymers for enhanced oil recovery

    SciTech Connect

    Wu, M.M.; Ball, L.E.

    1987-05-19

    A water soluble block copolymer is described comprising two or more water soluble polymer blocks, wherein the water soluble polymer blocks comprise polymerized monomers. The monomers are selected from the group consisting of acrylamide, methacrylamide, vinyl methyl ether, acrylic and methacrylic acid and their water soluble salts and N-substituted acrylamides.

  4. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend

    NASA Astrophysics Data System (ADS)

    Tan, Xiumin

    2014-05-01

    A novel method to prepare maleic anhydride grafting onto poly (propylene) (PP-g-MAH) was described. It was performed by γ-irradiation in solid state via ultrafine blend in the absence of any initiator and the grafting mechanism was proposed based on the experimental results. First, ultrafine blend of MAH and PP was prepared through ultrasonic initiation in melt state and then cooled rapidly. Second, the blend was radiated by γ-irradiation in the circumstance of atmosphere. Effects of irradiation dose and MAH concentration on the amount of grafted MAH were investigated. Compared with the conventional solid-state radiation grafting method, PP-g-MAH obtained via this method shows a higher graft rate of MAH. This novel method also has the advantages of solventless, energy efficient, low cost and simple operation. Furthermore, it is very easy to get purified products. The molecular structures of grafted copolymer were characterized by Fourier-transform infrared spectroscopy. Differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscope were used to determine the degree of crystallinity and crystalline structure.

  5. In situ FTIR study of n-butane selective oxidation to maleic anhydride on V-P-O catalysts

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1986-11-20

    The selective oxidation of n-butane to maleic anhydride on vanadium-phosphorus-oxygen (V-P-O) catalysts having P to V ratios of 0.9, 1.0, and 1.1 was studied by transmission infrared spectroscopy. Catalysts were exposed to mixtures of 1.5% n-butane in air at temperatures from 100 to 500/sup 0/C. Adsorbed n-butane, maleic anhydride, and carbon oxide species were observed on the catalyst surfaces. In addition, adsorbed maleic acid and highly reactive olefinic species could be detected. The nature of the adsorbed species present on the catalyst surface was dependent on the catalyst phosphorus loading, the reaction temperature, and the time of exposure under reaction conditions.

  6. Rheological studies on the reaction of zein with polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There continues to be interest in developing solvent-resistant articles from biobased renewable materials to successfully complete with petro-chemical products. It was previously shown that reaction of zein with polyethylenemaleic anhydride (PEMA) provides articles that are solvent-resistant. The ge...

  7. Ion and temperature sensitive polypeptide block copolymer.

    PubMed

    Joo, Jae Hee; Ko, Du Young; Moon, Hyo Jung; Shinde, Usha Pramod; Park, Min Hee; Jeong, Byeongmoon

    2014-10-13

    A poly(ethylene glycol)/poly(L-alanine) multiblock copolymer incorporating ethylene diamine tetraacetic acid ([PA-PEG-PA-EDTA(m)) was synthesized as an ion/temperature dual stimuli-sensitive polymer, where the effect of different metal ions (Cu(2+), Zn(2+), and Ca(2+)) on the thermogelation of the polymer aqueous solution was investigated. The dissociation constants between the metal ions and the multiblock copolymer were calculated to be 1.2 × 10(-7), 6.6 × 10(-6), and 1.2 × 10(-4) M for Cu(2+), Zn(2+), and Ca(2+), respectively, implying that the binding affinity of the multiblock copolymer for Cu(2+) is much greater than that for Zn(2+) or Ca(2+). Atomic force microscopy and dynamic light scattering of the multiblock copolymer containing metal ions suggested micelle formation at low temperature, which aggregated as the temperature increased. Circular dichroism spectra suggested that changes in the α-helical secondary structure of the multiblock copolymer were more pronounced by adding Cu(2+) than other metal ions. The thermogelation of the multiblock copolymer aqueous solution containing Cu(2+) was observed at a lower temperature, and the modulus of the gel was significantly higher than that of the system containing Ca(2+) or Zn(2+), in spite of the same concentration of the metal ions and their same ionic valence of +2. The above results suggested that strong ionic complexes between Cu(2+) and the multiblock copolymer not only affected the secondary structure of the polymer but also facilitated the thermogelation of the polymer aqueous solution through effective salt-bridge formation even in a millimolar range of the metal ion concentration. Therefore, binding affinity of metal ions for polymers should be considered first in designing an effective ion/temperature dual stimuli-sensitive polymer. PMID:25178662

  8. DIMETHYLTHIOARSINIC ANHYDRIDE: A STANDARD FOR ARSENIC SPECIATION

    EPA Science Inventory

    Dimethylthioarsinic acid (DMTAV) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because ...

  9. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  10. Acetic anhydride: an intermediate analogue in the acyl-exchange reaction of citramalate lyase.

    PubMed

    Buckel, W

    1976-04-15

    1. Reactivation of deacetyl citramalate lyase by acetic anhydride proceeds through an enzyme-anhydride complex prior to actual acetylation. The reaction is inhibited by citramalate which is competitive with acetic anhydride. 2. A corresponding complex is an intermediate in the carboxymethylation of deacetyl enzyme by iodoacetate. However, the inhibition of this reaction by S-citramalate appears to be non-competitive with iodoacetate. 3. The results lead to the conclusion that acetic anhydride can be regarded as a structural analogue of citramalic acetic anhydride, the proposed intermediate in the acyl exchange reaction on citramalate lyase. 4. The formation of 6-citryl thiolester from the 1-thiolester via the cyclic citric anhydride provides a chemicla model for enzymic acyl exchange. 5. The data suggest that anhydrides are of general importance in acyl exchange reactions of thiolesters. PMID:1278157

  11. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  12. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  13. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  14. Relationship of airborne trimellitic anhydride concentrations to trimellitic anhydride--induced symptoms and immune responses

    SciTech Connect

    Bernstein, D.I.; Roach, D.E.; McGrath, K.G.; Larsen, R.S.; Zeiss, C.R.; Patterson, R.

    1983-12-01

    Eighteen workers exposed to trimellitic anhydride (TMA) powder were evaluated in 1979. Twelve of these workers were available for longitudinal study until 1982. Annual clinical evaluations and serum radioimmunoassays for total antibody binding and specific IgE binding to /sup 125/I-TM-HSA were performed. In 1979, five workers had antibody against TM-HSA. Of these, three workers were diagnosed with the late respiratory systemic syndrome (LRSS) and one worker with TMA-induced allergic rhinitis. The LRSS workers had significantly elevated total antibody binding of /sup 125/I-TM-HSA and the worker with rhinitis had significantly elevated specific IgE binding of /sup 125/I-TM-HSA per milliliter of serum. Although TMA handling was intermittent throughout the year, average airborne dust concentrations from 1974 to 1978 at job stations of the two heaviest TMA-exposed occupations, operator and assistant operator, were 2.1 and 0.82 mg/m3, respectively. After local exhaust ventilation had been improved, average airborne dust concentrations of TMA at the two latter job stations fell to levels of 0.03 and 0.01 mg/m3, respectively, in 1982. The decrease in TMA exposure coincided with a gradual fall in total antibody binding of /sup 125/I-TM-HSA per milliliter in 1982 and symptomatic improvement in the three individuals with the LRSS. The continuous low-level exposure of the worker with TMA rhinitis was sufficient to elicit a rise in specific IgE against TM-HSA from 1.1 ng of 125I-TM-HSA bound per milliliter in 1979 to 2.12 in 1982.

  15. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  16. Vinyl Dimethyl Azlactone-Containing Copolymers: Towards Bio-Inspired Surfaces/Polymer-Protein Conjugates

    SciTech Connect

    Messman, Jamie M; Banaszak, Abigail; Barrninger, Joshua; Mays, Jimmy; Kilbey, II, S Michael

    2007-01-01

    Stimuli-responsive, vinyl dimethyl azlactone/vinyl pyrrolidone (VDMA/VP) copolymers have been prepared using free radical polymerization techniques. These copolymers are subsequently the basis for the design of polymer brushes where the system is composed of a polystyrene (PS) block and a VDMA/VP copolymer block. Copolymers have been prepared using reversible addition fragmentation chain transfer (RAFT) polymerization technique. Using a solvent that is selective for the VDMA/VP block, these PS-block-P[VDMA/VP] copolymers can be preferentially adsorbed at the solid-fluid interface through the PS block to form a polymer "brush". Because VDMA is known to quantitatively react with amines, exposure of the copolymer to a solution containing amino acids (e.g. glycine) yields a bio-functionalized polymer brush. In this paper we will report on the synthesis and characterization of VDMA/VP copolymers including compositional analysis using FTIR and NMR spectroscopies.

  17. Solid state thermal degradation behaviour of graft copolymers of carboxymethyl cellulose with vinyl monomers.

    PubMed

    Srivastava, Arti; Mandal, Pratibha; Kumar, Rajesh

    2016-06-01

    The graft copolymer of sodium carboxymethyl cellulose (CMC) with acrylamide (ACM), dimethylacrylamide (DMA), N-vinyl pyrrolidone (NVP), 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) and vinyl caprolactum (VCL) were synthesized in nitrogen atmosphere by employing redox initiators. The integral procedural decomposition temperature (IPDT) of CMC and its graft copolymer with ACM, DMA, AMPS, NVP and VCL have been found to be 274°C, 375°C, 421°C, 404°C, 466°C and 331°C, respectively. The higher value of IPDT showed more thermal stability. Among all five graft copolymers, the graft copolymer of CMC with NVP is thermally more stable and VCL grafted copolymer was found least thermally stable. The higher char yield and final decomposition temperature (FDT) were obtained in the case of more thermally stable graft copolymer. All five graft copolymers have shown more than one Tmax, which suggests that degradations were multistep process. PMID:26959171

  18. Development of tailor-made glycidyl methacrylate-divinyl benzene copolymer for immobilization of D-amino acid oxidase from Aspergillus species strain 020 and its application in the bioconversion of cephalosporin C.

    PubMed

    Mujawar; Kotha; Rajan; Ponrathnam; Shewale

    1999-09-24

    A tailor-made glycidyl methacrylate-divinyl benzene (GMA-DVB) copolymer PC-3 was evolved by studying the effect of synthesis variables on binding and expression of D-amino acid oxidase (DAAO) from Aspergillus species strain 020. Almost quantitative binding (100%) and a high yield of immobilization per unit of enzyme loaded was achieved. Optimum pH, optimum temperature and K(m)95% was achieved by using 3% (w/v) solution of ceph C, 48 U of DAAO per g of ceph C, keeping dissolved oxygen level above 50%, maintaining the pH between 7.6 and 7.8 and temperature at 24 degrees C. The immobilized DAAO was used for 60 cycles in a stirred tank reactor. PMID:10704992

  19. Maleic anhydride catalysts and process for their manufacture

    SciTech Connect

    Haddad, M.S.; Meyers, B.L.; Eryman, W.S.

    1990-06-12

    This patent describes a catalyst for the production of maleic anhydride by the oxidation of a member of the group consisting of benzene, butane, butene and butadiene. It comprises a phosphorus-vanadium-mixed oxide and exists in the form of geometric shapes, the shapes having been heated in an inert atmosphere at a temperature of about 650{degrees} to about 1300{degrees} F. prior to being exposed to an oxygen-containing gas at an elevated temperature.

  20. Use fluid bed reactor for maleic anhydride from butane

    SciTech Connect

    Arnold, S.C.; Neri, A.; Suciu, G.D.; Verde, L.

    1985-09-01

    A new process is described that incorporates three major improvements over the conventional air oxidation of benzene in a fixed-bed reactor system. The new ALMA Process was developed jointly by Alusuisse Italia and Lummus Crest. It includes the following process improvements: n-Butane feedstock, fluidized-bed reactor system, and a continuous maleic anhydride recovery system using an organic solvent. A summary of the process is given, as well as the steps in its development and its economic advantages.

  1. Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer Byssochlamys fulva IMI 40021 - an insight into the biosynthesis of maleidrides.

    PubMed

    Szwalbe, Agnieszka J; Williams, Katherine; O'Flynn, Daniel E; Bailey, Andrew M; Mulholland, Nicholas P; Vincent, Jason L; Willis, Christine L; Cox, Russell J; Simpson, Thomas J

    2015-12-14

    The filamentous fungus Byssochlamys fulva strain IMI 40021 produces (+)-byssochlamic acid 1, its novel dihydroanalogue 2 and four related secondary metabolites. Agnestadrides A, 17 and B, 18 constitute a novel class of seven-membered ring, maleic anhydride-containing (hence termed heptadride) natural products. The putative maleic anhydride precursor 5 for both nonadride and heptadride biosynthesis was isolated as a fermentation product for the first time and its structure confirmed by synthesis. Acid 5 undergoes facile decarboxylation to anhydride 6. The generic term maleidrides is proposed to encompass biosynthetically-related compounds containing maleic anhydride moieties fused to an alicyclic ring, varying in size and substituents. PMID:26452099

  2. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  3. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  4. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities.

    PubMed

    Carbone-Howell, Ashley L; Stebbins, Nicholas D; Uhrich, Kathryn E

    2014-05-12

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  5. Bactericidal block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  6. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    NASA Astrophysics Data System (ADS)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  7. Diamino Telechelic Polybutadienes for Solventless Styrene-butadiene-styrene (SBS) Triblock Copolymer Formation.

    PubMed

    Ji, Shengxiang; Hoye, Thomas R; Macosko, Christopher W

    2008-11-10

    High molecular weight, high functionality diamino telechelic polybutadienes (TPBs) were synthesized by ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene (COD) in the presence of a chain transfer agent, 1,8-dicyano-4-octene, followed by lithium aluminum hydride reduction. Melt coupling of diamino TPB with anhydride-terminated polystyrene (PS-anh) resulted in the formation of styrene-butadiene-styrene (SBS) triblock copolymers; ca. 80% maximum conversion of PS-anh was achieved within 30 seconds. The results from SAXS, TEM, and rheological measurements of the coupling products confirmed the formation of SBS triblock copolymers having lamellar morphology. A fluororesent-labeled PS-anh was used to study the coupling kinetics by diluting the reactants by the addition of non-functional PS. PMID:19907636

  8. Diamino Telechelic Polybutadienes for Solventless Styrene-butadiene-styrene (SBS) Triblock Copolymer Formation

    PubMed Central

    Ji, Shengxiang; Hoye, Thomas R.; Macosko, Christopher W.

    2008-01-01

    High molecular weight, high functionality diamino telechelic polybutadienes (TPBs) were synthesized by ring-opening metathesis polymerization (ROMP) of 1,5-cyclooctadiene (COD) in the presence of a chain transfer agent, 1,8-dicyano-4-octene, followed by lithium aluminum hydride reduction. Melt coupling of diamino TPB with anhydride-terminated polystyrene (PS-anh) resulted in the formation of styrene-butadiene-styrene (SBS) triblock copolymers; ca. 80% maximum conversion of PS-anh was achieved within 30 seconds. The results from SAXS, TEM, and rheological measurements of the coupling products confirmed the formation of SBS triblock copolymers having lamellar morphology. A fluororesent-labeled PS-anh was used to study the coupling kinetics by diluting the reactants by the addition of non-functional PS. PMID:19907636

  9. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to {gamma}-butyrolactone

    SciTech Connect

    Messori, M.; Vaccari, A.

    1994-11-01

    The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by the similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6 tabs.

  10. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  11. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  12. Oligoaniline-containing supramolecular block copolymer nanodielectric materials.

    PubMed

    Hardy, Christopher G; Islam, Md Sayful; Gonzalez-Delozier, Dioni; Ploehn, Harry J; Tang, Chuanbing

    2012-05-14

    We report a new generation of nanodielectric energy storage materials based on supramolecular block copolymers. In our approach, highly polarizable, conducting nanodomains are embedded within an insulating matrix through block copolymer microphase separation. An applied electric field leads to electronic polarization of the conducting domains. The high interfacial area of microphase-separated domains amplifies the polarization, leading to high dielectric permittivity. Specifically, reversible addition fragmentation transfer (RAFT) polymerization was used to prepare block copolymers with poly(methyl acrylate) (PMA) as the insulating segment and a strongly acidic dopant moiety, poly-(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), as the basis for the conducting segment. The PAMPSA block was complexed with an oligoaniline trimer to form a dopant-conjugated moiety complex that is electronically conductive after oxidation. For the undoped neat block copolymers, the increase of the PMA block length leads to a transition in dielectric properties from ionic conductor to dielectric capacitor with polarization resulting from migration of protons within the isolated PAMPSA domains. The oligoaniline-doped copolymers show remarkably different dielectric properties. At frequencies above 200 kHz, they exhibit characteristics of dielectric capacitors with much higher permittivity and lower dielectric loss than the corresponding undoped copolymers. PMID:22331602

  13. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    SciTech Connect

    Qin, C.; Ding, Y.P.

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  14. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  15. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  16. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  17. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  18. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  19. MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...

  20. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  1. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  2. Immunogenicity of Peanut Proteins Containing Poly(Anhydride) Nanoparticles

    PubMed Central

    De S. Rebouças, Juliana; Irache, Juan M.; Camacho, Ana I.; Gastaminza, Gabriel; Sanz, María L.

    2014-01-01

    In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced TH1 and TH2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic TH2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both TH1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-TH1 immune response. PMID:24899075

  3. Make phthalic anhydride with low air ratio process

    SciTech Connect

    Verde, L.; Nari, A.

    1984-11-01

    A new process for the production of phthalic anhydride from o-xylene has been developed by Alusuisse Italia S.p.A. and is now being implemented in one of the two large reactors (15,500 tubes each) of Ftalital, Division of Alusuisse Italia. The main advantages of the new technology in comparison with the best current technology (the low energy process are essentially the following: An increase of the catalyst productivity by more than 40% A reduction of weight air/o-xylene ratio from 20:1 to 9.5:1 (corresponding to an increase in o-xylene concentration in air from 65 g/Nm/sup 3/ to 134 g/Nm/sup 3/); A consequent reduction of both capital investment and energy consumption, which contribute to reducing the transfer price of production of phthalic anhydride by more than US$40 per metric ton, at the present prevailing raw material and utilities costs. The new technology at low air ratio (LAR Process) was predicted upon the development of a new catalyst formulation specifically adapted to the purpose. This required about two years of research work in laboratories and pilot facilities of Alusuisse Italia.

  4. Synthesis of a γ-lactam library via formal cycloaddition of imines and substituted succinic anhydrides.

    PubMed

    Tan, Darlene Q; Atherton, Amy L; Smith, Austin J; Soldi, Cristian; Hurley, Katherine A; Fettinger, James C; Shaw, Jared T

    2012-03-12

    Formal cycloaddition reactions between imines and cyclic anhydrides serve as starting point for the synthesis of diverse libraries of small molecules. The synthesis of succinic anhydrides substituted with electron-withdrawing groups is facilitated by new mild conditions for alkylation of aryl-substituted acetyl esters with ethyl bromoacetate. These anhydrides are then used in formal cycloaddition reactions with imines to produce γ-lactams. 2-Fluoro-5-nitrophenylsuccinic anhydride reacts efficiently with imines to provide lactams that are further diversified by conversion of the nitro group to either an aniline and an azide for subsequent reactions with acylating agents and alkynes, respectively. The synthesis of cyanosuccinic anhydride is reported for the first time, and the use of this compound in reactions with imines and subsequent functionalization of the resultant lactams is demonstrated. PMID:22225535

  5. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  6. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  7. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  8. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  9. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyester (generic). 721.10381 Section 721.10381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated polyester (generic). (a... carboxylic acid anhydride, methacrylate terminated polyester (PMN P-10-290) is subject to reporting...

  10. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyester (generic). 721.10381 Section 721.10381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated polyester (generic). (a... carboxylic acid anhydride, methacrylate terminated polyester (PMN P-10-290) is subject to reporting...

  11. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyester (generic). 721.10381 Section 721.10381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated polyester (generic). (a... carboxylic acid anhydride, methacrylate terminated polyester (PMN P-10-290) is subject to reporting...

  12. Theory for the aggregation of proteins and copolymers

    SciTech Connect

    Fields, G.B.; Alonso, D.O.V.; Stigter, D.; Dill, K.A.

    1992-05-14

    We develop mean-field lattice statistical mechanics theory for the equilibrium between denatured and aggregated states of proteins and other random copolymers of hydrophobic and polar monomers in aqueous solution. We suppose that the aggregated state is a mixture of amorphous polymer plus solvent and that the driving forces are the hydrophobic interaction, which favors aggregation, and conformational and translational entropies, which favor disaggregation. The theory predicts that the phase diagram for thermal aggregation is an asymmetric closed loop, and for denaturants (guanidinium hydrochloride of urea) it is asymmetric with an upper consolute point. The theory predicts that a copolymer in a poor solvent will expand with increasing polymer concentration because of {open_quotes}screening{close_quotes} of the solvent interactions by the other chains; the chain ultimately reaches a theta-like state in the absence of solvent. The screening concentration depends strongly on the copolymer composition. We find two striking features of these copolymer phase diagrams. First, they are extraordinarily sensitive to the copolymer composition; a change of one amino acid can substantially change the aggregation behavior. Second, relative to homopolymers, copolymers should be stable against aggregation at concentrations that are higher by many orders of magnitude. 43 refs., 13 figs.

  13. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Partial Miscibility in Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2011-03-01

    Copolymers can be used to affect the miscibility of otherwise immiscible polymer blends by acting as compatibilizers. To better understand the energetics of these types of systems, we use a simple lattice model to study phase separation in binary copolymer/homopolymer blends. We focus on a copolymer that contains both A and B type monomers and a homopolymer that contains purely A type monomer. An example of a system that we are investigating is polyethylene mixed with either random or alternating poly(ethylene-co-propylene). The sequence effect on miscibility as the copolymer microstructure is varied from random to alternating is investigated as well. The support of GAANN is gratefully acknowledged.

  15. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  16. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  17. Complex Structured Fluorescent Polythiophene Graft Copolymer as a Versatile Tool for Imaging, Targeted Delivery of Paclitaxel, and Radiotherapy.

    PubMed

    Guler, Emine; Akbulut, Huseyin; Geyik, Caner; Yilmaz, Tulay; Gumus, Z Pinar; Barlas, F Baris; Ahan, Recep Erdem; Demirkol, Dilek Odaci; Yamada, Shuhei; Endo, Takeshi; Timur, Suna; Yagci, Yusuf

    2016-07-11

    Advances in polymer chemistry resulted in substantial interest to utilize their diverse intrinsic advantages for biomedical research. Especially, studies on drug delivery for tumors have increased to a great extent. In this study, a novel fluorescent graft copolymer has been modified by a drug and targeting moiety and the resulting structure has been characterized by alterations in fluorescent intensity. The polythiophene based hybrid graft copolymer was synthesized by successive organic reactions and combination of in situ N-carboxy anhydride (NCA) ring opening and Suzuki coupling polymerization processes. Initially, targeted delivery of the graft copolymer was investigated by introducing a tumor specific ligand, anti-HER2/neu antibody, on the structure. The functionalized polymer was able to differentially indicate HER2-expressing A549 human lung carcinoma cells, whereas no signal was obtained for Vero, monkey kidney epithelial cells, and HeLa, human cervix adenocarcinoma cells. After integrating paclitaxel into the structure, cell viability, cell cycle progression, and radiosensitivity studies demonstrate HER2/neu targeting polymers were most effective to inhibit cell proliferation. Importantly, the graft copolymer used had no cytotoxic effects to cells, as evidenced by cell viability and cell cycle analysis. This work clearly confirms that a specially designed and fabricated graft copolymer with a highly complex structure is a promising theranostic agent capable of targeting tumor cells for diagnostic and therapeutic purposes. PMID:27305462

  18. Low Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2008-01-01

    A series of low-melt viscosity imide resins were prepared from asymmetric oxydiphthalic dianhydride (a-ODPA) and 4-phenylethynylphthalic anhydride as the endcap, along with 3,4' - oxydianiline (3,4' -ODA), 3,4' -methylenedianiline (3,4' -MDA), 3,3' -methylenedianiline (3,3' - MDA) and 3,3'-diaminobenzophenone (3,3'-DABP), using a solvent-free melt process. These imide oligomers displays low-melt viscosities (2-15 poise) at 260-280 C, which made them amenable to low-cost resin transfer molding (RTM) process. The a-ODPA based RTM resins exhibits glass transition temperatures (Tg's) in the range of 265-330 C after postcure at 343 C. The mechanical properties of these polyimide/carbon fiber composites fabricated by RTM will be discussed.

  19. Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings.

    PubMed

    Baldoví, Herme G; Herance, José Raul; Manuel Víctor, Víctor; Alvaro, Mercedes; Garcia, Hermenegildo

    2015-08-01

    Thermal annealing at 400 °C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with λem from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into Hep3B human hepatoma cells as determined by confocal fluorescence microscopy and are remarkably biocompatible affecting slightly cell viability according to the MTT test. PMID:26135910

  20. Development of ALMA process: Advances maleic anhydride production technology

    SciTech Connect

    Arnoia, S.C.; Komeya, M.; Pedretti, D.; Stanecki, J.W.

    1987-01-01

    Shin-Daikyowa Petrochemical Co. (SDPC) has initiated a project to build a 15,000 MTA maleic anhydride plant at Yokkaichi, Japan. For technology, SDPC evaluated many alternatives and elected to utilize the ALMA Process in what will be the first full-scale plant for this new process. Startup is scheduled for late 1988. This paper describes the economic advantages of the ALMA Process and their technical bases which have led to its selection by SDPC. The advantages are in variable costs (primarily feed and energy) for any size plant, and in initial capital as well for plants larger than 10,000 MTA. They are derived from the use of n-butane feed, a fluidized-bed reactor system, and a non-aqueous recovery system.

  1. Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings

    NASA Astrophysics Data System (ADS)

    Baldoví, Herme G.; Herance, José Raul; Manuel Víctor, Víctor; Alvaro, Mercedes; Garcia, Hermenegildo

    2015-07-01

    Thermal annealing at 400 °C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with λem from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into Hep3B human hepatoma cells as determined by confocal fluorescence microscopy and are remarkably biocompatible affecting slightly cell viability according to the MTT test.

  2. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.

    PubMed

    Saisyo, Atsuyuki; Nakamura, Hideaki; Fang, Jun; Tsukigawa, Kenji; Greish, Khaled; Furukawa, Hiroyuki; Maeda, Hiroshi

    2016-02-01

    Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP. PMID:26674841

  3. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  4. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  5. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  6. Biosynthetic Study on Antihypercholesterolemic Agent Phomoidride: General Biogenesis of Fungal Dimeric Anhydrides.

    PubMed

    Fujii, Ryuya; Matsu, Yusuke; Minami, Atsushi; Nagamine, Shota; Takeuchi, Ichiro; Gomi, Katsuya; Oikawa, Hideaki

    2015-11-20

    To elucidate the general biosynthetic pathway of fungal dimeric anhydrides, a gene cluster for the biosynthesis of the antihy-percholesterolemic agent phomoidride was identified by heterologous expression of candidate genes encoding the highly reducing polyketide synthase, alkylcitrate synthase (ACS), and alkylcitrate dehydratase (ACDH). An in vitro analysis of ACS and ACDH revealed that they give rise to anhydride monomers. Based on the established monomer biosynthesis, we propose a general biogenesis of dimeric anhydrides involving a single donor unit and four acceptor units. PMID:26558485

  7. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  8. Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.

    PubMed

    Zhang, Yuanzhong; Bhaway, Sarang M; Wang, Yi; Cavicchi, Kevin A; Becker, Matthew L; Vogt, Bryan D

    2015-03-25

    Rapid chemical transformation from micelle templated precursors (metal nitrate and citric acid) to ordered mesoporous metal carbonates and oxides is demonstrated using microwave heating for cobalt, copper, manganese and zinc. Without aging requirements, <3 min of microwave processing yields highly ordered mesoporous films. PMID:25714045

  9. Self-Organization on Multiple Length Scales in ``Hairy-Rod''--Coil Block Copolymer Supramolecular Complexes

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele; Hammond, Matthew; Klok, Harm-Anton

    2008-03-01

    A peptide-synthetic hybrid block copolymer, poly(ethylene oxide)-block-poly(L-glutamic acid), is demonstrated to form supramolecular complexes with primary alkylamines of varying alkyl chain length (8 to 18 methylene units) in organic solvents via acid-base proton transfer and subsequent ionic bonding. The peptidic block being in the α-helical conformation, these materials behave as coil-``hairy rod'' block copolymers, and show hierarchically self-organized nanostructures in the solid state; X-ray scattering measurements show mesomorphic behavior at the length scales of both the overall block copolymer and the polypeptide-alkylammonium complex.

  10. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram of... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg....

  11. Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer Byssochlamys fulva IMI 40021 – an insight into the biosynthesis of maleidrides† †Electronic supplementary information (ESI) available: Details of any supplementary information available should be included here. See DOI: 10.1039/c5cc06988b Click here for additional data file.

    PubMed Central

    Szwalbe, Agnieszka J.; Williams, Katherine; O'Flynn, Daniel E.; Bailey, Andrew M.; Mulholland, Nicholas P.; Vincent, Jason L.; Willis, Christine L.

    2015-01-01

    The filamentous fungus Byssochlamys fulva strain IMI 40021 produces (+)-byssochlamic acid 1, its novel dihydroanalogue 2 and four related secondary metabolites. Agnestadrides A, 17 and B, 18 constitute a novel class of seven-membered ring, maleic anhydride-containing (hence termed heptadride) natural products. The putative maleic anhydride precursor 5 for both nonadride and heptadride biosynthesis was isolated as a fermentation product for the first time and its structure confirmed by synthesis. Acid 5 undergoes facile decarboxylation to anhydride 6. The generic term maleidrides is proposed to encompass biosynthetically-related compounds containing maleic anhydride moieties fused to an alicyclic ring, varying in size and substituents. PMID:26452099

  12. Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2015-12-10

    As a kind of biomass nanofiller for polymers, cellulose nanocrystal (CNC) has good mechanical properties and reinforcing capability. To improve the compatibility of poly(butylene succinate-co-butylene adipate) (PBSA)/CNC composites, phthalic anhydride was used as a compatilizer during melt mixing, leading to the significant improvement of the mechanical properties and thermal stability of the composites, which is related to the better dispersion of CNC in the composites. The addition of phthalic anhydride could accelerate the crystallization of PBSA component as evidenced by the curves of isothermal crystallization of the composites, but had little effect on the crystalline polymorphs of PBSA component. The addition of phthalic anhydride could strongly improve the hydrophobicity of the composites. The good mechanical properties, fast crystallization and improved hydrophobicity of PBSA/CNC composites with phthalic anhydride are favor to their practical commercial utilization. PMID:26428099

  13. Studying the effect of high pressure on the cycloaddition reactions of maleic anhydride and substituted anthracenes

    NASA Astrophysics Data System (ADS)

    Kiselev, V. D.; Shakirova, I. I.; Kornilov, D. A.; Kashaeva, E. A.; Potapova, L. N.; Konovalov, A. I.

    2013-01-01

    The kinetics (rate, activation, and volume) of the high-pressure (up to 2500 bar) Diels-Alder reactions of maleic anhydride with 9-phenylanthracene and 9,10-dimethylanthracene in toluene is investigated.

  14. Atmospheric chemistry of toxic contaminants. 3. Unsaturated aliphatics: Acrolein, acrylonitrile, maleic anhydride

    SciTech Connect

    Grosjean, D. )

    1990-12-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the unsaturated aliphatic contaminants acrolein, acrylonitrile, and maleic anhydride. In-situ formation of small amounts of acrolein and maleic anhydride may involve the reaction of OH (and O{sub 3}) with 1,3-dienes and the reaction of OH with aromatic hydrocarbons, respectively. There is no known pathway for in-situ formation of acrylonitrile. Rapid removal of acrolein (half-life = less than one day) and of maleic anhydride (half-life = several hours) is expected from their rapid reactions with OH (major), O{sub 3}, and NO{sub 3}. These reactions lead to formaldehyde and glyoxal from acrolein and to dicarbonyls from maleic anhydride. Acrylonitrile is removed at a slower rate (half-life = 2-7 days) by reaction with OH, leading to formaldehyde and formyl cyanide.

  15. Diesel lubricant composition containing 5-amino-triazole-succinic anhydride reaction product

    SciTech Connect

    Sung, R.L.; Zoleski, B.H.

    1981-03-17

    A diesel crankcase lubricant is described. It contains a lubricating oil base and the reaction product of a hydrocarbyl succinic anhydride. The hydrocarbyl radical has from 12 to 30 carbon atoms and 5-amino-triazole.

  16. Drilling fluid containing a copolymer filtration control agent

    SciTech Connect

    Enright, D.P.; Lucas, J.M.; Perricone, A.C.

    1981-10-06

    The invention relates to an aqueous drilling fluid composition, a filtration control agent for utilization in said aqueous drilling fluid, and a method of forming a filter cake on the wall of a well for the reduction of filtrate from said drilling fluid, by utilization of a copolymer of: (1) a (Meth) acrylamido alkyl sulfonic acid or alkali metal salt thereof; and (2) a (Meth) acrylamide or n-alkyl (Meth) acrylamide. The copolymer may be cross-linked with a quaternary ammonium salt cross-linking agent.

  17. 21 CFR 177.1630 - Polyethylene phthalate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Acrylonitrile. Methacrylonitrile. Vinyl chloride. Itaconic acid. Styrene-maleic anhydride resin, partial 2... terephthalate or terephthalic acid with ethylene glycol, modified with one or more of the following: Azelaic acid, dimethyl azelate, dimethyl sebacate, sebacic acid. Ethylene terephthalate copolymers: Prepared...

  18. Diels-Alder Reactions of Furans with Itaconic Anhydride: Overcoming Unfavorable Thermodynamics.

    PubMed

    Pehere, Ashok D; Xu, Shu; Thompson, Severin K; Hillmyer, Marc A; Hoye, Thomas R

    2016-06-01

    Unfavorable thermodynamics often render furans reluctant to engage in high-yielding Diels-Alder (DA) cycloaddition reactions. Here, we report the highly efficient conversion of the biosourced reactants itaconic anhydride (IA) and furfuryl alcohol (FA) to a single DA adduct. The free energy advantages provided by anhydride ring opening and crystal lattice energy of the product overcome the loss of aromaticity of the furanoid diene. Detailed (1)H NMR studies provided valuable insights about relevant kinetic and thermodynamic features. PMID:27214494

  19. Room temperature (nπ∗) phosphorescence of indanetrione (anhydrous ninhydrine) in phthalic anhydride matrix

    NASA Astrophysics Data System (ADS)

    Roy, J.; Bhattacharya, S.; Mondal, S.; Ghosh, Sanjib

    1997-02-01

    Indanetrione, a cis vicinal cyclic triketone, is found to exhibit room temperature (nπ∗) phosphorescence (RTP) in a phthalic anhydride matrix in addition to (nπ∗) fluorescence. The compound does not show RTP in benzophenone mixed crystals or in any other solvent studied. A rigid binding of the cyclic triketone in the phthalic anhydride matrix, lowering the T 1 → S 0 nonradiative rate, has been proposed as the explanation for RTP.

  20. Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr; Mahmoodi, Niyaz Mohammad

    2010-04-01

    Weak binding of chitosan on the wool constitutes the main problem in its application. In this paper, the surface modification of wool fabric using anhydrides to graft the chitosan was studied. Weight gain, antibacterial and antifelting properties of the chitosan grafted-acylated wool fabric were investigated. Wool fabrics were acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), using different solvents (dimethylsulfoxide (DMSO) and N,N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of wool were investigated. Chitosan was grafted to the acylated wool and the effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated wool were evaluated. Fourier transform infra-red (FTIR), scanning electron microscope (SEM), differential scanning colorimetry (DSC) and weight gain analyses provided evidence that chitosan was grafted on to the acylated wool through the formation of new covalent bonds. The grafted samples have antibacterial potential due to existence of the antibacterial property of chitosan. In addition, the chitosan grafted-acylated wool samples have antifelting property. The findings of this research support the potential production of new environmentally friendly textile fabrics. PMID:20022732

  1. Differential induction of cytochrome P450-mediated triasulfuron metabolism by naphthalic anhydride and triasulfuron.

    PubMed Central

    Persans, M W; Schuler, M A

    1995-01-01

    Cytochrome P450 monooxygenases play paramount roles in the detoxification of herbicides as well as in the synthesis of lignins, flavonoids, and phenolic acids. Biochemical analysis of triasulfuron metabolism in maize (Zea mays) seedlings has demonstrated that the P450(s) responsible for detoxification of this herbicide is induced by naphthalic anhydride (NA), a plant safener, and by triasulfuron, the herbicide itself. Induction studies conducted with seedlings of different ages suggest that two separate response pathways modulate this P-450 activity. Induction by NA is independent of the developmental age of the seedlings up to 6.5 d; induction by triasulfuron is tightly modulated with respect to developmental age in that triasulfuron metabolism can be induced by triasulfuron in young (2.5 d) but not older (6.5 d) seedlings. Induction by NA administered in combination with triasulfuron synergistically enhances triasulfuron metabolism in younger seedlings to levels substantially above that obtained with either herbicide or safener treatment alone. In older seedlings, NA plus triasulfuron treatment induces triasulfuron metabolism to only the level of NA treatment alone, indicating again that the induction cascade responding to triasulfuron is nonfunctional in later development. MnCl2 studies indicate that the triasulfuron insensitivity of older seedlings does not result from a general limitation in the inducibility of this P-450 detoxification system but rather from specific limitations in the triasulfuron-response pathway. PMID:8539299

  2. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch.

    PubMed

    Cheuk, Sherwin Y; Shih, Frederick F; Champagne, Elaine T; Daigle, Kim W; Patindol, James A; Mattison, Christopher P; Boue, Stephen M

    2015-05-01

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil and incorporated into an aqueous OSA-ST solution. High pressure homogenisation of the mixture was conducted at 170 MPa for 56 cycles. The resulting emulsion had a particle size range of 200-300 nm and the absolute zeta potential varied between 8.4 and 10.6 mV. CoQ10 retention of the emulsion and freeze dried products, determined by a hexane rinse, was 98.2%. Reconstitution of the freeze dried product in Mcllvaine citrate-phosphate buffers with pH values of 3-5 and temperatures at 4 and 25 °C had very little effect on the range and distribution of the nanoparticles' size. The inflection point of the zeta potential and pH plot occurred at the first pKa of succinic acid (pH 4.2), indicating succinate as the main influence over zeta potential. PMID:25529723

  3. Reactive blending of thermoplastic starch and polyethylene-graft-maleic anhydride with chitosan as compatibilizer.

    PubMed

    Jantanasakulwong, Kittisak; Leksawasdi, Noppol; Seesuriyachan, Phisit; Wongsuriyasak, Somchai; Techapun, Charin; Ougizawa, Toshiaki

    2016-11-20

    Cassava starch was melt-blended with glycerol (70/30wt%/wt%) at 140°C to prepare thermoplastic starch (TPS). Chitosan (CTS) was premixed with starch and glycerol, in acidified water (lactic acid 2wt%), at 1, 5 and 10wt%/wt%. TPS/CTS was then melt-blended (160°C) with polyethylene-graft-maleic anhydride (PE-MAH). Phase determination and scanning electron microscopy indicated TPS/PE-MAH/CTS had a co-continuous morphology and CTS-induced phase inversion to give dispersed PE-MAH particles in a TPS matrix. Tensile strength at break and elongation, melt viscosity, fracture toughness and water contact angle of TPS/PE-MAH were improved by CTS incorporation. TPS/PE-MAH/CTS blends decreased the melting temperature of TPS and PE-MAH compared to the neat polymers. FTIR confirmed a reaction had occurred between amino groups (NH2) of CTS and the MAH groups of PE-MAH. This reaction and the enhanced miscibility between TPS and CTS improved the mechanical properties of the TPS/PE-MAH/CTS blend, particularly at 5wt%/wt% CTS. PMID:27561475

  4. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. PMID:26117763

  5. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  6. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    PubMed

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells. PMID:25816726

  7. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    NASA Astrophysics Data System (ADS)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  8. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  9. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage.

    PubMed

    Ponnurangam, Sathish; O'Connell, Grace D; Hung, Clark T; Somasundaran, Ponisseril

    2015-12-01

    One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering. PMID:26398146

  10. Synthesis, properties, and applications of composite materials based on grafted copolymers of perfluoropolymers and perfluorinated monomers with functional groups

    SciTech Connect

    Mislavsky, B.V.; Melnikov, V.P.

    1993-12-31

    Statistic copolymers of tetrafluoroethylene and perfluorinated alkyl vinyl ethers (PFAVEFG) with functional groups are of wide application as membranes for chloro-alkali cells, fuel cells, etc., due to their unique properties of high thermal and chemical stability. These polymers are also used as catalysts for a wide range of organic reactions. Synthesis of the graft copolymers of PFAVEFG onto fluoropolymers would maintain the advantages of these catalysts while producing insoluble materials and decreasing expensive fluoro-monomer content without reducing the catalytic activity of the copolymers. The structure and catalytic properties of radiation induced graft copolymerization of perfluorinated alkyl vinyl ethers with sulfonyl fluoride (PFAVESF) were studied. Specific catalytic activity of the grafted copolymer was up to 40 times more than the same value for the statistic copolymer. Esterification of acrylic acid, alkylation of substituted phenol were also performed using the grafted copolymers.

  11. Novel Crosslinked Graft Copolymer of Methacrylic Acid and Collagen as a Protein-Based Superabsorbent Hydrogel with Salt and Ph-Responsiveness Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad; Hamzeh, Alireza

    2008-08-01

    In this paper, a novel protein-based superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto collagen, using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. The hydrogel structure was confirmed using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under the optimized conditions concluded, maximum capacity of swelling in distilled water was found to be 415 g/g. The swelling kinetics of the synthesized hydrogels with various particle sizes was preliminarily investigated. Absorbency in aqueous chloride salt solutions indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. The swelling of superabsorbing hydrogels was also measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pHs 2 and 7. This behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

  12. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    NASA Astrophysics Data System (ADS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  13. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  14. Characterization of cationic copolymers by capillary electrophoresis using indirect UV detection and contactless conductivity detection.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Vuong, Chi-Thanh; Cottet, Hervé

    2012-01-01

    For many industrial applications, the combination of two different monomers in statistical or diblock copolymers enhances the properties of the corresponding polymer. However, during the polymerization reaction, homopolymers might be formed and can influence the properties for the applications. Consequently, the separation and the quantification of the homopolymers contained in copolymer samples are crucial. In addition, the charge density distribution of the statistical copolymer is an important characteristic for the applications. The purpose of this work was to study the characterization of a statistical copolymer of acrylic acid (AA) and diallyldimethyl ammonium chloride (DADMAC) by capillary electrophoresis (CE) in acidic conditions (cationic copolymers). For that purpose, a free solution electrophoretic separation was carried out according to the charge rate (chemical composition) independently of the molar mass. The second objective was to compare contactless conductivity detection and indirect UV absorbance modes for the quantification of DADMAC homopolymers present in copolymer samples. Different coated capillaries based on neutral or positively charged modification were also compared. The comparison of indirect absorbance UV and contactless conductimetric detection demonstrated that both detection modes can be used for a complete CE characterization of non-UV absorbing PAA-DADMAC copolymers. PMID:22169192

  15. Structural Characterization of Layered Morphologies in Precise Copolymers

    NASA Astrophysics Data System (ADS)

    Trigg, Edward; Gaines, Taylor; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Layered morphologies have been observed in precise polyethylene-based copolymers that contain acid, charged, or polar functional groups precisely spaced along a linear alkane chain. Sufficiently long alkane segments form structures resembling orthorhombic polyethylene crystals, while the functional groups form 2-D layers that disrupt the alkane crystal structure to varying degrees. Here, layered morphologies in precise copolymers containing acrylic acid, phosphonic acid, imidazolium bromide, and sulfone groups are studied via X-ray scattering. Specifically, the composition profiles of the layered structures are obtained by Fourier synthesis, and the coherence length is investigated using peak width analysis. This analysis indicates that the layers of functional groups are frequently bordered by two crystallites, which suggests different dynamics relative to layers bordered by one crystalline and one amorphous microdomain. Detailed understanding of the structure of the layered morphologies will allow for a systematic investigation of proton and ion conductivity mechanisms, which are expected to occur through the high-dielectric layers.

  16. In vivo biocompatibility of radiation crosslinked acrylamide copolymers

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Ünver-Saraydın, Serpil; Karadağ, Erdener; Koptagel, Emel; Güven, Olgun

    2004-04-01

    In vitro swelling and in vivo biocompatibility of radiation crosslinked acrylamide copolymers such as acrylamide/crotonic acid (AAm/CA) and acrylamide/itaconic acid (AAm/IA) were studied. The swelling kinetics of acrylamide copolymers were performed in distilled water, human serum and some simulated physiological fluids such as phosphate buffer, pH 7.4, glycine-HCl buffer, pH 1.1, physiological saline solution, and some swelling and diffusion parameters have been calculated. AAm/CA and AAm/IA hydrogels were subcutaneously implanted in rats for up to 10 weeks and the immediate short- and long-term tissue response to these implants were investigated. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. The radiation crosslinked AAm/CA and AAm/IA copolymers were found well tolerated, non-toxic and highly biocompatible. However, AAm/IA copolymer was not found to be compatible biomaterials, because one of the AAm/IA samples was disintegrated into small pieces in the rat.

  17. A photochemical source of peroxypropionic and peroxyisobutanoic nitric anhydride

    NASA Astrophysics Data System (ADS)

    Furgeson, Amanda; Mielke, Levi H.; Paul, Dipayan; Osthoff, Hans D.

    2011-09-01

    A method to photochemically generate stable outputs of peroxyacetic, peroxypropionic, or peroxyisobutanoic nitric anhydride (PAN, PPN, or PiBN) in dilute gas streams is described. The PANs are generated by photolysis of excess acetone, diethyl ketone, or diisopropyl ketone in the presence of oxygen and either nitric oxide or nitrogen dioxide. The source output was characterized using a commercial NO y monitor, an in-house constructed thermal dissociation cavity ring-down spectrometer (TD-CRDS) equipped with a heated inlet for quantification of NO 2, total peroxyacyl nitrates (∑PAN), and total alkyl nitrates (∑AN), and a thermal dissociation chemical ionization mass spectrometer (TD-CIMS) operated with iodide reagent ion. The TD-CIMS was calibrated (against TD-CRDS) using diffusion sources containing synthetic PAN standards. Response factors of 21, 19, and 5 counts per pptv, normalized to 1 million counts of iodide reagent ion, were found for PAN (monitored at m/z 59), PPN ( m/z 73), and PiBN ( m/z 87), respectively. The photo source was found to generate the three PANs in high yield. CIMS response factors derived using the photo source and TD-CRDS were identical to those derived from synthetic standards for PAN and PPN; hence, the photochemical PAN and PPN sources may be used to calibrate TD-CIMS (against TD-CRDS). For PiBN, the response factor derived using the photo source was 60% larger than that derived using the synthetic standard, limiting its use to deliver a calibrated stream of PiBN.

  18. Nanostructured morphology of a random P(DLLA-co-CL) copolymer

    PubMed Central

    2012-01-01

    The random architecture of a commercial copolymer of poly(DL-lactic acid) and poly(ε-caprolactone), poly(DL-lactide-co-caprolactone), has been characterized by chemical structure analysis from hydrogen-1 nuclear magnetic resonance results. Moreover, spherical nanodomains have been detected in the thin films of this copolymer obtained after solvent evaporation. These nanodomains studied by atomic force microscopy and transmission elecron microscopy grow progressively under annealing until they collapse and form a homogenous disordered structure. This is the first time that the nanostructure of random poly(DL-lactic acid)/poly-(ε-caprolactone) copolymers is revealed, representing one of few experimental evidences on the possible nanostructuration of random copolymers. PMID:22304962

  19. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  20. Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease.

    PubMed

    Yin, Hongzhuan; Fang, Jun; Liao, Long; Nakamura, Hideaki; Maeda, Hiroshi

    2014-08-10

    Carbon monoxide (CO), the physiological product of heme oxygenase during catabolic breakdown of heme, has versatile functions and fulfills major anti-oxidative and anti-apoptotic roles in cell systems. Administration of CO is thus thought to be a reasonable therapeutic approach in diseases-such as inflammatory bowel disease-that are induced by reactive oxygen species (ROS). Tricarbonyldichlororuthenium(II) dimer (CORM2) is a commonly used CO donor, but it has poor aqueous solubility and a very short CO-releasing half-life (t1/2). In the present study, we prepared micelles consisting of water-soluble styrene-maleic acid copolymer (SMA) encapsulating CORM2 (SMA/CORM2) that had a hydrodynamic size of 165.3nm. Compared with free CORM2, SMA/CORM2 demonstrated better water solubility (>50mg/ml in a physiological water solution). Moreover, because of micelle formation in an aqueous environment, the CO release rate was slow and sustained. These properties resulted in much longer in vivo bioactivity of SMA/CORM2 compared with that of free CORM2, i.e. the t1/2 in blood of SMA/CORM2 in mice after intravenous (i.v.) injection was about 35 times longer than that of free CORM2. We then evaluated the therapeutic potential of SMA/CORM2 in a murine model of inflammatory colitis induced by dextran sulfate sodium (DSS). Administration (either i.v. or oral) of SMA/CORM2 once at the beginning of colitis, 3days after DSS treatment, significantly improved colitis symptoms-loss of body weight, diarrhea, and hematochezia-as well as histopathological colonic changes-shortening of the colon and necrosis or ulcers in the colonic mucosa. Up-regulation of inflammatory cytokines including monocyte chemotactic protein-1, tumor necrosis factor-α, and interleukin-6 in this DSS-induced colitis was significantly suppressed in SMA/CORM2-treated mice. SMA/CORM2 may thus be a superior CO donor and may be a candidate drug, which involves cytokine suppression, for ROS-related diseases including

  1. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption. PMID:26602293

  2. Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates.

    PubMed

    Grignard, Bruno; Vaillant, Alexandre; de Coninck, Joel; Piens, Marcel; Jonas, Alain M; Detrembleur, Christophe; Jerome, Christine

    2011-01-01

    Superhydrophobic aluminum surfaces with excellent corrosion resistance were successfully prepared by electrospinning of a novel fluorinated diblock copolymer solution. Micro- and nanostructuration of the diblock copolymer coating was obtained by electrospinning which proved to be an easy and cheap electrospinning technology to fabricate superhydrophobic coating. The diblock copolymer is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-co-AA) random copolymer as the first block and polyacrylonitrile (PAN) as the second one. The fluorinated block promotes hydrophobicity to the surface by reducing the surface tension, while its carboxylic acid functions anchor the polymer film onto the aluminum surface after annealing at 130 °C. The PAN block of this copolymer insures the stability of the structuration of the surface during annealing, thanks to the infusible character of PAN. It is also demonstrated that the so-formed superhydrophobic coating shows good adhesion to aluminum surfaces, resulting in excellent corrosion resistance. PMID:21141949

  3. Experimental and theoretical study on the reaction of N3-phenyl-(pyridin-2-yl)carbohydrazonamide with itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Modzelewska-Banachiewicz, Bożena; Paprocka, Renata; Mazur, Liliana; Saczewski, Jarosław; Kutkowska, Jolanta; Stępień, Dorota K.; Cyrański, Michał

    2012-08-01

    Two new 1,2,4-triazole-containing alkenoic acid derivatives were obtained from the reaction of N-phenyl-(pyridin-2-yl)carbohydrazonamide with itaconic anhydride, depending on the reaction conditions. The structures of 2-((4-phenyl-5-(pyridin-2-yl)-4H-1,2,4-triazol-3-yl)methyl)acrylic acid or (E)-2-methyl-3(4-phenyl-5-(pyridine-2-yl)-4H-1,2,4-triazol-3-yl)acrylic acid were confirmed by means of 1D and 2D NMR spectroscopic data as well as by single-crystal X-ray diffraction analysis. The experiential 1H and 13C chemical shifts were compared with those calculated with B3LYP, EDF1, and EDF2 density functional theories. The theoretical study of the observed terminal-to-internal alkene isomerization was performed with density functional (DFT) B3LYP/6-31+G∗ method using SM8 water and DMF solvation models. Antimicrobial activities of the newly prepared alkenoic acid derivatives were verified experimentally by a broth microdilution method.

  4. Role of hydrophobic interactions in the self-assembly of alternating copolymers

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Chan, Anita S. W.; Groves, Michael N.

    2010-03-01

    New nanomaterials already play a key role in several emerging technologies. Among the methods used to fabricate new nanomaterials, the most successful in producing precise structure is the bottom-up method. The materials obtained by self-assembly are ordered on different scales and respond and adapt to the presence of other molecules in their environment [1] and can therefore be used as probes, sensors or switches [2]. In this paper, we will describes the self-assembly of amphiphilic alternating copolymers into nanoarchitectures in aqueous solution. To investigate the role of the nature of the hydrophobic groups on the association, the self-assembly of two polymers are compared: poly(isobutylene-alt-maleic anhydride) (IMA) and poly(styrene-alt-maleic anhydride) (SMA) [3, 4]. The theoretical prediction is also compared to experiment and the characterization using Small Angle Neutron Scattering, Dynamic Light Scattering and High Resolution Transmission Electron Microscopy will be presented in detail. [1] S. Zhang, Nature Biotechnology, 21, 10, 1171, 2003. [2] F. Patolsky, et al., Nanomedicine, 1, 51-65, 2006 [3] C. Malardier-Jugroot, et al., J. of Phys. Chem. B, 109(15), 7022-7032, 2005 [4] A.S.W. Chan, et al., Mol. Sim., accepted for publication, 2009.

  5. Imide/arylene ether copolymers. I

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    The preparation of a series of novel imide/arylene ether copolymers is described together with the results of viscosity and DSC Tg(Tm) measurements. The copolymers were synthesized from an arylene ether block and either an amorphous or semicrystalline imide block. One block copolymer was end-capped, and the molecular weight was controlled to improve compression moldability. The paper also presents results of mechanical properties tests on copolymer samples.

  6. Determination of fatty alcohol ethoxylates and alkylether sulfates by anionic exchange separation, derivatization with a cyclic anhydride and liquid chromatography.

    PubMed

    Beneito-Cambra, M; Ripoll-Seguer, L; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G

    2011-11-25

    A method for the separation, characterization and determination of fatty alcohol ethoxylates (FAE) and alkylether sulfates (AES) in industrial and environmental samples is described. Separation of the two surfactant classes was achieved in a 50:50 methanol-water medium by retaining AES on a strong anionic exchanger (SAX) whereas most FAE were eluted. After washing the SAX cartridges to remove cations, the residual hydrophobic FAE were eluted by increasing methanol to 80%. Finally, AES were eluted using 80:20 and 95:5 methanol-concentrated aqueous HCl mixtures. Methanol and water were removed from the FAE and AES fractions, and the residues were dissolved in 1,4-dioxane. In this medium, esterification of FAE and transesterification of AES with a cyclic anhydride was performed. Phthalic and diphenic anhydrides were used to derivatizate the surfactants in industrial samples and seawater extracts, respectively. Separation of the derivatized oligomers was achieved by gradient elution on a C8 column with acetonitrile/water in the presence of 0.1% acetic acid. Good resolution between both the hydrocarbon series and the successive oligomers within the series was achieved. Cross-contamination of FAE with AES and vice versa was not observed. Using dodecyl alcohol as calibration standard, and correction of the peak areas of the derivatized oligomers by their respective UV-vis response factors, both FAE and AES were evaluated. After solid-phase extraction on C18, the proposed method was successfully applied to the characterization and determination of the two surfactant classes in industrial samples and in seawater. PMID:21993518

  7. Surface Characterization of Hematin Anhydride: A Comparison between Two Different Synthesis Methods.

    PubMed

    Guerra, E Danae; Bohle, D Scott; Cerruti, Marta

    2016-05-10

    During the intraerythrocytic stage of malaria, the parasite digests hemoglobin and aggregates the released heme as an insoluble crystalline material called hemozoin. This detoxification step is an excellent drug target for developing new antimalarials, which can bind to hemozoin surface to inhibit further growth. Although the bulk crystalline properties of hemozoin are well-known, the surface properties remain poorly defined. Here, we use a combination of spectroscopic and adsorption techniques to study the surface of synthetic hemozoin, hematin anhydride, produced by two different methods. We show that the two synthetic methods produce crystals with major differences, such as the amount of water adsorbed on the surface and surface carboxylate groups. These results imply that the methodology to produce hematin anhydride affects its surface reactivity; this information needs to be considered whenever hematin anhydride is used as a model to study host immune response or to design new antimalarials. PMID:27089176

  8. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    PubMed

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. PMID:27071713

  9. Crystal structure of 2,3-di-methyl-maleic anhydride: continuous chains of electrostatic attraction.

    PubMed

    Wiscons, Ren A; Zeller, Matthias; Rowsell, Jesse L C

    2015-08-01

    In the crystal structure of 2,3-di-methyl-maleic anhydride, C6H6O3, the closest non-bonding inter-molecular distances, between the carbonyl C and O atoms of neighboring mol-ecules, were measured as 2.9054 (11) and 3.0509 (11) Å, which are well below the sum of the van der Waals radii for these atoms. These close contacts, as well as packing motifs similar to that of the title compound, were also found in the crystal structure of maleic anhydride itself and other 2,3-disubstituted maleic anhydrides. Computational modeling suggests that this close contact is caused by strong electrostatic inter-actions between the carbonyl C and O atoms. PMID:26396764

  10. UNIFAC parameters for maleic anhydride and 2-methyl furan in p-dioxane system

    SciTech Connect

    Daumn, K.J.

    1983-01-01

    The purpose of this work was to develop a method for calculating equilibrium concentrations for reversible liquid phase reactions from a minimum of experimental data. The example reaction studied was the Diels Alder reaction between 2-methyl furan and maleic anhydride. Specifically, interaction parameters of the UNIFAC model for groups in the compounds 2-methyl furan, maleic anhydride and the solvent, p-dioxane, were determined. The activity coefficient of each substance was then predicted by the UNIFAC method. Equilibrium constants at 45/sup 0/C for the Diels Alder reaction between 2-methyl furan and maleic anhydride were then calculated from these activity coefficients and two previously determined sets of equilibrium concentrations at 45/sup 0/C. These two equilibrium constants were within 12% of each other, which demonstrated the validity of the method.

  11. Synthesis and testing of catalysts for the production of maleic anhydride from a fermentation feedstock

    SciTech Connect

    Yedur, S.K.; Berglund, K.A.; Dulebohn, J.; Werpy, T.

    1996-03-01

    It is necessary to develop alternate pathways for the production of chemicals that are traditionally produced from fossil fuels to reduce dependency on nonrenewable energy sources. In this paper, an alternate technology is presented for producing maleic anhydride from a fermentation feedstock. The process involves the catalytic oxydehydrogenation of fermentation-derived succinic anhydride to produce maleic anhydride. Various catalysts have been synthesized and tested for the oxydehydrogenation reaction. Iron phosphate based catalysts are found to be the best on the basis of high conversions and selectivities obtained. The effects of temperature, oxygen concentration, contact time, and the total time on stream on the performance of the catalyst are investigated, and an optimum set of conditions for the operation of the bench-scale reactor is presented. The bulk and surface compositions, the surface areas, and the bulk crystallographic structure of the catalysts are also reported.

  12. Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: Candidates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Harrison, William Lamont

    A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated

  13. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  14. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  15. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways.

    PubMed

    Huang, Kun; Liu, Zengshe; Zhang, Jinwen; Li, Shouhai; Li, Mei; Xia, Jianling; Zhou, Yonghong

    2014-03-10

    A novel biobased epoxy monomer with conjugated double bonds, glycidyl ester of eleostearic acid (GEEA) was synthesized from tung oil fatty acids and characterized by (1)H and (13)C NMR. Differential scanning calorimeter analysis (DSC) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the curing process of GEEA with dienophiles and anhydrides. DSC indicated that GEEA could cross-link with both dienophiles and anhydrides through Diels-Alder reaction and epoxy/anhydride ring-opening reaction. Furthermore, Diels-Alder cross-link was much more active than the ring-opening of epoxy and anhydride in the curing process. FT-IR also revealed that GEEA successively reacted with dienophiles and anhydrides in both cross-linking methods. Dynamic mechanical analysis and mechanical tensile testing were used to study the thermal and mechanical properties of GEEA cured by maleic anhydride, nadic methyl anhydride and 1,1'-(methylenedi-4,1-phenylene)bismaleimide. Due to the independence between the curing agents, dienophile and anhydride, a series of thermosetting polymers with various properties could be obtained by adjusting the composition of these two curing agents. PMID:24484324

  16. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  17. Graft copolymers with immobilized peroxidase for organic synthesis

    NASA Astrophysics Data System (ADS)

    De Queiroz, Alvaro Antonio Alencar; Vargas, Reinaldo Romero; Higa, Olga Zazuco; Barrak, Élcio Rogério; Bechara, Etelvino J. H.; Wlasdislaw, Blanka; Marzorati, Liliana

    1999-07-01

    The graft copolymer poly(propylene)-graft-poly(acrylic acid) (PP-G-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto polypropylene spheres and characterized by thermal analysis and scanning electron microscopy (SEM). Maximum percentage of grafting (70%) was obtained at a total dose of 12 kGy using 30% (w/w) of acrylic acid. The Michaelis constant, KM, and the maximum reaction velocity, VMax, were determined for the free horseradish peroxidase and for the immobilized horseradish peroxidase. The enzyme affinity for the substrate ( KM/ Vmax) remains quite good after immobilization. The sulfoxidation reaction of a ketosulfide was investigated with the immobilized peroxidase.

  18. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

    PubMed Central

    Jeon, Jong Yeob; Eo, Seong Chan; Varghese, Jobi Kodiyan

    2014-01-01

    Summary The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05–1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C). PMID:25161738

  19. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.

    PubMed

    Younes, H; Nataf, P R; Cohn, D; Appelbaum, Y J; Pizov, G; Uretzky, G

    1988-01-01

    Degradation of, and tissue reaction elicited by a series of polyethylene oxide (PEO)/polylactic acid (PLA) PELA block copolymers were studied in vitro and in vivo. In particular, the effect of pH, temperature and enzymatic activity was addressed. The mass loss was faster, the more basic the media, while, expectedly, PELA copolymers degraded faster with the higher temperature. The addition of an enzyme (carboxylic ester hydrolase) had no effect. The degradation process strongly affected the mechanical properties of the materials under investigation, the elongation at break dropping drastically after two days of degradation. After seven days, only gross observation of the extensively degraded samples was possible. The in vivo studies compared the tissue reaction elicited by various PELA copolymers to that evoked by PLA. Evaluation of tissue reaction observed with a PELA sample after sterilization with gamma radiation showed acute inflammation with considerable dispersion of the material, 12 days after implantation. The granulomatous reaction observed with PELA copolymers after ethylene oxide sterilization was identical to the reaction observed with PLA. PMID:3064826

  20. A new approach to quantification of DTPA incorporation into monoclonal antibodies (MoAbs) labeled by the cyclic anhydride DTPA method

    SciTech Connect

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Alsedairy, S.; Alderson, P.O.

    1985-05-01

    A method for determining the ratio of DTPA molecules attached per molecule of Ab was developed and used to examine the immunoreactivity of different Abs as a function of the amount of incorporated DTPA. The bicyclic anhydride of DTPA(2-C-14)acetic acid (BADTPA-C-14) was synthesized by reacting DTPA(2-C-14)acetic acid (1mCi/mmo1) and acetic anhydride. BADTPA-C-14 then was reacted with a MoAb to a melanoma associated antigen (MA) and to a MoAb to human HLA class II antigen (HLA) at 2mg/m1 of MoAb concentration, at MoAb to BADTPA-C-14 ratios (mmo1/mmo1) of l:1, 1:10, 1:00, l:200. The conjugate was dialyzed exhaustively against HEPES at pH 7.0. The MoAb concentration was measured at 280mm of uv; the DTPA/MoAb ratio was calculated based on the specific activity of BADTPA-C-14, and the immunoreactivity was assessed by direct cell-binding to melanoma, the HLA antigen and control (lymphoma) cells. Percent binding to the lymphoid cell line was less than 3%. The authors' results demonstrated a method for directly determining the number of DTPA molecules attached to a MOAb, and demonstrated variations in immunoreactivity as the number of DTPA groups per MoAb is altered.

  1. Synthesis and characterization of a new type of levan-graft-polystyrene copolymer.

    PubMed

    Kekez, Branka; Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Pavlović, Vladimir; Beškoski, Vladimir; Popović, Aleksandar; Vrvić, Miroslav M; Nikolić, Vladimir

    2016-12-10

    Novel macromolecular graft copolymers were synthesized by reaction of the hydroxyl groups of the microbial polysaccharide levan, produced using Bacillus licheniformis, with polystyrene (Lev-g-PS). Synthesis was performed by the free radical reaction using potassium persulfate (PPS) as initiator. The prepared copolymer was characterized by FTIR, SEM, TG/DTA, XRD and (13)C NMR. The influence of the different conditions (reaction temperature, air or nitrogen atmosphere, reaction time, type of amines and ascorbic acid (AA) concentration) on the grafting reaction was investigated. Results showed that maximum percentage of grafting (58.1%) was achieved at a reaction temperature 70°C, in a nitrogen atmosphere and using dimethylethanolamine (DMEA) as the amine activator. On the basis of the obtained results, the likely reaction mechanism was proposed. Synthesized copolymers have better thermal stability in comparison with their initial components. Copolymers such as Lev-g-PS could potentially have many applications, such as compatibilizers and material for membranes. PMID:27577892

  2. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  3. π-Conjugated Copolymers of Thiophene: Effect of Chain Architecture on the Physical and Optoelectronic Properties for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Amonoo, Jojo; Glynos, Emmanouil; Chen, Chelsea; Li, Anton; Locke, Jonas; McNeil, Anne; Green, Peter

    2012-02-01

    We found that polymer chain architecture strongly influences phase separation capabilities of the donor-acceptor blend in bulk heterojunction organic photovoltaic devices. Ni-catalyzed controlled polymerization was utilized to access new conjugated copolymers of 3-hexylthiophene and 3-(hexyloxy)methylthiophene, two donor polymers. Monomer sequence was controlled along the copolymer chain by the rate of addition of the comonomers, to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence of polythiophene based copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend on the structure, nanoscale morphology and local charge transport properties using conductive and photoconductive atomic force microscopy. The gradient configuration showed the largest phase separation behavior with PCBM.

  4. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  5. SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium

    Endalkachew Sahle-Demessie Unnikrishnan R Pillai
    U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
    Fax: 513-569-7677
    Abstract:
    Hydrogenat...

  6. Charge-Transfer Complex of p-Aminodiphenylamine with Maleic Anhydride: Spectroscopic, Electrochemical, and Physical Properties.

    PubMed

    Karaca, Erhan; Kaplan Can, Hatice; Bozkaya, Uğur; Özçiçek Pekmez, Nuran

    2016-07-01

    A new charge-transfer complex and the amide formed by the interaction between the electron donor of the p-aminodiphenylamine and the electron acceptor of maleic anhydride are investigated by spectroscopic methods. The amidation reaction is caused by proton and charge transfer between the maleic anhydride and p-aminodiphenylamine molecules. The Benesi-Hildebrand equation is used to determine the formation constant, the molar extinction coefficient and the standard Gibbs free energy of the complex by using UV/Vis spectroscopy. To reveal the electronic and spectroscopic properties of these molecules, theoretical computations are performed on the structures of maleic anhydride, p-aminodiphenylamine and the conformers of their charge-transfer complex. The charge-transfer complex and amidation reaction mechanism are also confirmed by IR and NMR spectroscopy and HRMS. The nature of the maleic anhydride-p-aminodiphenylamine complex is characterized by cyclic voltammetry, thermogravimetric analysis, XRD and SEM. Solid microribbons of this complex show higher thermal stability than p-aminodiphenylamine. PMID:26990700

  7. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...

  8. Amine neutralized alkenylsuccinic anhydride propylene glycol adducts as corrosion inhibitors for hydrocarbon fuels

    SciTech Connect

    Meyer, G.R.

    1989-10-17

    This patent describes a corrosion inhibitor composition for hydrocarbon fuels from the group consisting of gasolines and diesel fuel oils. It comprises: a C{sub 10}-C{sub 24} alkenyl succinic anhydride esterified with between 0.5-1.5 moles of a water-soluble glycol and then neutralized with an aliphatic hydrocarbon amine.

  9. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy...

  10. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy...

  11. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy...

  12. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy...

  13. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy...

  14. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

  15. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...

  16. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery.

    PubMed

    Patel, Sulabh P; Vaishya, Ravi; Pal, Dhananjay; Mitra, Ashim K

    2015-04-01

    The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segment of the eye. PB copolymers with different block arrangements and molecular weights were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance ((1)H-NMR), gel permeation chromatography (GPC), and X-ray diffraction (XRD) spectroscopy. Immunoglobulin G (IgG) was selected as a model protein due to its structural similarity to bevacizumab. The influence of polymer molecular weight, composition, and isomerism on formulation parameters such as entrapment efficiency, drug loading, and in vitro release profile was delineated. Crystallinity and molecular weight of copolymers exhibited a substantial effect on formulation parameters. A secondary structure of released IgG was confirmed by circular dichroism (CD) spectroscopy. In vitro cytotoxicity, cell viability, and biocompatibility studies performed on human retinal pigment epithelial cells (ARPE-19) and/or macrophage cell line (RAW 264.7) demonstrated PB copolymers to be excellent biomaterials. Novel PB polymers may be the answer to the unmet need of a sustained release protein formulation. PMID:25319053

  17. Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.

    PubMed

    Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L

    2014-12-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  18. Synthesis of Carboxylic Block Copolymers via Reversible Addition Fragmentation Transfer Polymerization for Tooth Erosion Prevention

    PubMed Central

    Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L.

    2014-01-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet–visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  19. Synthesis and morphology characterization of polydimethylsiloxane-containing block copolymers

    NASA Astrophysics Data System (ADS)

    Wadley, Maurice

    The thin film morphology characteristics of polydimethylsiloxane-containing block copolymers have been investigated. For this investigation, a commercially available hydroxyl terminated PDMS was purchased from Gelest and attached to a carboxylic acid functional reversible addition-fragmentation chain transfer (RAFT) agent by Steglich esterification. This produced macro-RAFT agents to which styrene monomer was polymerized. By using this approach the generation of low polydispersity polystyrene-block-polydimethylsiloxane (PS-block-PDMS) copolymers of various molecular weights spanning a wide volume fraction range in which the PDMS block remained the same in each polymerization. Synthesized block copolymers were characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Bulk and thin film characterization of PS-block-PDMS copolymers was done by small-angle x-ray scattering (SAXS), transmission electron microscopy (TEM), contact angle measurements, scanning force microscopy (SFM), and grazing incidence small-angle X-ray scattering (GISAXS). The following observations have been made. For PS-rich PS-block -PDMS copolymer thin films the low surface tension of PDMS caused it to migrate to the film surface regardless of solvent choice. The surface morphology was found to depend strongly on the solubility parameter of the solvent and exhibited SFM images consistent with parallel cylinder, perforated lamellar, and lamellar surface layers with increasing solvent solubility parameter. This behavior was due to the selective swelling of the individual blocks under slightly selective, good solvent conditions. A custom solvent annealing apparatus provided similar results in which order-order transitions in the thin films were observed with increasing solvent solubility parameter. Additionally improvements in the long-range order were observed after 1 h of solvent annealing. PS-rich PS-block-PDMS copolymer thin films also displayed PDMS

  20. Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification.

    PubMed

    Ji, Bolin; Tang, Peixin; Yan, Kelu; Sun, Gang

    2015-11-01

    1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times. PMID:26256345

  1. Controlling Phase Separation of Tough Interpenetrating Polymer Networks via Addition of Amphiphilic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    Interpenetrating polymer networks (IPNs) offer a unique way to combine the mechanical properties of two thermoset systems. Often used to create a material that possesses both high toughness and tensile properties, here we use polydicyclopentadiene, cured via ring opening metathesis polymerization, to contribute high toughness and diglycidyl ether of bisphenol A cured via anhydride chemistry to contribute high tensile strength and modulus. As the uncompatibilized system reacts in the presence of one another, mesoscopic phase separation occurs and dictates the overall efficacy of combining mechanical properties. To control phase separation and drive the system towards more mechanically robust nanostructed IPNs, amphiphilic block copolymers of polybutadiene- b-polyethylene oxide, where one block possesses strong affinity to polyDCPD and the other the DGEBA, were added to the system. Here we present a systematic study of the influence of block copolymer composition in the overall blend on degree of phase separation and morphology using a combination of small-angle x-ray scattering (SAXS) and scanning electron microscopy (SEM) techniques. The resultant mechanical properties are then explored in an effort to link mechanical properties to blend morphology.

  2. Controlling Phase Separation of Interpenetrating Polymer Networks by Addition of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    2015-03-01

    Interpenetrating polymer networks (IPNs) offer a unique way to produce mechanically superior thermoset blends relative to the neat components. In this study, IPNs were prepared consisting of polydicyclopentadiene (polyDCPD), contributing high fracture toughness, and an epoxy resin (the diglycidyl ether of bisphenol A cured with nadic methyl anhydride), contributing high tensile strength and modulus. In the absence of compatibilization, the simultaneous curing of the networks leads to a macroscopically phase separated blend that exhibits poor mechanical behavior. To control phase separation and drive the system towards more mechanically robust nanostructured IPNs, block copolymers were designed to compatibilize this system, where one block possesses affinity to polyDCPD (polynorbornene in this study) and the other block possesses affinity to DGEBA (poly(ɛ-caprolactone) in this study). The influence of the block copolymer composition on the degree of phase separation and interfacial adhesion in the IPN was studied using a combination of small-angle scattering and imaging techniques. The resultant mechanical properties were explored and structure-property relationships were developed in this blend system.

  3. Adsorption and reaction of maleic anhydride on Mo(110), monolayer Pd(111)/Mo(110), and multilayer Pd(111)/Mo(110)

    SciTech Connect

    Xu, C.; Goodman, D.W.

    1996-04-03

    The adsorption and reaction of maleic anhydride and deuterated maleic anhydride on Mo(110), monolayer Pd/Mo(110), and multilayer Pd(111)/Mo(110) surfaces have been studied using temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Maleic anhydride adsorbs irreversibly on the Mo(110) surface at 100 K. Heating to 1200 K yields adsorbed carbon (C{sub ads}) and gas-phase CO and H{sub 2}. In contrast, the adsorption of maleic anhydride on monolayer Pd(111)/Mo(110) and multilayer Pd(111)/Mo(110) surfaces is largely reversible with the chemisorbed maleic anhydride desorbing at 365 and 375 K, respectively. Approximately 15% of the chemisorbed maleic anhydride decomposes upon heating to 400K, forming CO, CO{sub 2} and C{sub 2}H{sub 2}; C{sub 2}H{sub 2} further dehydrogenates upon heating to C{sub ads} and gas-phase H{sub 2}. The HREELS measurements indicate that maleic anhydride is bonded to multilayer Pd(111)/Mo(110) through the olefin bond in a di-{sigma} configuration, while on monolayer Pd(111)/Mo(110), the maleic anhydride is bonded to the surface through the olefin via a {pi}-bond. On the Mo(110) surface, maleic anhydride is bonded to the surface through the ring oxygen with the molecular plane perpendicular to the surface. As a result of this modified adsorption geometry, the carbonyl stretching mode is red-shifted nearly 150 cm{sup -1} on the monolayer Pd(111)/Mo(110) surface, unshifted on the multilayer Pd(111)/Mo(110) surface, and blue-shifted by nearly 100 cm{sup -1} on the Mo(110) surface. 31 refs., 14 figs., 3 tabs.

  4. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .../acrylic copolymers shall not be used as polymer modifiers in vinyl chloride homo- or copolymers. (e... (other than articles composed of vinyl chloride homo- or copolymers) intended for use in contact with...

  5. Production of identical retention times and mass spectra for {delta}9-tetrahydrocannabinol and cannabidiol following derivatization with trifluoracetic anhydride with 1,1,1,3,3,3-hexafluoroisopropanol*.

    PubMed

    Andrews, Rebecca; Paterson, Sue

    2012-01-01

    The use of perfluorinated anhydrides coupled with perfluoroalcohols for the derivatization of cannabinoids has been well documented. Derivatization is used in the detection of cannabinoids using gas chromatography-mass spectrometry (GC-MS) with both electron impact ionization (EI) and negative chemical ionization (NCI). During method development for the analysis of cannabinoids in biological samples using GC-MS in EI and NCI mode, it was observed that when Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) were derivatized with trifluoroacetic anhydride (TFAA), the resultant derivatives produced the same retention times and mass spectra. This was not observed with the trimethylsilyl (TMS) derivatives of THC and CBD. This complication is due to the conversion of CBD to THC under acidic conditions. The work here highlights the unsuitability of the derivatizing reagent TFAA for the detection of THC and CBD. For the analysis of case samples, even if only THC is of interest, the presence of CBD cannot be excluded, and other derivatization techniques should be used. PMID:22290754

  6. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-01

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  7. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  8. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  9. Discovery and Characterization of Carotenoid-Oxygen Copolymers in Fruits and Vegetables with Potential Health Benefits.

    PubMed

    Burton, Graham W; Daroszewski, Janusz; Mogg, Trevor J; Nikiforov, Grigory B; Nickerson, James G

    2016-05-18

    We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds. Geronic acid, an indirect, low molecular weight marker of β-carotene oxidation at ∼2% of β-carotene copolymers, is found to occur in common fresh or dried foods, including carrots, tomatoes, sweet potatoes, paprika, rosehips, seaweeds, and alfalfa, at levels encompassing an approximately thousand-fold range, from low ng/g in fresh foods to μg/g in dried foods. Copolymers isolated from several dried foods reach mg/g levels: comparable to initial carotenoid levels. In vivo biological activity of supplemental β-carotene copolymers has been previously documented at μg/g levels, suggesting that some foods could have related activity. PMID:27111491

  10. Synthesis and characterization of electrically conducting copolymers of poly(aniline-co-o-iodoaniline)

    NASA Astrophysics Data System (ADS)

    Waware, Umesh S.; Rashid, Mohd

    2014-07-01

    Functionalized copolymers of poly(aniline-co-o-iodoaniline) have been synthesized by the chemical oxidative polymerization method by using o-iodoaniline (o-IA) and aniline (AN) as monomer units by changing their molar feed ratio in acid aqueous medium. The physical properties viz; solubility, electrical conductivity have been studied to characterize them. The copolymers possess better solubility than unsubstituted homopolymer in organic solvent such as N-methyl-2-pyrrodinone (NMP). The conductivity of the pressed pellets of as-synthesized copolymers depends upon the content of o-IA in the polyaniline (PANI). The structural confirmation of the copolymer has been explained by Fourier transform infrared spectroscopy study which suggest that AN and o-IA units are uniformly distributed along the polymer chain and thus, the physical properties of copolymers may possibly be tailored by varying the molar feed ratio in copolymerization reactions. The conductivity of the copolymer decreases upon increasing the o-IA content in molar feed, because the introduction of -I- as a functional group reduces the extent of conjugation of the polymer chain.

  11. Comparative Kinetic Study and Microwaves Non-Thermal Effects on the Formation of Poly(amic acid) 4,4′-(Hexafluoroisopropylidene)diphthalic Anhydride (6FDA) and 4,4′-(Hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (BAPHF). Reaction Activated by Microwave, Ultrasound and Conventional Heating

    PubMed Central

    Tellez, Hugo Mendoza; Alquisira, Joaquín Palacios; Alonso, Carlos Rius; Cortés, José Guadalupe López; Toledano, Cecilio Alvarez

    2011-01-01

    Green chemistry is the design of chemical processes that reduce or eliminate negative environmental impacts. The use and production of chemicals involve the reduction of waste products, non-toxic components, and improved efficiency. Green chemistry applies innovative scientific solutions in the use of new reagents, catalysts and non-classical modes of activation such as ultrasounds or microwaves. Kinetic behavior and non-thermal effect of poly(amic acid) synthesized from (6FDA) dianhydride and (BAPHF) diamine in a low microwave absorbing p-dioxane solvent at low temperature of 30, 50, 70 °C were studied, under conventional heating (CH), microwave (MW) and ultrasound irradiation (US). Results show that the polycondensation rate decreases (MW > US > CH) and that the increased rates observed with US and MW are due to decreased activation energies of the Arrhenius equation. Rate constant for a chemical process activated by conventional heating declines proportionally as the induction time increases, however, this behavior is not observed under microwave and ultrasound activation. We can say that in addition to the thermal microwave effect, a non-thermal microwave effect is present in the system. PMID:22072913

  12. Segmented polyether-ester copolymers

    SciTech Connect

    Souffie, R.D.

    1982-08-01

    This article touches on the chemistry of manufacture and structure of thermoplastic elastomers. The physical properties and environmental resistance characteristics of these copolymers are related to their molecular makeup. Results indicate that segmented polyether esters, because of their basic chemical structure, are resistant to a wide range of oils, solvents and chemicals. They are also highly elastic, resilient polymers which can be both cost and performance effective when used in a number of industrial applications.

  13. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  14. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  15. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  16. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P F; Buchanan, III, A C; Eskay, T P; Mungall, W S

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 °C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non

  17. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  18. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  19. Regioselective Syntheses of [13C]4-Labelled Sodium 1-Carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and Sodium 2-Carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-Maleic Anhydride

    PubMed Central

    Barsamian, Adam L.; Perkins, Matt J.; Field, Jennifer A.; Blakemore, Paul R.

    2014-01-01

    The entitled monohydrolysis products, also known as α- and β-ethylhexyl sulfosuccinate ('EHSS'), of the surfactant diisooctyl sulfosuccinate ('DOSS') were synthesized in stable isotope labelled form from [13C]4-maleic anhydride. Sodium [13C]4-1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [13C]4-maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of 13C/13C (INADEQUATE) and 1H/13C (HMBC) NMR spectral correlation experiments. Sodium [13C]4-2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol (PMBOH) with [13C]4-maleic anhydride, regioselective sodium bisulfite addition, DCC mediated esterification with 2-ethylhexan-1-ol, and PMB ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of 1JCC scalar coupling constant analysis and 1H/13C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the LC-MS/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  20. Interfaces between Block Copolymer Domains

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; Jeong, Seong-Jun; Kim, Sang Ouk

    2011-03-01

    Block copolymers naturally form nanometer scale structures which repeat their geometry on a larger scale. Such a small scale periodic pattern can be used for various applications such as storage media, nano-circuits and optical filters. However, perfect alignment of block copolymer domains in the macroscopic scale is still a distant dream. The nanostructure formation usually occurs with spontaneously broken symmetry; hence it is easily infected by topological defects which sneak in due to entropic fluctuation and incomplete annealing. Careful annealing can gradually reduce the number of defects, but once kinetically trapped, it is extremely difficult to remove all the defects. One of the main reasons is that the defect finds a locally metastable morphology whose potential depth is large enough to prohibit further morphology evolution. In this work, the domain boundaries between differently oriented lamellar structures in thin film are studied. For the first time, it became possible to quantitatively study the block copolymer morphology in the transitional region, and it was shown that the twisted grain boundary is energetically favorable compared to the T-junction grain boundary. [Nano Letters, 9, 2300 (2010)]. This theoretical method successfully explained the experimental results.

  1. Synthesis of acrylic copolymers consisting of multiple amine pendants for dispersing pigment.

    PubMed

    Chen, Yu-Min; Hsu, Ru-Siou; Lin, Hsiao-Chu; Chang, Shinn-Jen; Chen, Shih-Chun; Lin, Jiang-Jen

    2009-06-01

    A class of acrylic copolymers with narrow molecular weight distribution from butyl methacrylate and glycidyl methacrylate comonomers via atom transfer radical polymerization was synthesized. Various types of polarities including hydroxyl-amines, glycols, and carboxylic acids were then grafted onto the oxirane side groups. The resultant comb-like copolymers with different polar pendants were tested for homogenizing a representative Yellow pigment in 1,6-hexanediol diacrylate medium. Specifically, the polyacrylates with 1,3-diamine pendants (7-10 multiplicity on each polymer strain) enabled to homogeneously disperse the pigment than the analogous copolymers with hydroxyl or carboxylic acid groups. Ultimately, the pigment dispersion with an average size of ca. 20 nm in diameter, high transmittance and low viscosity was achieved. Furthermore, the pigment dispersion was allowed to UV-cure into a film, and for the first time, the primary structures of the pigment particles (ca. 50 nm in diameter) were observed by transmission electronic microscope. PMID:19364609

  2. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength. PMID:26394179

  3. Radiation effects in polyisobutylene succinic anhydride modified with silica and magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Borbath, I.; Vékás, L.

    2014-12-01

    Polyisobutylene succinic anhydride (PIBSA) was modified with nanoparticles of magnetite and silica for the appraising the modification in the thermal stability of organic component after gamma irradiation. Pristine anhydride was loaded with different amounts of nanofiller (1, 2 and 5 wt% of each oxide). Gamma exposure was performed in air at several doses: 10, 20, 50 and 100 kGy. The stability determinations were carried out by nonisothermal chemiluminescence in stationary air atmosphere. The presence of these oxides induces an increase in the oxidation level corresponding to their chemical availability as the filler amounts and exposure doses are enhanced. The oxidation takes essentially place on quaternary carbon atoms and double bonds, which was demonstrated by the presence of two chemiluminescence intensity peaks. The comparative analysis on the radiation oxidation of PIBSA modified with Fe3O4 and SiO2 is presented.

  4. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  5. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment.

    PubMed

    Aklog, Yihun Fantahun; Nagae, Tomone; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-11-20

    Esterification with maleic anhydride significantly improved the mechanical disintegration of chitin into uniform 10-nm nanofibers. Nanofibers with 0.25° of esterification were homogeneously dispersed in basic water due to the carboxylate salt on the surface. Esterification proceeded on the surface and did not affect the relative crystallinity. A cast film of the esterified chitin nanofibers was highly transparent, since the film was free from light scattering. PMID:27561471

  6. Covalent modification of graphite oxide with acetic anhydride to enhance dispersibility in organic solvents

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Yang, Anwei; Zhang, Chen; Zhang, Lei; Sun, Feifei; Ma, Ning

    2016-05-01

    Graphite oxide (GO) was modified by acetic anhydride via a catalyzed ring-opening reaction of the attached epoxy groups at very mild condition. The dispersion of the modified GO is thus largely imporved in many organic solvents and the highest GO concentration reaches 2.0mg/mL in alkyl(aryl) chlorides, ethers, alcohols and cyclohexane, which is amongst the highest value for GO in organics.

  7. Synthesis and Characterization of Organic Impurities in Bortezomib Anhydride Produced by a Convergent Technology

    PubMed Central

    Ivanov, Andrey S.; Shishkov, Sergey V.; Zhalnina, Anna A.

    2012-01-01

    A profile of impurities in bortezomib anhydride, produced by a recently developed convergent technology, has been characterized. HPLC-MS analysis of the drug essence revealed three impurities: an epimer of bortezomib, resulting from partial racemization of l-phenylalanine’s stereogenic center during the chemical synthesis, and two epimeric products of oxidative degradation of bortezomib, in which boron is replaced by the OH group. The impurities were obtained by chemical synthesis and characterized by physical methods. PMID:22396904

  8. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.

    PubMed

    Li, Yuanming; Ma, Lina; Jia, Fan; Li, Zhiping

    2013-06-01

    A general and efficient method for amide bond synthesis has been developed. The method allows for synthesis of tertiary amides from readily available tertiary amines and anhydrides in the presence of FeCl2 as catalyst and tert-butyl hydroperoxide in water (T-Hydro) as oxidant. Mechanistic studies indicated that the in situ-generated α-amino peroxide of tertiary amine and iminium ion act as key intermediates in this oxidative transformation. PMID:23668222

  9. N-Methylimidazole Promotes the Reaction of Homophthalic Anhydride with Imines

    PubMed Central

    2015-01-01

    The addition of N-methylimidazole (NMI) to the reaction of homophthalic anhydride with imines such as pyridine-3-carboxaldehyde-N-trifluoroethylimine (9) reduces the amount of elimination byproduct and improves the yield of the formal cycloadduct, tetrahydroisoquinolonic carboxylate 10. Carboxanilides of such compounds are of interest as potential antimalarial agents. A mechanism that rationalizes the role of NMI is proposed, and a gram-scale procedure for the synthesis and resolution of 10 is also described. PMID:25036978

  10. A 3-week dietary safety study of octenyl succinic anhydride (OSA)-modified starch in neonatal farm piglets.

    PubMed

    Mahadevan, Brinda; Thorsrud, Bjorn A; Brorby, Gregory P; Ferguson, Heather E

    2014-10-01

    Octenyl succinic anhydride (OSA)-modified starch functions as both an emulsifier and emulsion stabilizer in foods, and is intended for use in infant formula, follow-on formula, and formulae for special medical purposes. These formulae predominantly include extensively hydrolyzed protein or free amino acids, rather than intact protein, which otherwise would provide emulsifying functionality. The study objectives were to evaluate (1) the safety of OSA-modified starch after three weeks of administration to neonatal farm piglets, beginning 2 days after birth and (2) the impact of OSA-modified starch on piglet growth. OSA-modified starch was added to formula at concentrations of 2, 4, and 20 g/L. The vehicle control, low-dose, and mid-dose diets were supplemented with Amioca™ Powder to balance the nutritional profiles of all formulations. There were no test article-related effects of any diet containing OSA-modified starch on piglet growth and development (clinical observations, body weight, feed consumption), or clinical pathology parameters (hematology, clinical chemistry, coagulation, urinalysis). In addition, there were no adverse effects at terminal necropsy (macro- and microscopic pathology evaluations). Therefore, dietary exposure to OSA-modified starch at concentrations up to 20 g/L was well tolerated by neonatal farm piglets and did not result in adverse health effects or impact piglet growth. PMID:25019245

  11. Effect of chain topology of block copolymer on micellization: ring vs linear block copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hee; Huh, June; Jo, Won Ho

    2003-03-01

    The aggregation of amphiphilic block copolymers in solution to form micelles has attracted great interest in recent years because of its importance in industrial applications. Many studies on these systems have mainly focused on a di- or triblock copolymer and much less attention was given to other architectures such as ring block copolymer. Recent experimental work has extended those works to include ring block copolymer, made by end-linking the triblock copolymer. Although the micellization of the ring block copolymer seemed to be favored over that of the linear triblock copolymer, two block copolymers showed similar values of cmc in experiments. In the present work, micellization of ring block copolymer (ring-B9A8) was simulated by Brownian dyanmics and micellar behavior is compared with triblock copolymer (A4B9A4) to investigate more systematically the effect of molecular architecture. Critical micelle concentration (cmc), average aggregation number and micellar distribution are compared with corresponding quantities measured for linear triblock copolymers having the same chain length and composition. Simulation results show that the cmc of ring-B9A8 is smaller than that of A4B9A4. The difference is explained by simple mean-field type theory.

  12. Synthesis of a Novel 1,2,4-Oxadiazole Diterpene from the Oxime of the Methyl Ester of 1β,13-Epoxydihydroquinopimaric Acid.

    PubMed

    Tretyakova, Elena V; Salimova, Elena V; Odinokov, Victor N; Dzhemilev, Usein M

    2016-01-01

    Oximation of the dihydroquinopimaric acid O-cyanoethylderivative (2) via the amidoxime 3, and cyclization with trifluoroacetic anhydride resulted in a new 1,2,4-oxadiazole diterpenoid (4). PMID:26996010

  13. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid.

    PubMed

    Shang, Wenting; Sheng, Zhanwu; Shen, Yixiao; Ai, Binling; Zheng, Lili; Yang, Jingsong; Xu, Zhimin

    2016-05-01

    Banana cellulose contained number of hydrophilic hydroxyl groups which were succinylated to be hydrophobic groups with high oil affinity. Succinic anhydride was used to modify banana cellulose in 1-allyl-3-methylimidazolium chloride ionic liquid in this study. The modified banana cellulose had a high oil absorption capacity. The effects of reaction time, temperature, and molar ratio of succinic anhydride to anhydroglucose on the degree of substitution of modified banana cellulose were evaluated. The optimal reaction condition was at a ratio of succinic anhydride and anhydroglucose 6:1 (m:m), reaction time 60min and temperature 90°C. The maximum degree of acylation reaction reached to 0.37. The characterization analysis of the modified banana cellulose was performed using X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and thermogravimetry. The oil absorption capacity and kinetics of the modified banana cellulose were evaluated at the modified cellulose dose (0.025-0.3g), initial oil amount (5-30g), and temperature (15-35°C) conditions. The maximum oil absorption capacity was 32.12g/g at the condition of the cellulose dose (0.05g), initial oil amount (25g) and temperature (15°C). The kinetics of oil absorption of the cellulose followed a pseudo-second-order model. The results of this study demonstrated that the modified banana cellulose could be used as an efficient bio-sorbent for oil adsorption. PMID:26877005

  14. Reevaluation of Tetrahydrophthalic Anhydride as an End Cap for Improved Oxidation Resistance in Addition Polyimides

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Frimer, Aryeh A.; Johnston, J. Christopher

    2003-01-01

    Several substituted 1,2,3,6-tetrahydrophthalic anhydride end caps - including the 3-phenyl, 3-methoxy, 3-trimethylsilyloxy, and 3,6-diphenyl analogs - were synthesized via the Diels-Alder condensation of the corresponding butadienes and maleic anhydride. These anhydrides, as well as the commercially available 3-hydro and 4-methyl analogs, were each ground together with methylenedianiline in a 2:1 ratio and heated gradually from 204 C to 371 C, with the thermolysis followed by NMR. Generally speaking, a transformation via monoimide to bisimide was observed in the lower temperature range, followed by competition between crosslinking and aromatization. We believe that this competition produces a substantial percentage of aromatic product, with the concomitant lowering of the relative amount of crosslinking and is responsible for improving both thermal oxidative stability of tetrahydrophthalic end capped polyimides and their substantial frangibility. The thermolysis of the tetrahydrophthalimides under inert atmosphere dramatically lowers the amount of aromatization hence, the mechanism for aromatization is an oxidative one.

  15. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    PubMed

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. PMID:27240315

  16. Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery.

    PubMed

    Fu, Liyi; Sun, Chunyang; Yan, Lifeng

    2015-01-28

    Theranostic polymeric nanomaterials are of special important in cancer treatment. Here, novel galactose targeted pH-responsive amphiphilic multiblock copolymer conjugated with both drug and near-infrared fluorescence (NIR) probe has been designed and prepared by a four-steps process: (1) ring-opening polymerization (ROP) of N-carboxy anhydride (NCA) monomers using propargylamine as initiator; (2) reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methacrylate (OEGMA) and gal monomer by an azido modified RAFT agent; (3) combing the obtained two polymeric segments by click reaction; (4) NIR copolymer prodrug was synthesized by chemical linkage of both cyanine dye and anticancer drug doxorubicin to the block copolymer via amide bond and hydrazone, respectively. The obtained NIRF copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and its was measured by means of micelles dynamic light scattering (DLS), field emission transmission electron microscopy (FETEM), and UV-vis and fluorescence spectrophotometry. The prodrug has strong fluorescence in the near-infrared region, and a pH sensitive drug release was confirmed at pH of 5.4 via an in vitro drug release experiment. Confocal laser scanning microscopy (CLSM) and flow cytometry experiments of the prodrug on both HepG2 and NIH3T3 cells reveal that the galactose targeted polymeric prodrug shows a fast and enhanced endocytosis due to the specific interaction for HepG2 cells, indicating the as-prepared polymer is a candidate for theranosis of liver cancer. PMID:25569169

  17. Formation and Characterization of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  18. Barite formation in the presence of a commercial copolymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Cristina; Putnis, Christine; Ruiz-Agudo, Encarnacion; Putnis, Andrew

    2015-04-01

    Fluid composition can significantly modify the mechanisms of mineral formation. Particularly, the presence of organic additives in the aqueous media has been shown to alter the precipitation of minerals substantially (e.g. calcium carbonate, barium carbonate and barium sulfate). Despite the numerous studies dealing with barite precipitation and the influence of organic additives (e.g. Benton et al. 1993, Qi et al., 2000, Wang and Cölfen, 2006, Mavredaki et al., 2011), the details of the mechanism of barite formation in the presence of organic additives, particularly at the early stages of this process, are yet to be fully resolved. Here, we present observations on the initial stages of barite formation from aqueous solutions, as well as the alterations induced by a commercial copolymer (maleic acid/allyl sulfonic acid copolymer with phosphonate groups), commonly used as a scale inhibitor in oil recovery. Most synthetic commercial additives contain the same functional groups (e.g. carboxylate, phosphonate and/or sulfonate groups). Thus our work may help to understand the mechanism by which copolymers modify crystallization processes and aid in the selection of the most appropriate inhibitors for hindering or controlling barite scale formation. Barite scaling is one of the main problems in many industrial processes (such as, paper-making, chemical manufacturing, cement operations, off-shore oil extraction, geothermal energy production). Using Atomic Force Microscopy (AFM), we show that barite growth is significantly influenced by the presence of the copolymer. In its absence, barium sulfate growth occurs by 2D island nucleation and spreading. The addition of small amounts (0.1 ppm and 0.5 ppm) of the copolymer enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor is enough to block barite nucleation and growth by adsorption of a copolymer layer onto the barite surface. Transmission electron microscopy (TEM) was also used to gain better insights into the

  19. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.22 Acrylonitrile copolymers. Acrylonitrile copolymers may be... uses subject to the denial are thereafter unapproved food additives and consequently unlawful. (3)...

  20. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.